No users left now that btrfs takes REQ_OP_WRITE bios from iomap and
splits and converts them to REQ_OP_ZONE_APPEND internally.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Damien Le Moal <damien.lemoal@opensource.wdc.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
The current btrfs zoned device support is a little cumbersome in the data
I/O path as it requires the callers to not issue I/O larger than the
supported ZONE_APPEND size of the underlying device. This leads to a lot
of extra accounting. Instead change btrfs_submit_bio so that it can take
write bios of arbitrary size and form from the upper layers, and just
split them internally to the ZONE_APPEND queue limits. Then remove all
the upper layer warts catering to limited write sized on zoned devices,
including the extra refcount in the compressed_bio.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
To be able to split a write into properly sized zone append commands,
we need a queue_limits structure that contains the least common
denominator suitable for all devices.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Call btrfs_submit_bio and btrfs_submit_compressed_read directly from
submit_one_bio now that all additional functionality has moved into
btrfs_submit_bio.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_submit_bio can derive it trivially from bbio->inode, so stop
bothering in the callers.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Open code the functionality in the only caller and remove the now
superfluous error handling there.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that btrfs_get_io_geometry has a single caller, we can massage it
into a form that is more suitable for that caller and remove the
marshalling into and out of struct btrfs_io_geometry.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Stop looking at the stripe boundary in
btrfs_encoded_read_regular_fill_pages() now that btrfs_submit_bio can
split bios.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Stop looking at the stripe boundary in alloc_compressed_bio() now that
that btrfs_submit_bio can split bios, open code the now trivial code
from alloc_compressed_bio() in btrfs_submit_compressed_read and stop
maintaining the pending_ios count for reads as there is always just
a single bio now.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
[hch: remove more cruft in btrfs_submit_compressed_read,
use btrfs_zoned_get_device in alloc_compressed_bio]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Remove btrfs_bio_ctrl::len_to_stripe_boundary, so that buffer
I/O will no longer limit its bio size according to stripe length
now that btrfs_submit_bio can split bios at stripe boundaries.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
[hch: simplify calc_bio_boundaries a little more]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that btrfs_submit_bio splits the bio when crossing stripe boundaries,
there is no need for the higher level code to do that manually.
For direct I/O this is really helpful, as btrfs_submit_io can now simply
take the bio allocated by iomap and send it on to btrfs_submit_bio
instead of allocating clones.
For that to work, the bio embedded into struct btrfs_dio_private needs to
become a full btrfs_bio as expected by btrfs_submit_bio.
With this change there is a single work item to offload the entire iomap
bio so the heuristics to skip async processing for bios that were split
isn't needed anymore either.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently the I/O submitters have to split bios according to the chunk
stripe boundaries. This leads to extra lookups in the extent trees and
a lot of boilerplate code.
To drop this requirement, split the bio when __btrfs_map_block returns a
mapping that is smaller than the requested size and keep a count of
pending bios in the original btrfs_bio so that the upper level
completion is only invoked when all clones have completed.
Based on a patch from Qu Wenruo.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
To allow splitting bios in btrfs_submit_bio, btree_csum_one_bio needs to
be able to handle cloned bios. As btree_csum_one_bio is always called
before handing the bio to the block layer that is trivially done by using
bio_for_each_segment instead of bio_for_each_segment_all. Also switch
the function to take a btrfs_bio and use that to derive the fs_info.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Move the code that splits the ordered extents and records the physical
location for them to the storage layer so that the higher level consumers
don't have to care about physical block numbers at all. This will also
allow to eventually remove accounting for the zone append write sizes in
the upper layer with a little bit more block layer work.
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of letting the callers of btrfs_submit_bio deal with checksumming
the (meta)data in the bio and making decisions on when to offload the
checksumming to the bio, leave that to btrfs_submit_bio. Do do so the
existing btrfs_submit_bio function is split into an upper and a lower
half, so that the lower half can be offloaded to a workqueue.
Note that this changes the behavior for direct writes to raid56 volumes so
that async checksum offloading is not skipped when more I/O is expected.
This runs counter to the argument explaining why it was done, although I
can't measure any affects of the change. Commits later in this series
will make sure the entire direct writes is offloaded to the workqueue
at once and thus make sure it is sent to the raid56 code from a single
thread.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
To prepare for further bio submission changes btrfs_csum_one_bio
should be able to take all it's arguments from the btrfs_bio structure.
It can always use the bbio->inode already, and once the compression code
is updated to set ->file_offset that one can be used unconditionally
as well instead of looking at the page mapping now that btrfs doesn't
allow ordered extents to span discontiguous data ranges.
The only slightly tricky bit is the one_ordered flag set by the
compressed writes. Replace that one with the driver private bio
flag, which gets cleared before the bio is handed off to the block layer
so that we don't get in the way of driver use.
Note: this leaves an argument and a flag to btrfs_wq_submit_bio unused.
But that whole mechanism will be removed in its current form in the
next patch.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The submit helpers are now trivial and can be called directly. Note
that btree_csum_one_bio has to be moved up in the file a bit to avoid a
forward declaration.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This flag is unused now, so remove it. Re-expand the mirror_num field
to 8 bits, and move it to the I/O completion internal section of the
structure.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Rename iter to saved_iter and move it next to the repair internals
and nothing outside of bio.c should be touching it.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
struct io_failure_record and the io_failure_tree tree are unused now,
so remove them. This in turn makes struct btrfs_inode smaller by 16
bytes.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The device field is only used by the simple end I/O handler, and for
that it can simply be stored in the bi_private field of the bio,
which is currently used for the fs_info that can be retrieved through
bbio->inode as well.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Remove the unused btrfs_verify_data_csum helper, and fold
btrfs_check_data_csum into its only caller.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_bio_for_each_sector is unused now, so remove it.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_bio_free_csum has only one caller left, and that caller is always
for an data inode and doesn't need zeroing of the csum pointer as that
pointer will never be touched again. Just open code the conditional
kfree there.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently btrfs handles checksum validation and repair in the end I/O
handler for the btrfs_bio. This leads to a lot of duplicate code
plus issues with varying semantics or bugs, e.g.
- the until recently broken repair for compressed extents
- the fact that encoded reads validate the checksums but do not kick
of read repair
- the inconsistent checking of the BTRFS_FS_STATE_NO_CSUMS flag
This commit revamps the checksum validation and repair code to instead
work below the btrfs_submit_bio interfaces.
In case of a checksum failure (or a plain old I/O error), the repair
is now kicked off before the upper level ->end_io handler is invoked.
Progress of an in-progress repair is tracked by a small structure
that is allocated using a mempool for each original bio with failed
sectors, which holds a reference to the original bio. This new
structure is allocated using a mempool to guarantee forward progress
even under memory pressure. The mempool will be replenished when
the repair completes, just as the mempools backing the bios.
There is one significant behavior change here: If repair fails or
is impossible to start with, the whole bio will be failed to the
upper layer. This is the behavior that all I/O submitters except
for buffered I/O already emulated in their end_io handler. For
buffered I/O this now means that a large readahead request can
fail due to a single bad sector, but as readahead errors are ignored
the following readpage if the sector is actually accessed will
still be able to read. This also matches the I/O failure handling
in other file systems.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Add a new checksumming helper that wraps btrfs_check_data_csum and
does all the checks to if we're dealing with some form of nodatacsum
I/O. This helper will be used by the new storage layer checksum
validation and repair code.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of calling btrfs_lookup_bio_sums in every caller of
btrfs_submit_bio that reads data, do the call once in btrfs_submit_bio.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All callers of btrfs_submit_bio that want to validate checksums
currently have to store a copy of the iter in the btrfs_bio. Move
the assignment into common code.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add a bbio local variable and to prepare for calling functions that
return a blk_status_t, rename the existing int used for error handling
so that ret can be reused for the blk_status_t, and a label that can be
reused for failing the passed in bio.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The csums argument is always NULL now, so remove it and always allocate
the csums array in the btrfs_bio. Also pass the btrfs_bio instead of
inode + bio to document that this function requires a btrfs_bio and
not just any bio.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
To prepare for pending changes drop the optimization to only look up
csums once per bio that is submitted from the iomap layer. In the
short run this does cause additional lookups for fragmented direct
reads, but later in the series, the bio based lookup will be used on
the entire bio submitted from iomap, restoring the old behavior
in common code.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All btrfs_bio I/Os are associated with an inode. Add a pointer to that
inode, which will allow to simplify a lot of calling conventions, and
which will be needed in the I/O completion path in the future.
This grow the btrfs_bio structure by a pointer, but that grows will
be offset by the removal of the device pointer soon.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Update the comments on btrfs_bio to better describe the structure.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In rbio_update_error_bitmap(), we need to calculate the length of the
rbio. As since it's called in the endio function, we can not directly
grab the length from bi_iter.
Currently we call bio_for_each_segment_all(), which will always return a
range inside a page. But that's not necessary as we don't really care
about anything inside the page.
So use bio_for_each_bvec_all(), which can return a bvec across multiple
continuous pages thus reduce the loops.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There quite a few spelling mistakes as found using codespell. Fix them.
Signed-off-by: Colin Ian King <colin.i.king@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
During fiemap, when checking if a data extent is shared we are doing the
backref walking even if we already know the leaf is shared, which is a
waste of time since if the leaf shared then the data extent is also
shared. So skip the backref walking when we know we are in a shared leaf.
The following test was measures the gains for a case where all leaves
are shared due to a snapshot:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdj
MNT=/mnt/sdj
umount $DEV &> /dev/null
mkfs.btrfs -f $DEV
# Use compression to quickly create files with a lot of extents
# (each with a size of 128K).
mount -o compress=lzo $DEV $MNT
# 40G gives 327680 extents, each with a size of 128K.
xfs_io -f -c "pwrite -S 0xab -b 1M 0 40G" $MNT/foobar
# Add some more files to increase the size of the fs and extent
# trees (in the real world there's a lot of files and extents
# from other files).
xfs_io -f -c "pwrite -S 0xcd -b 1M 0 20G" $MNT/file1
xfs_io -f -c "pwrite -S 0xef -b 1M 0 20G" $MNT/file2
xfs_io -f -c "pwrite -S 0x73 -b 1M 0 20G" $MNT/file3
# Create a snapshot so all the extents become indirectly shared
# through subtrees, with a generation less than or equals to the
# generation used to create the snapshot.
btrfs subvolume snapshot -r $MNT $MNT/snap1
# Unmount and mount again to clear cached metadata.
umount $MNT
mount -o compress=lzo $DEV $MNT
start=$(date +%s%N)
# The filefrag tool uses the fiemap ioctl.
filefrag $MNT/foobar
end=$(date +%s%N)
dur=$(( (end - start) / 1000000 ))
echo "fiemap took $dur milliseconds (metadata not cached)"
echo
start=$(date +%s%N)
filefrag $MNT/foobar
end=$(date +%s%N)
dur=$(( (end - start) / 1000000 ))
echo "fiemap took $dur milliseconds (metadata cached)"
umount $MNT
The results were the following on a non-debug kernel (Debian's default
kernel config).
Before this patch:
(...)
/mnt/sdi/foobar: 327680 extents found
fiemap took 1821 milliseconds (metadata not cached)
/mnt/sdi/foobar: 327680 extents found
fiemap took 399 milliseconds (metadata cached)
After this patch:
(...)
/mnt/sdi/foobar: 327680 extents found
fiemap took 591 milliseconds (metadata not cached)
/mnt/sdi/foobar: 327680 extents found
fiemap took 123 milliseconds (metadata cached)
That's a speedup of 3.1x and 3.2x.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
During fiemap, when accessing the cache that stores the sharedness of an
extent, we need to either be holding a transaction handle or the commit
root semaphore. I left comments about this in the comment that precedes
store_backref_shared_cache() and lookup_backref_shared_cache(), but have
actually not enforced it through assertions. So assert that the commit
root semaphore is held if we are not holding a transaction handle.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Async discard does not acquire the block group reference count while it
holds a reference on the discard list. This is generally OK, as the
paths which destroy block groups tend to try to synchronize on
cancelling async discard work. However, relying on cancelling work
requires careful analysis to be sure it is safe from races with
unpinning scheduling more work.
While I am unable to find a race with unpinning in the current code for
either the unused bgs or relocation paths, I believe we have one in an
older version of auto relocation in a Meta internal build. This suggests
that this is in fact an error prone model, and could be fragile to
future changes to these bg deletion paths.
To make this ownership more clear, add a refcount for async discard. If
work is queued for a block group, its refcount should be incremented,
and when work is completed or canceled, it should be decremented.
CC: stable@vger.kernel.org # 5.15+
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
Whenever we add or remove an entry to a directory, we issue an utimes
command for the directory. If we add 1000 entries to a directory (create
1000 files under it or move 1000 files to it), then we issue the same
utimes command 1000 times, which increases the send stream size, results
in more pipe IO, one search in the send b+tree, allocating one path for
the search, etc, as well as making the receiver do a system call for each
duplicated utimes command.
We also issue an utimes command when we create a new directory, but later
we might add entries to it corresponding to inodes with an higher inode
number, so it's pointless to issue the utimes command before we create
the last inode under the directory.
So use a lru cache to track directories for which we must send a utimes
command. When we need to remove an entry from the cache, we issue the
utimes command for the respective directory. When finishing the send
operation, we go over each cache element and issue the respective utimes
command. Finally the caching is entirely optional, just a performance
optimization, meaning that if we fail to cache (due to memory allocation
failure), we issue the utimes command right away, that is, we fallback
to the previous, unoptimized, behaviour.
This patch belongs to a patchset comprised of the following patches:
btrfs: send: directly return from did_overwrite_ref() and simplify it
btrfs: send: avoid unnecessary generation search at did_overwrite_ref()
btrfs: send: directly return from will_overwrite_ref() and simplify it
btrfs: send: avoid extra b+tree searches when checking reference overrides
btrfs: send: remove send_progress argument from can_rmdir()
btrfs: send: avoid duplicated orphan dir allocation and initialization
btrfs: send: avoid unnecessary orphan dir rbtree search at can_rmdir()
btrfs: send: reduce searches on parent root when checking if dir can be removed
btrfs: send: iterate waiting dir move rbtree only once when processing refs
btrfs: send: initialize all the red black trees earlier
btrfs: send: genericize the backref cache to allow it to be reused
btrfs: adapt lru cache to allow for 64 bits keys on 32 bits systems
btrfs: send: cache information about created directories
btrfs: allow a generation number to be associated with lru cache entries
btrfs: add an api to delete a specific entry from the lru cache
btrfs: send: use the lru cache to implement the name cache
btrfs: send: update size of roots array for backref cache entries
btrfs: send: cache utimes operations for directories if possible
The following test was run before and after applying the whole patchset,
and on a non-debug kernel (Debian's default kernel config):
#!/bin/bash
MNT=/mnt/sdi
DEV=/dev/sdi
mkfs.btrfs -f $DEV > /dev/null
mount $DEV $MNT
mkdir $MNT/A
for ((i = 1; i <= 20000; i++)); do
echo -n > $MNT/A/file_$i
done
btrfs subvolume snapshot -r $MNT $MNT/snap1
mkdir $MNT/B
for ((i = 20000; i <= 40000; i++)); do
echo -n > $MNT/B/file_$i
done
mv $MNT/A/file_* $MNT/B/
btrfs subvolume snapshot -r $MNT $MNT/snap2
start=$(date +%s%N)
btrfs send -p $MNT/snap1 $MNT/snap2 > /dev/null
end=$(date +%s%N)
dur=$(( (end - start) / 1000000 ))
echo "Incremental send took $dur milliseconds"
umount $MNT
Before the whole patchset: 18408 milliseconds
After the whole patchset: 1942 milliseconds (9.5x speedup)
Using 60000 files instead of 40000:
Before the whole patchset: 39764 milliseconds
After the whole patchset: 3076 milliseconds (12.9x speedup)
Using 20000 files instead of 40000:
Before the whole patchset: 5072 milliseconds
After the whole patchset: 916 milliseconds (5.5x speedup)
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we limit the size of the roots array, for backref cache entries,
to 12 elements. This is because that number is enough for most cases and
to make the backref cache entry size to be exactly 128 bytes, so that
memory is allocated from the kmalloc-128 slab and no space is wasted.
However recent changes in the series refactored the backref cache to be
more generic and allow it to be reused for other purposes, which resulted
in increasing the size of the embedded structure btrfs_lru_cache_entry in
order to allow for supporting inode numbers as keys on 32 bits system and
allow multiple generations per key. This resulted in increasing the size
of struct backref_cache_entry from 128 bytes to 152 bytes. Since the cache
entries are allocated with kmalloc(), it means we end up using the slab
kmalloc-192, so we end up wasting 40 bytes of memory. So bump the size of
the roots array from 12 elements to 17 elements, so we end up using 192
bytes for each backref cache entry.
This patch is part of a larger patchset and the changelog of the last
patch in the series contains a sample performance test and results.
The patches that comprise the patchset are the following:
btrfs: send: directly return from did_overwrite_ref() and simplify it
btrfs: send: avoid unnecessary generation search at did_overwrite_ref()
btrfs: send: directly return from will_overwrite_ref() and simplify it
btrfs: send: avoid extra b+tree searches when checking reference overrides
btrfs: send: remove send_progress argument from can_rmdir()
btrfs: send: avoid duplicated orphan dir allocation and initialization
btrfs: send: avoid unnecessary orphan dir rbtree search at can_rmdir()
btrfs: send: reduce searches on parent root when checking if dir can be removed
btrfs: send: iterate waiting dir move rbtree only once when processing refs
btrfs: send: initialize all the red black trees earlier
btrfs: send: genericize the backref cache to allow it to be reused
btrfs: adapt lru cache to allow for 64 bits keys on 32 bits systems
btrfs: send: cache information about created directories
btrfs: allow a generation number to be associated with lru cache entries
btrfs: add an api to delete a specific entry from the lru cache
btrfs: send: use the lru cache to implement the name cache
btrfs: send: update size of roots array for backref cache entries
btrfs: send: cache utimes operations for directories if possible
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The name cache in send is basically a lru cache implemented with a radix
tree and linked lists, very similar to the lru cache module which is used
for the send backref cache and the cache of previously created directories
during a send operation. So remove all the custom caching code for the
name cache and make it use the lru cache instead.
One particular detail to note is that the current cache behaves a bit
differently when it comes to eviction of entries. Namely when after
inserting a new name in the cache, if the cache now has 256 entries, we
evict the last 128 LRU entries. The lru_cache.{c,h} module behaves a bit
differently in that once we reach the cache limit, we evict a single LRU
entry. In practice this doesn't make much difference, but it's actually
better to evict just one entry instead of half of the entries, as there's
always a chance we will need a name stored in one of that last 128 removed
entries.
This patch is part of a larger patchset and the changelog of the last
patch in the series contains a sample performance test and results.
