mirror of
https://github.com/torvalds/linux.git
synced 2024-11-22 12:11:40 +00:00
8ad1a41f7e
51 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Alice Ryhl
|
94d356c033
|
rust: security: add abstraction for secctx
Add an abstraction for viewing the string representation of a security context. This is needed by Rust Binder because it has a feature where a process can view the string representation of the security context for incoming transactions. The process can use that to authenticate incoming transactions, and since the feature is provided by the kernel, the process can trust that the security context is legitimate. This abstraction makes the following assumptions about the C side: * When a call to `security_secid_to_secctx` is successful, it returns a pointer and length. The pointer references a byte string and is valid for reading for that many bytes. * The string may be referenced until `security_release_secctx` is called. * If CONFIG_SECURITY is set, then the three methods mentioned in rust/helpers are available without a helper. (That is, they are not a #define or `static inline`.) Reviewed-by: Benno Lossin <benno.lossin@proton.me> Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Reviewed-by: Trevor Gross <tmgross@umich.edu> Reviewed-by: Gary Guo <gary@garyguo.net> Signed-off-by: Alice Ryhl <aliceryhl@google.com> Link: https://lore.kernel.org/r/20240915-alice-file-v10-5-88484f7a3dcf@google.com Acked-by: Paul Moore <paul@paul-moore.com> Reviewed-by: Kees Cook <kees@kernel.org> Signed-off-by: Christian Brauner <brauner@kernel.org> |
||
Wedson Almeida Filho
|
a3df991d3d
|
rust: cred: add Rust abstraction for struct cred
Add a wrapper around `struct cred` called `Credential`, and provide functionality to get the `Credential` associated with a `File`. Rust Binder must check the credentials of processes when they attempt to perform various operations, and these checks usually take a `&Credential` as parameter. The security_binder_set_context_mgr function would be one example. This patch is necessary to access these security_* methods from Rust. This Rust abstraction makes the following assumptions about the C side: * `struct cred` is refcounted with `get_cred`/`put_cred`. * It's okay to transfer a `struct cred` across threads, that is, you do not need to call `put_cred` on the same thread as where you called `get_cred`. * The `euid` field of a `struct cred` never changes after initialization. * The `f_cred` field of a `struct file` never changes after initialization. Signed-off-by: Wedson Almeida Filho <wedsonaf@gmail.com> Co-developed-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Trevor Gross <tmgross@umich.edu> Reviewed-by: Benno Lossin <benno.lossin@proton.me> Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Reviewed-by: Gary Guo <gary@garyguo.net> Signed-off-by: Alice Ryhl <aliceryhl@google.com> Link: https://lore.kernel.org/r/20240915-alice-file-v10-4-88484f7a3dcf@google.com Reviewed-by: Kees Cook <kees@kernel.org> Reviewed-by: Paul Moore <paul@paul-moore.com> Signed-off-by: Christian Brauner <brauner@kernel.org> |
||
Wedson Almeida Filho
|
851849824b
|
rust: file: add Rust abstraction for struct file
This abstraction makes it possible to manipulate the open files for a process. The new `File` struct wraps the C `struct file`. When accessing it using the smart pointer `ARef<File>`, the pointer will own a reference count to the file. When accessing it as `&File`, then the reference does not own a refcount, but the borrow checker will ensure that the reference count does not hit zero while the `&File` is live. Since this is intended to manipulate the open files of a process, we introduce an `fget` constructor that corresponds to the C `fget` method. In future patches, it will become possible to create a new fd in a process and bind it to a `File`. Rust Binder will use these to send fds from one process to another. We also provide a method for accessing the file's flags. Rust Binder will use this to access the flags of the Binder fd to check whether the non-blocking flag is set, which affects what the Binder ioctl does. This introduces a struct for the EBADF error type, rather than just using the Error type directly. This has two advantages: * `File::fget` returns a `Result<ARef<File>, BadFdError>`, which the compiler will represent as a single pointer, with null being an error. This is possible because the compiler understands that `BadFdError` has only one possible value, and it also understands that the `ARef<File>` smart pointer is guaranteed non-null. * Additionally, we promise to users of the method that the method can only fail with EBADF, which means that they can rely on this promise without having to inspect its implementation. That said, there are also two disadvantages: * Defining additional error types involves boilerplate. * The question mark operator will only utilize the `From` trait once, which prevents you from using the question mark operator on `BadFdError` in methods that return some third error type that the kernel `Error` is convertible into. (However, it works fine in methods that return `Error`.) Signed-off-by: Wedson Almeida Filho <wedsonaf@gmail.com> Co-developed-by: Daniel Xu <dxu@dxuuu.xyz> Signed-off-by: Daniel Xu <dxu@dxuuu.xyz> Co-developed-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Benno Lossin <benno.lossin@proton.me> Signed-off-by: Alice Ryhl <aliceryhl@google.com> Link: https://lore.kernel.org/r/20240915-alice-file-v10-3-88484f7a3dcf@google.com Reviewed-by: Gary Guo <gary@garyguo.net> Signed-off-by: Christian Brauner <brauner@kernel.org> |
||
Wedson Almeida Filho
|
a0d13aac70 |
rust: rbtree: add red-black tree implementation backed by the C version
The rust rbtree exposes a map-like interface over keys and values, backed by the kernel red-black tree implementation. Values can be inserted, deleted, and retrieved from a `RBTree` by key. This base abstraction is used by binder to store key/value pairs and perform lookups, for example the patch "[PATCH RFC 03/20] rust_binder: add threading support" in the binder RFC [1]. Link: https://lore.kernel.org/rust-for-linux/20231101-rust-binder-v1-3-08ba9197f637@google.com/ [1] Signed-off-by: Wedson Almeida Filho <wedsonaf@gmail.com> Reviewed-by: Alice Ryhl <aliceryhl@google.com> Tested-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Boqun Feng <boqun.feng@gmail.com> Reviewed-by: Benno Lossin <benno.lossin@proton.me> Signed-off-by: Matt Gilbride <mattgilbride@google.com> Link: https://lore.kernel.org/r/20240822-b4-rbtree-v12-1-014561758a57@google.com [ Updated link to docs.kernel.org. - Miguel ] Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |
||
Alice Ryhl
|
6cd3417155 |
rust: list: add ListArc
The `ListArc` type can be thought of as a special reference to a refcounted object that owns the permission to manipulate the `next`/`prev` pointers stored in the refcounted object. By ensuring that each object has only one `ListArc` reference, the owner of that reference is assured exclusive access to the `next`/`prev` pointers. When a `ListArc` is inserted into a `List`, the `List` takes ownership of the `ListArc` reference. There are various strategies for ensuring that a value has only one `ListArc` reference. The simplest is to convert a `UniqueArc` into a `ListArc`. However, the refcounted object could also keep track of whether a `ListArc` exists using a boolean, which could allow for the creation of new `ListArc` references from an `Arc` reference. Whatever strategy is used, the relevant tracking is referred to as "the tracking inside `T`", and the `ListArcSafe` trait (and its subtraits) are used to update the tracking when a `ListArc` is created or destroyed. Note that we allow the case where the tracking inside `T` thinks that a `ListArc` exists, but actually, there isn't a `ListArc`. However, we do not allow the opposite situation where a `ListArc` exists, but the tracking thinks it doesn't. This is because the former can at most result in us failing to create a `ListArc` when the operation could succeed, whereas the latter can result in the creation of two `ListArc` references. Only the latter situation can lead to memory safety issues. This patch introduces the `impl_list_arc_safe!` macro that allows you to implement `ListArcSafe` for types using the strategy where a `ListArc` can only be created from a `UniqueArc`. Other strategies are introduced in later patches. This is part of the linked list that Rust Binder will use for many different things. The strategy where a `ListArc` can only be created from a `UniqueArc` is actually sufficient for most of the objects that Rust Binder needs to insert into linked lists. Usually, these are todo items that are created and then immediately inserted into a queue. The const generic ID allows objects to have several prev/next pointer pairs so that the same object can be inserted into several different lists. You are able to have several `ListArc` references as long as they correspond to different pointer pairs. The ID itself is purely a compile-time concept and will not be present in the final binary. Both the `List` and the `ListArc` will need to agree on the ID for them to work together. Rust Binder uses this in a few places (e.g. death recipients) where the same object can be inserted into both generic todo lists and some other lists for tracking the status of the object. The ID is a const generic rather than a type parameter because the `pair_from_unique` method needs to be able to assert that the two ids are different. There's no easy way to assert that when using types instead of integers. Reviewed-by: Benno Lossin <benno.lossin@proton.me> Signed-off-by: Alice Ryhl <aliceryhl@google.com> Link: https://lore.kernel.org/r/20240814-linked-list-v5-2-f5f5e8075da0@google.com Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |
||
Linus Torvalds
|
910bfc26d1 |
Rust changes for v6.11
