Commit Graph

454928 Commits

Author SHA1 Message Date
Jussi Kivilinna
5e50d43d65 crypto: des3_ede-x86_64 - fix parse warning
Patch fixes following sparse warning:

  CHECK   arch/x86/crypto/des3_ede_glue.c
arch/x86/crypto/des3_ede_glue.c:308:52: warning: restricted __be64 degrades to integer
arch/x86/crypto/des3_ede_glue.c:309:52: warning: restricted __be64 degrades to integer
arch/x86/crypto/des3_ede_glue.c:310:52: warning: restricted __be64 degrades to integer
arch/x86/crypto/des3_ede_glue.c:326:44: warning: restricted __be64 degrades to integer

Reported-by: kbuild test robot <fengguang.wu@intel.com>
Signed-off-by: Jussi Kivilinna <jussi.kivilinna@iki.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-06-25 21:38:43 +08:00
Ruchika Gupta
1da2be33ad crypto: caam - Correct the dma mapping for sg table
At few places in caamhash and caamalg, after allocating a dmable
buffer for sg table , the buffer was being modified.  As per
definition of DMA_FROM_DEVICE ,afer allocation the memory should
be treated as read-only by the driver. This patch shifts the
allocation of dmable buffer for sg table after it is populated
by the  driver, making it read-only as per the DMA API's requirement.

Signed-off-by: Ruchika Gupta <ruchika.gupta@freescale.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-06-25 21:38:41 +08:00
Ruchika Gupta
ef94b1d834 crypto: caam - Add definition of rd/wr_reg64 for little endian platform
CAAM IP has certain 64 bit registers . 32 bit architectures cannot force
atomic-64 operations.  This patch adds definition of these atomic-64
operations for little endian platforms. The definitions which existed
previously were for big endian platforms.

Signed-off-by: Ruchika Gupta <ruchika.gupta@freescale.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-06-25 21:38:40 +08:00
Ruchika Gupta
17157c90a8 crypto: caam - Configuration for platforms with virtualization enabled in CAAM
For platforms with virtualization enabled

    1. The job ring registers can be written to only is the job ring has been
       started i.e STARTR bit in JRSTART register is 1

    2. For DECO's under direct software control, with virtualization enabled
       PL, BMT, ICID and SDID values need to be provided. These are provided by
       selecting a Job ring in start mode whose parameters would be used for the
       DECO access programming.

Signed-off-by: Ruchika Gupta <ruchika.gupta@freescale.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-06-25 21:38:39 +08:00
Ruchika Gupta
eb1139cd43 crypto: caam - Correct definition of registers in memory map
Some registers like SECVID, CHAVID, CHA Revision Number,
CTPR were defined as 64 bit resgisters.  The IP provides
a DWT bit(Double word Transpose) to transpose the two words when
a double word register is accessed. However setting this bit
would also affect the operation of job descriptors as well as
other registers which are truly double word in nature.
So, for the IP to work correctly on big-endian as well as
little-endian SoC's, change is required to access all 32 bit
registers as 32 bit quantities.

Signed-off-by: Ruchika Gupta <ruchika.gupta@freescale.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-06-25 21:38:39 +08:00
Herbert Xu
e60b244281 crypto: qat - Fix build problem with O=
qat adds -I to the ccflags.  Unfortunately it uses CURDIR which
breaks when make is invoked with O=.  This patch replaces CURDIR
with $(src) which should work with/without O=.

Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-06-23 21:37:53 +08:00
Ard Biesheuvel
6c9e3dcd36 crypto: testmgr - add 4 more test vectors for GHASH
This adds 4 test vectors for GHASH (of which one for chunked mode), making
a total of 5.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-06-21 01:59:29 +08:00
chandramouli narayanan
22cddcc7df crypto: aes - AES CTR x86_64 "by8" AVX optimization
This patch introduces "by8" AES CTR mode AVX optimization inspired by
Intel Optimized IPSEC Cryptograhpic library. For additional information,
please see:
http://downloadcenter.intel.com/Detail_Desc.aspx?agr=Y&DwnldID=22972

The functions aes_ctr_enc_128_avx_by8(), aes_ctr_enc_192_avx_by8() and
aes_ctr_enc_256_avx_by8() are adapted from
Intel Optimized IPSEC Cryptographic library. When both AES and AVX features
are enabled in a platform, the glue code in AESNI module overrieds the
existing "by4" CTR mode en/decryption with the "by8"
AES CTR mode en/decryption.

On a Haswell desktop, with turbo disabled and all cpus running
at maximum frequency, the "by8" CTR mode optimization
shows better performance results across data & key sizes
as measured by tcrypt.

The average performance improvement of the "by8" version over the "by4"
version is as follows:

For 128 bit key and data sizes >= 256 bytes, there is a 10-16% improvement.
For 192 bit key and data sizes >= 256 bytes, there is a 20-22% improvement.
For 256 bit key and data sizes >= 256 bytes, there is a 20-25% improvement.

