Commit Graph

1090667 Commits

Author SHA1 Message Date
David Sterba
cb3a12d988 btrfs: rename bio_flags in parameters and switch type
Several functions take parameter bio_flags that was simplified to just
compress type, unify it and change the type accordingly.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:17:31 +02:00
David Sterba
0ff400135b btrfs: rename io_failure_record::bio_flags to compress_type
The bio_flags is now used to store unchanged compress type, so unify
that.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:17:31 +02:00
David Sterba
7f6ca7f21d btrfs: open code extent_set_compress_type helpers
The helpers extent_set_compress_type and extent_compress_type have
become trivial after previous cleanups and can be removed.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:17:31 +02:00
David Sterba
2a5232a8ce btrfs: simplify handling of bio_ctrl::bio_flags
The bio_flags are used only to encode the compression and there are no
other EXTENT_BIO_* flags, so the compress type can be stored directly.
The struct member name is left unchanged and will be cleaned in later
patches.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:17:31 +02:00
David Sterba
572f3dad52 btrfs: remove trivial helper update_nr_written
The helper used to do more with the wbc state but now it's just one
subtraction, no need to have a special helper.

It became trivial in a91326679f ("Btrfs: make mapping->writeback_index
point to the last written page").

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:17:31 +02:00
David Sterba
a6f5e39ee7 btrfs: remove unused parameter bio_flags from btrfs_wq_submit_bio
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:17:31 +02:00
David Sterba
0e3696f80f btrfs: remove btrfs_delayed_extent_op::is_data
The value of btrfs_delayed_extent_op::is_data is always false, we can
cascade the change and simplify code that depends on it, removing the
structure member eventually.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:17:31 +02:00
David Sterba
2fe6a5a1d2 btrfs: sink parameter is_data to btrfs_set_disk_extent_flags
The parameter has been added in 2009 in the infamous monster commit
5d4f98a28c ("Btrfs: Mixed back reference  (FORWARD ROLLING FORMAT
CHANGE)") but not used ever since. We can sink it and allow further
simplifications.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:17:31 +02:00
Filipe Manana
f5585f4f0e btrfs: fix deadlock between concurrent dio writes when low on free data space
When reserving data space for a direct IO write we can end up deadlocking
if we have multiple tasks attempting a write to the same file range, there
are multiple extents covered by that file range, we are low on available
space for data and the writes don't expand the inode's i_size.

The deadlock can happen like this:

1) We have a file with an i_size of 1M, at offset 0 it has an extent with
   a size of 128K and at offset 128K it has another extent also with a
   size of 128K;

2) Task A does a direct IO write against file range [0, 256K), and because
   the write is within the i_size boundary, it takes the inode's lock (VFS
   level) in shared mode;

3) Task A locks the file range [0, 256K) at btrfs_dio_iomap_begin(), and
   then gets the extent map for the extent covering the range [0, 128K).
   At btrfs_get_blocks_direct_write(), it creates an ordered extent for
   that file range ([0, 128K));

4) Before returning from btrfs_dio_iomap_begin(), it unlocks the file
   range [0, 256K);

5) Task A executes btrfs_dio_iomap_begin() again, this time for the file
   range [128K, 256K), and locks the file range [128K, 256K);

6) Task B starts a direct IO write against file range [0, 256K) as well.
   It also locks the inode in shared mode, as it's within the i_size limit,
   and then tries to lock file range [0, 256K). It is able to lock the
   subrange [0, 128K) but then blocks waiting for the range [128K, 256K),
   as it is currently locked by task A;

7) Task A enters btrfs_get_blocks_direct_write() and tries to reserve data
   space. Because we are low on available free space, it triggers the
   async data reclaim task, and waits for it to reserve data space;

8) The async reclaim task decides to wait for all existing ordered extents
   to complete (through btrfs_wait_ordered_roots()).
   It finds the ordered extent previously created by task A for the file
   range [0, 128K) and waits for it to complete;

9) The ordered extent for the file range [0, 128K) can not complete
   because it blocks at btrfs_finish_ordered_io() when trying to lock the
   file range [0, 128K).

