The AutoIBRS bit gets set only on the BSP as part of determining which
mitigation to enable on AMD. Setting on the APs relies on the
circumstance that the APs get booted through the trampoline and EFER
- the MSR which contains that bit - gets replicated on every AP from the
BSP.
However, this can change in the future and considering the security
implications of this bit not being set on every CPU, make sure it is set
by verifying EFER later in the boot process and on every AP.
Reported-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/r/20230224185257.o3mcmloei5zqu7wa@treble
When plain IBRS is enabled (not enhanced IBRS), the logic in
spectre_v2_user_select_mitigation() determines that STIBP is not needed.
The IBRS bit implicitly protects against cross-thread branch target
injection. However, with legacy IBRS, the IBRS bit is cleared on
returning to userspace for performance reasons which leaves userspace
threads vulnerable to cross-thread branch target injection against which
STIBP protects.
Exclude IBRS from the spectre_v2_in_ibrs_mode() check to allow for
enabling STIBP (through seccomp/prctl() by default or always-on, if
selected by spectre_v2_user kernel cmdline parameter).
[ bp: Massage. ]
Fixes: 7c693f54c8 ("x86/speculation: Add spectre_v2=ibrs option to support Kernel IBRS")
Reported-by: José Oliveira <joseloliveira11@gmail.com>
Reported-by: Rodrigo Branco <rodrigo@kernelhacking.com>
Signed-off-by: KP Singh <kpsingh@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230220120127.1975241-1-kpsingh@kernel.org
Link: https://lore.kernel.org/r/20230221184908.2349578-1-kpsingh@kernel.org
where possible, when supporting a debug registers swap feature for
SEV-ES guests
- Add support for AMD's version of eIBRS called Automatic IBRS which is
a set-and-forget control of indirect branch restriction speculation
resources on privilege change
- Add support for a new x86 instruction - LKGS - Load kernel GS which is
part of the FRED infrastructure
- Reset SPEC_CTRL upon init to accomodate use cases like kexec which
rediscover
- Other smaller fixes and cleanups
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmP1RDIACgkQEsHwGGHe
VUohBw//ZB9ZRqsrKdm6D9YaP2x4Zb+kqKqo6rjYeWaYqyPyCwDujPwh+pb3Oq1t
aj62muDv1t/wEJc8mKNkfXkjEEtBVAOcpb5YIpKreoEvNKyevol83Ih0u5iJcTRE
E5qf8HDS8b/JZrcazJJLl6WQmQNH5RiKSu5bbCpRhoeOcyo5pRYR5MztK9vNmAQk
GMdwHsUSU+jN8uiE4HnpaOb/luhgFindRwZVTpdjJegQWLABS8cl3CKeTv4+PW45
isvv37XnQP248wsptIEVRHeG6g3g/HtvwRx7DikUw06QwUyUK7H9hJssOoSP8TL9
u4psRwfWnJ1OxU6klL+s0Ii+pjQ97wXmK/oqK7QkdUwhWqR/mQAW2e9kWHAngyDn
A6mKbzSM6HFAeSXQpB9cMb6uvYRD44SngDFe3WXtEK8jiiQ70ikUm4E28I5KJOPg
s+RyioHk0NFRHYSOOBqNG1NKz6ED7L3GbgbbzxkgMh21AAyI3X351t+PtGoLV5ew
eqOsM7lbg9Scg1LvPk1JcoALS8USWqgar397rz9qGUs+OkPWBtEBCmTdMz/Eb+2t
g/WHdLS5/ajSs5gNhT99W3DeqZMPDEkgBRSeyBBmY3CUD3gBL2wXEktRXv504zBR
RC4oyUPX3c9E2ib6GATLE3kBLbcz9hTWbMxF+X3lLJvTVd/Qc2o=
=v/ZC
-----END PGP SIGNATURE-----
Merge tag 'x86_cpu_for_v6.3_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cpuid updates from Borislav Petkov:
- Cache the AMD debug registers in per-CPU variables to avoid MSR
writes where possible, when supporting a debug registers swap feature
for SEV-ES guests
- Add support for AMD's version of eIBRS called Automatic IBRS which is
a set-and-forget control of indirect branch restriction speculation
resources on privilege change
- Add support for a new x86 instruction - LKGS - Load kernel GS which
is part of the FRED infrastructure
- Reset SPEC_CTRL upon init to accomodate use cases like kexec which
rediscover
- Other smaller fixes and cleanups
* tag 'x86_cpu_for_v6.3_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/amd: Cache debug register values in percpu variables
KVM: x86: Propagate the AMD Automatic IBRS feature to the guest
x86/cpu: Support AMD Automatic IBRS
x86/cpu, kvm: Add the SMM_CTL MSR not present feature
x86/cpu, kvm: Add the Null Selector Clears Base feature
x86/cpu, kvm: Move X86_FEATURE_LFENCE_RDTSC to its native leaf
x86/cpu, kvm: Add the NO_NESTED_DATA_BP feature
KVM: x86: Move open-coded CPUID leaf 0x80000021 EAX bit propagation code
x86/cpu, kvm: Add support for CPUID_80000021_EAX
x86/gsseg: Add the new <asm/gsseg.h> header to <asm/asm-prototypes.h>
