Make the kdf_sp800108 self-test only print a message on success when
fips_enabled, so that it's consistent with testmgr.c and doesn't spam
the kernel log with a message that isn't really important.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Make kdf_sp800108 honor the CONFIG_CRYPTO_MANAGER_DISABLE_TESTS kconfig
option, so that it doesn't always waste time running its self-test.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The crypto_boot_test_finished static key is unnecessary when self-tests
are disabled in the kconfig, so optimize it out accordingly, along with
the entirety of crypto_start_tests(). This mainly avoids the overhead
of an unnecessary static_branch_enable() on every boot.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Since algboss always skips testing of algorithms with the
CRYPTO_ALG_INTERNAL flag, there is no need to go through the dance of
creating the test kthread, which creates a lot of overhead. Instead, we
can just directly finish the algorithm registration, like is now done
when self-tests are disabled entirely.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Currently, registering an algorithm with the crypto API always causes a
notification to be posted to the "cryptomgr", which then creates a
kthread to self-test the algorithm. However, if self-tests are disabled
in the kconfig (as is the default option), then this kthread just
notifies waiters that the algorithm has been tested, then exits.
This causes a significant amount of overhead, especially in the kthread
creation and destruction, which is not necessary at all. For example,
in a quick test I found that booting a "minimum" x86_64 kernel with all
the crypto options enabled (except for the self-tests) takes about 400ms
until PID 1 can start. Of that, a full 13ms is spent just doing this
pointless dance, involving a kthread being created, run, and destroyed
over 200 times. That's over 3% of the entire kernel start time.
Fix this by just skipping the creation of the test larval and the
posting of the registration notification entirely, when self-tests are
disabled.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
ccree_init() calls cc_debugfs_global_fini(), the former is an init
function and the latter an exit function though.
A modular build emits:
WARNING: modpost: drivers/crypto/ccree/ccree.o: section mismatch in reference: init_module (section: .init.text) -> cc_debugfs_global_fini (section: .exit.text)
(with CONFIG_DEBUG_SECTION_MISMATCH=y).
Fixes: 4f1c596df7 ("crypto: ccree - Remove debugfs when platform_driver_register failed")
Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Fix that put two or more continuous blank lines inside function.
Signed-off-by: Wenkai Lin <linwenkai6@hisilicon.com>
Signed-off-by: Kai Ye <yekai13@huawei.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
There are a couple of spelling mistakes in sec2. Fix them.
Signed-off-by: Kai Ye <yekai13@huawei.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Reduce the function complexity by use the function table in the
process of dumping queue. The function input parameters are
unified. And maintainability is enhanced.
Signed-off-by: Kai Ye <yekai13@huawei.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Considering that the qm feature and debugfs feature are independent.
The code related to debugfs is getting larger and larger. It should be
separate as a debugfs file. So move some debugfs code to new file from
qm file. The qm code logic is not modified. And maintainability is
enhanced.
Signed-off-by: Kai Ye <yekai13@huawei.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The last register logic and different register logic are combined.
Use "u32" instead of 'int' in the regs function input parameter to
simplify some checks.
Signed-off-by: Kai Ye <yekai13@huawei.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
There is no security data in the pointer. It is only a value transferred
as a structure. It makes no sense to zero a variable that is on the stack.
So not need to set the pointer to null.
Signed-off-by: Kai Ye <yekai13@huawei.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Some sync algorithms may require a large amount of temporary
space during its operations. There is no reason why they should
be limited just because some legacy users want to place all
temporary data on the stack.
Such algorithms can now set a flag to indicate that they need
extra request context, which will cause them to be invisible
to users that go through the sync_skcipher interface.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
pci_get_device() will increase the reference count for the returned
pci_dev. We need to use pci_dev_put() to decrease the reference count
before q_num_set() returns.
Fixes: c8b4b47707 ("crypto: hisilicon - add HiSilicon HPRE accelerator")
Signed-off-by: Xiongfeng Wang <wangxiongfeng2@huawei.com>
Reviewed-by: Weili Qian <qianweili@huawei.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
cryptd is buggy as it tries to use sync_skcipher without going
through the proper sync_skcipher interface. In fact it doesn't
even need sync_skcipher since it's already a proper skcipher and
can easily access the request context instead of using something
off the stack.
Fixes: 36b3875a97 ("crypto: cryptd - Remove VLA usage of skcipher")
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The cpu feature defined by MODULE_DEVICE_TABLE is only referenced when
compiling as a module, and the warning of unused variable will be
encountered when compiling with intree. The warning can be removed by
adding the __maybe_unused flag.