   This results in a deadlock, because:

   - task B is holding the file range [0, 128K) locked, waiting for the
     range [128K, 256K) to be unlocked by task A;

   - task A is holding the file range [128K, 256K) locked and it's waiting
     for the async data reclaim task to satisfy its space reservation
     request;

   - the async data reclaim task is waiting for ordered extent [0, 128K)
     to complete, but the ordered extent can not complete because the
     file range [0, 128K) is currently locked by task B, which is waiting
     on task A to unlock file range [128K, 256K) and task A waiting
     on the async data reclaim task.

   This results in a deadlock between 4 task: task A, task B, the async
   data reclaim task and the task doing ordered extent completion (a work
   queue task).

This type of deadlock can sporadically be triggered by the test case
generic/300 from fstests, and results in a stack trace like the following:

[12084.033689] INFO: task kworker/u16:7:123749 blocked for more than 241 seconds.
[12084.034877]       Not tainted 5.18.0-rc2-btrfs-next-115 #1
[12084.035562] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[12084.036548] task:kworker/u16:7   state:D stack:    0 pid:123749 ppid:     2 flags:0x00004000
[12084.036554] Workqueue: btrfs-flush_delalloc btrfs_work_helper [btrfs]
[12084.036599] Call Trace:
[12084.036601]  <TASK>
[12084.036606]  __schedule+0x3cb/0xed0
[12084.036616]  schedule+0x4e/0xb0
[12084.036620]  btrfs_start_ordered_extent+0x109/0x1c0 [btrfs]
[12084.036651]  ? prepare_to_wait_exclusive+0xc0/0xc0
[12084.036659]  btrfs_run_ordered_extent_work+0x1a/0x30 [btrfs]
[12084.036688]  btrfs_work_helper+0xf8/0x400 [btrfs]
[12084.036719]  ? lock_is_held_type+0xe8/0x140
[12084.036727]  process_one_work+0x252/0x5a0
[12084.036736]  ? process_one_work+0x5a0/0x5a0
[12084.036738]  worker_thread+0x52/0x3b0
[12084.036743]  ? process_one_work+0x5a0/0x5a0
[12084.036745]  kthread+0xf2/0x120
[12084.036747]  ? kthread_complete_and_exit+0x20/0x20
[12084.036751]  ret_from_fork+0x22/0x30
[12084.036765]  </TASK>
[12084.036769] INFO: task kworker/u16:11:153787 blocked for more than 241 seconds.
[12084.037702]       Not tainted 5.18.0-rc2-btrfs-next-115 #1
[12084.038540] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[12084.039506] task:kworker/u16:11  state:D stack:    0 pid:153787 ppid:     2 flags:0x00004000
[12084.039511] Workqueue: events_unbound btrfs_async_reclaim_data_space [btrfs]
[12084.039551] Call Trace:
[12084.039553]  <TASK>
[12084.039557]  __schedule+0x3cb/0xed0
[12084.039566]  schedule+0x4e/0xb0
[12084.039569]  schedule_timeout+0xed/0x130
[12084.039573]  ? mark_held_locks+0x50/0x80
[12084.039578]  ? _raw_spin_unlock_irq+0x24/0x50
[12084.039580]  ? lockdep_hardirqs_on+0x7d/0x100
[12084.039585]  __wait_for_common+0xaf/0x1f0
[12084.039587]  ? usleep_range_state+0xb0/0xb0
[12084.039596]  btrfs_wait_ordered_extents+0x3d6/0x470 [btrfs]
[12084.039636]  btrfs_wait_ordered_roots+0x175/0x240 [btrfs]
[12084.039670]  flush_space+0x25b/0x630 [btrfs]
[12084.039712]  btrfs_async_reclaim_data_space+0x108/0x1b0 [btrfs]
[12084.039747]  process_one_work+0x252/0x5a0
[12084.039756]  ? process_one_work+0x5a0/0x5a0
[12084.039758]  worker_thread+0x52/0x3b0
[12084.039762]  ? process_one_work+0x5a0/0x5a0
[12084.039765]  kthread+0xf2/0x120
[12084.039766]  ? kthread_complete_and_exit+0x20/0x20
[12084.039770]  ret_from_fork+0x22/0x30
[12084.039783]  </TASK>
[12084.039800] INFO: task kworker/u16:17:217907 blocked for more than 241 seconds.
[12084.040709]       Not tainted 5.18.0-rc2-btrfs-next-115 #1
