linux/fs/bcachefs/recovery.c
Kent Overstreet 52946d828a bcachefs: Kill more -EIO error codes
This converts -EIOs related to btree node errors to private error codes,
which will help with some ongoing debugging by giving us better error
messages.

Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2024-03-13 21:22:23 -04:00

1233 lines
31 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "backpointers.h"
#include "bkey_buf.h"
#include "alloc_background.h"
#include "btree_gc.h"
#include "btree_journal_iter.h"
#include "btree_update.h"
#include "btree_update_interior.h"
#include "btree_io.h"
#include "buckets.h"
#include "dirent.h"
#include "ec.h"
#include "errcode.h"
#include "error.h"
#include "fs-common.h"
#include "fsck.h"
#include "journal_io.h"
#include "journal_reclaim.h"
#include "journal_seq_blacklist.h"
#include "lru.h"
#include "logged_ops.h"
#include "move.h"
#include "quota.h"
#include "rebalance.h"
#include "recovery.h"
#include "replicas.h"
#include "sb-clean.h"
#include "sb-downgrade.h"
#include "snapshot.h"
#include "subvolume.h"
#include "super-io.h"
#include <linux/sort.h>
#include <linux/stat.h>
#define QSTR(n) { { { .len = strlen(n) } }, .name = n }
static bool btree_id_is_alloc(enum btree_id id)
{
switch (id) {
case BTREE_ID_alloc:
case BTREE_ID_backpointers:
case BTREE_ID_need_discard:
case BTREE_ID_freespace:
case BTREE_ID_bucket_gens:
return true;
default:
return false;
}
}
/* for -o reconstruct_alloc: */
static void drop_alloc_keys(struct journal_keys *keys)
{
size_t src, dst;
for (src = 0, dst = 0; src < keys->nr; src++)
if (!btree_id_is_alloc(keys->d[src].btree_id))
keys->d[dst++] = keys->d[src];
keys->nr = dst;
}
/*
* Btree node pointers have a field to stack a pointer to the in memory btree
* node; we need to zero out this field when reading in btree nodes, or when
* reading in keys from the journal:
*/
static void zero_out_btree_mem_ptr(struct journal_keys *keys)
{
struct journal_key *i;
for (i = keys->d; i < keys->d + keys->nr; i++)
if (i->k->k.type == KEY_TYPE_btree_ptr_v2)
bkey_i_to_btree_ptr_v2(i->k)->v.mem_ptr = 0;
}
/* journal replay: */
static void replay_now_at(struct journal *j, u64 seq)
{
BUG_ON(seq < j->replay_journal_seq);
seq = min(seq, j->replay_journal_seq_end);
while (j->replay_journal_seq < seq)
bch2_journal_pin_put(j, j->replay_journal_seq++);
}
static int bch2_journal_replay_key(struct btree_trans *trans,
struct journal_key *k)
{
struct btree_iter iter;
unsigned iter_flags =
BTREE_ITER_INTENT|
BTREE_ITER_NOT_EXTENTS;
unsigned update_flags = BTREE_TRIGGER_NORUN;
int ret;
if (k->overwritten)
return 0;
trans->journal_res.seq = k->journal_seq;
/*
* BTREE_UPDATE_KEY_CACHE_RECLAIM disables key cache lookup/update to
* keep the key cache coherent with the underlying btree. Nothing
* besides the allocator is doing updates yet so we don't need key cache
* coherency for non-alloc btrees, and key cache fills for snapshots
* btrees use BTREE_ITER_FILTER_SNAPSHOTS, which isn't available until
* the snapshots recovery pass runs.
*/
if (!k->level && k->btree_id == BTREE_ID_alloc)
iter_flags |= BTREE_ITER_CACHED;
else
update_flags |= BTREE_UPDATE_KEY_CACHE_RECLAIM;
bch2_trans_node_iter_init(trans, &iter, k->btree_id, k->k->k.p,
BTREE_MAX_DEPTH, k->level,
iter_flags);
ret = bch2_btree_iter_traverse(&iter);
if (ret)
goto out;
struct btree_path *path = btree_iter_path(trans, &iter);
if (unlikely(!btree_path_node(path, k->level))) {
bch2_trans_iter_exit(trans, &iter);
bch2_trans_node_iter_init(trans, &iter, k->btree_id, k->k->k.p,
BTREE_MAX_DEPTH, 0, iter_flags);
ret = bch2_btree_iter_traverse(&iter) ?:
bch2_btree_increase_depth(trans, iter.path, 0) ?:
-BCH_ERR_transaction_restart_nested;
goto out;
}
/* Must be checked with btree locked: */
if (k->overwritten)
goto out;
ret = bch2_trans_update(trans, &iter, k->k, update_flags);
out:
bch2_trans_iter_exit(trans, &iter);
return ret;
}
static int journal_sort_seq_cmp(const void *_l, const void *_r)
{
const struct journal_key *l = *((const struct journal_key **)_l);
const struct journal_key *r = *((const struct journal_key **)_r);
return cmp_int(l->journal_seq, r->journal_seq);
}
static int bch2_journal_replay(struct bch_fs *c)
{
struct journal_keys *keys = &c->journal_keys;
DARRAY(struct journal_key *) keys_sorted = { 0 };
struct journal *j = &c->journal;
u64 start_seq = c->journal_replay_seq_start;
u64 end_seq = c->journal_replay_seq_start;
struct btree_trans *trans = bch2_trans_get(c);
int ret = 0;
if (keys->nr) {
ret = bch2_journal_log_msg(c, "Starting journal replay (%zu keys in entries %llu-%llu)",
keys->nr, start_seq, end_seq);
if (ret)
goto err;
}
BUG_ON(!atomic_read(&keys->ref));
/*
* First, attempt to replay keys in sorted order. This is more
* efficient - better locality of btree access - but some might fail if
* that would cause a journal deadlock.
