- The final step to get rid of auto-rearming posix-timers
posix-timers are currently auto-rearmed by the kernel when the signal
of the timer is ignored so that the timer signal can be delivered once
the corresponding signal is unignored.
This requires to throttle the timer to prevent a DoS by small intervals
and keeps the system pointlessly out of low power states for no value.
This is a long standing non-trivial problem due to the lock order of
posix-timer lock and the sighand lock along with life time issues as
the timer and the sigqueue have different life time rules.
Cure this by:
* Embedding the sigqueue into the timer struct to have the same life
time rules. Aside of that this also avoids the lookup of the timer
in the signal delivery and rearm path as it's just a always valid
container_of() now.
* Queuing ignored timer signals onto a seperate ignored list.
* Moving queued timer signals onto the ignored list when the signal is
switched to SIG_IGN before it could be delivered.
* Walking the ignored list when SIG_IGN is lifted and requeue the
signals to the actual signal lists. This allows the signal delivery
code to rearm the timer.
This also required to consolidate the signal delivery rules so they are
consistent across all situations. With that all self test scenarios
finally succeed.
- Core infrastructure for VFS multigrain timestamping
This is required to allow the kernel to use coarse grained time stamps
by default and switch to fine grained time stamps when inode attributes
are actively observed via getattr().
These changes have been provided to the VFS tree as well, so that the
VFS specific infrastructure could be built on top.
- Cleanup and consolidation of the sleep() infrastructure
* Move all sleep and timeout functions into one file
* Rework udelay() and ndelay() into proper documented inline functions
and replace the hardcoded magic numbers by proper defines.
* Rework the fsleep() implementation to take the reality of the timer
wheel granularity on different HZ values into account. Right now the
boundaries are hard coded time ranges which fail to provide the
requested accuracy on different HZ settings.
* Update documentation for all sleep/timeout related functions and fix
up stale documentation links all over the place
* Fixup a few usage sites
- Rework of timekeeping and adjtimex(2) to prepare for multiple PTP clocks
A system can have multiple PTP clocks which are participating in
seperate and independent PTP clock domains. So far the kernel only
considers the PTP clock which is based on CLOCK TAI relevant as that's
the clock which drives the timekeeping adjustments via the various user
space daemons through adjtimex(2).
The non TAI based clock domains are accessible via the file descriptor
based posix clocks, but their usability is very limited. They can't be
accessed fast as they always go all the way out to the hardware and
they cannot be utilized in the kernel itself.
As Time Sensitive Networking (TSN) gains traction it is required to
provide fast user and kernel space access to these clocks.
The approach taken is to utilize the timekeeping and adjtimex(2)
infrastructure to provide this access in a similar way how the kernel
provides access to clock MONOTONIC, REALTIME etc.
Instead of creating a duplicated infrastructure this rework converts
timekeeping and adjtimex(2) into generic functionality which operates
on pointers to data structures instead of using static variables.
This allows to provide time accessors and adjtimex(2) functionality for
the independent PTP clocks in a subsequent step.
- Consolidate hrtimer initialization
hrtimers are set up by initializing the data structure and then
seperately setting the callback function for historical reasons.
That's an extra unnecessary step and makes Rust support less straight
forward than it should be.
Provide a new set of hrtimer_setup*() functions and convert the core
code and a few usage sites of the less frequently used interfaces over.
The bulk of the htimer_init() to hrtimer_setup() conversion is already
prepared and scheduled for the next merge window.
- Drivers:
* Ensure that the global timekeeping clocksource is utilizing the
cluster 0 timer on MIPS multi-cluster systems.
Otherwise CPUs on different clusters use their cluster specific
clocksource which is not guaranteed to be synchronized with other
clusters.
* Mostly boring cleanups, fixes, improvements and code movement
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmc7kPITHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoZKkD/9OUL6fOJrDUmOYBa4QVeMyfTef4EaL
tvwIMM/29XQFeiq3xxCIn+EMnHjXn2lvIhYGQ7GKsbKYwvJ7ZBDpQb+UMhZ2nKI9
6D6BP6WomZohKeH2fZbJQAdqOi3KRYdvQdIsVZUexkqiaVPphRvOH9wOr45gHtZM
EyMRSotPlQTDqcrbUejDMEO94GyjDCYXRsyATLxjmTzL/N4xD4NRIiotjM2vL/a9
8MuCgIhrKUEyYlFoOxxeokBsF3kk3/ez2jlG9b/N8VLH3SYIc2zgL58FBgWxlmgG
bY71nVG3nUgEjxBd2dcXAVVqvb+5widk8p6O7xxOAQKTLMcJ4H0tQDkMnzBtUzvB
DGAJDHAmAr0g+ja9O35Pkhunkh4HYFIbq0Il4d1HMKObhJV0JumcKuQVxrXycdm3
UZfq3seqHsZJQbPgCAhlFU0/2WWScocbee9bNebGT33KVwSp5FoVv89C/6Vjb+vV
Gusc3thqrQuMAZW5zV8g4UcBAA/xH4PB0I+vHib+9XPZ4UQ7/6xKl2jE0kd5hX7n
AAUeZvFNFqIsY+B6vz+Jx/yzyM7u5cuXq87pof5EHVFzv56lyTp4ToGcOGYRgKH5
JXeYV1OxGziSDrd5vbf9CzdWMzqMvTefXrHbWrjkjhNOe8E1A8O88RZ5uRKZhmSw
hZZ4hdM9+3T7cg==
=2VC6
-----END PGP SIGNATURE-----
Merge tag 'timers-core-2024-11-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer updates from Thomas Gleixner:
"A rather large update for timekeeping and timers:
- The final step to get rid of auto-rearming posix-timers
posix-timers are currently auto-rearmed by the kernel when the
signal of the timer is ignored so that the timer signal can be
delivered once the corresponding signal is unignored.
This requires to throttle the timer to prevent a DoS by small
intervals and keeps the system pointlessly out of low power states
for no value. This is a long standing non-trivial problem due to
the lock order of posix-timer lock and the sighand lock along with
life time issues as the timer and the sigqueue have different life
time rules.