A typical run of tcrypt with AES CTR mode encryption of the "by4" and "by8"
optimization shows the following results:

tcrypt with "by4" AES CTR mode encryption optimization on a Haswell Desktop:
---------------------------------------------------------------------------

testing speed of __ctr-aes-aesni encryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 343 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 336 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 491 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 1130 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 7309 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 346 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 361 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 543 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 1321 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 9649 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 369 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 366 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 595 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 1531 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 10522 cycles (8192 bytes)

testing speed of __ctr-aes-aesni decryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 336 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 350 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 487 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 1129 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 7287 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 350 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 359 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 635 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 1324 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 9595 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 364 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 377 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 604 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 1527 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 10549 cycles (8192 bytes)

tcrypt with "by8" AES CTR mode encryption optimization on a Haswell Desktop:
---------------------------------------------------------------------------

testing speed of __ctr-aes-aesni encryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 340 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 330 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 450 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 1043 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 6597 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 339 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 352 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 539 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 1153 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 8458 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 353 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 360 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 512 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 1277 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 8745 cycles (8192 bytes)

testing speed of __ctr-aes-aesni decryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 348 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 335 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 451 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 1030 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 6611 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 354 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 346 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 488 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 1154 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 8390 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 357 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 362 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 515 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 1284 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 8681 cycles (8192 bytes)

crypto: Incorporate feed back to AES CTR mode optimization patch

Specifically, the following:
a) alignment around main loop in aes_ctrby8_avx_x86_64.S
b) .rodata around data constants used in the assembely code.
c) the use of CONFIG_AVX in the glue code.
d) fix up white space.
e) informational message for "by8" AES CTR mode optimization
f) "by8" AES CTR mode optimization can be simply enabled
if the platform supports both AES and AVX features. The
optimization works superbly on Sandybridge as well.

Testing on Haswell shows no performance change since the last.

Testing on Sandybridge shows that the "by8" AES CTR mode optimization
greatly improves performance.

tcrypt log with "by4" AES CTR mode optimization on Sandybridge
--------------------------------------------------------------

testing speed of __ctr-aes-aesni encryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 383 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 408 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 707 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 1864 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 12813 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 395 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 432 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 780 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 2132 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 15765 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 416 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 438 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 842 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 2383 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 16945 cycles (8192 bytes)

testing speed of __ctr-aes-aesni decryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 389 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 409 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 704 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 1865 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 12783 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 409 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 434 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 792 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 2151 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 15804 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 421 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 444 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 840 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 2394 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 16928 cycles (8192 bytes)

tcrypt log with "by8" AES CTR mode optimization on Sandybridge
--------------------------------------------------------------

testing speed of __ctr-aes-aesni encryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 383 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 401 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 522 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 1136 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 7046 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 394 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 418 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 559 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 1263 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 9072 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 408 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 428 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 595 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 1385 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 9224 cycles (8192 bytes)

testing speed of __ctr-aes-aesni decryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 390 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 402 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 530 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 1135 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 7079 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 414 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 417 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 572 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 1312 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 9073 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 415 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 454 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 598 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 1407 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 9288 cycles (8192 bytes)

crypto: Fix redundant checks

a) Fix the redundant check for cpu_has_aes
b) Fix the key length check when invoking the CTR mode "by8"
encryptor/decryptor.

crypto: fix typo in AES ctr mode transform

Signed-off-by: Chandramouli Narayanan <mouli@linux.intel.com>
Reviewed-by: Mathias Krause <minipli@googlemail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-06-20 21:27:58 +08:00
Jussi Kivilinna
6574e6c64e crypto: des_3des - add x86-64 assembly implementation
Patch adds x86_64 assembly implementation of Triple DES EDE cipher algorithm.
Two assembly implementations are provided. First is regular 'one-block at
time' encrypt/decrypt function. Second is 'three-blocks at time' function that
gains performance increase on out-of-order CPUs.

tcrypt test results:

Intel Core i5-4570:

des3_ede-asm vs des3_ede-generic:
size    ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec
16B     1.21x   1.22x   1.27x   1.36x   1.25x   1.25x
64B     1.98x   1.96x   1.23x   2.04x   2.01x   2.00x
256B    2.34x   2.37x   1.21x   2.40x   2.38x   2.39x
1024B   2.50x   2.47x   1.22x   2.51x   2.52x   2.51x
8192B   2.51x   2.53x   1.21x   2.56x   2.54x   2.55x

Signed-off-by: Jussi Kivilinna <jussi.kivilinna@iki.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-06-20 21:27:58 +08:00
Jussi Kivilinna
87131507e1 crypto: tcrypt - add ctr(des3_ede) sync speed test
Signed-off-by: Jussi Kivilinna <jussi.kivilinna@iki.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-06-20 21:27:57 +08:00
Dan Carpenter
be513f4432 crypto: caam - remove duplicate FIFOST_CONT_MASK define
The FIFOST_CONT_MASK define is cut and pasted twice so we can delete the
second instance.

Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: Kim Phillips <kim.phillips@freescale.com>
Acked-by: Marek Vasut <marex@denx.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-06-20 21:27:57 +08:00
George Spelvin
473946e674 crypto: crc32c-pclmul - Shrink K_table to 32-bit words
There's no need for the K_table to be made of 64-bit words.  For some
reason, the original authors didn't fully reduce the values modulo the
CRC32C polynomial, and so had some 33-bit values in there.  They can
all be reduced to 32 bits.

Doing that cuts the table size in half.  Since the code depends on both
pclmulq and crc32, SSE 4.1 is obviously present, so we can use pmovzxdq
to fetch it in the correct format.

This adds (measured on Ivy Bridge) 1 cycle per main loop iteration
(CRC of up to 3K bytes), less than 0.2%.  The hope is that the reduced
D-cache footprint will make up the loss in other code.