*/
for (size_t i = 0; i < keys->nr; i++) {
cond_resched();
struct journal_key *k = keys->d + i;
/* Skip fastpath if we're low on space in the journal */
ret = c->journal.watermark ? -1 :
commit_do(trans, NULL, NULL,
BCH_TRANS_COMMIT_no_enospc|
BCH_TRANS_COMMIT_journal_reclaim|
(!k->allocated ? BCH_TRANS_COMMIT_no_journal_res : 0),
bch2_journal_replay_key(trans, k));
BUG_ON(!ret && !k->overwritten);
if (ret) {
ret = darray_push(&keys_sorted, k);
if (ret)
goto err;
}
}
/*
* Now, replay any remaining keys in the order in which they appear in
* the journal, unpinning those journal entries as we go:
*/
sort(keys_sorted.data, keys_sorted.nr,
sizeof(keys_sorted.data[0]),
journal_sort_seq_cmp, NULL);
darray_for_each(keys_sorted, kp) {
cond_resched();
struct journal_key *k = *kp;
replay_now_at(j, k->journal_seq);
ret = commit_do(trans, NULL, NULL,
BCH_TRANS_COMMIT_no_enospc|
(!k->allocated
? BCH_TRANS_COMMIT_no_journal_res|BCH_WATERMARK_reclaim
: 0),
bch2_journal_replay_key(trans, k));
bch_err_msg(c, ret, "while replaying key at btree %s level %u:",
bch2_btree_id_str(k->btree_id), k->level);
if (ret)
goto err;
BUG_ON(!k->overwritten);
}
/*
* We need to put our btree_trans before calling flush_all_pins(), since
* that will use a btree_trans internally
*/
bch2_trans_put(trans);
trans = NULL;
if (!c->opts.keep_journal)
bch2_journal_keys_put_initial(c);
replay_now_at(j, j->replay_journal_seq_end);
j->replay_journal_seq = 0;
bch2_journal_set_replay_done(j);
if (keys->nr)
bch2_journal_log_msg(c, "journal replay finished");
err:
if (trans)
bch2_trans_put(trans);
darray_exit(&keys_sorted);
bch_err_fn(c, ret);
return ret;
}
/* journal replay early: */
static int journal_replay_entry_early(struct bch_fs *c,
struct jset_entry *entry)
{
int ret = 0;
switch (entry->type) {
case BCH_JSET_ENTRY_btree_root: {
struct btree_root *r;
while (entry->btree_id >= c->btree_roots_extra.nr + BTREE_ID_NR) {
ret = darray_push(&c->btree_roots_extra, (struct btree_root) { NULL });
if (ret)
return ret;
}
r = bch2_btree_id_root(c, entry->btree_id);
if (entry->u64s) {
r->level = entry->level;
bkey_copy(&r->key, (struct bkey_i *) entry->start);
r->error = 0;
} else {
r->error = -BCH_ERR_btree_node_read_error;
}
r->alive = true;
break;
}
case BCH_JSET_ENTRY_usage: {
struct jset_entry_usage *u =
container_of(entry, struct jset_entry_usage, entry);
switch (entry->btree_id) {
case BCH_FS_USAGE_reserved:
if (entry->level < BCH_REPLICAS_MAX)
c->usage_base->persistent_reserved[entry->level] =
le64_to_cpu(u->v);
break;
case BCH_FS_USAGE_inodes:
c->usage_base->b.nr_inodes = le64_to_cpu(u->v);
break;
case BCH_FS_USAGE_key_version:
atomic64_set(&c->key_version,
le64_to_cpu(u->v));
break;
}
break;
}
case BCH_JSET_ENTRY_data_usage: {
struct jset_entry_data_usage *u =
container_of(entry, struct jset_entry_data_usage, entry);
ret = bch2_replicas_set_usage(c, &u->r,
le64_to_cpu(u->v));
break;
}
case BCH_JSET_ENTRY_dev_usage: {
struct jset_entry_dev_usage *u =
container_of(entry, struct jset_entry_dev_usage, entry);
struct bch_dev *ca = bch_dev_bkey_exists(c, le32_to_cpu(u->dev));
unsigned i, nr_types = jset_entry_dev_usage_nr_types(u);
for (i = 0; i < min_t(unsigned, nr_types, BCH_DATA_NR); i++) {
ca->usage_base->d[i].buckets = le64_to_cpu(u->d[i].buckets);
ca->usage_base->d[i].sectors = le64_to_cpu(u->d[i].sectors);
ca->usage_base->d[i].fragmented = le64_to_cpu(u->d[i].fragmented);
}
break;
}
case BCH_JSET_ENTRY_blacklist: {
struct jset_entry_blacklist *bl_entry =
container_of(entry, struct jset_entry_blacklist, entry);
ret = bch2_journal_seq_blacklist_add(c,
le64_to_cpu(bl_entry->seq),
le64_to_cpu(bl_entry->seq) + 1);