Cure this by:
- Embedding the sigqueue into the timer struct to have the same
life time rules. Aside of that this also avoids the lookup of
the timer in the signal delivery and rearm path as it's just a
always valid container_of() now.
- Queuing ignored timer signals onto a seperate ignored list.
- Moving queued timer signals onto the ignored list when the
signal is switched to SIG_IGN before it could be delivered.
- Walking the ignored list when SIG_IGN is lifted and requeue the
signals to the actual signal lists. This allows the signal
delivery code to rearm the timer.
This also required to consolidate the signal delivery rules so they
are consistent across all situations. With that all self test
scenarios finally succeed.
- Core infrastructure for VFS multigrain timestamping
This is required to allow the kernel to use coarse grained time
stamps by default and switch to fine grained time stamps when inode
attributes are actively observed via getattr().
These changes have been provided to the VFS tree as well, so that
the VFS specific infrastructure could be built on top.
- Cleanup and consolidation of the sleep() infrastructure
- Move all sleep and timeout functions into one file
- Rework udelay() and ndelay() into proper documented inline
functions and replace the hardcoded magic numbers by proper
defines.
- Rework the fsleep() implementation to take the reality of the
timer wheel granularity on different HZ values into account.
Right now the boundaries are hard coded time ranges which fail
to provide the requested accuracy on different HZ settings.
- Update documentation for all sleep/timeout related functions
and fix up stale documentation links all over the place
- Fixup a few usage sites
- Rework of timekeeping and adjtimex(2) to prepare for multiple PTP
clocks
A system can have multiple PTP clocks which are participating in
seperate and independent PTP clock domains. So far the kernel only
considers the PTP clock which is based on CLOCK TAI relevant as
that's the clock which drives the timekeeping adjustments via the
various user space daemons through adjtimex(2).
The non TAI based clock domains are accessible via the file
descriptor based posix clocks, but their usability is very limited.
They can't be accessed fast as they always go all the way out to
the hardware and they cannot be utilized in the kernel itself.
As Time Sensitive Networking (TSN) gains traction it is required to
provide fast user and kernel space access to these clocks.
The approach taken is to utilize the timekeeping and adjtimex(2)
infrastructure to provide this access in a similar way how the
kernel provides access to clock MONOTONIC, REALTIME etc.
Instead of creating a duplicated infrastructure this rework
converts timekeeping and adjtimex(2) into generic functionality
which operates on pointers to data structures instead of using
static variables.
This allows to provide time accessors and adjtimex(2) functionality
for the independent PTP clocks in a subsequent step.
- Consolidate hrtimer initialization
hrtimers are set up by initializing the data structure and then
seperately setting the callback function for historical reasons.
That's an extra unnecessary step and makes Rust support less
straight forward than it should be.
Provide a new set of hrtimer_setup*() functions and convert the
core code and a few usage sites of the less frequently used
interfaces over.
The bulk of the htimer_init() to hrtimer_setup() conversion is
already prepared and scheduled for the next merge window.
- Drivers:
- Ensure that the global timekeeping clocksource is utilizing the
cluster 0 timer on MIPS multi-cluster systems.
Otherwise CPUs on different clusters use their cluster specific
clocksource which is not guaranteed to be synchronized with
other clusters.
- Mostly boring cleanups, fixes, improvements and code movement"
* tag 'timers-core-2024-11-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (140 commits)
posix-timers: Fix spurious warning on double enqueue versus do_exit()
clocksource/drivers/arm_arch_timer: Use of_property_present() for non-boolean properties
clocksource/drivers/gpx: Remove redundant casts
clocksource/drivers/timer-ti-dm: Fix child node refcount handling
dt-bindings: timer: actions,owl-timer: convert to YAML
clocksource/drivers/ralink: Add Ralink System Tick Counter driver
clocksource/drivers/mips-gic-timer: Always use cluster 0 counter as clocksource
clocksource/drivers/timer-ti-dm: Don't fail probe if int not found
clocksource/drivers:sp804: Make user selectable
clocksource/drivers/dw_apb: Remove unused dw_apb_clockevent functions
hrtimers: Delete hrtimer_init_on_stack()
alarmtimer: Switch to use hrtimer_setup() and hrtimer_setup_on_stack()
io_uring: Switch to use hrtimer_setup_on_stack()
sched/idle: Switch to use hrtimer_setup_on_stack()
hrtimers: Delete hrtimer_init_sleeper_on_stack()
wait: Switch to use hrtimer_setup_sleeper_on_stack()
timers: Switch to use hrtimer_setup_sleeper_on_stack()
net: pktgen: Switch to use hrtimer_setup_sleeper_on_stack()
futex: Switch to use hrtimer_setup_sleeper_on_stack()
fs/aio: Switch to use hrtimer_setup_sleeper_on_stack()
...
The VDSO data page handling is architecture specific for historical
reasons, but there is no real technical reason to do so.
Aside of that VDSO data has become a dump ground for various mechanisms
and fail to provide a clear separation of the functionalities.
Clean this up by:
* consolidating the VDSO page data by getting rid of architecture
specific warts especially in x86 and PowerPC.
* removing the last includes of header files which are pulling in other
headers outside of the VDSO namespace.
* seperating timekeeping and other VDSO data accordingly.
Further consolidation of the VDSO page handling is done in subsequent
changes scheduled for the next merge window.
