Right now, we were using individual KVM_CAP entities to communicate
userspace about which cpuids we support. This is suboptimal, since it
generates a delay between the feature arriving in the host, and
being available at the guest.
A much better mechanism is to list para features in KVM_GET_SUPPORTED_CPUID.
This makes userspace automatically aware of what we provide. And if we
ever add a new cpuid bit in the future, we have to do that again,
which create some complexity and delay in feature adoption.
Signed-off-by: Glauber Costa <glommer@redhat.com>
Acked-by: Zachary Amsden <zamsden@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
This cpuid, KVM_CPUID_CLOCKSOURCE2, will indicate to the guest
that kvmclock is available through a new set of MSRs. The old ones
are deprecated.
Signed-off-by: Glauber Costa <glommer@redhat.com>
Acked-by: Zachary Amsden <zamsden@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Avi pointed out a while ago that those MSRs falls into the pentium
PMU range. So the idea here is to add new ones, and after a while,
deprecate the old ones.
Signed-off-by: Glauber Costa <glommer@redhat.com>
Acked-by: Zachary Amsden <zamsden@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
In recent stress tests, it was found that pvclock-based systems
could seriously warp in smp systems. Using ingo's time-warp-test.c,
I could trigger a scenario as bad as 1.5mi warps a minute in some systems.
(to be fair, it wasn't that bad in most of them). Investigating further, I
found out that such warps were caused by the very offset-based calculation
pvclock is based on.
This happens even on some machines that report constant_tsc in its tsc flags,
specially on multi-socket ones.
Two reads of the same kernel timestamp at approx the same time, will likely
have tsc timestamped in different occasions too. This means the delta we
calculate is unpredictable at best, and can probably be smaller in a cpu
that is legitimately reading clock in a forward ocasion.
Some adjustments on the host could make this window less likely to happen,
but still, it pretty much poses as an intrinsic problem of the mechanism.
A while ago, I though about using a shared variable anyway, to hold clock
last state, but gave up due to the high contention locking was likely
to introduce, possibly rendering the thing useless on big machines. I argue,
however, that locking is not necessary.
We do a read-and-return sequence in pvclock, and between read and return,
the global value can have changed. However, it can only have changed
by means of an addition of a positive value. So if we detected that our
clock timestamp is less than the current global, we know that we need to
return a higher one, even though it is not exactly the one we compared to.
OTOH, if we detect we're greater than the current time source, we atomically
replace the value with our new readings. This do causes contention on big
boxes (but big here means *BIG*), but it seems like a good trade off, since
it provide us with a time source guaranteed to be stable wrt time warps.
After this patch is applied, I don't see a single warp in time during 5 days
of execution, in any of the machines I saw them before.
Signed-off-by: Glauber Costa <glommer@redhat.com>
Acked-by: Zachary Amsden <zamsden@redhat.com>
CC: Jeremy Fitzhardinge <jeremy@goop.org>
CC: Avi Kivity <avi@redhat.com>
CC: Marcelo Tosatti <mtosatti@redhat.com>
CC: Zachary Amsden <zamsden@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
This patch removes one padding byte and transform it into a flags
field. New versions of guests using pvclock will query these flags
upon each read.
Flags, however, will only be interpreted when the guest decides to.
It uses the pvclock_valid_flags function to signal that a specific
set of flags should be taken into consideration. Which flags are valid
are usually devised via HV negotiation.
Signed-off-by: Glauber Costa <glommer@redhat.com>
CC: Jeremy Fitzhardinge <jeremy@goop.org>
Acked-by: Zachary Amsden <zamsden@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
This patch fixes a bug in the KVM efer-msr write path. If a
guest writes to a reserved efer bit the set_efer function
injects the #GP directly. The architecture dependent wrmsr
function does not see this, assumes success and advances the
rip. This results in a #GP in the guest with the wrong rip.
This patch fixes this by reporting efer write errors back to
the architectural wrmsr function.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This patch disables the possibility for a l2-guest to do a
VMMCALL directly into the host. This would happen if the
l1-hypervisor doesn't intercept VMMCALL and the l2-guest
executes this instruction.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
The patch merged recently which allowed to mark an exception
as reinjected has a bug as it always marks the exception as
reinjected. This breaks nested-svm shadow-on-shadow
implementation.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Wallclock writing uses an unprotected global variable to hold the version;
this can cause one guest to interfere with another if both write their
wallclock at the same time.
Acked-by: Glauber Costa <glommer@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
On svm, kvm_read_pdptr() may require reading guest memory, which can sleep.
Push the spinlock into mmu_alloc_roots(), and only take it after we've read
the pdptr.
Tested-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Per document, for feature control MSR:
Bit 1 enables VMXON in SMX operation. If the bit is clear, execution
of VMXON in SMX operation causes a general-protection exception.
Bit 2 enables VMXON outside SMX operation. If the bit is clear, execution
of VMXON outside SMX operation causes a general-protection exception.
This patch is to enable this kind of check with SMX for VMXON in KVM.
Signed-off-by: Shane Wang <shane.wang@intel.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
The recent changes to emulate string instructions without entering guest
mode exposed a bug where pending interrupts are not properly reflected
in ready_for_interrupt_injection.
The result is that userspace overwrites a previously queued interrupt,
when irqchip's are emulated in userspace.
Fix by always updating state before returning to userspace.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
When EPT is enabled, we cannot emulate EFER.NX=0 through the shadow page
tables. This causes accesses through ptes with bit 63 set to succeed instead
of failing a reserved bit check.
Signed-off-by: Avi Kivity <avi@redhat.com>
Some guest msr values cannot be used on the host (for example. EFER.NX=0),
so we need to switch them atomically during guest entry or exit.
