mirror of
https://github.com/torvalds/linux.git
synced 2024-12-12 06:02:38 +00:00
c0cda3b8ee
We issue the enable() call back for all CPU hwcaps capabilities
available on the system, on all the CPUs. So far we have ignored
the argument passed to the call back, which had a prototype to
accept a "void *" for use with on_each_cpu() and later with
stop_machine(). However, with commit 0a0d111d40
("arm64: cpufeature: Pass capability structure to ->enable callback"),
there are some users of the argument who wants the matching capability
struct pointer where there are multiple matching criteria for a single
capability. Clean up the declaration of the call back to make it clear.
1) Renamed to cpu_enable(), to imply taking necessary actions on the
called CPU for the entry.
2) Pass const pointer to the capability, to allow the call back to
check the entry. (e.,g to check if any action is needed on the CPU)
3) We don't care about the result of the call back, turning this to
a void.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andre Przywara <andre.przywara@arm.com>
Cc: James Morse <james.morse@arm.com>
Acked-by: Robin Murphy <robin.murphy@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Signed-off-by: Dave Martin <dave.martin@arm.com>
[suzuki: convert more users, rename call back and drop results]
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
819 lines
22 KiB
C
819 lines
22 KiB
C
/*
|
|
* Based on arch/arm/mm/fault.c
|
|
*
|
|
* Copyright (C) 1995 Linus Torvalds
|
|
* Copyright (C) 1995-2004 Russell King
|
|
* Copyright (C) 2012 ARM Ltd.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <linux/extable.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/page-flags.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/sched/debug.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/perf_event.h>
|
|
#include <linux/preempt.h>
|
|
#include <linux/hugetlb.h>
|
|
|
|
#include <asm/bug.h>
|
|
#include <asm/cmpxchg.h>
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/exception.h>
|
|
#include <asm/debug-monitors.h>
|
|
#include <asm/esr.h>
|
|
#include <asm/sysreg.h>
|
|
#include <asm/system_misc.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/traps.h>
|
|
|
|
#include <acpi/ghes.h>
|
|
|
|
struct fault_info {
|
|
int (*fn)(unsigned long addr, unsigned int esr,
|
|
struct pt_regs *regs);
|
|
int sig;
|
|
int code;
|
|
const char *name;
|
|
};
|
|
|
|
static const struct fault_info fault_info[];
|
|
|
|
static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
|
|
{
|
|
return fault_info + (esr & 63);
|
|
}
|
|
|
|
#ifdef CONFIG_KPROBES
|
|
static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
|
|
{
|
|
int ret = 0;
|
|
|
|
/* kprobe_running() needs smp_processor_id() */
|
|
if (!user_mode(regs)) {
|
|
preempt_disable();
|
|
if (kprobe_running() && kprobe_fault_handler(regs, esr))
|
|
ret = 1;
|
|
preempt_enable();
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
#else
|
|
static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static void data_abort_decode(unsigned int esr)
|
|
{
|
|
pr_alert("Data abort info:\n");
|
|
|
|
if (esr & ESR_ELx_ISV) {
|
|
pr_alert(" Access size = %u byte(s)\n",
|
|
1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
|
|
pr_alert(" SSE = %lu, SRT = %lu\n",
|
|
(esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
|
|
(esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
|
|
pr_alert(" SF = %lu, AR = %lu\n",
|
|
(esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
|
|
(esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
|
|
} else {
|
|
pr_alert(" ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
|
|
}
|
|
|
|
pr_alert(" CM = %lu, WnR = %lu\n",
|
|
(esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
|
|
(esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
|
|
}
|
|
|
|
static void mem_abort_decode(unsigned int esr)
|
|
{
|
|
pr_alert("Mem abort info:\n");
|
|
|
|
pr_alert(" ESR = 0x%08x\n", esr);
|
|
pr_alert(" Exception class = %s, IL = %u bits\n",
|
|
esr_get_class_string(esr),
|
|
(esr & ESR_ELx_IL) ? 32 : 16);
|
|
pr_alert(" SET = %lu, FnV = %lu\n",
|
|
(esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
|
|
(esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
|
|
pr_alert(" EA = %lu, S1PTW = %lu\n",
|
|
(esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
|
|
(esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
|
|
|
|
if (esr_is_data_abort(esr))
|
|
data_abort_decode(esr);
|
|
}
|
|
|
|
/*
|
|
* Dump out the page tables associated with 'addr' in the currently active mm.
