We've been burned by regressions/bugs which we later realized could have
been triaged quicker if only we'd paid closer attention to dmesg. To make
it easier to audit dmesg, we'd like to make DEFAULT_MESSAGE_LEVEL
Kconfig-settable. That way we can set it to KERN_NOTICE and audit any
messages <= KERN_WARNING.
Signed-off-by: Mandeep Singh Baines <msb@chromium.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Joe Perches <joe@perches.com>
Cc: Olof Johansson <olofj@chromium.org>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In an effort to reduce kernel address leaks that might be used to help
target kernel privilege escalation exploits, this patch uses %pK when
displaying addresses in /proc/kallsyms, /proc/modules, and
/sys/module/*/sections/*.
Note that this changes %x to %p, so some legitimately 0 values in
/proc/kallsyms would have changed from 00000000 to "(null)". To avoid
this, "(null)" is not used when using the "K" format. Anything that was
already successfully parsing "(null)" in addition to full hex digits
should have no problem with this change. (Thanks to Joe Perches for the
suggestion.) Due to the %x to %p, "void *" casts are needed since these
addresses are already "unsigned long" everywhere internally, due to their
starting life as ELF section offsets.
Signed-off-by: Kees Cook <kees.cook@canonical.com>
Cc: Eugene Teo <eugene@redhat.com>
Cc: Dan Rosenberg <drosenberg@vsecurity.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For a platform with many consoles like:
"console=tty1 console=ttyMFD2 console=ttyS0 earlyprintk=mrst"
Each time when the non "selected_console" (tty1 and ttyMFD2 here) get
registered, the existing kernel message will be printed out on registered
consoles again, the "mrst" early console will get some same message for 3
times, and "tty1" will get some for twice.
As suggested by Andrew Morton, every time a new console is registered, it
will be set as the "exclusive" console which will dump the already
existing kernel messages.
Signed-off-by: Feng Tang <feng.tang@intel.com>
Cc: Greg KH <gregkh@suse.de>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On some architectures, the boot process involves de-registering the boot
console (early boot), initialize drivers and then re-register the console.
This mechanism introduces a window in which no printk can happen on the
console and messages are buffered and then printed once the new console is
available.
If a kernel crashes during this window, all it's left on the boot console
is "console [foo] enabled, bootconsole disabled" making debug of the crash
rather 'interesting'.
By adding "keep_bootcon" option, do not unregister the boot console, that
will allow to printk everything that is happening up to the crash.
The option is clearly meant only for debugging purposes as it introduces
lots of duplicated info printed on console, but will make bug report from
users easier as it doesn't require a kernel build just to figure out where
we crash.
Signed-off-by: Fabio M. Di Nitto <fabbione@fabbione.net>
Acked-by: David S. Miller <davem@davemloft.net>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: Greg KH <gregkh@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If kptr restrictions are on, just set the passed pointer to NULL.
$ size lib/vsprintf.o.*
text data bss dec hex filename
8247 4 2 8253 203d lib/vsprintf.o.new
8282 4 2 8288 2060 lib/vsprintf.o.old
Signed-off-by: Joe Perches <joe@perches.com>
Cc: Dan Rosenberg <drosenberg@vsecurity.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch addresses a couple of problems. One was the case when the
hardlockup failed to start, it also failed to start the softlockup. There
were valid cases when the hardlockup shouldn't start and that shouldn't
block the softlockup (no lapic, bios controls perf counters).
The second problem was when the hardlockup failed to start on boxes (from
a no lapic or bios controlled perf counter case), it reported failure to
the cpu notifier chain. This blocked the notifier from continuing to
start other more critical pieces of cpu bring-up (in our case based on a
2.6.32 fork, it was the mce). As a result, during soft cpu online/offline
testing, the system would panic when a cpu was offlined because the cpu
notifier would succeed in processing a watchdog disable cpu event and
would panic in the mce case as a result of un-initialized variables from a
never executed cpu up event.
I realized the hardlockup/softlockup cases are really just debugging aids
and should never impede the progress of a cpu up/down event. Therefore I
modified the code to always return NOTIFY_OK and instead rely on printks
to inform the user of problems.
Signed-off-by: Don Zickus <dzickus@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: WANG Cong <xiyou.wangcong@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a cpu is considered stuck, instead of limping along and just printing
a warning, it is sometimes preferred to just panic, let kdump capture the
vmcore and reboot. This gets the machine back into a stable state quickly
while saving the info that got it into a stuck state to begin with.
