• `modernize-use-default-member-init` and `readability-redundant-member-init`
• Minor adjustments to `.clang-tidy` to improve syntax & remove redundancies
While all the previous fixes to optimizeVertexCache invocation fixed the
vertex transform efficiency, the import code still was missing two
crucial recommendations from meshoptimizer documentation:
- All meshes should be optimized for vertex cache (this reorders
vertices for maximum fetch efficiency)
- When LODs are used with a shared vertex buffer, the vertex order
should be generated by doing a vertex fetch optimization on the
concatenated index buffer from coarse to fine LODs; this maximizes
fetch efficiency for coarse LODs
The last point is especially crucial for Mali GPUs; unlike other GPUs
where vertex order affects fetch efficiency but not shading, these GPUs
have various shading quirks (depending on the GPU generation) that
really require consecutive index ranges for each LOD, which requires the
second optimization mentioned above. However all of these also help
desktop GPUs and other mobile GPUs as well.
Because this optimization is "global" in the sense that it affects all
LODs and all vertex arrays in concert, I've taken this opportunity to
isolate all optimization code in this function and pull it out of
generate_lods and create_shadow_mesh; this doesn't change the vertex
cache efficiency, but makes the code cleaner. Consequently,
optimize_indices should be called after other functions like
create_shadow_mesh / generate_lods.
This required exposing meshopt_optimizeVertexFetchRemap; as a drive-by,
meshopt_simplifySloppy was never used so it's not exposed anymore - this
will simplify future meshopt upgrades if they end up changing the
function's interface.
"Raycast Normals" was introduced in 4.4 dev and defaulted to "false".
The limited testing results at the time suggested that raycasting
generally reduces normal quality compared to native simplifier results,
at the same time increasing vertex memory and import time.
To play it safe, we introduced a setting that defaulted to false, with
the goal of removing it later in 4.4 development cycle if no regressions
are noticed. Since we already had three dev snapshots and no reports,
this change removes the setting and associated code.
"Normal Split Angle" was only used when raycast normals were enabled;
this change removes it from the settings, but keeps it in the script
binding for compatibility.
Existing meshes import exactly the same after this change (unless they
chose to override raycasting which would be surprising).
split_normals helper was only used in this code path and is also removed
for simplicity; it is unlikely that this code will be useful as is, as
it can only regenerate normals without fixing tangents or updating
positions.
The Godot-specific patch is just a single line now; removing this patch
will likely require adjusting Godot importer code to handle error limits
better.
This also adds new SIMPLIFY_ options; Godot is currently not using any
of these but might use SIMPLIFY_PRUNE and SIMPLIFY_SPARSE in the future.
Using `PNAME()` on these properties are redundant as they won't be displayed
in the editor and some of them will be automatically ignored by the
extraction script.
Mesh_instance_2d has no way to know when the mesh had been modified
unless you called set_mesh. This meant that you could modify the
underlying mesh without it knowing which could result in incorrect
result.
Modified mesh_instance_2d to be more similar to mesh_instance_3d which
connects to the changed signal of the mesh and reacts occordingly.
- Implements asynchronous transfer queues from PR #87590.
- Adds ubershaders that can run with specialization constants specified as push constants.
- Pipelines with specialization constants can compile in the background.
- Added monitoring for pipeline compilations.
- Materials and shaders can now be created asynchronously on background threads.
- Meshes that are loaded on background threads can also compile pipelines as part of the loading process.
Depth comparison is now used to prevent refraction from occurring
if the pixel being refracted is located in front of the object.
For pixels slightly behind the object, a `smoothstep()` curve
is used to progressively increases refraction intensity
as the distance between the object and the refraction increases.
This avoids sudden discontinuities in the refraction.
Co-authored-by: GeneralLegendary <generallegendary456@gmail.com>