The patches that comprise the patchset are the following:
btrfs: send: directly return from did_overwrite_ref() and simplify it
btrfs: send: avoid unnecessary generation search at did_overwrite_ref()
btrfs: send: directly return from will_overwrite_ref() and simplify it
btrfs: send: avoid extra b+tree searches when checking reference overrides
btrfs: send: remove send_progress argument from can_rmdir()
btrfs: send: avoid duplicated orphan dir allocation and initialization
btrfs: send: avoid unnecessary orphan dir rbtree search at can_rmdir()
btrfs: send: reduce searches on parent root when checking if dir can be removed
btrfs: send: iterate waiting dir move rbtree only once when processing refs
btrfs: send: initialize all the red black trees earlier
btrfs: send: genericize the backref cache to allow it to be reused
btrfs: adapt lru cache to allow for 64 bits keys on 32 bits systems
btrfs: send: cache information about created directories
btrfs: allow a generation number to be associated with lru cache entries
btrfs: add an api to delete a specific entry from the lru cache
btrfs: send: use the lru cache to implement the name cache
btrfs: send: update size of roots array for backref cache entries
btrfs: send: cache utimes operations for directories if possible
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
They are not used, let's remove them.
Signed-off-by: Yangtao Li <frank.li@vivo.com>
Reviewed-by: Chao Yu <chao@kernel.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
We should not truncate replaced blocks, and were supposed to truncate the first
part as well.
This reverts commit 78a99fe625.
Cc: stable@vger.kernel.org
Reviewed-by: Chao Yu <chao@kernel.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
kmap_atomic() is deprecated in favor of kmap_local_page().
With kmap_local_page() the mappings are per thread, CPU local, can take
page-faults, and can be called from any context (including interrupts).
Furthermore, the tasks can be preempted and, when they are scheduled to
run again, the kernel virtual addresses are restored and still valid.
kmap_atomic() is implemented like a kmap_local_page() which also disables
page-faults and preemption (the latter only for !PREEMPT_RT kernels,
otherwise it only disables migration).
The code within the mappings/un-mappings in the functions of dir.c don't
depend on the above-mentioned side effects of kmap_atomic(), so that mere
replacements of the old API with the new one is all that is required
(i.e., there is no need to explicitly add calls to pagefault_disable()
and/or preempt_disable()).
Therefore, replace kmap_atomic() with kmap_local_page() in fs/nfs/dir.c.
Tested in a QEMU/KVM x86_32 VM, 6GB RAM, booting a kernel with
HIGHMEM64GB enabled.
Suggested-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Fabio M. De Francesco <fmdefrancesco@gmail.com>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
When GETDEVICEINFO call fails, return the layout and fall back to MDS.
Signed-off-by: Olga Kornievskaia <kolga@netapp.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
The NFSv4.2 server even if supports intra-SSC might prefer that for
a particular file a classic copy is performed. As returning ENOTSUPP
will clear the SSC capability of the server by the client, server
might return NFS4ERR_OFFLOAD_DENIED (well, spec talks about remote
servers there).
Update nfs42_proc_copy to handle NFS4ERR_OFFLOAD_DENIED as ENOTSUPP,
but without clearing NFS_CAP_COPY bit.
Signed-off-by: Tigran Mkrtchyan <tigran.mkrtchyan@desy.de>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
When swap is activated to a file on an NFSv4 mount we arrange that the
state manager thread is always present as starting a new thread requires
memory allocations that might block waiting for swap.
Unfortunately the code for allowing the state manager thread to exit when
swap is disabled was not tested properly and does not work.
This can be seen by examining /proc/fs/nfsfs/servers after disabling swap
and unmounting the filesystem. The servers file will still list one
entry. Also a "ps" listing will show the state manager thread is still
present.
There are two problems.
1/ rpc_clnt_swap_deactivate() doesn't walk up the ->cl_parent list to
find the primary client on which the state manager runs.
2/ The thread is not woken up properly and it immediately goes back to
sleep without checking whether it is really needed. Using
nfs4_schedule_state_manager() ensures a proper wake-up.
Reported-by: Olga Kornievskaia <aglo@umich.edu>
Fixes: 4dc73c6791 ("NFSv4: keep state manager thread active if swap is enabled")
Signed-off-by: NeilBrown <neilb@suse.de>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
ksmbd allowed the actual frame length to be smaller than the rfc1002
length. If allowed, it is possible to allocates a large amount of memory
that can be limited by credit management and can eventually cause memory
exhaustion problem. This patch do not allow it except SMB2 Negotiate
request which will be validated when message handling proceeds.
Also, Allow a message that padded to 8byte boundary.
Fixes: e2f34481b2 ("cifsd: add server-side procedures for SMB3")
Cc: stable@vger.kernel.org
Signed-off-by: Namjae Jeon <linkinjeon@kernel.org>
Signed-off-by: Steve French <stfrench@microsoft.com>
When turning debug mode on, The following error message from
ksmbd_smb2_check_message() is coming.
ksmbd: cli req padded more than expected. Length 112 not 88 for cmd:10 mid:14
data area length calculation for smb2 lock request in smb2_get_data_area_len() is
incorrect.
Fixes: e2f34481b2 ("cifsd: add server-side procedures for SMB3")
Cc: stable@vger.kernel.org
Signed-off-by: Namjae Jeon <linkinjeon@kernel.org>
Signed-off-by: Steve French <stfrench@microsoft.com>
fs/ksmbd/vfs.c:965: warning: Function parameter or member 'attr_value' not described in 'ksmbd_vfs_setxattr'.
Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Link: https://bugzilla.openanolis.cn/show_bug.cgi?id=3946
Signed-off-by: Jiapeng Chong <jiapeng.chong@linux.alibaba.com>
Acked-by: Namjae Jeon <linkinjeon@kernel.org>
Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Signed-off-by: Steve French <stfrench@microsoft.com>
In the dio write path, we only take shared inode lock for the case of
aligned overwriting initialized blocks inside EOF. But for overwriting
preallocated blocks, it may only need to split unwritten extents, this
procedure has been protected under i_data_sem lock, it's safe to
release the exclusive inode lock and take shared inode lock.
This could give a significant speed up for multi-threaded writes. Test
on Intel Xeon Gold 6140 and nvme SSD with below fio parameters.
direct=1
ioengine=libaio
iodepth=10
numjobs=10
runtime=60
rw=randwrite
size=100G
And the test result are:
Before:
bs=4k IOPS=11.1k, BW=43.2MiB/s
bs=16k IOPS=11.1k, BW=173MiB/s
bs=64k IOPS=11.2k, BW=697MiB/s
After:
bs=4k IOPS=41.4k, BW=162MiB/s
bs=16k IOPS=41.3k, BW=646MiB/s
bs=64k IOPS=13.5k, BW=843MiB/s
Signed-off-by: Zhang Yi <yi.zhang@huawei.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221226062015.3479416-1-yi.zhang@huaweicloud.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
If the end position of a GETFSMAP query overlaps an allocated space and
we're using the free space info to generate fsmap info, the akeys
information gets fed into the fsmap formatter with bad results.
Zero-init the space.
Reported-by: syzbot+090ae72d552e6bd93cfe@syzkaller.appspotmail.com
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Currently there're two anonymous inodes (inode and anon_inode in struct
erofs_fscache) for each blob. The former was introduced as the
address_space of page cache for bootstrap.
The latter was initially introduced as both the address_space of page
cache and also a sentinel in the shared domain. Since now the management
of cookies in share domain has been decoupled with the anonymous inode,
there's no need to maintain an extra anonymous inode. Let's unify these
two anonymous inodes.
Besides, in non-share-domain mode only bootstrap will allocate anonymous
inode. To simplify the implementation, always allocate anonymous inode
for both bootstrap and data blobs. Similarly release anonymous inodes
for data blobs when .put_super() is called, or we'll get "VFS: Busy
inodes after unmount." warning.
Also remove the redundant set_nlink() when initializing the anonymous
inode, since i_nlink has already been initialized to 1 when the inode
gets allocated.
Signed-off-by: Jingbo Xu <jefflexu@linux.alibaba.com>
Reviewed-by: Jia Zhu <zhujia.zj@bytedance.com>
Link: https://lore.kernel.org/r/20230209063913.46341-5-jefflexu@linux.alibaba.com
Signed-off-by: Gao Xiang <hsiangkao@linux.alibaba.com>
Relinquish fscache volume with mutex held. Otherwise if a new domain is
registered when the old domain with the same name gets removed from the
list but not relinquished yet, fscache may complain the collision.
Fixes: 8b7adf1dff ("erofs: introduce fscache-based domain")
Signed-off-by: Jingbo Xu <jefflexu@linux.alibaba.com>
Reviewed-by: Jia Zhu <zhujia.zj@bytedance.com>
Link: https://lore.kernel.org/r/20230209063913.46341-4-jefflexu@linux.alibaba.com
Signed-off-by: Gao Xiang <hsiangkao@linux.alibaba.com>
We'd better not touch sb->s_inodes list and inode->i_count directly.
Let's maintain cookies of share domain in a self-contained list in erofs.
Besides, relinquish cookie with the mutex held. Otherwise if a cookie
is registered when the old cookie with the same name in the same domain
has been removed from the list but not relinquished yet, fscache may
complain "Duplicate cookie detected".
Signed-off-by: Jingbo Xu <jefflexu@linux.alibaba.com>
Reviewed-by: Jia Zhu <zhujia.zj@bytedance.com>
Link: https://lore.kernel.org/r/20230209063913.46341-3-jefflexu@linux.alibaba.com
Signed-off-by: Gao Xiang <hsiangkao@linux.alibaba.com>
Currently metadata is always on bootstrap, and thus device mapping is
not needed so far. Remove the redundant device mapping in the meta
routine.
Signed-off-by: Jingbo Xu <jefflexu@linux.alibaba.com>
Reviewed-by: Jia Zhu <zhujia.zj@bytedance.com>
Reviewed-by: Chao Yu <chao@kernel.org>
Link: https://lore.kernel.org/r/20230209063913.46341-2-jefflexu@linux.alibaba.com
Signed-off-by: Gao Xiang <hsiangkao@linux.alibaba.com>
For erofs_map_blocks() and erofs_map_blocks_flatmode(), the flags
argument is always EROFS_GET_BLOCKS_RAW. Thus remove the unused flags
parameter for these two functions.
Besides EROFS_GET_BLOCKS_RAW is originally introduced for reading
compressed (raw) data for compressed files. However it's never used
actually and let's remove it now.
Signed-off-by: Jingbo Xu <jefflexu@linux.alibaba.com>
Reviewed-by: Yue Hu <huyue2@coolpad.com>
Reviewed-by: Gao Xiang <hsiangkao@linux.alibaba.com>
Reviewed-by: Chao Yu <chao@kernel.org>
Link: https://lore.kernel.org/r/20230209024825.17335-2-jefflexu@linux.alibaba.com
Signed-off-by: Gao Xiang <hsiangkao@linux.alibaba.com>
Since commit ee6d3dd4ed ("driver core: make kobj_type constant.")
the driver core allows the usage of const struct kobj_type.
Take advantage of this to constify the structure definitions to prevent
modification at runtime.
Signed-off-by: Thomas Weißschuh <linux@weissschuh.net>
Acked-by: Gao Xiang <hsiangkao@linux.alibaba.com>
Reviewed-by: Jingbo Xu <jefflexu@linux.alibaba.com>
Reviewed-by: Yue Hu <huyue2@coolpad.com>
Reviewed-by: Chao Yu <chao@kernel.org>
Link: https://lore.kernel.org/r/20230209-kobj_type-erofs-v1-1-078c945e2c4b@weissschuh.net
Signed-off-by: Gao Xiang <hsiangkao@linux.alibaba.com>
Using per-cpu thread pool we can reduce the scheduling latency compared
to workqueue implementation. With this patch scheduling latency and
variation is reduced as per-cpu threads are high priority kthread_workers.
The results were evaluated on arm64 Android devices running 5.10 kernel.
The table below shows resulting improvements of total scheduling latency
for the same app launch benchmark runs with 50 iterations. Scheduling
latency is the latency between when the task (workqueue kworker vs
kthread_worker) became eligible to run to when it actually started
running.
+-------------------------+-----------+----------------+---------+
| | workqueue | kthread_worker | diff |
+-------------------------+-----------+----------------+---------+
| Average (us) | 15253 | 2914 | -80.89% |
| Median (us) | 14001 | 2912 | -79.20% |
| Minimum (us) | 3117 | 1027 | -67.05% |
| Maximum (us) | 30170 | 3805 | -87.39% |
| Standard deviation (us) | 7166 | 359 | |
+-------------------------+-----------+----------------+---------+
Background: Boot times and cold app launch benchmarks are very
important to the Android ecosystem as they directly translate to
responsiveness from user point of view. While EROFS provides
a lot of important features like space savings, we saw some
performance penalty in cold app launch benchmarks in few scenarios.
Analysis showed that the significant variance was coming from the
scheduling cost while decompression cost was more or less the same.
Having per-cpu thread pool we can see from the above table that this
variation is reduced by ~80% on average. This problem was discussed
at LPC 2022. Link to LPC 2022 slides and talk at [1]
[1] https://lpc.events/event/16/contributions/1338/
[ Gao Xiang: At least, we have to add this until WQ_UNBOUND workqueue
issue [2] on many arm64 devices is resolved. ]
[2] https://lore.kernel.org/r/CAJkfWY490-m6wNubkxiTPsW59sfsQs37Wey279LmiRxKt7aQYg@mail.gmail.com
Signed-off-by: Sandeep Dhavale <dhavale@google.com>
Signed-off-by: Gao Xiang <hsiangkao@linux.alibaba.com>
Link: https://lore.kernel.org/r/20230208093322.75816-1-hsiangkao@linux.alibaba.com
The code can be neater without forward declarations. Let's
get rid of z_erofs_do_map_blocks() forward declaration.
Reviewed-by: Yue Hu <huyue2@coolpad.com>
Reviewed-by: Chao Yu <chao@kernel.org>
Signed-off-by: Gao Xiang <hsiangkao@linux.alibaba.com>
Link: https://lore.kernel.org/r/20230204093040.97967-5-hsiangkao@linux.alibaba.com
Definitions in zdata.h are only used in zdata.c and for internal
use only. No logic changes.
Reviewed-by: Yue Hu <huyue2@coolpad.com>
Reviewed-by: Chao Yu <chao@kernel.org>
Signed-off-by: Gao Xiang <hsiangkao@linux.alibaba.com>
Link: https://lore.kernel.org/r/20230204093040.97967-4-hsiangkao@linux.alibaba.com
We could just use a boolean in z_erofs_decompressqueue for sync
decompression to simplify the code.
Reviewed-by: Yue Hu <huyue2@coolpad.com>
Reviewed-by: Chao Yu <chao@kernel.org>
Signed-off-by: Gao Xiang <hsiangkao@linux.alibaba.com>
Link: https://lore.kernel.org/r/20230204093040.97967-2-hsiangkao@linux.alibaba.com
erofs_inode_datablocks() has the only one caller, let's just get
rid of it entirely. No logic changes.
Reviewed-by: Yue Hu <huyue2@coolpad.com>
Reviewed-by: Jingbo Xu <jefflexu@linux.alibaba.com>
Reviewed-by: Chao Yu <chao@kernel.org>
Signed-off-by: Gao Xiang <hsiangkao@linux.alibaba.com>
Link: https://lore.kernel.org/r/20230204093040.97967-1-hsiangkao@linux.alibaba.com
Actually we could pass in inodes directly to clean up all callers.
Also rename iloc() as erofs_iloc().
Link: https://lore.kernel.org/r/20230114150823.432069-1-xiang@kernel.org
Reviewed-by: Yue Hu <huyue2@coolpad.com>
Reviewed-by: Jingbo Xu <jefflexu@linux.alibaba.com>
Reviewed-by: Chao Yu <chao@kernel.org>
Signed-off-by: Gao Xiang <hsiangkao@linux.alibaba.com>
Since erofsdump is available, no need to keep this debugging
functionality at all.
Also drop a useless comment since it's the VFS behavior.
Link: https://lore.kernel.org/r/20230114125746.399253-1-xiang@kernel.org
Reviewed-by: Yue Hu <huyue2@coolpad.com>
Reviewed-by: Jingbo Xu <jefflexu@linux.alibaba.com>
Reviewed-by: Chao Yu <chao@kernel.org>
Signed-off-by: Gao Xiang <hsiangkao@linux.alibaba.com>
__print_flags wants a mask, not the enum value. Add two more flags.
Fixes: 511ba52e4c ("NFS4: Trace state recovery operation")
Signed-off-by: Benjamin Coddington <bcodding@redhat.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
All the callers are expected to supply a valid struct file argument, so
there is no need for the NULL check.
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Dan Carpenter <error27@gmail.com>
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Include info about which folio is being traced.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
If the gfp context allows it, and we're not kswapd, then try to write
out the folio that has private data.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Rather than adjusting the index+offset after the call to
nfs_create_request(), add a function nfs_page_create_from_page() that
takes an offset.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Mechanical conversion of struct page and functions into the folio
equivalents.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Add a helper nfs_folio_grab_cache_write_begin() that can call
__filemap_get_folio() directly with the appropriate parameters.
Since write_begin()/write_end() take struct page arguments, just pass
the folio->page back for now.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Mostly mechanical conversion of struct page and functions into struct
folio equivalents.
The lack of support for folios in write_cache_pages(), means we still
only support order 0 folio allocations. However the rest of the
writeback code should now be ready for order n > 0.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Convert to use the folio functions, but pass the struct page to
nfs_writepage_locked() for now.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Perform a largely mechanical conversion of references to struct page and
page-specific functions to use the folio equivalents.
Note that the fscache functionality remains untouched. Instead we just
pass in the folio page. This should be OK, as long as we use order 0
folios together with fscache.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
...and use it in nfs_launder_folio().
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Allow creation of subrequests from a request that is carrying a folio.
Add helpers to set up and tear down requests carrying folios.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Replace all the open coded calls to page_file_mapping(req->wb_page)->host.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Use the helper folio_size() where appropriate.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Add support for multi-page folios in the generic NFS i/o engine.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
If the same page and data is being used for multiple requests,
then ignore that when the request indicates we're reading from the start
of the page.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
To fix a race condition between atomic write aborts, I use the inode
lock and make COW inode to be re-usable thoroughout the whole
atomic file inode lifetime.
Reported-by: syzbot+823000d23b3400619f7c@syzkaller.appspotmail.com
Fixes: 3db1de0e58 ("f2fs: change the current atomic write way")
Signed-off-by: Daeho Jeong <daehojeong@google.com>
Reviewed-by: Chao Yu <chao@kernel.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
MAIN_SEGS is for data area, while TOTAL_SEGS includes data and metadata.
Reviewed-by: Chao Yu <chao@kernel.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
For each loop add a local f2fs_sb_info pointer insted of looking it up.
Signed-off-by: Yangtao Li <frank.li@vivo.com>
Reviewed-by: Chao Yu <chao@kernel.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Export ipu_policy as a string in debugfs for better readability and
it can help us better understand some strategies of the file system.
Signed-off-by: Yangtao Li <frank.li@vivo.com>
Reviewed-by: Chao Yu <chao@kernel.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Every caller of hugetlb_add_to_page_cache() is now passing in
&folio->page, change the function to take in a folio directly and clean up
the call sites.
