The context_tracking.state RCU_DYNTICKS subvariable has been renamed to
RCU_WATCHING, and the snapshot helpers are now prefix by
"rcu_watching". Reflect that change into the storage variables for these
snapshots.
Signed-off-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org>
The context_tracking.state RCU_DYNTICKS subvariable has been renamed to
RCU_WATCHING, and the snapshot helpers are now prefix by
"rcu_watching". Reflect that change into the storage variables for these
snapshots.
Signed-off-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org>
The barrier_mutex is used currently to protect (de-)offloading
operations and prevent from nocb_lock locking imbalance in rcu_barrier()
and shrinker, and also from misordered RCU barrier invocation.
Now since RCU (de-)offloading is going to happen on offline CPUs, an RCU
barrier will have to be executed while transitionning from offloaded to
de-offloaded state. And this can't happen while holding the
barrier_mutex.
Introduce a NOCB mutex to protect (de-)offloading transitions. The
barrier_mutex is still held for now when necessary to avoid barrier
callbacks reordering and nocb_lock imbalance.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org>
nocb_is_setup is a rarely used field, mostly on boot and CPU hotplug.
It shouldn't occupy the middle of the rcu state hot fields cacheline.
Move it to the end and build it conditionally while at it. More cold
NOCB fields are to come.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org>
In the synchronize_rcu() common case, we will have less than
SR_MAX_USERS_WAKE_FROM_GP number of users per GP. Waking up the kworker
is pointless just to free the last injected wait head since at that point,
all the users have already been awakened.
Introduce a new counter to track this and prevent the wakeup in the
common case.
[ paulmck: Remove atomic_dec_return_release in cannot-happen state. ]
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The bypass lock contention mitigation assumes there can be at most
2 contenders on the bypass lock, following this scheme:
1) One kthread takes the bypass lock
2) Another one spins on it and increment the contended counter
3) A third one (a bypass enqueuer) sees the contended counter on and
busy loops waiting on it to decrement.
However this assumption is wrong. There can be only one CPU to find the
lock contended because call_rcu() (the bypass enqueuer) is the only
bypass lock acquire site that may not already hold the NOCB lock
beforehand, all the other sites must first contend on the NOCB lock.
Therefore step 2) is impossible.
The other problem is that the mitigation assumes that contenders all
belong to the same rdp CPU, which is also impossible for a raw spinlock.
In theory the warning could trigger if the enqueuer holds the bypass
lock and another CPU flushes the bypass queue concurrently but this is
prevented from all flush users:
1) NOCB kthreads only flush if they successfully _tried_ to lock the
bypass lock. So no contention management here.
2) Flush on callbacks migration happen remotely when the CPU is offline.
No concurrency against bypass enqueue.
3) Flush on deoffloading happen either locally with IRQs disabled or
remotely when the CPU is not yet online. No concurrency against
bypass enqueue.
4) Flush on barrier entrain happen either locally with IRQs disabled or
remotely when the CPU is offline. No concurrency against
bypass enqueue.
For those reasons, the bypass lock contention mitigation isn't needed
and is even wrong. Remove it but keep the warning reporting a contended
bypass lock on a remote CPU, to keep unexpected contention awareness.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This patch introduces a small enhancement which allows to do a
direct wake-up of synchronize_rcu() callers. It occurs after a
completion of grace period, thus by the gp-kthread.
Number of clients is limited by the hard-coded maximum allowed
threshold. The remaining part, if still exists is deferred to
a main worker.
Link: https://lore.kernel.org/lkml/Zd0ZtNu+Rt0qXkfS@lothringen/
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Currently, there are rcu_data structure fields named ->rcu_onl_gp_seq
and ->rcu_ofl_gp_seq that track the rcu_state.gp_flags field at the
time of the corresponding CPU's last online or offline operation,
respectively. However, this information is not particularly useful.
It would be better to instead track the grace period state kept
in rcu_state.gp_state. This would also be consistent with the
initialization in rcu_boot_init_percpu_data(), which is to RCU_GP_CLEANED
(an rcu_state.gp_state value), and also with the diagnostics in
rcu_implicit_dynticks_qs(), whose format is consistent with an integer,
not a bitmask.