[12084.041398] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[12084.042404] task:kworker/u16:17  state:D stack:    0 pid:217907 ppid:     2 flags:0x00004000
[12084.042411] Workqueue: btrfs-endio-write btrfs_work_helper [btrfs]
[12084.042461] Call Trace:
[12084.042463]  <TASK>
[12084.042471]  __schedule+0x3cb/0xed0
[12084.042485]  schedule+0x4e/0xb0
[12084.042490]  wait_extent_bit.constprop.0+0x1eb/0x260 [btrfs]
[12084.042539]  ? prepare_to_wait_exclusive+0xc0/0xc0
[12084.042551]  lock_extent_bits+0x37/0x90 [btrfs]
[12084.042601]  btrfs_finish_ordered_io.isra.0+0x3fd/0x960 [btrfs]
[12084.042656]  ? lock_is_held_type+0xe8/0x140
[12084.042667]  btrfs_work_helper+0xf8/0x400 [btrfs]
[12084.042716]  ? lock_is_held_type+0xe8/0x140
[12084.042727]  process_one_work+0x252/0x5a0
[12084.042742]  worker_thread+0x52/0x3b0
[12084.042750]  ? process_one_work+0x5a0/0x5a0
[12084.042754]  kthread+0xf2/0x120
[12084.042757]  ? kthread_complete_and_exit+0x20/0x20
[12084.042763]  ret_from_fork+0x22/0x30
[12084.042783]  </TASK>
[12084.042798] INFO: task fio:234517 blocked for more than 241 seconds.
[12084.043598]       Not tainted 5.18.0-rc2-btrfs-next-115 #1
[12084.044282] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[12084.045244] task:fio             state:D stack:    0 pid:234517 ppid:234515 flags:0x00004000
[12084.045248] Call Trace:
[12084.045250]  <TASK>
[12084.045254]  __schedule+0x3cb/0xed0
[12084.045263]  schedule+0x4e/0xb0
[12084.045266]  wait_extent_bit.constprop.0+0x1eb/0x260 [btrfs]
[12084.045298]  ? prepare_to_wait_exclusive+0xc0/0xc0
[12084.045306]  lock_extent_bits+0x37/0x90 [btrfs]
[12084.045336]  btrfs_dio_iomap_begin+0x336/0xc60 [btrfs]
[12084.045370]  ? lock_is_held_type+0xe8/0x140
[12084.045378]  iomap_iter+0x184/0x4c0
[12084.045383]  __iomap_dio_rw+0x2c6/0x8a0
[12084.045406]  iomap_dio_rw+0xa/0x30
[12084.045408]  btrfs_do_write_iter+0x370/0x5e0 [btrfs]
[12084.045440]  aio_write+0xfa/0x2c0
[12084.045448]  ? __might_fault+0x2a/0x70
[12084.045451]  ? kvm_sched_clock_read+0x14/0x40
[12084.045455]  ? lock_release+0x153/0x4a0
[12084.045463]  io_submit_one+0x615/0x9f0
[12084.045467]  ? __might_fault+0x2a/0x70
[12084.045469]  ? kvm_sched_clock_read+0x14/0x40
[12084.045478]  __x64_sys_io_submit+0x83/0x160
[12084.045483]  ? syscall_enter_from_user_mode+0x1d/0x50
[12084.045489]  do_syscall_64+0x3b/0x90
[12084.045517]  entry_SYSCALL_64_after_hwframe+0x44/0xae
[12084.045521] RIP: 0033:0x7fa76511af79
[12084.045525] RSP: 002b:00007ffd6d6b9058 EFLAGS: 00000246 ORIG_RAX: 00000000000000d1
[12084.045530] RAX: ffffffffffffffda RBX: 00007fa75ba6e760 RCX: 00007fa76511af79
[12084.045532] RDX: 0000557b304ff3f0 RSI: 0000000000000001 RDI: 00007fa75ba4c000
[12084.045535] RBP: 00007fa75ba4c000 R08: 00007fa751b76000 R09: 0000000000000330
[12084.045537] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000001
[12084.045540] R13: 0000000000000000 R14: 0000557b304ff3f0 R15: 0000557b30521eb0
[12084.045561]  </TASK>

Fix this issue by always reserving data space before locking a file range
at btrfs_dio_iomap_begin(). If we can't reserve the space, then we don't
error out immediately - instead after locking the file range, check if we
can do a NOCOW write, and if we can we don't error out since we don't need
to allocate a data extent, however if we can't NOCOW then error out with
-ENOSPC. This also implies that we may end up reserving space when it's
not needed because the write will end up being done in NOCOW mode - in that
case we just release the space after we noticed we did a NOCOW write - this
is the same type of logic that is done in the path for buffered IO writes.