break;
}
case BCH_JSET_ENTRY_blacklist_v2: {
struct jset_entry_blacklist_v2 *bl_entry =
container_of(entry, struct jset_entry_blacklist_v2, entry);
ret = bch2_journal_seq_blacklist_add(c,
le64_to_cpu(bl_entry->start),
le64_to_cpu(bl_entry->end) + 1);
break;
}
case BCH_JSET_ENTRY_clock: {
struct jset_entry_clock *clock =
container_of(entry, struct jset_entry_clock, entry);
atomic64_set(&c->io_clock[clock->rw].now, le64_to_cpu(clock->time));
}
}
return ret;
}
static int journal_replay_early(struct bch_fs *c,
struct bch_sb_field_clean *clean)
{
if (clean) {
for (struct jset_entry *entry = clean->start;
entry != vstruct_end(&clean->field);
entry = vstruct_next(entry)) {
int ret = journal_replay_entry_early(c, entry);
if (ret)
return ret;
}
} else {
struct genradix_iter iter;
struct journal_replay *i, **_i;
genradix_for_each(&c->journal_entries, iter, _i) {
i = *_i;
if (!i || i->ignore)
continue;
vstruct_for_each(&i->j, entry) {
int ret = journal_replay_entry_early(c, entry);
if (ret)
return ret;
}
}
}
bch2_fs_usage_initialize(c);
return 0;
}
/* sb clean section: */
static int read_btree_roots(struct bch_fs *c)
{
unsigned i;
int ret = 0;
for (i = 0; i < btree_id_nr_alive(c); i++) {
struct btree_root *r = bch2_btree_id_root(c, i);
if (!r->alive)
continue;
if (btree_id_is_alloc(i) &&
c->opts.reconstruct_alloc) {
c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info);
continue;
}
if (r->error) {
__fsck_err(c,
btree_id_is_alloc(i)
? FSCK_CAN_IGNORE : 0,
btree_root_bkey_invalid,
"invalid btree root %s",
bch2_btree_id_str(i));
if (i == BTREE_ID_alloc)
c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info);
}
ret = bch2_btree_root_read(c, i, &r->key, r->level);
if (ret) {
fsck_err(c,
btree_root_read_error,
"error reading btree root %s",
bch2_btree_id_str(i));
if (btree_id_is_alloc(i))
c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info);
ret = 0;
}
}
for (i = 0; i < BTREE_ID_NR; i++) {
struct btree_root *r = bch2_btree_id_root(c, i);
if (!r->b) {
r->alive = false;
r->level = 0;
bch2_btree_root_alloc(c, i);
}
}
fsck_err:
return ret;
}
static int bch2_initialize_subvolumes(struct bch_fs *c)
{
struct bkey_i_snapshot_tree root_tree;
struct bkey_i_snapshot root_snapshot;
struct bkey_i_subvolume root_volume;
int ret;
bkey_snapshot_tree_init(&root_tree.k_i);
root_tree.k.p.offset = 1;
root_tree.v.master_subvol = cpu_to_le32(1);
root_tree.v.root_snapshot = cpu_to_le32(U32_MAX);
bkey_snapshot_init(&root_snapshot.k_i);
root_snapshot.k.p.offset = U32_MAX;
root_snapshot.v.flags = 0;
root_snapshot.v.parent = 0;
root_snapshot.v.subvol = cpu_to_le32(BCACHEFS_ROOT_SUBVOL);
root_snapshot.v.tree = cpu_to_le32(1);
SET_BCH_SNAPSHOT_SUBVOL(&root_snapshot.v, true);
bkey_subvolume_init(&root_volume.k_i);
root_volume.k.p.offset = BCACHEFS_ROOT_SUBVOL;
root_volume.v.flags = 0;
root_volume.v.snapshot = cpu_to_le32(U32_MAX);
root_volume.v.inode = cpu_to_le64(BCACHEFS_ROOT_INO);
ret = bch2_btree_insert(c, BTREE_ID_snapshot_trees, &root_tree.k_i, NULL, 0) ?:
bch2_btree_insert(c, BTREE_ID_snapshots, &root_snapshot.k_i, NULL, 0) ?:
bch2_btree_insert(c, BTREE_ID_subvolumes, &root_volume.k_i, NULL, 0);
bch_err_fn(c, ret);
return ret;
}
static int __bch2_fs_upgrade_for_subvolumes(struct btree_trans *trans)
{
struct btree_iter iter;
struct bkey_s_c k;
struct bch_inode_unpacked inode;
int ret;
k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_inodes,
SPOS(0, BCACHEFS_ROOT_INO, U32_MAX), 0);
ret = bkey_err(k);
if (ret)
return ret;
if (!bkey_is_inode(k.k)) {
bch_err(trans->c, "root inode not found");
ret = -BCH_ERR_ENOENT_inode;
goto err;
}
ret = bch2_inode_unpack(k, &inode);