This commit therefore makes this change and changes the names to
->rcu_onl_gp_flags and ->rcu_ofl_gp_flags, respectively.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
The synchronize_rcu() call is going to be reworked, thus
this patch adds dedicated fields into the rcu_state structure.
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
TREE04 running on short iterations can produce writer stalls of the
following kind:
??? Writer stall state RTWS_EXP_SYNC(4) g3968 f0x0 ->state 0x2 cpu 0
task:rcu_torture_wri state:D stack:14568 pid:83 ppid:2 flags:0x00004000
Call Trace:
<TASK>
__schedule+0x2de/0x850
? trace_event_raw_event_rcu_exp_funnel_lock+0x6d/0xb0
schedule+0x4f/0x90
synchronize_rcu_expedited+0x430/0x670
? __pfx_autoremove_wake_function+0x10/0x10
? __pfx_synchronize_rcu_expedited+0x10/0x10
do_rtws_sync.constprop.0+0xde/0x230
rcu_torture_writer+0x4b4/0xcd0
? __pfx_rcu_torture_writer+0x10/0x10
kthread+0xc7/0xf0
? __pfx_kthread+0x10/0x10
ret_from_fork+0x2f/0x50
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1b/0x30
</TASK>
Waiting for an expedited grace period and polling for an expedited
grace period both are operations that internally rely on the same
workqueue performing necessary asynchronous work.
However, a dependency chain is involved between those two operations,
as depicted below:
====== CPU 0 ======= ====== CPU 1 =======
synchronize_rcu_expedited()
exp_funnel_lock()
mutex_lock(&rcu_state.exp_mutex);
start_poll_synchronize_rcu_expedited
queue_work(rcu_gp_wq, &rnp->exp_poll_wq);
synchronize_rcu_expedited_queue_work()
queue_work(rcu_gp_wq, &rew->rew_work);
wait_event() // A, wait for &rew->rew_work completion
mutex_unlock() // B
//======> switch to kworker
sync_rcu_do_polled_gp() {
synchronize_rcu_expedited()
exp_funnel_lock()
mutex_lock(&rcu_state.exp_mutex); // C, wait B
....
} // D
Since workqueues are usually implemented on top of several kworkers
handling the queue concurrently, the above situation wouldn't deadlock
most of the time because A then doesn't depend on D. But in case of
memory stress, a single kworker may end up handling alone all the works
in a serialized way. In that case the above layout becomes a problem
because A then waits for D, closing a circular dependency:
A -> D -> C -> B -> A
This however only happens when CONFIG_RCU_EXP_KTHREAD=n. Indeed
synchronize_rcu_expedited() is otherwise implemented on top of a kthread
worker while polling still relies on rcu_gp_wq workqueue, breaking the
above circular dependency chain.
Fix this with making expedited grace period to always rely on kthread
worker. The workqueue based implementation is essentially a duplicate
anyway now that the per-node initialization is performed by per-node
kthread workers.
Meanwhile the CONFIG_RCU_EXP_KTHREAD switch is still kept around to
manage the scheduler policy of these kthread workers.
Reported-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Suggested-by: Joel Fernandes <joel@joelfernandes.org>
Suggested-by: Paul E. McKenney <paulmck@kernel.org>
Suggested-by: Neeraj upadhyay <Neeraj.Upadhyay@amd.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
When CONFIG_RCU_EXP_KTHREAD=n, the expedited grace period per node
initialization is performed in parallel via workqueues (one work per
node).
However in CONFIG_RCU_EXP_KTHREAD=y, this per node initialization is
performed by a single kworker serializing each node initialization (one
work for all nodes).
The second part is certainly less scalable and efficient beyond a single
leaf node.
To improve this, expand this single kworker into per-node kworkers. This
new layout is eventually intended to remove the workqueues based
implementation since it will essentially now become duplicate code.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
This mutex is currently protecting per node boost kthreads creation and
affinity setting across CPU hotplug operations.
Since the expedited kworkers will soon be split per node as well, they
will be subject to the same concurrency constraints against hotplug.
Therefore their creation and affinity tuning operations will be grouped
with those of boost kthreads and then rely on the same mutex.