Two other related fixes:
* K_table is read-only, so belongs in .rodata, and
* There's no need for more than 8-byte alignment

Acked-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: George Spelvin <linux@horizon.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-06-20 21:27:57 +08:00
Tadeusz Struk
cea4001ae1 crypto: qat - Update to makefiles
Update to makefiles etc.
Don't update the firmware/Makefile yet since there is no FW binary in
the crypto repo yet. This will be added later.

v3 - removed change to ./firmware/Makefile

Reviewed-by: Bruce W. Allan <bruce.w.allan@intel.com>
Signed-off-by: Tadeusz Struk <tadeusz.struk@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-06-20 21:26:19 +08:00
Tadeusz Struk
7afa232e76 crypto: qat - Intel(R) QAT DH895xcc accelerator
This patch adds DH895xCC hardware specific code.
It hooks to the common infrastructure and provides acceleration for crypto
algorithms.

Acked-by: John Griffin <john.griffin@intel.com>
Reviewed-by: Bruce W. Allan <bruce.w.allan@intel.com>
Signed-off-by: Tadeusz Struk <tadeusz.struk@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-06-20 21:26:18 +08:00
Tadeusz Struk
b3416fb8a2 crypto: qat - Intel(R) QAT accelengine part of fw loader
This patch adds acceleration engine handler part the firmware loader.

Acked-by: Bo Cui <bo.cui@intel.com>
Reviewed-by: Bruce W. Allan <bruce.w.allan@intel.com>
Signed-off-by: Karen Xiang <karen.xiang@intel.com>
Signed-off-by: Pingchaox Yang <pingchaox.yang@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-06-20 21:26:17 +08:00
Tadeusz Struk
b4b7e67c91 crypto: qat - Intel(R) QAT ucode part of fw loader
This patch adds microcode part of the firmware loader.

v4 - splits FW loader part into two smaller patches.

Acked-by: Bo Cui <bo.cui@intel.com>
Reviewed-by: Bruce W. Allan <bruce.w.allan@intel.com>
Signed-off-by: Karen Xiang <karen.xiang@intel.com>
Signed-off-by: Pingchaox Yang <pingchaox.yang@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-06-20 21:26:16 +08:00
Tadeusz Struk
d370cec321 crypto: qat - Intel(R) QAT crypto interface
This patch adds qat crypto interface.

Acked-by: John Griffin <john.griffin@intel.com>
Reviewed-by: Bruce W. Allan <bruce.w.allan@intel.com>
Signed-off-by: Tadeusz Struk <tadeusz.struk@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-06-20 21:26:16 +08:00
Tadeusz Struk
38154e65ce crypto: qat - Intel(R) QAT FW interface
This patch adds FW interface structure definitions.

Acked-by: John Griffin <john.griffin@intel.com>
Reviewed-by: Bruce W. Allan <bruce.w.allan@intel.com>
Signed-off-by: Tadeusz Struk <tadeusz.struk@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-06-20 21:26:16 +08:00
Tadeusz Struk
a672a9dc87 crypto: qat - Intel(R) QAT transport code
This patch adds a code that implements communication channel between the
driver and the firmware.

Acked-by: John Griffin <john.griffin@intel.com>
Reviewed-by: Bruce W. Allan <bruce.w.allan@intel.com>
Signed-off-by: Tadeusz Struk <tadeusz.struk@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-06-20 21:26:15 +08:00
Tadeusz Struk
d8cba25d2c crypto: qat - Intel(R) QAT driver framework
This patch adds a common infractructure that will be used by all Intel(R)
QuickAssist Technology (QAT) devices.

v2 - added ./drivers/crypto/qat/Kconfig and ./drivers/crypto/qat/Makefile
v4 - splits common part into more, smaller patches

Acked-by: John Griffin <john.griffin@intel.com>
Reviewed-by: Bruce W. Allan <bruce.w.allan@intel.com>
Signed-off-by: Tadeusz Struk <tadeusz.struk@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-06-20 21:26:15 +08:00
Tom Lendacky
c4f4b325e9 crypto: ccp - Add platform device support for arm64
Add support for the CCP on arm64 as a platform device.

Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-06-20 21:26:14 +08:00
Tom Lendacky
1ad348f451 crypto: ccp - CCP device bindings documentation
This patch provides the documentation of the device bindings
for the AMD Cryptographic Coprocessor driver.

Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-06-20 21:26:13 +08:00
Tom Lendacky
3d77565ba5 crypto: ccp - Modify PCI support in prep for arm64 support
Modify the PCI device support in prep for supporting the
CCP as a platform device for arm64.

Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-06-20 21:26:11 +08:00
Stephan Mueller
64d1cdfbe2 crypto: drbg - Add DRBG test code to testmgr
The DRBG test code implements the CAVS test approach.

As discussed for the test vectors, all DRBG types are covered with
testing. However, not every backend cipher is covered with testing. To
prevent the testmgr from logging missing testing, the NULL test is
registered for all backend ciphers not covered with specific test cases.

All currently implemented DRBG types and backend ciphers are defined
in SP800-90A. Therefore, the fips_allowed flag is set for all.

Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-06-20 21:26:10 +08:00
Stephan Mueller
3332ee2a17 crypto: drbg - DRBG testmgr test vectors
All types of the DRBG (CTR, HMAC, Hash) are covered with test vectors.
In addition, all permutations of use cases of the DRBG are covered:

        * with and without predition resistance
        * with and without additional information string
        * with and without personalization string

As the DRBG implementation is agnositc of the specific backend cipher,
only test vectors for one specific backend cipher is used. For example:
the Hash DRBG uses the same code paths irrespectively of using SHA-256
or SHA-512. Thus, the test vectors for SHA-256 cover the testing of all
DRBG code paths of SHA-512.

Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-06-20 21:26:10 +08:00
Stephan Mueller
5bfcf65b38 crypto: drbg - compile the DRBG code
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-06-20 21:26:10 +08:00
Stephan Mueller
419090c6c6 crypto: drbg - DRBG kernel configuration options
The different DRBG types of CTR, Hash, HMAC can be enabled or disabled
at compile time. At least one DRBG type shall be selected.

The default is the HMAC DRBG as its code base is smallest.

Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-06-20 21:26:09 +08:00
Stephan Mueller
3e16f959b9 crypto: drbg - header file for DRBG
The header file includes the definition of:

* DRBG data structures with
        - struct drbg_state as main structure
        - struct drbg_core referencing the backend ciphers
        - struct drbg_state_ops callbach handlers for specific code
          supporting the Hash, HMAC, CTR DRBG implementations
        - struct drbg_conc defining a linked list for input data
        - struct drbg_test_data holding the test "entropy" data for CAVS
          testing and testmgr.c
        - struct drbg_gen allowing test data, additional information
          string and personalization string data to be funneled through
          the kernel crypto API -- the DRBG requires additional
          parameters when invoking the reset and random number
          generation requests than intended by the kernel crypto API

* wrapper function to the kernel crypto API functions using struct
  drbg_gen to pass through all data needed for DRBG

* wrapper functions to kernel crypto API functions usable for testing
  code to inject test_data into the DRBG as needed by CAVS testing and
  testmgr.c.

* DRBG flags required for the operation of the DRBG and for selecting
  the particular DRBG type and backend cipher

* getter functions for data from struct drbg_core

Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-06-20 21:26:09 +08:00
Stephan Mueller
541af946fe crypto: drbg - SP800-90A Deterministic Random Bit Generator
This is a clean-room implementation of the DRBG defined in SP800-90A.
All three viable DRBGs defined in the standard are implemented:

 * HMAC: This is the leanest DRBG and compiled per default
 * Hash: The more complex DRBG can be enabled at compile time
 * CTR: The most complex DRBG can also be enabled at compile time

The DRBG implementation offers the following:

 * All three DRBG types are implemented with a derivation function.
 * All DRBG types are available with and without prediction resistance.
 * All SHA types of SHA-1, SHA-256, SHA-384, SHA-512 are available for
   the HMAC and Hash DRBGs.
 * All AES types of AES-128, AES-192 and AES-256 are available for the
   CTR DRBG.
 * A self test is implemented with drbg_healthcheck().
 * The FIPS 140-2 continuous self test is implemented.

Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-06-20 21:26:08 +08:00
Jean Delvare
13269ec647 crypto: drivers - Add 2 missing __exit_p
References to __exit functions must be wrapped with __exit_p.

Signed-off-by: Jean Delvare <jdelvare@suse.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Robert Jennings <rcj@linux.vnet.ibm.com>
Cc: Marcelo Henrique Cerri <mhcerri@linux.vnet.ibm.com>
Cc: Fionnuala Gunter <fin@linux.vnet.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-06-20 21:26:08 +08:00
Himangi Saraogi
4776d38127 crypto: caam - Introduce the use of the managed version of kzalloc
This patch moves data allocated using kzalloc to managed data allocated
using devm_kzalloc and cleans now unnecessary kfrees in probe and remove
functions.  Also, linux/device.h is added to make sure the devm_*()
routine declarations are unambiguously available. Earlier, in the probe
function ctrlpriv was leaked on the failure of ctrl = of_iomap(nprop, 0);
as well as on the failure of ctrlpriv->jrpdev = kzalloc(...); . These
two bugs have been fixed by the patch.

The following Coccinelle semantic patch was used for making the change:

identifier p, probefn, removefn;
@@
struct platform_driver p = {
  .probe = probefn,
  .remove = removefn,
};

@prb@
identifier platform.probefn, pdev;
expression e, e1, e2;
@@
probefn(struct platform_device *pdev, ...) {
  <+...
- e = kzalloc(e1, e2)
+ e = devm_kzalloc(&pdev->dev, e1, e2)
  ...
?-kfree(e);
  ...+>
}

@rem depends on prb@
identifier platform.removefn;
expression e;
@@
removefn(...) {
  <...
- kfree(e);
  ...>
}

Signed-off-by: Himangi Saraogi <himangi774@gmail.com>
Acked-by: Julia Lawall <julia.lawall@lip6.fr>
Reviewed-by: Marek Vasut <marex@denx.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-06-20 21:26:06 +08:00
Eric Dumazet
42614b0582 crypto: lzo - try kmalloc() before vmalloc()
zswap allocates one LZO context per online cpu.

Using vmalloc() for small (16KB) memory areas has drawback of slowing
down /proc/vmallocinfo and /proc/meminfo reads, TLB pressure and poor
NUMA locality, as default NUMA policy at boot time is to interleave
pages :

edumazet:~# grep lzo /proc/vmallocinfo | head -4
0xffffc90006062000-0xffffc90006067000   20480 lzo_init+0x1b/0x30 pages=4 vmalloc N0=2 N1=2
0xffffc90006067000-0xffffc9000606c000   20480 lzo_init+0x1b/0x30 pages=4 vmalloc N0=2 N1=2
0xffffc9000606c000-0xffffc90006071000   20480 lzo_init+0x1b/0x30 pages=4 vmalloc N0=2 N1=2
0xffffc90006071000-0xffffc90006076000   20480 lzo_init+0x1b/0x30 pages=4 vmalloc N0=2 N1=2

This patch tries a regular kmalloc() and fallback to vmalloc in case
memory is too fragmented.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-06-20 21:26:05 +08:00
Marek Vasut
d656c180de crypto: skcipher - Don't use __crypto_dequeue_request()
Use skcipher_givcrypt_cast(crypto_dequeue_request(queue)) instead, which
does the same thing in much cleaner way. The skcipher_givcrypt_cast()
actually uses container_of() instead of messing around with offsetof()
too.