Link: https://lkml.kernel.org/r/20230125170537.96973-7-sidhartha.kumar@oracle.com
Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Every caller of restore_reserve_on_error() is now passing in &folio->page,
change the function to take in a folio directly and clean up the call
sites.
Link: https://lkml.kernel.org/r/20230125170537.96973-6-sidhartha.kumar@oracle.com
Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Change alloc_huge_page() to alloc_hugetlb_folio() by changing all callers
to handle the now folio return type of the function. In this conversion,
alloc_huge_page_vma() is also changed to alloc_hugetlb_folio_vma() and
hugepage_add_new_anon_rmap() is changed to take in a folio directly. Many
additions of '&folio->page' are cleaned up in subsequent patches.
hugetlbfs_fallocate() is also refactored to use the RCU +
page_cache_next_miss() API.
Link: https://lkml.kernel.org/r/20230125170537.96973-5-sidhartha.kumar@oracle.com
Suggested-by: Mike Kravetz <mike.kravetz@oracle.com>
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY+qxtQAKCRDdBJ7gKXxA
jmvNAP4vwrZJ/eXlp/JC35r84fT6ykMQLbv+oT6rG7lx8aH2JgEA5QSYTBvcb4VF
n6tf6OpZbCHtvTPy4/+aVj7hW0XUnAY=
=C92n
-----END PGP SIGNATURE-----
Merge tag 'mm-hotfixes-stable-2023-02-13-13-50' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull misc fixes from Andrew Morton:
"Twelve hotfixes, mostly against mm/.
Five of these fixes are cc:stable"
* tag 'mm-hotfixes-stable-2023-02-13-13-50' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm:
of: reserved_mem: Have kmemleak ignore dynamically allocated reserved mem
scripts/gdb: fix 'lx-current' for x86
lib: parser: optimize match_NUMBER apis to use local array
mm: shrinkers: fix deadlock in shrinker debugfs
mm: hwpoison: support recovery from ksm_might_need_to_copy()
kasan: fix Oops due to missing calls to kasan_arch_is_ready()
revert "squashfs: harden sanity check in squashfs_read_xattr_id_table"
fsdax: dax_unshare_iter() should return a valid length
mm/gup: add folio to list when folio_isolate_lru() succeed
aio: fix mremap after fork null-deref
mailmap: add entry for Alexander Mikhalitsyn
mm: extend max struct page size for kmsan
Since commit ee6d3dd4ed ("driver core: make kobj_type constant.")
the driver core allows the usage of const struct kobj_type.
Take advantage of this to constify the structure definitions to prevent
modification at runtime.
Signed-off-by: Thomas Weißschuh <linux@weissschuh.net>
Reviewed-by: Zhihao Cheng <chengzhihao1@huawei.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
Since commit ee6d3dd4ed ("driver core: make kobj_type constant.")
the driver core allows the usage of const struct kobj_type.
Take advantage of this to constify the structure definitions to prevent
modification at runtime.
Signed-off-by: Thomas Weißschuh <linux@weissschuh.net>
Reviewed-by: Chao Yu <chao@kernel.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
In order to replace the open coded name cache in send with the lru cache,
we need an API for the lru cache to delete a specific entry for which we
did a previous lookup. This adds the API for it, and a next patch in the
series will use it.
This patch is part of a larger patchset and the changelog of the last
patch in the series contains a sample performance test and results.
The patches that comprise the patchset are the following:
btrfs: send: directly return from did_overwrite_ref() and simplify it
btrfs: send: avoid unnecessary generation search at did_overwrite_ref()
btrfs: send: directly return from will_overwrite_ref() and simplify it
btrfs: send: avoid extra b+tree searches when checking reference overrides
btrfs: send: remove send_progress argument from can_rmdir()
btrfs: send: avoid duplicated orphan dir allocation and initialization
btrfs: send: avoid unnecessary orphan dir rbtree search at can_rmdir()
btrfs: send: reduce searches on parent root when checking if dir can be removed
btrfs: send: iterate waiting dir move rbtree only once when processing refs
btrfs: send: initialize all the red black trees earlier
btrfs: send: genericize the backref cache to allow it to be reused
btrfs: adapt lru cache to allow for 64 bits keys on 32 bits systems
btrfs: send: cache information about created directories
btrfs: allow a generation number to be associated with lru cache entries
btrfs: add an api to delete a specific entry from the lru cache
btrfs: send: use the lru cache to implement the name cache
btrfs: send: update size of roots array for backref cache entries
btrfs: send: cache utimes operations for directories if possible
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This allows an optional generation number to be associated to each entry
of the lru cache. Entries with the same key but different generations, are
stored in the linked list to which the maple tree points to. This is meant
to be used when there's a small number of different generations, so the
impact of searching a linked list is negligible. The goal is to get rid of
the open coded name cache in the send code (which uses a radix tree and
a similar linked list of values/entries) and use instead the lru cache
module. For that particular use case we have at most 2 generations that
are associated to each key (inode number): one generation for the send
root and another generation for the parent root. The actual migration of
the send name cache is done in the next patch in the series.
This patch is part of a larger patchset and the changelog of the last
patch in the series contains a sample performance test and results.
The patches that comprise the patchset are the following:
btrfs: send: directly return from did_overwrite_ref() and simplify it
btrfs: send: avoid unnecessary generation search at did_overwrite_ref()
btrfs: send: directly return from will_overwrite_ref() and simplify it
btrfs: send: avoid extra b+tree searches when checking reference overrides
btrfs: send: remove send_progress argument from can_rmdir()
btrfs: send: avoid duplicated orphan dir allocation and initialization
btrfs: send: avoid unnecessary orphan dir rbtree search at can_rmdir()
btrfs: send: reduce searches on parent root when checking if dir can be removed
btrfs: send: iterate waiting dir move rbtree only once when processing refs
btrfs: send: initialize all the red black trees earlier
btrfs: send: genericize the backref cache to allow it to be reused
btrfs: adapt lru cache to allow for 64 bits keys on 32 bits systems
btrfs: send: cache information about created directories
btrfs: allow a generation number to be associated with lru cache entries
btrfs: add an api to delete a specific entry from the lru cache
btrfs: send: use the lru cache to implement the name cache
btrfs: send: update size of roots array for backref cache entries
btrfs: send: cache utimes operations for directories if possible
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
During an incremental send, when processing the reference for an inode
we need to check if the directory where the new reference is located was
already created before creating the new reference. This check, which is
done by the helper did_create_dir(), can be expensive if the directory
has many entries, since it consists in searching the send root's b+tree
and visiting every single dir index key until we either find one which
points to an inode with a number smaller than the current inode's number
or until we visited all index keys. So it doesn't scale well for very
large directories.
So improve on this by caching created directories using a lru cache, and
limiting its size to 64 entries, which results in using at most 4096
bytes of memory. The caching is optional, if we fail to allocate memory,
we just proceed as before and use the existing slower path.
This patch is part of a larger patchset and the changelog of the last
patch in the series contains a sample performance test and results.
The patches that comprise the patchset are the following:
btrfs: send: directly return from did_overwrite_ref() and simplify it
btrfs: send: avoid unnecessary generation search at did_overwrite_ref()
btrfs: send: directly return from will_overwrite_ref() and simplify it
btrfs: send: avoid extra b+tree searches when checking reference overrides
btrfs: send: remove send_progress argument from can_rmdir()
btrfs: send: avoid duplicated orphan dir allocation and initialization
btrfs: send: avoid unnecessary orphan dir rbtree search at can_rmdir()
btrfs: send: reduce searches on parent root when checking if dir can be removed
btrfs: send: iterate waiting dir move rbtree only once when processing refs
btrfs: send: initialize all the red black trees earlier
btrfs: send: genericize the backref cache to allow it to be reused
btrfs: adapt lru cache to allow for 64 bits keys on 32 bits systems
btrfs: send: cache information about created directories
btrfs: allow a generation number to be associated with lru cache entries
btrfs: add an api to delete a specific entry from the lru cache
btrfs: send: use the lru cache to implement the name cache
btrfs: send: update size of roots array for backref cache entries
btrfs: send: cache utimes operations for directories if possible
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The lru cache is backed by a maple tree, which uses the unsigned long
type for keys, and that type has a width of 32 bits on 32 bits systems
and a width of 64 bits on 64 bits systems.
Currently there is only one user of the lru cache, the send backref cache,
which uses a sector number as a key, a logical address right shifted by
fs_info->sectorsize_bits, so a 32 bits width is not yet a problem (the
same happens with the radix tree we use to track extent buffers,
fs_info->buffer_radix).
However the next patches in the series will start using the lru cache for
cases where inode numbers are the keys, and the inode numbers are always
64 bits, even if we are running on a 32 bits system.
So adapt the lru cache to allow multiple values under the same key, by
having the maple tree store a head entry that points to a list of entries
instead of pointing to a single entry. This is a similar approach to what
we currently do for the name cache in send (which uses a radix tree that
has indexes with an unsigned long type as well), and will allow later to
use the lru cache for the send name cache as well.
This patch is part of a larger patchset and the changelog of the last
patch in the series contains a sample performance test and results.
The patches that comprise the patchset are the following:
btrfs: send: directly return from did_overwrite_ref() and simplify it
btrfs: send: avoid unnecessary generation search at did_overwrite_ref()
btrfs: send: directly return from will_overwrite_ref() and simplify it
btrfs: send: avoid extra b+tree searches when checking reference overrides
btrfs: send: remove send_progress argument from can_rmdir()
btrfs: send: avoid duplicated orphan dir allocation and initialization
btrfs: send: avoid unnecessary orphan dir rbtree search at can_rmdir()
btrfs: send: reduce searches on parent root when checking if dir can be removed
btrfs: send: iterate waiting dir move rbtree only once when processing refs
btrfs: send: initialize all the red black trees earlier
btrfs: send: genericize the backref cache to allow it to be reused
btrfs: adapt lru cache to allow for 64 bits keys on 32 bits systems
btrfs: send: cache information about created directories
btrfs: allow a generation number to be associated with lru cache entries
btrfs: add an api to delete a specific entry from the lru cache
btrfs: send: use the lru cache to implement the name cache
btrfs: send: update size of roots array for backref cache entries
btrfs: send: cache utimes operations for directories if possible
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The backref cache is a cache backed by a maple tree and a linked list to
keep track of temporal access to cached entries (the LRU entry always at
the head of the list). This type of caching method is going to be useful
in other scenarios, so make the cache implementation more generic and
move it into its own header and source files.
This patch is part of a larger patchset and the changelog of the last
patch in the series contains a sample performance test and results.
The patches that comprise the patchset are the following:
btrfs: send: directly return from did_overwrite_ref() and simplify it
btrfs: send: avoid unnecessary generation search at did_overwrite_ref()
btrfs: send: directly return from will_overwrite_ref() and simplify it
btrfs: send: avoid extra b+tree searches when checking reference overrides
btrfs: send: remove send_progress argument from can_rmdir()
btrfs: send: avoid duplicated orphan dir allocation and initialization
btrfs: send: avoid unnecessary orphan dir rbtree search at can_rmdir()
btrfs: send: reduce searches on parent root when checking if dir can be removed
btrfs: send: iterate waiting dir move rbtree only once when processing refs
btrfs: send: initialize all the red black trees earlier
btrfs: send: genericize the backref cache to allow it to be reused
btrfs: adapt lru cache to allow for 64 bits keys on 32 bits systems
btrfs: send: cache information about created directories
btrfs: allow a generation number to be associated with lru cache entries
btrfs: add an api to delete a specific entry from the lru cache
btrfs: send: use the lru cache to implement the name cache
btrfs: send: update size of roots array for backref cache entries
btrfs: send: cache utimes operations for directories if possible
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
After we allocate the send context object and before we initialize all
the red black trees, we can jump to the 'out' label if some errors happen,
and then under the 'out' label we use RB_EMPTY_ROOT() against some of the
those trees, which we have not yet initialized. This happens to work out
ok because the send context object was initialized to zeroes with kzalloc
and the RB_ROOT initializer just happens to have the following definition:
#define RB_ROOT (struct rb_root) { NULL, }
But it's really neither clean nor a good practice as RB_ROOT is supposed
to be opaque and in case it changes or we change those red black trees to
some other data structure, it leaves us in a precarious situation.
So initialize all the red black trees immediately after allocating the
send context and before any jump into the 'out' label.
This patch is part of a larger patchset and the changelog of the last
patch in the series contains a sample performance test and results.
The patches that comprise the patchset are the following:
btrfs: send: directly return from did_overwrite_ref() and simplify it
btrfs: send: avoid unnecessary generation search at did_overwrite_ref()
btrfs: send: directly return from will_overwrite_ref() and simplify it
btrfs: send: avoid extra b+tree searches when checking reference overrides
btrfs: send: remove send_progress argument from can_rmdir()
btrfs: send: avoid duplicated orphan dir allocation and initialization
btrfs: send: avoid unnecessary orphan dir rbtree search at can_rmdir()
btrfs: send: reduce searches on parent root when checking if dir can be removed
btrfs: send: iterate waiting dir move rbtree only once when processing refs
btrfs: send: initialize all the red black trees earlier
btrfs: send: genericize the backref cache to allow it to be reused
btrfs: adapt lru cache to allow for 64 bits keys on 32 bits systems
btrfs: send: cache information about created directories
btrfs: allow a generation number to be associated with lru cache entries
btrfs: add an api to delete a specific entry from the lru cache
btrfs: send: use the lru cache to implement the name cache
btrfs: send: update size of roots array for backref cache entries
btrfs: send: cache utimes operations for directories if possible
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When processing the new references for an inode, we unnecessarily iterate
twice the waiting dir moves rbtree, once with is_waiting_for_move() and
if we found an entry in the rbtree, we iterate it again with a call to
get_waiting_dir_move(). This is pointless, we can make this simpler and
more efficient by calling only get_waiting_dir_move(), so just do that.
This patch is part of a larger patchset and the changelog of the last
patch in the series contains a sample performance test and results.
The patches that comprise the patchset are the following:
btrfs: send: directly return from did_overwrite_ref() and simplify it
btrfs: send: avoid unnecessary generation search at did_overwrite_ref()
btrfs: send: directly return from will_overwrite_ref() and simplify it
btrfs: send: avoid extra b+tree searches when checking reference overrides
btrfs: send: remove send_progress argument from can_rmdir()
btrfs: send: avoid duplicated orphan dir allocation and initialization
btrfs: send: avoid unnecessary orphan dir rbtree search at can_rmdir()
btrfs: send: reduce searches on parent root when checking if dir can be removed
btrfs: send: iterate waiting dir move rbtree only once when processing refs
btrfs: send: initialize all the red black trees earlier
btrfs: send: genericize the backref cache to allow it to be reused
btrfs: adapt lru cache to allow for 64 bits keys on 32 bits systems
btrfs: send: cache information about created directories
btrfs: allow a generation number to be associated with lru cache entries
btrfs: add an api to delete a specific entry from the lru cache
btrfs: send: use the lru cache to implement the name cache
btrfs: send: update size of roots array for backref cache entries
btrfs: send: cache utimes operations for directories if possible
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
During an incremental send, every time we remove a reference (dentry) for
an inode and the parent directory does not exists anymore in the send
root, we go check if we can remove the directory by making a call to
can_rmdir(). This helper can only return true (value 1) if all dentries
were already removed, and for that it always does a search on the parent
root for dir index keys - if it finds any dentry referring to an inode
with a number higher then the inode currently being processed, then the
directory can not be removed and it must return false (value 0).
However that means if a directory that was deleted had 1000 dentries, and
each one pointed to an inode with a number higher then the number of the
directory's inode, we end up doing 1000 searches on the parent root.
Typically files are created in a directory after the directory was created
and therefore they get an higher inode number than the directory. It's
also common to have the each dentry pointing to an inode with a higher
number then the inodes the previous dentries point to, for example when
creating a series of files inside a directory, a very common pattern.
So improve on that by having the first call to can_rmdir() for a directory
to check the number of the inode that the last dentry points to and cache
that inode number in the orphan dir structure. Then every subsequent call
to can_rmdir() can avoid doing a search on the parent root if the number
of the inode currently being processed is smaller than cached inode number
at the directory's orphan dir structure.
This patch is part of a larger patchset and the changelog of the last
patch in the series contains a sample performance test and results.
The patches that comprise the patchset are the following:
btrfs: send: directly return from did_overwrite_ref() and simplify it
btrfs: send: avoid unnecessary generation search at did_overwrite_ref()
btrfs: send: directly return from will_overwrite_ref() and simplify it
btrfs: send: avoid extra b+tree searches when checking reference overrides
btrfs: send: remove send_progress argument from can_rmdir()
btrfs: send: avoid duplicated orphan dir allocation and initialization
btrfs: send: avoid unnecessary orphan dir rbtree search at can_rmdir()
btrfs: send: reduce searches on parent root when checking if dir can be removed
btrfs: send: iterate waiting dir move rbtree only once when processing refs
btrfs: send: initialize all the red black trees earlier
btrfs: send: genericize the backref cache to allow it to be reused
btrfs: adapt lru cache to allow for 64 bits keys on 32 bits systems
btrfs: send: cache information about created directories
btrfs: allow a generation number to be associated with lru cache entries
btrfs: add an api to delete a specific entry from the lru cache
btrfs: send: use the lru cache to implement the name cache
btrfs: send: update size of roots array for backref cache entries
btrfs: send: cache utimes operations for directories if possible
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At can_rmdir() we start by searching the orphan dirs rbtree for an orphan
dir object for the target directory. Later when iterating over the dir
index keys, if we find that any dir entry points to inode for which there
is a pending dir move or the inode was not yet processed, we exit because
we can't remove the directory yet. However we end up always calling
add_orphan_dir_info(), which will iterate again the rbtree and if there is
already an orphan dir object (created by the first call to can_rmdir()),
it returns the existing object. This is unnecessary work because in case
there is already an existing orphan dir object, we got a reference to it
at the start of can_rmdir(). So skip the call to add_orphan_dir_info()
if we already have a reference for an orphan dir object.
This patch is part of a larger patchset and the changelog of the last
patch in the series contains a sample performance test and results.
The patches that comprise the patchset are the following:
btrfs: send: directly return from did_overwrite_ref() and simplify it
btrfs: send: avoid unnecessary generation search at did_overwrite_ref()
btrfs: send: directly return from will_overwrite_ref() and simplify it
btrfs: send: avoid extra b+tree searches when checking reference overrides
btrfs: send: remove send_progress argument from can_rmdir()
btrfs: send: avoid duplicated orphan dir allocation and initialization
btrfs: send: avoid unnecessary orphan dir rbtree search at can_rmdir()
btrfs: send: reduce searches on parent root when checking if dir can be removed
btrfs: send: iterate waiting dir move rbtree only once when processing refs
btrfs: send: initialize all the red black trees earlier
btrfs: send: genericize the backref cache to allow it to be reused
btrfs: adapt lru cache to allow for 64 bits keys on 32 bits systems
btrfs: send: cache information about created directories
btrfs: allow a generation number to be associated with lru cache entries
btrfs: add an api to delete a specific entry from the lru cache
btrfs: send: use the lru cache to implement the name cache
btrfs: send: update size of roots array for backref cache entries
btrfs: send: cache utimes operations for directories if possible
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At can_rmdir() we are allocating and initializing an orphan dir object
twice. This can be deduplicated outside of the loop that iterates over
the dir index keys. So deduplicate that code, even because other patch
in the series will need to add more initialization code and another one
will add one more condition.