x86/gsseg: Use the LKGS instruction if available for load_gs_index()
x86/gsseg: Move load_gs_index() to its own new header file
x86/gsseg: Make asm_load_gs_index() take an u16
x86/opcode: Add the LKGS instruction to x86-opcode-map
x86/cpufeature: Add the CPU feature bit for LKGS
x86/bugs: Reset speculation control settings on init
x86/cpu: Remove redundant extern x86_read_arch_cap_msr()
-----BEGIN PGP SIGNATURE-----
iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmPW7E8eHHRvcnZhbGRz
QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGf7MIAI0JnHN9WvtEukSZ
E6j6+cEGWxsvD6q0g3GPolaKOCw7hlv0pWcFJFcUAt0jebspMdxV2oUGJ8RYW7Lg
nCcHvEVswGKLAQtQSWw52qotW6fUfMPsNYYB5l31sm1sKH4Cgss0W7l2HxO/1LvG
TSeNHX53vNAZ8pVnFYEWCSXC9bzrmU/VALF2EV00cdICmfvjlgkELGXoLKJJWzUp
s63fBHYGGURSgwIWOKStoO6HNo0j/F/wcSMx8leY8qDUtVKHj4v24EvSgxUSDBER
ch3LiSQ6qf4sw/z7pqruKFthKOrlNmcc0phjiES0xwwGiNhLv0z3rAhc4OM2cgYh
SDc/Y/c=
=zpaD
-----END PGP SIGNATURE-----
Merge tag 'v6.2-rc6' into sched/core, to pick up fixes
Pick up fixes before merging another batch of cpuidle updates.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The AMD Zen4 core supports a new feature called Automatic IBRS.
It is a "set-and-forget" feature that means that, like Intel's Enhanced IBRS,
h/w manages its IBRS mitigation resources automatically across CPL transitions.
The feature is advertised by CPUID_Fn80000021_EAX bit 8 and is enabled by
setting MSR C000_0080 (EFER) bit 21.
Enable Automatic IBRS by default if the CPU feature is present. It typically
provides greater performance over the incumbent generic retpolines mitigation.
Reuse the SPECTRE_V2_EIBRS spectre_v2_mitigation enum. AMD Automatic IBRS and
Intel Enhanced IBRS have similar enablement. Add NO_EIBRS_PBRSB to
cpu_vuln_whitelist, since AMD Automatic IBRS isn't affected by PBRSB-eIBRS.
The kernel command line option spectre_v2=eibrs is used to select AMD Automatic
IBRS, if available.
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Sean Christopherson <seanjc@google.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/r/20230124163319.2277355-8-kim.phillips@amd.com
Currently, x86_spec_ctrl_base is read at boot time and speculative bits
are set if Kconfig items are enabled. For example, IBRS is enabled if
CONFIG_CPU_IBRS_ENTRY is configured, etc. These MSR bits are not cleared
if the mitigations are disabled.
This is a problem when kexec-ing a kernel that has the mitigation
disabled from a kernel that has the mitigation enabled. In this case,
the MSR bits are not cleared during the new kernel boot. As a result,
this might have some performance degradation that is hard to pinpoint.
This problem does not happen if the machine is (hard) rebooted because
the bit will be cleared by default.
[ bp: Massage. ]
Suggested-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Breno Leitao <leitao@debian.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20221128153148.1129350-1-leitao@debian.org
The prototype for the x86_read_arch_cap_msr() function has moved to
arch/x86/include/asm/cpu.h - kill the redundant definition in arch/x86/kernel/cpu.h
and include the header.
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Link: https://lore.kernel.org/r/20221128172451.792595-1-ashok.raj@intel.com
We missed the window between the TIF flag update and the next reschedule.
Signed-off-by: Rodrigo Branco <bsdaemon@google.com>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: <stable@vger.kernel.org>
been long in the making. It is a lighterweight software-only fix for
Skylake-based cores where enabling IBRS is a big hammer and causes a
significant performance impact.
What it basically does is, it aligns all kernel functions to 16 bytes
boundary and adds a 16-byte padding before the function, objtool
collects all functions' locations and when the mitigation gets applied,
it patches a call accounting thunk which is used to track the call depth
of the stack at any time.
When that call depth reaches a magical, microarchitecture-specific value
for the Return Stack Buffer, the code stuffs that RSB and avoids its
underflow which could otherwise lead to the Intel variant of Retbleed.