This also lays the ground for expanding the VDSO time getters for
independent PTP clocks in a generic way without making every architecture
add support seperately.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmc7kyoTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoVBjD/9awdN2YeCGIM9rlHIktUdNRmRSL2SL
6av1CPffN5DenONYTXWrDYPkC4yfjUwIs8H57uzFo10yA7RQ/Qfq+O68k5GnuFew
jvpmmYSZ6TT21AmAaCIhn+kdl9YbEJFvN2AWH85Bl29k9FGB04VzJlQMMjfEZ1a5
Mhwv+cfYNuPSZmU570jcxW2XgbyTWlLZBByXX/Tuz9bwpmtszba507bvo45x6gIP
twaWNzrsyJpdXfMrfUnRiChN8jHlDN7I6fgQvpsoRH5FOiVwIFo0Ip2rKbk+ONfD
W/rcU5oeqRIxRVDHzf2Sv8WPHMCLRv01ZHBcbJOtgvZC3YiKgKYoeEKabu9ZL1BH
6VmrxjYOBBFQHOYAKPqBuS7BgH5PmtMbDdSZXDfRaAKaCzhCRysdlWW7z48r2R//
zPufb7J6Tle23AkuZWhFjvlGgSBl4zxnTFn31HYOyQps3TMI4y50Z2DhE/EeU8a6
DRl8/k1KQVDUZ6udJogS5kOr1J8pFtUPrA2uhR8UyLdx7YKiCzcdO1qWAjtXlVe8
oNpzinU+H9bQqGe9IyS7kCG9xNaCRZNkln5Q1WfnkTzg5f6ihfaCvIku3l4bgVpw
3HmcxYiC6RxQB+ozwN7hzCCKT4L9aMhr/457TNOqRkj2Elw3nvJ02L4aI86XAKLE
jwO9Fkp9qcCxCw==
=q5eD
-----END PGP SIGNATURE-----
Merge tag 'timers-vdso-2024-11-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull vdso data page handling updates from Thomas Gleixner:
"First steps of consolidating the VDSO data page handling.
The VDSO data page handling is architecture specific for historical
reasons, but there is no real technical reason to do so.
Aside of that VDSO data has become a dump ground for various
mechanisms and fail to provide a clear separation of the
functionalities.
Clean this up by:
- consolidating the VDSO page data by getting rid of architecture
specific warts especially in x86 and PowerPC.
- removing the last includes of header files which are pulling in
other headers outside of the VDSO namespace.
- seperating timekeeping and other VDSO data accordingly.
Further consolidation of the VDSO page handling is done in subsequent
changes scheduled for the next merge window.
This also lays the ground for expanding the VDSO time getters for
independent PTP clocks in a generic way without making every
architecture add support seperately"
* tag 'timers-vdso-2024-11-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (42 commits)
x86/vdso: Add missing brackets in switch case
vdso: Rename struct arch_vdso_data to arch_vdso_time_data
powerpc: Split systemcfg struct definitions out from vdso
powerpc: Split systemcfg data out of vdso data page
powerpc: Add kconfig option for the systemcfg page
powerpc/pseries/lparcfg: Use num_possible_cpus() for potential processors
powerpc/pseries/lparcfg: Fix printing of system_active_processors
powerpc/procfs: Propagate error of remap_pfn_range()
powerpc/vdso: Remove offset comment from 32bit vdso_arch_data
x86/vdso: Split virtual clock pages into dedicated mapping
x86/vdso: Delete vvar.h
x86/vdso: Access vdso data without vvar.h
x86/vdso: Move the rng offset to vsyscall.h
x86/vdso: Access rng vdso data without vvar.h
x86/vdso: Access timens vdso data without vvar.h
x86/vdso: Allocate vvar page from C code
x86/vdso: Access rng data from kernel without vvar
x86/vdso: Place vdso_data at beginning of vvar page
x86/vdso: Use __arch_get_vdso_data() to access vdso data
x86/mm/mmap: Remove arch_vma_name()
...
- Tree wide:
* Make nr_irqs static to the core code and provide accessor functions
to remove existing and prevent future aliasing problems with local
variables or function arguments of the same name.
- Core code:
* Prevent freeing an interrupt in the devres code which is not managed
by devres in the first place.
* Use seq_put_decimal_ull_width() for decimal values output in
/proc/interrupts which increases performance significantly as it
avoids parsing the format strings over and over.
* Optimize raising the timer and hrtimer soft interrupts by using the
'set bit only' variants instead of the combined version which checks
whether ksoftirqd should be woken up. The latter is a pointless
exercise as both soft interrupts are raised in the context of the
timer interrupt and therefore never wake up ksoftirqd.
* Delegate timer/hrtimer soft interrupt processing to a dedicated thread
on RT.
Timer and hrtimer soft interrupts are always processed in ksoftirqd
on RT enabled kernels. This can lead to high latencies when other
soft interrupts are delegated to ksoftirqd as well.
The separate thread allows to run them seperately under a RT
scheduling policy to reduce the latency overhead.
- Drivers:
* New drivers or extensions of existing drivers to support Renesas
RZ/V2H(P), Aspeed AST27XX, T-HEAD C900 and ATMEL sam9x7 interrupt
chips
* Support for multi-cluster GICs on MIPS.
MIPS CPUs can come with multiple CPU clusters, where each CPU cluster
has its own GIC (Generic Interrupt Controller). This requires to
access the GIC of a remote cluster through a redirect register block.
This is encapsulated into a set of helper functions to keep the
complexity out of the actual code paths which handle the GIC details.
* Support for encrypted guests in the ARM GICV3 ITS driver
The ITS page needs to be shared with the hypervisor and therefore
must be decrypted.
* Small cleanups and fixes all over the place
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmc7ggcTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoaf7D/9G6FgJXx/60zqnpnOr9Yx0hxjaI47x
PFyCd3P05qyVMBYXfI99vrSKuVdMZXJ/fH5L83y+sOaTASyLTzg37igZycIDJzLI
FnHh/m/+UA8k2aIC5VUiNAjne2RLaTZiRN15uEHFVjByC5Y+YTlCNUE4BBhg5RfQ
hKmskeffWdtui3ou13CSNvbFn+pmqi4g6n1ysUuLhiwM2E5b1rZMprcCOnun/cGP
IdUQsODNWTTv9eqPJez985M6A1x2SCGNv7Z73h58B9N0pBRPEC1xnhUnCJ1sA0cJ
pnfde2C1lztEjYbwDngy0wgq0P6LINjQ5Ma2YY2F2hTMsXGJxGPDZm24/u5uR46x
N/gsOQMXqw6f5yvbiS7Asx9WzR6ry8rJl70QRgTyozz7xxJTaiNm2HqVFe2wc+et
Q/BzaKdhmUJj1GMZmqD2rrgwYeDcb4wWYNtwjM4PVHHxYlJVq0mEF1kLLS8YDyjf
HuGPVqtSkt3E0+Br3FKcv5ltUQP8clXbudc6L1u98YBfNK12hW8L+c3YSvIiFoYM
ZOAeANPM7VtQbP2Jg2q81Dd3CShImt5jqL2um+l8g7+mUE7l9gyuO/w/a5dQ57+b
kx7mHHIW2zCeHrkZZbRUYzI2BJfMCCOVN4Ax5OZxTLnLsL9VEehy8NM8QYT4TS8R
XmTOYW3U9XR3gw==
=JqxC
-----END PGP SIGNATURE-----
Merge tag 'irq-core-2024-11-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull interrupt subsystem updates from Thomas Gleixner:
"Tree wide:
- Make nr_irqs static to the core code and provide accessor functions
to remove existing and prevent future aliasing problems with local
variables or function arguments of the same name.