Fixes: f0bfa76a11 ("btrfs: fix ENOSPC failure when attempting direct IO write into NOCOW range")
CC: stable@vger.kernel.org # 5.17+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:17:31 +02:00
Goldwyn Rodrigues
1d8fa2e29b btrfs: derive compression type from extent map during reads
Derive the compression type from extent map as opposed to the bio flags
passed. This makes it more precise and not reliant on function
parameters.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:17:31 +02:00
Qu Wenruo
a13467ee7a btrfs: scrub: move scrub_remap_extent() call into scrub_extent()
[SUSPICIOUS CODE]
When refactoring scrub code, I noticed a very strange behavior around
scrub_remap_extent():

	if (sctx->is_dev_replace)
		scrub_remap_extent(fs_info, cur_logical, scrub_len,
				   &cur_physical, &target_dev, &cur_mirror);

As replace target is a 1:1 copy of the source device, thus physical
offset inside the target should be the same as physical inside source,
thus this remap call makes no sense to me.

[REAL FUNCTIONALITY]
After more investigation, the function name scrub_remap_extent()
doesn't tell anything of the truth, nor does its if () condition.

The real story behind this function is that, for scrub_pages() we never
expect missing device, even for replacing missing device.

What scrub_remap_extent() is really doing is to find a live mirror, and
make later scrub_pages() to read data from the good copy, other than
from the missing device and increase error counters unnecessarily.

[IMPROVEMENT]
We have no need to bother scrub_remap_extent() in scrub_simple_mirror()
at all, we only need to call it before we call scrub_pages().

And rename the function to scrub_find_live_copy(), add extra comments on
them.

By this we can remove one parameter from scrub_extent(), and reduce the
unnecessary calls to scrub_remap_extent() for regular replace.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:17:31 +02:00
Qu Wenruo
d483bfd27a btrfs: scrub: use find_first_extent_item to for extent item search
Since we have find_first_extent_item() to iterate the extent items of a
certain range, there is no need to use the open-coded version.

Replace the final scrub call site with find_first_extent_item().

Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:17:31 +02:00
Qu Wenruo
9ae53bf909 btrfs: scrub: refactor scrub_raid56_parity()
Currently scrub_raid56_parity() has a large double loop, handling the
following things at the same time:

- Iterate each data stripe
- Iterate each extent item in one data stripe

Refactor this by:

- Introduce a new helper to handle data stripe iteration
  The new helper is scrub_raid56_data_stripe_for_parity(), which
  only has one while() loop handling the extent items inside the
  data stripe.

  The code is still mostly the same as the old code.

- Call cond_resched() for each extent
  Previously we only call cond_resched() under a complex if () check.
  I see no special reason to do that, and for other scrub functions,
  like scrub_simple_mirror() we're already doing the same cond_resched()
  after scrubbing one extent.

- Add more comments

Please note that, this patch is only to address the double loop, there
are incoming patches to do extra cleanup.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:17:31 +02:00
Qu Wenruo
18d30ab961 btrfs: scrub: use scrub_simple_mirror() to handle RAID56 data stripe scrub
Although RAID56 has complex repair mechanism, which involves reading the
whole full stripe, but inside one data stripe, it's in fact no different
than SINGLE/RAID1.

The point here is, for data stripe we just check the csum for each
extent we hit.  Only for csum mismatch case, our repair paths divide.

So we can still reuse scrub_simple_mirror() for RAID56 data stripes,
which saves quite some code.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:17:30 +02:00
Qu Wenruo
e430c4287e btrfs: scrub: cleanup the non-RAID56 branches in scrub_stripe()
Since we have moved all other profiles handling into their own
functions, now the main body of scrub_stripe() is just handling RAID56
profiles.

