Commit Graph

442848 Commits

Author SHA1 Message Date
Tsutomu Itoh
59885b3930 Btrfs: fix possible memory leak in btrfs_create_tree()
In btrfs_create_tree(), if btrfs_insert_root() fails, we should
free root->commit_root.

Reported-by: Alex Lyakas <alex@zadarastorage.com>
Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-06-09 17:20:42 -07:00
ZhangZhen
776e4aae55 btrfs: remove useless ACL check
posix_acl_xattr_set() already does the check, and it's the only
way to feed in an ACL from userspace.
So the check here is useless, remove it.

Signed-off-by: zhang zhen <zhenzhang.zhang@huawei.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-06-09 17:20:42 -07:00
Anand Jain
4d90d28b1c btrfs: btrfs_rm_device() should zero mirror SB as well
This fix will ensure all SB copies on the disk is zeroed
when the disk is intentionally removed. This helps to
better manage disks in the user land.

This version of patch also merges the Zach patch as below.

 btrfs: don't double brelse on device rm

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Zach Brown <zab@redhat.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-06-09 17:20:41 -07:00
Miao Xie
27cdeb7096 Btrfs: use bitfield instead of integer data type for the some variants in btrfs_root
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-06-09 17:20:40 -07:00
Filipe Manana
f959492fc1 Btrfs: send, fix more issues related to directory renames
This is a continuation of the previous changes titled:

   Btrfs: fix incremental send's decision to delay a dir move/rename
   Btrfs: part 2, fix incremental send's decision to delay a dir move/rename

There's a few more cases where a directory rename/move must be delayed which was
previously overlooked. If our immediate ancestor has a lower inode number than
ours and it doesn't have a delayed rename/move operation associated to it, it
doesn't mean there isn't any non-direct ancestor of our current inode that needs
to be renamed/moved before our current inode (i.e. with a higher inode number
than ours).

So we can't stop the search if our immediate ancestor has a lower inode number than
ours, we need to navigate the directory hierarchy upwards until we hit the root or:

1) find an ancestor with an higher inode number that was renamed/moved in the send
   root too (or already has a pending rename/move registered);
2) find an ancestor that is a new directory (higher inode number than ours and
   exists only in the send root).

Reproducer for case 1)

    $ mkfs.btrfs -f /dev/sdd
    $ mount /dev/sdd /mnt

    $ mkdir -p /mnt/a/b
    $ mkdir -p /mnt/a/c/d
    $ mkdir /mnt/a/b/e
    $ mkdir /mnt/a/c/d/f
    $ mv /mnt/a/b /mnt/a/c/d/2b
    $ mkdir /mnt/a/x
    $ mkdir /mnt/a/y

    $ btrfs subvolume snapshot -r /mnt /mnt/snap1
    $ btrfs send /mnt/snap1 -f /tmp/base.send

    $ mv /mnt/a/x /mnt/a/y
    $ mv /mnt/a/c/d/2b/e /mnt/a/c/d/2b/2e
    $ mv /mnt/a/c/d /mnt/a/h/2d
    $ mv /mnt/a/c /mnt/a/h/2d/2b/2c

    $ btrfs subvolume snapshot -r /mnt /mnt/snap2
    $ btrfs send -p /mnt/snap1 /mnt/snap2 -f /tmp/incremental.send

Simple reproducer for case 2)

    $ mkfs.btrfs -f /dev/sdd
    $ mount /dev/sdd /mnt

    $ mkdir -p /mnt/a/b
    $ mkdir /mnt/a/c
    $ mv /mnt/a/b /mnt/a/c/b2
    $ mkdir /mnt/a/e

    $ btrfs subvolume snapshot -r /mnt /mnt/snap1
    $ btrfs send /mnt/snap1 -f /tmp/base.send

    $ mv /mnt/a/c/b2 /mnt/a/e/b3
    $ mkdir /mnt/a/e/b3/f
    $ mkdir /mnt/a/h
    $ mv /mnt/a/c /mnt/a/e/b3/f/c2
    $ mv /mnt/a/e /mnt/a/h/e2

    $ btrfs subvolume snapshot -r /mnt /mnt/snap2
    $ btrfs send -p /mnt/snap1 /mnt/snap2 -f /tmp/incremental.send