Fixes: 03c9a333fe ("crypto: arm64/ghash - add NEON accelerated fallback for 64-bit PMULL")
Fixes: ae1b83c7d5 ("crypto: arm64/sm4 - add CE implementation for GCM mode")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
When platform_driver_register failed, we need to remove debugfs,
which will caused a resource leak, fix it.
Failed logs as follows:
[ 32.606488] debugfs: Directory 'ccree' with parent '/' already present!
Fixes: 4c3f97276e ("crypto: ccree - introduce CryptoCell driver")
Signed-off-by: Gaosheng Cui <cuigaosheng1@huawei.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Most hw_random devices return entropy which is assumed to be of full
quality, but driver authors don't bother setting the quality knob. Some
hw_random devices return less than full quality entropy, and then driver
authors set the quality knob. Therefore, the entropy crediting should be
opt-out rather than opt-in per-driver, to reflect the actual reality on
the ground.
For example, the two Raspberry Pi RNG drivers produce full entropy
randomness, and both EDK2 and U-Boot's drivers for these treat them as
such. The result is that EFI then uses these numbers and passes the to
Linux, and Linux credits them as boot, thereby initializing the RNG.
Yet, in Linux, the quality knob was never set to anything, and so on the
chance that Linux is booted without EFI, nothing is ever credited.
That's annoying.
The same pattern appears to repeat itself throughout various drivers. In
fact, very very few drivers have bothered setting quality=1024.
Looking at the git history of existing drivers and corresponding mailing
list discussion, this conclusion tracks. There's been a decent amount of
discussion about drivers that set quality < 1024 -- somebody read and
interepreted a datasheet, or made some back of the envelope calculation
somehow. But there's been very little, if any, discussion about most
drivers where the quality is just set to 1024 or unset (or set to 1000
when the authors misunderstood the API and assumed it was base-10 rather
than base-2); in both cases the intent was fairly clear of, "this is a
hardware random device; it's fine."
So let's invert this logic. A hw_random struct's quality knob now
controls the maximum quality a driver can produce, or 0 to specify 1024.
Then, the module-wide switch called "default_quality" is changed to
represent the maximum quality of any driver. By default it's 1024, and
the quality of any particular driver is then given by:
min(default_quality, rng->quality ?: 1024);
This way, the user can still turn this off for weird reasons (and we can
replace whatever driver-specific disabling hacks existed in the past),
yet we get proper crediting for relevant RNGs.
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Introduces new helper function to aid in .probe_new() refactors. In order
to use existing i2c_get_device_id() on the probe callback, the device
match table needs to be accessible in that function, which would require
bigger refactors in some drivers using the deprecated .probe callback.
This issue was discussed in more detail in the IIO mailing list.
Link: https://lore.kernel.org/all/20221023132302.911644-11-u.kleine-koenig@pengutronix.de/
Suggested-by: Nuno Sá <noname.nuno@gmail.com>
Suggested-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Suggested-by: Jonathan Cameron <jic23@kernel.org>
Signed-off-by: Angel Iglesias <ang.iglesiasg@gmail.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Wolfram Sang <wsa@kernel.org>
The ADF_STATUS_PF_RUNNING bit is set after the successful initialization
of the communication between VF to PF in adf_vf2pf_notify_init().
So, it is not required to be set after the execution of the function
adf_dev_init().
Signed-off-by: Shashank Gupta <shashank.gupta@intel.com>
Reviewed-by: Giovanni Cabiddu <giovanni.cabiddu@intel.com>
Reviewed-by: Wojciech Ziemba <wojciech.ziemba@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
There is no need to call the dev_err() function directly to print a
custom message when handling an error from either the platform_get_irq()
or platform_get_irq_byname() functions as both are going to display an
appropriate error message in case of a failure.
./drivers/crypto/rockchip/rk3288_crypto.c:351:2-9: line 351 is
redundant because platform_get_irq() already prints an error
Link: https://bugzilla.openanolis.cn/show_bug.cgi?id=2677
Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Signed-off-by: Yang Li <yang.lee@linux.alibaba.com>
Acked-by: Corentin Labbe <clabbe@baylibre.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Implement a minimal library version of AES-GCM based on the existing
library implementations of AES and multiplication in GF(2^128). Using
these primitives, GCM can be implemented in a straight-forward manner.