Core code:
- Prevent freeing an interrupt in the devres code which is not
managed by devres in the first place.
- Use seq_put_decimal_ull_width() for decimal values output in
/proc/interrupts which increases performance significantly as it
avoids parsing the format strings over and over.
- Optimize raising the timer and hrtimer soft interrupts by using the
'set bit only' variants instead of the combined version which
checks whether ksoftirqd should be woken up. The latter is a
pointless exercise as both soft interrupts are raised in the
context of the timer interrupt and therefore never wake up
ksoftirqd.
- Delegate timer/hrtimer soft interrupt processing to a dedicated
thread on RT.
Timer and hrtimer soft interrupts are always processed in ksoftirqd
on RT enabled kernels. This can lead to high latencies when other
soft interrupts are delegated to ksoftirqd as well.
The separate thread allows to run them seperately under a RT
scheduling policy to reduce the latency overhead.
Drivers:
- New drivers or extensions of existing drivers to support Renesas
RZ/V2H(P), Aspeed AST27XX, T-HEAD C900 and ATMEL sam9x7 interrupt
chips
- Support for multi-cluster GICs on MIPS.
MIPS CPUs can come with multiple CPU clusters, where each CPU
cluster has its own GIC (Generic Interrupt Controller). This
requires to access the GIC of a remote cluster through a redirect
register block.
This is encapsulated into a set of helper functions to keep the
complexity out of the actual code paths which handle the GIC
details.
- Support for encrypted guests in the ARM GICV3 ITS driver
The ITS page needs to be shared with the hypervisor and therefore
must be decrypted.
- Small cleanups and fixes all over the place"
* tag 'irq-core-2024-11-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (50 commits)
irqchip/riscv-aplic: Prevent crash when MSI domain is missing
genirq/proc: Use seq_put_decimal_ull_width() for decimal values
softirq: Use a dedicated thread for timer wakeups on PREEMPT_RT.
timers: Use __raise_softirq_irqoff() to raise the softirq.
hrtimer: Use __raise_softirq_irqoff() to raise the softirq
riscv: defconfig: Enable T-HEAD C900 ACLINT SSWI drivers
irqchip: Add T-HEAD C900 ACLINT SSWI driver
dt-bindings: interrupt-controller: Add T-HEAD C900 ACLINT SSWI device
irqchip/stm32mp-exti: Use of_property_present() for non-boolean properties
irqchip/mips-gic: Fix selection of GENERIC_IRQ_EFFECTIVE_AFF_MASK
irqchip/mips-gic: Prevent indirect access to clusters without CPU cores
irqchip/mips-gic: Multi-cluster support
irqchip/mips-gic: Setup defaults in each cluster
irqchip/mips-gic: Support multi-cluster in for_each_online_cpu_gic()
irqchip/mips-gic: Replace open coded online CPU iterations
genirq/irqdesc: Use str_enabled_disabled() helper in wakeup_show()
genirq/devres: Don't free interrupt which is not managed by devres
irqchip/gic-v3-its: Fix over allocation in itt_alloc_pool()
irqchip/aspeed-intc: Add AST27XX INTC support
dt-bindings: interrupt-controller: Add support for ASPEED AST27XX INTC
...
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZzcScQAKCRCRxhvAZXjc
oj+5AP4k822a77wc/3iPFk379naIvQ4dsrgemh0/Pb6ZvzvkFQEAi3vFCfzCDR2x
SkJF/RwXXKZv6U31QXMRt2Qo6wfBuAc=
=nVlm
-----END PGP SIGNATURE-----
Merge tag 'vfs-6.13.mgtime' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
Pull vfs multigrain timestamps from Christian Brauner:
"This is another try at implementing multigrain timestamps. This time
with significant help from the timekeeping maintainers to reduce the
performance impact.
Thomas provided a base branch that contains the required timekeeping
interfaces for the VFS. It serves as the base for the multi-grain
timestamp work:
- Multigrain timestamps allow the kernel to use fine-grained
timestamps when an inode's attributes is being actively observed
via ->getattr(). With this support, it's possible for a file to get
a fine-grained timestamp, and another modified after it to get a
coarse-grained stamp that is earlier than the fine-grained time. If
this happens then the files can appear to have been modified in
reverse order, which breaks VFS ordering guarantees.
To prevent this, a floor value is maintained for multigrain
timestamps. Whenever a fine-grained timestamp is handed out, record
it, and when later coarse-grained stamps are handed out, ensure
they are not earlier than that value. If the coarse-grained
timestamp is earlier than the fine-grained floor, return the floor
value instead.
The timekeeper changes add a static singleton atomic64_t into
timekeeper.c that is used to keep track of the latest fine-grained
time ever handed out. This is tracked as a monotonic ktime_t value
to ensure that it isn't affected by clock jumps. Because it is
updated at different times than the rest of the timekeeper object,
the floor value is managed independently of the timekeeper via a
cmpxchg() operation, and sits on its own cacheline.