This patch is part of a larger patchset and the changelog of the last
patch in the series contains a sample performance test and results.
The patches that comprise the patchset are the following:
btrfs: send: directly return from did_overwrite_ref() and simplify it
btrfs: send: avoid unnecessary generation search at did_overwrite_ref()
btrfs: send: directly return from will_overwrite_ref() and simplify it
btrfs: send: avoid extra b+tree searches when checking reference overrides
btrfs: send: remove send_progress argument from can_rmdir()
btrfs: send: avoid duplicated orphan dir allocation and initialization
btrfs: send: avoid unnecessary orphan dir rbtree search at can_rmdir()
btrfs: send: reduce searches on parent root when checking if dir can be removed
btrfs: send: iterate waiting dir move rbtree only once when processing refs
btrfs: send: initialize all the red black trees earlier
btrfs: send: genericize the backref cache to allow it to be reused
btrfs: adapt lru cache to allow for 64 bits keys on 32 bits systems
btrfs: send: cache information about created directories
btrfs: allow a generation number to be associated with lru cache entries
btrfs: add an api to delete a specific entry from the lru cache
btrfs: send: use the lru cache to implement the name cache
btrfs: send: update size of roots array for backref cache entries
btrfs: send: cache utimes operations for directories if possible
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All callers of can_rmdir() pass sctx->cur_ino as the value for the
send_progress argument, so remove the argument and directly use
sctx->cur_ino.
This patch is part of a larger patchset and the changelog of the last
patch in the series contains a sample performance test and results.
The patches that comprise the patchset are the following:
btrfs: send: directly return from did_overwrite_ref() and simplify it
btrfs: send: avoid unnecessary generation search at did_overwrite_ref()
btrfs: send: directly return from will_overwrite_ref() and simplify it
btrfs: send: avoid extra b+tree searches when checking reference overrides
btrfs: send: remove send_progress argument from can_rmdir()
btrfs: send: avoid duplicated orphan dir allocation and initialization
btrfs: send: avoid unnecessary orphan dir rbtree search at can_rmdir()
btrfs: send: reduce searches on parent root when checking if dir can be removed
btrfs: send: iterate waiting dir move rbtree only once when processing refs
btrfs: send: initialize all the red black trees earlier
btrfs: send: genericize the backref cache to allow it to be reused
btrfs: adapt lru cache to allow for 64 bits keys on 32 bits systems
btrfs: send: cache information about created directories
btrfs: allow a generation number to be associated with lru cache entries
btrfs: add an api to delete a specific entry from the lru cache
btrfs: send: use the lru cache to implement the name cache
btrfs: send: update size of roots array for backref cache entries
btrfs: send: cache utimes operations for directories if possible
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
During an incremental send, when processing the new references of an inode
(either it's a new inode or an existing one renamed/moved), he will search
the b+tree of the send or parent roots in order to find out the inode item
of the parent directory and extract its generation. However we are doing
that search twice, once with is_inode_existent() -> get_cur_inode_state()
and then again at did_overwrite_ref() or will_overwrite_ref().
So avoid that and get the generation at get_cur_inode_state() and then
propagate it up to did_overwrite_ref() and will_overwrite_ref().
This patch is part of a larger patchset and the changelog of the last
patch in the series contains a sample performance test and results.
The patches that comprise the patchset are the following:
btrfs: send: directly return from did_overwrite_ref() and simplify it
btrfs: send: avoid unnecessary generation search at did_overwrite_ref()
btrfs: send: directly return from will_overwrite_ref() and simplify it
btrfs: send: avoid extra b+tree searches when checking reference overrides
btrfs: send: remove send_progress argument from can_rmdir()
btrfs: send: avoid duplicated orphan dir allocation and initialization
btrfs: send: avoid unnecessary orphan dir rbtree search at can_rmdir()
btrfs: send: reduce searches on parent root when checking if dir can be removed
btrfs: send: iterate waiting dir move rbtree only once when processing refs
btrfs: send: initialize all the red black trees earlier
btrfs: send: genericize the backref cache to allow it to be reused
btrfs: adapt lru cache to allow for 64 bits keys on 32 bits systems
btrfs: send: cache information about created directories
btrfs: allow a generation number to be associated with lru cache entries
btrfs: add an api to delete a specific entry from the lru cache
btrfs: send: use the lru cache to implement the name cache
btrfs: send: update size of roots array for backref cache entries
btrfs: send: cache utimes operations for directories if possible
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are no resources to release before will_overwrite_ref() returns, so
we don't really need the 'out' label and jumping to it when conditions are
met - we can directly return and get rid of the label and jumps. Also we
can deal with -ENOENT and other errors in a single if-else logic, as it's
more straightforward.
This helps the next patch in the series to be more simple as well.
This patch is part of a larger patchset and the changelog of the last
patch in the series contains a sample performance test and results.
The patches that comprise the patchset are the following:
btrfs: send: directly return from did_overwrite_ref() and simplify it
btrfs: send: avoid unnecessary generation search at did_overwrite_ref()
btrfs: send: directly return from will_overwrite_ref() and simplify it
btrfs: send: avoid extra b+tree searches when checking reference overrides
btrfs: send: remove send_progress argument from can_rmdir()
btrfs: send: avoid duplicated orphan dir allocation and initialization
btrfs: send: avoid unnecessary orphan dir rbtree search at can_rmdir()
btrfs: send: reduce searches on parent root when checking if dir can be removed
btrfs: send: iterate waiting dir move rbtree only once when processing refs
btrfs: send: initialize all the red black trees earlier
btrfs: send: genericize the backref cache to allow it to be reused
btrfs: adapt lru cache to allow for 64 bits keys on 32 bits systems
btrfs: send: cache information about created directories
btrfs: allow a generation number to be associated with lru cache entries
btrfs: add an api to delete a specific entry from the lru cache
btrfs: send: use the lru cache to implement the name cache
btrfs: send: update size of roots array for backref cache entries
btrfs: send: cache utimes operations for directories if possible
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At did_overwrite_ref() we always call get_inode_gen() to find out the
generation of the inode 'ow_inode'. However we don't always need to use
that generation, and in fact it's very common to not use it, so we end
up doing a b+tree search on the send root, allocating a path, etc, for
nothing. So improve on this by getting the generation only if we need
to use it.
This patch is part of a larger patchset and the changelog of the last
patch in the series contains a sample performance test and results.
The patches that comprise the patchset are the following:
btrfs: send: directly return from did_overwrite_ref() and simplify it
btrfs: send: avoid unnecessary generation search at did_overwrite_ref()
btrfs: send: directly return from will_overwrite_ref() and simplify it
btrfs: send: avoid extra b+tree searches when checking reference overrides
btrfs: send: remove send_progress argument from can_rmdir()
btrfs: send: avoid duplicated orphan dir allocation and initialization
btrfs: send: avoid unnecessary orphan dir rbtree search at can_rmdir()
btrfs: send: reduce searches on parent root when checking if dir can be removed
btrfs: send: iterate waiting dir move rbtree only once when processing refs
btrfs: send: initialize all the red black trees earlier
btrfs: send: genericize the backref cache to allow it to be reused
btrfs: adapt lru cache to allow for 64 bits keys on 32 bits systems
btrfs: send: cache information about created directories
btrfs: allow a generation number to be associated with lru cache entries
btrfs: add an api to delete a specific entry from the lru cache
btrfs: send: use the lru cache to implement the name cache
btrfs: send: update size of roots array for backref cache entries
btrfs: send: cache utimes operations for directories if possible
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are no resources to release before did_overwrite_ref() returns, so
we don't really need the 'out' label and jumping to it when conditions are
met - we can directly return and get rid of the label and jumps. Also we
can deal with -ENOENT and other errors in a single if-else logic, as it's
more straightforward.
This helps the next patch in the series to be more simple as well.
This patch is part of a larger patchset and the changelog of the last
patch in the series contains a sample performance test and results.
The patches that comprise the patchset are the following:
btrfs: send: directly return from did_overwrite_ref() and simplify it
btrfs: send: avoid unnecessary generation search at did_overwrite_ref()
btrfs: send: directly return from will_overwrite_ref() and simplify it
btrfs: send: avoid extra b+tree searches when checking reference overrides
btrfs: send: remove send_progress argument from can_rmdir()
btrfs: send: avoid duplicated orphan dir allocation and initialization
btrfs: send: avoid unnecessary orphan dir rbtree search at can_rmdir()
btrfs: send: reduce searches on parent root when checking if dir can be removed
btrfs: send: iterate waiting dir move rbtree only once when processing refs
btrfs: send: initialize all the red black trees earlier
btrfs: send: genericize the backref cache to allow it to be reused
btrfs: adapt lru cache to allow for 64 bits keys on 32 bits systems
btrfs: send: cache information about created directories
btrfs: allow a generation number to be associated with lru cache entries
btrfs: add an api to delete a specific entry from the lru cache
btrfs: send: use the lru cache to implement the name cache
btrfs: send: update size of roots array for backref cache entries
btrfs: send: cache utimes operations for directories if possible
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
Since the introduction of per-fs feature sysfs interface
(/sys/fs/btrfs/<UUID>/features/), the content of that directory is never
updated.
Thus for the following case, that directory will not show the new
features like RAID56:
# mkfs.btrfs -f $dev1 $dev2 $dev3
# mount $dev1 $mnt
# btrfs balance start -f -mconvert=raid5 $mnt
# ls /sys/fs/btrfs/$uuid/features/
extended_iref free_space_tree no_holes skinny_metadata
While after unmount and mount, we got the correct features:
# umount $mnt
# mount $dev1 $mnt
# ls /sys/fs/btrfs/$uuid/features/
extended_iref free_space_tree no_holes raid56 skinny_metadata
[CAUSE]
Because we never really try to update the content of per-fs features/
directory.
We had an attempt to update the features directory dynamically in commit
14e46e0495 ("btrfs: synchronize incompat feature bits with sysfs
files"), but unfortunately it get reverted in commit e410e34fad
("Revert "btrfs: synchronize incompat feature bits with sysfs files"").
The problem in the original patch is, in the context of
btrfs_create_chunk(), we can not afford to update the sysfs group.
The exported but never utilized function, btrfs_sysfs_feature_update()
is the leftover of such attempt. As even if we go sysfs_update_group(),
new files will need extra memory allocation, and we have no way to
specify the sysfs update to go GFP_NOFS.
[FIX]
This patch will address the old problem by doing asynchronous sysfs
update in the cleaner thread.
This involves the following changes:
- Make __btrfs_(set|clear)_fs_(incompat|compat_ro) helpers to set
BTRFS_FS_FEATURE_CHANGED flag when needed
- Update btrfs_sysfs_feature_update() to use sysfs_update_group()
And drop unnecessary arguments.
- Call btrfs_sysfs_feature_update() in cleaner_kthread
If we have the BTRFS_FS_FEATURE_CHANGED flag set.
- Wake up cleaner_kthread in btrfs_commit_transaction if we have
BTRFS_FS_FEATURE_CHANGED flag
By this, all the previously dangerous call sites like
btrfs_create_chunk() need no new changes, as above helpers would
have already set the BTRFS_FS_FEATURE_CHANGED flag.
The real work happens at cleaner_kthread, thus we pay the cost of
delaying the update to sysfs directory, but the delayed time should be
small enough that end user can not distinguish though it might get
delayed if the cleaner thread is busy with removing subvolumes or
defrag.
CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
extent-tree.h is included more than once, added in a0231804af ("btrfs:
move extent-tree helpers into their own header file").
Signed-off-by: ye xingchen <ye.xingchen@zte.com.cn>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
When debugging a scrub related metadata error, it turns out that our
metadata error reporting is not ideal.
The only 3 error messages are:
- BTRFS error (device dm-2): bdev /dev/mapper/test-scratch1 errs: wr 0, rd 0, flush 0, corrupt 0, gen 1
Showing we have metadata generation mismatch errors.
- BTRFS error (device dm-2): unable to fixup (regular) error at logical 7110656 on dev /dev/mapper/test-scratch1
Showing which tree blocks are corrupted.
- BTRFS warning (device dm-2): checksum/header error at logical 24772608 on dev /dev/mapper/test-scratch2, physical 3801088: metadata node (level 1) in tree 5
Showing which physical range the corrupted metadata is at.
We have to combine the above 3 to know we have a corrupted metadata with
generation mismatch.
And this is already the better case, if we have other problems, like
fsid mismatch, we can not even know the cause.
[CAUSE]
The problem is caused by the fact that, scrub_checksum_tree_block()
never outputs any error message.
It just return two bits for scrub: sblock->header_error, and
sblock->generation_error.
And later we report error in scrub_print_warning(), but unfortunately we
only have two bits, there is not really much thing we can done to print
any detailed errors.
[FIX]
This patch will do the following to enhance the error reporting of
metadata scrub:
- Add extra warning (ratelimited) for every error we hit
This can help us to distinguish the different types of errors.
Some errors can help us to know what's going wrong immediately,
like bytenr mismatch.
- Re-order the checks
Currently we check bytenr first, then immediately generation.
This can lead to false generation mismatch reports, while the fsid
mismatches.
Here is the new output for the bug I'm debugging (we forgot to
writeback tree blocks for commit roots):
BTRFS warning (device dm-2): tree block 24117248 mirror 1 has bad fsid, has b77cd862-f150-4c71-90ec-7baf0544d83f want 17df6abf-23cd-445f-b350-5b3e40bfd2fc
BTRFS warning (device dm-2): tree block 24117248 mirror 0 has bad fsid, has b77cd862-f150-4c71-90ec-7baf0544d83f want 17df6abf-23cd-445f-b350-5b3e40bfd2fc
Now we can immediately know it's some tree blocks didn't even get written
back, other than the original confusing generation mismatch.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When a file system has ZNS devices which are constrained by a maximum
number of active block groups, then not being able to use all the block
groups for every allocation is not ideal, and could cause us to loop a
ton with mixed size allocations.
In general, since zoned doesn't write into gaps behind where block
groups are writing, it is not susceptible to the same sort of
fragmentation that size classes are designed to solve, so we can skip
size classes for zoned file systems in general, even though there would
probably be no harm for SMR devices.
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
Since the size class is an artifact of an arbitrary anti fragmentation
strategy, it doesn't really make sense to persist it. Furthermore, most
of the size class logic assumes fresh block groups. That is of course
not a reasonable assumption -- we will be upgrading kernels with
existing filesystems whose block groups are not classified.
To work around those issues, implement logic to compute the size class
of the block groups as we cache them in. To perfectly assess the state
of a block group, we would have to read the entire extent tree (since
the free space cache mashes together contiguous extent items) which
would be prohibitively expensive for larger file systems with more
extents.
We can do it relatively cheaply by implementing a simple heuristic of
sampling a handful of extents and picking the smallest one we see. In
the happy case where the block group was classified, we will only see
extents of the correct size. In the unhappy case, we will hopefully find
one of the smaller extents, but there is no perfect answer anyway.
Autorelocation will eventually churn up the block group if there is
significant freeing anyway.
There was no regression in mount performance at end state of the fsperf
test suite, and the delay until the block group is marked cached is
minimized by the constant number of extent samples.
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
The aim of this patch is to reduce the fragmentation of block groups
under certain unhappy workloads. It is particularly effective when the
size of extents correlates with their lifetime, which is something we
have observed causing fragmentation in the fleet at Meta.
This patch categorizes extents into size classes:
- x < 128KiB: "small"
- 128KiB < x < 8MiB: "medium"
- x > 8MiB: "large"
and as much as possible reduces allocations of extents into block groups
that don't match the size class. This takes advantage of any (possible)
correlation between size and lifetime and also leaves behind predictable
re-usable gaps when extents are freed; small writes don't gum up bigger
holes.
Size classes are implemented in the following way:
- Mark each new block group with a size class of the first allocation
that goes into it.
- Add two new passes to ffe: "unset size class" and "wrong size class".
First, try only matching block groups, then try unset ones, then allow
allocation of new ones, and finally allow mismatched block groups.
- Filtering is done just by skipping inappropriate ones, there is no
special size class indexing.
Other solutions I considered were:
- A best fit allocator with an rb-tree. This worked well, as small
writes didn't leak big holes from large freed extents, but led to
regressions in ffe and write performance due to lock contention on
the rb-tree with every allocation possibly updating it in parallel.
Perhaps something clever could be done to do the updates in the
background while being "right enough".
- A fixed size "working set". This prevents freeing an extent
drastically changing where writes currently land, and seems like a
good option too. Doesn't take advantage of size in any way.
- The same size class idea, but implemented with xarray marks. This
turned out to be slower than looping the linked list and skipping
wrong block groups, and is also less flexible since we must have only
3 size classes (max #marks). With the current approach we can have as
many as we like.
Performance testing was done via: https://github.com/josefbacik/fsperf
Of particular relevance are the new fragmentation specific tests.
A brief summary of the testing results:
- Neutral results on existing tests. There are some minor regressions
and improvements here and there, but nothing that truly stands out as
notable.
- Improvement on new tests where size class and extent lifetime are
correlated. Fragmentation in these cases is completely eliminated
and write performance is generally a little better. There is also
significant improvement where extent sizes are just a bit larger than
the size class boundaries.
- Regression on one new tests: where the allocations are sized
intentionally a hair under the borders of the size classes. Results
are neutral on the test that intentionally attacks this new scheme by
mixing extent size and lifetime.
