linux/arch/powerpc/kernel/smp.c
Benjamin Herrenschmidt 880102e785 Merge remote branch 'origin/master' into merge
Manual merge of arch/powerpc/kernel/smp.c and add missing scheduler_ipi()
call to arch/powerpc/platforms/cell/interrupt.c

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2011-05-20 15:36:52 +10:00

758 lines
16 KiB
C

/*
* SMP support for ppc.
*
* Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
* deal of code from the sparc and intel versions.
*
* Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
*
* PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
* Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#undef DEBUG
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/smp.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/cache.h>
#include <linux/err.h>
#include <linux/sysdev.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/topology.h>
#include <asm/ptrace.h>
#include <asm/atomic.h>
#include <asm/irq.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/prom.h>
#include <asm/smp.h>
#include <asm/time.h>
#include <asm/machdep.h>
#include <asm/cputhreads.h>
#include <asm/cputable.h>
#include <asm/system.h>
#include <asm/mpic.h>
#include <asm/vdso_datapage.h>
#ifdef CONFIG_PPC64
#include <asm/paca.h>
#endif
#ifdef DEBUG
#include <asm/udbg.h>
#define DBG(fmt...) udbg_printf(fmt)
#else
#define DBG(fmt...)
#endif
/* Store all idle threads, this can be reused instead of creating
* a new thread. Also avoids complicated thread destroy functionality
* for idle threads.
*/
#ifdef CONFIG_HOTPLUG_CPU
/*
* Needed only for CONFIG_HOTPLUG_CPU because __cpuinitdata is
* removed after init for !CONFIG_HOTPLUG_CPU.
*/
static DEFINE_PER_CPU(struct task_struct *, idle_thread_array);
#define get_idle_for_cpu(x) (per_cpu(idle_thread_array, x))
#define set_idle_for_cpu(x, p) (per_cpu(idle_thread_array, x) = (p))
#else
static struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ;
#define get_idle_for_cpu(x) (idle_thread_array[(x)])
#define set_idle_for_cpu(x, p) (idle_thread_array[(x)] = (p))
#endif
struct thread_info *secondary_ti;
DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
EXPORT_PER_CPU_SYMBOL(cpu_core_map);
/* SMP operations for this machine */
struct smp_ops_t *smp_ops;
/* Can't be static due to PowerMac hackery */
volatile unsigned int cpu_callin_map[NR_CPUS];
int smt_enabled_at_boot = 1;
static void (*crash_ipi_function_ptr)(struct pt_regs *) = NULL;
#ifdef CONFIG_PPC64
int __devinit smp_generic_kick_cpu(int nr)
{
BUG_ON(nr < 0 || nr >= NR_CPUS);
/*
* The processor is currently spinning, waiting for the
* cpu_start field to become non-zero After we set cpu_start,
* the processor will continue on to secondary_start
*/
paca[nr].cpu_start = 1;
smp_mb();
return 0;
}
#endif
static irqreturn_t call_function_action(int irq, void *data)
{
generic_smp_call_function_interrupt();
return IRQ_HANDLED;
}
static irqreturn_t reschedule_action(int irq, void *data)
{
scheduler_ipi();
return IRQ_HANDLED;
}
static irqreturn_t call_function_single_action(int irq, void *data)
{
generic_smp_call_function_single_interrupt();
return IRQ_HANDLED;
}
irqreturn_t debug_ipi_action(int irq, void *data)
{
if (crash_ipi_function_ptr) {
crash_ipi_function_ptr(get_irq_regs());
return IRQ_HANDLED;
}
#ifdef CONFIG_DEBUGGER
debugger_ipi(get_irq_regs());
#endif /* CONFIG_DEBUGGER */
return IRQ_HANDLED;
}
static irq_handler_t smp_ipi_action[] = {
[PPC_MSG_CALL_FUNCTION] = call_function_action,
[PPC_MSG_RESCHEDULE] = reschedule_action,
[PPC_MSG_CALL_FUNC_SINGLE] = call_function_single_action,
