Let guests clear the Intel PT ToPA PMI status (bit 55 of
MSR_CORE_PERF_GLOBAL_OVF_CTRL).
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Inject a PMI for KVM guest when Intel PT working
in Host-Guest mode and Guest ToPA entry memory buffer
was completely filled.
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This reverts commit 919f6cd8bb.
The patch was applied twice.
The first commit is eca6be566d.
Reported-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- VSIE crypto fixes
- new guest features for gen15
- disable halt polling for nested virtualization with overcommit
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABAgAGBQJcxrJmAAoJEBF7vIC1phx8EsEP/2mIUbtY9OmVCZNHX43ds5Jr
WR51UA/cXQGzP1cqLrqIchjJ40J7KGYBqS+9MeOyUxX85HUvb5dGgUiIfDOmh8R7
YIHe3nkM0dcIRbeuSp48sA8rl817TNGSBg7GnUN+eaEvJ/U+WbLb1sry/0uZN6Tm
2iFkff+XgSeEfBmrlxiPVl5PGUxi6FtKQWDwhn+MRkvs4sdQBh1SBITMIrzMgDmQ
GMd5olfLp3AZZV2yniFvZM9TSWvKobCCH6IVF0/mBchxkqmdjQaKdSCRO6a1pLDh
8PVBN7i+yipLURUMBuDCMxGDBINJgvvXkThB8N9K6+CanUc8KCc7l0EimS93s3DB
FsutI/2mSFy/xJ4nk98VVp8WCbVftQLtyKUSytBiqCTSpg1gtFMMntCPAqlON4TV
xHOaAnJjF4Lhvfm0QrxQ22bAmuju6WIh5WKG8D+s7yqcn7GZeDUYdeftWiGNteaf
sJwX1Vq8H6iUac1mfp7UbfT+60UuiCkj/d9sY9eRBNlPPIX6V4UgZU4Xh8/rSMf3
qnN4RCBGIQqndUzRzaw7ZtAfNy5jBE1BABems49fy07kuPCzrg9tQqXlWxf/60Ad
QKqZ3Q/hb4ixYQJ7TAqQZmq1D3NL8w+V9MthcILmEGfMYF4BZKJV39ZigbttRIcN
ZuiS+8IfOWN1IXZ2zXL0
=mZyZ
-----END PGP SIGNATURE-----
Merge tag 'kvm-s390-next-5.2-1' of git://git.kernel.org/pub/scm/linux/kernel/git/kvms390/linux into HEAD
KVM: s390: Features and fixes for 5.2
- VSIE crypto fixes
- new guest features for gen15
- disable halt polling for nested virtualization with overcommit
When the guest do not have AP instructions nor Key management
we should return without shadowing the CRYCB.
We did not check correctly in the past.
Fixes: b10bd9a256 ("s390: vsie: Use effective CRYCBD.31 to check CRYCBD validity")
Fixes: 6ee7409820 ("KVM: s390: vsie: allow CRYCB FORMAT-0")
Signed-off-by: Pierre Morel <pmorel@linux.ibm.com>
Reported-by: Christian Borntraeger <borntraeger@de.ibm.com>
Message-Id: <1556269010-22258-1-git-send-email-pmorel@linux.ibm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Tested-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We do track the current steal time of the host CPUs. Let us use
this value to disable halt polling if the steal time goes beyond
a configured value.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
There are cases where halt polling is unwanted. For example when running
KVM on an over committed LPAR we rather want to give back the CPU to
neighbour LPARs instead of polling. Let us provide a callback that
allows architectures to disable polling.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Instead of adding a new machine option to disable/enable the keywrapping
options of pckmo (like for AES and DEA) we can now use the CPU model to
decide. As ECC is also wrapped with the AES key we need that to be
enabled.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
This enables stfle.151 and adds the subfunctions for DFLTCC. Bit 151 is
added to the list of facilities that will be enabled when there is no
cpu model involved as DFLTCC requires no additional handling from
userspace, e.g. for migration.
Please note that a cpu model enabled user space can and will have the
final decision on the facility bits for a guests.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Collin Walling <walling@linux.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
This enables stfle.150 and adds the subfunctions for SORTL. Bit 150 is
added to the list of facilities that will be enabled when there is no
cpu model involved as sortl requires no additional handling from
userspace, e.g. for migration.