The full dump of the performance results can be found here:
https://bur.io/fsperf/size-class-2022-11-15.txt
(there are ANSI escape codes, so best to curl and view in terminal)
Here is a snippet from the full results for a new test which mixes
buffered writes appending to a long lived set of files and large short
lived fallocates:
bufferedappendvsfallocate results
metric baseline current stdev diff
======================================================================================
avg_commit_ms 31.13 29.20 2.67 -6.22%
bg_count 14 15.60 0 11.43%
commits 11.10 12.20 0.32 9.91%
elapsed 27.30 26.40 2.98 -3.30%
end_state_mount_ns 11122551.90 10635118.90 851143.04 -4.38%
end_state_umount_ns 1.36e+09 1.35e+09 12248056.65 -1.07%
find_free_extent_calls 116244.30 114354.30 964.56 -1.63%
find_free_extent_ns_max 599507.20 1047168.20 103337.08 74.67%
find_free_extent_ns_mean 3607.19 3672.11 101.20 1.80%
find_free_extent_ns_min 500 512 6.67 2.40%
find_free_extent_ns_p50 2848 2876 37.65 0.98%
find_free_extent_ns_p95 4916 5000 75.45 1.71%
find_free_extent_ns_p99 20734.49 20920.48 1670.93 0.90%
frag_pct_max 61.67 0 8.05 -100.00%
frag_pct_mean 43.59 0 6.10 -100.00%
frag_pct_min 25.91 0 16.60 -100.00%
frag_pct_p50 42.53 0 7.25 -100.00%
frag_pct_p95 61.67 0 8.05 -100.00%
frag_pct_p99 61.67 0 8.05 -100.00%
fragmented_bg_count 6.10 0 1.45 -100.00%
max_commit_ms 49.80 46 5.37 -7.63%
sys_cpu 2.59 2.62 0.29 1.39%
write_bw_bytes 1.62e+08 1.68e+08 17975843.50 3.23%
write_clat_ns_mean 57426.39 54475.95 2292.72 -5.14%
write_clat_ns_p50 46950.40 42905.60 2101.35 -8.62%
write_clat_ns_p99 148070.40 143769.60 2115.17 -2.90%
write_io_kbytes 4194304 4194304 0 0.00%
write_iops 2476.15 2556.10 274.29 3.23%
write_lat_ns_max 2101667.60 2251129.50 370556.59 7.11%
write_lat_ns_mean 59374.91 55682.00 2523.09 -6.22%
write_lat_ns_min 17353.10 16250 1646.08 -6.36%
There are some mixed improvements/regressions in most metrics along with
an elimination of fragmentation in this workload.
On the balance, the drastic 1->0 improvement in the happy cases seems
worth the mix of regressions and improvements we do observe.
Some considerations for future work:
- Experimenting with more size classes
- More hinting/search ordering work to approximate a best-fit allocator
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
find_free_extent is a complicated function. It consists (at least) of:
- a hint that jumps into the middle of a for loop macro
- a middle loop trying every raid level
- an outer loop ascending through ffe loop levels
- complicated logic for skipping some of those ffe loop levels
- multiple underlying in-bg allocators (zoned, cluster, no cluster)
Which is all to say that more tracing is helpful for debugging its
behavior. Add two new tracepoints: at the entrance to the block_groups
loop (hit for every raid level and every ffe_ctl loop) and at the point
we seriously consider a block_group for allocation. This way we can see
the whole path through the algorithm, including hints, multiple loops,
etc.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The allocator tracepoints currently have a pile of values from ffe_ctl.
In modifying the allocator and adding more tracepoints, I found myself
adding to the already long argument list of the tracepoints. It makes it
a lot simpler to just send in the ffe_ctl itself.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Given that wait is always set to 1, so remove the argument.
Last use of wait with 0 was in 0c304304fe ("Btrfs: remove
csum_bytes_left").
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We currently use 'ret' and 'err' to track the return value for
log_dir_items(), which is confusing and likely the cause for previous
bugs where log_dir_items() did not return an error when it should, fixed
in previous patches.
So change this and use only a single variable, 'ret', to track the return
value. This is simpler and makes it similar to most of the existing code.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we use the value 1 for BTRFS_LOG_FORCE_COMMIT, but that value
has a few inconveniences:
1) If it's ever used by btrfs_log_inode(), or any function down the call
chain, we have to remember to btrfs_set_log_full_commit(), which is
repetitive and has a chance to be forgotten in future use cases.
btrfs_log_inode_parent() only calls btrfs_set_log_full_commit() when
it gets a negative value from btrfs_log_inode();
2) Down the call chain of btrfs_log_inode(), we may have functions that
need to force a log commit, but can return either an error (negative
value), false (0) or true (1). So they are forced to return some
random negative to force a log commit - using BTRFS_LOG_FORCE_COMMIT
would make the intention more clear. Currently the only example is
flush_dir_items_batch().
So turn BTRFS_LOG_FORCE_COMMIT into a negative value. The chosen value
is -(MAX_ERRNO + 1), so that it does not overlap any errno value and makes
it easier to debug.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The header file linux/mm.h provides PAGE_ALIGN, PAGE_ALIGNED,
PAGE_ALIGN_DOWN macros. Use these macros to make code more
concise.
Signed-off-by: Yushan Zhou <katrinzhou@tencent.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When btrfs_get_chunk_map fails to allocate a new em the cleanup does not
need to be done so the goto target is out_err, which is consistent with
current coding style.
Signed-off-by: Peng Hao <flyingpeng@tencent.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
We had a recent bug that would have been caught by a newer compiler with
-Wmaybe-uninitialized and would have saved us a month of failing tests
that I didn't have time to investigate.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
With -Wmaybe-uninitialized compiler complains about ret being possibly
uninitialized, which isn't possible as the WQ_ constants are set only
from our code, however we can handle the default case and get rid of the
warning.
The value is set to BLK_STS_IOERR so it does not issue any IO and could
be potentially detected, but this is basically a "cannot happen" error.
To catch any problems during development use the assert.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ set the error in default: ]
Signed-off-by: David Sterba <dsterba@suse.com>
Fix an uninitialized warning we get with -Wmaybe-uninitialized where it
thought zno may have been uninitialized, in both cases it depends on
zinfo->zone_cache but we know the value won't change between checks.
Reported-by: Josef Bacik <josef@toxicpanda.com>
Link: https://lore.kernel.org/linux-btrfs/af6c527cbd8bdc782e50bd33996ee83acc3a16fb.1671221596.git.josef@toxicpanda.com/
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We only have 3 possible mirrors, and we have ASSERT()'s to make sure
we're not passing in an invalid super mirror into this function, so
technically this value isn't uninitialized. However
-Wmaybe-uninitialized will complain, so set it to U64_MAX so if we don't
have ASSERT()'s turned on it'll error out later on when it see's the
zone is beyond our maximum zones.
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We will pass in the parent and p pointer into our tree_search function
to avoid doing a second search when inserting a new extent state into
the tree. However because this is conditional upon passing in these
pointers the compiler seems to think these values can be uninitialized
if we're using -Wmaybe-uninitialized. Fix this by initializing these
values.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
reclaim isn't set in the alloc case, however we only care about
reclaim in the !alloc case. This isn't an actual problem, however
-Wmaybe-uninitialized will complain, so initialize reclaim to quiet the
compiler.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Anybody that calls get_inode_gen() can have an uninitialized gen if
there's an error. This isn't a big deal because all the users just exit
if they get an error, however it makes -Wmaybe-uninitialized complain,
so fix this up to always initialize the passed in gen, this quiets all
of the uninitialized warnings in send.c.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We can conditionally pass in a locked page, and then we'll use that page
range to skip marking errors as that will happen in another layer.
However this causes the compiler to complain because it doesn't
understand we only use these values when we have the page. Make the
compiler stop complaining by setting these values to 0.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
While trying to sync messages.[ch] I ended up with this dependency on
messages.h in the rest of btrfs-progs code base because it's where
btrfs_abort_transaction() was now held. We want to keep messages.[ch]
limited to the kernel code, and the btrfs_abort_transaction() code
better fits in the transaction code and not in messages.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ move the __cold attributes ]
Signed-off-by: David Sterba <dsterba@suse.com>
Now that none of the functions called by btrfs_merge_delayed_refs() needs
a btrfs_trans_handle, directly pass in a btrfs_fs_info to
btrfs_merge_delayed_refs().
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that drop_delayed_ref() doesn't need a btrfs_trans_handle, drop it
from insert_delayed_ref() as well.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that drop_delayed_ref() doesn't get the btrfs_trans_handle passed in
anymore, we can get rid of it in merge_ref() as well.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
drop_delayed_ref() doesn't use the btrfs_trans_handle it gets passed in,
so remove it.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This patch replaces the custom crypto completion function with
crypto_req_done.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Since commit ee6d3dd4ed ("driver core: make kobj_type constant.")
the driver core allows the usage of const struct kobj_type.
Take advantage of this to constify the structure definition to prevent
modification at runtime.
Signed-off-by: Thomas Weißschuh <linux@weissschuh.net>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Damien Le Moal <damien.lemoal@opensource.wdc.com>
Now that the filestreams allocator is largely rewritten,
restructure the main entry point and pick function to seperate out
the different operations cleanly. The MRU lookup function should not
handle the start AG selection on MRU lookup failure, and nor should
the pick function handle building the association that is inserted
into the MRU.
This leaves the filestreams allocator fairly clean and easy to
understand, returning to the caller with an active perag reference
and a target block to allocate at.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Now that the filestreams AG selection tracks active perags, we need
to return an active perag to the core allocator code. This is
because the file allocation the filestreams code will run are AG
specific allocations and so need to pin the AG until the allocations
complete.
We cannot rely on the filestreams item reference to do this - the
filestreams association can be torn down at any time, hence we
need to have a separate reference for the allocation process to pin
the AG after it has been selected.
This means there is some perag juggling in allocation failure
fallback paths as they will do all AG scans in the case the AG
specific allocation fails. Hence we need to track the perag
reference that the filestream allocator returned to make sure we
don't leak it on repeated allocation failure.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Pass perags instead of raw ag numbers, avoiding the need for the
special peek function for the tracing code.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
xfs_filestream_pick_ag() is now ready to rework to use
for_each_perag_wrap() for iterating the perags during the AG
selection scan.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Rather than just track the agno of the reference, track a referenced
perag pointer instead. This will allow active filestreams to prevent
AGs from going away until the filestreams have been torn down.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Because it now stands out like a sore thumb. Factoring out this case
starts the process of simplifying xfs_filestream_select_ag() again.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Picking a new AG checks the longest free extent in the AG is valid,
so there's no need to repeat the check in
xfs_filestream_select_ag(). Remove it.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
This is largely a wrapper around xfs_filestream_pick_ag() that
repeats a lot of the lookups that we just merged back into
xfs_filestream_select_ag() from the lookup code. Merge the
xfs_filestream_new_ag() code back into _select_ag() to get rid
of all the unnecessary logic.
Indeed, this makes it obvious that if we have no parent inode,
the filestreams allocator always selects AG 0 regardless of whether
it is fit for purpose or not.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
The lookup currently either returns the cached filestream AG or it
calls xfs_filestreams_select_lengths() to looks up a new AG. This
has verify the AG that is selected, so we end up doing "select a new
AG loop in a couple of places when only one really is needed. Merge
the initial lookup functionality with the length selection so that
we only need to do a single pick loop on lookup or verification
failure.
This undoes a lot of the factoring that enabled the selection to be
moved over to the filestreams code. It makes
xfs_filestream_select_ag() an awful messier, but it has to be made
worse before it can get better in future patches...
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
xfs_bmap_btalloc_filestreams() calls two filestreams functions to
select the AG to allocate from. Both those functions end up in
the same selection function that iterates all AGs multiple times.
Worst case, xfs_bmap_btalloc_filestreams() can iterate all AGs 4
times just to select the initial AG to allocate in.
Move the AG selection to fs/xfs/xfs_filestreams.c as a single
interface so that the inefficient AG interation is contained
entirely within the filestreams code. This will allow the
implementation to be simplified and made more efficient in future
patches.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
The code in xfs_bmap_longest_free_extent() is open coded in
xfs_filestream_pick_ag(). Export xfs_bmap_longest_free_extent and
call it from the filestreams code instead.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
It is only set if reading the AGF gets a EAGAIN error. Just return
the EAGAIN error and handle that error in the callers.
This means we can remove the not_init parameter from
xfs_bmap_select_minlen(), too, because the use of not_init there is
pessimistic. If we can't read the agf, it won't increase blen.
The only time we actually care whether we checked all the AGFs for
contiguous free space is when the best length is less than the
minimum allocation length. If not_init is set, then we ignore blen
and set the minimum alloc length to the absolute minimum, not the
best length we know already is present.
However, if blen is less than the minimum we're going to ignore it
anyway, regardless of whether we scanned all the AGFs or not. Hence
not_init can go away, because we only use if blen is good from
the scanned AGs otherwise we ignore it altogether and use minlen.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
There's many if (filestreams) {} else {} branches in this function.
Split it out into a filestreams specific function so that we can
then work directly on cleaning up the filestreams code without
impacting the rest of the allocation algorithms.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
To convert it to using active perag references and hence make it
shrink safe.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Now that the AG iteration code in the core allocation code has been
cleaned up, we can easily convert it to use a for_each_perag..()
variant to use active references and skip AGs that it can't get
active references on.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
All of the allocation functions now extract the minimum allowed AG
from the transaction and then use it in some way. The allocation
functions that are restricted to a single AG all check if the
AG requested can be allocated from and return an error if so. These
all set args->agno appropriately.
All the allocation functions that iterate AGs use it to calculate
the scan start AG. args->agno is not set until the iterator starts
walking AGs.
Hence we can easily set up a conditional check against the minimum
AG allowed in xfs_alloc_vextent_check_args() based on whether
args->agno contains NULLAGNUMBER or not and move all the repeated
setup code to xfs_alloc_vextent_check_args(), further simplifying
the allocation functions.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
We don't need the multiplexing xfs_alloc_ag_vextent() provided
anymore - we can just call the exact/near/size variants directly.
This allows us to remove args->type completely and stop using
args->fsbno as an input to the allocator algorithms.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Move it from xfs_alloc_ag_vextent() so we can get rid of that layer.
Rename xfs_alloc_vextent_set_fsbno() to xfs_alloc_vextent_finish()
to indicate that it's function is finishing off the allocation that
we've run now that it contains much more functionality.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Now that we have wrapper functions for each type of allocation we
can ask for, we can start unravelling xfs_alloc_ag_vextent(). That
is essentially just a prepare stage, the allocation multiplexer
and a post-allocation accounting step is the allocation proceeded.
The current xfs_alloc_vextent*() wrappers all have a prepare stage,
the allocation operation and a post-allocation accounting step.
We can consolidate this by moving the AG alloc prep code into the
wrapper functions, the accounting code in the wrapper accounting
functions, and cut out the multiplexer layer entirely.
This patch consolidates the AG preparation stage.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Two of the callers to xfs_alloc_vextent_this_ag() actually want
exact block number allocation, not anywhere-in-ag allocation. Split
this out from _this_ag() as a first class citizen so no external
extent allocation code needs to care about args->type anymore.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
The remaining callers of xfs_alloc_vextent() are all doing NEAR_BNO
allocations. We can replace that function with a new
xfs_alloc_vextent_near_bno() function that does this explicitly.
We also multiplex NEAR_BNO allocations through
xfs_alloc_vextent_this_ag via args->type. Replace all of these with
direct calls to xfs_alloc_vextent_near_bno(), too.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Change obvious callers of single AG allocation to use
xfs_alloc_vextent_start_bno(). Callers no long need to specify
XFS_ALLOCTYPE_START_BNO, and so the type can be driven inward and
removed.
While doing this, also pass the allocation target fsb as a parameter
rather than encoding it in args->fsbno.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Change obvious callers of single AG allocation to use
xfs_alloc_vextent_first_ag(). This gets rid of
XFS_ALLOCTYPE_FIRST_AG as the type used within
xfs_alloc_vextent_first_ag() during iteration is _THIS_AG. Hence we
can remove the setting of args->type from all the callers of
_first_ag() and remove the alloctype.
While doing this, pass the allocation target fsb as a parameter
rather than encoding it in args->fsbno. This starts the process
of making args->fsbno an output only variable rather than
input/output.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
There are several different contexts xfs_bmap_btalloc() handles, and
large chunks of the code execute independent allocation contexts.
Try to untangle this mess a bit.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Change obvious callers of single AG allocation to use
xfs_alloc_vextent_this_ag(). Drive the per-ag grabbing out to the
callers, too, so that callers with active references don't need
to do new lookups just for an allocation in a context that already
has a perag reference.
The only remaining caller that does single AG allocation through
xfs_alloc_vextent() is xfs_bmap_btalloc() with
XFS_ALLOCTYPE_NEAR_BNO. That is going to need more untangling before
it can be converted cleanly.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
There's a bit of a recursive conundrum around
xfs_alloc_ag_vextent(). We can't first call xfs_alloc_ag_vextent()
without preparing the AGFL for the allocation, and preparing the
AGFL calls xfs_alloc_ag_vextent() to prepare the AGFL for the
allocation. This "double allocation" requirement is not really clear
from the current xfs_alloc_fix_freelist() calls that are sprinkled
through the allocation code.
It's not helped that xfs_alloc_ag_vextent() can actually allocate
from the AGFL itself, but there's special code to prevent AGFL prep
allocations from allocating from the free list it's trying to prep.
The naming is also not consistent: args->wasfromfl is true when we
allocated _from_ the free list, but the indication that we are
allocating _for_ the free list is via checking that (args->resv ==
XFS_AG_RESV_AGFL).
So, lets make this "allocation required for allocation" situation
clear by moving it all inside xfs_alloc_ag_vextent(). The freelist
allocation is a specific XFS_ALLOCTYPE_THIS_AG allocation, which
translated directly to xfs_alloc_ag_vextent_size() allocation.
This enables us to replace __xfs_alloc_vextent_this_ag() with a call
to xfs_alloc_ag_vextent(), and we drive the freelist fixing further
into the per-ag allocation algorithm.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
The core of the per-ag iteration is effectively doing a "this ag"
allocation on one AG at a time. Use the same code to implement the
core "this ag" allocation in both xfs_alloc_vextent_this_ag()
and xfs_alloc_vextent_iterate_ags().
This means we only call xfs_alloc_ag_vextent() from one place so we
can easily collapse the call stack in future patches.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
It's a multiplexing mess that can be greatly simplified, and really
needs to be simplified to allow active per-ag references to
propagate from initial AG selection code the the bmapi code.
This splits the code out into separate a parameter checking
function, an iterator function, and allocation completion functions
and then implements the individual policies using these functions.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
In several places we iterate every AG from a specific start agno and
wrap back to the first AG when we reach the end of the filesystem to
continue searching. We don't have a primitive for this iteration
yet, so add one for conversion of these algorithms to per-ag based
iteration.
The filestream AG select code is a mess, and this initially makes it
worse. The per-ag selection needs to be driven completely into the
filestream code to clean this up and it will be done in a future
patch that makes the filestream allocator use active per-ag
references correctly.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
We currently don't have any flags or operational state in the
xfs_perag except for the pagf_init and pagi_init flags. And the
agflreset flag. Oh, there's also the pagf_metadata and pagi_inodeok
flags, too.
For controlling per-ag operations, we are going to need some atomic
state flags. Hence add an opstate field similar to what we already
have in the mount and log, and convert all these state flags across
to atomic bit operations.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
This is currently a spinlock lock protected rotor which can be
implemented with a single atomic operation. Change it to be more
efficient and get rid of the m_agirotor_lock. Noticed while
converting the inode allocation AG selection loop to active perag
references.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Lots of code in the inobt infrastructure is passed both xfs_mount
and perags. We only need perags for the per-ag inode allocation
code, so reduce the duplication by passing only the perags as the
primary object.
This ends up reducing the code size by a bit:
text data bss dec hex filename
orig 1138878 323979 548 1463405 16546d (TOTALS)
patched 1138709 323979 548 1463236 1653c4 (TOTALS)
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Convert the inode allocation routines to use active perag references
or references held by callers rather than grab their own. Also drive
the perag further inwards to replace xfs_mounts when doing
operations on a specific AG.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Callers have referenced perags but they don't pass it into
xfs_imap() so it takes it's own reference. Fix that so we can change
inode allocation over to using active references.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
So that they all output the same information in the traces to make
debugging refcount issues easier.