|
|
*/
|
|
void show_pte(unsigned long addr)
|
|
{
|
|
struct mm_struct *mm;
|
|
pgd_t *pgdp;
|
|
pgd_t pgd;
|
|
|
|
if (addr < TASK_SIZE) {
|
|
/* TTBR0 */
|
|
mm = current->active_mm;
|
|
if (mm == &init_mm) {
|
|
pr_alert("[%016lx] user address but active_mm is swapper\n",
|
|
addr);
|
|
return;
|
|
}
|
|
} else if (addr >= VA_START) {
|
|
/* TTBR1 */
|
|
mm = &init_mm;
|
|
} else {
|
|
pr_alert("[%016lx] address between user and kernel address ranges\n",
|
|
addr);
|
|
return;
|
|
}
|
|
|
|
pr_alert("%s pgtable: %luk pages, %u-bit VAs, pgdp = %p\n",
|
|
mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
|
|
VA_BITS, mm->pgd);
|
|
pgdp = pgd_offset(mm, addr);
|
|
pgd = READ_ONCE(*pgdp);
|
|
pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
|
|
|
|
do {
|
|
pud_t *pudp, pud;
|
|
pmd_t *pmdp, pmd;
|
|
pte_t *ptep, pte;
|
|
|
|
if (pgd_none(pgd) || pgd_bad(pgd))
|
|
break;
|
|
|
|
pudp = pud_offset(pgdp, addr);
|
|
pud = READ_ONCE(*pudp);
|
|
pr_cont(", pud=%016llx", pud_val(pud));
|
|
if (pud_none(pud) || pud_bad(pud))
|
|
break;
|
|
|
|
pmdp = pmd_offset(pudp, addr);
|
|
pmd = READ_ONCE(*pmdp);
|
|
pr_cont(", pmd=%016llx", pmd_val(pmd));
|
|
if (pmd_none(pmd) || pmd_bad(pmd))
|
|
break;
|
|
|
|
ptep = pte_offset_map(pmdp, addr);
|
|
pte = READ_ONCE(*ptep);
|
|
pr_cont(", pte=%016llx", pte_val(pte));
|
|
pte_unmap(ptep);
|
|
} while(0);
|
|
|
|
pr_cont("\n");
|
|
}
|
|
|
|
/*
|
|
* This function sets the access flags (dirty, accessed), as well as write
|
|
* permission, and only to a more permissive setting.
|
|
*
|
|
* It needs to cope with hardware update of the accessed/dirty state by other
|
|
* agents in the system and can safely skip the __sync_icache_dcache() call as,
|
|
* like set_pte_at(), the PTE is never changed from no-exec to exec here.
|
|
*
|
|
* Returns whether or not the PTE actually changed.
|
|
*/
|
|
int ptep_set_access_flags(struct vm_area_struct *vma,
|
|
unsigned long address, pte_t *ptep,
|
|
pte_t entry, int dirty)
|
|
{
|
|
pteval_t old_pteval, pteval;
|
|
pte_t pte = READ_ONCE(*ptep);
|
|
|
|
if (pte_same(pte, entry))
|
|
return 0;
|
|
|
|
/* only preserve the access flags and write permission */
|
|
pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
|
|
|
|
/*
|
|
* Setting the flags must be done atomically to avoid racing with the
|
|
* hardware update of the access/dirty state. The PTE_RDONLY bit must
|
|
* be set to the most permissive (lowest value) of *ptep and entry
|
|
* (calculated as: a & b == ~(~a | ~b)).
|
|
*/
|
|
pte_val(entry) ^= PTE_RDONLY;
|
|
pteval = pte_val(pte);
|
|
do {
|
|
old_pteval = pteval;
|
|
pteval ^= PTE_RDONLY;
|
|
pteval |= pte_val(entry);
|
|
pteval ^= PTE_RDONLY;
|
|
pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
|
|
} while (pteval != old_pteval);
|
|
|
|
flush_tlb_fix_spurious_fault(vma, address);
|
|
return 1;
|
|
}
|
|
|
|
static bool is_el1_instruction_abort(unsigned int esr)
|
|
{
|
|
return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
|
|
}
|
|
|
|
static inline bool is_permission_fault(unsigned int esr, struct pt_regs *regs,
|
|
unsigned long addr)
|
|
{
|
|
unsigned int ec = ESR_ELx_EC(esr);
|
|
unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
|
|
|
|
if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
|
|
return false;
|
|
|
|
if (fsc_type == ESR_ELx_FSC_PERM)
|
|
return true;
|
|
|
|
if (addr < TASK_SIZE && system_uses_ttbr0_pan())
|
|
return fsc_type == ESR_ELx_FSC_FAULT &&
|
|
(regs->pstate & PSR_PAN_BIT);
|
|
|
|
return false;
|
|
}
|
|
|
|
static void __do_kernel_fault(unsigned long addr, unsigned int esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
const char *msg;
|
|
|
|
/*
|
|
* Are we prepared to handle this kernel fault?