Please note that a cpu model enabled user space can and will have the
final decision on the facility bits for a guests.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Collin Walling <walling@linux.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Some of the new features have a 32byte response for the query function.
Provide a new wrapper similar to __cpacf_query. We might want to factor
this out if other users come up, as of today there is none. So let us
keep the function within KVM.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Collin Walling <walling@linux.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
This enables stfle.155 and adds the subfunctions for KDSA. Bit 155 is
added to the list of facilities that will be enabled when there is no
cpu model involved as MSA9 requires no additional handling from
userspace, e.g. for migration.
Please note that a cpu model enabled user space can and will have the
final decision on the facility bits for a guests.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Acked-by: Janosch Frank <frankja@linux.ibm.com>
Reviewed-by: Collin Walling <walling@linux.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
If vector support is enabled, the vector BCD enhancements facility
might also be enabled.
We can directly forward this facility to the guest if available
and VX is requested by user space.
Please note that user space can and will have the final decision
on the facility bits for a guests.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Janosch Frank <frankja@linux.ibm.com>
Reviewed-by: Collin Walling <walling@linux.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
If vector support is enabled, the vector enhancements facility 2
might also be enabled.
We can directly forward this facility to the guest if available
and VX is requested by user space.
Please note that user space can and will have the final decision
on the facility bits for a guests.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Janosch Frank <frankja@linux.ibm.com>
Reviewed-by: Collin Walling <walling@linux.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
All architectures except MIPS were defining it in the same way,
and memory slots are handled entirely by common code so there
is no point in keeping the definition per-architecture.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
EFER.LME and EFER.NX are considered reserved if their respective feature
bits are not advertised to the guest.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM allows userspace to violate consistency checks related to the
guest's CPUID model to some degree. Generally speaking, userspace has
carte blanche when it comes to guest state so long as jamming invalid
state won't negatively affect the host.
Currently this is seems to be a non-issue as most of the interesting
EFER checks are missing, e.g. NX and LME, but those will be added
shortly. Proactively exempt userspace from the CPUID checks so as not
to break userspace.
Note, the efer_reserved_bits check still applies to userspace writes as
that mask reflects the host's capabilities, e.g. KVM shouldn't allow a
guest to run with NX=1 if it has been disabled in the host.
Fixes: d80174745b ("KVM: SVM: Only allow setting of EFER_SVME when CPUID SVM is set")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Most, but not all, helpers that are related to emulating consistency
checks for nested VM-Entry return -EINVAL when a check fails. Convert
the holdouts to have consistency throughout and to make it clear that
the functions are signaling pass/fail as opposed to "resume guest" vs.
"exit to userspace".
Opportunistically fix bad indentation in nested_vmx_check_guest_state().
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Convert all top-level nested VM-Enter consistency check functions to
return 0/-EINVAL instead of failure codes, since now they can only
ever return one failure code.
This also does not give the false impression that failure information is
always consumed and/or relevant, e.g. vmx_set_nested_state() only
cares whether or not the checks were successful.
nested_check_host_control_regs() can also now be inlined into its caller,
nested_vmx_check_host_state, since the two have effectively become the
same function.
Based on a patch by Sean Christopherson.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename the top-level consistency check functions to (loosely) align with
the SDM. Historically, KVM has used the terms "prereq" and "postreq" to
differentiate between consistency checks that lead to VM-Fail and those
that lead to VM-Exit. The terms are vague and potentially misleading,
e.g. "postreq" might be interpreted as occurring after VM-Entry.
Note, while the SDM lumps controls and host state into a single section,
"Checks on VMX Controls and Host-State Area", split them into separate
top-level functions as the two categories of checks result in different
VM instruction errors. This split will allow for additional cleanup.
Note #2, "vmentry" is intentionally dropped from the new function names
to avoid confusion with nested_check_vm_entry_controls(), and to keep
the length of the functions names somewhat manageable.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Per Intel's SDM, volume 3, section Checking and Loading Guest State:
Because the checking and the loading occur concurrently, a failure may
be discovered only after some state has been loaded. For this reason,
the logical processor responds to such failures by loading state from
the host-state area, as it would for a VM exit.
In other words, a failed non-register state consistency check results in
a VM-Exit, not VM-Fail. Moving the non-reg state checks also paves the
way for renaming nested_vmx_check_vmentry_postreqs() to align with the
SDM, i.e. nested_vmx_check_vmentry_guest_state().