This software-only solution brings a lot of the lost performance back,
as benchmarks suggest:
https://lore.kernel.org/all/20220915111039.092790446@infradead.org/
That page above also contains a lot more detailed explanation of the
whole mechanism
- Implement a new control flow integrity scheme called FineIBT which is
based on the software kCFI implementation and uses hardware IBT support
where present to annotate and track indirect branches using a hash to
validate them
- Other misc fixes and cleanups
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmOZp5EACgkQEsHwGGHe
VUrZFxAAvi/+8L0IYSK4mKJvixGbTFjxN/Swo2JVOfs34LqGUT6JaBc+VUMwZxdb
VMTFIZ3ttkKEodjhxGI7oGev6V8UfhI37SmO2lYKXpQVjXXnMlv/M+Vw3teE38CN
gopi+xtGnT1IeWQ3tc/Tv18pleJ0mh5HKWiW+9KoqgXj0wgF9x4eRYDz1TDCDA/A
iaBzs56j8m/FSykZHnrWZ/MvjKNPdGlfJASUCPeTM2dcrXQGJ93+X2hJctzDte0y
Nuiw6Y0htfFBE7xoJn+sqm5Okr+McoUM18/CCprbgSKYk18iMYm3ZtAi6FUQZS1A
ua4wQCf49loGp15PO61AS5d3OBf5D3q/WihQRbCaJvTVgPp9sWYnWwtcVUuhMllh
ZQtBU9REcVJ/22bH09Q9CjBW0VpKpXHveqQdqRDViLJ6v/iI6EFGmD24SW/VxyRd
73k9MBGrL/dOf1SbEzdsnvcSB3LGzp0Om8o/KzJWOomrVKjBCJy16bwTEsCZEJmP
i406m92GPXeaN1GhTko7vmF0GnkEdJs1GVCZPluCAxxbhHukyxHnrjlQjI4vC80n
Ylc0B3Kvitw7LGJsPqu+/jfNHADC/zhx1qz/30wb5cFmFbN1aRdp3pm8JYUkn+l/
zri2Y6+O89gvE/9/xUhMohzHsWUO7xITiBavewKeTP9GSWybWUs=
=cRy1
-----END PGP SIGNATURE-----
Merge tag 'x86_core_for_v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 core updates from Borislav Petkov:
- Add the call depth tracking mitigation for Retbleed which has been
long in the making. It is a lighterweight software-only fix for
Skylake-based cores where enabling IBRS is a big hammer and causes a
significant performance impact.
What it basically does is, it aligns all kernel functions to 16 bytes
boundary and adds a 16-byte padding before the function, objtool
collects all functions' locations and when the mitigation gets
applied, it patches a call accounting thunk which is used to track
the call depth of the stack at any time.
When that call depth reaches a magical, microarchitecture-specific
value for the Return Stack Buffer, the code stuffs that RSB and
avoids its underflow which could otherwise lead to the Intel variant
of Retbleed.
This software-only solution brings a lot of the lost performance
back, as benchmarks suggest:
https://lore.kernel.org/all/20220915111039.092790446@infradead.org/
That page above also contains a lot more detailed explanation of the
whole mechanism
- Implement a new control flow integrity scheme called FineIBT which is
based on the software kCFI implementation and uses hardware IBT
support where present to annotate and track indirect branches using a
hash to validate them
- Other misc fixes and cleanups
* tag 'x86_core_for_v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (80 commits)
x86/paravirt: Use common macro for creating simple asm paravirt functions
x86/paravirt: Remove clobber bitmask from .parainstructions
x86/debug: Include percpu.h in debugreg.h to get DECLARE_PER_CPU() et al
x86/cpufeatures: Move X86_FEATURE_CALL_DEPTH from bit 18 to bit 19 of word 11, to leave space for WIP X86_FEATURE_SGX_EDECCSSA bit
x86/Kconfig: Enable kernel IBT by default
x86,pm: Force out-of-line memcpy()
objtool: Fix weak hole vs prefix symbol
objtool: Optimize elf_dirty_reloc_sym()
x86/cfi: Add boot time hash randomization
x86/cfi: Boot time selection of CFI scheme
x86/ibt: Implement FineIBT
objtool: Add --cfi to generate the .cfi_sites section
x86: Add prefix symbols for function padding
objtool: Add option to generate prefix symbols
objtool: Avoid O(bloody terrible) behaviour -- an ode to libelf
objtool: Slice up elf_create_section_symbol()
kallsyms: Revert "Take callthunks into account"
x86: Unconfuse CONFIG_ and X86_FEATURE_ namespaces
x86/retpoline: Fix crash printing warning
x86/paravirt: Fix a !PARAVIRT build warning
...