The highlight is the establishment of a minimum version for the Rust toolchain, including 'rustc' (and bundled tools) and 'bindgen'. The initial minimum will be the pinned version we currently have, i.e. we are just widening the allowed versions. That covers 3 stable Rust releases: 1.78.0, 1.79.0, 1.80.0 (getting released tomorrow), plus beta, plus nightly. This should already be enough for kernel developers in distributions that provide recent Rust compiler versions routinely, such as Arch Linux, Debian Unstable (outside the freeze period), Fedora Linux, Gentoo Linux (especially the testing channel), Nix (unstable) and openSUSE Slowroll and Tumbleweed. In addition, the kernel is now being built-tested by Rust's pre-merge CI. That is, every change that is attempting to land into the Rust compiler is tested against the kernel, and it is merged only if it passes. Similarly, the bindgen tool has agreed to build the kernel in their CI too. Thus, with the pre-merge CI in place, both projects hope to avoid unintentional changes to Rust that break the kernel. This means that, in general, apart from intentional changes on their side (that we will need to workaround conditionally on our side), the upcoming Rust compiler versions should generally work. In addition, the Rust project has proposed getting the kernel into stable Rust (at least solving the main blockers) as one of its three flagship goals for 2024H2 [1]. I would like to thank Niko, Sid, Emilio et al. for their help promoting the collaboration between Rust and the kernel. [1] https://rust-lang.github.io/rust-project-goals/2024h2/index.html#flagship-goals Toolchain and infrastructure: - Support several Rust toolchain versions. - Support several bindgen versions. - Remove 'cargo' requirement and simplify 'rusttest', thanks to 'alloc' having been dropped last cycle. - Provide proper error reporting for the 'rust-analyzer' target. 'kernel' crate: - Add 'uaccess' module with a safe userspace pointers abstraction. - Add 'page' module with a 'struct page' abstraction. - Support more complex generics in workqueue's 'impl_has_work!' macro. 'macros' crate: - Add 'firmware' field support to the 'module!' macro. - Improve 'module!' macro documentation. Documentation: - Provide instructions on what packages should be installed to build the kernel in some popular Linux distributions. - Introduce the new kernel.org LLVM+Rust toolchains. - Explain '#[no_std]'. And a few other small bits. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEPjU5OPd5QIZ9jqqOGXyLc2htIW0FAmahqRUACgkQGXyLc2ht IW0xbA/6A26b14LjvmFBJU6LZb0ey1BCbK9cOWtd6K6f/uWp108WAIdA/+gHgOGU I6rW8nXk3af078lHRqv0ihMDUks/1mz5wyxEXoZ/mVvRJbzH9TsHN7cSP2fr4H14 8rES4esr2XBlu9OdgDFb/o7jequ7PE0+WQDapV6eAhWQlBC6AI+ShyX26pWcB5gv 8O4mE59Up51d21L8apVh+pnEgBsCsu7c68pUMbrk2k4sHVvnRti4iLoVlemf4X80 Di9hyi8iN/MvWMdfq+hCIufUIbcWde07HcCbLjQlkJv0sc20V+UIGUx4EOUasOTY ugUyzhlFNGPxJYayAZAb8KJtQZhSbGZ+R244Z/CoV2RMlEw9LxSCpyzHr1nalOLT 01gqZh6+gIFyPm6F0ORsetcV6yzdvUcGTjx1vuEJ9qqeKG/gc/VqFOcmCPaT7y8K nTOMg6zY3mzaqTn1iBebid7INzXJN7ha9dk1TkDv47BNZAic51d3L0hQFXuDrEuu MxVIPTAPKJSaQTCh0jrLxLJ649v/98OP0urYqlVeKuTeovupETxCsBTVtjjjsv+w ZomqEO+JWuf7hjG0RLuCwi/IvWpUFpEdOal4qfHbKLOAOn7zxV/WrG675HcRKbw5 Zkr/0Q44fwbZWd2b/svTO1qOKaYV7oL0utVOdUb2KX05K71NNVo= =8PYF -----END PGP SIGNATURE----- Merge tag 'rust-6.11' of https://github.com/Rust-for-Linux/linux Pull Rust updates from Miguel Ojeda: "The highlight is the establishment of a minimum version for the Rust toolchain, including 'rustc' (and bundled tools) and 'bindgen'. The initial minimum will be the pinned version we currently have, i.e. we are just widening the allowed versions. That covers three stable Rust releases: 1.78.0, 1.79.0, 1.80.0 (getting released tomorrow), plus beta, plus nightly. This should already be enough for kernel developers in distributions that provide recent Rust compiler versions routinely, such as Arch Linux, Debian Unstable (outside the freeze period), Fedora Linux, Gentoo Linux (especially the testing channel), Nix (unstable) and openSUSE Slowroll and Tumbleweed. In addition, the kernel is now being built-tested by Rust's pre-merge CI. That is, every change that is attempting to land into the Rust compiler is tested against the kernel, and it is merged only if it passes. Similarly, the bindgen tool has agreed to build the kernel in their CI too. Thus, with the pre-merge CI in place, both projects hope to avoid unintentional changes to Rust that break the kernel. This means that, in general, apart from intentional changes on their side (that we will need to workaround conditionally on our side), the upcoming Rust compiler versions should generally work. In addition, the Rust project has proposed getting the kernel into stable Rust (at least solving the main blockers) as one of its three flagship goals for 2024H2 [1]. I would like to thank Niko, Sid, Emilio et al. for their help promoting the collaboration between Rust and the kernel. Toolchain and infrastructure: - Support several Rust toolchain versions. - Support several bindgen versions. - Remove 'cargo' requirement and simplify 'rusttest', thanks to 'alloc' having been dropped last cycle. - Provide proper error reporting for the 'rust-analyzer' target. 'kernel' crate: - Add 'uaccess' module with a safe userspace pointers abstraction. - Add 'page' module with a 'struct page' abstraction. - Support more complex generics in workqueue's 'impl_has_work!' macro. 'macros' crate: - Add 'firmware' field support to the 'module!' macro. - Improve 'module!' macro documentation. Documentation: - Provide instructions on what packages should be installed to build the kernel in some popular Linux distributions. - Introduce the new kernel.org LLVM+Rust toolchains. - Explain '#[no_std]'. And a few other small bits" Link: https://rust-lang.github.io/rust-project-goals/2024h2/index.html#flagship-goals [1] * tag 'rust-6.11' of https://github.com/Rust-for-Linux/linux: (26 commits) docs: rust: quick-start: add section on Linux distributions rust: warn about `bindgen` versions 0.66.0 and 0.66.1 rust: start supporting several `bindgen` versions rust: work around `bindgen` 0.69.0 issue rust: avoid assuming a particular `bindgen` build rust: start supporting several compiler versions rust: simplify Clippy warning flags set rust: relax most deny-level lints to warnings rust: allow `dead_code` for never constructed bindings rust: init: simplify from `map_err` to `inspect_err` rust: macros: indent list item in `paste!`'s docs rust: add abstraction for `struct page` rust: uaccess: add typed accessors for userspace pointers uaccess: always export _copy_[from|to]_user with CONFIG_RUST rust: uaccess: add userspace pointers kbuild: rust-analyzer: improve comment documentation kbuild: rust-analyzer: better error handling docs: rust: no_std is used rust: alloc: add __GFP_HIGHMEM flag rust: alloc: fix typo in docs for GFP_NOWAIT ... |
||
Linus Torvalds
|
c2a96b7f18 |
Driver core changes for 6.11-rc1
Here is the big set of driver core changes for 6.11-rc1. Lots of stuff in here, with not a huge diffstat, but apis are evolving which required lots of files to be touched. Highlights of the changes in here are: - platform remove callback api final fixups (Uwe took many releases to get here, finally!) - Rust bindings for basic firmware apis and initial driver-core interactions. It's not all that useful for a "write a whole driver in rust" type of thing, but the firmware bindings do help out the phy rust drivers, and the driver core bindings give a solid base on which others can start their work. There is still a long way to go here before we have a multitude of rust drivers being added, but it's a great first step. - driver core const api changes. This reached across all bus types, and there are some fix-ups for some not-common bus types that linux-next and 0-day testing shook out. This work is being done to help make the rust bindings more safe, as well as the C code, moving toward the end-goal of allowing us to put driver structures into read-only memory. We aren't there yet, but are getting closer. - minor devres cleanups and fixes found by code inspection - arch_topology minor changes - other minor driver core cleanups All of these have been in linux-next for a very long time with no reported problems. Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> -----BEGIN PGP SIGNATURE----- iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCZqH+aQ8cZ3JlZ0Brcm9h aC5jb20ACgkQMUfUDdst+ymoOQCfVBdLcBjEDAGh3L8qHRGMPy4rV2EAoL/r+zKm cJEYtJpGtWX6aAtugm9E =ZyJV -----END PGP SIGNATURE----- Merge tag 'driver-core-6.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core Pull driver core updates from Greg KH: "Here is the big set of driver core changes for 6.11-rc1. Lots of stuff in here, with not a huge diffstat, but apis are evolving which required lots of files to be touched. Highlights of the changes in here are: - platform remove callback api final fixups (Uwe took many releases to get here, finally!) - Rust bindings for basic firmware apis and initial driver-core interactions. It's not all that useful for a "write a whole driver in rust" type of thing, but the firmware bindings do help out the phy rust drivers, and the driver core bindings give a solid base on which others can start their work. There is still a long way to go here before we have a multitude of rust drivers being added, but it's a great first step. - driver core const api changes. This reached across all bus types, and there are some fix-ups for some not-common bus types that linux-next and 0-day testing shook out. This work is being done to help make the rust bindings more safe, as well as the C code, moving toward the end-goal of allowing us to put driver structures into read-only memory. We aren't there yet, but are getting closer. - minor devres cleanups and fixes found by code inspection - arch_topology minor changes - other minor driver core cleanups All of these have been in linux-next for a very long time with no reported problems" * tag 'driver-core-6.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (55 commits) ARM: sa1100: make match function take a const pointer sysfs/cpu: Make crash_hotplug attribute world-readable dio: Have dio_bus_match() callback take a const * zorro: make match function take a const pointer driver core: module: make module_[add|remove]_driver take a const * driver core: make driver_find_device() take a const * driver core: make driver_[create|remove]_file take a const * firmware_loader: fix soundness issue in `request_internal` firmware_loader: annotate doctests as `no_run` devres: Correct code style for functions that return a pointer type devres: Initialize an uninitialized struct member devres: Fix memory leakage caused by driver API devm_free_percpu() devres: Fix devm_krealloc() wasting memory driver core: platform: Switch to use kmemdup_array() driver core: have match() callback in struct bus_type take a const * MAINTAINERS: add Rust device abstractions to DRIVER CORE device: rust: improve safety comments MAINTAINERS: add Danilo as FIRMWARE LOADER maintainer MAINTAINERS: add Rust FW abstractions to FIRMWARE LOADER firmware: rust: improve safety comments ... |