|
|
* We are almost certainly not prepared to handle instruction faults.
|
|
*/
|
|
if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
|
|
return;
|
|
|
|
bust_spinlocks(1);
|
|
|
|
if (is_permission_fault(esr, regs, addr)) {
|
|
if (esr & ESR_ELx_WNR)
|
|
msg = "write to read-only memory";
|
|
else
|
|
msg = "read from unreadable memory";
|
|
} else if (addr < PAGE_SIZE) {
|
|
msg = "NULL pointer dereference";
|
|
} else {
|
|
msg = "paging request";
|
|
}
|
|
|
|
pr_alert("Unable to handle kernel %s at virtual address %08lx\n", msg,
|
|
addr);
|
|
|
|
mem_abort_decode(esr);
|
|
|
|
show_pte(addr);
|
|
die("Oops", regs, esr);
|
|
bust_spinlocks(0);
|
|
do_exit(SIGKILL);
|
|
}
|
|
|
|
static void __do_user_fault(struct siginfo *info, unsigned int esr)
|
|
{
|
|
current->thread.fault_address = (unsigned long)info->si_addr;
|
|
current->thread.fault_code = esr;
|
|
arm64_force_sig_info(info, esr_to_fault_info(esr)->name, current);
|
|
}
|
|
|
|
static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
|
|
{
|
|
/*
|
|
* If we are in kernel mode at this point, we have no context to
|
|
* handle this fault with.
|
|
*/
|
|
if (user_mode(regs)) {
|
|
const struct fault_info *inf = esr_to_fault_info(esr);
|
|
struct siginfo si = {
|
|
.si_signo = inf->sig,
|
|
.si_code = inf->code,
|
|
.si_addr = (void __user *)addr,
|
|
};
|
|
|
|
__do_user_fault(&si, esr);
|
|
} else {
|
|
__do_kernel_fault(addr, esr, regs);
|
|
}
|
|
}
|
|
|
|
#define VM_FAULT_BADMAP 0x010000
|
|
#define VM_FAULT_BADACCESS 0x020000
|
|
|
|
static int __do_page_fault(struct mm_struct *mm, unsigned long addr,
|
|
unsigned int mm_flags, unsigned long vm_flags,
|
|
struct task_struct *tsk)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
int fault;
|
|
|
|
vma = find_vma(mm, addr);
|
|
fault = VM_FAULT_BADMAP;
|
|
if (unlikely(!vma))
|
|
goto out;
|
|
if (unlikely(vma->vm_start > addr))
|
|
goto check_stack;
|
|
|
|
/*
|
|
* Ok, we have a good vm_area for this memory access, so we can handle
|
|
* it.
|
|
*/
|
|
good_area:
|
|
/*
|
|
* Check that the permissions on the VMA allow for the fault which
|
|
* occurred.
|
|
*/
|
|
if (!(vma->vm_flags & vm_flags)) {
|
|
fault = VM_FAULT_BADACCESS;
|
|
goto out;
|
|
}
|
|
|
|
return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
|
|
|
|
check_stack:
|
|
if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
|
|
goto good_area;
|
|
out:
|
|
return fault;
|
|
}
|
|
|
|
static bool is_el0_instruction_abort(unsigned int esr)
|
|
{
|
|
return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
|
|
}
|
|
|
|
static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
struct task_struct *tsk;
|
|
struct mm_struct *mm;
|
|
struct siginfo si;
|
|
int fault, major = 0;
|
|
unsigned long vm_flags = VM_READ | VM_WRITE;
|
|
unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
|
|
|
|
if (notify_page_fault(regs, esr))
|
|
return 0;
|
|
|
|
tsk = current;
|
|
mm = tsk->mm;
|
|
|
|
/*
|
|
* If we're in an interrupt or have no user context, we must not take
|
|
* the fault.