guests which do not get MTRRs exposed but only PAT. (TDX guests do not
support the cache disabling dance when setting up MTRRs so they fall
under the same category.) This is a cleanup work to remove all the ugly
workarounds for such guests and init things separately (Juergen Gross)
- Add two new Intel CPUs to the list of CPUs with "normal" Energy
Performance Bias, leading to power savings
- Do not do bus master arbitration in C3 (ARB_DISABLE) on modern Centaur
CPUs
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmOYhIMACgkQEsHwGGHe
VUpxug//ZKw3hYFroKhsULJi/e0j2nGARiSlJrJcFHl2vgh9yGvDsnYUyM/rgjgt
cM3uCLbEG7nA6uhB3nupzaXZ8lBM1nU9kiEl/kjQ5oYf9nmJ48fLttvWGfxYN4s3
kj5fYVhlOZpntQXIWrwxnPqghUysumMnZmBJeKYiYNNfkj62l3xU2Ni4Gnjnp02I
9MmUhl7pj1aEyOQfM8rovy+wtYCg5WTOmXVlyVN+b9MwfYeK+stojvCZHxtJs9BD
fezpJjjG+78xKUC7vVZXCh1p1N5Qvj014XJkVl9Hg0n7qizKFZRtqi8I769G2ptd
exP8c2nDXKCqYzE8vK6ukWgDANQPs3d6Z7EqUKuXOCBF81PnMPSUMyNtQFGNM6Wp
S5YSvFfCgUjp50IunOpvkDABgpM+PB8qeWUq72UFQJSOymzRJg/KXtE2X+qaMwtC
0i6VLXfMddGcmqNKDppfGtCjq2W5VrNIIJedtAQQGyl+pl3XzZeNomhJpm/0mVfJ
8UrlXZeXl/EUQ7qk40gC/Ash27pU9ZDx4CMNMy1jDIQqgufBjEoRIDSFqQlghmZq
An5/BqMLhOMxUYNA7bRUnyeyxCBypetMdQt5ikBmVXebvBDmArXcuSNAdiy1uBFX
KD8P3Y1AnsHIklxkLNyZRUy7fb4mgMFenUbgc0vmbYHbFl0C0pQ=
=Zmgh
-----END PGP SIGNATURE-----
Merge tag 'x86_cpu_for_v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cpu updates from Borislav Petkov:
- Split MTRR and PAT init code to accomodate at least Xen PV and TDX
guests which do not get MTRRs exposed but only PAT. (TDX guests do
not support the cache disabling dance when setting up MTRRs so they
fall under the same category)
This is a cleanup work to remove all the ugly workarounds for such
guests and init things separately (Juergen Gross)
- Add two new Intel CPUs to the list of CPUs with "normal" Energy
Performance Bias, leading to power savings
- Do not do bus master arbitration in C3 (ARB_DISABLE) on modern
Centaur CPUs
* tag 'x86_cpu_for_v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (26 commits)
x86/mtrr: Make message for disabled MTRRs more descriptive
x86/pat: Handle TDX guest PAT initialization
x86/cpuid: Carve out all CPUID functionality
x86/cpu: Switch to cpu_feature_enabled() for X86_FEATURE_XENPV
x86/cpu: Remove X86_FEATURE_XENPV usage in setup_cpu_entry_area()
x86/cpu: Drop 32-bit Xen PV guest code in update_task_stack()
x86/cpu: Remove unneeded 64-bit dependency in arch_enter_from_user_mode()
x86/cpufeatures: Add X86_FEATURE_XENPV to disabled-features.h
x86/acpi/cstate: Optimize ARB_DISABLE on Centaur CPUs
x86/mtrr: Simplify mtrr_ops initialization
x86/cacheinfo: Switch cache_ap_init() to hotplug callback
x86: Decouple PAT and MTRR handling
x86/mtrr: Add a stop_machine() handler calling only cache_cpu_init()
x86/mtrr: Let cache_aps_delayed_init replace mtrr_aps_delayed_init
x86/mtrr: Get rid of __mtrr_enabled bool
x86/mtrr: Simplify mtrr_bp_init()
x86/mtrr: Remove set_all callback from struct mtrr_ops
x86/mtrr: Disentangle MTRR init from PAT init
x86/mtrr: Move cache control code to cacheinfo.c
x86/mtrr: Split MTRR-specific handling from cache dis/enabling
...
The "force" argument to write_spec_ctrl_current() is currently ambiguous
as it does not guarantee the MSR write. This is due to the optimization
that writes to the MSR happen only when the new value differs from the
cached value.
This is fine in most cases, but breaks for S3 resume when the cached MSR
value gets out of sync with the hardware MSR value due to S3 resetting
it.
When x86_spec_ctrl_current is same as x86_spec_ctrl_base, the MSR write
is skipped. Which results in SPEC_CTRL mitigations not getting restored.
Move the MSR write from write_spec_ctrl_current() to a new function that
unconditionally writes to the MSR. Update the callers accordingly and
rename functions.
[ bp: Rework a bit. ]
Fixes: caa0ff24d5 ("x86/bugs: Keep a per-CPU IA32_SPEC_CTRL value")
Suggested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/806d39b0bfec2fe8f50dc5446dff20f5bb24a959.1669821572.git.pawan.kumar.gupta@linux.intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Convert the remaining cases of static_cpu_has(X86_FEATURE_XENPV) and
boot_cpu_has(X86_FEATURE_XENPV) to use cpu_feature_enabled(), allowing
more efficient code in case the kernel is configured without
CONFIG_XEN_PV.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/r/20221104072701.20283-6-jgross@suse.com
-----BEGIN PGP SIGNATURE-----
iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmN6wAgeHHRvcnZhbGRz
QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiG0EYH/3/RO90NbrFItraN
Lzr+d3VdbGjTu8xd1M+PRTmwh3zxLpB+Jwqr0T0A2gzL9B/D+AUPUJdrCVbv9DqS
FLJAVqoeV20dNBAHSffOOLPsgCZ+Eu+LzlNN7Iqde0e8cyZICFMNktitui84Xm/i
1NgFVgz9OZ6+aieYvUj3FrFq0p8GTIaC/oybDZrxYKcO8ZzKVMJ11swRw10wwq0g
qOOECvV3w7wlQ8upQZkzFxItKFc7EexZI6R4elXeGSJJ9Hlc092dv/zsKB9dwV+k
WcwkJrZRoezYXzgGBFxUcQtzi+ethjrPjuJuM1rYLUSIcfIW/0lkaSLgRoBu8D+I
1GfXkXs=
=gt6P
-----END PGP SIGNATURE-----
Merge tag 'v6.1-rc6' into x86/core, to resolve conflicts
Resolve conflicts between these commits in arch/x86/kernel/asm-offsets.c:
# upstream:
debc5a1ec0 ("KVM: x86: use a separate asm-offsets.c file")
# retbleed work in x86/core:
5d8213864a ("x86/retbleed: Add SKL return thunk")
... and these commits in include/linux/bpf.h:
# upstram:
18acb7fac2 ("bpf: Revert ("Fix dispatcher patchable function entry to 5 bytes nop")")
# x86/core commits:
931ab63664 ("x86/ibt: Implement FineIBT")
bea75b3389 ("x86/Kconfig: Introduce function padding")
The latter two modify BPF_DISPATCHER_ATTRIBUTES(), which was removed upstream.