BUG_ON(ret);
inode.bi_subvol = BCACHEFS_ROOT_SUBVOL;
ret = bch2_inode_write(trans, &iter, &inode);
err:
bch2_trans_iter_exit(trans, &iter);
return ret;
}
/* set bi_subvol on root inode */
noinline_for_stack
static int bch2_fs_upgrade_for_subvolumes(struct bch_fs *c)
{
int ret = bch2_trans_do(c, NULL, NULL, BCH_TRANS_COMMIT_lazy_rw,
__bch2_fs_upgrade_for_subvolumes(trans));
bch_err_fn(c, ret);
return ret;
}
const char * const bch2_recovery_passes[] = {
#define x(_fn, ...) #_fn,
BCH_RECOVERY_PASSES()
#undef x
NULL
};
static int bch2_check_allocations(struct bch_fs *c)
{
return bch2_gc(c, true, c->opts.norecovery);
}
static int bch2_set_may_go_rw(struct bch_fs *c)
{
struct journal_keys *keys = &c->journal_keys;
/*
* After we go RW, the journal keys buffer can't be modified (except for
* setting journal_key->overwritten: it will be accessed by multiple
* threads
*/
move_gap(keys->d, keys->nr, keys->size, keys->gap, keys->nr);
keys->gap = keys->nr;
set_bit(BCH_FS_may_go_rw, &c->flags);
if (keys->nr || c->opts.fsck || !c->sb.clean)
return bch2_fs_read_write_early(c);
return 0;
}
struct recovery_pass_fn {
int (*fn)(struct bch_fs *);
unsigned when;
};
static struct recovery_pass_fn recovery_pass_fns[] = {
#define x(_fn, _id, _when) { .fn = bch2_##_fn, .when = _when },
BCH_RECOVERY_PASSES()
#undef x
};
u64 bch2_recovery_passes_to_stable(u64 v)
{
static const u8 map[] = {
#define x(n, id, ...) [BCH_RECOVERY_PASS_##n] = BCH_RECOVERY_PASS_STABLE_##n,
BCH_RECOVERY_PASSES()
#undef x
};
u64 ret = 0;
for (unsigned i = 0; i < ARRAY_SIZE(map); i++)
if (v & BIT_ULL(i))
ret |= BIT_ULL(map[i]);
return ret;
}
u64 bch2_recovery_passes_from_stable(u64 v)
{
static const u8 map[] = {
#define x(n, id, ...) [BCH_RECOVERY_PASS_STABLE_##n] = BCH_RECOVERY_PASS_##n,
BCH_RECOVERY_PASSES()
#undef x
};
u64 ret = 0;
for (unsigned i = 0; i < ARRAY_SIZE(map); i++)
if (v & BIT_ULL(i))
ret |= BIT_ULL(map[i]);
return ret;
}
static bool check_version_upgrade(struct bch_fs *c)
{
unsigned latest_version = bcachefs_metadata_version_current;
unsigned latest_compatible = min(latest_version,
bch2_latest_compatible_version(c->sb.version));
unsigned old_version = c->sb.version_upgrade_complete ?: c->sb.version;
unsigned new_version = 0;
if (old_version < bcachefs_metadata_required_upgrade_below) {
if (c->opts.version_upgrade == BCH_VERSION_UPGRADE_incompatible ||
latest_compatible < bcachefs_metadata_required_upgrade_below)
new_version = latest_version;
else
new_version = latest_compatible;
} else {
switch (c->opts.version_upgrade) {
case BCH_VERSION_UPGRADE_compatible:
new_version = latest_compatible;
break;
case BCH_VERSION_UPGRADE_incompatible:
new_version = latest_version;
break;
case BCH_VERSION_UPGRADE_none:
new_version = min(old_version, latest_version);
break;
}
}
if (new_version > old_version) {
struct printbuf buf = PRINTBUF;
if (old_version < bcachefs_metadata_required_upgrade_below)
prt_str(&buf, "Version upgrade required:\n");
if (old_version != c->sb.version) {
prt_str(&buf, "Version upgrade from ");
bch2_version_to_text(&buf, c->sb.version_upgrade_complete);
prt_str(&buf, " to ");
bch2_version_to_text(&buf, c->sb.version);
prt_str(&buf, " incomplete\n");
}
prt_printf(&buf, "Doing %s version upgrade from ",
BCH_VERSION_MAJOR(old_version) != BCH_VERSION_MAJOR(new_version)
? "incompatible" : "compatible");
bch2_version_to_text(&buf, old_version);
prt_str(&buf, " to ");
bch2_version_to_text(&buf, new_version);
prt_newline(&buf);
struct bch_sb_field_ext *ext = bch2_sb_field_get(c->disk_sb.sb, ext);
__le64 passes = ext->recovery_passes_required[0];
bch2_sb_set_upgrade(c, old_version, new_version);