|
|
*/
|
|
if (faulthandler_disabled() || !mm)
|
|
goto no_context;
|
|
|
|
if (user_mode(regs))
|
|
mm_flags |= FAULT_FLAG_USER;
|
|
|
|
if (is_el0_instruction_abort(esr)) {
|
|
vm_flags = VM_EXEC;
|
|
} else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) {
|
|
vm_flags = VM_WRITE;
|
|
mm_flags |= FAULT_FLAG_WRITE;
|
|
}
|
|
|
|
if (addr < TASK_SIZE && is_permission_fault(esr, regs, addr)) {
|
|
/* regs->orig_addr_limit may be 0 if we entered from EL0 */
|
|
if (regs->orig_addr_limit == KERNEL_DS)
|
|
die("Accessing user space memory with fs=KERNEL_DS", regs, esr);
|
|
|
|
if (is_el1_instruction_abort(esr))
|
|
die("Attempting to execute userspace memory", regs, esr);
|
|
|
|
if (!search_exception_tables(regs->pc))
|
|
die("Accessing user space memory outside uaccess.h routines", regs, esr);
|
|
}
|
|
|
|
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
|
|
|
|
/*
|
|
* As per x86, we may deadlock here. However, since the kernel only
|
|
* validly references user space from well defined areas of the code,
|
|
* we can bug out early if this is from code which shouldn't.
|
|
*/
|
|
if (!down_read_trylock(&mm->mmap_sem)) {
|
|
if (!user_mode(regs) && !search_exception_tables(regs->pc))
|
|
goto no_context;
|
|
retry:
|
|
down_read(&mm->mmap_sem);
|
|
} else {
|
|
/*
|
|
* The above down_read_trylock() might have succeeded in which
|
|
* case, we'll have missed the might_sleep() from down_read().
|
|
*/
|
|
might_sleep();
|
|
#ifdef CONFIG_DEBUG_VM
|
|
if (!user_mode(regs) && !search_exception_tables(regs->pc))
|
|
goto no_context;
|
|
#endif
|
|
}
|
|
|
|
fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk);
|
|
major |= fault & VM_FAULT_MAJOR;
|
|
|
|
if (fault & VM_FAULT_RETRY) {
|
|
/*
|
|
* If we need to retry but a fatal signal is pending,
|
|
* handle the signal first. We do not need to release
|
|
* the mmap_sem because it would already be released
|
|
* in __lock_page_or_retry in mm/filemap.c.
|
|
*/
|
|
if (fatal_signal_pending(current)) {
|
|
if (!user_mode(regs))
|
|
goto no_context;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
|
|
* starvation.
|
|
*/
|
|
if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
|
|
mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
|
|
mm_flags |= FAULT_FLAG_TRIED;
|
|
goto retry;
|
|
}
|
|
}
|
|
up_read(&mm->mmap_sem);
|
|
|
|
/*
|
|
* Handle the "normal" (no error) case first.
|
|
*/
|
|
if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
|
|
VM_FAULT_BADACCESS)))) {
|
|
/*
|
|
* Major/minor page fault accounting is only done
|
|
* once. If we go through a retry, it is extremely
|
|
* likely that the page will be found in page cache at
|
|
* that point.
|
|
*/
|
|
if (major) {
|
|
tsk->maj_flt++;
|
|
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
|
|
addr);
|
|
} else {
|
|
tsk->min_flt++;
|
|
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
|
|
addr);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If we are in kernel mode at this point, we have no context to
|
|
* handle this fault with.
|
|
*/
|
|
if (!user_mode(regs))
|
|
goto no_context;
|
|
|
|
if (fault & VM_FAULT_OOM) {
|
|
/*
|
|
* We ran out of memory, call the OOM killer, and return to
|
|
* userspace (which will retry the fault, or kill us if we got
|
|
* oom-killed).
|
|
*/
|
|
pagefault_out_of_memory();
|
|
return 0;
|
|
}
|
|
|
|
clear_siginfo(&si);
|
|
si.si_addr = (void __user *)addr;
|
|
|
|
if (fault & VM_FAULT_SIGBUS) {
|
|
/*
|
|
* We had some memory, but were unable to successfully fix up
|
|
* this page fault.