Conflicts:
arch/x86/kernel/asm-offsets.c
include/linux/bpf.h
Signed-off-by: Ingo Molnar <mingo@kernel.org>
x86_virt_spec_ctrl only deals with the paravirtualized
MSR_IA32_VIRT_SPEC_CTRL now and does not handle MSR_IA32_SPEC_CTRL
anymore; remove the corresponding, unused argument.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Restoration of the host IA32_SPEC_CTRL value is probably too late
with respect to the return thunk training sequence.
With respect to the user/kernel boundary, AMD says, "If software chooses
to toggle STIBP (e.g., set STIBP on kernel entry, and clear it on kernel
exit), software should set STIBP to 1 before executing the return thunk
training sequence." I assume the same requirements apply to the guest/host
boundary. The return thunk training sequence is in vmenter.S, quite close
to the VM-exit. On hosts without V_SPEC_CTRL, however, the host's
IA32_SPEC_CTRL value is not restored until much later.
To avoid this, move the restoration of host SPEC_CTRL to assembly and,
for consistency, move the restoration of the guest SPEC_CTRL as well.
This is not particularly difficult, apart from some care to cover both
32- and 64-bit, and to share code between SEV-ES and normal vmentry.
Cc: stable@vger.kernel.org
Fixes: a149180fbc ("x86: Add magic AMD return-thunk")
Suggested-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The fully secure mitigation for RSB underflow on Intel SKL CPUs is IBRS,
which inflicts up to 30% penalty for pathological syscall heavy work loads.
Software based call depth tracking and RSB refill is not perfect, but
reduces the attack surface massively. The penalty for the pathological case
is about 8% which is still annoying but definitely more palatable than IBRS.
Add a retbleed=stuff command line option to enable the call depth tracking
and software refill of the RSB.
This gives admins a choice. IBeeRS are safe and cause headaches, call depth
tracking is considered to be s(t)ufficiently safe.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111149.029587352@infradead.org
Older Intel CPUs that are not in the affected processor list for MMIO
Stale Data vulnerabilities currently report "Not affected" in sysfs,
which may not be correct. Vulnerability status for these older CPUs is
unknown.
Add known-not-affected CPUs to the whitelist. Report "unknown"
mitigation status for CPUs that are not in blacklist, whitelist and also
don't enumerate MSR ARCH_CAPABILITIES bits that reflect hardware
immunity to MMIO Stale Data vulnerabilities.
Mitigation is not deployed when the status is unknown.
[ bp: Massage, fixup. ]
Fixes: 8d50cdf8b8 ("x86/speculation/mmio: Add sysfs reporting for Processor MMIO Stale Data")
Suggested-by: Andrew Cooper <andrew.cooper3@citrix.com>
Suggested-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/a932c154772f2121794a5f2eded1a11013114711.1657846269.git.pawan.kumar.gupta@linux.intel.com
(not turned on by default), which also need STIBP enabled (if
available) to be '100% safe' on even the shortest speculation
windows.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmL3fqcRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1gnuw/6AighFp+Gp4qXP1DIVU+acVnZsxbdt7GA
WGs/JJfKYsKpWvDGFxnwtF2V1Imq8XVRPVPyFKvLQiBs2h8vNcVkgIvJsdeTFsqQ
uUwUaYgDXuhLYaFpnMGouoeA3iw2zf/CY5ZJX79Nl/CwNwT7FxiLbu+JF/I2Yc0V
yddiQ8xgT0VJhaBcUTsD2qFl8wjpxer7gNBFR4ujiYWXHag3qKyZuaySmqCz4xhd
4nyhJCp34548MsTVXDys2gnYpgLWweB9zOPvH4+GgtiFF3UJxRMhkB9NzfZq1l5W
tCjgGupb3vVoXOVb/xnXyZlPbdFNqSAja7iOXYdmNUSURd7LC0PYHpVxN0rkbFcd
V6noyU3JCCp86ceGTC0u3Iu6LLER6RBGB0gatVlzomWLjTEiC806eo23CVE22cnk
poy7FO3RWa+q1AqWsEzc3wr14ZgSKCBZwwpn6ispT/kjx9fhAFyKtH2/Sznx26GH
yKOF7pPCIXjCpcMnNoUu8cVyzfk0g3kOWQtKjaL9WfeyMtBaHhctngR0s1eCxZNJ
rBlTs+YO7fO42unZEExgvYekBzI70aThIkvxahKEWW48owWph+i/sn5gzdVF+ynR
R4PGeylfd8ZXr21cG2rG9250JLwqzhsxnAGvNjYg1p/hdyrzLTGWHIc9r9BU9000
mmOP9uY6Cjc=
=Ac6x
-----END PGP SIGNATURE-----
Merge tag 'x86-urgent-2022-08-13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fix from Ingo Molnar:
"Fix the 'IBPB mitigated RETBleed' mode of operation on AMD CPUs (not
turned on by default), which also need STIBP enabled (if available) to
be '100% safe' on even the shortest speculation windows"
* tag 'x86-urgent-2022-08-13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/bugs: Enable STIBP for IBPB mitigated RETBleed
AMD's "Technical Guidance for Mitigating Branch Type Confusion,
Rev. 1.0 2022-07-12" whitepaper, under section 6.1.2 "IBPB On
Privileged Mode Entry / SMT Safety" says:
Similar to the Jmp2Ret mitigation, if the code on the sibling thread
cannot be trusted, software should set STIBP to 1 or disable SMT to
ensure SMT safety when using this mitigation.