[PPC_MSG_DEBUGGER_BREAK] = debug_ipi_action,
};
const char *smp_ipi_name[] = {
[PPC_MSG_CALL_FUNCTION] = "ipi call function",
[PPC_MSG_RESCHEDULE] = "ipi reschedule",
[PPC_MSG_CALL_FUNC_SINGLE] = "ipi call function single",
[PPC_MSG_DEBUGGER_BREAK] = "ipi debugger",
};
/* optional function to request ipi, for controllers with >= 4 ipis */
int smp_request_message_ipi(int virq, int msg)
{
int err;
if (msg < 0 || msg > PPC_MSG_DEBUGGER_BREAK) {
return -EINVAL;
}
#if !defined(CONFIG_DEBUGGER) && !defined(CONFIG_KEXEC)
if (msg == PPC_MSG_DEBUGGER_BREAK) {
return 1;
}
#endif
err = request_irq(virq, smp_ipi_action[msg], IRQF_DISABLED|IRQF_PERCPU,
smp_ipi_name[msg], 0);
WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
virq, smp_ipi_name[msg], err);
return err;
}
#ifdef CONFIG_PPC_SMP_MUXED_IPI
struct cpu_messages {
int messages; /* current messages */
unsigned long data; /* data for cause ipi */
};
static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
void smp_muxed_ipi_set_data(int cpu, unsigned long data)
{
struct cpu_messages *info = &per_cpu(ipi_message, cpu);
info->data = data;
}
void smp_muxed_ipi_message_pass(int cpu, int msg)
{
struct cpu_messages *info = &per_cpu(ipi_message, cpu);
char *message = (char *)&info->messages;
message[msg] = 1;
mb();
smp_ops->cause_ipi(cpu, info->data);
}
void smp_muxed_ipi_resend(void)
{
struct cpu_messages *info = &__get_cpu_var(ipi_message);
if (info->messages)
smp_ops->cause_ipi(smp_processor_id(), info->data);
}
irqreturn_t smp_ipi_demux(void)
{
struct cpu_messages *info = &__get_cpu_var(ipi_message);
unsigned int all;
mb(); /* order any irq clear */
do {
all = xchg_local(&info->messages, 0);
#ifdef __BIG_ENDIAN
if (all & (1 << (24 - 8 * PPC_MSG_CALL_FUNCTION)))
generic_smp_call_function_interrupt();
if (all & (1 << (24 - 8 * PPC_MSG_RESCHEDULE)))
scheduler_ipi();
if (all & (1 << (24 - 8 * PPC_MSG_CALL_FUNC_SINGLE)))
generic_smp_call_function_single_interrupt();
if (all & (1 << (24 - 8 * PPC_MSG_DEBUGGER_BREAK)))
debug_ipi_action(0, NULL);
#else
#error Unsupported ENDIAN
#endif
} while (info->messages);
return IRQ_HANDLED;
}
#endif /* CONFIG_PPC_SMP_MUXED_IPI */
void smp_send_reschedule(int cpu)
{
if (likely(smp_ops))
smp_ops->message_pass(cpu, PPC_MSG_RESCHEDULE);
}
void arch_send_call_function_single_ipi(int cpu)
{
smp_ops->message_pass(cpu, PPC_MSG_CALL_FUNC_SINGLE);
}
void arch_send_call_function_ipi_mask(const struct cpumask *mask)
{
unsigned int cpu;
for_each_cpu(cpu, mask)
smp_ops->message_pass(cpu, PPC_MSG_CALL_FUNCTION);
}
#if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
void smp_send_debugger_break(void)
{
int cpu;
int me = raw_smp_processor_id();
if (unlikely(!smp_ops))
return;
for_each_online_cpu(cpu)
if (cpu != me)
smp_ops->message_pass(cpu, PPC_MSG_DEBUGGER_BREAK);
}
#endif
#ifdef CONFIG_KEXEC
void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
{
crash_ipi_function_ptr = crash_ipi_callback;
if (crash_ipi_callback) {
mb();
smp_send_debugger_break();
}
}
#endif
static void stop_this_cpu(void *dummy)
{
/* Remove this CPU */
set_cpu_online(smp_processor_id(), false);
local_irq_disable();
while (1)
;
}
void smp_send_stop(void)
{
smp_call_function(stop_this_cpu, NULL, 0);
}
struct thread_info *current_set[NR_CPUS];
static void __devinit smp_store_cpu_info(int id)
{
per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
}
void __init smp_prepare_cpus(unsigned int max_cpus)
{
unsigned int cpu;
DBG("smp_prepare_cpus\n");
/*
* setup_cpu may need to be called on the boot cpu. We havent
* spun any cpus up but lets be paranoid.