Fixes: 26539bd0e4 ("KVM: nVMX: check vmcs12 for valid activity state")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
According to section "Checking and Loading Guest State" in Intel SDM vol
3C, the following check is performed on vmentry:
If the "load IA32_PAT" VM-entry control is 1, the value of the field
for the IA32_PAT MSR must be one that could be written by WRMSR
without fault at CPL 0. Specifically, each of the 8 bytes in the
field must have one of the values 0 (UC), 1 (WC), 4 (WT), 5 (WP),
6 (WB), or 7 (UC-).
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Karl Heubaum <karl.heubaum@oracle.com>
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
According to section "Checks on Host Control Registers and MSRs" in Intel
SDM vol 3C, the following check is performed on vmentry:
If the "load IA32_PAT" VM-exit control is 1, the value of the field
for the IA32_PAT MSR must be one that could be written by WRMSR
without fault at CPL 0. Specifically, each of the 8 bytes in the
field must have one of the values 0 (UC), 1 (WC), 4 (WT), 5 (WP),
6 (WB), or 7 (UC-).
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Karl Heubaum <karl.heubaum@oracle.com>
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This check will soon be done on every nested vmentry and vmexit,
"parallelize" it using bitwise operations.
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This is not needed, PAT writes always take an MSR vmexit.
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The SVI, RVI, virtual-APIC page address and APIC-access page address fields
were left out of dump_vmcs. Add them.
KERN_CONT technically isn't SMP safe, but it's okay to use it here since
the whole of dump_vmcs() is a single huge multi-line piece of output
that isn't SMP-safe.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In __apic_accept_irq() interface trig_mode is int and actually on some code
paths it is set above u8:
kvm_apic_set_irq() extracts it from 'struct kvm_lapic_irq' where trig_mode
is u16. This is done on purpose as e.g. kvm_set_msi_irq() sets it to
(1 << 15) & e->msi.data
kvm_apic_local_deliver sets it to reg & (1 << 15).
Fix the immediate issue by making 'tm' into u16. We may also want to adjust
__apic_accept_irq() interface and use proper sizes for vector, level,
trig_mode but this is not urgent.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Changed passing argument as "0 to NULL" which resolves below sparse warning
arch/x86/kvm/x86.c:3096:61: warning: Using plain integer as NULL pointer
Signed-off-by: Hariprasad Kelam <hariprasad.kelam@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a simple test for SMM, based on VMX. The test implements its own
sync between the guest and the host as using our ucall library seems to
be too cumbersome: SMI handler is happening in real-address mode.
This patch also fixes KVM_SET_NESTED_STATE to happen after
KVM_SET_VCPU_EVENTS, in fact it places it last. This is because
KVM needs to know whether the processor is in SMM or not.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-no-pie was added to GCC at the same time as their configuration option
--enable-default-pie. Compilers that were built before do not have
-no-pie, but they also do not need it. Detect the option at build
time.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Starting state migration after an IO exit without first completing IO
may result in test failures. We already have two tests that need this
(this patch in fact fixes evmcs_test, similar to what was fixed for
state_test in commit 0f73bbc851, "KVM: selftests: complete IO before
migrating guest state", 2019-03-13) and a third is coming. So, move the
code to vcpu_save_state, and while at it do not access register state
until after I/O is complete.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Invoking the 64-bit variation on a 32-bit kenrel will crash the guest,
trigger a WARN, and/or lead to a buffer overrun in the host, e.g.
rsm_load_state_64() writes r8-r15 unconditionally, but enum kvm_reg and
thus x86_emulate_ctxt._regs only define r8-r15 for CONFIG_X86_64.
KVM allows userspace to report long mode support via CPUID, even though
the guest is all but guaranteed to crash if it actually tries to enable
long mode. But, a pure 32-bit guest that is ignorant of long mode will
happily plod along.
SMM complicates things as 64-bit CPUs use a different SMRAM save state
area. KVM handles this correctly for 64-bit kernels, e.g. uses the
legacy save state map if userspace has hid long mode from the guest,
but doesn't fare well when userspace reports long mode support on a
32-bit host kernel (32-bit KVM doesn't support 64-bit guests).