To prepare for that, generalize its name.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Currently the call_rcu() function interleaves NOCB and !NOCB enqueue
code in a complicated way such that:
* The bypass enqueue code may or may not have enqueued and may or may
not have locked the ->nocb_lock. Everything that follows is in a
Schrödinger locking state for the unwary reviewer's eyes.
* The was_alldone is always set but only used in NOCB related code.
* The NOCB wake up is distantly related to the locking hopefully
performed by the bypass enqueue code that did not enqueue on the
bypass list.
Unconfuse the whole and gather NOCB and !NOCB specific enqueue code to
their own functions.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
There are instances where rcu_cpu_stall_reset() is called when jiffies
did not get a chance to update for a long time. Before jiffies is
updated, the CPU stall detector can go off triggering false-positives
where a just-started grace period appears to be ages old. In the past,
we disabled stall detection in rcu_cpu_stall_reset() however this got
changed [1]. This is resulting in false-positives in KGDB usecase [2].
Fix this by deferring the update of jiffies to the third run of the FQS
loop. This is more robust, as, even if rcu_cpu_stall_reset() is called
just before jiffies is read, we would end up pushing out the jiffies
read by 3 more FQS loops. Meanwhile the CPU stall detection will be
delayed and we will not get any false positives.
[1] https://lore.kernel.org/all/20210521155624.174524-2-senozhatsky@chromium.org/
[2] https://lore.kernel.org/all/20230814020045.51950-2-chenhuacai@loongson.cn/
Tested with rcutorture.cpu_stall option as well to verify stall behavior
with/without patch.
Tested-by: Huacai Chen <chenhuacai@loongson.cn>
Reported-by: Binbin Zhou <zhoubinbin@loongson.cn>
Closes: https://lore.kernel.org/all/20230814020045.51950-2-chenhuacai@loongson.cn/
Suggested-by: Paul McKenney <paulmck@kernel.org>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Fixes: a80be428fb ("rcu: Do not disable GP stall detection in rcu_cpu_stall_reset()")
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Because RCU CPU stall warnings are driven from the scheduling-clock
interrupt handler, a workload consisting of a very large number of
short-duration hardware interrupts can result in misleading stall-warning
messages. On systems supporting only a single level of interrupts,
that is, where interrupts handlers cannot be interrupted, this can
produce misleading diagnostics. The stack traces will show the
innocent-bystander interrupted task, not the interrupts that are
at the very least exacerbating the stall.
This situation can be improved by displaying the number of interrupts
and the CPU time that they have consumed. Diagnosing other types
of stalls can be eased by also providing the count of softirqs and
the CPU time that they consumed as well as the number of context
switches and the task-level CPU time consumed.
Consider the following output given this change:
rcu: INFO: rcu_preempt self-detected stall on CPU
rcu: 0-....: (1250 ticks this GP) <omitted>
rcu: hardirqs softirqs csw/system
rcu: number: 624 45 0
rcu: cputime: 69 1 2425 ==> 2500(ms)
This output shows that the number of hard and soft interrupts is small,
there are no context switches, and the system takes up a lot of time. This
indicates that the current task is looping with preemption disabled.
The impact on system performance is negligible because snapshot is
recorded only once for all continuous RCU stalls.
This added debugging information is suppressed by default and can be
enabled by building the kernel with CONFIG_RCU_CPU_STALL_CPUTIME=y or
by booting with rcupdate.rcu_cpu_stall_cputime=1.
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Reviewed-by: Mukesh Ojha <quic_mojha@quicinc.com>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Implement timer-based RCU callback batching (also known as lazy
callbacks). With this we save about 5-10% of power consumed due
to RCU requests that happen when system is lightly loaded or idle.
By default, all async callbacks (queued via call_rcu) are marked
lazy. An alternate API call_rcu_hurry() is provided for the few users,
for example synchronize_rcu(), that need the old behavior.
The batch is flushed whenever a certain amount of time has passed, or
the batch on a particular CPU grows too big. Also memory pressure will
flush it in a future patch.
To handle several corner cases automagically (such as rcu_barrier() and
hotplug), we re-use bypass lists which were originally introduced to
address lock contention, to handle lazy CBs as well. The bypass list
length has the lazy CB length included in it. A separate lazy CB length
counter is also introduced to keep track of the number of lazy CBs.