Signed-off-by: Marek Vasut <marex@denx.de>
Reported-by: Arnd Bergmann <arnd@arndb.de>
Cc: Pantelis Antoniou <panto@antoniou-consulting.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-06-20 21:26:05 +08:00
Marek Vasut
bb55a4c100 crypto: api - Move crypto_yield() to algapi.h
It makes no sense for crypto_yield() to be defined in scatterwalk.h ,
move it into algapi.h as it's an internal function to crypto API.

Signed-off-by: Marek Vasut <marex@denx.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-06-20 21:26:04 +08:00
Linus Torvalds
7171511eae Linux 3.16-rc1 2014-06-15 17:45:28 -10:00
Linus Torvalds
a9be22425e Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
Pull networking fixes from David Miller:

 1) Fix checksumming regressions, from Tom Herbert.

 2) Undo unintentional permissions changes for SCTP rto_alpha and
    rto_beta sysfs knobs, from Denial Borkmann.

 3) VXLAN, like other IP tunnels, should advertize it's encapsulation
    size using dev->needed_headroom instead of dev->hard_header_len.
    From Cong Wang.

* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net:
  net: sctp: fix permissions for rto_alpha and rto_beta knobs
  vxlan: Checksum fixes
  net: add skb_pop_rcv_encapsulation
  udp: call __skb_checksum_complete when doing full checksum
  net: Fix save software checksum complete
  net: Fix GSO constants to match NETIF flags
  udp: ipv4: do not waste time in __udp4_lib_mcast_demux_lookup
  vxlan: use dev->needed_headroom instead of dev->hard_header_len
  MAINTAINERS: update cxgb4 maintainer
2014-06-15 16:37:03 -10:00
Linus Torvalds
dd1845af24 This pull request contains the second half the of the clk changes for
3.16. They are simply fixes and code refactoring for the OMAP clock
 drivers. The sunxi clock driver changes include splitting out the one
 mega-driver into several smaller pieces and adding support for the A31
 SoC clocks.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1.4.14 (GNU/Linux)
 
 iQIcBAABAgAGBQJTnHqfAAoJEDqPOy9afJhJnI0P/1PvRHx7bmwNAD8b09pAVm2u
 xTmhiH+zfHcRtKivKCAxFQ4FlkS3v69RB9FC+s6FIgn984K3FjkHRW2zgqe3K2h3
 7tj6EoT6XJ6szK4AWDy/GVqekRF9kyADexSiYI4rIRP0rnSswvBKHZ485OR06Fs+
 Jls0EMbGOEzMyB/B+pDNnTOznZOSd+lZbBznSh1zG+8QHQEzXwxPRr+G0/jxneO/
 rTqUvDRqGC709YIaa+oBCH5ez/wVwrU68u/CpmrLQIPdFfaWl7YhYy/ZicwwJprE
 Oi1AlQpRoBe1yYIz6oJ//+4D6b9Y/e6cqG4P37VhF6PiD9yDyN+ycEtGMqxNXjIa
 OMGlairEU6V43ZrP/wDWvX6NLP7LCEqOG/PSo8zjuoZ/G1kw2jo6firRI5TVR/bY
 uARHkBTUYQGjvwBU3QoLuHf+pOPAeBXfYVsi2n/b+HSueXkPQW+HdH4erktlahPh
 2xkVhEDbMfCOeovOGcZhsQ8aDUIDUjZTJE7uU633DjsHY7P96OTRBHF8qirNpuOx
 0GkAVOsFBU7wMt8tcO4it00i7z6PEKwqDIZBNQVq2F2DnOS9WTTcop7dmYPz95qp
 8qTZIN++ROWaxok0H5SL7ER22GIJlTuGGynwPK5Aa/6v193rUW9pEZPlr7wYSf8u
 RwP/J6OfN9t/rKxCsFCj
 =9/Iv
 -----END PGP SIGNATURE-----

Merge tag 'clk-for-linus-3.16-part2' of git://git.linaro.org/people/mike.turquette/linux

Pull more clock framework updates from Mike Turquette:
 "This contains the second half the of the clk changes for 3.16.

  They are simply fixes and code refactoring for the OMAP clock drivers.
  The sunxi clock driver changes include splitting out the one
  mega-driver into several smaller pieces and adding support for the A31
  SoC clocks"

* tag 'clk-for-linus-3.16-part2' of git://git.linaro.org/people/mike.turquette/linux: (25 commits)
  clk: sunxi: document PRCM clock compatible strings
  clk: sunxi: add PRCM (Power/Reset/Clock Management) clks support
  clk: sun6i: Protect SDRAM gating bit
  clk: sun6i: Protect CPU clock
  clk: sunxi: Rework clock protection code
  clk: sunxi: Move the GMAC clock to a file of its own
  clk: sunxi: Move the 24M oscillator to a file of its own
  clk: sunxi: Remove calls to clk_put
  clk: sunxi: document new A31 USB clock compatible
  clk: sunxi: Implement A31 USB clock
  ARM: dts: OMAP5/DRA7: use omap5-mpu-dpll-clock capable of dealing with higher frequencies
  CLK: TI: dpll: support OMAP5 MPU DPLL that need special handling for higher frequencies
  ARM: OMAP5+: dpll: support Duty Cycle Correction(DCC)
  CLK: TI: clk-54xx: Set the rate for dpll_abe_m2x2_ck
  CLK: TI: Driver for DRA7 ATL (Audio Tracking Logic)
  dt:/bindings: DRA7 ATL (Audio Tracking Logic) clock bindings
  ARM: dts: dra7xx-clocks: Correct name for atl clkin3 clock
  CLK: TI: gate: add composite interface clock to OMAP2 only build
  ARM: OMAP2: clock: add DT boot support for cpufreq_ck
  CLK: TI: OMAP2: add clock init support
  ...
2014-06-15 16:02:20 -10:00
Linus Torvalds
b55b390202 Merge git://git.infradead.org/users/willy/linux-nvme
Pull NVMe update from Matthew Wilcox:
 "Mostly bugfixes again for the NVMe driver.  I'd like to call out the
  exported tracepoint in the block layer; I believe Keith has cleared
  this with Jens.