|
|
*/
|
|
si.si_signo = SIGBUS;
|
|
si.si_code = BUS_ADRERR;
|
|
} else if (fault & VM_FAULT_HWPOISON_LARGE) {
|
|
unsigned int hindex = VM_FAULT_GET_HINDEX(fault);
|
|
|
|
si.si_signo = SIGBUS;
|
|
si.si_code = BUS_MCEERR_AR;
|
|
si.si_addr_lsb = hstate_index_to_shift(hindex);
|
|
} else if (fault & VM_FAULT_HWPOISON) {
|
|
si.si_signo = SIGBUS;
|
|
si.si_code = BUS_MCEERR_AR;
|
|
si.si_addr_lsb = PAGE_SHIFT;
|
|
} else {
|
|
/*
|
|
* Something tried to access memory that isn't in our memory
|
|
* map.
|
|
*/
|
|
si.si_signo = SIGSEGV;
|
|
si.si_code = fault == VM_FAULT_BADACCESS ?
|
|
SEGV_ACCERR : SEGV_MAPERR;
|
|
}
|
|
|
|
__do_user_fault(&si, esr);
|
|
return 0;
|
|
|
|
no_context:
|
|
__do_kernel_fault(addr, esr, regs);
|
|
return 0;
|
|
}
|
|
|
|
static int __kprobes do_translation_fault(unsigned long addr,
|
|
unsigned int esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
if (addr < TASK_SIZE)
|
|
return do_page_fault(addr, esr, regs);
|
|
|
|
do_bad_area(addr, esr, regs);
|
|
return 0;
|
|
}
|
|
|
|
static int do_alignment_fault(unsigned long addr, unsigned int esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
do_bad_area(addr, esr, regs);
|
|
return 0;
|
|
}
|
|
|
|
static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
|
|
{
|
|
return 1; /* "fault" */
|
|
}
|
|
|
|
static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
|
|
{
|
|
struct siginfo info;
|
|
const struct fault_info *inf;
|
|
|
|
inf = esr_to_fault_info(esr);
|
|
|
|
/*
|
|
* Synchronous aborts may interrupt code which had interrupts masked.
|
|
* Before calling out into the wider kernel tell the interested
|
|
* subsystems.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_ACPI_APEI_SEA)) {
|
|
if (interrupts_enabled(regs))
|
|
nmi_enter();
|
|
|
|
ghes_notify_sea();
|
|
|
|
if (interrupts_enabled(regs))
|
|
nmi_exit();
|
|
}
|
|
|
|
info.si_signo = inf->sig;
|
|
info.si_errno = 0;
|
|
info.si_code = inf->code;
|
|
if (esr & ESR_ELx_FnV)
|
|
info.si_addr = NULL;
|
|
else
|
|
info.si_addr = (void __user *)addr;
|
|
arm64_notify_die(inf->name, regs, &info, esr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct fault_info fault_info[] = {
|
|
{ do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" },
|
|
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" },
|
|
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
|
|
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
|
|
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 8" },
|
|
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
|
|
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
|
|
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 12" },
|
|
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
|
|
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
|
|
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
|
|
{ do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 17" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 18" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 19" },
|
|
{ do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" },
|
|
{ do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" },
|
|
{ do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" },
|
|
{ do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" },
|
|
{ do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 25" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 26" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 27" },
|
|
{ do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
|
|
{ do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
|
|
{ do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
|
|
{ do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 32" },
|
|
{ do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 34" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 35" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 36" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 37" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 38" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 39" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 40" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 41" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 42" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 43" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 44" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 45" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 46" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 47" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 50" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 51" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" },
|
|
{ do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 54" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 55" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 56" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 57" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 58" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 59" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 60" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "section domain fault" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "page domain fault" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 63" },
|
|
};
|
|
|
|
int handle_guest_sea(phys_addr_t addr, unsigned int esr)
|
|
{
|
|
int ret = -ENOENT;
|
|
|
|
if (IS_ENABLED(CONFIG_ACPI_APEI_SEA))
|
|
ret = ghes_notify_sea();
|
|
|
|
return ret;
|
|
}
|
|
|
|
asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
const struct fault_info *inf = esr_to_fault_info(esr);
|
|
struct siginfo info;
|
|
|
|
if (!inf->fn(addr, esr, regs))
|
|
return;
|
|
|
|
if (!user_mode(regs)) {
|
|
pr_alert("Unhandled fault at 0x%016lx\n", addr);
|
|
mem_abort_decode(esr);
|
|
show_pte(addr);
|
|
}
|
|
|
|
info.si_signo = inf->sig;
|
|
info.si_errno = 0;
|
|
info.si_code = inf->code;
|
|
info.si_addr = (void __user *)addr;
|
|
arm64_notify_die(inf->name, regs, &info, esr);
|
|
}
|
|
|
|
asmlinkage void __exception do_el0_irq_bp_hardening(void)
|
|
{
|
|
/* PC has already been checked in entry.S */
|
|
arm64_apply_bp_hardening();
|
|
}
|
|
|
|
asmlinkage void __exception do_el0_ia_bp_hardening(unsigned long addr,
|
|
unsigned int esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
/*
|
|
* We've taken an instruction abort from userspace and not yet
|
|
* re-enabled IRQs. If the address is a kernel address, apply
|
|
* BP hardening prior to enabling IRQs and pre-emption.