There is no need to address other profiles in the main loop of
scrub_stripe(), so we can remove those dead branches.

Since we're here, also slightly change the timing of initialization of
variables like @offset, @increment and @logical.

Especially for @logical, we don't really need to initialize it for
btrfs_extent_root()/btrfs_csum_root(), we can use bg->start for that
purpose.

Now those variables are only initialize for RAID56 branches.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:17:30 +02:00
Qu Wenruo
8557635ed2 btrfs: scrub: introduce dedicated helper to scrub simple-stripe based range
The new entrance will iterate through each data stripe which belongs to
the target device.

And since inside each data stripe, RAID0 is just SINGLE, while RAID10 is
just RAID1, we can reuse scrub_simple_mirror() to do the scrub properly.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:17:30 +02:00
Qu Wenruo
09022b14fa btrfs: scrub: introduce dedicated helper to scrub simple-mirror based range
The new helper, scrub_simple_mirror(), will scrub all extents inside a
range which only has simple mirror based duplication.

This covers every range of SINGLE/DUP/RAID1/RAID1C*, and inside each
data stripe for RAID0/RAID10.

Currently we will use this function to scrub SINGLE/DUP/RAID1/RAID1C*
profiles.  As one can see, the new entrance for those simple-mirror
based profiles can be small enough (with comments, just reach 100
lines).

This function will be the basis for the incoming scrub refactor.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:17:30 +02:00
Qu Wenruo
416bd7e7af btrfs: scrub: introduce a helper to locate an extent item
The new helper, find_first_extent_item(), will locate an extent item
(either EXTENT_ITEM or METADATA_ITEM) which covers any byte of the
search range.

This helper will later be used to refactor scrub code.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:17:30 +02:00
Qu Wenruo
1194a82481 btrfs: calculate physical_end using dev_extent_len directly in scrub_stripe()
The variable @physical_end is the exclusive stripe end, currently it's
calculated using @physical + @dev_extent_len / map->stripe_len *
 map->stripe_len.

And since at allocation time we ensured dev_extent_len is stripe_len
aligned, the result is the same as @physical + @dev_extent_len.

So this patch will just assign @physical and @physical_end early,
without using @nstripes.

This is especially helpful for any possible out: label user, as now we
only need to initialize @offset before going to out: label.

Since we're here, also make @physical_end constant.

Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:17:30 +02:00
Gabriel Niebler
48b36a602a btrfs: turn fs_roots_radix in btrfs_fs_info into an XArray
… rename it to simply fs_roots and adjust all usages of this object to use
the XArray API, because it is notionally easier to use and understand, as
it provides array semantics, and also takes care of locking for us,
further simplifying the code.

Also do some refactoring, esp. where the API change requires largely
rewriting some functions, anyway.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Gabriel Niebler <gniebler@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:15:57 +02:00
Gabriel Niebler
8ee922689d btrfs: turn fs_info member buffer_radix into XArray
… named 'extent_buffers'. Also adjust all usages of this object to use
the XArray API, which greatly simplifies the code as it takes care of
locking and is generally easier to use and understand, providing
notionally simpler array semantics.

Also perform some light refactoring.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Gabriel Niebler <gniebler@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:03:16 +02:00
Gabriel Niebler
4076942021 btrfs: turn name_cache radix tree into XArray in send_ctx
… and adjust all usages of this object to use the XArray API for the sake
of consistency.

XArray API provides array semantics, so it is notionally easier to use and
understand, and it also takes care of locking for us.

None of this makes a real difference in this particular patch, but it does
in other places where similar replacements are or have been made and we
want to be consistent in our usage of data structures in btrfs.

Signed-off-by: Gabriel Niebler <gniebler@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:03:16 +02:00
Gabriel Niebler
253bf57555 btrfs: turn delayed_nodes_tree into an XArray
… in the btrfs_root struct and adjust all usages of this object to use
the XArray API, because it is notionally easier to use and understand,
as it provides array semantics, and also takes care of locking for us,
further simplifying the code.

