mirror of
https://github.com/torvalds/linux.git
synced 2024-11-22 12:11:40 +00:00
6cd3417155
The `ListArc` type can be thought of as a special reference to a refcounted object that owns the permission to manipulate the `next`/`prev` pointers stored in the refcounted object. By ensuring that each object has only one `ListArc` reference, the owner of that reference is assured exclusive access to the `next`/`prev` pointers. When a `ListArc` is inserted into a `List`, the `List` takes ownership of the `ListArc` reference. There are various strategies for ensuring that a value has only one `ListArc` reference. The simplest is to convert a `UniqueArc` into a `ListArc`. However, the refcounted object could also keep track of whether a `ListArc` exists using a boolean, which could allow for the creation of new `ListArc` references from an `Arc` reference. Whatever strategy is used, the relevant tracking is referred to as "the tracking inside `T`", and the `ListArcSafe` trait (and its subtraits) are used to update the tracking when a `ListArc` is created or destroyed. Note that we allow the case where the tracking inside `T` thinks that a `ListArc` exists, but actually, there isn't a `ListArc`. However, we do not allow the opposite situation where a `ListArc` exists, but the tracking thinks it doesn't. This is because the former can at most result in us failing to create a `ListArc` when the operation could succeed, whereas the latter can result in the creation of two `ListArc` references. Only the latter situation can lead to memory safety issues. This patch introduces the `impl_list_arc_safe!` macro that allows you to implement `ListArcSafe` for types using the strategy where a `ListArc` can only be created from a `UniqueArc`. Other strategies are introduced in later patches. This is part of the linked list that Rust Binder will use for many different things. The strategy where a `ListArc` can only be created from a `UniqueArc` is actually sufficient for most of the objects that Rust Binder needs to insert into linked lists. Usually, these are todo items that are created and then immediately inserted into a queue. The const generic ID allows objects to have several prev/next pointer pairs so that the same object can be inserted into several different lists. You are able to have several `ListArc` references as long as they correspond to different pointer pairs. The ID itself is purely a compile-time concept and will not be present in the final binary. Both the `List` and the `ListArc` will need to agree on the ID for them to work together. Rust Binder uses this in a few places (e.g. death recipients) where the same object can be inserted into both generic todo lists and some other lists for tracking the status of the object. The ID is a const generic rather than a type parameter because the `pair_from_unique` method needs to be able to assert that the two ids are different. There's no easy way to assert that when using types instead of integers. Reviewed-by: Benno Lossin <benno.lossin@proton.me> Signed-off-by: Alice Ryhl <aliceryhl@google.com> Link: https://lore.kernel.org/r/20240814-linked-list-v5-2-f5f5e8075da0@google.com Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
147 lines
4.0 KiB
Rust
147 lines
4.0 KiB
Rust
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
//! The `kernel` crate.
|
|
//!
|
|
//! This crate contains the kernel APIs that have been ported or wrapped for
|
|
//! usage by Rust code in the kernel and is shared by all of them.
|
|
//!
|
|
//! In other words, all the rest of the Rust code in the kernel (e.g. kernel
|
|
//! modules written in Rust) depends on [`core`], [`alloc`] and this crate.
|
|
//!
|
|
//! If you need a kernel C API that is not ported or wrapped yet here, then
|
|
//! do so first instead of bypassing this crate.
|
|
|
|
#![no_std]
|
|
#![feature(coerce_unsized)]
|
|
#![feature(dispatch_from_dyn)]
|
|
#![feature(new_uninit)]
|
|
#![feature(receiver_trait)]
|
|
#![feature(unsize)]
|
|
|
|
// Ensure conditional compilation based on the kernel configuration works;
|
|
// otherwise we may silently break things like initcall handling.
|
|
#[cfg(not(CONFIG_RUST))]
|
|
compile_error!("Missing kernel configuration for conditional compilation");
|
|
|
|
// Allow proc-macros to refer to `::kernel` inside the `kernel` crate (this crate).