So, like already being done for retbleed=unret, and now also for
retbleed=ibpb, force STIBP on machines that have it, and report its SMT
vulnerability status accordingly.
[ bp: Remove the "we" and remove "[AMD]" applicability parameter which
doesn't work here. ]
Fixes: 3ebc170068 ("x86/bugs: Add retbleed=ibpb")
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: stable@vger.kernel.org # 5.10, 5.15, 5.19
Link: https://bugzilla.kernel.org/show_bug.cgi?id=206537
Link: https://lore.kernel.org/r/20220804192201.439596-1-kim.phillips@amd.com
tl;dr: The Enhanced IBRS mitigation for Spectre v2 does not work as
documented for RET instructions after VM exits. Mitigate it with a new
one-entry RSB stuffing mechanism and a new LFENCE.
== Background ==
Indirect Branch Restricted Speculation (IBRS) was designed to help
mitigate Branch Target Injection and Speculative Store Bypass, i.e.
Spectre, attacks. IBRS prevents software run in less privileged modes
from affecting branch prediction in more privileged modes. IBRS requires
the MSR to be written on every privilege level change.
To overcome some of the performance issues of IBRS, Enhanced IBRS was
introduced. eIBRS is an "always on" IBRS, in other words, just turn
it on once instead of writing the MSR on every privilege level change.
When eIBRS is enabled, more privileged modes should be protected from
less privileged modes, including protecting VMMs from guests.
== Problem ==
Here's a simplification of how guests are run on Linux' KVM:
void run_kvm_guest(void)
{
// Prepare to run guest
VMRESUME();
// Clean up after guest runs
}
The execution flow for that would look something like this to the
processor:
1. Host-side: call run_kvm_guest()
2. Host-side: VMRESUME
3. Guest runs, does "CALL guest_function"
4. VM exit, host runs again
5. Host might make some "cleanup" function calls
6. Host-side: RET from run_kvm_guest()
Now, when back on the host, there are a couple of possible scenarios of
post-guest activity the host needs to do before executing host code:
* on pre-eIBRS hardware (legacy IBRS, or nothing at all), the RSB is not
touched and Linux has to do a 32-entry stuffing.
* on eIBRS hardware, VM exit with IBRS enabled, or restoring the host
IBRS=1 shortly after VM exit, has a documented side effect of flushing
the RSB except in this PBRSB situation where the software needs to stuff
the last RSB entry "by hand".
IOW, with eIBRS supported, host RET instructions should no longer be
influenced by guest behavior after the host retires a single CALL
instruction.
However, if the RET instructions are "unbalanced" with CALLs after a VM
exit as is the RET in #6, it might speculatively use the address for the
instruction after the CALL in #3 as an RSB prediction. This is a problem
since the (untrusted) guest controls this address.
Balanced CALL/RET instruction pairs such as in step #5 are not affected.
== Solution ==
The PBRSB issue affects a wide variety of Intel processors which
support eIBRS. But not all of them need mitigation. Today,
X86_FEATURE_RSB_VMEXIT triggers an RSB filling sequence that mitigates
PBRSB. Systems setting RSB_VMEXIT need no further mitigation - i.e.,
eIBRS systems which enable legacy IBRS explicitly.
However, such systems (X86_FEATURE_IBRS_ENHANCED) do not set RSB_VMEXIT
and most of them need a new mitigation.
Therefore, introduce a new feature flag X86_FEATURE_RSB_VMEXIT_LITE
which triggers a lighter-weight PBRSB mitigation versus RSB_VMEXIT.
The lighter-weight mitigation performs a CALL instruction which is
immediately followed by a speculative execution barrier (INT3). This
steers speculative execution to the barrier -- just like a retpoline
-- which ensures that speculation can never reach an unbalanced RET.
Then, ensure this CALL is retired before continuing execution with an
LFENCE.
In other words, the window of exposure is opened at VM exit where RET
behavior is troublesome. While the window is open, force RSB predictions
sampling for RET targets to a dead end at the INT3. Close the window
with the LFENCE.
There is a subset of eIBRS systems which are not vulnerable to PBRSB.
Add these systems to the cpu_vuln_whitelist[] as NO_EIBRS_PBRSB.