|
|
*/
|
|
if (addr > TASK_SIZE)
|
|
arm64_apply_bp_hardening();
|
|
|
|
local_irq_enable();
|
|
do_mem_abort(addr, esr, regs);
|
|
}
|
|
|
|
|
|
asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
|
|
unsigned int esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
struct siginfo info;
|
|
|
|
if (user_mode(regs)) {
|
|
if (instruction_pointer(regs) > TASK_SIZE)
|
|
arm64_apply_bp_hardening();
|
|
local_irq_enable();
|
|
}
|
|
|
|
info.si_signo = SIGBUS;
|
|
info.si_errno = 0;
|
|
info.si_code = BUS_ADRALN;
|
|
info.si_addr = (void __user *)addr;
|
|
arm64_notify_die("SP/PC alignment exception", regs, &info, esr);
|
|
}
|
|
|
|
int __init early_brk64(unsigned long addr, unsigned int esr,
|
|
struct pt_regs *regs);
|
|
|
|
/*
|
|
* __refdata because early_brk64 is __init, but the reference to it is
|
|
* clobbered at arch_initcall time.
|
|
* See traps.c and debug-monitors.c:debug_traps_init().
|
|
*/
|
|
static struct fault_info __refdata debug_fault_info[] = {
|
|
{ do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" },
|
|
{ do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" },
|
|
{ do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 3" },
|
|
{ do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "aarch32 vector catch" },
|
|
{ early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" },
|
|
{ do_bad, SIGKILL, SI_KERNEL, "unknown 7" },
|
|
};
|
|
|
|
void __init hook_debug_fault_code(int nr,
|
|
int (*fn)(unsigned long, unsigned int, struct pt_regs *),
|
|
int sig, int code, const char *name)
|
|
{
|
|
BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
|
|
|
|
debug_fault_info[nr].fn = fn;
|
|
debug_fault_info[nr].sig = sig;
|
|
debug_fault_info[nr].code = code;
|
|
debug_fault_info[nr].name = name;
|
|
}
|
|
|
|
asmlinkage int __exception do_debug_exception(unsigned long addr,
|
|
unsigned int esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
const struct fault_info *inf = debug_fault_info + DBG_ESR_EVT(esr);
|
|
struct siginfo info;
|
|
int rv;
|
|
|
|
/*
|
|
* Tell lockdep we disabled irqs in entry.S. Do nothing if they were
|
|
* already disabled to preserve the last enabled/disabled addresses.
|
|
*/
|
|
if (interrupts_enabled(regs))
|
|
trace_hardirqs_off();
|
|
|
|
if (user_mode(regs) && instruction_pointer(regs) > TASK_SIZE)
|
|
arm64_apply_bp_hardening();
|
|
|
|
if (!inf->fn(addr, esr, regs)) {
|
|
rv = 1;
|
|
} else {
|
|
info.si_signo = inf->sig;
|
|
info.si_errno = 0;
|
|
info.si_code = inf->code;
|
|
info.si_addr = (void __user *)addr;
|
|
arm64_notify_die(inf->name, regs, &info, esr);
|
|
rv = 0;
|
|
}
|
|
|
|
if (interrupts_enabled(regs))
|
|
trace_hardirqs_on();
|
|
|
|
return rv;
|
|
}
|
|
NOKPROBE_SYMBOL(do_debug_exception);
|
|
|
|
#ifdef CONFIG_ARM64_PAN
|
|
void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
|
|
{
|
|
/*
|
|
* We modify PSTATE. This won't work from irq context as the PSTATE
|
|
* is discarded once we return from the exception.
|
|
*/
|
|
WARN_ON_ONCE(in_interrupt());
|
|
|
|
config_sctlr_el1(SCTLR_EL1_SPAN, 0);
|
|
asm(SET_PSTATE_PAN(1));
|
|
}
|
|
#endif /* CONFIG_ARM64_PAN */
|