||
Alice Ryhl
|
fc6e66f469 |
rust: add abstraction for struct page
Adds a new struct called `Page` that wraps a pointer to `struct page`. This struct is assumed to hold ownership over the page, so that Rust code can allocate and manage pages directly. The page type has various methods for reading and writing into the page. These methods will temporarily map the page to allow the operation. All of these methods use a helper that takes an offset and length, performs bounds checks, and returns a pointer to the given offset in the page. This patch only adds support for pages of order zero, as that is all Rust Binder needs. However, it is written to make it easy to add support for higher-order pages in the future. To do that, you would add a const generic parameter to `Page` that specifies the order. Most of the methods do not need to be adjusted, as the logic for dealing with mapping multiple pages at once can be isolated to just the `with_pointer_into_page` method. Rust Binder needs to manage pages directly as that is how transactions are delivered: Each process has an mmap'd region for incoming transactions. When an incoming transaction arrives, the Binder driver will choose a region in the mmap, allocate and map the relevant pages manually, and copy the incoming transaction directly into the page. This architecture allows the driver to copy transactions directly from the address space of one process to another, without an intermediate copy to a kernel buffer. This code is based on Wedson's page abstractions from the old rust branch, but it has been modified by Alice by removing the incomplete support for higher-order pages, by introducing the `with_*` helpers to consolidate the bounds checking logic into a single place, and various other changes. Co-developed-by: Wedson Almeida Filho <wedsonaf@gmail.com> Signed-off-by: Wedson Almeida Filho <wedsonaf@gmail.com> Reviewed-by: Andreas Hindborg <a.hindborg@samsung.com> Reviewed-by: Trevor Gross <tmgross@umich.edu> Reviewed-by: Benno Lossin <benno.lossin@proton.me> Reviewed-by: Boqun Feng <boqun.feng@gmail.com> Signed-off-by: Alice Ryhl <aliceryhl@google.com> Link: https://lore.kernel.org/r/20240528-alice-mm-v7-4-78222c31b8f4@google.com [ Fixed typos and added a few intra-doc links. - Miguel ] Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |
||
Wedson Almeida Filho
|
1b580e7b9b |
rust: uaccess: add userspace pointers
A pointer to an area in userspace memory, which can be either read-only or read-write. All methods on this struct are safe: attempting to read or write on bad addresses (either out of the bound of the slice or unmapped addresses) will return `EFAULT`. Concurrent access, *including data races to/from userspace memory*, is permitted, because fundamentally another userspace thread/process could always be modifying memory at the same time (in the same way that userspace Rust's `std::io` permits data races with the contents of files on disk). In the presence of a race, the exact byte values read/written are unspecified but the operation is well-defined. Kernelspace code should validate its copy of data after completing a read, and not expect that multiple reads of the same address will return the same value. These APIs are designed to make it difficult to accidentally write TOCTOU bugs. Every time you read from a memory location, the pointer is advanced by the length so that you cannot use that reader to read the same memory location twice. Preventing double-fetches avoids TOCTOU bugs. This is accomplished by taking `self` by value to prevent obtaining multiple readers on a given `UserSlice`, and the readers only permitting forward reads. If double-fetching a memory location is necessary for some reason, then that is done by creating multiple readers to the same memory location. Constructing a `UserSlice` performs no checks on the provided address and length, it can safely be constructed inside a kernel thread with no current userspace process. Reads and writes wrap the kernel APIs `copy_from_user` and `copy_to_user`, which check the memory map of the current process and enforce that the address range is within the user range (no additional calls to `access_ok` are needed). This code is based on something that was originally written by Wedson on the old rust branch. It was modified by Alice by removing the `IoBufferReader` and `IoBufferWriter` traits, and various other changes. Signed-off-by: Wedson Almeida Filho <wedsonaf@gmail.com> Reviewed-by: Benno Lossin <benno.lossin@proton.me> Reviewed-by: Trevor Gross <tmgross@umich.edu> Reviewed-by: Boqun Feng <boqun.feng@gmail.com> Co-developed-by: Alice Ryhl <aliceryhl@google.com> Signed-off-by: Alice Ryhl <aliceryhl@google.com> Link: https://lore.kernel.org/r/20240528-alice-mm-v7-1-78222c31b8f4@google.com [ Wrapped docs to 100 and added a few intra-doc links. - Miguel ] Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |
||
Danilo Krummrich
|
de6582833d |
rust: add firmware abstractions
Add an abstraction around the kernels firmware API to request firmware images. The abstraction provides functions to access the firmware's size and backing buffer. The firmware is released once the abstraction instance is dropped. Signed-off-by: Danilo Krummrich <dakr@redhat.com> Acked-by: Boqun Feng <boqun.feng@gmail.com> Link: https://lore.kernel.org/r/20240618154841.6716-3-dakr@redhat.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Danilo Krummrich
|
a674fefd17 |
rust: add abstraction for struct device
Add an (always) reference-counted abstraction for a generic C `struct device`. This abstraction encapsulates existing `struct device` instances and manages its reference count. Subsystems may use this abstraction as a base to abstract subsystem specific device instances based on a generic `struct device`, such as `struct pci_dev`. Co-developed-by: Wedson Almeida Filho <wedsonaf@gmail.com> Signed-off-by: Wedson Almeida Filho <wedsonaf@gmail.com> Signed-off-by: Danilo Krummrich <dakr@redhat.com> Link: https://lore.kernel.org/r/20240618154841.6716-2-dakr@redhat.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Andreas Hindborg
|
3253aba340 |
rust: block: introduce kernel::block::mq module
Add initial abstractions for working with blk-mq.
This patch is a maintained, refactored subset of code originally published
by Wedson Almeida Filho <wedsonaf@gmail.com> [1].
[1]
|
||
Linus Torvalds
|
8f5b5f7811 |
Rust changes for v6.10
The most notable change is the drop of the 'alloc' in-tree fork. This is nicely reflected in the diffstat as a ~10k lines drop. In turn, this makes the version upgrades way simpler and smaller in the future, e.g. the latest one in commit |
||
Wedson Almeida Filho
|
323617f649 |
rust: kernel: require Send for Module implementations
The thread that calls the module initialisation code when a module is loaded is not guaranteed [in fact, it is unlikely] to be the same one that calls the module cleanup code on module unload, therefore, `Module` implementations must be `Send` to account for them moving from one thread to another implicitly. Signed-off-by: Wedson Almeida Filho <walmeida@microsoft.com> Reviewed-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Benno Lossin <benno.lossin@proton.me> Cc: stable@vger.kernel.org # 6.8.x: |
||
Wedson Almeida Filho
|
2c1092853f |
rust: kernel: remove usage of allocator_api unstable feature
With the adoption of `BoxExt` and `VecExt`, we don't need the functions provided by this feature (namely the methods prefixed with `try_` and different allocator per collection instance). We do need `AllocError`, but we define our own as it is a trivial empty struct. Reviewed-by: Benno Lossin <benno.lossin@proton.me> Signed-off-by: Wedson Almeida Filho <walmeida@microsoft.com> Link: https://lore.kernel.org/r/20240328013603.206764-11-wedsonaf@gmail.com Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |
||
Wedson Almeida Filho
|
5ab560ce12 |
rust: alloc: update VecExt to take allocation flags
We also rename the methods by removing the `try_` prefix since the names are available due to our usage of the `no_global_oom_handling` config when building the `alloc` crate. Reviewed-by: Boqun Feng <boqun.feng@gmail.com> Signed-off-by: Wedson Almeida Filho <walmeida@microsoft.com> Reviewed-by: Benno Lossin <benno.lossin@proton.me> Link: https://lore.kernel.org/r/20240328013603.206764-8-wedsonaf@gmail.com Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |
||
Wedson Almeida Filho
|
03989773a9 |
rust: alloc: introduce the VecExt trait
Make `try_with_capacity`, `try_push`, and `try_extend_from_slice` methods available in `Vec` even though it doesn't implement them. It is implemented with `try_reserve` and `push_within_capacity`. This is in preparation for switching to the upstream `alloc` crate. Reviewed-by: Benno Lossin <benno.lossin@proton.me> Suggested-by: Gary Guo <gary@garyguo.net> Signed-off-by: Wedson Almeida Filho <walmeida@microsoft.com> Link: https://lore.kernel.org/r/20240328013603.206764-3-wedsonaf@gmail.com Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |
||
Wedson Almeida Filho
|
31d94d8f58 |
rust: kernel: move allocator module under alloc
We will add more to the `alloc` module in subsequent patches (e.g., allocation flags and extension traits). Reviewed-by: Benno Lossin <benno.lossin@proton.me> Signed-off-by: Wedson Almeida Filho <walmeida@microsoft.com> Link: https://lore.kernel.org/r/20240328013603.206764-2-wedsonaf@gmail.com Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |
||
Miguel Ojeda
|
b481dd85f5 |
rust: upgrade to Rust 1.77.1
This is the next upgrade to the Rust toolchain, from 1.76.0 to 1.77.1
(i.e. the latest) [1].