Also use the opportunity to do some light refactoring.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Gabriel Niebler <gniebler@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:03:16 +02:00
Qu Wenruo
719fae8920 btrfs: use ilog2() to replace if () branches for btrfs_bg_flags_to_raid_index()
In function btrfs_bg_flags_to_raid_index(), we use quite some if () to
convert the BTRFS_BLOCK_GROUP_* bits to a index number.

But the truth is, there is really no such need for so many branches at
all.
Since all BTRFS_BLOCK_GROUP_* flags are just one single bit set inside
BTRFS_BLOCK_GROUP_PROFILES_MASK, we can easily use ilog2() to calculate
their values.

This calculation has an anchor point, the lowest PROFILE bit, which is
RAID0.

Even it's fixed on-disk format and should never change, here I added
extra compile time checks to make it super safe:

1. Make sure RAID0 is always the lowest bit in PROFILE_MASK
   This is done by finding the first (least significant) bit set of
   RAID0 and PROFILE_MASK & ~RAID0.

2. Make sure RAID0 bit set beyond the highest bit of TYPE_MASK

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:03:16 +02:00
Qu Wenruo
f04fbcc64e btrfs: move definition of btrfs_raid_types to volumes.h
It's only internally used as another way to represent btrfs profiles,
it's not exposed through any on-disk format, in fact this
btrfs_raid_types is diverted from the on-disk format values.

Furthermore, since it's internal structure, its definition can change in
the future.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:03:16 +02:00
Christoph Hellwig
385de0ef38 btrfs: use a normal workqueue for rmw_workers
rmw_workers doesn't need ordered execution or thread disabling threshold
(as the thresh parameter is less than DFT_THRESHOLD).

Just switch to the normal workqueues that use a lot less resources,
especially in the work_struct vs btrfs_work structures.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:03:16 +02:00
Christoph Hellwig
be53951826 btrfs: use normal workqueues for scrub
All three scrub workqueues don't need ordered execution or thread
disabling threshold (as the thresh parameter is less than DFT_THRESHOLD).
Just switch to the normal workqueues that use a lot less resources,
especially in the work_struct vs btrfs_work structures.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:03:15 +02:00
Christoph Hellwig
a31b4a4368 btrfs: simplify WQ_HIGHPRI handling in struct btrfs_workqueue
Just let the one caller that wants optional WQ_HIGHPRI handling allocate
a separate btrfs_workqueue for that.  This allows to rename struct
__btrfs_workqueue to btrfs_workqueue, remove a pointer indirection and
separate allocation for all btrfs_workqueue users and generally simplify
the code.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:03:15 +02:00
Qu Wenruo
a7b8e39c92 btrfs: raid56: enable subpage support for RAID56
Now the btrfs RAID56 infrastructure has migrated to use sector_ptr
interface, it should be safe to enable subpage support for RAID56.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:03:15 +02:00
Qu Wenruo
3907ce293d btrfs: raid56: make alloc_rbio_essential_pages() subpage compatible
The non-compatible part is only the bitmap iteration part, now the
bitmap size is extended to rbio::stripe_nsectors, not the old
rbio::stripe_npages.

Since we're here, also slightly improve the function by:

- Rename @i to @stripe
- Rename @bit to @sectornr
- Move @page and @index into the inner loop

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:03:15 +02:00
Qu Wenruo
d4e28d9b5f btrfs: raid56: make steal_rbio() subpage compatible
Function steal_rbio() will take all the uptodate pages from the source
rbio to destination rbio.

With the new stripe_sectors[] array, we also need to do the extra check:

- Check sector::flags to make sure the full page is uptodate
  Now we don't use PageUptodate flag for subpage cases to indicate
  if the page is uptodate.

  Instead we need to check all the sectors belong to the page to be sure
  about whether it's full page uptodate.

  So here we introduce a new helper, full_page_sectors_uptodate() to do
  the check.

- Update rbio::stripe_sectors[] to use the new page pointer
  We only need to change the page pointer, no need to change anything
  else.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:03:15 +02:00
Qu Wenruo
5fdb7afc6f btrfs: raid56: make set_bio_pages_uptodate() subpage compatible
Unlike previous code, we can not directly set PageUptodate for stripe
pages now.  Instead we have to iterate through all the sectors and set
SECTOR_UPTODATE flag there.