Add a Kconfig option to allow users to set the hardlockup to panic
by default. Also add in a 'nmi_watchdog=nopanic' to override this.
[akpm@linux-foundation.org: fix strncmp length]
Signed-off-by: Don Zickus <dzickus@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: WANG Cong <xiyou.wangcong@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Systems with unmaskable interrupts such as SMIs may massively
underestimate loops_per_jiffy, and fail to converge anywhere near the real
value. A case seen on x86_64 was an initial estimate of 256<<12, which
converged to 511<<12 where the real value should have been over 630<<12.
This admitedly requires bypassing the TSC calibration (lpj_fine), and a
failure to settle in the direct calibration too, but is physically
possible. This failure does not depend on my previous calibration
optimisation, but by luck is easy to fix with the optimisation in place
with a trivial retry loop.
In the context of the optimised converging method, as we can no longer
trust the starting estimate, enlarge the search bounds exponentially so
that the number of retries is logarithmically bounded.
[akpm@linux-foundation.org: mention x86_64 SMIs in comment]
Signed-off-by: Phil Carmody <ext-phil.2.carmody@nokia.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Tested-by: Stephen Boyd <sboyd@codeaurora.org>
Cc: Greg KH <greg@kroah.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Binary chop with a jiffy-resync on each step to find an upper bound is
slow, so just race in a tight-ish loop to find an underestimate.
If done with lots of individual steps, sometimes several hundreds of
iterations would be required, which would impose a significant overhead,
and make the initial estimate very low. By taking slowly increasing steps
there will be less overhead.
E.g. an x86_64 2.67GHz could have fitted in 613 individual small delays,
but in reality should have been able to fit in a single delay 644 times
longer, so underestimated by 31 steps. To reach the equivalent of 644
small delays with the accelerating scheme now requires about 130
iterations, so has <1/4th of the overhead, and can therefore be expected
to underestimate by only 7 steps.
As now we have a better initial estimate we can binary chop over a smaller
range. With the loop overhead in the initial estimate kept low, and the
step sizes moderate, we won't have under-estimated by much, so chose as
tight a range as we can.
Signed-off-by: Phil Carmody <ext-phil.2.carmody@nokia.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Tested-by: Stephen Boyd <sboyd@codeaurora.org>
Cc: Greg KH <greg@kroah.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The motivation for this patch series is that currently our OMAP calibrates
itself using the trial-and-error binary chop fallback that some other
architectures no longer need to perform. This is a lengthy process,
taking 0.2s in an environment where boot time is of great interest.
Patch 2/4 has two optimisations. Firstly, it replaces the initial
repeated- doubling to find the relevant power of 2 with a tight loop that
just does as much as it can in a jiffy. Secondly, it doesn't binary chop
over an entire power of 2 range, it choses a much smaller range based on
how much it squeezed in, and failed to squeeze in, during the first stage.
Both are significant optimisations, and bring our calibration down from
23 jiffies to 5, and, in the process, often arrive at a more accurate lpj
value.
The 'bands' and 'sub-logarithmic' growth may look over-engineered, but
they only cost a small level of inaccuracy in the initial guess (for all
architectures) in order to avoid the very large inaccuracies that appeared
during testing (on x86_64 architectures, and presumably others with less
metronomic operation). Note that due to the existence of the TSC and
other timers, the x86_64 will not typically use this fallback routine, but
I wanted to code defensively, able to cope with all kinds of processor
behaviours and kernel command line options.
Patch 3/4 is an additional trap for the nightmare scenario where the
initial estimate is very inaccurate, possibly due to things like SMIs.
It simply retries with a larger bound.
Stephen said:
I tried this patch set out on an MSM7630.
:
: Before:
:
: Calibrating delay loop... 681.57 BogoMIPS (lpj=3407872)
:
: After:
:
: Calibrating delay loop... 680.75 BogoMIPS (lpj=3403776)
:
: But the really good news is calibration time dropped from ~247ms to ~56ms.
: Sadly we won't be able to benefit from this should my udelay patches make
: it into ARM because we would be using calibrate_delay_direct() instead (at
: least on machines who choose to). Can we somehow reapply the logic behind
: this to calibrate_delay_direct()? That would be even better, but this is
: definitely a boot time improvement.
:
: Or maybe we could just replace calibrate_delay_direct() with this fallback
: calculation? If __delay() is a thin wrapper around read_current_timer()
: it should work just as well (plus patch 3 makes it handle SMIs). I'll try
: that out.