Another simple reproducer for case 2)

    $ mkfs.btrfs -f /dev/sdd
    $ mount /dev/sdd /mnt

    $ mkdir -p /mnt/a/b
    $ mkdir /mnt/a/c
    $ mkdir /mnt/a/b/d
    $ mkdir /mnt/a/c/e

    $ btrfs subvolume snapshot -r /mnt /mnt/snap1
    $ btrfs send /mnt/snap1 -f /tmp/base.send

    $ mkdir /mnt/a/b/d/f
    $ mkdir /mnt/a/b/g
    $ mv /mnt/a/c/e /mnt/a/b/g/e2
    $ mv /mnt/a/c /mnt/a/b/d/f/c2
    $ mv /mnt/a/b/d/f /mnt/a/b/g/e2/f2

    $ btrfs subvolume snapshot -r /mnt /mnt/snap2
    $ btrfs send -p /mnt/snap1 /mnt/snap2 -f /tmp/incremental.send

More complex reproducer for case 2)

    $ mkfs.btrfs -f /dev/sdd
    $ mount /dev/sdd /mnt

    $ mkdir -p /mnt/a/b
    $ mkdir -p /mnt/a/c/d
    $ mkdir /mnt/a/b/e
    $ mkdir /mnt/a/c/d/f
    $ mv /mnt/a/b /mnt/a/c/d/2b
    $ mkdir /mnt/a/x
    $ mkdir /mnt/a/y

    $ btrfs subvolume snapshot -r /mnt /mnt/snap1
    $ btrfs send /mnt/snap1 -f /tmp/base.send

    $ mv /mnt/a/x /mnt/a/y
    $ mv /mnt/a/c/d/2b/e /mnt/a/c/d/2b/2e
    $ mv /mnt/a/c/d /mnt/a/h/2d
    $ mv /mnt/a/c /mnt/a/h/2d/2b/2c

    $ btrfs subvolume snapshot -r /mnt /mnt/snap2
    $ btrfs send -p /mnt/snap1 /mnt/snap2 -f /tmp/incremental.send

For both cases the incremental send would enter an infinite loop when building
path strings.

While solving these cases, this change also re-implements the code to detect
when directory moves/renames should be delayed. Instead of dealing with several
specific cases separately, it's now more generic handling all cases with a simple
detection algorithm and if when applying a delayed move/rename there's a path loop
detected, it further delays the move/rename registering a new ancestor inode as
the dependency inode (so our rename happens after that ancestor is renamed).

Tests for these cases is being added to xfstests too.

Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-06-09 17:20:40 -07:00
Filipe Manana
a10c40766c Btrfs: send, remove dead code from __get_cur_name_and_parent
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-06-09 17:20:39 -07:00
Filipe Manana
c992ec94f2 Btrfs: send, account for orphan directories when building path strings
If we have directories with a pending move/rename operation, we must take into
account any orphan directories that got created before executing the pending
move/rename. Those orphan directories are directories with an inode number higher
then the current send progress and that don't exist in the parent snapshot, they
are created before current progress reaches their inode number, with a generated
name of the form oN-M-I and at the root of the filesystem tree, and later when
progress matches their inode number, moved/renamed to their final location.

Reproducer:

          $ mkfs.btrfs -f /dev/sdd
          $ mount /dev/sdd /mnt

          $ mkdir -p /mnt/a/b/c/d
          $ mkdir /mnt/a/b/e
          $ mv /mnt/a/b/c /mnt/a/b/e/CC
          $ mkdir /mnt/a/b/e/CC/d/f
	  $ mkdir /mnt/a/g

          $ btrfs subvolume snapshot -r /mnt /mnt/snap1
          $ btrfs send /mnt/snap1 -f /tmp/base.send

          $ mkdir /mnt/a/g/h
	  $ mv /mnt/a/b/e /mnt/a/g/h/EE
          $ mv /mnt/a/g/h/EE/CC/d /mnt/a/g/h/EE/DD

          $ btrfs subvolume snapshot -r /mnt /mnt/snap2
          $ btrfs send -p /mnt/snap1 /mnt/snap2 -f /tmp/incremental.send

The second receive command failed with the following error:

    ERROR: rename a/b/e/CC/d -> o264-7-0/EE/DD failed. No such file or directory

A test case for xfstests follows soon.

Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-06-09 17:20:38 -07:00
Filipe Manana
b46ab97bcd Btrfs: send, avoid unnecessary inode item lookup in the btree
Regardless of whether the caller is interested or not in knowing the inode's
generation (dir_gen != NULL), get_first_ref always does a btree lookup to get
the inode item. Avoid this useless lookup if dir_gen parameter is NULL (which
is in some cases).

Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-06-09 17:20:37 -07:00
Gui Hecheng
23f8f9b7ca btrfs: add dev maxs limit for __btrfs_alloc_chunk in kernel space
For RAID0,5,6,10,
For system chunk, there shouldn't be too many stripes to
make a btrfs_chunk that exceeds BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
For data/meta chunk, there shouldn't be too many stripes to
make a btrfs_chunk that exceeds a leaf.

Signed-off-by: Gui Hecheng <guihc.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-06-09 17:20:36 -07:00
Gui Hecheng
5f43f86e3f btrfs: fix wrong max system array size check in kernel space
For system chunk array,
We copy a "disk_key" and an chunk item each time,
so there should be enough space to hold both of them,
not only the chunk item.

Signed-off-by: Gui Hecheng <guihc.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-06-09 17:20:36 -07:00
Qu Wenruo
65d33fd7a6 btrfs: Add check to avoid cleanup roots already in fs_info->dead_roots.
Current btrfs_orphan_cleanup will also cleanup roots which is already in
fs_info->dead_roots without protection.
This will have conditional race with fs_info->cleaner_kthread.

This patch will use refs in root->root_item to detect roots in
dead_roots and avoid conflicts.

Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-06-09 17:20:35 -07:00
Miao Xie
21c7e75654 Btrfs: reclaim the reserved metadata space at background
Before applying this patch, the task had to reclaim the metadata space
by itself if the metadata space was not enough. And When the task started
the space reclamation, all the other tasks which wanted to reserve the
metadata space were blocked. At some cases, they would be blocked for
a long time, it made the performance fluctuate wildly.

So we introduce the background metadata space reclamation, when the space
is about to be exhausted, we insert a reclaim work into the workqueue, the
worker of the workqueue helps us to reclaim the reserved space at the
background. By this way, the tasks needn't reclaim the space by themselves at
most cases, and even if the tasks have to reclaim the space or are blocked
for the space reclamation, they will get enough space more quickly.

Here is my test result(Tested by compilebench):
 Memory:	2GB
 CPU:		2Cores * 1CPU
 Partition:	40GB(SSD)

Test command:
 # compilebench -D <mnt> -m

Without this patch:
 intial create total runs 30 avg 54.36 MB/s (user 0.52s sys 2.44s)
 compile total runs 30 avg 123.72 MB/s (user 0.13s sys 1.17s)
 read compiled tree total runs 3 avg 81.15 MB/s (user 0.74s sys 4.89s)
 delete compiled tree total runs 30 avg 5.32 seconds (user 0.35s sys 4.37s)

With this patch:
 intial create total runs 30 avg 59.80 MB/s (user 0.52s sys 2.53s)
 compile total runs 30 avg 151.44 MB/s (user 0.13s sys 1.11s)
 read compiled tree total runs 3 avg 83.25 MB/s (user 0.76s sys 4.91s)
 delete compiled tree total runs 30 avg 5.29 seconds (user 0.34s sys 4.34s)

Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-06-09 17:20:34 -07:00
Miao Xie
32d6b47fe6 Btrfs: output warning instead of error when loading free space cache failed
If we fail to load a free space cache, we can rebuild it from the extent tree,
so it is not a serious error, we should not output a error message that
would make the users uncomfortable. This patch uses warning message instead
of it.

Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-06-09 17:20:33 -07:00
Qu Wenruo
5a1972bd9f btrfs: Add ctime/mtime update for btrfs device add/remove.
Btrfs will send uevent to udev inform the device change,
but ctime/mtime for the block device inode is not udpated, which cause
libblkid used by btrfs-progs unable to detect device change and use old
cache, causing 'btrfs dev scan; btrfs dev rmove; btrfs dev scan' give an
error message.