See the upgrade policy [2] and the comments on the first upgrade in
commit
|
||
Alice Ryhl
|
d0f0241d8d |
rust: add Module::as_ptr
This allows you to get a raw pointer to THIS_MODULE for use in unsafe code. The Rust Binder RFC uses it when defining fops for the binderfs component [1]. This doesn't really need to go in now - it could go in together with Rust Binder like how it is sent in the Rust Binder RFC. However, the upcoming 1.77.0 release of the Rust compiler introduces a new warning, and applying this patch now will silence that warning. That allows us to avoid adding the #[allow(dead_code)] annotation seen in [2]. Link: https://lore.kernel.org/rust-for-linux/20231101-rust-binder-v1-2-08ba9197f637@google.com/ [1] Link: https://lore.kernel.org/all/20240217002717.57507-1-ojeda@kernel.org/ [2] Signed-off-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Trevor Gross <tmgross@umich.edu> Reviewed-by: Benno Lossin <benno.lossin@proton.me> Link: https://lore.kernel.org/r/20240226-module-as-ptr-v1-1-83bc89213113@google.com Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |
||
Wedson Almeida Filho
|
e944171070 |
rust: add container_of! macro
This macro is used to obtain a pointer to an entire struct when given a pointer to a field in that struct. Signed-off-by: Wedson Almeida Filho <wedsonaf@gmail.com> Reviewed-by: Alice Ryhl <aliceryhl@google.com> Tested-by: Alice Ryhl <aliceryhl@google.com> Signed-off-by: Matt Gilbride <mattgilbride@google.com> Link: https://lore.kernel.org/r/20240219-b4-rbtree-v2-1-0b113aab330d@google.com Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |
||
Alice Ryhl
|
44f2e626cb |
rust: kernel: stop using ptr_metadata feature
The `byte_sub` method was stabilized in Rust 1.75.0. By using that method, we no longer need the unstable `ptr_metadata` feature for implementing `Arc::from_raw`. This brings us one step closer towards not using unstable compiler features. Reviewed-by: Benno Lossin <benno.lossin@proton.me> Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Reviewed-by: Trevor Gross <tmgross@umich.edu> Signed-off-by: Alice Ryhl <aliceryhl@google.com> Link: https://lore.kernel.org/r/20240215104601.1267763-1-aliceryhl@google.com [ Reworded title. ] Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |
||
Valentin Obst
|
ed8596532a |
rust: kernel: add srctree-relative doclinks
Convert existing references to C header files to make use of
Commit
|
||
Alice Ryhl
|
82e1708748 |
rust: time: add msecs to jiffies conversion
Defines type aliases and conversions for msecs and jiffies. This is used by Rust Binder for process freezing. There, we want to sleep until the freeze operation completes, but we want to be able to abort the process freezing if it doesn't complete within some timeout. The freeze timeout is supplied in msecs. Note that we need to convert to jiffies in Binder. It is not enough to introduce a variant of `CondVar::wait_timeout` that takes the timeout in msecs because we need to be able to restart the sleep with the remaining sleep duration if it is interrupted, and if the API takes msecs rather than jiffies, then that would require a conversion roundtrip jiffies-> msecs->jiffies that is best avoided. Suggested-by: Boqun Feng <boqun.feng@gmail.com> Reviewed-by: Boqun Feng <boqun.feng@gmail.com> Reviewed-by: Benno Lossin <benno.lossin@proton.me> Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Reviewed-by: Tiago Lam <tiagolam@gmail.com> Signed-off-by: Alice Ryhl <aliceryhl@google.com> Link: https://lore.kernel.org/r/20240108-rb-new-condvar-methods-v4-2-88e0c871cc05@google.com Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |
||
Miguel Ojeda
|
c5fed8ce65 |
rust: upgrade to Rust 1.75.0
This is the next upgrade to the Rust toolchain, from 1.74.1 to 1.75.0
(i.e. the latest) [1].
See the upgrade policy [2] and the comments on the first upgrade in
commit
|
||
FUJITA Tomonori
|
f20fd5449a |
rust: core abstractions for network PHY drivers
This patch adds abstractions to implement network PHY drivers; the driver registration and bindings for some of callback functions in struct phy_driver and many genphy_ functions. This feature is enabled with CONFIG_RUST_PHYLIB_ABSTRACTIONS=y. This patch enables unstable const_maybe_uninit_zeroed feature for kernel crate to enable unsafe code to handle a constant value with uninitialized data. With the feature, the abstractions can initialize a phy_driver structure with zero easily; instead of initializing all the members by hand. It's supposed to be stable in the not so distant future. Link: https://github.com/rust-lang/rust/pull/116218 Signed-off-by: FUJITA Tomonori <fujita.tomonori@gmail.com> Reviewed-by: Andrew Lunn <andrew@lunn.ch> Reviewed-by: Alice Ryhl <aliceryhl@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
Alice Ryhl
|
7324b88975 |
rust: workqueue: add helper for defining work_struct fields
The main challenge with defining `work_struct` fields is making sure that the function pointer stored in the `work_struct` is appropriate for the work item type it is embedded in. It needs to know the offset of the `work_struct` field being used (even if there are several!) so that it can do a `container_of`, and it needs to know the type of the work item so that it can call into the right user-provided code. All of this needs to happen in a way that provides a safe API to the user, so that users of the workqueue cannot mix up the function pointers. There are three important pieces that are relevant when doing this: * The pointer type. * The work item struct. This is what the pointer points at. * The `work_struct` field. This is a field of the work item struct. This patch introduces a separate trait for each piece. The pointer type is given a `WorkItemPointer` trait, which pointer types need to implement to be usable with the workqueue. This trait will be implemented for `Arc` and `Box` in a later patch in this patchset. Implementing this trait is unsafe because this is where the `container_of` operation happens, but user-code will not need to implement it themselves. The work item struct should then implement the `WorkItem` trait. This trait is where user-code specifies what they want to happen when a work item is executed. It also specifies what the correct pointer type is. Finally, to make the work item struct know the offset of its `work_struct` field, we use a trait called `HasWork<T, ID>`. If a type implements this trait, then the type declares that, at the given offset, there is a field of type `Work<T, ID>`. The trait is marked unsafe because the OFFSET constant must be correct, but we provide an `impl_has_work!` macro that can safely implement `HasWork<T>` on a type. The macro expands to something that only compiles if the specified field really has the type `Work<T>`. It is used like this: ``` struct MyWorkItem { work_field: Work<MyWorkItem, 1>, } impl_has_work! { impl HasWork<MyWorkItem, 1> for MyWorkItem { self.work_field } } ``` Note that since the `Work` type is annotated with an id, you can have several `work_struct` fields by using a different id for each one. Co-developed-by: Gary Guo <gary@garyguo.net> Signed-off-by: Gary Guo <gary@garyguo.net> Signed-off-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Benno Lossin <benno.lossin@proton.me> Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Reviewed-by: Andreas Hindborg <a.hindborg@samsung.com> Reviewed-by: Boqun Feng <boqun.feng@gmail.com> Signed-off-by: Tejun Heo <tj@kernel.org> |
||
Alice Ryhl
|
d4d791d4aa |
rust: workqueue: add low-level workqueue bindings
Define basic low-level bindings to a kernel workqueue. The API defined here can only be used unsafely. Later commits will provide safe wrappers. Co-developed-by: Gary Guo <gary@garyguo.net> Signed-off-by: Gary Guo <gary@garyguo.net> Signed-off-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Reviewed-by: "Andreas Hindborg (Samsung)" <nmi@metaspace.dk> Reviewed-by: Benno Lossin <benno.lossin@proton.me> Reviewed-by: Boqun Feng <boqun.feng@gmail.com> Signed-off-by: Tejun Heo <tj@kernel.org> |
||
Wedson Almeida Filho
|
a8321776ca |
rust: sync: add Arc::{from_raw, into_raw}
These methods can be used to turn an `Arc` into a raw pointer and back, in a way that preserves the metadata for fat pointers. This is done using the unstable ptr_metadata feature [1]. However, it could also be done using the unstable pointer_byte_offsets feature [2], which is likely to have a shorter path to stabilization than ptr_metadata. Link: https://github.com/rust-lang/rust/issues/81513 [1] Link: https://github.com/rust-lang/rust/issues/96283 [2] Signed-off-by: Wedson Almeida Filho <walmeida@microsoft.com> Co-developed-by: Alice Ryhl <aliceryhl@google.com> Signed-off-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Gary Guo <gary@garyguo.net> Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Reviewed-by: Benno Lossin <benno.lossin@proton.me> Reviewed-by: Andreas Hindborg <a.hindborg@samsung.com> Reviewed-by: Boqun Feng <boqun.feng@gmail.com> Signed-off-by: Tejun Heo <tj@kernel.org> |
||
Linus Torvalds
|
a031fe8d1d |
Rust changes for v6.6