passes = ext->recovery_passes_required[0] & ~passes;
if (passes) {
prt_str(&buf, " running recovery passes: ");
prt_bitflags(&buf, bch2_recovery_passes,
bch2_recovery_passes_from_stable(le64_to_cpu(passes)));
}
bch_info(c, "%s", buf.buf);
bch2_sb_upgrade(c, new_version);
printbuf_exit(&buf);
return true;
}
return false;
}
u64 bch2_fsck_recovery_passes(void)
{
u64 ret = 0;
for (unsigned i = 0; i < ARRAY_SIZE(recovery_pass_fns); i++)
if (recovery_pass_fns[i].when & PASS_FSCK)
ret |= BIT_ULL(i);
return ret;
}
static bool should_run_recovery_pass(struct bch_fs *c, enum bch_recovery_pass pass)
{
struct recovery_pass_fn *p = recovery_pass_fns + pass;
if (c->opts.norecovery && pass > BCH_RECOVERY_PASS_snapshots_read)
return false;
if (c->recovery_passes_explicit & BIT_ULL(pass))
return true;
if ((p->when & PASS_FSCK) && c->opts.fsck)
return true;
if ((p->when & PASS_UNCLEAN) && !c->sb.clean)
return true;
if (p->when & PASS_ALWAYS)
return true;
return false;
}
static int bch2_run_recovery_pass(struct bch_fs *c, enum bch_recovery_pass pass)
{
struct recovery_pass_fn *p = recovery_pass_fns + pass;
int ret;
if (!(p->when & PASS_SILENT))
bch2_print(c, KERN_INFO bch2_log_msg(c, "%s..."),
bch2_recovery_passes[pass]);
ret = p->fn(c);
if (ret)
return ret;
if (!(p->when & PASS_SILENT))
bch2_print(c, KERN_CONT " done\n");
return 0;
}
static int bch2_run_recovery_passes(struct bch_fs *c)
{
int ret = 0;
while (c->curr_recovery_pass < ARRAY_SIZE(recovery_pass_fns)) {
if (should_run_recovery_pass(c, c->curr_recovery_pass)) {
unsigned pass = c->curr_recovery_pass;
ret = bch2_run_recovery_pass(c, c->curr_recovery_pass);
if (bch2_err_matches(ret, BCH_ERR_restart_recovery) ||
(ret && c->curr_recovery_pass < pass))
continue;
if (ret)
break;
c->recovery_passes_complete |= BIT_ULL(c->curr_recovery_pass);
}
c->curr_recovery_pass++;
c->recovery_pass_done = max(c->recovery_pass_done, c->curr_recovery_pass);
}
return ret;
}
int bch2_run_online_recovery_passes(struct bch_fs *c)
{
int ret = 0;
for (unsigned i = 0; i < ARRAY_SIZE(recovery_pass_fns); i++) {
struct recovery_pass_fn *p = recovery_pass_fns + i;
if (!(p->when & PASS_ONLINE))
continue;
ret = bch2_run_recovery_pass(c, i);
if (bch2_err_matches(ret, BCH_ERR_restart_recovery)) {
i = c->curr_recovery_pass;
continue;
}
if (ret)
break;
}
return ret;
}
int bch2_fs_recovery(struct bch_fs *c)
{
struct bch_sb_field_clean *clean = NULL;
struct jset *last_journal_entry = NULL;
u64 last_seq = 0, blacklist_seq, journal_seq;
int ret = 0;
if (c->sb.clean) {
clean = bch2_read_superblock_clean(c);
ret = PTR_ERR_OR_ZERO(clean);
if (ret)
goto err;
bch_info(c, "recovering from clean shutdown, journal seq %llu",
le64_to_cpu(clean->journal_seq));
} else {
bch_info(c, "recovering from unclean shutdown");
}
if (!(c->sb.features & (1ULL << BCH_FEATURE_new_extent_overwrite))) {
bch_err(c, "feature new_extent_overwrite not set, filesystem no longer supported");
ret = -EINVAL;
goto err;
}
if (!c->sb.clean &&
!(c->sb.features & (1ULL << BCH_FEATURE_extents_above_btree_updates))) {
bch_err(c, "filesystem needs recovery from older version; run fsck from older bcachefs-tools to fix");
ret = -EINVAL;
goto err;
}
if (c->opts.fsck && c->opts.norecovery) {
bch_err(c, "cannot select both norecovery and fsck");
ret = -EINVAL;
goto err;
}
if (!c->opts.nochanges) {
mutex_lock(&c->sb_lock);
bool write_sb = false;
struct bch_sb_field_ext *ext =
bch2_sb_field_get_minsize(&c->disk_sb, ext, sizeof(*ext) / sizeof(u64));
if (!ext) {
ret = -BCH_ERR_ENOSPC_sb;
mutex_unlock(&c->sb_lock);
goto err;
}
if (BCH_SB_HAS_TOPOLOGY_ERRORS(c->disk_sb.sb)) {