[ paulmck: Fix formatting of inline call_rcu_lazy() definition. ]
[ paulmck: Apply Zqiang feedback. ]
[ paulmck: Apply s/call_rcu_flush/call_rcu_hurry/ feedback from Tejun Heo. ]
Suggested-by: Paul McKenney <paulmck@kernel.org>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
In preparation for RCU lazy changes, wake up the RCU nocb gp thread if
needed after an entrain. This change prevents the RCU barrier callback
from waiting in the queue for several seconds before the lazy callbacks
in front of it are serviced.
Reported-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit adds expedited grace-period functionality to RCU's polled
grace-period API, adding start_poll_synchronize_rcu_expedited() and
cond_synchronize_rcu_expedited(), which are similar to the existing
start_poll_synchronize_rcu() and cond_synchronize_rcu() functions,
respectively.
Note that although start_poll_synchronize_rcu_expedited() can be invoked
very early, the resulting expedited grace periods are not guaranteed
to start until after workqueues are fully initialized. On the other
hand, both synchronize_rcu() and synchronize_rcu_expedited() can also
be invoked very early, and the resulting grace periods will be taken
into account as they occur.
[ paulmck: Apply feedback from Neeraj Upadhyay. ]
Link: https://lore.kernel.org/all/20220121142454.1994916-1-bfoster@redhat.com/
Link: https://docs.google.com/document/d/1RNKWW9jQyfjxw2E8dsXVTdvZYh0HnYeSHDKog9jhdN8/edit?usp=sharing
Cc: Brian Foster <bfoster@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Ian Kent <raven@themaw.net>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Currently, this code could splat:
oldstate = get_state_synchronize_rcu();
synchronize_rcu_expedited();
WARN_ON_ONCE(!poll_state_synchronize_rcu(oldstate));
This situation is counter-intuitive and user-unfriendly. After all, there
really was a perfectly valid full grace period right after the call to
get_state_synchronize_rcu(), so why shouldn't poll_state_synchronize_rcu()
know about it?
This commit therefore makes the polled grace-period API aware of expedited
grace periods in addition to the normal grace periods that it is already
aware of. With this change, the above code is guaranteed not to splat.
Please note that the above code can still splat due to counter wrap on the
one hand and situations involving partially overlapping normal/expedited
grace periods on the other. On 64-bit systems, the second is of course
much more likely than the first. It is possible to modify this approach
to prevent overlapping grace periods from causing splats, but only at
the expense of greatly increasing the probability of counter wrap, as
in within milliseconds on 32-bit systems and within minutes on 64-bit
systems.
This commit is in preparation for polled expedited grace periods.
Link: https://lore.kernel.org/all/20220121142454.1994916-1-bfoster@redhat.com/
Link: https://docs.google.com/document/d/1RNKWW9jQyfjxw2E8dsXVTdvZYh0HnYeSHDKog9jhdN8/edit?usp=sharing
Cc: Brian Foster <bfoster@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Ian Kent <raven@themaw.net>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit switches the existing polled grace-period APIs to use a
new ->gp_seq_polled counter in the rcu_state structure. An additional
->gp_seq_polled_snap counter in that same structure allows the normal
grace period kthread to interact properly with the !SMP !PREEMPT fastpath
through synchronize_rcu(). The first of the two to note the end of a
given grace period will make knowledge of this transition available to
the polled API.
This commit is in preparation for polled expedited grace periods.
[ paulmck: Fix use of rcu_state.gp_seq_polled to start normal grace period. ]
Link: https://lore.kernel.org/all/20220121142454.1994916-1-bfoster@redhat.com/
Link: https://docs.google.com/document/d/1RNKWW9jQyfjxw2E8dsXVTdvZYh0HnYeSHDKog9jhdN8/edit?usp=sharing
Cc: Brian Foster <bfoster@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Ian Kent <raven@themaw.net>
Co-developed-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Callbacks are invoked in RCU kthreads when calbacks are offloaded
(rcu_nocbs boot parameter) or when RCU's softirq handler has been
offloaded to rcuc kthreads (use_softirq==0). The current code allows
for the rcu_nocbs case but not the use_softirq case. This commit adds
support for the use_softirq case.
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
NOCB rdp's are part of a group whose list is iterated by the
corresponding rdp leader.