GCM has a couple of sharp edges, i.e., the amount of input data
processed with the same initialization vector (IV) should be capped to
protect the counter from 32-bit rollover (or carry), and the size of the
authentication tag should be fixed for a given key. [0]
The former concern is addressed trivially, given that the function call
API uses 32-bit signed types for the input lengths. It is still up to
the caller to avoid IV reuse in general, but this is not something we
can police at the implementation level.
As for the latter concern, let's make the authentication tag size part
of the key schedule, and only permit it to be configured as part of the
key expansion routine.
Note that table based AES implementations are susceptible to known
plaintext timing attacks on the encryption key. The AES library already
attempts to mitigate this to some extent, but given that the counter
mode encryption used by GCM operates exclusively on known plaintext by
construction (the IV and therefore the initial counter value are known
to an attacker), let's take some extra care to mitigate this, by calling
the AES library with interrupts disabled.
[0] https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-38d.pdf
Link: https://lore.kernel.org/all/c6fb9b25-a4b6-2e4a-2dd1-63adda055a49@amd.com/
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Tested-by: Nikunj A Dadhania <nikunj@amd.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The gf128mul library has different variants with different
memory/performance tradeoffs, where the faster ones use 4k or 64k lookup
tables precomputed at runtime, which are based on one of the
multiplication factors, which is commonly the key for keyed hash
algorithms such as GHASH.
The slowest variant is gf128_mul_lle() [and its bbe/ble counterparts],
which does not use precomputed lookup tables, but it still relies on a
single u16[256] lookup table which is input independent. The use of such
a table may cause the execution time of gf128_mul_lle() to correlate
with the value of the inputs, which is generally something that must be
avoided for cryptographic algorithms. On top of that, the function uses
a sequence of if () statements that conditionally invoke be128_xor()
based on which bits are set in the second argument of the function,
which is usually a pointer to the multiplication factor that represents
the key.
In order to remove the correlation between the execution time of
gf128_mul_lle() and the value of its inputs, let's address the
identified shortcomings:
- add a time invariant version of gf128mul_x8_lle() that replaces the
table lookup with the expression that is used at compile time to
populate the lookup table;
- make the invocations of be128_xor() unconditional, but pass a zero
vector as the third argument if the associated bit in the key is
cleared.
The resulting code is likely to be significantly slower. However, given
that this is the slowest version already, making it even slower in order
to make it more secure is assumed to be justified.
The bbe and ble counterparts could receive the same treatment, but the
former is never used anywhere in the kernel, and the latter is only
used in the driver for a asynchronous crypto h/w accelerator (Chelsio),
where timing variances are unlikely to matter.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The gf128mul library does not depend on the crypto API at all, so it can
be moved into lib/crypto. This will allow us to use it in other library
code in a subsequent patch without having to depend on CONFIG_CRYPTO.
While at it, change the Kconfig symbol name to align with other crypto
library implementations. However, the source file name is retained, as
it is reflected in the module .ko filename, and changing this might
break things for users.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The hashing API does not have a function called .finish()
Signed-off-by: Ralph Siemsen <ralph.siemsen@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch is a CE-optimized assembly implementation for GCM mode.
Benchmark on T-Head Yitian-710 2.75 GHz, the data comes from the 224 and 224
modes of tcrypt, and compared the performance before and after this patch (the
driver used before this patch is gcm_base(ctr-sm4-ce,ghash-generic)).
The abscissas are blocks of different lengths. The data is tabulated and the
unit is Mb/s:
Before (gcm_base(ctr-sm4-ce,ghash-generic)):
gcm(sm4) | 16 64 256 512 1024 1420 4096 8192
-------------+---------------------------------------------------------------------
GCM enc | 25.24 64.65 104.66 116.69 123.81 125.12 129.67 130.62
GCM dec | 25.40 64.80 104.74 116.70 123.81 125.21 129.68 130.59
GCM mb enc | 24.95 64.06 104.20 116.38 123.55 124.97 129.63 130.61
GCM mb dec | 24.92 64.00 104.13 116.34 123.55 124.98 129.56 130.48
After:
gcm-sm4-ce | 16 64 256 512 1024 1420 4096 8192
-------------+---------------------------------------------------------------------
GCM enc | 108.62 397.18 971.60 1283.92 1522.77 1513.39 1777.00 1806.96
GCM dec | 116.36 398.14 1004.27 1319.11 1624.21 1635.43 1932.54 1974.20
GCM mb enc | 107.13 391.79 962.05 1274.94 1514.76 1508.57 1769.07 1801.58
GCM mb dec | 113.40 389.36 988.51 1307.68 1619.10 1631.55 1931.70 1970.86
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch is a CE-optimized assembly implementation for CCM mode.