ext->recovery_passes_required[0] |=
cpu_to_le64(bch2_recovery_passes_to_stable(BIT_ULL(BCH_RECOVERY_PASS_check_topology)));
write_sb = true;
}
u64 sb_passes = bch2_recovery_passes_from_stable(le64_to_cpu(ext->recovery_passes_required[0]));
if (sb_passes) {
struct printbuf buf = PRINTBUF;
prt_str(&buf, "superblock requires following recovery passes to be run:\n ");
prt_bitflags(&buf, bch2_recovery_passes, sb_passes);
bch_info(c, "%s", buf.buf);
printbuf_exit(&buf);
}
if (bch2_check_version_downgrade(c)) {
struct printbuf buf = PRINTBUF;
prt_str(&buf, "Version downgrade required:");
__le64 passes = ext->recovery_passes_required[0];
bch2_sb_set_downgrade(c,
BCH_VERSION_MINOR(bcachefs_metadata_version_current),
BCH_VERSION_MINOR(c->sb.version));
passes = ext->recovery_passes_required[0] & ~passes;
if (passes) {
prt_str(&buf, "\n running recovery passes: ");
prt_bitflags(&buf, bch2_recovery_passes,
bch2_recovery_passes_from_stable(le64_to_cpu(passes)));
}
bch_info(c, "%s", buf.buf);
printbuf_exit(&buf);
write_sb = true;
}
if (check_version_upgrade(c))
write_sb = true;
if (write_sb)
bch2_write_super(c);
c->recovery_passes_explicit |= bch2_recovery_passes_from_stable(le64_to_cpu(ext->recovery_passes_required[0]));
mutex_unlock(&c->sb_lock);
}
if (c->opts.fsck && IS_ENABLED(CONFIG_BCACHEFS_DEBUG))
c->recovery_passes_explicit |= BIT_ULL(BCH_RECOVERY_PASS_check_topology);
if (c->opts.fsck)
set_bit(BCH_FS_fsck_running, &c->flags);
ret = bch2_blacklist_table_initialize(c);
if (ret) {
bch_err(c, "error initializing blacklist table");
goto err;
}
if (!c->sb.clean || c->opts.fsck || c->opts.keep_journal) {
struct genradix_iter iter;
struct journal_replay **i;
bch_verbose(c, "starting journal read");
ret = bch2_journal_read(c, &last_seq, &blacklist_seq, &journal_seq);
if (ret)
goto err;
/*
* note: cmd_list_journal needs the blacklist table fully up to date so
* it can asterisk ignored journal entries:
*/
if (c->opts.read_journal_only)
goto out;
genradix_for_each_reverse(&c->journal_entries, iter, i)
if (*i && !(*i)->ignore) {
last_journal_entry = &(*i)->j;
break;
}
if (mustfix_fsck_err_on(c->sb.clean &&
last_journal_entry &&
!journal_entry_empty(last_journal_entry), c,
clean_but_journal_not_empty,
"filesystem marked clean but journal not empty")) {
c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info);
SET_BCH_SB_CLEAN(c->disk_sb.sb, false);
c->sb.clean = false;
}
if (!last_journal_entry) {
fsck_err_on(!c->sb.clean, c,
dirty_but_no_journal_entries,
"no journal entries found");
if (clean)
goto use_clean;
genradix_for_each_reverse(&c->journal_entries, iter, i)
if (*i) {
last_journal_entry = &(*i)->j;
(*i)->ignore = false;
/*
* This was probably a NO_FLUSH entry,
* so last_seq was garbage - but we know
* we're only using a single journal
* entry, set it here:
*/
(*i)->j.last_seq = (*i)->j.seq;
break;
}
}
ret = bch2_journal_keys_sort(c);
if (ret)
goto err;
if (c->sb.clean && last_journal_entry) {
ret = bch2_verify_superblock_clean(c, &clean,
last_journal_entry);
if (ret)
goto err;
}
} else {
use_clean:
if (!clean) {
bch_err(c, "no superblock clean section found");
ret = -BCH_ERR_fsck_repair_impossible;
goto err;
}
blacklist_seq = journal_seq = le64_to_cpu(clean->journal_seq) + 1;
}
c->journal_replay_seq_start = last_seq;
c->journal_replay_seq_end = blacklist_seq - 1;
if (c->opts.reconstruct_alloc) {
c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info);
drop_alloc_keys(&c->journal_keys);
}
zero_out_btree_mem_ptr(&c->journal_keys);
ret = journal_replay_early(c, clean);
if (ret)
goto err;
/*
* After an unclean shutdown, skip then next few journal sequence