This means that all the lookup/drop functions no longer need to use
the full memory barrier atomic operations (atomic*_return()) so
will have less overhead when tracing is off. The set/clear tag
tracepoints no longer abuse the reference count to pass the tag -
the tag being cleared is obvious from the _RET_IP_ that is recorded
in the trace point.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
We need to be able to dynamically remove instantiated AGs from
memory safely, either for shrinking the filesystem or paging AG
state in and out of memory (e.g. supporting millions of AGs). This
means we need to be able to safely exclude operations from accessing
perags while dynamic removal is in progress.
To do this, introduce the concept of active and passive references.
Active references are required for high level operations that make
use of an AG for a given operation (e.g. allocation) and pin the
perag in memory for the duration of the operation that is operating
on the perag (e.g. transaction scope). This means we can fail to get
an active reference to an AG, hence callers of the new active
reference API must be able to handle lookup failure gracefully.
Passive references are used in low level code, where we might need
to access the perag structure for the purposes of completing high
level operations. For example, buffers need to use passive
references because:
- we need to be able to do metadata IO during operations like grow
and shrink transactions where high level active references to the
AG have already been blocked
- buffers need to pin the perag until they are reclaimed from
memory, something that high level code has no direct control over.
- unused cached buffers should not prevent a shrink from being
started.
Hence we have active references that will form exclusion barriers
for operations to be performed on an AG, and passive references that
will prevent reclaim of the perag until all objects with passive
references have been reclaimed themselves.
This patch introduce xfs_perag_grab()/xfs_perag_rele() as the API
for active AG reference functionality. We also need to convert the
for_each_perag*() iterators to use active references, which will
start the process of converting high level code over to using active
references. Conversion of non-iterator based code to active
references will be done in followup patches.
Note that the implementation using reference counting is really just
a development vehicle for the API to ensure we don't have any leaks
in the callers. Once we need to remove perag structures from memory
dyanmically, we will need a much more robust per-ag state transition
mechanism for preventing new references from being taken while we
wait for existing references to drain before removal from memory can
occur....
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmPo41YACgkQxWXV+ddt
WDsPXA/8DPCp1PEvmkJ998wBCgSuoVvG9b4l1HOI0aFWC/giJWYsTdBF/+rFP/83
+UFBmxDsbG8tMoq73Dw8XxTvmYwRUyCdtn/AmKkGpu/l9KF4fnM+RTIh94e4DaH7
O1R5zPVOX34ScgL/bR6Hmcrw8a7q6yUmW9xORR40AAbYOccUld4nvUZOI+hVUbtN
84pphG+U4KowtX2J4fqLWALGU/2hDP9Aiq3aKOdupoiRYJacx3FoMP4aaEblJlMk
ViLJYBXrJ+6v71frjT4LgSdDd7+l6QEaHHlQwIxMrf3r7AXUkMerwoiOhasMRXTB
WnZjC8XeS9yogY6Ls5/gIEEWB7buz6TFJwm3rwfXMM+0OQ1g0RFvjXQPD8sOLazS
X/5ToML8SZYpfkmIMnP+hBnmAMFKpjC06o40cN5/96xkqqMAwL7ws+XIlso/Hx+l
Lu01cgnDLluRflWtVwMLmrhOGLStjbiDJKmG4zKl/WsyqGdodjIUyCOjhB0Wy0CN
RMrkvOUwngTfAdWQYTHDdxkTdn1+b/nB+N9BvLbD8Dt+Q5H7loGR+0mS5xsRNg4Q
jDY0yLDtR6bDxvcp4L2Vz1ezn+dSo8XAR9zqd4pT+7mZ6tLsf0R5F3iedAZkaqQC
1uVkjiHyi1Gq/6iKRwf72rQMNKdDmAgM+sDx0uQK5JyG8ZGqgLA=
=KGNk
-----END PGP SIGNATURE-----
Merge tag 'for-6.2-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- one more fix for a tree-log 'write time corruption' report, update
the last dir index directly and don't keep in the log context
- do VFS-level inode lock around FIEMAP to prevent a deadlock with
concurrent fsync, the extent-level lock is not sufficient
- don't cache a single-device filesystem device to avoid cases when a
loop device is reformatted and the entry gets stale
* tag 'for-6.2-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: free device in btrfs_close_devices for a single device filesystem
btrfs: lock the inode in shared mode before starting fiemap
btrfs: simplify update of last_dir_index_offset when logging a directory
The nfs4_file table is global, so shutting it down when a containerized
nfsd is shut down is wrong and can lead to double-frees. Tear down the
nfs4_file_rhltable in nfs4_state_shutdown instead of
nfs4_state_shutdown_net.
Fixes: d47b295e8d ("NFSD: Use rhashtable for managing nfs4_file objects")
Link: https://bugzilla.redhat.com/show_bug.cgi?id=2169017
Reported-by: JianHong Yin <jiyin@redhat.com>
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
We can error out of an allocation transaction when updating BMBT
blocks when things go wrong. This can be a btree corruption, and
unexpected ENOSPC, etc. In these cases, we already have deferred ops
queued for the first allocation that has been done, and we just want
to cancel out the transaction and shut down the filesystem on error.
In fact, we do just that for production systems - the assert that we
can't have a transaction with defer ops attached unless we are
already shut down is bogus and gets in the way of debugging
whatever issue is actually causing the transaction to be cancelled.
Remove the assert because it is causing spurious test failures to
hang test machines.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
The tp->t_firstblock field is now raelly tracking the highest AG we
have locked, not the block number of the highest allocation we've
made. It's purpose is to prevent AGF locking deadlocks, so rename it
to "highest AG" and simplify the implementation to just track the
agno rather than a fsbno.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Now that xfs_alloc_vextent() does all the AGF deadlock prevention
filtering for multiple allocations in a single transaction, we no
longer need the allocation setup code to care about what AGs we
might already have locked.
Hence we can remove all the "nullfb" conditional logic in places
like xfs_bmap_btalloc() and instead have them focus simply on
setting up locality constraints. If the allocation fails due to
AGF lock filtering in xfs_alloc_vextent, then we just fall back as
we normally do to more relaxed allocation constraints.
As a result, any allocation that allows AG scanning (i.e. not
confined to a single AG) and does not force a worst case full
filesystem scan will now be able to attempt allocation from AGs
lower than that defined by tp->t_firstblock. This is because
xfs_alloc_vextent() allows try-locking of the AGFs and hence enables
low space algorithms to at least -try- to get space from AGs lower
than the one that we have currently locked and allocated from. This
is a significant improvement in the low space allocation algorithm.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
When we enter xfs_bmbt_alloc_block() without having first allocated
a data extent (i.e. tp->t_firstblock == NULLFSBLOCK) because we
are doing something like unwritten extent conversion, the transaction
block reservation is used as the minleft value.
This works for operations like unwritten extent conversion, but it
assumes that the block reservation is only for a BMBT split. THis is
not always true, and sometimes results in larger than necessary
minleft values being set. We only actually need enough space for a
btree split, something we already handle correctly in
xfs_bmapi_write() via the xfs_bmapi_minleft() calculation.
We should use xfs_bmapi_minleft() in xfs_bmbt_alloc_block() to
calculate the number of blocks a BMBT split on this inode is going to
require, not use the transaction block reservation that contains the
maximum number of blocks this transaction may consume in it...
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
When an XFS filesystem has free inodes in chunks already allocated
on disk, it will still allocate new inode chunks if the target AG
has no free inodes in it. Normally, this is a good idea as it
preserves locality of all the inodes in a given directory.
However, at ENOSPC this can lead to using the last few remaining
free filesystem blocks to allocate a new chunk when there are many,
many free inodes that could be allocated without consuming free
space. This results in speeding up the consumption of the last few
blocks and inode create operations then returning ENOSPC when there
free inodes available because we don't have enough block left in the
filesystem for directory creation reservations to proceed.
Hence when we are near ENOSPC, we should be attempting to preserve
the remaining blocks for directory block allocation rather than
using them for unnecessary inode chunk creation.
This particular behaviour is exposed by xfs/294, when it drives to
ENOSPC on empty file creation whilst there are still thousands of
free inodes available for allocation in other AGs in the filesystem.
Hence, when we are within 1% of ENOSPC, change the inode allocation
behaviour to prefer to use existing free inodes over allocating new
inode chunks, even though it results is poorer locality of the data
set. It is more important for the allocations to be space efficient
near ENOSPC than to have optimal locality for performance, so lets
modify the inode AG selection code to reflect that fact.
This allows generic/294 to not only pass with this allocator rework
patchset, but to increase the number of post-ENOSPC empty inode
allocations to from ~600 to ~9080 before we hit ENOSPC on the
directory create transaction reservation.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
I've recently encountered an ABBA deadlock with g/476. The upcoming
changes seem to make this much easier to hit, but the underlying
problem is a pre-existing one.
Essentially, if we select an AG for allocation, then lock the AGF
and then fail to allocate for some reason (e.g. minimum length
requirements cannot be satisfied), then we drop out of the
allocation with the AGF still locked.
The caller then modifies the allocation constraints - usually
loosening them up - and tries again. This can result in trying to
access AGFs that are lower than the AGF we already have locked from
the failed attempt. e.g. the failed attempt skipped several AGs
before failing, so we have locks an AG higher than the start AG.
Retrying the allocation from the start AG then causes us to violate
AGF lock ordering and this can lead to deadlocks.
The deadlock exists even if allocation succeeds - we can do a
followup allocations in the same transaction for BMBT blocks that
aren't guaranteed to be in the same AG as the original, and can move
into higher AGs. Hence we really need to move the tp->t_firstblock
tracking down into xfs_alloc_vextent() where it can be set when we
exit with a locked AG.
xfs_alloc_vextent() can also check there if the requested
allocation falls within the allow range of AGs set by
tp->t_firstblock. If we can't allocate within the range set, we have
to fail the allocation. If we are allowed to to non-blocking AGF
locking, we can ignore the AG locking order limitations as we can
use try-locks for the first iteration over requested AG range.
This invalidates a set of post allocation asserts that check that
the allocation is always above tp->t_firstblock if it is set.
Because we can use try-locks to avoid the deadlock in some
circumstances, having a pre-existing locked AGF doesn't always
prevent allocation from lower order AGFs. Hence those ASSERTs need
to be removed.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
The name passed into __xfs_xattr_put_listent is exactly namelen bytes
long and not null-terminated. Passing namelen+1 to the strscpy function
strscpy(offset, (char *)name, namelen + 1);
is therefore wrong. Go back to the old code, which works fine because
strncpy won't find a null in @name and stops after namelen bytes. It
really could be a memcpy call, but it worked for years.
Reported-by: syzbot+898115bc6d7140437215@syzkaller.appspotmail.com
Fixes: 8954c44ff4 ("xfs: use strscpy() to instead of strncpy()")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
from Xiubo, marked for stable.
-----BEGIN PGP SIGNATURE-----
iQFHBAABCAAxFiEEydHwtzie9C7TfviiSn/eOAIR84sFAmPmbYkTHGlkcnlvbW92
QGdtYWlsLmNvbQAKCRBKf944AhHzi+XXB/0c7jZNIR7+sQX6Tf+iaDPuCn2p03eP
vfogzoSCg+7yLq526PTfLYkG/MlLVdcQtm+w86VdUPv0b6G2FPWp1XA3xVkVcWOF
4kD640luNCWrHxB6Rw/NIwCogJGp0YKd3BDvkMgNdAd03gBNgHvzKIWtRJYZ/cUw
WY1LTCXZg3mJ7RL+3F9Mjvzesms/W/v3mW21ieTtAV1OJt1yEhPmosSZelU0tSt6
FLRMlkYtLcAkt2w86//J+b4sShcbcp/W4Io5QRrngGiT8v2Cd+PyoqqnC0V6cbVm
kUo9H0k31zv7p5r4zqjz0YWn130aSQG2MycFk2YywPptHZBrW6pr5AMm
=IUMM
-----END PGP SIGNATURE-----
Merge tag 'ceph-for-6.2-rc8' of https://github.com/ceph/ceph-client
Pull ceph fix from Ilya Dryomov:
"A fix for a pretty embarrassing omission in the session flush handler
from Xiubo, marked for stable"
* tag 'ceph-for-6.2-rc8' of https://github.com/ceph/ceph-client:
ceph: flush cap releases when the session is flushed
Since commit ee6d3dd4ed ("driver core: make kobj_type constant.")
the driver core allows the usage of const struct kobj_type.
Take advantage of this to constify the structure definitions to prevent
modification at runtime.
Signed-off-by: Thomas Weißschuh <linux@weissschuh.net>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
xfs will not allow combining other panic masks with
XFS_PTAG_VERIFIER_ERROR.
# sysctl fs.xfs.panic_mask=511
sysctl: setting key "fs.xfs.panic_mask": Invalid argument
fs.xfs.panic_mask = 511
Update to the maximum value that can be set to allow the full range of
masks. Do this using a mask of possible values to prevent this happening
again as suggested by Darrick.
Fixes: d519da41e2 ("xfs: Introduce XFS_PTAG_VERIFIER_ERROR panic mask")
Signed-off-by: Donald Douwsma <ddouwsma@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Replace direct modifications to vma->vm_flags with calls to modifier
functions to be able to track flag changes and to keep vma locking
correctness.
[akpm@linux-foundation.org: fix drivers/misc/open-dice.c, per Hyeonggon Yoo]
Link: https://lkml.kernel.org/r/20230126193752.297968-5-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Acked-by: Sebastian Reichel <sebastian.reichel@collabora.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arjun Roy <arjunroy@google.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: Laurent Dufour <ldufour@linux.ibm.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Minchan Kim <minchan@google.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Peter Oskolkov <posk@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Punit Agrawal <punit.agrawal@bytedance.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Soheil Hassas Yeganeh <soheil@google.com>
Cc: Song Liu <songliubraving@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Introduce shrink_vma() which uses the vma_prepare() and vma_complete()
functions to reduce the vma coverage.
Convert shift_arg_pages() to use expand_vma() and the new shrink_vma()
function. Remove support from __vma_adjust() to reduce a vma size since
shift_arg_pages() is the only user that shrinks a VMA in this way.
Link: https://lkml.kernel.org/r/20230120162650.984577-46-Liam.Howlett@oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Use the abstracted locking and maple tree operations. Since __split_vma()
is the only user of the __vma_adjust() function to use the insert
argument, drop that argument. Remove the NULL passed through from
fs/exec's shift_arg_pages() and mremap() at the same time.
Link: https://lkml.kernel.org/r/20230120162650.984577-44-Liam.Howlett@oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Change the vma_adjust() function definition to accept the vma iterator and
pass it through to __vma_adjust().
Update fs/exec to use the new vma_adjust() function parameters.
Update mm/mremap to use the new vma_adjust() function parameters.
Revert the __split_vma() calls back from __vma_adjust() to vma_adjust()
and pass through the vma iterator.
Link: https://lkml.kernel.org/r/20230120162650.984577-37-Liam.Howlett@oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Use the vma iterator so that the iterator can be invalidated or updated to
avoid each caller doing so.
Update the comments to how the vma iterator works. The vma iterator will
keep track of the last vm_end and start the search from vm_end + 1.
Link: https://lkml.kernel.org/r/20230120162650.984577-22-Liam.Howlett@oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Use the vma iterator so that the iterator can be invalidated or updated to
avoid each caller doing so.
Link: https://lkml.kernel.org/r/20230120162650.984577-20-Liam.Howlett@oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Use the vma iterator so that the iterator can be invalidated or updated to
avoid each caller doing so.
Link: https://lkml.kernel.org/r/20230120162650.984577-18-Liam.Howlett@oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Use the vma iterator so that the iterator can be invalidated or updated to
avoid each caller doing so.
Link: https://lkml.kernel.org/r/20230120162650.984577-17-Liam.Howlett@oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
In do_read_inode(), sanity check for extent cache should be called after
f2fs_init_read_extent_tree(), fix it.
Fixes: 72840cccc0 ("f2fs: allocate the extent_cache by default")
Signed-off-by: Chao Yu <chao@kernel.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQGzBAABCgAdFiEE6fsu8pdIjtWE/DpLiiy9cAdyT1EFAmPitC8ACgkQiiy9cAdy
T1GEggv/e1xd1mYPgjCBVxbCh2GpHh+N4OSy1TiKrgRP5xNi5ZAj2y51dAqHpXbi
m15h5aFFHN7gyxYl6lZz7gwvYX9WS6Dc46YnOH613ai6gjROKy/xKSoY9zipZ+gQ
cm3lZuTqTctmNVFjg0HzkTZjryIoWOtrrhViK/bJYqiMOAqTyOAnzQ/01WVwsuzJ
oLlEZhQqE7LS9OUeU3zNfUS/YD5EjqLwG9iwJUGEfxHh5h22oyFv1uroB1HBIqPw
eodR0+H67fkuxxTGbjL44yid2nalvZB/F6X028SX0smWfAsC23L0bZaj4Cb4OIIU
tpE5FvSeHisHPmtnh3gOmiqbxtvYmtKj9UM4JfC60qzNkAGAYYhuTWz6pdDD5I7h
4UtYVUMa6rvZF+5zDfz7YDazu+drvcBG6Hw9acNGBdgTc/lAleb1dktpAGg1Kq+A
0wZYlh6/8Q+r6hFxd5x5nzs4l+glyJ5UGltnt5c3/3suH4YO525j89agjAJnxxwS
0WObkpJ6
=OzkK
-----END PGP SIGNATURE-----
Merge tag '6.2-rc8-smb3-client-fix' of git://git.samba.org/sfrench/cifs-2.6
Pull cifx fix from Steve French:
"Small fix for use after free"
* tag '6.2-rc8-smb3-client-fix' of git://git.samba.org/sfrench/cifs-2.6:
cifs: Fix use-after-free in rdata->read_into_pages()
We have this check to make sure we don't accidentally add older devices
that may have disappeared and re-appeared with an older generation from
being added to an fs_devices (such as a replace source device). This
makes sense, we don't want stale disks in our file system. However for
single disks this doesn't really make sense.
I've seen this in testing, but I was provided a reproducer from a
project that builds btrfs images on loopback devices. The loopback
device gets cached with the new generation, and then if it is re-used to
generate a new file system we'll fail to mount it because the new fs is
"older" than what we have in cache.
Fix this by freeing the cache when closing the device for a single device
filesystem. This will ensure that the mount command passed device path is
scanned successfully during the next mount.