Introduce a new helper find_stripe_sector(), to do the work.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:03:15 +02:00
Qu Wenruo
ac26df8b3b btrfs: raid56: remove btrfs_raid_bio::bio_pages array
The functionality is completely replaced by the new bio_sectors member,
now it's time to remove the old member.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:03:15 +02:00
Qu Wenruo
6346f6bf16 btrfs: raid56: make raid56_add_scrub_pages() subpage compatible
This requires one extra parameter @pgoff for the function.

In the current code base, scrub is still one page per sector, thus the
new parameter will always be 0.

It needs the extra subpage scrub optimization code to fully take
advantage.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:03:15 +02:00
Qu Wenruo
f77183dc1f btrfs: raid56: open code rbio_stripe_page_index()
There is only one caller for that helper now, and we're definitely fine
to open-code it.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:03:15 +02:00
Qu Wenruo
1145059ae5 btrfs: raid56: make finish_rmw() subpage compatible
With this function converted to subpage compatible sector interfaces,
the following helper functions can be removed:

- rbio_stripe_page()
- rbio_pstripe_page()
- rbio_qstripe_page()
- page_in_rbio()

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:03:15 +02:00
Qu Wenruo
07e4d38080 btrfs: raid56: make __raid_recover_endio_io() subpage compatible
This involves:

- Use sector_ptr interface to grab the pointers

- Add sector->pgoff to pointers[]

- Rebuild data using sectorsize instead of PAGE_SIZE

- Use memcpy() to replace copy_page()

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:03:15 +02:00
Qu Wenruo
46900662d0 btrfs: raid56: make finish_parity_scrub() subpage compatible
The core is to convert direct page usage into sector_ptr usage, and
use memcpy() to replace copy_page().

For pointers usage, we need to convert it to kmap_local_page() +
sector->pgoff.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:03:15 +02:00
Qu Wenruo
3e77605d6a btrfs: raid56: make rbio_add_io_page() subpage compatible
Make rbio_add_io_page() subpage compatible, which involves:

- Rename rbio_add_io_page() to rbio_add_io_sector()
  Although we still rely on PAGE_SIZE == sectorsize, so add a new
  ASSERT() inside rbio_add_io_sector() to make sure all pgoff is 0.

- Introduce rbio_stripe_sector() helper
  The equivalent of rbio_stripe_page().

  This new helper has extra ASSERT()s to validate the stripe and sector
  number.

- Introduce sector_in_rbio() helper
  The equivalent of page_in_rbio().

- Rename @pagenr variables to @sectornr

- Use rbio::stripe_nsectors when iterating the bitmap

Please note that, this only changes the interface, the bios are still
using full page for IO.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:03:15 +02:00
Qu Wenruo
00425dd976 btrfs: raid56: introduce btrfs_raid_bio::bio_sectors
This new member is going to fully replace bio_pages in the future, but
for now let's keep them co-exist, until the full switch is done.

Currently cache_rbio_pages() and index_rbio_pages() will also populate
the new array.

And cache_rbio_pages() need to record which sectors are uptodate, so we
also need to introduce sector_ptr::uptodate bit.

To avoid extra memory usage, we let the new @uptodate bit to share bits
with @pgoff.  Now pgoff only has at most 31 bits, which is already more
than enough, as even for 256K page size, we only need 18 bits.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:03:14 +02:00
Qu Wenruo
eb3570607c btrfs: raid56: introduce btrfs_raid_bio::stripe_sectors
The new member is an array of sector_ptr pointers, they will represent
all sectors inside a full stripe (including P/Q).

They co-operate with btrfs_raid_bio::stripe_pages:

stripe_pages:   | Page 0, range [0, 64K)   | Page 1 ...
stripe_sectors: |  |  | ...             |  |
                |  |                    \- sector 15, page 0, pgoff=60K
                |  \- sector 1, page 0, pgoff=4K
                \---- sector 0, page 0, pfoff=0

With such structure, we can represent subpage sectors without using
extra pages.

Here we introduce a new helper, index_stripe_sectors(), to update
stripe_sectors[] to point to correct page and pgoff.

So every time rbio::stripe_pages[] pointer gets updated, the new helper
should be called.