Future systems that aren't vulnerable will set ARCH_CAP_PBRSB_NO.
[ bp: Massage, incorporate review comments from Andy Cooper. ]
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Co-developed-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
IBRS mitigation for spectre_v2 forces write to MSR_IA32_SPEC_CTRL at
every kernel entry/exit. On Enhanced IBRS parts setting
MSR_IA32_SPEC_CTRL[IBRS] only once at boot is sufficient. MSR writes at
every kernel entry/exit incur unnecessary performance loss.
When Enhanced IBRS feature is present, print a warning about this
unnecessary performance loss.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/2a5eaf54583c2bfe0edc4fea64006656256cca17.1657814857.git.pawan.kumar.gupta@linux.intel.com
On AMD IBRS does not prevent Retbleed; as such use IBPB before a
firmware call to flush the branch history state.
And because in order to do an EFI call, the kernel maps a whole lot of
the kernel page table into the EFI page table, do an IBPB just in case
in order to prevent the scenario of poisoning the BTB and causing an EFI
call using the unprotected RET there.
[ bp: Massage. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220715194550.793957-1-cascardo@canonical.com
Remove a superfluous ' in the mitigation string.
Fixes: e8ec1b6e08 ("x86/bugs: Enable STIBP for JMP2RET")
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Some Intel processors may use alternate predictors for RETs on
RSB-underflow. This condition may be vulnerable to Branch History
Injection (BHI) and intramode-BTI.
Kernel earlier added spectre_v2 mitigation modes (eIBRS+Retpolines,
eIBRS+LFENCE, Retpolines) which protect indirect CALLs and JMPs against
such attacks. However, on RSB-underflow, RET target prediction may
fallback to alternate predictors. As a result, RET's predicted target
may get influenced by branch history.
A new MSR_IA32_SPEC_CTRL bit (RRSBA_DIS_S) controls this fallback
behavior when in kernel mode. When set, RETs will not take predictions
from alternate predictors, hence mitigating RETs as well. Support for
this is enumerated by CPUID.7.2.EDX[RRSBA_CTRL] (bit2).
For spectre v2 mitigation, when a user selects a mitigation that
protects indirect CALLs and JMPs against BHI and intramode-BTI, set
RRSBA_DIS_S also to protect RETs for RSB-underflow case.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
There are some VM configurations which have Skylake model but do not
support IBPB. In those cases, when using retbleed=ibpb, userspace is going
to be killed and kernel is going to panic.
If the CPU does not support IBPB, warn and proceed with the auto option. Also,
do not fallback to IBPB on AMD/Hygon systems if it is not supported.
Fixes: 3ebc170068 ("x86/bugs: Add retbleed=ibpb")
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Do fine-grained Kconfig for all the various retbleed parts.
NOTE: if your compiler doesn't support return thunks this will
silently 'upgrade' your mitigation to IBPB, you might not like this.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
On VMX, there are some balanced returns between the time the guest's
SPEC_CTRL value is written, and the vmenter.
Balanced returns (matched by a preceding call) are usually ok, but it's
at least theoretically possible an NMI with a deep call stack could
empty the RSB before one of the returns.
For maximum paranoia, don't allow *any* returns (balanced or otherwise)
between the SPEC_CTRL write and the vmenter.
[ bp: Fix 32-bit build. ]
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Prevent RSB underflow/poisoning attacks with RSB. While at it, add a
bunch of comments to attempt to document the current state of tribal
knowledge about RSB attacks and what exactly is being mitigated.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
On eIBRS systems, the returns in the vmexit return path from
__vmx_vcpu_run() to vmx_vcpu_run() are exposed to RSB poisoning attacks.
Fix that by moving the post-vmexit spec_ctrl handling to immediately
after the vmexit.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
This mask has been made redundant by kvm_spec_ctrl_test_value(). And it
doesn't even work when MSR interception is disabled, as the guest can
just write to SPEC_CTRL directly.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
There's no need to recalculate the host value for every entry/exit.
Just use the cached value in spec_ctrl_current().
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
If the SMT state changes, SSBD might get accidentally disabled. Fix
that.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
When booting with retbleed=auto, if the kernel wasn't built with
CONFIG_CC_HAS_RETURN_THUNK, the mitigation falls back to IBPB. Make
sure a warning is printed in that case. The IBPB fallback check is done
twice, but it really only needs to be done once.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
jmp2ret mitigates the easy-to-attack case at relatively low overhead.
It mitigates the long speculation windows after a mispredicted RET, but
it does not mitigate the short speculation window from arbitrary
instruction boundaries.
On Zen2, there is a chicken bit which needs setting, which mitigates
"arbitrary instruction boundaries" down to just "basic block boundaries".
But there is no fix for the short speculation window on basic block
boundaries, other than to flush the entire BTB to evict all attacker
predictions.
On the spectrum of "fast & blurry" -> "safe", there is (on top of STIBP
or no-SMT):
1) Nothing System wide open
2) jmp2ret May stop a script kiddy
3) jmp2ret+chickenbit Raises the bar rather further
4) IBPB Only thing which can count as "safe".
Tentative numbers put IBPB-on-entry at a 2.5x hit on Zen2, and a 10x hit
on Zen1 according to lmbench.