*/
BUG_ON(boot_cpuid != smp_processor_id());
/* Fixup boot cpu */
smp_store_cpu_info(boot_cpuid);
cpu_callin_map[boot_cpuid] = 1;
for_each_possible_cpu(cpu) {
zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
GFP_KERNEL, cpu_to_node(cpu));
zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
GFP_KERNEL, cpu_to_node(cpu));
}
cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
if (smp_ops)
if (smp_ops->probe)
max_cpus = smp_ops->probe();
else
max_cpus = NR_CPUS;
else
max_cpus = 1;
}
void __devinit smp_prepare_boot_cpu(void)
{
BUG_ON(smp_processor_id() != boot_cpuid);
#ifdef CONFIG_PPC64
paca[boot_cpuid].__current = current;
#endif
current_set[boot_cpuid] = task_thread_info(current);
}
#ifdef CONFIG_HOTPLUG_CPU
/* State of each CPU during hotplug phases */
static DEFINE_PER_CPU(int, cpu_state) = { 0 };
int generic_cpu_disable(void)
{
unsigned int cpu = smp_processor_id();
if (cpu == boot_cpuid)
return -EBUSY;
set_cpu_online(cpu, false);
#ifdef CONFIG_PPC64
vdso_data->processorCount--;
#endif
migrate_irqs();
return 0;
}
void generic_cpu_die(unsigned int cpu)
{
int i;
for (i = 0; i < 100; i++) {
smp_rmb();
if (per_cpu(cpu_state, cpu) == CPU_DEAD)
return;
msleep(100);
}
printk(KERN_ERR "CPU%d didn't die...\n", cpu);
}
void generic_mach_cpu_die(void)
{
unsigned int cpu;
local_irq_disable();
idle_task_exit();
cpu = smp_processor_id();
printk(KERN_DEBUG "CPU%d offline\n", cpu);
__get_cpu_var(cpu_state) = CPU_DEAD;
smp_wmb();
while (__get_cpu_var(cpu_state) != CPU_UP_PREPARE)
cpu_relax();
}
void generic_set_cpu_dead(unsigned int cpu)
{
per_cpu(cpu_state, cpu) = CPU_DEAD;
}
#endif
struct create_idle {
struct work_struct work;
struct task_struct *idle;
struct completion done;
int cpu;
};
static void __cpuinit do_fork_idle(struct work_struct *work)
{
struct create_idle *c_idle =
container_of(work, struct create_idle, work);
c_idle->idle = fork_idle(c_idle->cpu);
complete(&c_idle->done);
}
static int __cpuinit create_idle(unsigned int cpu)
{
struct thread_info *ti;
struct create_idle c_idle = {
.cpu = cpu,
.done = COMPLETION_INITIALIZER_ONSTACK(c_idle.done),
};
INIT_WORK_ONSTACK(&c_idle.work, do_fork_idle);
c_idle.idle = get_idle_for_cpu(cpu);
/* We can't use kernel_thread since we must avoid to
* reschedule the child. We use a workqueue because
* we want to fork from a kernel thread, not whatever
* userspace process happens to be trying to online us.