This list is RCU traversed because an rdp can be either added or
deleted concurrently. Upon addition, a new iteration to the list after
a synchronization point (a pair of LOCK/UNLOCK ->nocb_gp_lock) is forced
to make sure:
1) we didn't miss a new element added in the middle of an iteration
2) we didn't ignore a whole subset of the list due to an element being
quickly deleted and then re-added.
3) we prevent from probably other surprises...
Although this layout is expected to be safe, it doesn't help anybody
to sleep well.
Simplify instead the nocb state toggling with moving the list
modification from the nocb (de-)offloading workqueue to the rcuog
kthreads instead.
Whenever the rdp leader is expected to (re-)set the SEGCBLIST_KTHREAD_GP
flag of a target rdp, the latter is queued so that the leader handles
the flag flip along with adding or deleting the target rdp to the list
to iterate. This way the list modification and iteration happen from the
same kthread and those operations can't race altogether.
As a bonus, the flags for each rdp don't need to be checked locklessly
before each iteration, which is one less opportunity to produce
nightmares.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Uladzislau Rezki <uladzislau.rezki@sony.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Zqiang <qiang1.zhang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Move the core RCU eqs/dynticks functions to context tracking so that
we can later merge all that code within context tracking.
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Uladzislau Rezki <uladzislau.rezki@sony.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Nicolas Saenz Julienne <nsaenz@kernel.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Xiongfeng Wang <wangxiongfeng2@huawei.com>
Cc: Yu Liao <liaoyu15@huawei.com>
Cc: Phil Auld <pauld@redhat.com>
Cc: Paul Gortmaker<paul.gortmaker@windriver.com>
Cc: Alex Belits <abelits@marvell.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Tested-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
The RCU eqs tracking is going to be performed by the context tracking
subsystem. The related nesting counters thus need to be moved to the
context tracking structure.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Uladzislau Rezki <uladzislau.rezki@sony.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Nicolas Saenz Julienne <nsaenz@kernel.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Xiongfeng Wang <wangxiongfeng2@huawei.com>
Cc: Yu Liao <liaoyu15@huawei.com>
Cc: Phil Auld <pauld@redhat.com>
Cc: Paul Gortmaker<paul.gortmaker@windriver.com>
Cc: Alex Belits <abelits@marvell.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Tested-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
The RCU eqs tracking is going to be performed by the context tracking
subsystem. The related nesting counters thus need to be moved to the
context tracking structure.
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Uladzislau Rezki <uladzislau.rezki@sony.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Nicolas Saenz Julienne <nsaenz@kernel.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Xiongfeng Wang <wangxiongfeng2@huawei.com>
Cc: Yu Liao <liaoyu15@huawei.com>
Cc: Phil Auld <pauld@redhat.com>
Cc: Paul Gortmaker<paul.gortmaker@windriver.com>
Cc: Alex Belits <abelits@marvell.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Tested-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
In order to prepare for merging RCU dynticks counter into the context
tracking state, move the rcu_data's dynticks field to the context
tracking structure. It will later be mixed within the context tracking
state itself.
[ paulmck: Move enum ctx_state into global scope. ]
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Uladzislau Rezki <uladzislau.rezki@sony.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Nicolas Saenz Julienne <nsaenz@kernel.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Xiongfeng Wang <wangxiongfeng2@huawei.com>
Cc: Yu Liao <liaoyu15@huawei.com>
Cc: Phil Auld <pauld@redhat.com>
Cc: Paul Gortmaker<paul.gortmaker@windriver.com>
Cc: Alex Belits <abelits@marvell.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Tested-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
A report of a 12-jiffy normal RCU CPU stall warning raises interesting
questions about the nature of time on the offending system. This commit
instruments rcu_sched_clock_irq(), which is RCU's hook into the
scheduling-clock interrupt, checking for the jiffies counter going
backwards.
Reported-by: Saravanan D <sarvanand@fb.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The rcu_spawn_gp_kthread() function is called as an early initcall, which
means that SMP initialization hasn't happened yet and only the boot CPU is
online. Therefore, create only the NOCB kthreads related to the boot CPU.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Uladzislau Rezki <uladzislau.rezki@sony.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The rcu_spawn_gp_kthread() function is called as an early initcall,
which means that SMP initialization hasn't happened yet and only the
boot CPU is online. Therefore, create only the boost kthread for the
leaf node of the boot CPU.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Uladzislau Rezki <uladzislau.rezki@sony.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit moves the RCU nocb initialization witness within rcu_state
to consolidate RCU's global state.