[ bp: Fixup feature bit comments, document option, 32-bit build fix. ]
Suggested-by: Andrew Cooper <Andrew.Cooper3@citrix.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Having IBRS enabled while the SMT sibling is idle unnecessarily slows
down the running sibling. OTOH, disabling IBRS around idle takes two
MSR writes, which will increase the idle latency.
Therefore, only disable IBRS around deeper idle states. Shallow idle
states are bounded by the tick in duration, since NOHZ is not allowed
for them by virtue of their short target residency.
Only do this for mwait-driven idle, since that keeps interrupts disabled
across idle, which makes disabling IBRS vs IRQ-entry a non-issue.
Note: C6 is a random threshold, most importantly C1 probably shouldn't
disable IBRS, benchmarking needed.
Suggested-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
retbleed will depend on spectre_v2, while spectre_v2_user depends on
retbleed. Break this cycle.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
When changing SPEC_CTRL for user control, the WRMSR can be delayed
until return-to-user when KERNEL_IBRS has been enabled.
This avoids an MSR write during context switch.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Due to TIF_SSBD and TIF_SPEC_IB the actual IA32_SPEC_CTRL value can
differ from x86_spec_ctrl_base. As such, keep a per-CPU value
reflecting the current task's MSR content.
[jpoimboe: rename]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
For untrained return thunks to be fully effective, STIBP must be enabled
or SMT disabled.
Co-developed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Add the "retbleed=<value>" boot parameter to select a mitigation for
RETBleed. Possible values are "off", "auto" and "unret"
(JMP2RET mitigation). The default value is "auto".
Currently, "retbleed=auto" will select the unret mitigation on
AMD and Hygon and no mitigation on Intel (JMP2RET is not effective on
Intel).
[peterz: rebase; add hygon]
[jpoimboe: cleanups]
Signed-off-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Stale Data.
They are a class of MMIO-related weaknesses which can expose stale data
by propagating it into core fill buffers. Data which can then be leaked
using the usual speculative execution methods.
Mitigations include this set along with microcode updates and are
similar to MDS and TAA vulnerabilities: VERW now clears those buffers
too.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmKXMkMTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoWGPD/idalLIhhV5F2+hZIKm0WSnsBxAOh9K
7y8xBxpQQ5FUfW3vm7Pg3ro6VJp7w2CzKoD4lGXzGHriusn3qst3vkza9Ay8xu8g
RDwKe6hI+p+Il9BV9op3f8FiRLP9bcPMMReW/mRyYsOnJe59hVNwRAL8OG40PY4k
hZgg4Psfvfx8bwiye5efjMSe4fXV7BUCkr601+8kVJoiaoszkux9mqP+cnnB5P3H
zW1d1jx7d6eV1Y063h7WgiNqQRYv0bROZP5BJkufIoOHUXDpd65IRF3bDnCIvSEz
KkMYJNXb3qh7EQeHS53NL+gz2EBQt+Tq1VH256qn6i3mcHs85HvC68gVrAkfVHJE
QLJE3MoXWOqw+mhwzCRrEXN9O1lT/PqDWw8I4M/5KtGG/KnJs+bygmfKBbKjIVg4
2yQWfMmOgQsw3GWCRjgEli7aYbDJQjany0K/qZTq54I41gu+TV8YMccaWcXgDKrm
cXFGUfOg4gBm4IRjJ/RJn+mUv6u+/3sLVqsaFTs9aiib1dpBSSUuMGBh548Ft7g2
5VbFVSDaLjB2BdlcG7enlsmtzw0ltNssmqg7jTK/L7XNVnvxwUoXw+zP7RmCLEYt
UV4FHXraMKNt2ZketlomC8ui2hg73ylUp4pPdMXCp7PIXp9sVamRTbpz12h689VJ
/s55bWxHkR6S
=LBxT
-----END PGP SIGNATURE-----
Merge tag 'x86-bugs-2022-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 MMIO stale data fixes from Thomas Gleixner:
"Yet another hw vulnerability with a software mitigation: Processor
MMIO Stale Data.
They are a class of MMIO-related weaknesses which can expose stale
data by propagating it into core fill buffers. Data which can then be
leaked using the usual speculative execution methods.
Mitigations include this set along with microcode updates and are
similar to MDS and TAA vulnerabilities: VERW now clears those buffers
too"
* tag 'x86-bugs-2022-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/speculation/mmio: Print SMT warning
KVM: x86/speculation: Disable Fill buffer clear within guests
x86/speculation/mmio: Reuse SRBDS mitigation for SBDS
x86/speculation/srbds: Update SRBDS mitigation selection
x86/speculation/mmio: Add sysfs reporting for Processor MMIO Stale Data
x86/speculation/mmio: Enable CPU Fill buffer clearing on idle
x86/bugs: Group MDS, TAA & Processor MMIO Stale Data mitigations
x86/speculation/mmio: Add mitigation for Processor MMIO Stale Data
x86/speculation: Add a common function for MD_CLEAR mitigation update
x86/speculation/mmio: Enumerate Processor MMIO Stale Data bug
Documentation: Add documentation for Processor MMIO Stale Data
Similar to MDS and TAA, print a warning if SMT is enabled for the MMIO
Stale Data vulnerability.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>