*/
if (!c_idle.idle) {
schedule_work(&c_idle.work);
wait_for_completion(&c_idle.done);
} else
init_idle(c_idle.idle, cpu);
if (IS_ERR(c_idle.idle)) {
pr_err("Failed fork for CPU %u: %li", cpu, PTR_ERR(c_idle.idle));
return PTR_ERR(c_idle.idle);
}
ti = task_thread_info(c_idle.idle);
#ifdef CONFIG_PPC64
paca[cpu].__current = c_idle.idle;
paca[cpu].kstack = (unsigned long)ti + THREAD_SIZE - STACK_FRAME_OVERHEAD;
#endif
ti->cpu = cpu;
current_set[cpu] = ti;
return 0;
}
int __cpuinit __cpu_up(unsigned int cpu)
{
int rc, c;
if (smp_ops == NULL ||
(smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
return -EINVAL;
/* Make sure we have an idle thread */
rc = create_idle(cpu);
if (rc)
return rc;
secondary_ti = current_set[cpu];
/* Make sure callin-map entry is 0 (can be leftover a CPU
* hotplug
*/
cpu_callin_map[cpu] = 0;
/* The information for processor bringup must
* be written out to main store before we release
* the processor.
*/
smp_mb();
/* wake up cpus */
DBG("smp: kicking cpu %d\n", cpu);
rc = smp_ops->kick_cpu(cpu);
if (rc) {
pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
return rc;
}
/*
* wait to see if the cpu made a callin (is actually up).
* use this value that I found through experimentation.
* -- Cort
*/
if (system_state < SYSTEM_RUNNING)
for (c = 50000; c && !cpu_callin_map[cpu]; c--)
udelay(100);
#ifdef CONFIG_HOTPLUG_CPU
else
/*
* CPUs can take much longer to come up in the
* hotplug case. Wait five seconds.
*/
for (c = 5000; c && !cpu_callin_map[cpu]; c--)
msleep(1);
#endif
if (!cpu_callin_map[cpu]) {
printk(KERN_ERR "Processor %u is stuck.\n", cpu);
return -ENOENT;
}
DBG("Processor %u found.\n", cpu);
if (smp_ops->give_timebase)
smp_ops->give_timebase();
/* Wait until cpu puts itself in the online map */
while (!cpu_online(cpu))
cpu_relax();
return 0;
}
/* Return the value of the reg property corresponding to the given
* logical cpu.
*/
int cpu_to_core_id(int cpu)
{
struct device_node *np;
const int *reg;
int id = -1;
np = of_get_cpu_node(cpu, NULL);
if (!np)
goto out;
reg = of_get_property(np, "reg", NULL);
if (!reg)
goto out;
id = *reg;
out:
of_node_put(np);
return id;
}
/* Helper routines for cpu to core mapping */
int cpu_core_index_of_thread(int cpu)
{
return cpu >> threads_shift;
}
EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
int cpu_first_thread_of_core(int core)
{
return core << threads_shift;
}
EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
/* Must be called when no change can occur to cpu_present_mask,
* i.e. during cpu online or offline.
*/
static struct device_node *cpu_to_l2cache(int cpu)
{
struct device_node *np;
struct device_node *cache;
if (!cpu_present(cpu))
return NULL;
np = of_get_cpu_node(cpu, NULL);
if (np == NULL)
return NULL;
cache = of_find_next_cache_node(np);
of_node_put(np);
return cache;
}
/* Activate a secondary processor. */
void __devinit start_secondary(void *unused)
{
unsigned int cpu = smp_processor_id();
struct device_node *l2_cache;
int i, base;
atomic_inc(&init_mm.mm_count);
current->active_mm = &init_mm;
smp_store_cpu_info(cpu);
set_dec(tb_ticks_per_jiffy);
preempt_disable();
cpu_callin_map[cpu] = 1;
if (smp_ops->setup_cpu)
smp_ops->setup_cpu(cpu);
if (smp_ops->take_timebase)
smp_ops->take_timebase();
secondary_cpu_time_init();
#ifdef CONFIG_PPC64
if (system_state == SYSTEM_RUNNING)
vdso_data->processorCount++;
#endif
ipi_call_lock();
notify_cpu_starting(cpu);
set_cpu_online(cpu, true);
/* Update sibling maps */
base = cpu_first_thread_sibling(cpu);
for (i = 0; i < threads_per_core; i++) {
if (cpu_is_offline(base + i))
continue;
cpumask_set_cpu(cpu, cpu_sibling_mask(base + i));
cpumask_set_cpu(base + i, cpu_sibling_mask(cpu));
/* cpu_core_map should be a superset of
* cpu_sibling_map even if we don't have cache
* information, so update the former here, too.