In terms of lines, most changes this time are on the pinned-init API and infrastructure. While we have a Rust version upgrade, and thus a bunch of changes from the vendored 'alloc' crate as usual, this time those do not account for many lines. Toolchain and infrastructure: - Upgrade to Rust 1.71.1. This is the second such upgrade, which is a smaller jump compared to the last time. This version allows us to remove the '__rust_*' allocator functions -- the compiler now generates them as expected, thus now our 'KernelAllocator' is used. It also introduces the 'offset_of!' macro in the standard library (as an unstable feature) which we will need soon. So far, we were using a declarative macro as a prerequisite in some not-yet-landed patch series, which did not support sub-fields (i.e. nested structs): #[repr(C)] struct S { a: u16, b: (u8, u8), } assert_eq!(offset_of!(S, b.1), 3); - Upgrade to bindgen 0.65.1. This is the first time we upgrade its version. Given it is a fairly big jump, it comes with a fair number of improvements/changes that affect us, such as a fix needed to support LLVM 16 as well as proper support for '__noreturn' C functions, which are now mapped to return the '!' type in Rust: void __noreturn f(void); // C pub fn f() -> !; // Rust - 'scripts/rust_is_available.sh' improvements and fixes. This series takes care of all the issues known so far and adds a few new checks to cover for even more cases, plus adds some more help texts. All this together will hopefully make problematic setups easier to identify and to be solved by users building the kernel. In addition, it adds a test suite which covers all branches of the shell script, as well as tests for the issues found so far. - Support rust-analyzer for out-of-tree modules too. - Give 'cfg's to rust-analyzer for the 'core' and 'alloc' crates. - Drop 'scripts/is_rust_module.sh' since it is not needed anymore. Macros crate: - New 'paste!' proc macro. This macro is a more flexible version of 'concat_idents!': it allows the resulting identifier to be used to declare new items and it allows to transform the identifiers before concatenating them, e.g. let x_1 = 42; paste!(let [<x _2>] = [<x _1>];); assert!(x_1 == x_2); The macro is then used for several of the pinned-init API changes in this pull. Pinned-init API: - Make '#[pin_data]' compatible with conditional compilation of fields, allowing to write code like: #[pin_data] pub struct Foo { #[cfg(CONFIG_BAR)] a: Bar, #[cfg(not(CONFIG_BAR))] a: Baz, } - New '#[derive(Zeroable)]' proc macro for the 'Zeroable' trait, which allows 'unsafe' implementations for structs where every field implements the 'Zeroable' trait, e.g.: #[derive(Zeroable)] pub struct DriverData { id: i64, buf_ptr: *mut u8, len: usize, } - Add '..Zeroable::zeroed()' syntax to the 'pin_init!' macro for zeroing all other fields, e.g.: pin_init!(Buf { buf: [1; 64], ..Zeroable::zeroed() }); - New '{,pin_}init_array_from_fn()' functions to create array initializers given a generator function, e.g.: let b: Box<[usize; 1_000]> = Box::init::<Error>( init_array_from_fn(|i| i) ).unwrap(); assert_eq!(b.len(), 1_000); assert_eq!(b[123], 123); - New '{,pin_}chain' methods for '{,Pin}Init<T, E>' that allow to execute a closure on the value directly after initialization, e.g.: let foo = init!(Foo { buf <- init::zeroed() }).chain(|foo| { foo.setup(); Ok(()) }); - Support arbitrary paths in init macros, instead of just identifiers and generic types. - Implement the 'Zeroable' trait for the 'UnsafeCell<T>' and 'Opaque<T>' types. - Make initializer values inaccessible after initialization. - Make guards in the init macros hygienic. 'allocator' module: - Use 'krealloc_aligned()' in 'KernelAllocator::alloc' preventing misaligned allocations when the Rust 1.71.1 upgrade is applied later in this pull. The equivalent fix for the previous compiler version (where 'KernelAllocator' is not yet used) was merged into 6.5 already, which added the 'krealloc_aligned()' function used here. - Implement 'KernelAllocator::{realloc, alloc_zeroed}' for performance, using 'krealloc_aligned()' too, which forwards the call to the C API. 'types' module: - Make 'Opaque' be '!Unpin', removing the need to add a 'PhantomPinned' field to Rust structs that contain C structs which must not be moved. - Make 'Opaque' use 'UnsafeCell' as the outer type, rather than inner. Documentation: - Suggest obtaining the source code of the Rust's 'core' library using the tarball instead of the repository. MAINTAINERS: - Andreas and Alice, from Samsung and Google respectively, are joining as reviewers of the "RUST" entry. As well as a few other minor changes and cleanups. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEPjU5OPd5QIZ9jqqOGXyLc2htIW0FAmTnzOAACgkQGXyLc2ht IW0RFg/9FKGAn+JNvLUpB7OIXQZFyDVDpXkL14Dy8At0z609ZhkD36pFAxGua4OC BLHpyEQK5bUAQZ4pZ1aexmpFt37z+OPZBMmKoC7eUH2fm8Q277Gm54pno2AzIg3g if9lFhIowQTB8pG1YZRF6YMIdIp5JCmT0m8YuXMrr1XYtWIWnyU4twT/bmfk9UKU DgmuE1GmpHbWQgIf11eYWxbgfIuY9F/QyHzljW8P+Jgln7F4d8WDVJln8Yw0z/Bm w/4kvYv7AHOHQvzjCi971ANvnhsgjeKMSmt2RrcGefn+6t3pNsdZEUYGR9xdAxCz fvcje6nUoGjPr9J4F/JdZPmCb7jwSGpF01OvA//H8YjUwP3+msBwxVhRSH1FA1m3 SVKedXmAUMNAaqtqCNFZmUiNB5LbW4cldFSnNf4CVW9w9bXe2jIKqjjsPi8m57B1 H4zwr1WTtY2s2n2fdYOAtzmOaOJFXa7PIrGo3onj1mSgcyKOVeoMI5+NR/pwxgIR 9Z8633bhTfGVHRyC7p0XpakcZd0jbl0yq+bbvgH2sof+RNWYuoZQ92DJ05/g3zOK Mj54PNjAgY+Z+TqX/vjlEdWs4SoBcnL3cAy9RFKGRDUoGDPeqiW6qa7Y9oAFZHfk PX3oboI0VYn5F9BVGO4i+9cL/CNL4b6sb5FBvL+0EwUBhWTxeKE= =BAP+ -----END PGP SIGNATURE----- Merge tag 'rust-6.6' of https://github.com/Rust-for-Linux/linux Pull rust updates from Miguel Ojeda: "In terms of lines, most changes this time are on the pinned-init API and infrastructure. While we have a Rust version upgrade, and thus a bunch of changes from the vendored 'alloc' crate as usual, this time those do not account for many lines. Toolchain and infrastructure: - Upgrade to Rust 1.71.1. This is the second such upgrade, which is a smaller jump compared to the last time. This version allows us to remove the '__rust_*' allocator functions -- the compiler now generates them as expected, thus now our 'KernelAllocator' is used. It also introduces the 'offset_of!' macro in the standard library (as an unstable feature) which we will need soon. So far, we were using a declarative macro as a prerequisite in some not-yet-landed patch series, which did not support sub-fields (i.e. nested structs): #[repr(C)] struct S { a: u16, b: (u8, u8), } assert_eq!(offset_of!(S, b.1), 3); - Upgrade to bindgen 0.65.1. This is the first time we upgrade its version. Given it is a fairly big jump, it comes with a fair number of improvements/changes that affect us, such as a fix needed to support LLVM 16 as well as proper support for '__noreturn' C functions, which are now mapped to return the '!' type in Rust: void __noreturn f(void); // C pub fn f() -> !; // Rust - 'scripts/rust_is_available.sh' improvements and fixes. This series takes care of all the issues known so far and adds a few new checks to cover for even more cases, plus adds some more help texts. All this together will hopefully make problematic setups easier to identify and to be solved by users building the kernel. In addition, it adds a test suite which covers all branches of the shell script, as well as tests for the issues found so far. - Support rust-analyzer for out-of-tree modules too. - Give 'cfg's to rust-analyzer for the 'core' and 'alloc' crates. - Drop 'scripts/is_rust_module.sh' since it is not needed anymore. Macros crate: - New 'paste!' proc macro. This macro is a more flexible version of 'concat_idents!': it allows the resulting identifier to be used to declare new items and it allows to transform the identifiers before concatenating them, e.g. let x_1 = 42; paste!(let [<x _2>] = [<x _1>];); assert!(x_1 == x_2); The macro is then used for several of the pinned-init API changes in this pull. Pinned-init API: - Make '#[pin_data]' compatible with conditional compilation of fields, allowing to write code like: #[pin_data] pub struct Foo { #[cfg(CONFIG_BAR)] a: Bar, #[cfg(not(CONFIG_BAR))] a: Baz, } - New '#[derive(Zeroable)]' proc macro for the 'Zeroable' trait, which allows 'unsafe' implementations for structs where every field implements the 'Zeroable' trait, e.g.: #[derive(Zeroable)] pub struct DriverData { id: i64, buf_ptr: *mut u8, len: usize, } - Add '..Zeroable::zeroed()' syntax to the 'pin_init!' macro for zeroing all other fields, e.g.: pin_init!(Buf { buf: [1; 64], ..Zeroable::zeroed() }); - New '{,pin_}init_array_from_fn()' functions to create array initializers given a generator function, e.g.: let b: Box<[usize; 1_000]> = Box::init::<Error>( init_array_from_fn(|i| i) ).unwrap(); assert_eq!(b.len(), 1_000); assert_eq!(b[123], 123); - New '{,pin_}chain' methods for '{,Pin}Init<T, E>' that allow to execute a closure on the value directly after initialization, e.g.: let foo = init!(Foo { buf <- init::zeroed() }).chain(|foo| { foo.setup(); Ok(()) }); - Support arbitrary paths in init macros, instead of just identifiers and generic types. - Implement the 'Zeroable' trait for the 'UnsafeCell<T>' and 'Opaque<T>' types. - Make initializer values inaccessible after initialization. - Make guards in the init macros hygienic. 'allocator' module: - Use 'krealloc_aligned()' in 'KernelAllocator::alloc' preventing misaligned allocations when the Rust 1.71.1 upgrade is applied later in this pull. The equivalent fix for the previous compiler version (where 'KernelAllocator' is not yet used) was merged into 6.5 already, which added the 'krealloc_aligned()' function used here. - Implement 'KernelAllocator::{realloc, alloc_zeroed}' for performance, using 'krealloc_aligned()' too, which forwards the call to the C API. 'types' module: - Make 'Opaque' be '!Unpin', removing the need to add a 'PhantomPinned' field to Rust structs that contain C structs which must not be moved. - Make 'Opaque' use 'UnsafeCell' as the outer type, rather than inner. Documentation: - Suggest obtaining the source code of the Rust's 'core' library using the tarball instead of the repository. MAINTAINERS: - Andreas and Alice, from Samsung and Google respectively, are joining as reviewers of the "RUST" entry. As well as a few other minor changes and cleanups" * tag 'rust-6.6' of https://github.com/Rust-for-Linux/linux: (42 commits) rust: init: update expanded macro explanation rust: init: add `{pin_}chain` functions to `{Pin}Init<T, E>` rust: init: make `PinInit<T, E>` a supertrait of `Init<T, E>` rust: init: implement `Zeroable` for `UnsafeCell<T>` and `Opaque<T>` rust: init: add support for arbitrary paths in init macros rust: init: add functions to create array initializers rust: init: add `..Zeroable::zeroed()` syntax for zeroing all missing fields rust: init: make initializer values inaccessible after initializing rust: init: wrap type checking struct initializers in a closure rust: init: make guards in the init macros hygienic rust: add derive macro for `Zeroable` rust: init: make `#[pin_data]` compatible with conditional compilation of fields rust: init: consolidate init macros docs: rust: clarify what 'rustup override' does docs: rust: update instructions for obtaining 'core' source docs: rust: add command line to rust-analyzer section scripts: generate_rust_analyzer: provide `cfg`s for `core` and `alloc` rust: bindgen: upgrade to 0.65.1 rust: enable `no_mangle_with_rust_abi` Clippy lint rust: upgrade to Rust 1.71.1 ... |