Add a facility to program the vmx msr autoload registers accordingly.
Signed-off-by: Avi Kivity <avi@redhat.com>
vmx and svm vcpus have different contents and therefore may have different
alignmment requirements. Let each specify its required alignment.
Signed-off-by: Avi Kivity <avi@redhat.com>
Move unsync/sync tracepoints to the proper place, it's good
for us to obtain unsync page live time
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
If the guest is 32-bit, we should use 'quadrant' to adjust gpa
offset
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
kvm_mmu_remove_one_alloc_mmu_page() assumes kvm_mmu_zap_page() only reclaims
only one sp, but that's not the case. This will cause mmu shrinker returns
a wrong number. This patch fix the counting error.
Signed-off-by: Gui Jianfeng <guijianfeng@cn.fujitsu.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
For TDP mode, avoid creating multiple page table roots for the single
guest-to-host physical address map by fixing the inputs used for the
shadow page table hash in mmu_alloc_roots().
Signed-off-by: Eric Northup <digitaleric@google.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
This patch prevents MCE intercepts from being propagated
into the L1 guest if they happened in an L2 guest.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This patch adds logic to kvm/x86 which allows to mark an
injected exception as reinjected. This allows to remove an
ugly hack from svm_complete_interrupts that prevented
exceptions from being reinjected at all in the nested case.
The hack was necessary because an reinjected exception into
the nested guest could cause a nested vmexit emulation. But
reinjected exceptions must not intercept. The downside of
the hack is that a exception that in injected could get
lost.
This patch fixes the problem and puts the code for it into
generic x86 files because. Nested-VMX will likely have the
same problem and could reuse the code.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This patch implements the reporting of the emulated SVM
features to userspace instead of the real hardware
capabilities. Every real hardware capability needs emulation
in nested svm so the old behavior was broken.
Cc: stable@kernel.org
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This patch adds the get_supported_cpuid callback to
kvm_x86_ops. It will be used in do_cpuid_ent to delegate the
decission about some supported cpuid bits to the
architecture modules.
Cc: stable@kernel.org
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This patch implements propagation of a failes guest vmrun
back into the guest instead of killing the whole guest.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This patch syncs cr0 and cr3 from the vmcb to the kvm state
before nested intercept handling is done. This allows to
simplify the vmexit path.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This patch fixes a bug where a nested guest always went over
the same instruction because the rip was not advanced on a
nested vmexit.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
The patch introducing nested nmi handling had a bug. The
check does not belong to enable_nmi_window but must be in
nmi_allowed. This patch fixes this.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
As Avi pointed out, testing bit part in mark_page_dirty() was important
in the days of shadow paging, but currently EPT and NPT has already become
common and the chance of faulting a page more that once per iteration is
small. So let's remove the test bit to avoid extra access.
Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Signed-off-by: Avi Kivity <avi@redhat.com>
Fix bug of the exception path, free allocated vpid when fail
to create vcpu.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
When we're on a paired single capable host, we can just always enable
paired singles and expose them to the guest directly.
This approach breaks when multiple VMs run and access PS concurrently,
but this should suffice until we get a proper framework for it in Linux.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
For KVM we need to find the location of the HTAB. We can either rely
on internal data structures of the kernel or ask the hardware.
Ben issued complaints about the internal data structure method, so
let's switch it to our own inquiry of the HTAB. Now we're fully
independend :-).
CC: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
We have some debug output in Book3S_64. Some of that was invalid though,
partially not even compiling because it accessed incorrect variables.
So let's fix that up, making debugging more fun again.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Book3S_64 didn't set VSID_PR when we're in PR=1. This lead to pretty bad
behavior when searching for the shadow segment, as part of the code relied
on VSID_PR being set.
This patch fixes booting Book3S_64 guests.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
We have a condition in the ppc64 host mmu code that should never occur.
Unfortunately, it just did happen to me and I was rather puzzled on why,
because BUG_ON doesn't tell me anything useful.
So let's add some more debug output in case this goes wrong. Also change
BUG to WARN, since I don't want to reboot every time I mess something up.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
In the process of merging Book3S_32 and 64 I somehow ended up having the
alignment interrupt handler take last_inst, but the fetching code not
fetching it. So we ended up with stale last_inst values.
Let's just enable last_inst fetching for alignment interrupts too.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
When in split mode, instruction relocation and data relocation are not equal.
So far we implemented this mode by reserving a special pseudo-VSID for the
two cases and flushing all PTEs when going into split mode, which is slow.
Unfortunately 32bit Linux and Mac OS X use split mode extensively. So to not
slow down things too much, I came up with a different idea: Mark the split
mode with a bit in the VSID and then treat it like any other segment.
This means we can just flush the shadow segment cache, but keep the PTEs
intact. I verified that this works with ppc32 Linux and Mac OS X 10.4
guests and does speed them up.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
When we get a performance counter interrupt we need to route it on to the
Linux handler after we got out of the guest context. We also need to tell
our handling code that this particular interrupt doesn't need treatment.
So let's add those two bits in, making perf work while having a KVM guest
running.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
There are some pieces in the code that I overlooked that still use
u64s instead of longs. This slows down 32 bit hosts unnecessarily, so
let's just move them to ulong.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Now that we have all the bits and pieces in place, let's enable building
of the Book3S_32 target.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
When an interrupt occurs we don't know yet if we're in guest context or
in host context. When in guest context, KVM needs to handle it.
So let's pull the same trick we did on Book3S_64: Just add a macro to
determine if we're in guest context or not and if so jump on to KVM code.
CC: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Avi Kivity <avi@redhat.com>