* numbers as they may have been referenced by btree writes that
* happened before their corresponding journal writes - those btree
* writes need to be ignored, by skipping and blacklisting the next few
* journal sequence numbers:
*/
if (!c->sb.clean)
journal_seq += 8;
if (blacklist_seq != journal_seq) {
ret = bch2_journal_log_msg(c, "blacklisting entries %llu-%llu",
blacklist_seq, journal_seq) ?:
bch2_journal_seq_blacklist_add(c,
blacklist_seq, journal_seq);
if (ret) {
bch_err_msg(c, ret, "error creating new journal seq blacklist entry");
goto err;
}
}
ret = bch2_journal_log_msg(c, "starting journal at entry %llu, replaying %llu-%llu",
journal_seq, last_seq, blacklist_seq - 1) ?:
bch2_fs_journal_start(&c->journal, journal_seq);
if (ret)
goto err;
if (c->opts.reconstruct_alloc)
bch2_journal_log_msg(c, "dropping alloc info");
/*
* Skip past versions that might have possibly been used (as nonces),
* but hadn't had their pointers written:
*/
if (c->sb.encryption_type && !c->sb.clean)
atomic64_add(1 << 16, &c->key_version);
ret = read_btree_roots(c);
if (ret)
goto err;
ret = bch2_run_recovery_passes(c);
if (ret)
goto err;
clear_bit(BCH_FS_fsck_running, &c->flags);
/* If we fixed errors, verify that fs is actually clean now: */
if (IS_ENABLED(CONFIG_BCACHEFS_DEBUG) &&
test_bit(BCH_FS_errors_fixed, &c->flags) &&
!test_bit(BCH_FS_errors_not_fixed, &c->flags) &&
!test_bit(BCH_FS_error, &c->flags)) {
bch2_flush_fsck_errs(c);
bch_info(c, "Fixed errors, running fsck a second time to verify fs is clean");
clear_bit(BCH_FS_errors_fixed, &c->flags);
c->curr_recovery_pass = BCH_RECOVERY_PASS_check_alloc_info;
ret = bch2_run_recovery_passes(c);
if (ret)
goto err;
if (test_bit(BCH_FS_errors_fixed, &c->flags) ||
test_bit(BCH_FS_errors_not_fixed, &c->flags)) {
bch_err(c, "Second fsck run was not clean");
set_bit(BCH_FS_errors_not_fixed, &c->flags);
}
set_bit(BCH_FS_errors_fixed, &c->flags);
}
if (enabled_qtypes(c)) {
bch_verbose(c, "reading quotas");
ret = bch2_fs_quota_read(c);
if (ret)
goto err;
bch_verbose(c, "quotas done");
}
mutex_lock(&c->sb_lock);
bool write_sb = false;
if (BCH_SB_VERSION_UPGRADE_COMPLETE(c->disk_sb.sb) != le16_to_cpu(c->disk_sb.sb->version)) {
SET_BCH_SB_VERSION_UPGRADE_COMPLETE(c->disk_sb.sb, le16_to_cpu(c->disk_sb.sb->version));
write_sb = true;
}
if (!test_bit(BCH_FS_error, &c->flags) &&
!(c->disk_sb.sb->compat[0] & cpu_to_le64(1ULL << BCH_COMPAT_alloc_info))) {
c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_alloc_info);
write_sb = true;
}
if (!test_bit(BCH_FS_error, &c->flags)) {
struct bch_sb_field_ext *ext = bch2_sb_field_get(c->disk_sb.sb, ext);
if (ext &&
(!bch2_is_zero(ext->recovery_passes_required, sizeof(ext->recovery_passes_required)) ||
!bch2_is_zero(ext->errors_silent, sizeof(ext->errors_silent)))) {
memset(ext->recovery_passes_required, 0, sizeof(ext->recovery_passes_required));
memset(ext->errors_silent, 0, sizeof(ext->errors_silent));
write_sb = true;
}
}
if (c->opts.fsck &&
!test_bit(BCH_FS_error, &c->flags) &&
!test_bit(BCH_FS_errors_not_fixed, &c->flags)) {
SET_BCH_SB_HAS_ERRORS(c->disk_sb.sb, 0);
SET_BCH_SB_HAS_TOPOLOGY_ERRORS(c->disk_sb.sb, 0);
write_sb = true;
}
if (write_sb)
bch2_write_super(c);
mutex_unlock(&c->sb_lock);
if (!(c->sb.compat & (1ULL << BCH_COMPAT_extents_above_btree_updates_done)) ||
c->sb.version_min < bcachefs_metadata_version_btree_ptr_sectors_written) {
struct bch_move_stats stats;
bch2_move_stats_init(&stats, "recovery");
struct printbuf buf = PRINTBUF;
bch2_version_to_text(&buf, c->sb.version_min);
bch_info(c, "scanning for old btree nodes: min_version %s", buf.buf);
printbuf_exit(&buf);