  We've had a few reports from people who're really pounding on NVMe
  devices at scale, hence the timeout changes (and new module
  parameters), hotplug cpu deadlock, tracepoints, and minor performance
  tweaks"

[ Jens hadn't seen that tracepoint thing, but is ok with it - it will
  end up going away when mq conversion happens ]

* git://git.infradead.org/users/willy/linux-nvme: (22 commits)
  NVMe: Fix START_STOP_UNIT Scsi->NVMe translation.
  NVMe: Use Log Page constants in SCSI emulation
  NVMe: Define Log Page constants
  NVMe: Fix hot cpu notification dead lock
  NVMe: Rename io_timeout to nvme_io_timeout
  NVMe: Use last bytes of f/w rev SCSI Inquiry
  NVMe: Adhere to request queue block accounting enable/disable
  NVMe: Fix nvme get/put queue semantics
  NVMe: Delete NVME_GET_FEAT_TEMP_THRESH
  NVMe: Make admin timeout a module parameter
  NVMe: Make iod bio timeout a parameter
  NVMe: Prevent possible NULL pointer dereference
  NVMe: Fix the buffer size passed in GetLogPage(CDW10.NUMD)
  NVMe: Update data structures for NVMe 1.2
  NVMe: Enable BUILD_BUG_ON checks
  NVMe: Update namespace and controller identify structures to the 1.1a spec
  NVMe: Flush with data support
  NVMe: Configure support for block flush
  NVMe: Add tracepoints
  NVMe: Protect against badly formatted CQEs
  ...
2014-06-15 15:58:03 -10:00
Daniel Borkmann
b58537a1f5 net: sctp: fix permissions for rto_alpha and rto_beta knobs
Commit 3fd091e73b ("[SCTP]: Remove multiple levels of msecs
to jiffies conversions.") has silently changed permissions for
rto_alpha and rto_beta knobs from 0644 to 0444. The purpose of
this was to discourage users from tweaking rto_alpha and
rto_beta knobs in production environments since they are key
to correctly compute rtt/srtt.

RFC4960 under section 6.3.1. RTO Calculation says regarding
rto_alpha and rto_beta under rule C3 and C4:

  [...]
  C3)  When a new RTT measurement R' is made, set

       RTTVAR <- (1 - RTO.Beta) * RTTVAR + RTO.Beta * |SRTT - R'|

       and

       SRTT <- (1 - RTO.Alpha) * SRTT + RTO.Alpha * R'

       Note: The value of SRTT used in the update to RTTVAR
       is its value before updating SRTT itself using the
       second assignment. After the computation, update
       RTO <- SRTT + 4 * RTTVAR.

  C4)  When data is in flight and when allowed by rule C5
       below, a new RTT measurement MUST be made each round
       trip. Furthermore, new RTT measurements SHOULD be
       made no more than once per round trip for a given
       destination transport address. There are two reasons
       for this recommendation: First, it appears that
       measuring more frequently often does not in practice
       yield any significant benefit [ALLMAN99]; second,
       if measurements are made more often, then the values
       of RTO.Alpha and RTO.Beta in rule C3 above should be
       adjusted so that SRTT and RTTVAR still adjust to
       changes at roughly the same rate (in terms of how many
       round trips it takes them to reflect new values) as
       they would if making only one measurement per
       round-trip and using RTO.Alpha and RTO.Beta as given
       in rule C3. However, the exact nature of these
       adjustments remains a research issue.
  [...]

While it is discouraged to adjust rto_alpha and rto_beta
and not further specified how to adjust them, the RFC also
doesn't explicitly forbid it, but rather gives a RECOMMENDED
default value (rto_alpha=3, rto_beta=2). We have a couple
of users relying on the old permissions before they got
changed. That said, if someone really has the urge to adjust
them, we could allow it with a warning in the log.

Fixes: 3fd091e73b ("[SCTP]: Remove multiple levels of msecs to jiffies conversions.")
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Cc: Vlad Yasevich <vyasevich@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-06-15 01:17:32 -07:00
David S. Miller
e4f7ae930a Merge branch 'csum_fixes'
Tom Herbert says:

====================
Fixes related to some recent checksum modifications.

- Fix GSO constants to match NETIF flags
- Fix logic in saving checksum complete in __skb_checksum_complete
- Call __skb_checksum_complete from UDP if we are checksumming over
  whole packet in order to save checksum.
- Fixes to VXLAN to work correctly with checksum complete
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
2014-06-15 01:00:56 -07:00
Tom Herbert
f79b064c15 vxlan: Checksum fixes
Call skb_pop_rcv_encapsulation and postpull_rcsum for the Ethernet
header to work properly with checksum complete.

Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-06-15 01:00:50 -07:00
Tom Herbert
e5eb4e30a5 net: add skb_pop_rcv_encapsulation
This function is used by UDP encapsulation protocols in RX when
crossing encapsulation boundary. If ip_summed is set to
CHECKSUM_UNNECESSARY and encapsulation is not set, change to
CHECKSUM_NONE since the checksum has not been validated within the
encapsulation. Clears csum_valid by the same rationale.

Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-06-15 01:00:50 -07:00
Tom Herbert
bbdff225ed udp: call __skb_checksum_complete when doing full checksum
In __udp_lib_checksum_complete check if checksum is being done over all
the data (len is equal to skb->len) and if it is call
__skb_checksum_complete instead of __skb_checksum_complete_head. This
allows checksum to be saved in checksum complete.

Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-06-15 01:00:49 -07:00
Tom Herbert
46fb51eb96 net: Fix save software checksum complete
Geert reported issues regarding checksum complete and UDP.
The logic introduced in commit 7e3cead517
("net: Save software checksum complete") is not correct.

This patch:
1) Restores code in __skb_checksum_complete_header except for setting
   CHECKSUM_UNNECESSARY. This function may be calculating checksum on
   something less than skb->len.
2) Adds saving checksum to __skb_checksum_complete. The full packet
   checksum 0..skb->len is calculated without adding in pseudo header.
   This value is saved in skb->csum and then the pseudo header is added
   to that to derive the checksum for validation.
3) In both __skb_checksum_complete_header and __skb_checksum_complete,
   set skb->csum_valid to whether checksum of zero was computed. This
   allows skb_csum_unnecessary to return true without changing to
   CHECKSUM_UNNECESSARY which was done previously.
4) Copy new csum related bits in __copy_skb_header.

Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-06-15 01:00:49 -07:00
Tom Herbert
4b28252cad net: Fix GSO constants to match NETIF flags
Joseph Gasparakis reported that VXLAN GSO offload stopped working with
i40e device after recent UDP changes. The problem is that the
SKB_GSO_* bits are out of sync with the corresponding NETIF flags. This
patch fixes that. Also, we add BUILD_BUG_ONs in net_gso_ok for several
GSO constants that were missing to avoid the problem in the future.

Reported-by: Joseph Gasparakis <joseph.gasparakis@intel.com>
Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-06-15 01:00:49 -07:00
Linus Torvalds
abf04af74a SCSI for-linus on 20140613
This is just a couple of drivers (hpsa and lpfc) that got left out for further
 testing in linux-next.  We also have one fix to a prior submission (qla2xxx
 sparse).
 
 Signed-off-by: James Bottomley <JBottomley@Parallels.com>
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJTm48MAAoJEDeqqVYsXL0M1YEH/iZyEILT4EIZxre/tspqX/LB
 dxtGlmlF8AEU8/Eze3k/OB5nSuGcnYZ1hN1CgT2zZEv+sih6FekQOQV06qTwzwbo
 DnWA3dOrPVgMzzSVvXFEjryroIUNhZvMy8TGu+DefE9b6FUs6B3VZlMR3A+TcSgV
 cgknkG2Q6mWN8rO44pTSVlVDe2JpkvCYsHnqhO8uneQXVHNtsPpV7FfoLMLjBUDX
 dgsaDiUjyrj0sdR1yOgRjDH68FPewEiEONdtKi63kkI6zWDFASiKDY9yc1eIyjVd
 /1gbBJxwTRl4dWEdsigr/pOBxs6yjXGBSl/6PPDtuvdpWLFWUg4C2XtDLz0KLfU=
 =tdDT
 -----END PGP SIGNATURE-----

Merge tag 'scsi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi

Pull more SCSI updates from James Bottomley:
 "This is just a couple of drivers (hpsa and lpfc) that got left out for
  further testing in linux-next.  We also have one fix to a prior
  submission (qla2xxx sparse)"

* tag 'scsi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi: (36 commits)
  qla2xxx: fix sparse warnings introduced by previous target mode t10-dif patch
  lpfc: Update lpfc version to driver version 10.2.8001.0
  lpfc: Fix ExpressLane priority setup
  lpfc: mark old devices as obsolete
  lpfc: Fix for initializing RRQ bitmap
  lpfc: Fix for cleaning up stale ring flag and sp_queue_event entries
  lpfc: Update lpfc version to driver version 10.2.8000.0
  lpfc: Update Copyright on changed files from 8.3.45 patches
  lpfc: Update Copyright on changed files
  lpfc: Fixed locking for scsi task management commands
  lpfc: Convert runtime references to old xlane cfg param to fof cfg param
  lpfc: Fix FW dump using sysfs
  lpfc: Fix SLI4 s abort loop to process all FCP rings and under ring_lock
  lpfc: Fixed kernel panic in lpfc_abort_handler
  lpfc: Fix locking for postbufq when freeing
  lpfc: Fix locking for lpfc_hba_down_post
  lpfc: Fix dynamic transitions of FirstBurst from on to off
  hpsa: fix handling of hpsa_volume_offline return value
  hpsa: return -ENOMEM not -1 on kzalloc failure in hpsa_get_device_id
  hpsa: remove messages about volume status VPD inquiry page not supported
  ...
2014-06-14 19:49:48 -05:00
Linus Torvalds
16d52ef7c0 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull more btrfs updates from Chris Mason:
 "This has a few fixes since our last pull and a new ioctl for doing
  btree searches from userland.  It's very similar to the existing
  ioctl, but lets us return larger items back down to the app"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  btrfs: fix error handling in create_pending_snapshot
  btrfs: fix use of uninit "ret" in end_extent_writepage()
  btrfs: free ulist in qgroup_shared_accounting() error path
  Btrfs: fix qgroups sanity test crash or hang
  btrfs: prevent RCU warning when dereferencing radix tree slot
  Btrfs: fix unfinished readahead thread for raid5/6 degraded mounting
  btrfs: new ioctl TREE_SEARCH_V2
  btrfs: tree_search, search_ioctl: direct copy to userspace
  btrfs: new function read_extent_buffer_to_user
  btrfs: tree_search, copy_to_sk: return needed size on EOVERFLOW
  btrfs: tree_search, copy_to_sk: return EOVERFLOW for too small buffer
  btrfs: tree_search, search_ioctl: accept varying buffer
  btrfs: tree_search: eliminate redundant nr_items check
2014-06-14 19:48:43 -05:00
Linus Torvalds
a311c48038 Merge git://git.kvack.org/~bcrl/aio-next
Pull aio fix and cleanups from Ben LaHaise:
 "This consists of a couple of code cleanups plus a minor bug fix"