||
Aakash Sen Sharma
|
08ab786556 |
rust: bindgen: upgrade to 0.65.1
In LLVM 16, anonymous items may return names like `(unnamed union at ..)` rather than empty names [1], which breaks Rust-enabled builds because bindgen assumed an empty name instead of detecting them via `clang_Cursor_isAnonymous` [2]: $ make rustdoc LLVM=1 CLIPPY=1 -j$(nproc) RUSTC L rust/core.o BINDGEN rust/bindings/bindings_generated.rs BINDGEN rust/bindings/bindings_helpers_generated.rs BINDGEN rust/uapi/uapi_generated.rs thread 'main' panicked at '"ftrace_branch_data_union_(anonymous_at__/_/include/linux/compiler_types_h_146_2)" is not a valid Ident', .../proc-macro2-1.0.24/src/fallback.rs:693:9 ... thread 'main' panicked at '"ftrace_branch_data_union_(anonymous_at__/_/include/linux/compiler_types_h_146_2)" is not a valid Ident', .../proc-macro2-1.0.24/src/fallback.rs:693:9 ... This was fixed in bindgen 0.62.0. Therefore, upgrade bindgen to a more recent version, 0.65.1, to support LLVM 16. Since bindgen 0.58.0 changed the `--{white,black}list-*` flags to `--{allow,block}list-*` [3], update them on our side too. In addition, bindgen 0.61.0 moved its CLI utility into a binary crate called `bindgen-cli` [4]. Thus update the installation command in the Quick Start guide. Moreover, bindgen 0.61.0 changed the default functionality to bind `size_t` to `usize` [5] and added the `--no-size_t-is-usize` flag to not bind `size_t` as `usize`. Then bindgen 0.65.0 removed the `--size_t-is-usize` flag [6]. Thus stop passing the flag to bindgen. Finally, bindgen 0.61.0 added support for the `noreturn` attribute (in its different forms) [7]. Thus remove the infinite loop in our Rust panic handler after calling `BUG()`, since bindgen now correctly generates a `BUG()` binding that returns `!` instead of `()`. Link: |
||
Miguel Ojeda
|
a66d733da8 |
rust: support running Rust documentation tests as KUnit ones
Rust has documentation tests: these are typically examples of usage of any item (e.g. function, struct, module...). They are very convenient because they are just written alongside the documentation. For instance: /// Sums two numbers. /// /// ``` /// assert_eq!(mymod::f(10, 20), 30); /// ``` pub fn f(a: i32, b: i32) -> i32 { a + b } In userspace, the tests are collected and run via `rustdoc`. Using the tool as-is would be useful already, since it allows to compile-test most tests (thus enforcing they are kept in sync with the code they document) and run those that do not depend on in-kernel APIs. However, by transforming the tests into a KUnit test suite, they can also be run inside the kernel. Moreover, the tests get to be compiled as other Rust kernel objects instead of targeting userspace. On top of that, the integration with KUnit means the Rust support gets to reuse the existing testing facilities. For instance, the kernel log would look like: KTAP version 1 1..1 KTAP version 1 # Subtest: rust_doctests_kernel 1..59 # rust_doctest_kernel_build_assert_rs_0.location: rust/kernel/build_assert.rs:13 ok 1 rust_doctest_kernel_build_assert_rs_0 # rust_doctest_kernel_build_assert_rs_1.location: rust/kernel/build_assert.rs:56 ok 2 rust_doctest_kernel_build_assert_rs_1 # rust_doctest_kernel_init_rs_0.location: rust/kernel/init.rs:122 ok 3 rust_doctest_kernel_init_rs_0 ... # rust_doctest_kernel_types_rs_2.location: rust/kernel/types.rs:150 ok 59 rust_doctest_kernel_types_rs_2 # rust_doctests_kernel: pass:59 fail:0 skip:0 total:59 # Totals: pass:59 fail:0 skip:0 total:59 ok 1 rust_doctests_kernel Therefore, add support for running Rust documentation tests in KUnit. Some other notes about the current implementation and support follow. The transformation is performed by a couple scripts written as Rust hostprogs. Tests using the `?` operator are also supported as usual, e.g.: /// ``` /// # use kernel::{spawn_work_item, workqueue}; /// spawn_work_item!(workqueue::system(), || pr_info!("x"))?; /// # Ok::<(), Error>(()) /// ``` The tests are also compiled with Clippy under `CLIPPY=1`, just like normal code, thus also benefitting from extra linting. The names of the tests are currently automatically generated. This allows to reduce the burden for documentation writers, while keeping them fairly stable for bisection. This is an improvement over the `rustdoc`-generated names, which include the line number; but ideally we would like to get `rustdoc` to provide the Rust item path and a number (for multiple examples in a single documented Rust item). In order for developers to easily see from which original line a failed doctests came from, a KTAP diagnostic line is printed to the log, containing the location (file and line) of the original test (i.e. instead of the location in the generated Rust file): # rust_doctest_kernel_types_rs_2.location: rust/kernel/types.rs:150 This line follows the syntax for declaring test metadata in the proposed KTAP v2 spec [1], which may be used for the proposed KUnit test attributes API [2]. Thus hopefully this will make migration easier later on (suggested by David [3]). The original line in that test attribute is figured out by providing an anchor (suggested by Boqun [4]). The original file is found by walking the filesystem, checking directory prefixes to reduce the amount of combinations to check, and it is only done once per file. Ambiguities are detected and reported. A notable difference from KUnit C tests is that the Rust tests appear to assert using the usual `assert!` and `assert_eq!` macros from the Rust standard library (`core`). We provide a custom version that forwards the call to KUnit instead. Importantly, these macros do not require passing context, unlike the KUnit C ones (i.e. `struct kunit *`). This makes them easier to use, and readers of the documentation do not need to care about which testing framework is used. In addition, it may allow us to test third-party code more easily in the future. However, a current limitation is that KUnit does not support assertions in other tasks. Thus we presently simply print an error to the kernel log if an assertion actually failed. This should be revisited to properly fail the test, perhaps saving the context somewhere else, or letting KUnit handle it. Link: https://lore.kernel.org/lkml/20230420205734.1288498-1-rmoar@google.com/ [1] Link: https://lore.kernel.org/linux-kselftest/20230707210947.1208717-1-rmoar@google.com/ [2] Link: https://lore.kernel.org/rust-for-linux/CABVgOSkOLO-8v6kdAGpmYnZUb+LKOX0CtYCo-Bge7r_2YTuXDQ@mail.gmail.com/ [3] Link: https://lore.kernel.org/rust-for-linux/ZIps86MbJF%2FiGIzd@boqun-archlinux/ [4] Signed-off-by: Miguel Ojeda <ojeda@kernel.org> Reviewed-by: David Gow <davidgow@google.com> Signed-off-by: Shuah Khan <skhan@linuxfoundation.org> |
||
Miguel Ojeda
|
3ed03f4da0 |
rust: upgrade to Rust 1.68.2
This is the first upgrade to the Rust toolchain since the initial Rust
merge, from 1.62.0 to 1.68.2 (i.e. the latest).
# Context
The kernel currently supports only a single Rust version [1] (rather
than a minimum) given our usage of some "unstable" Rust features [2]
which do not promise backwards compatibility.
The goal is to reach a point where we can declare a minimum version for
the toolchain. For instance, by waiting for some of the features to be
stabilized. Therefore, the first minimum Rust version that the kernel
will support is "in the future".
# Upgrade policy
Given we will eventually need to reach that minimum version, it would be
ideal to upgrade the compiler from time to time to be as close as
possible to that goal and find any issues sooner. In the extreme, we
could upgrade as soon as a new Rust release is out. Of course, upgrading
so often is in stark contrast to what one normally would need for GCC
and LLVM, especially given the release schedule: 6 weeks for Rust vs.
half a year for LLVM and a year for GCC.
Having said that, there is no particular advantage to updating slowly
either: kernel developers in "stable" distributions are unlikely to be
able to use their distribution-provided Rust toolchain for the kernel
anyway [3]. Instead, by routinely upgrading to the latest instead,
kernel developers using Linux distributions that track the latest Rust
release may be able to use those rather than Rust-provided ones,
especially if their package manager allows to pin / hold back /
downgrade the version for some days during windows where the version may
not match. For instance, Arch, Fedora, Gentoo and openSUSE all provide
and track the latest version of Rust as they get released every 6 weeks.