Reported-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Uladzislau Rezki <uladzislau.rezki@sony.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
As we handle parallel CPU bringup, we will need to take care to avoid
spawning multiple boost threads, or race conditions when setting their
affinity. Spotted by Paul McKenney.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit removes the cpus_read_lock() and cpus_read_unlock() calls
from rcu_barrier(), thus allowing CPUs to come and go during the course
of rcu_barrier() execution. Posting of the ->barrier_head callbacks does
synchronize with portions of RCU's CPU-hotplug notifiers, but these locks
are held for short time periods on both sides. Thus, full CPU-hotplug
operations could both start and finish during the execution of a given
rcu_barrier() invocation.
Additional synchronization is provided by a global ->barrier_lock.
Since the ->barrier_lock is only used during rcu_barrier() execution and
during onlining/offlining a CPU, the contention for this lock should
be low. It might be tempting to make use of a per-CPU lock just on
general principles, but straightforward attempts to do this have the
problems shown below.
Initial state: 3 CPUs present, CPU 0 and CPU1 do not have
any callback and CPU2 has callbacks.
1. CPU0 calls rcu_barrier().
2. CPU1 starts offlining for CPU2. CPU1 calls
rcutree_migrate_callbacks(). rcu_barrier_entrain() is called
from rcutree_migrate_callbacks(), with CPU2's rdp->barrier_lock.
It does not entrain ->barrier_head for CPU2, as rcu_barrier()
on CPU0 hasn't started the barrier sequence (by calling
rcu_seq_start(&rcu_state.barrier_sequence)) yet.
3. CPU0 starts new barrier sequence. It iterates over
CPU0 and CPU1, after acquiring their per-cpu ->barrier_lock
and finds 0 segcblist length. It updates ->barrier_seq_snap
for CPU0 and CPU1 and continues loop iteration to CPU2.
for_each_possible_cpu(cpu) {
raw_spin_lock_irqsave(&rdp->barrier_lock, flags);
if (!rcu_segcblist_n_cbs(&rdp->cblist)) {
WRITE_ONCE(rdp->barrier_seq_snap, gseq);
raw_spin_unlock_irqrestore(&rdp->barrier_lock, flags);
rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence);
continue;
}
4. rcutree_migrate_callbacks() completes execution on CPU1.
Segcblist len for CPU2 becomes 0.
5. The loop iteration on CPU0, checks rcu_segcblist_n_cbs(&rdp->cblist)
for CPU2 and completes the loop iteration after setting
->barrier_seq_snap.
6. As there isn't any ->barrier_head callback entrained; at
this point, rcu_barrier() in CPU0 returns.
7. The callbacks, which migrated from CPU2 to CPU1, execute.
Straightforward per-CPU locking is also subject to the following race
condition noted by Boqun Feng:
1. CPU0 calls rcu_barrier(), starting a new barrier sequence by invoking
rcu_seq_start() and init_completion(), but does not yet initialize
rcu_state.barrier_cpu_count.
2. CPU1 starts offlining for CPU2, calling rcutree_migrate_callbacks(),
which in turn calls rcu_barrier_entrain() holding CPU2's.
rdp->barrier_lock. It then entrains ->barrier_head for CPU2
and atomically increments rcu_state.barrier_cpu_count, which is
unfortunately not yet initialized to the value 2.
3. The just-entrained RCU callback is invoked. It atomically
decrements rcu_state.barrier_cpu_count and sees that it is
now zero. This callback therefore invokes complete().
4. CPU0 continues executing rcu_barrier(), but is not blocked
by its call to wait_for_completion(). This results in rcu_barrier()
returning before all pre-existing callbacks have been invoked,
which is a bug.
Therefore, synchronization is provided by rcu_state.barrier_lock,
which is also held across the initialization sequence, especially the
rcu_seq_start() and the atomic_set() that sets rcu_state.barrier_cpu_count
to the value 2. In addition, this lock is held when entraining the
rcu_barrier() callback, when deciding whether or not a CPU has callbacks
that rcu_barrier() must wait on, when setting the ->qsmaskinitnext for
incoming CPUs, and when migrating callbacks from a CPU that is going
offline.