|
|
extern crate self as kernel;
|
|
|
|
pub mod alloc;
|
|
#[cfg(CONFIG_BLOCK)]
|
|
pub mod block;
|
|
mod build_assert;
|
|
pub mod device;
|
|
pub mod error;
|
|
#[cfg(CONFIG_RUST_FW_LOADER_ABSTRACTIONS)]
|
|
pub mod firmware;
|
|
pub mod init;
|
|
pub mod ioctl;
|
|
#[cfg(CONFIG_KUNIT)]
|
|
pub mod kunit;
|
|
pub mod list;
|
|
#[cfg(CONFIG_NET)]
|
|
pub mod net;
|
|
pub mod page;
|
|
pub mod prelude;
|
|
pub mod print;
|
|
mod static_assert;
|
|
#[doc(hidden)]
|
|
pub mod std_vendor;
|
|
pub mod str;
|
|
pub mod sync;
|
|
pub mod task;
|
|
pub mod time;
|
|
pub mod types;
|
|
pub mod uaccess;
|
|
pub mod workqueue;
|
|
|
|
#[doc(hidden)]
|
|
pub use bindings;
|
|
pub use macros;
|
|
pub use uapi;
|
|
|
|
#[doc(hidden)]
|
|
pub use build_error::build_error;
|
|
|
|
/// Prefix to appear before log messages printed from within the `kernel` crate.
|
|
const __LOG_PREFIX: &[u8] = b"rust_kernel\0";
|
|
|
|
/// The top level entrypoint to implementing a kernel module.
|
|
///
|
|
/// For any teardown or cleanup operations, your type may implement [`Drop`].
|
|
pub trait Module: Sized + Sync + Send {
|
|
/// Called at module initialization time.
|
|
///
|
|
/// Use this method to perform whatever setup or registration your module
|
|
/// should do.
|
|
///
|
|
/// Equivalent to the `module_init` macro in the C API.
|
|
fn init(module: &'static ThisModule) -> error::Result<Self>;
|
|
}
|
|
|
|
/// Equivalent to `THIS_MODULE` in the C API.
|
|
///
|
|
/// C header: [`include/linux/export.h`](srctree/include/linux/export.h)
|
|
pub struct ThisModule(*mut bindings::module);
|
|
|
|
// SAFETY: `THIS_MODULE` may be used from all threads within a module.
|
|
unsafe impl Sync for ThisModule {}
|
|
|
|
impl ThisModule {
|
|
/// Creates a [`ThisModule`] given the `THIS_MODULE` pointer.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// The pointer must be equal to the right `THIS_MODULE`.
|
|
pub const unsafe fn from_ptr(ptr: *mut bindings::module) -> ThisModule {
|
|
ThisModule(ptr)
|
|
}
|
|
|
|
/// Access the raw pointer for this module.
|
|
///
|
|
/// It is up to the user to use it correctly.
|
|
pub const fn as_ptr(&self) -> *mut bindings::module {
|
|
self.0
|
|
}
|
|
}
|
|
|
|
#[cfg(not(any(testlib, test)))]
|
|
#[panic_handler]
|
|
fn panic(info: &core::panic::PanicInfo<'_>) -> ! {
|
|
pr_emerg!("{}\n", info);
|
|
// SAFETY: FFI call.
|
|
unsafe { bindings::BUG() };
|
|
}
|
|
|
|
/// Produces a pointer to an object from a pointer to one of its fields.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// The pointer passed to this macro, and the pointer returned by this macro, must both be in
|
|
/// bounds of the same allocation.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// # use kernel::container_of;
|
|
/// struct Test {
|
|
/// a: u64,
|
|
/// b: u32,
|
|
/// }
|
|
///
|
|
/// let test = Test { a: 10, b: 20 };
|
|
/// let b_ptr = &test.b;
|
|
/// // SAFETY: The pointer points at the `b` field of a `Test`, so the resulting pointer will be
|
|
/// // in-bounds of the same allocation as `b_ptr`.
|
|
/// let test_alias = unsafe { container_of!(b_ptr, Test, b) };
|
|
/// assert!(core::ptr::eq(&test, test_alias));
|
|
/// ```
|
|
#[macro_export]
|
|
macro_rules! container_of {
|
|
($ptr:expr, $type:ty, $($f:tt)*) => {{
|
|
let ptr = $ptr as *const _ as *const u8;
|
|
let offset: usize = ::core::mem::offset_of!($type, $($f)*);
|
|
ptr.sub(offset) as *const $type
|
|
}}
|
|
}
|