This patch:
... so that it can be modified more clinically.
This is almost entirely cosmetic. The only change to the operation
is that the global variable is only set once after the estimation is
completed, rather than taking on all the intermediate values. However,
there are no readers of that variable, so this change is unimportant.
Signed-off-by: Phil Carmody <ext-phil.2.carmody@nokia.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Tested-by: Stephen Boyd <sboyd@codeaurora.org>
Cc: Greg KH <greg@kroah.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cleanup: kill the dead code which does nothing but complicates the code
and confuses the reader.
sys_unshare(CLONE_THREAD/SIGHAND/VM) is not really implemented, and I
doubt very much it will ever work. At least, nobody even tried since the
original 99d1419d96 ("unshare system call -v5: system call
handler function") was applied more than 4 years ago.
And the code is not consistent. unshare_thread() always fails
unconditionally, while unshare_sighand() and unshare_vm() pretend to work
if there is nothing to unshare.
Remove unshare_thread(), unshare_sighand(), unshare_vm() helpers and
related variables and add a simple CLONE_THREAD | CLONE_SIGHAND| CLONE_VM
check into check_unshare_flags().
Also, move the "CLONE_NEWNS needs CLONE_FS" check from
check_unshare_flags() to sys_unshare(). This looks more consistent and
matches the similar do_sysvsem check in sys_unshare().
Note: with or without this patch "atomic_read(mm->mm_users) > 1" can give
a false positive due to get_task_mm().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Roland McGrath <roland@redhat.com>
Cc: Janak Desai <janak@us.ibm.com>
Cc: Daniel Lezcano <daniel.lezcano@free.fr>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Change the printk() calls to have the KERN_INFO/KERN_ERROR stuff, and
fixes other coding style errors. Not _all_ of them are gone, though.
[akpm@linux-foundation.org: revert the bits I disagree with]
Signed-off-by: Michael Rodriguez <dkingston02@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
PTR_RET() can be used if you have an error-pointer and are only interested
in the eventual error value, but not the pointer. Yields the usual 0 for
no error, -ESOMETHING otherwise.
Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The oops=panic cmdline option is not x86 specific, move it to generic code.
Update documentation.
Signed-off-by: Olaf Hering <olaf@aepfle.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The device table is required to load modules based on modaliases.
Signed-off-by: Axel Lin <axel.lin@gmail.com>
Cc: Masayuki Ohtak <masa-korg@dsn.okisemi.com>
Cc: Greg Kroah-Hartman <gregkh@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
request_mem_region() will call kzalloc to allocate memory for struct
resource. release_resource() unregisters the resource but does not free
the allocated memory, thus use release_mem_region() instead to fix the
memory leak.
Signed-off-by: Axel Lin <axel.lin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
i2c_master_recv() returns negative errno, or else the number of bytes
read. Thus i2c_master_recv(client, i2c_data, 2) returns 2 instead of 1 in
success case.
[akpm@linux-foundation.org: make `ret' signed]
Signed-off-by: Axel Lin <axel.lin@gmail.com>
Cc: Kalhan Trisal <kalhan.trisal@intel.com>
Cc: Alan Cox <alan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Put the device into runtime suspend after resume()/probe() is handled by
the PM core and the device core code. No need to manually add them in
each single driver. And correct the runtime state in remove().
Signed-off-by: Hong Liu <hong.liu@intel.com>
Signed-off-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a configurable gadget. can be configured by configfs interface.
Any IP available at PCIE bus can be programmed to be used by host
controller.It supoorts both INTX and MSI.
By default, the gadget is configured for INTX and SYSRAM1 is mapped to
BAR0 with size 0x1000
Signed-off-by: Pratyush Anand <pratyush.anand@st.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Jesse Barnes <jbarnes@virtuousgeek.org>
Cc: Viresh Kumar <viresh.kumar@st.com>
Cc: Shiraz Hashim <shiraz.hashim@st.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Free the memory that is used only at init
Signed-off-by: Shubhrajyoti Datta <shubhrajyoti@ti.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Re-ordering struct block_inode to remove 8 bytes of padding on 64 bit
builds, which also shrinks bdev_inode by 8 bytes (776 -> 768) allowing it
to fit into one fewer cache lines.