Two new public timekeeper interfaces are added:
(1) ktime_get_coarse_real_ts64_mg() fills a timespec64 with the
later of the coarse-grained clock and the floor time
(2) ktime_get_real_ts64_mg() gets the fine-grained clock value,
and tries to swap it into the floor. A timespec64 is filled
with the result.
- The VFS has always used coarse-grained timestamps when updating the
ctime and mtime after a change. This has the benefit of allowing
filesystems to optimize away a lot metadata updates, down to around
1 per jiffy, even when a file is under heavy writes.
Unfortunately, this has always been an issue when we're exporting
via NFSv3, which relies on timestamps to validate caches. A lot of
changes can happen in a jiffy, so timestamps aren't sufficient to
help the client decide when to invalidate the cache. Even with
NFSv4, a lot of exported filesystems don't properly support a
change attribute and are subject to the same problems with
timestamp granularity. Other applications have similar issues with
timestamps (e.g backup applications).
If we were to always use fine-grained timestamps, that would
improve the situation, but that becomes rather expensive, as the
underlying filesystem would have to log a lot more metadata
updates.
This adds a way to only use fine-grained timestamps when they are
being actively queried. Use the (unused) top bit in
inode->i_ctime_nsec as a flag that indicates whether the current
timestamps have been queried via stat() or the like. When it's set,
we allow the kernel to use a fine-grained timestamp iff it's
necessary to make the ctime show a different value.
This solves the problem of being able to distinguish the timestamp
between updates, but introduces a new problem: it's now possible
for a file being changed to get a fine-grained timestamp. A file
that is altered just a bit later can then get a coarse-grained one
that appears older than the earlier fine-grained time. This
violates timestamp ordering guarantees.
This is where the earlier mentioned timkeeping interfaces help. A
global monotonic atomic64_t value is kept that acts as a timestamp
floor. When we go to stamp a file, we first get the latter of the
current floor value and the current coarse-grained time. If the
inode ctime hasn't been queried then we just attempt to stamp it
with that value.
If it has been queried, then first see whether the current coarse
time is later than the existing ctime. If it is, then we accept
that value. If it isn't, then we get a fine-grained time and try to
swap that into the global floor. Whether that succeeds or fails, we
take the resulting floor time, convert it to realtime and try to
swap that into the ctime.
We take the result of the ctime swap whether it succeeds or fails,
since either is just as valid.
Filesystems can opt into this by setting the FS_MGTIME fstype flag.
Others should be unaffected (other than being subject to the same
floor value as multigrain filesystems)"
* tag 'vfs-6.13.mgtime' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs:
fs: reduce pointer chasing in is_mgtime() test
tmpfs: add support for multigrain timestamps
btrfs: convert to multigrain timestamps
ext4: switch to multigrain timestamps
xfs: switch to multigrain timestamps
Documentation: add a new file documenting multigrain timestamps
fs: add percpu counters for significant multigrain timestamp events
fs: tracepoints around multigrain timestamp events
fs: handle delegated timestamps in setattr_copy_mgtime
timekeeping: Add percpu counter for tracking floor swap events
timekeeping: Add interfaces for handling timestamps with a floor value
fs: have setattr_copy handle multigrain timestamps appropriately
fs: add infrastructure for multigrain timestamps
hrtimer_setup() and hrtimer_setup_on_stack() take the callback function
pointer as argument and initialize the timer completely.
Replace the hrtimer_init*() variants and the open coded initialization of
hrtimer::function with the new setup mechanism.
Switch to use the new functions.
Signed-off-by: Nam Cao <namcao@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/2bae912336103405adcdab96b88d3ea0353b4228.1730386209.git.namcao@linutronix.de
The hrtimer_init*() API is replaced by hrtimer_setup*() variants to
initialize the timer including the callback function at once.
hrtimer_init_sleeper_on_stack() does not need user to setup the callback
function separately, so a new variant would not be strictly necessary.
Nonetheless, to keep the naming convention consistent, introduce
hrtimer_setup_sleeper_on_stack(). hrtimer_init_on_stack() will be removed
once all users are converted.
Signed-off-by: Nam Cao <namcao@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/7b5e18e6dd0ace9eaa211201528cb9dc23752454.1730386209.git.namcao@linutronix.de
To initialize hrtimer on stack, hrtimer_init_on_stack() needs to be called
and also hrtimer::function must be set. This is error-prone and awkward to
use.
Introduce hrtimer_setup_on_stack() which does both of these things, so that
users of hrtimer can be simplified.
The new setup function also has a sanity check for the provided function
pointer. If NULL, a warning is emitted and a dummy callback installed.
hrtimer_init_on_stack() will be removed as soon as all of its users have
been converted to the new function.
Signed-off-by: Nam Cao <namcao@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/4b05e2ab3a82c517adf67fabc0f0cd8fe118b97c.1730386209.git.namcao@linutronix.de
To initialize hrtimer, hrtimer_init() needs to be called and also
hrtimer::function must be set. This is error-prone and awkward to use.
Introduce hrtimer_setup() which does both of these things, so that users of
hrtimer can be simplified.
The new setup function also has a sanity check for the provided function
pointer. If NULL, a warning is emitted and a dummy callback installed.
hrtimer_init() will be removed as soon as all of its users have been
converted to the new function.
Signed-off-by: Nam Cao <namcao@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/5057c1ddbfd4b92033cd93d37fe38e6b069d5ba6.1730386209.git.namcao@linutronix.de
hrtimer_init*_on_stack() is not covered by tracing when
CONFIG_DEBUG_OBJECTS_TIMERS=y.
Rework the functions similar to hrtimer_init() and hrtimer_init_sleeper()
so that the hrtimer_init() tracepoint is unconditionally available.
The rework makes hrtimer_init_sleeper() unused. Delete it.
Signed-off-by: Nam Cao <namcao@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/74528e8abf2bb96e8bee85ffacbf14e15cf89f0d.1730386209.git.namcao@linutronix.de
The timer and hrtimer soft interrupts are raised in hard interrupt
context. With threaded interrupts force enabled or on PREEMPT_RT this leads
to waking the ksoftirqd for the processing of the soft interrupt.
ksoftirqd runs as SCHED_OTHER task which means it will compete with other
tasks for CPU resources. This can introduce long delays for timer
processing on heavy loaded systems and is not desired.