Then, when the minimum version is reached, we will stop upgrading and
decide how wide the window of support will be. For instance, a year of
Rust versions. We will probably want to start small, and then widen it
over time, just like the kernel did originally for LLVM, see commit
|
||
Asahi Lina
|
ea76e08f4d |
rust: ioctl: Add ioctl number manipulation functions
Add simple 1:1 wrappers of the C ioctl number manipulation functions. Since these are macros we cannot bindgen them directly, and since they should be usable in const context we cannot use helper wrappers, so we'll have to reimplement them in Rust. Thankfully, the C headers do declare defines for the relevant bitfield positions, so we don't need to duplicate that. Signed-off-by: Asahi Lina <lina@asahilina.net> Link: https://lore.kernel.org/r/20230329-rust-uapi-v2-2-bca5fb4d4a12@asahilina.net [ Moved the `#![allow(non_snake_case)]` to the usual place. ] Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |
||
Asahi Lina
|
4e17466568 |
rust: uapi: Add UAPI crate
This crate mirrors the `bindings` crate, but will contain only UAPI bindings. Unlike the bindings crate, drivers may directly use this crate if they have to interface with userspace. Initially, just bind the generic ioctl stuff. In the future, we would also like to add additional checks to ensure that all types exposed by this crate satisfy UAPI-safety guarantees (that is, they are safely castable to/from a "bag of bits"). [ Miguel: added support for the `rustdoc` and `rusttest` targets, since otherwise they fail, and we want to keep them working. ] Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Signed-off-by: Asahi Lina <lina@asahilina.net> Link: https://lore.kernel.org/r/20230329-rust-uapi-v2-1-bca5fb4d4a12@asahilina.net Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |
||
Wedson Almeida Filho
|
313c4281bc |
rust: add basic Task
It is an abstraction for C's `struct task_struct`. It implements `AlwaysRefCounted`, so the refcount of the wrapped object is managed safely on the Rust side. Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Signed-off-by: Wedson Almeida Filho <walmeida@microsoft.com> Link: https://lore.kernel.org/r/20230411054543.21278-9-wedsonaf@gmail.com Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |
||
Benno Lossin
|
701608bd03 |
rust: sync: reduce stack usage of UniqueArc::try_new_uninit
`UniqueArc::try_new_uninit` calls `Arc::try_new(MaybeUninit::uninit())`. This results in the uninitialized memory being placed on the stack, which may be arbitrarily large due to the generic `T` and thus could cause a stack overflow for large types. Change the implementation to use the pin-init API which enables in-place initialization. In particular it avoids having to first construct and then move the uninitialized memory from the stack into the final location. Signed-off-by: Benno Lossin <benno.lossin@proton.me> Reviewed-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Gary Guo <gary@garyguo.net> Reviewed-by: Andreas Hindborg <a.hindborg@samsung.com> Link: https://lore.kernel.org/r/20230408122429.1103522-15-y86-dev@protonmail.com Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |
||
Benno Lossin
|
90e53c5e70 |
rust: add pin-init API core
This API is used to facilitate safe pinned initialization of structs. It replaces cumbersome `unsafe` manual initialization with elegant safe macro invocations. Due to the size of this change it has been split into six commits: 1. This commit introducing the basic public interface: traits and functions to represent and create initializers. 2. Adds the `#[pin_data]`, `pin_init!`, `try_pin_init!`, `init!` and `try_init!` macros along with their internal types. 3. Adds the `InPlaceInit` trait that allows using an initializer to create an object inside of a `Box<T>` and other smart pointers. 4. Adds the `PinnedDrop` trait and adds macro support for it in the `#[pin_data]` macro. 5. Adds the `stack_pin_init!` macro allowing to pin-initialize a struct on the stack. 6. Adds the `Zeroable` trait and `init::zeroed` function to initialize types that have `0x00` in all bytes as a valid bit pattern. -- In this section the problem that the new pin-init API solves is outlined. This message describes the entirety of the API, not just the parts introduced in this commit. For a more granular explanation and additional information on pinning and this issue, view [1]. Pinning is Rust's way of enforcing the address stability of a value. When a value gets pinned it will be impossible for safe code to move it to another location. This is done by wrapping pointers to said object with `Pin<P>`. This wrapper prevents safe code from creating mutable references to the object, preventing mutable access, which is needed to move the value. `Pin<P>` provides `unsafe` functions to circumvent this and allow modifications regardless. It is then the programmer's responsibility to uphold the pinning guarantee. Many kernel data structures require a stable address, because there are foreign pointers to them which would get invalidated by moving the structure. Since these data structures are usually embedded in structs to use them, this pinning property propagates to the container struct. Resulting in most structs in both Rust and C code needing to be pinned. So if we want to have a `mutex` field in a Rust struct, this struct also needs to be pinned, because a `mutex` contains a `list_head`. Additionally initializing a `list_head` requires already having the final memory location available, because it is initialized by pointing it to itself. But this presents another challenge in Rust: values have to be initialized at all times. There is the `MaybeUninit<T>` wrapper type, which allows handling uninitialized memory, but this requires using the `unsafe` raw pointers and a casting the type to the initialized variant. This problem gets exacerbated when considering encapsulation and the normal safety requirements of Rust code. The fields of the Rust `Mutex<T>` should not be accessible to normal driver code. After all if anyone can modify the fields, there is no way to ensure the invariants of the `Mutex<T>` are upheld. But if the fields are inaccessible, then initialization of a `Mutex<T>` needs to be somehow achieved via a function or a macro. Because the `Mutex<T>` must be pinned in memory, the function cannot return it by value. It also cannot allocate a `Box` to put the `Mutex<T>` into, because that is an unnecessary allocation and indirection which would hurt performance. The solution in the rust tree (e.g. this commit: [2]) that is replaced by this API is to split this function into two parts: 1. A `new` function that returns a partially initialized `Mutex<T>`, 2. An `init` function that requires the `Mutex<T>` to be pinned and that fully initializes the `Mutex<T>`. Both of these functions have to be marked `unsafe`, since a call to `new` needs to be accompanied with a call to `init`, otherwise using the `Mutex<T>` could result in UB. And because calling `init` twice also is not safe. While `Mutex<T>` initialization cannot fail, other structs might also have to allocate memory, which would result in conditional successful initialization requiring even more manual accommodation work. Combine this with the problem of pin-projections -- the way of accessing fields of a pinned struct -- which also have an `unsafe` API, pinned initialization is riddled with `unsafe` resulting in very poor ergonomics. Not only that, but also having to call two functions possibly multiple lines apart makes it very easy to forget it outright or during refactoring. Here is an example of the current way of initializing a struct with two synchronization primitives (see [3] for the full example): struct SharedState { state_changed: CondVar, inner: Mutex<SharedStateInner>, } impl SharedState { fn try_new() -> Result<Arc<Self>> { let mut state = Pin::from(UniqueArc::try_new(Self { // SAFETY: `condvar_init!` is called below. state_changed: unsafe { CondVar::new() }, // SAFETY: `mutex_init!` is called below. inner: unsafe { Mutex::new(SharedStateInner { token_count: 0 }) }, })?); // SAFETY: `state_changed` is pinned when `state` is. let pinned = unsafe { state.as_mut().map_unchecked_mut(|s| &mut s.state_changed) }; kernel::condvar_init!(pinned, "SharedState::state_changed"); // SAFETY: `inner` is pinned when `state` is. let pinned = unsafe { state.as_mut().map_unchecked_mut(|s| &mut s.inner) }; kernel::mutex_init!(pinned, "SharedState::inner"); Ok(state.into()) } } The pin-init API of this patch solves this issue by providing a comprehensive solution comprised of macros and traits. Here is the example from above using the pin-init API: #[pin_data] struct SharedState { #[pin] state_changed: CondVar, #[pin] inner: Mutex<SharedStateInner>, } impl SharedState { fn new() -> impl PinInit<Self> { pin_init!(Self { state_changed <- new_condvar!("SharedState::state_changed"), inner <- new_mutex!( SharedStateInner { token_count: 0 }, "SharedState::inner", ), }) } } Notably the way the macro is used here requires no `unsafe` and thus comes with the usual Rust promise of safe code not introducing any memory violations. Additionally it is now up to the caller of `new()` to decide the memory location of the `SharedState`. They can choose at the moment `Arc<T>`, `Box<T>` or the stack. -- The API has the following architecture: 1. Initializer traits `PinInit<T, E>` and `Init<T, E>` that act like closures. 2. Macros to create these initializer traits safely. 3. Functions to allow manually writing initializers. The initializers (an `impl PinInit<T, E>`) receive a raw pointer pointing to uninitialized memory and their job is to fully initialize a `T` at that location. If initialization fails, they return an error (`E`) by value. This way of initializing cannot be safely exposed to the user, since it relies upon these properties outside of the control of the trait: - the memory location (slot) needs to be valid memory, - if initialization fails, the slot should not be read from, - the value in the slot should be pinned, so it cannot move and the memory cannot be deallocated until the value is dropped. This is why using an initializer is facilitated by another trait that ensures these requirements. These initializers can be created manually by just supplying a closure that fulfills the same safety requirements as `PinInit<T, E>`. But this is an `unsafe` operation. To allow safe initializer creation, the `pin_init!` is provided along with three other variants: `try_pin_init!`, `try_init!` and `init!`. These take a modified struct initializer as a parameter and generate a closure that initializes the fields in sequence. The macros take great care in upholding the safety requirements: - A shadowed struct type is used as the return type of the closure instead of `()`. This is to prevent early returns, as these would prevent full initialization. - To ensure every field is only initialized once, a normal struct initializer is placed in unreachable code. The type checker will emit errors if a field is missing or specified multiple times. - When initializing a field fails, the whole initializer will fail and automatically drop fields that have been initialized earlier. - Only the correct initializer type is allowed for unpinned fields. You cannot use a `impl PinInit<T, E>` to initialize a structurally not pinned field. To ensure the last point, an additional macro `#[pin_data]` is needed. This macro annotates the struct itself and the user specifies structurally pinned and not pinned fields. Because dropping a pinned struct is also not allowed to break the pinning invariants, another macro attribute `#[pinned_drop]` is needed. This macro is introduced in a following commit. These two macros also have mechanisms to ensure the overall safety of the API. Additionally, they utilize a combined proc-macro, declarative macro design: first a proc-macro enables the outer attribute syntax `#[...]` and does some important pre-parsing. Notably this prepares the generics such that the declarative macro can handle them using token trees. Then the actual parsing of the structure and the emission of code is handled by a declarative macro. For pin-projections the crates `pin-project` [4] and `pin-project-lite` [5] had been considered, but were ultimately rejected: - `pin-project` depends on `syn` [6] which is a very big dependency, around 50k lines of code. - `pin-project-lite` is a more reasonable 5k lines of code, but contains a very complex declarative macro to parse generics. On top of that it would require modification that would need to be maintained independently. Link: https://rust-for-linux.com/the-safe-pinned-initialization-problem [1] Link: |
||
Benno Lossin
|
2d19d369c0 |
rust: enable the pin_macro feature
This feature enables the use of the `pin!` macro for the `stack_pin_init!` macro. This feature is already stabilized in Rust version 1.68. Signed-off-by: Benno Lossin <benno.lossin@proton.me> Reviewed-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Gary Guo <gary@garyguo.net> Reviewed-by: Andreas Hindborg <a.hindborg@samsung.com> Acked-by: Boqun Feng <boqun.feng@gmail.com> Link: https://lore.kernel.org/r/20230408122429.1103522-2-y86-dev@protonmail.com Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |
||
Asahi Lina
|
3c01a424a3 |
rust: Enable the new_uninit feature for kernel and driver crates
The unstable new_uninit feature enables various library APIs to create uninitialized containers, such as `Box::assume_init()`. This is necessary to build abstractions that directly initialize memory at the target location, instead of doing copies through the stack. Will be used by the DRM scheduler abstraction in the kernel crate, and by field-wise initialization (e.g. using `place!()` or a future replacement macro which may itself live in `kernel`) in driver crates. Link: https://github.com/Rust-for-Linux/linux/issues/879 Link: https://github.com/Rust-for-Linux/linux/issues/2 Link: https://github.com/rust-lang/rust/issues/63291 Signed-off-by: Asahi Lina <lina@asahilina.net> Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Reviewed-by: Gary Guo <gary@garyguo.net> Reviewed-by: Andreas Hindborg <a.hindborg@samsung.com> Reviewed-by: Vincenzo Palazzo <vincenzopalazzodev@gmail.com> Link: https://lore.kernel.org/r/20230224-rust-new_uninit-v1-1-c951443d9e26@asahilina.net [ Reworded to use `Link` tags. ] Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |
||
Wedson Almeida Filho
|
0fc4424d24 |
rust: types: introduce ForeignOwnable
It was originally called `PointerWrapper`. It is used to convert a Rust object to a pointer representation (void *) that can be stored on the C side, used, and eventually returned to Rust. Signed-off-by: Wedson Almeida Filho <wedsonaf@gmail.com> Reviewed-by: Vincenzo Palazzo <vincenzopalazzodev@gmail.com> Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Reviewed-by: Gary Guo <gary@garyguo.net> Reviewed-by: Andreas Hindborg <a.hindborg@samsung.com> Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |
||
Wedson Almeida Filho
|
0748424aba |
rust: sync: add support for dispatching on Arc and ArcBorrow.