The following functions have to call the new helper:

- steal_rbio()
- alloc_rbio_pages()
- alloc_rbio_parity_pages()
- alloc_rbio_essential_pages()

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:03:14 +02:00
Qu Wenruo
94efbe19b9 btrfs: raid56: introduce new cached members for btrfs_raid_bio
The new members are all related to number of sectors, but the existing
number of pages members are kept as is:

- nr_sectors
  Total sectors of the full stripe including P/Q.

- stripe_nsectors
  The sectors of a single stripe.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:03:14 +02:00
Qu Wenruo
29b068382c btrfs: raid56: make btrfs_raid_bio more compact
There are a lot of members using much larger type in btrfs_raid_bio than
necessary, like nr_pages which represents the total number of a full
stripe.

Instead of int (which is at least 32bits), u16 is already enough
(max stripe length will be 256MiB, already beyond current RAID56 device
number limit).

So this patch will reduce the width of the following members:

- stripe_len to u32
- nr_pages to u16
- nr_data to u8
- real_stripes to u8
- scrubp to u8
- faila/b to s8
  As -1 is used to indicate no corruption

This will slightly reduce the size of btrfs_raid_bio from 272 bytes to
256 bytes, reducing 16 bytes usage.

But please note that, when using btrfs_raid_bio, we allocate extra space
for it to cover various pointer array, so the reduce memory is not
really a big saving overall.

As we're here modifying the comments already, update existing comments
to current code standard.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:03:14 +02:00
Qu Wenruo
843de58b3e btrfs: raid56: open code rbio_nr_pages()
The function rbio_nr_pages() is only called once inside alloc_rbio(),
there is no reason to make it dedicated helper.

Furthermore, the return type doesn't match, the function return "unsigned
long" which may not be necessary, while the only caller only uses "int".

Since we're doing cleaning up here, also fix the type to "const unsigned
int" for all involved local variables.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:03:14 +02:00
Qu Wenruo
cc353a8be2 btrfs: reduce width for stripe_len from u64 to u32
Currently btrfs uses fixed stripe length (64K), thus u32 is wide enough
for the usage.

Furthermore, even in the future we choose to enlarge stripe length to
larger values, I don't believe we would want stripe as large as 4G or
larger.

So this patch will reduce the width for all in-memory structures and
parameters, this involves:

- RAID56 related function argument lists
  This allows us to do direct division related to stripe_len.
  Although we will use bits shift to replace the division anyway.

- btrfs_io_geometry structure
  This involves one change to simplify the calculation of both @stripe_nr
  and @stripe_offset, using div64_u64_rem().
  And add extra sanity check to make sure @stripe_offset is always small
  enough for u32.

  This saves 8 bytes for the structure.

- map_lookup structure
  This convert @stripe_len to u32, which saves 8 bytes. (saved 4 bytes,
  and removed a 4-bytes hole)

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:03:14 +02:00
Christoph Hellwig
ad357938c6 btrfs: do not return errors from submit_bio_hook_t instances
Both btrfs_repair_one_sector and submit_bio_one as the direct caller of
one of the instances ignore errors as they expect the methods themselves
to call ->bi_end_io on error.  Remove the unused and dangerous return
value.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:03:14 +02:00
Christoph Hellwig
cb4411dd57 btrfs: do not return errors from btrfs_submit_compressed_read
btrfs_submit_compressed_read already calls ->bi_end_io on error and
the caller must ignore the return value, so remove it.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:03:14 +02:00
Christoph Hellwig
94d9e11b27 btrfs: do not return errors from btrfs_submit_metadata_bio
btrfs_submit_metadata_bio already calls ->bi_end_io on error and the
caller must ignore the return value, so remove it.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:03:14 +02:00
Christoph Hellwig
abf48d5871 btrfs: remove unused bio_flags argument to btrfs_submit_metadata_bio
This argument is unused since commit 953651eb30 ("btrfs: factor out
helper adding a page to bio") and commit 1b36294a6c ("btrfs: call
submit_bio_hook directly for metadata pages") reworked the way metadata
bio submission is handled.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:03:14 +02:00
Christoph Hellwig
7aab8b3282 btrfs: move btrfs_readpage to extent_io.c
Keep btrfs_readpage next to btrfs_do_readpage and the other address
space operations.  This allows to keep submit_one_bio and
struct btrfs_bio_ctrl file local in extent_io.c.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:03:14 +02:00