Since the alternative is to crash the guest, e.g. by not loading state
or explicitly requesting shutdown, unconditionally use the legacy SMRAM
save state map for 32-bit KVM. If a guest has managed to get far enough
to handle SMIs when running under a weird/buggy userspace hypervisor,
then don't deliberately crash the guest since there are no downsides
(from KVM's perspective) to allow it to continue running.
Fixes: 660a5d517a ("KVM: x86: save/load state on SMM switch")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Neither AMD nor Intel CPUs have an EFER field in the legacy SMRAM save
state area, i.e. don't save/restore EFER across SMM transitions. KVM
somewhat models this, e.g. doesn't clear EFER on entry to SMM if the
guest doesn't support long mode. But during RSM, KVM unconditionally
clears EFER so that it can get back to pure 32-bit mode in order to
start loading CRs with their actual non-SMM values.
Clear EFER only when it will be written when loading the non-SMM state
so as to preserve bits that can theoretically be set on 32-bit vCPUs,
e.g. KVM always emulates EFER_SCE.
And because CR4.PAE is cleared only to play nice with EFER, wrap that
code in the long mode check as well. Note, this may result in a
compiler warning about cr4 being consumed uninitialized. Re-read CR4
even though it's technically unnecessary, as doing so allows for more
readable code and RSM emulation is not a performance critical path.
Fixes: 660a5d517a ("KVM: x86: save/load state on SMM switch")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
RSM emulation is currently broken on VMX when the interrupted guest has
CR4.VMXE=1. Stop dancing around the issue of HF_SMM_MASK being set when
loading SMSTATE into architectural state, e.g. by toggling it for
problematic flows, and simply clear HF_SMM_MASK prior to loading
architectural state (from SMRAM save state area).
Reported-by: Jon Doron <arilou@gmail.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Liran Alon <liran.alon@oracle.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Fixes: 5bea5123cb ("KVM: VMX: check nested state and CR4.VMXE against SMM")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Tested-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Prepare for clearing HF_SMM_MASK prior to loading state from the SMRAM
save state map, i.e. kvm_smm_changed() needs to be called after state
has been loaded and so cannot be done automatically when setting
hflags from RSM.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
RSM emulation is currently broken on VMX when the interrupted guest has
CR4.VMXE=1. Rather than dance around the issue of HF_SMM_MASK being set
when loading SMSTATE into architectural state, ideally RSM emulation
itself would be reworked to clear HF_SMM_MASK prior to loading non-SMM
architectural state.
Ostensibly, the only motivation for having HF_SMM_MASK set throughout
the loading of state from the SMRAM save state area is so that the
memory accesses from GET_SMSTATE() are tagged with role.smm. Load
all of the SMRAM save state area from guest memory at the beginning of
RSM emulation, and load state from the buffer instead of reading guest
memory one-by-one.
This paves the way for clearing HF_SMM_MASK prior to loading state,
and also aligns RSM with the enter_smm() behavior, which fills a
buffer and writes SMRAM save state in a single go.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Issue was discovered when running kvm-unit-tests on KVM running as L1 on
top of Hyper-V.
When vmx_instruction_intercept unit-test attempts to run RDPMC to test
RDPMC-exiting, it is intercepted by L1 KVM which it's EXIT_REASON_RDPMC
handler raise #GP because vCPU exposed by Hyper-V doesn't support PMU.
Instead of unit-test expectation to be reflected with EXIT_REASON_RDPMC.
The reason vmx_instruction_intercept unit-test attempts to run RDPMC
even though Hyper-V doesn't support PMU is because L1 expose to L2
support for RDPMC-exiting. Which is reasonable to assume that is
supported only in case CPU supports PMU to being with.
Above issue can easily be simulated by modifying
vmx_instruction_intercept config in x86/unittests.cfg to run QEMU with
"-cpu host,+vmx,-pmu" and run unit-test.
To handle issue, change KVM to expose RDPMC-exiting only when guest
supports PMU.
Reported-by: Saar Amar <saaramar@microsoft.com>
Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Before this change, reading a VMware pseduo PMC will succeed even when
PMU is not supported by guest. This can easily be seen by running
kvm-unit-test vmware_backdoors with "-cpu host,-pmu" option.
Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
guest xcr0 could leak into host when MCE happens in guest mode. Because
do_machine_check() could schedule out at a few places.