Signed-off-by: Richard Kennedy <richard@rsk.demon.co.uk>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
printk()s without a priority level default to KERN_WARNING. To reduce
noise at KERN_WARNING, this patch set the priority level appriopriately
for unleveled printks()s. This should be useful to folks that look at
dmesg warnings closely.
Signed-off-by: Mandeep Singh Baines <msb@chromium.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All architectures can use the common dma_addr_t typedef now. We can
remove the arch specific dma_addr_t.
Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Matt Turner <mattst88@gmail.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 6caa76b ("tty: now phase out the ioctl file pointer for good")
removed the ioctl file pointer. User Mode Linux's line driver uses this
ioctl and needs a signature update too.
Signed-off-by: Richard Weinberger <richard@nod.at>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: Greg KH <greg@kroah.com>
Cc: Jeff Dike <jdike@addtoit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
One of our users reported that when a user-level program SIGSEGVs under
UML kernel, the resulting core dump is not very usable.
I have reproduced that with the latest kernel:
make ARCH=um defconfig; make ARCH=um
Run the resulting kernel, then "inside" run this program:
#include <pthread.h>
void *fn(void *p)
{
abort();
}
int main()
{
pthread_t tid;
pthread_create(&tid, 0, fn, 0);
pthread_join(tid, 0);
return 0;
}
Analyze the coredump with GDB. Here is what you'll see:
sudo gdb -q -ex 'set solib-absolute-prefix ../root_fs' -ex 'file ../root_fs/var/tmp/mt-abort' -ex 'core ../root_fs/var/tmp/core.762'
Reading symbols from /usr/local/google/root_fs/var/tmp/mt-abort...done.
[New Thread 763]
[New Thread 762]
Core was generated by `./mt-abort'.
Program terminated with signal 6, Aborted.
#0 0x0000000040255250 in raise () from ../root_fs/lib64/libc.so.6
(gdb) info thread
2 Thread 762 0x0000000000000000 in ?? ()
* 1 Thread 763 0x0000000040255250 in raise () from ../root_fs/lib64/libc.so.6
Note that thread#2 looks funny.
(gdb) thread 2
[Switching to thread 2 (Thread 762)]#0 0x0000000000000000 in ?? ()
(gdb) info reg
rax 0x0 0
rbx 0x0 0
rcx 0x0 0
rdx 0x0 0
rsi 0x0 0
rdi 0x0 0
rbp 0x0 0x0
rsp 0x0 0x0
r8 0x0 0
r9 0x0 0
r10 0x0 0
r11 0x0 0
r12 0x0 0
r13 0x0 0
r14 0x0 0
r15 0x0 0
rip 0x0 0
eflags 0x0 [ ]
cs 0x0 0
ss 0x0 0
ds 0x0 0
es 0x0 0
fs 0x0 0
gs 0x0 0
Examining the core shows that NT_PRSTATUS notes for all threads other than
the one that crashed are zeroed out.
I believe this is happening because neither ELF_CORE_COPY_TASK_REGS nor
task_pt_regs are defined under ARCH=um, and so elf_core_copy_task_regs()
becomes a no-op.
Attached patch fixes this for SUBARCH={x86_64,i386}.
Signed-off-by: Paul Pluzhnikov <ppluzhnikov@google.com>
Cc: Jeff Dike <jdike@addtoit.com>
Acked-by: WANG Cong <xiyou.wangcong@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Up to 2.6.22, you could use remap_file_pages(2) on a tmpfs file or a
shared mapping of /dev/zero or a shared anonymous mapping. In 2.6.23 we
disabled it by default, but set VM_CAN_NONLINEAR to enable it on safe
mappings. We made sure to set it in shmem_mmap() for tmpfs files, but
missed it in shmem_zero_setup() for the others. Fix that at last.
Reported-by: Kenny Simpson <theonetruekenny@yahoo.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently memblock_reserve() or memblock_free() don't handle overlaps of
any kind. There is some special casing for coalescing exactly adjacent
regions but that's about it.
This is annoying because typically memblock_reserve() is used to mark
regions passed by the firmware as reserved and we all know how much we can
trust our firmwares...
Also, with the current code, if we do something it doesn't handle right
such as trying to memblock_reserve() a large range spanning multiple
existing smaller reserved regions for example, or doing overlapping
reservations, it can silently corrupt the internal region array, causing
odd errors much later on, such as allocations returning reserved regions
etc...
This patch rewrites the underlying functions that add or remove a region
to the arrays. The new code is a lot more robust as it fully handles
overlapping regions. It's also, imho, simpler than the previous
implementation.