ret = bch2_fs_read_write_early(c) ?:
bch2_scan_old_btree_nodes(c, &stats);
if (ret)
goto err;
bch_info(c, "scanning for old btree nodes done");
}
if (c->journal_seq_blacklist_table &&
c->journal_seq_blacklist_table->nr > 128)
queue_work(system_long_wq, &c->journal_seq_blacklist_gc_work);
ret = 0;
out:
bch2_flush_fsck_errs(c);
if (!c->opts.keep_journal &&
test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags))
bch2_journal_keys_put_initial(c);
kfree(clean);
if (!ret &&
test_bit(BCH_FS_need_delete_dead_snapshots, &c->flags) &&
!c->opts.nochanges) {
bch2_fs_read_write_early(c);
bch2_delete_dead_snapshots_async(c);
}
bch_err_fn(c, ret);
return ret;
err:
fsck_err:
bch2_fs_emergency_read_only(c);
goto out;
}
int bch2_fs_initialize(struct bch_fs *c)
{
struct bch_inode_unpacked root_inode, lostfound_inode;
struct bkey_inode_buf packed_inode;
struct qstr lostfound = QSTR("lost+found");
int ret;
bch_notice(c, "initializing new filesystem");
mutex_lock(&c->sb_lock);
c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_extents_above_btree_updates_done);
c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_bformat_overflow_done);
bch2_check_version_downgrade(c);
if (c->opts.version_upgrade != BCH_VERSION_UPGRADE_none) {
bch2_sb_upgrade(c, bcachefs_metadata_version_current);
SET_BCH_SB_VERSION_UPGRADE_COMPLETE(c->disk_sb.sb, bcachefs_metadata_version_current);
bch2_write_super(c);
}
mutex_unlock(&c->sb_lock);
c->curr_recovery_pass = ARRAY_SIZE(recovery_pass_fns);
set_bit(BCH_FS_may_go_rw, &c->flags);
for (unsigned i = 0; i < BTREE_ID_NR; i++)
bch2_btree_root_alloc(c, i);
for_each_member_device(c, ca)
bch2_dev_usage_init(ca);
ret = bch2_fs_journal_alloc(c);
if (ret)
goto err;
/*
* journal_res_get() will crash if called before this has
* set up the journal.pin FIFO and journal.cur pointer:
*/
bch2_fs_journal_start(&c->journal, 1);
bch2_journal_set_replay_done(&c->journal);
ret = bch2_fs_read_write_early(c);
if (ret)
goto err;
/*
* Write out the superblock and journal buckets, now that we can do
* btree updates
*/
bch_verbose(c, "marking superblocks");
ret = bch2_trans_mark_dev_sbs(c);
bch_err_msg(c, ret, "marking superblocks");
if (ret)
goto err;
for_each_online_member(c, ca)
ca->new_fs_bucket_idx = 0;
ret = bch2_fs_freespace_init(c);
if (ret)
goto err;
ret = bch2_initialize_subvolumes(c);
if (ret)
goto err;
bch_verbose(c, "reading snapshots table");
ret = bch2_snapshots_read(c);
if (ret)
goto err;
bch_verbose(c, "reading snapshots done");
bch2_inode_init(c, &root_inode, 0, 0, S_IFDIR|0755, 0, NULL);
root_inode.bi_inum = BCACHEFS_ROOT_INO;
root_inode.bi_subvol = BCACHEFS_ROOT_SUBVOL;
bch2_inode_pack(&packed_inode, &root_inode);
packed_inode.inode.k.p.snapshot = U32_MAX;
ret = bch2_btree_insert(c, BTREE_ID_inodes, &packed_inode.inode.k_i, NULL, 0);
bch_err_msg(c, ret, "creating root directory");
if (ret)
goto err;
bch2_inode_init_early(c, &lostfound_inode);
ret = bch2_trans_do(c, NULL, NULL, 0,
bch2_create_trans(trans,
BCACHEFS_ROOT_SUBVOL_INUM,
&root_inode, &lostfound_inode,
&lostfound,
0, 0, S_IFDIR|0700, 0,
NULL, NULL, (subvol_inum) { 0 }, 0));
bch_err_msg(c, ret, "creating lost+found");
if (ret)
goto err;
c->recovery_pass_done = ARRAY_SIZE(recovery_pass_fns) - 1;
if (enabled_qtypes(c)) {
ret = bch2_fs_quota_read(c);
if (ret)
goto err;
}
ret = bch2_journal_flush(&c->journal);
bch_err_msg(c, ret, "writing first journal entry");
if (ret)
goto err;
mutex_lock(&c->sb_lock);
SET_BCH_SB_INITIALIZED(c->disk_sb.sb, true);
SET_BCH_SB_CLEAN(c->disk_sb.sb, false);
bch2_write_super(c);
mutex_unlock(&c->sb_lock);
return 0;
err:
bch_err_fn(c, ret);
return ret;
}