For example:
kvm_load_guest_xcr0
...
kvm_x86_ops->run(vcpu) {
vmx_vcpu_run
vmx_complete_atomic_exit
kvm_machine_check
do_machine_check
do_memory_failure
memory_failure
lock_page
In this case, host_xcr0 is 0x2ff, guest vcpu xcr0 is 0xff. After schedule
out, host cpu has guest xcr0 loaded (0xff).
In __switch_to {
switch_fpu_finish
copy_kernel_to_fpregs
XRSTORS
If any bit i in XSTATE_BV[i] == 1 and xcr0[i] == 0, XRSTORS will
generate #GP (In this case, bit 9). Then ex_handler_fprestore kicks in
and tries to reinitialize fpu by restoring init fpu state. Same story as
last #GP, except we get DOUBLE FAULT this time.
Cc: stable@vger.kernel.org
Signed-off-by: WANG Chao <chao.wang@ucloud.cn>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
I noticed that apic test from kvm-unit-tests always hangs on my EPYC 7401P,
the hanging test nmi-after-sti is trying to deliver 30000 NMIs and tracing
shows that we're sometimes able to deliver a few but never all.
When we're trying to inject an NMI we may fail to do so immediately for
various reasons, however, we still need to inject it so enable_nmi_window()
arms nmi_singlestep mode. #DB occurs as expected, but we're not checking
for pending NMIs before entering the guest and unless there's a different
event to process, the NMI will never get delivered.
Make KVM_REQ_EVENT request on the vCPU from db_interception() to make sure
pending NMIs are checked and possibly injected.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Only clear the valid bit when invalidate logical APIC id entry.
The current logic clear the valid bit, but also set the rest of
the bits (including reserved bits) to 1.
Fixes: 98d90582be ('svm: Fix AVIC DFR and LDR handling')
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This reverts commit bb218fbcfa.
As Oren Twaig pointed out the old discussion:
https://patchwork.kernel.org/patch/8292231/
that the change coud potentially cause an extra IPI to be sent to
the destination vcpu because the AVIC hardware already set the IRR bit
before the incomplete IPI #VMEXIT with id=1 (target vcpu is not running).
Since writting to ICR and ICR2 will also set the IRR. If something triggers
the destination vcpu to get scheduled before the emulation finishes, then
this could result in an additional IPI.
Also, the issue mentioned in the commit bb218fbcfa was misdiagnosed.
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Reported-by: Oren Twaig <oren@scalemp.com>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM bases its memory usage limits on the total number of guest pages
across all memslots. However, those limits, and the calculations to
produce them, use 32 bit unsigned integers. This can result in overflow
if a VM has more guest pages that can be represented by a u32. As a
result of this overflow, KVM can use a low limit on the number of MMU
pages it will allocate. This makes KVM unable to map all of guest memory
at once, prompting spurious faults.
Tested: Ran all kvm-unit-tests on an Intel Haswell machine. This patch
introduced no new failures.
Signed-off-by: Ben Gardon <bgardon@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The remaining failures of vmx.flat when EPT is disabled are caused by
incorrectly reflecting VMfails to the L1 hypervisor. What happens is
that nested_vmx_restore_host_state corrupts the guest CR3, reloading it
with the host's shadow CR3 instead, because it blindly loads GUEST_CR3
from the vmcs01.
For simplicity let's just always use hardware VMCS checks when EPT is
disabled. This way, nested_vmx_restore_host_state is not reached at
all (or at least shouldn't be reached).
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As mentioned in the comment, there are some special cases where we can simply
clear the TPR shadow bit from the CPU-based execution controls in the vmcs02.
Handle them so that we can remove some XFAILs from vmx.flat.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Badly-designed systems might have (for example) active-high wake pins
that default to high (e.g., because of external pull ups) until they
have an active firmware which starts driving it low. This can cause an
interrupt storm in the time between request_irq() and disable_irq().
We don't support shared interrupts here, so let's just pre-configure the
interrupt to avoid auto-enabling it.
Fixes: fd913ef7ce ("Bluetooth: btusb: Add out-of-band wakeup support")
Fixes: 5364a0b4f4 ("arm64: dts: rockchip: move QCA6174A wakeup pin into its USB node")
Signed-off-by: Brian Norris <briannorris@chromium.org>
Reviewed-by: Matthias Kaehlcke <mka@chromium.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>