In addition, while doing so, I found a bug where if we fail to double the
array while adding a region, we would remove the last region of the array
rather than the region we just allocated. This fixes it too.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
KM_USER1 is never used for vwrite() path so the caller doesn't need to
guarantee it is not used. Only the caller should guarantee is KM_USER0
and it is commented already.
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For range-cyclic writeback (e.g. kupdate), the writeback code sets a
continuation point of the next writeback to mapping->writeback_index which
is set the page after the last written page. This happens so that we
evenly write the whole file even if pages in it get continuously
redirtied.
However, in some cases, sequential writer is writing in the middle of the
page and it just redirties the last written page by continuing from that.
For example with an application which uses a file as a big ring buffer we
see:
[1st writeback session]
...
flush-8:0-2743 4571: block_bio_queue: 8,0 W 94898514 + 8
flush-8:0-2743 4571: block_bio_queue: 8,0 W 94898522 + 8
flush-8:0-2743 4571: block_bio_queue: 8,0 W 94898530 + 8
flush-8:0-2743 4571: block_bio_queue: 8,0 W 94898538 + 8
flush-8:0-2743 4571: block_bio_queue: 8,0 W 94898546 + 8
kworker/0:1-11 4571: block_rq_issue: 8,0 W 0 () 94898514 + 40
>> flush-8:0-2743 4571: block_bio_queue: 8,0 W 94898554 + 8
>> flush-8:0-2743 4571: block_rq_issue: 8,0 W 0 () 94898554 + 8
[2nd writeback session after 35sec]
flush-8:0-2743 4606: block_bio_queue: 8,0 W 94898562 + 8
flush-8:0-2743 4606: block_bio_queue: 8,0 W 94898570 + 8
flush-8:0-2743 4606: block_bio_queue: 8,0 W 94898578 + 8
...
kworker/0:1-11 4606: block_rq_issue: 8,0 W 0 () 94898562 + 640
kworker/0:1-11 4606: block_rq_issue: 8,0 W 0 () 94899202 + 72
...
flush-8:0-2743 4606: block_bio_queue: 8,0 W 94899962 + 8
flush-8:0-2743 4606: block_bio_queue: 8,0 W 94899970 + 8
flush-8:0-2743 4606: block_bio_queue: 8,0 W 94899978 + 8
flush-8:0-2743 4606: block_bio_queue: 8,0 W 94899986 + 8
flush-8:0-2743 4606: block_bio_queue: 8,0 W 94899994 + 8
kworker/0:1-11 4606: block_rq_issue: 8,0 W 0 () 94899962 + 40
>> flush-8:0-2743 4606: block_bio_queue: 8,0 W 94898554 + 8
>> flush-8:0-2743 4606: block_rq_issue: 8,0 W 0 () 94898554 + 8
So we seeked back to 94898554 after we wrote all the pages at the end of
the file.
This extra seek seems unnecessary. If we continue writeback from the last
written page, we can avoid it and do not cause harm to other cases. The
original intent of even writeout over the whole file is preserved and if
the page does not get redirtied pagevec_lookup_tag() just skips it.
As an exceptional case, when I/O error happens, set done_index to the next
page as the comment in the code suggests.
Tested-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
scan_swap_map() is a large function (224 lines), with several loops and a
complex control flow involving several gotos.
Given all that, it is a bit silly that it is marked as inline. The
compiler agrees with me: on a x86-64 compile, it did not inline the
function.
Remove the "inline" and let the compiler decide instead.
Signed-off-by: Cesar Eduardo Barros <cesarb@cesarb.net>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The block in sys_swapon which does the final adjustments to the
swap_info_struct and to swap_list is the same as the block which
re-inserts it again at sys_swapoff on failure of try_to_unuse(). Move
this code to a separate function, and use it both in sys_swapon and
sys_swapoff.
Signed-off-by: Cesar Eduardo Barros <cesarb@cesarb.net>
Tested-by: Eric B Munson <emunson@mgebm.net>
Acked-by: Eric B Munson <emunson@mgebm.net>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The block in sys_swapon which does the final adjustments to the
swap_info_struct and to swap_list is the same as the block which
re-inserts it again at sys_swapoff on failure of try_to_unuse(), except
for the order of the operations within the lock. Since the order should
not matter, arbitrarily change sys_swapoff to match sys_swapon, in
preparation to making both share the same code.