CC: stable@vger.kernel.org # 5.10+
Reported-by: Daan De Meyer <daandemeyer@fb.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently fiemap does not take the inode's lock (VFS lock), it only locks
a file range in the inode's io tree. This however can lead to a deadlock
if we have a concurrent fsync on the file and fiemap code triggers a fault
when accessing the user space buffer with fiemap_fill_next_extent(). The
deadlock happens on the inode's i_mmap_lock semaphore, which is taken both
by fsync and btrfs_page_mkwrite(). This deadlock was recently reported by
syzbot and triggers a trace like the following:
task:syz-executor361 state:D stack:20264 pid:5668 ppid:5119 flags:0x00004004
Call Trace:
<TASK>
context_switch kernel/sched/core.c:5293 [inline]
__schedule+0x995/0xe20 kernel/sched/core.c:6606
schedule+0xcb/0x190 kernel/sched/core.c:6682
wait_on_state fs/btrfs/extent-io-tree.c:707 [inline]
wait_extent_bit+0x577/0x6f0 fs/btrfs/extent-io-tree.c:751
lock_extent+0x1c2/0x280 fs/btrfs/extent-io-tree.c:1742
find_lock_delalloc_range+0x4e6/0x9c0 fs/btrfs/extent_io.c:488
writepage_delalloc+0x1ef/0x540 fs/btrfs/extent_io.c:1863
__extent_writepage+0x736/0x14e0 fs/btrfs/extent_io.c:2174
extent_write_cache_pages+0x983/0x1220 fs/btrfs/extent_io.c:3091
extent_writepages+0x219/0x540 fs/btrfs/extent_io.c:3211
do_writepages+0x3c3/0x680 mm/page-writeback.c:2581
filemap_fdatawrite_wbc+0x11e/0x170 mm/filemap.c:388
__filemap_fdatawrite_range mm/filemap.c:421 [inline]
filemap_fdatawrite_range+0x175/0x200 mm/filemap.c:439
btrfs_fdatawrite_range fs/btrfs/file.c:3850 [inline]
start_ordered_ops fs/btrfs/file.c:1737 [inline]
btrfs_sync_file+0x4ff/0x1190 fs/btrfs/file.c:1839
generic_write_sync include/linux/fs.h:2885 [inline]
btrfs_do_write_iter+0xcd3/0x1280 fs/btrfs/file.c:1684
call_write_iter include/linux/fs.h:2189 [inline]
new_sync_write fs/read_write.c:491 [inline]
vfs_write+0x7dc/0xc50 fs/read_write.c:584
ksys_write+0x177/0x2a0 fs/read_write.c:637
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f7d4054e9b9
RSP: 002b:00007f7d404fa2f8 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 00007f7d405d87a0 RCX: 00007f7d4054e9b9
RDX: 0000000000000090 RSI: 0000000020000000 RDI: 0000000000000006
RBP: 00007f7d405a51d0 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 61635f65646f6e69
R13: 65646f7475616f6e R14: 7261637369646f6e R15: 00007f7d405d87a8
</TASK>
INFO: task syz-executor361:5697 blocked for more than 145 seconds.
Not tainted 6.2.0-rc3-syzkaller-00376-g7c6984405241 #0
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:syz-executor361 state:D stack:21216 pid:5697 ppid:5119 flags:0x00004004
Call Trace:
<TASK>
context_switch kernel/sched/core.c:5293 [inline]
__schedule+0x995/0xe20 kernel/sched/core.c:6606
schedule+0xcb/0x190 kernel/sched/core.c:6682
rwsem_down_read_slowpath+0x5f9/0x930 kernel/locking/rwsem.c:1095
__down_read_common+0x54/0x2a0 kernel/locking/rwsem.c:1260
btrfs_page_mkwrite+0x417/0xc80 fs/btrfs/inode.c:8526
do_page_mkwrite+0x19e/0x5e0 mm/memory.c:2947
wp_page_shared+0x15e/0x380 mm/memory.c:3295
handle_pte_fault mm/memory.c:4949 [inline]
__handle_mm_fault mm/memory.c:5073 [inline]
handle_mm_fault+0x1b79/0x26b0 mm/memory.c:5219
do_user_addr_fault+0x69b/0xcb0 arch/x86/mm/fault.c:1428
handle_page_fault arch/x86/mm/fault.c:1519 [inline]
exc_page_fault+0x7a/0x110 arch/x86/mm/fault.c:1575
asm_exc_page_fault+0x22/0x30 arch/x86/include/asm/idtentry.h:570
RIP: 0010:copy_user_short_string+0xd/0x40 arch/x86/lib/copy_user_64.S:233
Code: 74 0a 89 (...)
RSP: 0018:ffffc9000570f330 EFLAGS: 00050202
RAX: ffffffff843e6601 RBX: 00007fffffffefc8 RCX: 0000000000000007
RDX: 0000000000000000 RSI: ffffc9000570f3e0 RDI: 0000000020000120
RBP: ffffc9000570f490 R08: 0000000000000000 R09: fffff52000ae1e83
R10: fffff52000ae1e83 R11: 1ffff92000ae1e7c R12: 0000000000000038
R13: ffffc9000570f3e0 R14: 0000000020000120 R15: ffffc9000570f3e0
copy_user_generic arch/x86/include/asm/uaccess_64.h:37 [inline]
raw_copy_to_user arch/x86/include/asm/uaccess_64.h:58 [inline]
_copy_to_user+0xe9/0x130 lib/usercopy.c:34
copy_to_user include/linux/uaccess.h:169 [inline]
fiemap_fill_next_extent+0x22e/0x410 fs/ioctl.c:144
emit_fiemap_extent+0x22d/0x3c0 fs/btrfs/extent_io.c:3458
fiemap_process_hole+0xa00/0xad0 fs/btrfs/extent_io.c:3716
extent_fiemap+0xe27/0x2100 fs/btrfs/extent_io.c:3922
btrfs_fiemap+0x172/0x1e0 fs/btrfs/inode.c:8209
ioctl_fiemap fs/ioctl.c:219 [inline]
do_vfs_ioctl+0x185b/0x2980 fs/ioctl.c:810
__do_sys_ioctl fs/ioctl.c:868 [inline]
__se_sys_ioctl+0x83/0x170 fs/ioctl.c:856
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f7d4054e9b9
RSP: 002b:00007f7d390d92f8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 00007f7d405d87b0 RCX: 00007f7d4054e9b9
RDX: 0000000020000100 RSI: 00000000c020660b RDI: 0000000000000005
RBP: 00007f7d405a51d0 R08: 00007f7d390d9700 R09: 0000000000000000
R10: 00007f7d390d9700 R11: 0000000000000246 R12: 61635f65646f6e69
R13: 65646f7475616f6e R14: 7261637369646f6e R15: 00007f7d405d87b8
</TASK>
What happens is the following:
1) Task A is doing an fsync, enters btrfs_sync_file() and flushes delalloc
before locking the inode and the i_mmap_lock semaphore, that is, before
calling btrfs_inode_lock();
2) After task A flushes delalloc and before it calls btrfs_inode_lock(),
another task dirties a page;
3) Task B starts a fiemap without FIEMAP_FLAG_SYNC, so the page dirtied
at step 2 remains dirty and unflushed. Then when it enters
extent_fiemap() and it locks a file range that includes the range of
the page dirtied in step 2;
4) Task A calls btrfs_inode_lock() and locks the inode (VFS lock) and the
inode's i_mmap_lock semaphore in write mode. Then it tries to flush
delalloc by calling start_ordered_ops(), which will block, at
find_lock_delalloc_range(), when trying to lock the range of the page
dirtied at step 2, since this range was locked by the fiemap task (at
step 3);
5) Task B generates a page fault when accessing the user space fiemap
buffer with a call to fiemap_fill_next_extent().
The fault handler needs to call btrfs_page_mkwrite() for some other
page of our inode, and there we deadlock when trying to lock the
inode's i_mmap_lock semaphore in read mode, since the fsync task locked
it in write mode (step 4) and the fsync task can not progress because
it's waiting to lock a file range that is currently locked by us (the
fiemap task, step 3).
Fix this by taking the inode's lock (VFS lock) in shared mode when
entering fiemap. This effectively serializes fiemap with fsync (except the
most expensive part of fsync, the log sync), preventing this deadlock.
Reported-by: syzbot+cc35f55c41e34c30dcb5@syzkaller.appspotmail.com
Link: https://lore.kernel.org/linux-btrfs/00000000000032dc7305f2a66f46@google.com/
CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
To avoid 'sparse' warnings about missing endianness conversions, don't
store native endianness values into struct ext4_fc_tl. Instead, use a
separate struct type, ext4_fc_tl_mem.
Fixes: dcc5827484 ("ext4: factor out ext4_fc_get_tl()")
Cc: Ye Bin <yebin10@huawei.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221217050212.150665-1-ebiggers@kernel.org
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Refactor the in-inode and xattr block consistency checking, and report
more fine-grained reports of the consistency problems. Also add more
consistency checks for ea_inode number.
Reviewed-by: Andreas Dilger <adilger@dilger.ca>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Link: https://lore.kernel.org/r/20221214200818.870087-1-tytso@mit.edu
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
When converting directory from in-ICB to normal format, the last
iteration through the directory fixing up directory enteries can fail
due to ENOMEM. We do not expect this iteration to fail since the
directory is already verified to be correct and it is difficult to undo
the conversion at this point. So just use GFP_NOFAIL to make sure the
small allocation cannot fail.
Reported-by: syzbot+111eaa994ff74f8d440f@syzkaller.appspotmail.com
Fixes: 0aba4860b0 ("udf: Allocate name buffer in directory iterator on heap")
Signed-off-by: Jan Kara <jack@suse.cz>
GCC does not like having a partially allocated object, since it cannot
reason about it for bounds checking when it is passed to other code.
Instead, fully allocate sig_inputArgs. (Alternatively, sig_inputArgs
should be defined as a struct coda_in_hdr, if it is actually not using
any other part of the union.) Seen under GCC 13:
../fs/coda/upcall.c: In function 'coda_upcall':
../fs/coda/upcall.c:801:22: warning: array subscript 'union inputArgs[0]' is partly outside array bounds of 'unsigned char[20]' [-Warray-bounds=]
801 | sig_inputArgs->ih.opcode = CODA_SIGNAL;
| ^~
Cc: Jan Harkes <jaharkes@cs.cmu.edu>
Cc: coda@cs.cmu.edu
Cc: codalist@coda.cs.cmu.edu
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20230127223921.never.882-kees@kernel.org
Now that fscrypt_add_test_dummy_key() is only called by
setup_file_encryption_key() and not by the individual filesystems,
un-export it. Also change its prototype to take the
fscrypt_key_specifier directly, as the caller already has it.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Link: https://lore.kernel.org/r/20230208062107.199831-6-ebiggers@kernel.org
Now that the key associated with the "test_dummy_operation" mount option
is added on-demand when it's needed, rather than immediately when the
filesystem is mounted, fscrypt_destroy_keyring() no longer needs to be
called from __put_super() to avoid a memory leak on mount failure.
Remove this call, which was causing confusion because it appeared to be
a sleep-in-atomic bug (though it wasn't, for a somewhat-subtle reason).
Signed-off-by: Eric Biggers <ebiggers@google.com>
Link: https://lore.kernel.org/r/20230208062107.199831-5-ebiggers@kernel.org
Now that fs/crypto/ adds the test dummy encryption key on-demand when
it's needed, there's no need for individual filesystems to call
fscrypt_add_test_dummy_key(). Remove the call to it from f2fs.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Link: https://lore.kernel.org/r/20230208062107.199831-4-ebiggers@kernel.org
Now that fs/crypto/ adds the test dummy encryption key on-demand when
it's needed, there's no need for individual filesystems to call
fscrypt_add_test_dummy_key(). Remove the call to it from ext4.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Link: https://lore.kernel.org/r/20230208062107.199831-3-ebiggers@kernel.org
When the key for an inode is not found but the inode is using the
test_dummy_encryption policy, automatically add the
test_dummy_encryption key to the filesystem keyring. This eliminates
the need for all the individual filesystems to do this at mount time,
which is a bit tricky to clean up from on failure.
Note: this covers the call to fscrypt_find_master_key() from inode key
setup, but not from the fscrypt ioctls. So, this isn't *exactly* the
same as the key being present from the very beginning. I think we can
tolerate that, though, since the inode key setup caller is the only one
that actually matters in the context of test_dummy_encryption.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Link: https://lore.kernel.org/r/20230208062107.199831-2-ebiggers@kernel.org
For LFS mode, it should update outplace and no need inplace update.
When using LFS mode for small-volume devices, IPU will not be used,
and the OPU writing method is actually used, but F2FS_IPU_FORCE can
be read from the ipu_policy node, which is different from the actual
situation. And remount to lfs mode should be disallowed when
f2fs ipu is enabled, let's fix it.
Fixes: 84b89e5d94 ("f2fs: add auto tuning for small devices")
Signed-off-by: Yangtao Li <frank.li@vivo.com>
Reviewed-by: Chao Yu <chao@kernel.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
This patch is to fix typos in f2fs files.
Signed-off-by: Jinyoung Choi <j-young.choi@samsung.com>
Reviewed-by: Chao Yu <chao@kernel.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Convert to use iostat_lat_type as parameter instead of raw number.
BTW, move NUM_PREALLOC_IOSTAT_CTXS to the header file, adjust
iostat_lat[{0,1,2}] to iostat_lat[{READ_IO,WRITE_SYNC_IO,WRITE_ASYNC_IO}]
in tracepoint function, and rename iotype to page_type to match the definition.
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Dan Carpenter <error27@gmail.com>
Signed-off-by: Yangtao Li <frank.li@vivo.com>
Reviewed-by: Chao Yu <chao@kernel.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
MDS expects the completed cap release prior to responding to the
session flush for cache drop.
Cc: stable@vger.kernel.org
Link: http://tracker.ceph.com/issues/38009
Signed-off-by: Xiubo Li <xiubli@redhat.com>
Reviewed-by: Venky Shankar <vshankar@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
To avoid confusing the compiler about possible negative sizes, switch
various size variables that can never be negative from int to u32. Seen
with GCC 13:
../fs/udf/directory.c: In function 'udf_copy_fi':
../include/linux/fortify-string.h:57:33: warning: '__builtin_memcpy' pointer overflow between offset 80 and size [-2147483648, -1] [-Warray-bounds=]
57 | #define __underlying_memcpy __builtin_memcpy
| ^
...
../fs/udf/directory.c:102:9: note: in expansion of macro 'memcpy'
102 | memcpy(&iter->fi, iter->bh[0]->b_data + off, len);
| ^~~~~~
Cc: Jan Kara <jack@suse.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Jan Kara <jack@suse.cz>
Message-Id: <20230204183427.never.856-kees@kernel.org>
This patch passes the full response so that the audit function can use all
of it. The audit function was updated to log the additional information in
the AUDIT_FANOTIFY record.
Currently the only type of fanotify info that is defined is an audit
rule number, but convert it to hex encoding to future-proof the field.
Hex encoding suggested by Paul Moore <paul@paul-moore.com>.
The {subj,obj}_trust values are {0,1,2}, corresponding to no, yes, unknown.
Sample records:
type=FANOTIFY msg=audit(1600385147.372:590): resp=2 fan_type=1 fan_info=3137 subj_trust=3 obj_trust=5
type=FANOTIFY msg=audit(1659730979.839:284): resp=1 fan_type=0 fan_info=0 subj_trust=2 obj_trust=2
Suggested-by: Steve Grubb <sgrubb@redhat.com>
Link: https://lore.kernel.org/r/3075502.aeNJFYEL58@x2
Tested-by: Steve Grubb <sgrubb@redhat.com>
Acked-by: Steve Grubb <sgrubb@redhat.com>
Signed-off-by: Richard Guy Briggs <rgb@redhat.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Message-Id: <bcb6d552e517b8751ece153e516d8b073459069c.1675373475.git.rgb@redhat.com>
This patch adds a flag, FAN_INFO and an extensible buffer to provide
additional information about response decisions. The buffer contains
one or more headers defining the information type and the length of the
following information. The patch defines one additional information
type, FAN_RESPONSE_INFO_AUDIT_RULE, to audit a rule number. This will
allow for the creation of other information types in the future if other
users of the API identify different needs.
The kernel can be tested if it supports a given info type by supplying
the complete info extension but setting fd to FAN_NOFD. It will return
the expected size but not issue an audit record.
Suggested-by: Steve Grubb <sgrubb@redhat.com>
Link: https://lore.kernel.org/r/2745105.e9J7NaK4W3@x2
Suggested-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20201001101219.GE17860@quack2.suse.cz
Tested-by: Steve Grubb <sgrubb@redhat.com>
Acked-by: Steve Grubb <sgrubb@redhat.com>
Signed-off-by: Richard Guy Briggs <rgb@redhat.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Message-Id: <10177cfcae5480926b7176321a28d9da6835b667.1675373475.git.rgb@redhat.com>
The user space API for the response variable is __u32. This patch makes
sure that the whole path through the kernel uses u32 so that there is
no sign extension or truncation of the user space response.
Suggested-by: Steve Grubb <sgrubb@redhat.com>
Link: https://lore.kernel.org/r/12617626.uLZWGnKmhe@x2
Signed-off-by: Richard Guy Briggs <rgb@redhat.com>
Acked-by: Paul Moore <paul@paul-moore.com>
Tested-by: Steve Grubb <sgrubb@redhat.com>
Acked-by: Steve Grubb <sgrubb@redhat.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Message-Id: <3778cb0b3501bc4e686ba7770b20eb9ab0506cf4.1675373475.git.rgb@redhat.com>
clang build fails with
fs/udf/partition.c:86:28: error: variable 'loc' is uninitialized when used here [-Werror,-Wuninitialized]
sb, block, partition, loc, index);
^~~
loc is now only known when bh is valid. So remove reporting loc in debug
output.
Fixes: 4215db46d5 ("udf: Use udf_bread() in udf_get_pblock_virt15()")
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: "kernelci.org bot" <bot@kernelci.org>
Signed-off-by: Tom Rix <trix@redhat.com>
Reviewed-by: Nathan Chancellor <nathan@kernel.org>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Bits, which are related to Bitmap Descriptor logical blocks,
are not reset when buffer headers are allocated for them. As the
result, these logical blocks can be treated as free and
be used for other blocks.This can cause usage of one buffer header
for several types of data. UDF issues WARNING in this situation:
WARNING: CPU: 0 PID: 2703 at fs/udf/inode.c:2014
__udf_add_aext+0x685/0x7d0 fs/udf/inode.c:2014
RIP: 0010:__udf_add_aext+0x685/0x7d0 fs/udf/inode.c:2014
Call Trace:
udf_setup_indirect_aext+0x573/0x880 fs/udf/inode.c:1980
udf_add_aext+0x208/0x2e0 fs/udf/inode.c:2067
udf_insert_aext fs/udf/inode.c:2233 [inline]
udf_update_extents fs/udf/inode.c:1181 [inline]
inode_getblk+0x1981/0x3b70 fs/udf/inode.c:885
Found by Linux Verification Center (linuxtesting.org) with syzkaller.
[JK: Somewhat cleaned up the boundary checks]
Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Signed-off-by: Vladislav Efanov <VEfanov@ispras.ru>
Signed-off-by: Jan Kara <jack@suse.cz>
When the network status is unstable, use-after-free may occur when
read data from the server.