Split the TIMER_SOFTIRQ and HRTIMER_SOFTIRQ processing into a dedicated
timers thread and let it run at the lowest SCHED_FIFO priority.
Wake-ups for RT tasks happen from hardirq context so only timer_list timers
and hrtimers for "regular" tasks are processed here. The higher priority
ensures that wakeups are performed before scheduling SCHED_OTHER tasks.
Using a dedicated variable to store the pending softirq bits values ensure
that the timer are not accidentally picked up by ksoftirqd and other
threaded interrupts.
It shouldn't be picked up by ksoftirqd since it runs at lower priority.
However if ksoftirqd is already running while a timer fires, then ksoftird
will be PI-boosted due to the BH-lock to ktimer's priority.
The timer thread can pick up pending softirqs from ksoftirqd but only
if the softirq load is high. It is not be desired that the picked up
softirqs are processed at SCHED_FIFO priority under high softirq load
but this can already happen by a PI-boost by a force-threaded interrupt.
[ frederic@kernel.org: rcutorture.c fixes, storm fix by introduction of
local_timers_pending() for tick_nohz_next_event() ]
[ junxiao.chang@intel.com: Ensure ktimersd gets woken up even if a
softirq is currently served. ]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org> [rcutorture]
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/all/20241106150419.2593080-4-bigeasy@linutronix.de
Raising the timer soft interrupt is always done from hard interrupt
context, so it can be reduced to just setting the TIMER soft interrupt
flag. The soft interrupt will be invoked on return from interrupt.
Use therefore __raise_softirq_irqoff() to raise the TIMER soft interrupt,
which is a trivial optimization.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/all/20241106150419.2593080-3-bigeasy@linutronix.de
Raising the hrtimer soft interrupt is always done from hard interrupt
context, so it can be reduced to just setting the HRTIMER soft interrupt
flag. The soft interrupt will be invoked on return from interrupt.
Use therefore __raise_softirq_irqoff() to raise the HRTIMER soft interrupt,
which is a trivial optimization.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/all/20241106150419.2593080-2-bigeasy@linutronix.de
Now that the SIG_IGN problem is solved in the core code, the alarmtimer
callbacks do not require a return value anymore.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/all/20241105064214.318837272@linutronix.de
Now that ignored posix timer signals are requeued and the timers are
rearmed on signal delivery the workaround to keep such timers alive and
self rearm them is not longer required.
Remove the unused alarm timer parts.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241105064214.252443020@linutronix.de
Now that ignored posix timer signals are requeued and the timers are
rearmed on signal delivery the workaround to keep such timers alive and
self rearm them is not longer required.
Remove the relevant hacks and the not longer required return values from
the related functions. The alarm timer workarounds will be cleaned up in a
separate step.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241105064214.187239060@linutronix.de
Queue posixtimers which have their signal ignored on the ignored list:
1) When the timer fires and the signal has SIG_IGN set
2) When SIG_IGN is installed via sigaction() and a timer signal
is already queued
This only happens when the signal is for a valid timer, which delivered the
signal in periodic mode. One-shot timer signals are correctly dropped.
Due to the lock order constraints (sighand::siglock nests inside
timer::lock) the signal code cannot access any of the timer fields which
are relevant to make this decision, e.g. timer::it_status.
This is addressed by establishing a protection scheme which requires to
lock both locks on the timer side for modifying decision fields in the
timer struct and therefore makes it possible for the signal delivery to
evaluate with only sighand:siglock being held:
1) Move the NULLification of timer->it_signal into the sighand::siglock
protected section of timer_delete() and check timer::it_signal in the
code path which determines whether the signal is dropped or queued on
the ignore list.
This ensures that a deleted timer cannot be moved onto the ignore
list, which would prevent it from being freed on exit() as it is not
longer in the process' posix timer list.
If the timer got moved to the ignored list before deletion then it is
removed from the ignored list under sighand lock in timer_delete().
2) Provide a new timer::it_sig_periodic flag, which gets set in the
signal queue path with both timer and sighand locks held if the timer
is actually in periodic mode at expiry time.
The ignore list code checks this flag under sighand::siglock and drops
the signal when it is not set.
If it is set, then the signal is moved to the ignored list independent
of the actual state of the timer.
When the signal is un-ignored later then the signal is moved back to
the signal queue. On signal delivery the posix timer side decides
about dropping the signal if the timer was re-armed, dis-armed or
deleted based on the signal sequence counter check.
If the thread/process exits then not yet delivered signals are
discarded which means the reference of the timer containing the
sigqueue is dropped and frees the timer.
This is way cheaper than requiring all code paths to lock
sighand::siglock of the target thread/process on any modification of
timer::it_status or going all the way and removing pending signals
from the signal queues on every rearm, disarm or delete operation.
So the protection scheme here is that on the timer side both timer::lock
and sighand::siglock have to be held for modifying
timer::it_signal
timer::it_sig_periodic
which means that on the signal side holding sighand::siglock is enough to
evaluate these fields.
In posixtimer_deliver_signal() holding timer::lock is sufficient to do the
sequence validation against timer::it_signal_seq because a concurrent
expiry is waiting on timer::lock to be released.
This completes the SIG_IGN handling and such timers are not longer self
rearmed which avoids pointless wakeups.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241105064214.120756416@linutronix.de
To handle posix timer signals on sigaction(SIG_IGN) properly, the timers
will be queued on a separate ignored list.
Add the necessary cleanup code for timer_delete() and exit_itimers().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241105064213.987530588@linutronix.de
The posix timer signal handling uses siginfo::si_sys_private for handling
the sequence counter check. That indirection is not longer required and the
sequence count value at signal queueing time can be stored in struct
k_itimer itself.
This removes the requirement of treating siginfo::si_sys_private special as
it's now always zero as the kernel does not touch it anymore.