* git://git.kvack.org/~bcrl/aio-next:
  aio: cleanup: flatten kill_ioctx()
  aio: report error from io_destroy() when threads race in io_destroy()
  fs/aio.c: Remove ctx parameter in kiocb_cancel
2014-06-14 19:43:27 -05:00
Al Viro
05064084e8 fix __swap_writepage() compile failure on old gcc versions
Tetsuo Handa wrote:
 "Commit 62a8067a7f ("bio_vec-backed iov_iter") introduced an unnamed
  union inside a struct which gcc-4.4.7 cannot handle.  Name the unnamed
   union as u in order to fix build failure"

Let's do this instead: there is only one place in the entire tree that
steps into this breakage.  Anon structs and unions work in older gcc
versions; as the matter of fact, we have those in the tree - see e.g.
struct ieee80211_tx_info in include/net/mac80211.h

What doesn't work is handling their initializers:

struct {
	int a;
	union {
		int b;
		char c;
	};
} x[2] = {{.a = 1, .c = 'a'}, {.a = 0, .b = 1}};

is the obvious syntax for initializer, perfectly fine for C11 and
handled correctly by gcc-4.7 or later.

Earlier versions, though, break on it - declaration is fine and so's
access to fields (i.e.  x[0].c = 'a'; would produce the right code), but
members of the anon structs and unions are not inserted into the right
namespace.  Tellingly, those older versions will not barf on struct {int
a; struct {int a;};}; - looks like they just have it hacked up somewhere
around the handling of .  and -> instead of doing the right thing.

The easiest way to deal with that crap is to turn initialization of
those fields (in the only place where we have such initializer of
iov_iter) into plain assignment.

Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Reported-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-14 19:30:48 -05:00
Linus Torvalds
4a54e5e517 HSI Fixes for the v3.16 series:
* Tighten Dependency between ssi-protocol and omap-ssi
   to fix build failures with randconfig.
 * Use normal module refcounting in omap driver to fix
   build with disabled module support.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABCgAGBQJTm50dAAoJENju1/PIO/qaI54P/ix0jMNYUJTHgEuPa8uifJY8
 ZJBvE1jdb9k4keOaQvD5d0B0ExEBzfaBKzmSIGOlfREPcR2o7m20psLNXkkfsSbj
 6jquDEp7ObOGgGdQ+3OebXRE+4qZm91H5AmX+8VMPbcxhcjLYvfn73T6dCbl/Wo/
 y0VY2gGdUGQ0uQLcQ8WIeVah0mlmQ2lVbpVakG9cfDE+0yVYzb86xvepBvqzeMei
 0xGmJo/dXQegLpS//uqSW6S9ds6BFPBvptLJjjQ1wOGdcBxe6ADkcu9VYZFv0FaN
 XnD10FaKnRZROYTAC+9w7XksT4WsAwuuGRySrn2H12Da5XCxjTrGMCUnNgKc4HhO
 cERQDdgtBe8+8wPD7kTnhYSzWWqQTBelwucmTuO1jecIa3vC6DA8UuMPKLE7K8Qs
 g7MelhcT7aw3Clmgbvg11oH7YAfFnis9/fJ3Bq2wgKivfbEik++BjE1P8lVB2uVK
 UXrLsEgSwEDQV3wLW4bpHO1NO8XtVFmkoBoxCWRKOYouhVlkucyt8HYi1pPwnhcq
 hjxtXN7pUgf7lnFeeS7CH5xbZSkIkBHjUS3mmTPr5AKgsqYpNlyP8jMt7GTTZGXX
 LzOS0VDAi73vl08k1yiLRDAhu7iZwKMk8+arTP3iYhzmk7OI/9gMB+pRf+zPGp6B
 ADWLvkEREuu1zw6Ob4wp
 =BKDp
 -----END PGP SIGNATURE-----

Merge tag 'hsi-for-3.16-fixes1' of git://git.kernel.org/pub/scm/linux/kernel/git/sre/linux-hsi

Pull HSI build fixes from Sebastian Reichel:
 - tighten dependency between ssi-protocol and omap-ssi to fix build
   failures with randconfig.
 - use normal module refcounting in omap driver to fix build with
   disabled module support

* tag 'hsi-for-3.16-fixes1' of git://git.kernel.org/pub/scm/linux/kernel/git/sre/linux-hsi:
  hsi: omap_ssi_port: use normal module refcounting
  HSI: fix omap ssi driver dependency
2014-06-14 14:51:25 -07:00