BUG: KASAN: use-after-free in readpages_fill_pages+0x14c/0x7e0
Call Trace:
<TASK>
dump_stack_lvl+0x38/0x4c
print_report+0x16f/0x4a6
kasan_report+0xb7/0x130
readpages_fill_pages+0x14c/0x7e0
cifs_readv_receive+0x46d/0xa40
cifs_demultiplex_thread+0x121c/0x1490
kthread+0x16b/0x1a0
ret_from_fork+0x2c/0x50
</TASK>
Allocated by task 2535:
kasan_save_stack+0x22/0x50
kasan_set_track+0x25/0x30
__kasan_kmalloc+0x82/0x90
cifs_readdata_direct_alloc+0x2c/0x110
cifs_readdata_alloc+0x2d/0x60
cifs_readahead+0x393/0xfe0
read_pages+0x12f/0x470
page_cache_ra_unbounded+0x1b1/0x240
filemap_get_pages+0x1c8/0x9a0
filemap_read+0x1c0/0x540
cifs_strict_readv+0x21b/0x240
vfs_read+0x395/0x4b0
ksys_read+0xb8/0x150
do_syscall_64+0x3f/0x90
entry_SYSCALL_64_after_hwframe+0x72/0xdc
Freed by task 79:
kasan_save_stack+0x22/0x50
kasan_set_track+0x25/0x30
kasan_save_free_info+0x2e/0x50
__kasan_slab_free+0x10e/0x1a0
__kmem_cache_free+0x7a/0x1a0
cifs_readdata_release+0x49/0x60
process_one_work+0x46c/0x760
worker_thread+0x2a4/0x6f0
kthread+0x16b/0x1a0
ret_from_fork+0x2c/0x50
Last potentially related work creation:
kasan_save_stack+0x22/0x50
__kasan_record_aux_stack+0x95/0xb0
insert_work+0x2b/0x130
__queue_work+0x1fe/0x660
queue_work_on+0x4b/0x60
smb2_readv_callback+0x396/0x800
cifs_abort_connection+0x474/0x6a0
cifs_reconnect+0x5cb/0xa50
cifs_readv_from_socket.cold+0x22/0x6c
cifs_read_page_from_socket+0xc1/0x100
readpages_fill_pages.cold+0x2f/0x46
cifs_readv_receive+0x46d/0xa40
cifs_demultiplex_thread+0x121c/0x1490
kthread+0x16b/0x1a0
ret_from_fork+0x2c/0x50
The following function calls will cause UAF of the rdata pointer.
readpages_fill_pages
cifs_read_page_from_socket
cifs_readv_from_socket
cifs_reconnect
__cifs_reconnect
cifs_abort_connection
mid->callback() --> smb2_readv_callback
queue_work(&rdata->work) # if the worker completes first,
# the rdata is freed
cifs_readv_complete
kref_put
cifs_readdata_release
kfree(rdata)
return rdata->... # UAF in readpages_fill_pages()
Similarly, this problem also occurs in the uncache_fill_pages().
Fix this by adjusts the order of condition judgment in the return
statement.
Signed-off-by: ZhaoLong Wang <wangzhaolong1@huawei.com>
Cc: stable@vger.kernel.org
Acked-by: Paulo Alcantara (SUSE) <pc@cjr.nz>
Signed-off-by: Steve French <stfrench@microsoft.com>
When logging a directory, we always set the inode's last_dir_index_offset
to the offset of the last dir index item we found. This is using an extra
field in the log context structure, and it makes more sense to update it
only after we insert dir index items, and we could directly update the
inode's last_dir_index_offset field instead.
So make this simpler by updating the inode's last_dir_index_offset only
when we actually insert dir index keys in the log tree, and getting rid
of the last_dir_item_offset field in the log context structure.
Reported-by: David Arendt <admin@prnet.org>
Link: https://lore.kernel.org/linux-btrfs/ae169fc6-f504-28f0-a098-6fa6a4dfb612@leemhuis.info/
Reported-by: Maxim Mikityanskiy <maxtram95@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/Y8voyTXdnPDz8xwY@mail.gmail.com/
Reported-by: Hunter Wardlaw <wardlawhunter@gmail.com>
Link: https://bugzilla.suse.com/show_bug.cgi?id=1207231
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=216851
CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmPhSm8ACgkQxWXV+ddt
WDtucA/+MYsOjRZtG76NFUzDVaWpgPJ0/M7lJlzQkhMpRZwjVheDBDCGDSlu/Xzq
wLdvc4VR/o0xZD90KtnQNDPwq1jknBHynVUiWAUzt0FKWu81Jd5TvfRMmGKGQ5B2
CxSdfB2iatL/1L+DZ3q4uUXg8L+MDKTtjk2xOb648pXrT2MIy3u3j9ZhlDiYhvWx
6YlPyUehq7a9gLXq6TGmZjC4FUboqlI6hdf3iu3rHlCeFFXTPT4QKR9G8FpVRikc
C7lH8X3qV2Sg6rGaFT3BIsamS/rQZHh3zOuj4EbI/n6ZXiSsr0Bo/2JAxgyGYoH0
u5LkIRIpry7E4Pn2vc9mj9T7C+tpN7BP+rQ9wL6r9KIbDB/c1hOsfOp+uZikukpY
Lg9EvHksHyp0Fcrro3FxswRlK1Q5Q7Vx/+VUoYB93WCl8iQtEiVOH2LSoR+ZtSiD
/Iitx8i1qcNO5DiFPcZgVC0WbrEfDoVqnwPrvY77BsBMA7i4l6Pe/n5Kw/vzRGmY
ywo08fri7Daqv3HulBk3QrVGw4lHFPOuUpN9DkI3WfUoXTNeclzTPFS+27XnaXZn
bP3OLf7hU7zTRC8FukWk9X4nPSTLT0xJ8LllGdMp1Wi9ntavqIDiJAviGsyqvneC
FTgTKHFuvXvzgnji66Lo61wMEPRbac49diAKcmSiQwua/I7aPRY=
=5fdr
-----END PGP SIGNATURE-----
Merge tag 'for-6.2-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- explicitly initialize zlib work memory to fix a KCSAN warning
- limit number of send clones by maximum memory allocated
- limit device size extent in case it device shrink races with chunk
allocation
- raid56 fixes:
- fix copy&paste error in RAID6 stripe recovery
- make error bitmap update atomic
* tag 'for-6.2-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: raid56: make error_bitmap update atomic
btrfs: send: limit number of clones and allocated memory size
btrfs: zlib: zero-initialize zlib workspace
btrfs: limit device extents to the device size
btrfs: raid56: fix stripes if vertical errors are found
Commit 5911d2d1d1 ("f2fs: introduce gc_merge mount option") forgot
to show nogc_merge option, let's fix it.
Signed-off-by: Yangtao Li <frank.li@vivo.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
When writing a page from an encrypted file that is using
filesystem-layer encryption (not inline encryption), f2fs encrypts the
pagecache page into a bounce page, then writes the bounce page.
It also passes the bounce page to wbc_account_cgroup_owner(). That's
incorrect, because the bounce page is a newly allocated temporary page
that doesn't have the memory cgroup of the original pagecache page.
This makes wbc_account_cgroup_owner() not account the I/O to the owner
of the pagecache page as it should.
Fix this by always passing the pagecache page to
wbc_account_cgroup_owner().
Fixes: 578c647879 ("f2fs: implement cgroup writeback support")
Cc: stable@vger.kernel.org
Reported-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Chao Yu <chao@kernel.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Currently we wrongly calculate the new block age to
old * LAST_AGE_WEIGHT / 100.
Fix it to new * (100 - LAST_AGE_WEIGHT) / 100
+ old * LAST_AGE_WEIGHT / 100.
Signed-off-by: qixiaoyu1 <qixiaoyu1@xiaomi.com>
Signed-off-by: xiongping1 <xiongping1@xiaomi.com>
Reviewed-by: Chao Yu <chao@kernel.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Pull ELF fix from Al Viro:
"One of the many equivalent build warning fixes for !CONFIG_ELF_CORE
configs. Geert's is the earliest one I've been able to find"
* 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
coredump: Move dump_emit_page() to kill unused warning
When we split a BMBT due to record insertion, we offload it to a
worker thread because we can be deep in the stack when we try to
allocate a new block for the BMBT. Allocation can use several
kilobytes of stack (full memory reclaim, swap and/or IO path can
end up on the stack during allocation) and we can already be several
kilobytes deep in the stack when we need to split the BMBT.
A recent workload demonstrated a deadlock in this BMBT split
offload. It requires several things to happen at once:
1. two inodes need a BMBT split at the same time, one must be
unwritten extent conversion from IO completion, the other must be
from extent allocation.
2. there must be a no available xfs_alloc_wq worker threads
available in the worker pool.
3. There must be sustained severe memory shortages such that new
kworker threads cannot be allocated to the xfs_alloc_wq pool for
both threads that need split work to be run
4. The split work from the unwritten extent conversion must run
first.
5. when the BMBT block allocation runs from the split work, it must
loop over all AGs and not be able to either trylock an AGF
successfully, or each AGF is is able to lock has no space available
for a single block allocation.
6. The BMBT allocation must then attempt to lock the AGF that the
second task queued to the rescuer thread already has locked before
it finds an AGF it can allocate from.
At this point, we have an ABBA deadlock between tasks queued on the
xfs_alloc_wq rescuer thread and a locked AGF. i.e. The queued task
holding the AGF lock can't be run by the rescuer thread until the
task the rescuer thread is runing gets the AGF lock....
This is a highly improbably series of events, but there it is.
There's a couple of ways to fix this, but the easiest way to ensure
that we only punt tasks with a locked AGF that holds enough space
for the BMBT block allocations to the worker thread.
This works for unwritten extent conversion in IO completion (which
doesn't have a locked AGF and space reservations) because we have
tight control over the IO completion stack. It is typically only 6
functions deep when xfs_btree_split() is called because we've
already offloaded the IO completion work to a worker thread and
hence we don't need to worry about stack overruns here.
The other place we can be called for a BMBT split without a
preceeding allocation is __xfs_bunmapi() when punching out the
center of an existing extent. We don't remove extents in the IO
path, so these operations don't tend to be called with a lot of
stack consumed. Hence we don't really need to ship the split off to
a worker thread in these cases, either.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Variable names in this code module are inconsistent and confusing.
xfs_phys_extent describe physical mappings, so rename them "pmap".
xfs_refcount_intents describe refcount intents, so rename them "ri".
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Pass the incore refcount intent through the CUI logging code instead of
repeatedly boxing and unboxing parameters.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Variable names in this code module are inconsistent and confusing.
xfs_map_extent describe file mappings, so rename them "map".
xfs_rmap_intents describe block mapping intents, so rename them "ri".
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Pass the incore rmap space mapping through the RUI logging code instead
of repeatedly boxing and unboxing parameters.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Change the name of all pointers to xfs_extent_item structures to "xefi"
to make the name consistent and because the current selections ("new"
and "free") mean other things in C.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Pass the incore xfs_extent_free_item through the EFI logging code
instead of repeatedly boxing and unboxing parameters.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Variable names in this code module are inconsistent and confusing.
xfs_map_extent describe file mappings, so rename them "map".
xfs_bmap_intents describe block mapping intents, so rename them "bi".
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Instead of repeatedly boxing and unboxing the incore extent mapping
structure as it passes through the BUI code, pass the pointer directly
through.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
The implementation of strscpy() is more robust and safer.
That's now the recommended way to copy NUL-terminated strings.
Signed-off-by: Xu Panda <xu.panda@zte.com.cn>
Signed-off-by: Yang Yang <yang.yang29@zte.com.cn>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
I added $(srctree)/ to some included Makefiles in the following commits:
- 3204a7fb98 ("kbuild: prefix $(srctree)/ to some included Makefiles")
- d828563955 ("kbuild: do not require sub-make for separate output tree builds")
They were a preparation for removing --include-dir flag.
I have never thought --include-dir useful. Rather, it _is_ harmful.
For example, run the following commands:
$ make -s ARCH=x86 mrproper defconfig
$ make ARCH=arm O=foo dtbs
make[1]: Entering directory '/tmp/linux/foo'
HOSTCC scripts/basic/fixdep
Error: kernelrelease not valid - run 'make prepare' to update it
UPD include/config/kernel.release
make[1]: Leaving directory '/tmp/linux/foo'
The first command configures the source tree for x86. The next command
tries to build ARM device trees in the separate foo/ directory - this
must stop because the directory foo/ has not been configured yet.
However, due to --include-dir=$(abs_srctree), the top Makefile includes
the wrong include/config/auto.conf from the source tree and continues
building. Kbuild traverses the directory tree, but of course it does
not work correctly. The Error message is also pointless - 'make prepare'
does not help at all for fixing the issue.
This commit fixes more arch Makefile, and finally removes --include-dir
from the top Makefile.
There are more breakages under drivers/, but I do not volunteer to fix
them all. I just moved --include-dir to drivers/Makefile.
With this commit, the second command will stop with a sensible message.
$ make -s ARCH=x86 mrproper defconfig
$ make ARCH=arm O=foo dtbs
make[1]: Entering directory '/tmp/linux/foo'
SYNC include/config/auto.conf.cmd
***
*** The source tree is not clean, please run 'make ARCH=arm mrproper'
*** in /tmp/linux
***
make[2]: *** [../Makefile:646: outputmakefile] Error 1
/tmp/linux/Makefile:770: include/config/auto.conf.cmd: No such file or directory
make[1]: *** [/tmp/linux/Makefile:793: include/config/auto.conf.cmd] Error 2
make[1]: Leaving directory '/tmp/linux/foo'
make: *** [Makefile:226: __sub-make] Error 2
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
This fix was nacked by Philip, for reasons identified in the email linked
below.
Link: https://lkml.kernel.org/r/68f15d67-8945-2728-1f17-5b53a80ec52d@squashfs.org.uk
Fixes: 72e544b1b2 ("squashfs: harden sanity check in squashfs_read_xattr_id_table")
Cc: Alexey Khoroshilov <khoroshilov@ispras.ru>
Cc: Fedor Pchelkin <pchelkin@ispras.ru>
Cc: Phillip Lougher <phillip@squashfs.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The copy_mc_to_kernel() will return 0 if it executed successfully. Then
the return value should be set to the length it copied.
[akpm@linux-foundation.org: don't mess up `ret', per Matthew]
Link: https://lkml.kernel.org/r/1675341227-14-1-git-send-email-ruansy.fnst@fujitsu.com
Fixes: d984648e42 ("fsdax,xfs: port unshare to fsdax")
Signed-off-by: Shiyang Ruan <ruansy.fnst@fujitsu.com>
Cc: Darrick J. Wong <djwong@kernel.org>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Commit e4a0d3e720 ("aio: Make it possible to remap aio ring") introduced
a null-deref if mremap is called on an old aio mapping after fork as
mm->ioctx_table will be set to NULL.
[jmoyer@redhat.com: fix 80 column issue]
Link: https://lkml.kernel.org/r/x49sffq4nvg.fsf@segfault.boston.devel.redhat.com
Fixes: e4a0d3e720 ("aio: Make it possible to remap aio ring")
Signed-off-by: Seth Jenkins <sethjenkins@google.com>
Signed-off-by: Jeff Moyer <jmoyer@redhat.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Benjamin LaHaise <bcrl@kvack.org>
Cc: Jann Horn <jannh@google.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
filesystem after running into a case of an invalid snap trace. The
root cause of this metadata corruption is still being investigated but
it appears to be stemming from the MDS. As such, this is the best we
can do for now.
-----BEGIN PGP SIGNATURE-----
iQFHBAABCAAxFiEEydHwtzie9C7TfviiSn/eOAIR84sFAmPdTX4THGlkcnlvbW92
QGdtYWlsLmNvbQAKCRBKf944AhHzi7upB/4+UFJT7GQyd6Co1gQ83iQhq7pqHlZ2
K0CTOrp1ffqvCxHo4vDqW6SM/C825qeIQzVyvTP0/gpax3jo2NfV0RBxa+mXS8aI
JkeOQ8DQCi35BT0bp9JnmLPEWfhcJBK7G4jZyCsUf+47GrzPyMtSdmU2Xv+heig1
e0YjaUtUxv8l5bSGq7clIf44p++SAhT2L2z5iwMfq3YHpYmFKCKGRbpRCPoLANsh
PG85zxpz7zjViY1/bCM/DAq1c/ZiqcwxcmToJgKug/4tvHtOGWnZa1t0oO7rtUE9
BslkL4BwT0uBtIILiWC5JG617mhjQaXazF6i1C1W7mGf/CXXWROkS9/9
=s3LU
-----END PGP SIGNATURE-----
Merge tag 'ceph-for-6.2-rc7' of https://github.com/ceph/ceph-client
Pull ceph fix from Ilya Dryomov:
"A safeguard to prevent the kernel client from further damaging the
filesystem after running into a case of an invalid snap trace.
The root cause of this metadata corruption is still being investigated
but it appears to be stemming from the MDS. As such, this is the best
we can do for now"
* tag 'ceph-for-6.2-rc7' of https://github.com/ceph/ceph-client:
ceph: blocklist the kclient when receiving corrupted snap trace
ceph: move mount state enum to super.h
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY9x+swAKCRDdBJ7gKXxA
joPwAP95XqB7gzy2l1Mc++Ta7Ih0fS34Pj1vTAxwsRQnqzr6rwD/QOt3YU9KgXpy
D7Fp8NnaQZq6m5o8cvV5+fBqA3uarAM=
=IIB8
-----END PGP SIGNATURE-----
Merge tag 'mm-hotfixes-stable-2023-02-02-19-24-2' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull misc fixes from Andrew Morton:
"25 hotfixes, mainly for MM. 13 are cc:stable"
* tag 'mm-hotfixes-stable-2023-02-02-19-24-2' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (26 commits)
mm: memcg: fix NULL pointer in mem_cgroup_track_foreign_dirty_slowpath()
Kconfig.debug: fix the help description in SCHED_DEBUG
mm/swapfile: add cond_resched() in get_swap_pages()
mm: use stack_depot_early_init for kmemleak
Squashfs: fix handling and sanity checking of xattr_ids count
sh: define RUNTIME_DISCARD_EXIT
highmem: round down the address passed to kunmap_flush_on_unmap()
migrate: hugetlb: check for hugetlb shared PMD in node migration
mm: hugetlb: proc: check for hugetlb shared PMD in /proc/PID/smaps
mm/MADV_COLLAPSE: catch !none !huge !bad pmd lookups
Revert "mm: kmemleak: alloc gray object for reserved region with direct map"
freevxfs: Kconfig: fix spelling
maple_tree: should get pivots boundary by type
.mailmap: update e-mail address for Eugen Hristev
mm, mremap: fix mremap() expanding for vma's with vm_ops->close()
squashfs: harden sanity check in squashfs_read_xattr_id_table
ia64: fix build error due to switch case label appearing next to declaration
mm: multi-gen LRU: fix crash during cgroup migration
Revert "mm: add nodes= arg to memory.reclaim"
zsmalloc: fix a race with deferred_handles storing
...