Benchmark on T-Head Yitian-710 2.75 GHz, the data comes from the 223 and 225
modes of tcrypt, and compared the performance before and after this patch (the
driver used before this patch is ccm_base(ctr-sm4-ce,cbcmac-sm4-ce)).
The abscissas are blocks of different lengths. The data is tabulated and the
unit is Mb/s:
Before (rfc4309(ccm_base(ctr-sm4-ce,cbcmac-sm4-ce))):
ccm(sm4) | 16 64 256 512 1024 1420 4096 8192
-------------+---------------------------------------------------------------
CCM enc | 35.07 125.40 336.47 468.17 581.97 619.18 712.56 736.01
CCM dec | 34.87 124.40 335.08 466.75 581.04 618.81 712.25 735.89
CCM mb enc | 34.71 123.96 333.92 465.39 579.91 617.49 711.45 734.92
CCM mb dec | 34.42 122.80 331.02 462.81 578.28 616.42 709.88 734.19
After (rfc4309(ccm-sm4-ce)):
ccm-sm4-ce | 16 64 256 512 1024 1420 4096 8192
-------------+---------------------------------------------------------------
CCM enc | 77.12 249.82 569.94 725.17 839.27 867.71 952.87 969.89
CCM dec | 75.90 247.26 566.29 722.12 836.90 865.95 951.74 968.57
CCM mb enc | 75.98 245.25 562.91 718.99 834.76 864.70 950.17 967.90
CCM mb dec | 75.06 243.78 560.58 717.13 833.68 862.70 949.35 967.11
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch is a CE-optimized assembly implementation for cmac/xcbc/cbcmac.
Benchmark on T-Head Yitian-710 2.75 GHz, the data comes from the 300 mode of
tcrypt, and compared the performance before and after this patch (the driver
used before this patch is XXXmac(sm4-ce)). The abscissas are blocks of
different lengths. The data is tabulated and the unit is Mb/s:
Before:
update-size | 16 64 256 1024 2048 4096 8192
---------------+--------------------------------------------------------
cmac(sm4-ce) | 293.33 403.69 503.76 527.78 531.10 535.46 535.81
xcbc(sm4-ce) | 292.83 402.50 504.02 529.08 529.87 536.55 538.24
cbcmac(sm4-ce) | 318.42 415.79 497.12 515.05 523.15 521.19 523.01
After:
update-size | 16 64 256 1024 2048 4096 8192
---------------+--------------------------------------------------------
cmac-sm4-ce | 371.99 675.28 903.56 971.65 980.57 990.40 991.04
xcbc-sm4-ce | 372.11 674.55 903.47 971.61 980.96 990.42 991.10
cbcmac-sm4-ce | 371.63 675.33 903.23 972.07 981.42 990.93 991.45
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch is a CE-optimized assembly implementation for XTS mode.
Benchmark on T-Head Yitian-710 2.75 GHz, the data comes from the 218 mode of
tcrypt, and compared the performance before and after this patch (the driver
used before this patch is xts(ecb-sm4-ce)). The abscissas are blocks of
different lengths. The data is tabulated and the unit is Mb/s:
Before:
xts(ecb-sm4-ce) | 16 64 128 256 1024 1420 4096
----------------+--------------------------------------------------------------
XTS enc | 117.17 430.56 732.92 1134.98 2007.03 2136.23 2347.20
XTS dec | 116.89 429.02 733.40 1132.96 2006.13 2130.50 2347.92
After:
xts-sm4-ce | 16 64 128 256 1024 1420 4096
----------------+--------------------------------------------------------------
XTS enc | 224.68 798.91 1248.08 1714.60 2413.73 2467.84 2612.62
XTS dec | 229.85 791.34 1237.79 1720.00 2413.30 2473.84 2611.95
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch is a CE-optimized assembly implementation for CTS-CBC mode.