*/
cpumask_set_cpu(cpu, cpu_core_mask(base + i));
cpumask_set_cpu(base + i, cpu_core_mask(cpu));
}
l2_cache = cpu_to_l2cache(cpu);
for_each_online_cpu(i) {
struct device_node *np = cpu_to_l2cache(i);
if (!np)
continue;
if (np == l2_cache) {
cpumask_set_cpu(cpu, cpu_core_mask(i));
cpumask_set_cpu(i, cpu_core_mask(cpu));
}
of_node_put(np);
}
of_node_put(l2_cache);
ipi_call_unlock();
local_irq_enable();
cpu_idle();
BUG();
}
int setup_profiling_timer(unsigned int multiplier)
{
return 0;
}
void __init smp_cpus_done(unsigned int max_cpus)
{
cpumask_var_t old_mask;
/* We want the setup_cpu() here to be called from CPU 0, but our
* init thread may have been "borrowed" by another CPU in the meantime
* se we pin us down to CPU 0 for a short while
*/
alloc_cpumask_var(&old_mask, GFP_NOWAIT);
cpumask_copy(old_mask, tsk_cpus_allowed(current));
set_cpus_allowed_ptr(current, cpumask_of(boot_cpuid));
if (smp_ops && smp_ops->setup_cpu)
smp_ops->setup_cpu(boot_cpuid);
set_cpus_allowed_ptr(current, old_mask);
free_cpumask_var(old_mask);
if (smp_ops && smp_ops->bringup_done)
smp_ops->bringup_done();
dump_numa_cpu_topology();
}
int arch_sd_sibling_asym_packing(void)
{
if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
return SD_ASYM_PACKING;
}
return 0;
}
#ifdef CONFIG_HOTPLUG_CPU
int __cpu_disable(void)
{
struct device_node *l2_cache;
int cpu = smp_processor_id();
int base, i;
int err;
if (!smp_ops->cpu_disable)
return -ENOSYS;
err = smp_ops->cpu_disable();
if (err)
return err;
/* Update sibling maps */
base = cpu_first_thread_sibling(cpu);
for (i = 0; i < threads_per_core; i++) {
cpumask_clear_cpu(cpu, cpu_sibling_mask(base + i));
cpumask_clear_cpu(base + i, cpu_sibling_mask(cpu));
cpumask_clear_cpu(cpu, cpu_core_mask(base + i));
cpumask_clear_cpu(base + i, cpu_core_mask(cpu));
}
l2_cache = cpu_to_l2cache(cpu);
for_each_present_cpu(i) {
struct device_node *np = cpu_to_l2cache(i);
if (!np)
continue;
if (np == l2_cache) {
cpumask_clear_cpu(cpu, cpu_core_mask(i));
cpumask_clear_cpu(i, cpu_core_mask(cpu));
}
of_node_put(np);
}
of_node_put(l2_cache);
return 0;
}
void __cpu_die(unsigned int cpu)
{
if (smp_ops->cpu_die)
smp_ops->cpu_die(cpu);
}
static DEFINE_MUTEX(powerpc_cpu_hotplug_driver_mutex);
void cpu_hotplug_driver_lock()
{
mutex_lock(&powerpc_cpu_hotplug_driver_mutex);
}
void cpu_hotplug_driver_unlock()
{
mutex_unlock(&powerpc_cpu_hotplug_driver_mutex);
}
void cpu_die(void)
{
if (ppc_md.cpu_die)
ppc_md.cpu_die();
/* If we return, we re-enter start_secondary */
start_secondary_resume();
}
#endif