Suggested-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Link: https://lore.kernel.org/all/20241105064213.852619866@linutronix.de
To cure the SIG_IGN handling for posix interval timers, the preallocated
sigqueue needs to be embedded into struct k_itimer to prevent life time
races of all sorts.
Now that the prerequisites are in place, embed the sigqueue into struct
k_itimer and fixup the relevant usage sites.
Aside of preparing for proper SIG_IGN handling, this spares an extra
allocation.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241105064213.719695194@linutronix.de
In preparation for handling ignored posix timer signals correctly and
embedding the sigqueue struct into struct k_itimer, hand down a pointer to
the sigqueue struct into posix_timer_deliver_signal() instead of just
having a boolean flag.
No functional change.
Suggested-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Link: https://lore.kernel.org/all/20241105064213.652658158@linutronix.de
To handle posix timers which have their signal ignored via SIG_IGN properly
it is required to requeue a ignored signal for delivery when SIG_IGN is
lifted so the timer gets rearmed.
Split the required code out of send_sigqueue() so it can be reused in
context of sigaction().
While at it rename send_sigqueue() to posixtimer_send_sigqueue() so its
clear what this is about.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241105064213.586453412@linutronix.de
instead of re-evaluating the signal delivery mode everywhere.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241105064213.519086500@linutronix.de
To cure the SIG_IGN handling for posix interval timers, the preallocated
sigqueue needs to be embedded into struct k_itimer to prevent life time
races of all sorts.
To make that work correctly it needs reference counting so that timer
deletion does not free the timer prematuraly when there is a signal queued
or delivered concurrently.
Add a rcuref to the posix timer part.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241105064213.304756440@linutronix.de
POSIX CPU timer nanosleep creates a k_itimer on stack and uses the sigq
pointer to detect the nanosleep case in the expiry function.
Prepare for embedding sigqueue into struct k_itimer by using a dedicated
flag for nanosleep.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241105064213.238550394@linutronix.de
The firing flag of a posix CPU timer is tristate:
0: when the timer is not about to deliver a signal
1: when the timer has expired, but the signal has not been delivered yet
-1: when the timer was queued for signal delivery and a rearm operation
raced against it and supressed the signal delivery.
This is a pointless exercise as this can be simply expressed with a
boolean. Only if set, the signal is delivered. This makes delete and rearm
consistent with the rest of the posix timers.
Convert firing to bool and fixup the usage sites accordingly and add
comments why the timer cannot be dequeued right away.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/all/20241105064213.172848618@linutronix.de
The handling of the timer overrun in the signal code is inconsistent as it
takes previous overruns into account. This is just wrong as after the
reprogramming of a timer the overrun count starts over from a clean state,
i.e. 0.
Don't touch info::si_overrun in send_sigqueue() and only store the overrun
value at signal delivery time, which is computed from the timer itself
relative to the expiry time.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241105064213.106738193@linutronix.de
Signals of timers which are reprogammed, disarmed or deleted can deliver
signals related to the past. The POSIX spec is blury about this:
- "The effect of disarming or resetting a timer with pending expiration
notifications is unspecified."
- "The disposition of pending signals for the deleted timer is
unspecified."
In both cases it is reasonable to expect that pending signals are
discarded. Especially in the reprogramming case it does not make sense to
account for previous overruns or to deliver a signal for a timer which has
been disarmed. This makes the behaviour consistent and understandable.
Remove the si_sys_private check from the signal delivery code and invoke
posix_timer_deliver_signal() unconditionally for posix timer related
signals.
Change posix_timer_deliver_signal() so it controls the actual signal
delivery via the return value. It now instructs the signal code to drop the
signal when:
1) The timer does not longer exist in the hash table
2) The timer signal_seq value is not the same as the si_sys_private value
which was set when the signal was queued.
This is also a preparatory change to embed the sigqueue into the k_itimer
structure, which in turn allows to remove the si_sys_private magic.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/all/20241105064213.040348644@linutronix.de
If posix_cpu_timer_del() exits early due to task not found or sighand
invalid, it fails to clear the state of the timer. That's harmless but
inconsistent.
These early exits are accounted as successful delete. Move the update of
the timer state into the success return path, so all "successful" deletions
are handled.
Reported-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/all/20241105064212.974053438@linutronix.de
Switch all instrumentable users of the seqcount_latch interface over to
the non-raw interface.
Co-developed-by: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Signed-off-by: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20241104161910.780003-5-elver@google.com
Most of sched_clock()'s implementation is ineligible for instrumentation
due to relying on sched_clock_noinstr().
Split the implementation off into an __always_inline function
__sched_clock(), which is then used by the noinstr and instrumentable
version, to allow more of sched_clock() to be covered by various
instrumentation.
This will allow instrumentation with the various sanitizers (KASAN,
KCSAN, KMSAN, UBSAN). For KCSAN, we know that raw seqcount_latch usage
without annotations will result in false positive reports: tell it that
all of __sched_clock() is "atomic" for the latch reader; later changes
in this series will take care of the writers.
Co-developed-by: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Signed-off-by: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20241104161910.780003-3-elver@google.com
Swap the writes to the odd and even copies to make the writer critical
section look like all other seqcount_latch writers.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20241104161910.780003-2-elver@google.com
clocksource_delta() has two variants. One with a check for negative motion,
which is only selected by x86. This is a historic leftover as this function
was previously used in the time getter hot paths.
Since 135225a363 timekeeping_cycles_to_ns() has unconditional protection
against this as a by-product of the protection against 64bit math overflow.
clocksource_delta() is only used in the clocksource watchdog and in
timekeeping_advance(). The extra conditional there is not hurting anyone.
Remove the config option and unconditionally prevent negative motion of the
readout.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/all/20241031120328.599430157@linutronix.de
Since 135225a363 timekeeping_cycles_to_ns() handles large offsets which
would lead to 64bit multiplication overflows correctly. It's also protected
against negative motion of the clocksource unconditionally, which was
exclusive to x86 before.
timekeeping_advance() handles large offsets already correctly.