Benchmark on T-Head Yitian-710 2.75 GHz, the data comes from the 218 mode of
tcrypt, and compared the performance before and after this patch (the driver
used before this patch is cts(cbc-sm4-ce)). The abscissas are blocks of
different lengths. The data is tabulated and the unit is Mb/s:
Before:
cts(cbc-sm4-ce) | 16 64 128 256 1024 1420 4096
----------------+--------------------------------------------------------------
CTS-CBC enc | 286.09 297.17 457.97 627.75 868.58 900.80 957.69
CTS-CBC dec | 286.67 285.63 538.35 947.08 2241.03 2577.32 3391.14
After:
cts-cbc-sm4-ce | 16 64 128 256 1024 1420 4096
----------------+--------------------------------------------------------------
CTS-CBC enc | 288.19 428.80 593.57 741.04 911.73 931.80 950.00
CTS-CBC dec | 292.22 468.99 838.23 1380.76 2741.17 3036.42 3409.62
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
In the accelerated implementation of the SM4 algorithm using the Crypto
Extension instructions, there are some functions that can be reused in
the upcoming accelerated implementation of the GCM/CCM mode, and the
CBC/CFB encryption is reused in the optimized implementation of SVESM4.
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Use a 128-bit swap mask and tbl instruction to simplify the implementation
for generating SM4 rkey_dec.
Also fixed the issue of not being wrapped by kernel_neon_begin/end() when
using the sm4_ce_expand_key() function.
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch does not add new features, but only refactors and simplifies the
implementation of the Crypto Extension acceleration of the SM4 algorithm:
Extract the macro optimized by SM4 Crypto Extension for reuse in the
subsequent optimization of CCM/GCM modes.
Encryption in CBC and CFB modes processes four blocks at a time instead of
one, allowing the ld1 instruction to load 64 bytes of data at a time, which
will reduces unnecessary memory accesses.
CBC/CFB/CTR makes full use of free registers to reduce redundant memory
accesses, and rearranges some instructions to improve out-of-order execution
capabilities.
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Added CTS-CBC/XTS/XCBC tests for SM4 algorithms, as well as
corresponding speed tests, this is to test performance-optimized
implementations of these modes.
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch newly adds the test vectors of CTS-CBC/XTS/XCBC modes of
the SM4 algorithm, and also added some test vectors for SM4 GCM/CCM.
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch does not add new features. The main work is to refactor and
simplify the implementation of SM4 NEON, which is reflected in the
following aspects:
The accelerated implementation supports the arbitrary number of blocks,
not just multiples of 8, which simplifies the implementation and brings
some optimization acceleration for data that is not aligned by 8 blocks.
When loading the input data, use the ld4 instruction to replace the
original ld1 instruction as much as possible, which will save the cost
of matrix transposition of the input data.
Use 8-block parallelism whenever possible to speed up matrix transpose
and rotation operations, instead of up to 4-block parallelism.
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds the NEON acceleration implementation of the SM3 hash
algorithm. The main algorithm is based on SM3 NEON accelerated work of
the libgcrypt project.
Benchmark on T-Head Yitian-710 2.75 GHz, the data comes from the 326 mode
of tcrypt, and compares the performance data of sm3-generic and sm3-ce.
The abscissas are blocks of different lengths. The data is tabulated and
the unit is Mb/s:
update-size | 16 64 256 1024 2048 4096 8192
---------------+--------------------------------------------------------
sm3-generic | 185.24 221.28 301.26 307.43 300.83 308.82 308.91
sm3-neon | 171.81 220.20 322.94 339.28 334.09 343.61 343.87
sm3-ce | 227.48 333.48 502.62 527.87 520.45 534.91 535.40
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Raise the priority of the sm3-ce algorithm from 200 to 400, this is
to make room for the implementation of sm3-neon.
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The top level print banners have a leading newline. It's not entirely
clear why this exists, but it makes it harder to parse tcrypt test output
using a script. Drop said newlines.
tcrypt output before this patch:
[...]
testing speed of rfc4106(gcm(aes)) (rfc4106-gcm-aesni) encryption
[...] test 0 (160 bit key, 16 byte blocks): 1 operation in 2320 cycles (16 bytes)
tcrypt output with this patch:
[...] testing speed of rfc4106(gcm(aes)) (rfc4106-gcm-aesni) encryption
[...] test 0 (160 bit key, 16 byte blocks): 1 operation in 2320 cycles (16 bytes)
Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The pr_fmt() define includes KBUILD_MODNAME, and so there's no need
for pr_err() to also print it. Drop module name from the print string.
Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Currently, there's mixed use of printk() and pr_info()/pr_err(). The latter
prints the module name (because pr_fmt() is defined so) but the former does
not. As a result there's inconsistency in the printed output. For example:
modprobe mode=211:
[...] test 0 (160 bit key, 16 byte blocks): 1 operation in 2320 cycles (16 bytes)
[...] test 1 (160 bit key, 64 byte blocks): 1 operation in 2336 cycles (64 bytes)
modprobe mode=215:
[...] tcrypt: test 0 (160 bit key, 16 byte blocks): 1 operation in 2173 cycles (16 bytes)
[...] tcrypt: test 1 (160 bit key, 64 byte blocks): 1 operation in 2241 cycles (64 bytes)
Replace all instances of printk() with pr_info()/pr_err() so that the
module name is printed consistently.
Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
For some test cases, a line break gets inserted between the test banner
and the results. For example, with mode=211 this is the output:
[...]
testing speed of rfc4106(gcm(aes)) (rfc4106-gcm-aesni) encryption
[...] test 0 (160 bit key, 16 byte blocks):
[...] 1 operation in 2373 cycles (16 bytes)
--snip--
[...]
testing speed of gcm(aes) (generic-gcm-aesni) encryption
[...] test 0 (128 bit key, 16 byte blocks):
[...] 1 operation in 2338 cycles (16 bytes)
Similar behavior is seen in the following cases as well:
modprobe tcrypt mode=212
modprobe tcrypt mode=213
modprobe tcrypt mode=221
modprobe tcrypt mode=300 sec=1
modprobe tcrypt mode=400 sec=1
This doesn't happen with mode=215:
[...] tcrypt:
testing speed of multibuffer rfc4106(gcm(aes)) (rfc4106-gcm-aesni) encryption
[...] tcrypt: test 0 (160 bit key, 16 byte blocks): 1 operation in 2215 cycles (16 bytes)
--snip--
[...] tcrypt:
testing speed of multibuffer gcm(aes) (generic-gcm-aesni) encryption
[...] tcrypt: test 0 (128 bit key, 16 byte blocks): 1 operation in 2191 cycles (16 bytes)
This print inconsistency is because printk() is used instead of pr_cont()
in a few places. Change these to be pr_cont().
checkpatch warns that pr_cont() shouldn't be used. This can be ignored in
this context as tcrypt already uses pr_cont().
Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Because the permission on the VF debugfs file is "0444". So
the VF function checking is redundant in qos writing api.
Signed-off-by: Kai Ye <yekai13@huawei.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The pci bdf number check is added for qos written by using the pci api.
Directly get the devfn by pci_dev, so delete some redundant code.
And use the kstrtoul instead of sscanf to simplify code.
Signed-off-by: Kai Ye <yekai13@huawei.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Increase the buffer to prevent stack overflow by fuzz test. The maximum
length of the qos configuration buffer is 256 bytes. Currently, the value
of the 'val buffer' is only 32 bytes. The sscanf does not check the dest
memory length. So the 'val buffer' may stack overflow.
Signed-off-by: Kai Ye <yekai13@huawei.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
We want to leverage keyring to store sensitive keys, and then use those
keys for symmetric encryption via the crypto API. Among the key types we
wish to support are: user, logon, encrypted, and trusted.
User key types are already able to have their data copied to user space,
but logon does not support this. Further, trusted and encrypted keys will
return their encrypted data back to user space on read, which does not
make them ideal for symmetric encryption.
To support symmetric encryption for these key types, add a new
ALG_SET_KEY_BY_KEY_SERIAL setsockopt() option to the crypto API. This
allows users to pass a key_serial_t to the crypto API to perform
symmetric encryption. The behavior is the same as ALG_SET_KEY, but
the crypto key data is copied in kernel space from a keyring key,
which allows for the support of logon, encrypted, and trusted key types.
Keyring keys must have the KEY_(POS|USR|GRP|OTH)_SEARCH permission set
to leverage this feature. This follows the asymmetric_key type where key
lookup calls eventually lead to keyring_search_rcu() without the
KEYRING_SEARCH_NO_CHECK_PERM flag set.
Signed-off-by: Frederick Lawler <fred@cloudflare.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The RK3399 has 2 rk3288 compatible crypto device named crypto0 and
crypto1. The only difference is lack of RSA in crypto1.
We need to add driver support for 2 parallel instance as only one need
to register crypto algorithms.
Then the driver will round robin each request on each device.
For avoiding complexity (device bringup after a TFM is created), PM is
modified to be handled per request.
Signed-off-by: Corentin Labbe <clabbe@baylibre.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>