Signed-off-by: Cesar Eduardo Barros <cesarb@cesarb.net>
Tested-by: Eric B Munson <emunson@mgebm.net>
Acked-by: Eric B Munson <emunson@mgebm.net>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The block in sys_swapon which does the final adjustments to the
swap_info_struct and to swap_list is the same as the block which
re-inserts it again at sys_swapoff on failure of try_to_unuse(). To be
able to make both share the same code, move the printk() call in the
middle of it to just after it.
Signed-off-by: Cesar Eduardo Barros <cesarb@cesarb.net>
Tested-by: Eric B Munson <emunson@mgebm.net>
Acked-by: Eric B Munson <emunson@mgebm.net>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It still exists within setup_swap_map_and_extents(), but after it
nr_good_pages == p->pages.
Signed-off-by: Cesar Eduardo Barros <cesarb@cesarb.net>
Tested-by: Eric B Munson <emunson@mgebm.net>
Acked-by: Eric B Munson <emunson@mgebm.net>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since there is no cleanup to do, there is no reason to jump to a label.
Return directly instead.
Signed-off-by: Cesar Eduardo Barros <cesarb@cesarb.net>
Tested-by: Eric B Munson <emunson@mgebm.net>
Acked-by: Eric B Munson <emunson@mgebm.net>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move the code which parses the bad block list and the extents to a
separate function. Only code movement, no functional changes.
This change uses the fact that, after the success path, nr_good_pages ==
p->pages.
Signed-off-by: Cesar Eduardo Barros <cesarb@cesarb.net>
Tested-by: Eric B Munson <emunson@mgebm.net>
Acked-by: Eric B Munson <emunson@mgebm.net>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The call to swap_cgroup_swapon is in the middle of loading the swap map
and extents. As it only does memory allocation and does not depend on
the swapfile layout (map/extents), it can be called earlier (or later).
Move it to just after the allocation of swap_map, since it is
conceptually similar (allocates a map).
Signed-off-by: Cesar Eduardo Barros <cesarb@cesarb.net>
Tested-by: Eric B Munson <emunson@mgebm.net>
Acked-by: Eric B Munson <emunson@mgebm.net>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since there is no cleanup to do, there is no reason to jump to a label.
Return directly instead.
Signed-off-by: Cesar Eduardo Barros <cesarb@cesarb.net>
Tested-by: Eric B Munson <emunson@mgebm.net>
Acked-by: Eric B Munson <emunson@mgebm.net>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move the code which parses and checks the swapfile header (except for
the bad block list) to a separate function. Only code movement, no
functional changes.
Signed-off-by: Cesar Eduardo Barros <cesarb@cesarb.net>
Tested-by: Eric B Munson <emunson@mgebm.net>
Acked-by: Eric B Munson <emunson@mgebm.net>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is no reason I can see to read inode->i_size long before it is
needed. Move its read to just before it is needed, to reduce the
variable lifetime.
Signed-off-by: Cesar Eduardo Barros <cesarb@cesarb.net>
Tested-by: Eric B Munson <emunson@mgebm.net>
Acked-by: Eric B Munson <emunson@mgebm.net>
Reviewed-by: Jesper Juhl <jj@chaosbits.net>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since there is no cleanup to do, there is no reason to jump to a label.
Return directly instead.
Signed-off-by: Cesar Eduardo Barros <cesarb@cesarb.net>
Tested-by: Eric B Munson <emunson@mgebm.net>
Acked-by: Eric B Munson <emunson@mgebm.net>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move the code which claims the bdev (S_ISBLK) or locks the inode
(S_ISREG) to a separate function. Only code movement, no functional
changes.
Signed-off-by: Cesar Eduardo Barros <cesarb@cesarb.net>
Tested-by: Eric B Munson <emunson@mgebm.net>
Acked-by: Eric B Munson <emunson@mgebm.net>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
sys_swapon currently has two error labels, bad_swap and bad_swap_2.
bad_swap does the same as bad_swap_2 plus destroy_swap_extents() and
swap_cgroup_swapoff(); both are noops in the places where bad_swap_2 is
jumped to. With a single extra test for inode (matching the one in the
S_ISREG case below), all the error paths in the function can go to
bad_swap.
Signed-off-by: Cesar Eduardo Barros <cesarb@cesarb.net>
Tested-by: Eric B Munson <emunson@mgebm.net>
Acked-by: Eric B Munson <emunson@mgebm.net>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>