posix-timers: Embed sigqueue in struct k_itimer

To cure the SIG_IGN handling for posix interval timers, the preallocated
sigqueue needs to be embedded into struct k_itimer to prevent life time
races of all sorts.

Now that the prerequisites are in place, embed the sigqueue into struct
k_itimer and fixup the relevant usage sites.

Aside of preparing for proper SIG_IGN handling, this spares an extra
allocation.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241105064213.719695194@linutronix.de
This commit is contained in:
Thomas Gleixner 2024-11-05 09:14:45 +01:00
parent 11629b9808
commit 6017a158be
4 changed files with 87 additions and 47 deletions

View File

@ -2553,8 +2553,8 @@ static int show_timer(struct seq_file *m, void *v)
seq_printf(m, "ID: %d\n", timer->it_id);
seq_printf(m, "signal: %d/%px\n",
timer->sigq->info.si_signo,
timer->sigq->info.si_value.sival_ptr);
timer->sigq.info.si_signo,
timer->sigq.info.si_value.sival_ptr);
seq_printf(m, "notify: %s/%s.%d\n",
nstr[notify & ~SIGEV_THREAD_ID],
(notify & SIGEV_THREAD_ID) ? "tid" : "pid",

View File

@ -39,6 +39,8 @@ static inline int clockid_to_fd(const clockid_t clk)
#ifdef CONFIG_POSIX_TIMERS
#include <linux/signal_types.h>
/**
* cpu_timer - Posix CPU timer representation for k_itimer
* @node: timerqueue node to queue in the task/sig
@ -166,7 +168,7 @@ static inline void posix_cputimers_init_work(void) { }
* @it_pid: The pid of the process/task targeted by the signal
* @it_process: The task to wakeup on clock_nanosleep (CPU timers)
* @rcuref: Reference count for life time management
* @sigq: Pointer to preallocated sigqueue
* @sigq: Embedded sigqueue
* @it: Union representing the various posix timer type
* internals.
* @rcu: RCU head for freeing the timer.
@ -190,7 +192,7 @@ struct k_itimer {
struct pid *it_pid;
struct task_struct *it_process;
};
struct sigqueue *sigq;
struct sigqueue sigq;
rcuref_t rcuref;
union {
struct {
@ -218,6 +220,23 @@ static inline void posixtimer_putref(struct k_itimer *tmr)
if (rcuref_put(&tmr->rcuref))
posixtimer_free_timer(tmr);
}
static inline void posixtimer_sigqueue_getref(struct sigqueue *q)
{
struct k_itimer *tmr = container_of(q, struct k_itimer, sigq);
WARN_ON_ONCE(!rcuref_get(&tmr->rcuref));
}
static inline void posixtimer_sigqueue_putref(struct sigqueue *q)
{
struct k_itimer *tmr = container_of(q, struct k_itimer, sigq);
posixtimer_putref(tmr);
}
#else /* CONFIG_POSIX_TIMERS */
static inline void posixtimer_sigqueue_getref(struct sigqueue *q) { }
static inline void posixtimer_sigqueue_putref(struct sigqueue *q) { }
#endif /* !CONFIG_POSIX_TIMERS */
#endif

View File

@ -460,8 +460,10 @@ static struct sigqueue *__sigqueue_alloc(int sig, struct task_struct *t, gfp_t g
static void __sigqueue_free(struct sigqueue *q)
{
if (q->flags & SIGQUEUE_PREALLOC)
if (q->flags & SIGQUEUE_PREALLOC) {
posixtimer_sigqueue_putref(q);
return;
}
if (q->ucounts) {
dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
q->ucounts = NULL;
@ -569,11 +571,11 @@ still_pending:
copy_siginfo(info, &first->info);
/*
* posix-timer signals are preallocated and freed when the
* timer goes away. Either directly or by clearing
* SIGQUEUE_PREALLOC so that the next delivery will free
* them. Spare the extra round through __sigqueue_free()
* which is ignoring preallocated signals.
* posix-timer signals are preallocated and freed when the last
* reference count is dropped in posixtimer_deliver_signal() or
* immediately on timer deletion when the signal is not pending.
* Spare the extra round through __sigqueue_free() which is
* ignoring preallocated signals.
*/
if (unlikely((first->flags & SIGQUEUE_PREALLOC) && (info->si_code == SI_TIMER)))
*timer_sigq = first;
@ -1989,7 +1991,7 @@ static inline struct task_struct *posixtimer_get_target(struct k_itimer *tmr)
int posixtimer_send_sigqueue(struct k_itimer *tmr)
{
struct sigqueue *q = tmr->sigq;
struct sigqueue *q = &tmr->sigq;
int sig = q->info.si_signo;
struct task_struct *t;
unsigned long flags;
@ -2020,9 +2022,12 @@ int posixtimer_send_sigqueue(struct k_itimer *tmr)
ret = 0;
if (unlikely(!list_empty(&q->list))) {
/* This holds a reference count already */
result = TRACE_SIGNAL_ALREADY_PENDING;
goto out;
}
posixtimer_sigqueue_getref(q);
posixtimer_queue_sigqueue(q, t, tmr->it_pid_type);
result = TRACE_SIGNAL_DELIVERED;
out:

View File

@ -250,15 +250,40 @@ static void common_hrtimer_rearm(struct k_itimer *timr)
hrtimer_restart(timer);
}
static bool __posixtimer_deliver_signal(struct kernel_siginfo *info, struct k_itimer *timr)
{
guard(spinlock)(&timr->it_lock);
/*
* Check if the timer is still alive or whether it got modified
* since the signal was queued. In either case, don't rearm and
* drop the signal.
*/
if (timr->it_signal_seq != info->si_sys_private || WARN_ON_ONCE(!timr->it_signal))
return false;
if (!timr->it_interval || WARN_ON_ONCE(timr->it_status != POSIX_TIMER_REQUEUE_PENDING))
return true;
timr->kclock->timer_rearm(timr);
timr->it_status = POSIX_TIMER_ARMED;
timr->it_overrun_last = timr->it_overrun;
timr->it_overrun = -1LL;
++timr->it_signal_seq;
info->si_overrun = timer_overrun_to_int(timr);
return true;
}
/*
* This function is called from the signal delivery code. It decides
* whether the signal should be dropped and rearms interval timers.
* whether the signal should be dropped and rearms interval timers. The
* timer can be unconditionally accessed as there is a reference held on
* it.
*/
bool posixtimer_deliver_signal(struct kernel_siginfo *info, struct sigqueue *timer_sigq)
{
struct k_itimer *timr;
unsigned long flags;
bool ret = false;
struct k_itimer *timr = container_of(timer_sigq, struct k_itimer, sigq);
bool ret;
/*
* Release siglock to ensure proper locking order versus
@ -266,28 +291,11 @@ bool posixtimer_deliver_signal(struct kernel_siginfo *info, struct sigqueue *tim
*/
spin_unlock(&current->sighand->siglock);
timr = lock_timer(info->si_tid, &flags);
if (!timr)
goto out;
ret = __posixtimer_deliver_signal(info, timr);
if (timr->it_signal_seq != info->si_sys_private)
goto out_unlock;
/* Drop the reference which was acquired when the signal was queued */
posixtimer_putref(timr);
if (timr->it_interval && !WARN_ON_ONCE(timr->it_status != POSIX_TIMER_REQUEUE_PENDING)) {
timr->kclock->timer_rearm(timr);
timr->it_status = POSIX_TIMER_ARMED;
timr->it_overrun_last = timr->it_overrun;
timr->it_overrun = -1LL;
++timr->it_signal_seq;
info->si_overrun = timer_overrun_to_int(timr);
}
ret = true;
out_unlock:
unlock_timer(timr, flags);
out:
spin_lock(&current->sighand->siglock);
/* Don't expose the si_sys_private value to userspace */
@ -404,17 +412,17 @@ static struct pid *good_sigevent(sigevent_t * event)
}
}
static struct k_itimer * alloc_posix_timer(void)
static struct k_itimer *alloc_posix_timer(void)
{
struct k_itimer *tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
if (!tmr)
return tmr;
if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
if (unlikely(!posixtimer_init_sigqueue(&tmr->sigq))) {
kmem_cache_free(posix_timers_cache, tmr);
return NULL;
}
clear_siginfo(&tmr->sigq->info);
rcuref_init(&tmr->rcuref, 1);
return tmr;
}
@ -422,7 +430,8 @@ static struct k_itimer * alloc_posix_timer(void)
void posixtimer_free_timer(struct k_itimer *tmr)
{
put_pid(tmr->it_pid);
sigqueue_free(tmr->sigq);
if (tmr->sigq.ucounts)
dec_rlimit_put_ucounts(tmr->sigq.ucounts, UCOUNT_RLIMIT_SIGPENDING);
kfree_rcu(tmr, rcu);
}
@ -484,13 +493,13 @@ static int do_timer_create(clockid_t which_clock, struct sigevent *event,
goto out;
}
new_timer->it_sigev_notify = event->sigev_notify;
new_timer->sigq->info.si_signo = event->sigev_signo;
new_timer->sigq->info.si_value = event->sigev_value;
new_timer->sigq.info.si_signo = event->sigev_signo;
new_timer->sigq.info.si_value = event->sigev_value;
} else {
new_timer->it_sigev_notify = SIGEV_SIGNAL;
new_timer->sigq->info.si_signo = SIGALRM;
memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
new_timer->sigq.info.si_signo = SIGALRM;
memset(&new_timer->sigq.info.si_value, 0, sizeof(sigval_t));
new_timer->sigq.info.si_value.sival_int = new_timer->it_id;
new_timer->it_pid = get_pid(task_tgid(current));
}
@ -499,8 +508,8 @@ static int do_timer_create(clockid_t which_clock, struct sigevent *event,
else
new_timer->it_pid_type = PIDTYPE_TGID;
new_timer->sigq->info.si_tid = new_timer->it_id;
new_timer->sigq->info.si_code = SI_TIMER;
new_timer->sigq.info.si_tid = new_timer->it_id;
new_timer->sigq.info.si_code = SI_TIMER;
if (copy_to_user(created_timer_id, &new_timer_id, sizeof (new_timer_id))) {
error = -EFAULT;
@ -584,7 +593,14 @@ static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
* 1) Set timr::it_signal to NULL with timr::it_lock held
* 2) Release timr::it_lock
* 3) Remove from the hash under hash_lock
* 4) Call RCU for removal after the grace period
* 4) Put the reference count.
*
* The reference count might not drop to zero if timr::sigq is
* queued. In that case the signal delivery or flush will put the
* last reference count.
*
* When the reference count reaches zero, the timer is scheduled
* for RCU removal after the grace period.
*
* Holding rcu_read_lock() accross the lookup ensures that
* the timer cannot be freed.