That means the value of CONFIG_DEBUG_TIMEKEEPING which analyzed these cases
is very close to zero. Remove all of it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/all/20241031120328.536010148@linutronix.de
__run_timer_base() checks base::next_expiry without holding
base::lock. That can race with a remote CPU updating next_expiry under the
lock. This is an intentional and harmless data race, but lacks a
READ_ONCE(), so KCSAN complains about this.
Add the missing READ_ONCE(). All other places are covered already.
Fixes: 79f8b28e85 ("timers: Annotate possible non critical data race of next_expiry")
Reported-by: kernel test robot <oliver.sang@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/all/87a5emyqk0.ffs@tglx
Closes: https://lore.kernel.org/oe-lkp/202410301205.ef8e9743-lkp@intel.com
The generic clockevent layer now detaches and stops the underlying
clockevent from the dying CPU, unifying the tick behaviour for both
periodic and oneshot mode on offline CPUs. There is no more need for
the tick layer to care about that.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20241029125451.54574-4-frederic@kernel.org
The way the clockevent devices are finally stopped while a CPU is
offlining is currently chaotic. The layout being by order:
1) tick_sched_timer_dying() stops the tick and the underlying clockevent
but only for oneshot case. The periodic tick and its related
clockevent still runs.
2) tick_broadcast_offline() detaches and stops the per-cpu oneshot
broadcast and append it to the released list.
3) Some individual clockevent drivers stop the clockevents (a second time if
the tick is oneshot)
4) Once the CPU is dead, a control CPU remotely detaches and stops
(a 3rd time if oneshot mode) the CPU clockevent and adds it to the
released list.
5) The released list containing the broadcast device released on step 2)
and the remotely detached clockevent from step 4) are unregistered.
These random events can be factorized if the current clockevent is
detached and stopped by the dying CPU at the generic layer, that is
from the dying CPU:
a) Stop the tick
b) Stop/detach the underlying per-cpu oneshot broadcast clockevent
c) Stop/detach the underlying clockevent
d) Release / unregister the clockevents from b) and c)
e) Release / unregister the remaining clockevents from the dying CPU.
This part could be performed by the dying CPU
This way the drivers and the tick layer don't need to care about
clockevent operations during cpuhotplug down. This also unifies the tick
behaviour on offline CPUs between oneshot and periodic modes, avoiding
offline ticks altogether for sanity.
Adopt the simplification.
[ tglx: Remove the WARN_ON() in clockevents_register_device() as that
is called from an upcoming CPU before the CPU is marked online ]
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20241029125451.54574-3-frederic@kernel.org
When a new clockevent device is added and replaces a previous device,
the latter is put into the released list. Then the released list is
added back.
This may look counter-intuitive but the reason is that released device
might be suitable for other uses. For example a released CPU regular
clockevent can be a better replacement for the current broadcast event.
Similarly a released broadcast clockevent can be a better replacement
for the current regular clockevent of a given CPU.
Improve comments stating about these subtleties.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20241029125451.54574-2-frederic@kernel.org
Right now the state tracking is done by two struct members:
- it_active:
A boolean which tracks armed/disarmed state
- it_signal_seq:
A sequence counter which is used to invalidate settings
and prevent rearming
Replace it_active with it_status and keep properly track about the states
in one place.
This allows to reuse it_signal_seq to track reprogramming, disarm and
delete operations in order to drop signals which are related to the state
previous of those operations.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241001083835.670337048@linutronix.de
Prepare for using this struct member to do a proper reprogramming and
deletion accounting so that stale signals can be dropped.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241001083835.611997737@linutronix.de
No point in delivering a signal from the past. POSIX does not specify the
behaviour here:
- "The effect of disarming or resetting a timer with pending expiration
notifications is unspecified."
- "The disposition of pending signals for the deleted timer is unspecified."
In both cases it is reasonable to expect that pending signals are
discarded. Especially in the reprogramming case it does not make sense to
account for previous overruns or to deliver a signal for a timer which has
been disarmed.
Drop the signal as that is conistent and understandable behaviour.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241001083835.553646280@linutronix.de
In case that a timer was reprogrammed or deleted an already pending signal
is obsolete. Right now such signals are kept around and eventually
delivered. While POSIX is blury about this:
- "The effect of disarming or resetting a timer with pending expiration
notifications is unspecified."
- "The disposition of pending signals for the deleted timer is
unspecified."
it is reasonable in both cases to expect that pending signals are discarded
as they have no meaning anymore.
Prepare the signal code to allow dropping posix timer signals.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241001083835.494416923@linutronix.de
The si_sys_private member of the siginfo which is embedded in the
preallocated sigqueue is used by the posix timer code to decide whether a
timer must be reprogrammed on signal delivery.
The handling of this is racy as a long standing comment in that code
documents. It is modified with the timer lock held, but without sighand
lock being held. The actual signal delivery code checks for it under
sighand lock without holding the timer lock.
Hand the new value to send_sigqueue() as argument and store it with sighand
lock held. This is an intermediate change to address this issue.
The arguments to this function will be cleanup in subsequent changes.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241001083835.434338954@linutronix.de
Move the itimer rearming out of the signal code and consolidate all posix
timer related functions in the signal code under one ifdef.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241001083835.314100569@linutronix.de
The details about the handling of the "normal" values were moved
to the _msecs_to_jiffies() helpers in commit ca42aaf0c8 ("time:
Refactor msecs_to_jiffies"). However, the same commit still mentioned
__msecs_to_jiffies() in the added documentation.
Thus point to _msecs_to_jiffies() instead.
Fixes: ca42aaf0c8 ("time: Refactor msecs_to_jiffies")
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20241025110141.157205-2-ojeda@kernel.org
The documentation's intention is to compare msecs_to_jiffies() (first
sentence) with __msecs_to_jiffies() (second sentence), which is what the
original documentation did. One of the cleanups in commit f3cb80804b
("time: Fix various kernel-doc problems") may have thought the paragraph
was talking about the latter since that is what it is being documented.
Thus revert that part of the change.
Fixes: f3cb80804b ("time: Fix various kernel-doc problems")
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20241025110141.157205-1-ojeda@kernel.org