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Co-developed-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Signed-off-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit reworks rcu_barrier() and callback-migration logic to
permit allowing rcu_barrier() to run concurrently with CPU-hotplug
operations. The key trick is for callback migration to check to see if
an rcu_barrier() is in flight, and, if so, enqueue the ->barrier_head
callback on its behalf.
This commit adds synchronization with RCU's CPU-hotplug notifiers. Taken
together, this will permit a later commit to remove the cpus_read_lock()
and cpus_read_unlock() calls from rcu_barrier().
[ paulmck: Updated per kbuild test robot feedback. ]
[ paulmck: Updated per reviews session with Neeraj, Frederic, Uladzislau, and Boqun. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
If we allow architectures to bring APs online in parallel, then we end
up requiring rcu_cpu_starting() to be reentrant. But currently, the
manipulation of rnp->ofl_seq is not thread-safe.
However, rnp->ofl_seq is also fairly much pointless anyway since both
rcu_cpu_starting() and rcu_report_dead() hold rcu_state.ofl_lock for
fairly much the whole time that rnp->ofl_seq is set to an odd number
to indicate that an operation is in progress.
So drop rnp->ofl_seq completely, and use only rcu_state.ofl_lock.
This has a couple of minor complexities: lockdep will complain when we
take rcu_state.ofl_lock, and currently accepts the 'excuse' of having
an odd value in rnp->ofl_seq. So switch it to an arch_spinlock_t to
avoid that false positive complaint. Since we're killing rnp->ofl_seq
of course that 'excuse' has to be changed too, so make it check for
arch_spin_is_locked(rcu_state.ofl_lock).
There's no arch_spin_lock_irqsave() so we have to manually save and
restore local interrupts around the locking.
At Paul's request based on Neeraj's analysis, make rcu_gp_init not just
wait but *exclude* any CPU online/offline activity, which was fairly
much true already by virtue of it holding rcu_state.ofl_lock.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
When the rcutree.use_softirq kernel boot parameter is set to zero, all
RCU_SOFTIRQ processing is carried out by the per-CPU rcuc kthreads.
If these kthreads are being starved, quiescent states will not be
reported, which in turn means that the grace period will not end, which
can in turn trigger RCU CPU stall warnings. This commit therefore dumps
stack traces of stalled CPUs' rcuc kthreads, which can help identify
what is preventing those kthreads from running.
Suggested-by: Ammar Faizi <ammarfaizi2@gnuweeb.org>
Reviewed-by: Ammar Faizi <ammarfaizi2@gnuweeb.org>
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
When multiple CPUs in the same nocb gp/cb group concurrently
come online, they might try to concurrently create the same
rcuog kthread. Fix this by using nocb gp CPU's spawn mutex to
provide mutual exclusion for the rcuog kthread creation code.
[ paulmck: Whitespace fixes per kernel test robot feedback. ]
Acked-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The nocb_gp_wait() function iterates over all CPUs in its group,
including even those CPUs that have been de-offloaded. This is of
course suboptimal, especially if none of the CPUs within the group are
currently offloaded. This will become even more of a problem once a
nocb kthread is created for all possible CPUs.
Therefore use a standard double linked list to link all the offloaded
rcu_data structures and safely add or delete these structure as we
offload or de-offload them, respectively.
Reviewed-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Uladzislau Rezki <urezki@gmail.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Joel Fernandes <joel@joelfernandes.org>
Tested-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
rcu_nocb_lock_irqsave() can be preempted between the call to
rcu_segcblist_is_offloaded() and the actual locking. This matters now
that rcu_core() is preemptible on PREEMPT_RT and the (de-)offloading
process can interrupt the softirq or the rcuc kthread.
As a result we may locklessly call into code that requires nocb locking.
In practice this is a problem while we accelerate callbacks on rcu_core().
Simply disabling interrupts before (instead of after) checking the NOCB
offload state fixes the issue.
Reported-and-tested-by: Valentin Schneider <valentin.schneider@arm.com>
Tested-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Neeraj Upadhyay <neeraju@codeaurora.org>
Cc: Uladzislau Rezki <urezki@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>