Trait objects (`dyn T`) require trait `T` to be "object safe". One of the requirements for "object safety" is that the receiver have one of the allowed types. This commit adds `Arc<T>` and `ArcBorrow<'_, T>` to the list of allowed types. Signed-off-by: Wedson Almeida Filho <wedsonaf@gmail.com> Reviewed-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Gary Guo <gary@garyguo.net> Reviewed-by: Vincenzo Palazzo <vincenzopalazzodev@gmail.com> Acked-by: Boqun Feng <boqun.feng@gmail.com> Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |
||
Wedson Almeida Filho
|
f75cb6fce4 |
rust: sync: allow coercion from Arc<T> to Arc<U>
The coercion is only allowed if `U` is a compatible dynamically-sized type (DST). For example, if we have some type `X` that implements trait `Y`, then this allows `Arc<X>` to be coerced into `Arc<dyn Y>`. Suggested-by: Gary Guo <gary@garyguo.net> Signed-off-by: Wedson Almeida Filho <wedsonaf@gmail.com> Reviewed-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Gary Guo <gary@garyguo.net> Reviewed-by: Vincenzo Palazzo <vincenzopalazzodev@gmail.com> Acked-by: Boqun Feng <boqun.feng@gmail.com> Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |
||
Wedson Almeida Filho
|
53528772fb |
rust: sync: allow type of self to be Arc<T> or variants
This allows associated functions whose `self` argument has `Arc<T>` or variants as their type. This, in turn, allows callers to use the dot syntax to make calls. Signed-off-by: Wedson Almeida Filho <wedsonaf@gmail.com> Reviewed-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Gary Guo <gary@garyguo.net> Reviewed-by: Vincenzo Palazzo <vincenzopalazzodev@gmail.com> Acked-by: Boqun Feng <boqun.feng@gmail.com> Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |
||
Wedson Almeida Filho
|
9dc0436550 |
rust: sync: add Arc for ref-counted allocations
This is a basic implementation of `Arc` backed by C's `refcount_t`. It allows Rust code to idiomatically allocate memory that is ref-counted. Cc: Will Deacon <will@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Wedson Almeida Filho <wedsonaf@gmail.com> Reviewed-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Gary Guo <gary@garyguo.net> Reviewed-by: Vincenzo Palazzo <vincenzopalazzodev@gmail.com> Acked-by: Boqun Feng <boqun.feng@gmail.com> Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |
||
Wedson Almeida Filho
|
ba20915bae |
rust: types: add Either type
Introduce the new `types` module of the `kernel` crate with `Either` as its first type. `Either<L, R>` is a sum type that always holds either a value of type `L` (`Left` variant) or `R` (`Right` variant). For instance: struct Executor { queue: Either<BoxedQueue, &'static Queue>, } Signed-off-by: Wedson Almeida Filho <wedsonaf@gmail.com> Reviewed-by: Wei Liu <wei.liu@kernel.org> [Reworded, adapted for upstream and applied latest changes] Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |
||
Gary Guo
|
0f595bab9d |
rust: build_assert: add build_{error,assert}! macros
Add the `build_error!` and `build_assert!` macros which leverage the previously introduced `build_error` crate. Do so in a new module, called `build_assert`. The former fails the build if the code path calling it can possibly be executed. The latter asserts that a boolean expression is `true` at compile time. In particular, `build_assert!` can be used in some contexts where `static_assert!` cannot: fn f1<const N: usize>() { static_assert!(N > 1);` // Error. build_assert!(N > 1); // Build-time check. assert!(N > 1); // Run-time check. } #[inline] fn f2(n: usize) { static_assert!(n > 1); // Error. build_assert!(n > 1); // Build-time check. assert!(n > 1); // Run-time check. } Signed-off-by: Gary Guo <gary@garyguo.net> Reviewed-by: Wei Liu <wei.liu@kernel.org> [Reworded, adapted for upstream and applied latest changes] Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |
||
Miguel Ojeda
|
ef9e37973c |
rust: static_assert: add static_assert! macro
Add the `static_assert!` macro, which is a compile-time assert, similar to the C11 `_Static_assert` and C++11 `static_assert` declarations [1,2]. Do so in a new module, called `static_assert`. For instance: static_assert!(42 > 24); static_assert!(core::mem::size_of::<u8>() == 1); const X: &[u8] = b"bar"; static_assert!(X[1] == b'a'); const fn f(x: i32) -> i32 { x + 2 } static_assert!(f(40) == 42); Link: https://en.cppreference.com/w/c/language/_Static_assert [1] Link: https://en.cppreference.com/w/cpp/language/static_assert [2] Co-developed-by: Alex Gaynor <alex.gaynor@gmail.com> Signed-off-by: Alex Gaynor <alex.gaynor@gmail.com> Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |
||
Niklas Mohrin
|
bee1688940 |
rust: std_vendor: add dbg! macro based on std 's one
The Rust standard library has a really handy macro, `dbg!` [1,2]. It prints the source location (filename and line) along with the raw source code that is invoked with and the `Debug` representation of the given expression, e.g.: let a = 2; let b = dbg!(a * 2) + 1; // ^-- prints: [src/main.rs:2] a * 2 = 4 assert_eq!(b, 5); Port the macro over to the `kernel` crate inside a new module called `std_vendor`, using `pr_info!` instead of `eprintln!` and make the rules about committing uses of `dbg!` into version control more concrete (i.e. tailored for the kernel). Since the source code for the macro is taken from the standard library source (with only minor adjustments), the new file is licensed under `Apache 2.0 OR MIT`, just like the original [3,4]. Link: https://doc.rust-lang.org/std/macro.dbg.html [1] Link: https://github.com/rust-lang/rust/blob/master/library/std/src/macros.rs#L212 [2] Link: https://github.com/rust-lang/rust/blob/master/library/std/Cargo.toml [3] Link: https://github.com/rust-lang/rust/blob/master/COPYRIGHT [4] Signed-off-by: Niklas Mohrin <dev@niklasmohrin.de> [Reworded, adapted for upstream and applied latest changes] Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |
||
Wedson Almeida Filho
|
76e2c2d9a2 |
rust: error: add From implementations for Error
Add a set of `From` implementations for the `Error` kernel type. These implementations allow to easily convert from standard Rust error types to the usual kernel errors based on one of the `E*` integer codes. On top of that, the question mark Rust operator (`?`) implicitly performs a conversion on the error value using the `From` trait when propagating. Thus it is extra convenient to use. For instance, a kernel function that needs to convert a `i64` into a `i32` and to bubble up the error as a kernel error may write: fn f(x: i64) -> Result<...> { ... let y = i32::try_from(x)?; ... } which will transform the `TryFromIntError` into an `Err(EINVAL)`. Co-developed-by: Adam Bratschi-Kaye <ark.email@gmail.com> Signed-off-by: Adam Bratschi-Kaye <ark.email@gmail.com> Co-developed-by: Nándor István Krácser <bonifaido@gmail.com> Signed-off-by: Nándor István Krácser <bonifaido@gmail.com> Signed-off-by: Wedson Almeida Filho <wedsonaf@gmail.com> Reviewed-by: Finn Behrens <me@kloenk.dev> [Reworded, adapted for upstream and applied latest changes] Signed-off-by: Miguel Ojeda <ojeda@kernel.org> |