Reported-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Cc: Karel Zak <kzak@redhat.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-06-09 17:20:33 -07:00
David Sterba
61155aa04e btrfs: assert that send is not in progres before root deletion
CC: Miao Xie <miaox@cn.fujitsu.com>
CC: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2014-06-09 17:20:32 -07:00
David Sterba
521e0546c9 btrfs: protect snapshots from deleting during send
The patch "Btrfs: fix protection between send and root deletion"
(18f687d538) does not actually prevent to delete the snapshot
and just takes care during background cleaning, but this seems rather
user unfriendly, this patch implements the idea presented in

http://www.spinics.net/lists/linux-btrfs/msg30813.html

- add an internal root_item flag to denote a dead root
- check if the send_in_progress is set and refuse to delete, otherwise
  set the flag and proceed
- check the flag in send similar to the btrfs_root_readonly checks, for
  all involved roots

The root lookup in send via btrfs_read_fs_root_no_name will check if the
root is really dead or not. If it is, ENOENT, aborted send. If it's
alive, it's protected by send_in_progress, send can continue.

CC: Miao Xie <miaox@cn.fujitsu.com>
CC: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2014-06-09 17:20:31 -07:00
Daeseok Youn
944a4515b2 btrfs: remove redundant null check in btrfs_dentry_release()
It doesn't need to check NULL for kfree()

Signed-off-by: Daeseok Youn <daeseok.youn@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-06-09 17:20:31 -07:00
Filipe Manana
ef3b9af50b Btrfs: implement inode_operations callback tmpfile
This implements the tmpfile callback of struct inode_operations, introduced
in the linux kernel 3.11, and implemented already by some filesystems. This
callback is invoked by the VFS when the flag O_TMPFILE is passed to the open
system call.

Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
2014-06-09 17:20:30 -07:00
David Sterba
e4ef90ff61 btrfs: make FS_INFO ioctl available to anyone
This ioctl provides basic info about the filesystem that can be obtained
in other ways (eg. sysfs), there's no reason to restrict it to
CAP_SYSADMIN.

Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2014-06-09 17:20:29 -07:00
David Sterba
7d6213c5a7 btrfs: make DEV_INFO ioctl available to anyone
This ioctl provides basic info about the devices that can be obtained in
other ways (eg. sysfs), there's no reason to restrict it to
CAP_SYSADMIN.

Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2014-06-09 17:20:28 -07:00
David Sterba
df93589a17 btrfs: export more from FS_INFO to sysfs
Similar to the FS_INFO updates, export the basic filesystem info through
sysfs: node size, sector size and clone alignment.

Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2014-06-09 17:20:28 -07:00
David Sterba
80a773fbfc btrfs: retrieve more info from FS_INFO ioctl
Provide the basic information about filesystem through the ioctl:
* b-tree node size (same as leaf size)
* sector size
* expected alignment of CLONE_RANGE and EXTENT_SAME ioctl arguments

Backward compatibility: if the values are 0, kernel does not provide
this information, the applications should ignore them.

Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2014-06-09 17:20:27 -07:00
David Sterba
7d824b6f9c btrfs: balance filter: add limit of processed chunks
This started as debugging helper, to watch the effects of converting
between raid levels on multiple devices, but could be useful standalone.

In my case the usage filter was not finegrained enough and led to
converting too many chunks at once. Another example use is in connection
with drange+devid or vrange filters that allow to work with a specific
chunk or even with a chunk on a given device.

The limit filter applies last, the value of 0 means no limiting.

CC: Ilya Dryomov <idryomov@gmail.com>
CC: Hugo Mills <hugo@carfax.org.uk>
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2014-06-09 17:20:26 -07:00
Filipe Manana
fc19c5e736 Btrfs: fix leaf corruption caused by ENOSPC while hole punching
While running a stress test with multiple threads writing to the same btrfs
file system, I ended up with a situation where a leaf was corrupted in that
it had 2 file extent item keys that had the same exact key. I was able to
detect this quickly thanks to the following patch which triggers an assertion
as soon as a leaf is marked dirty if there are duplicated keys or out of order
keys:

    Btrfs: check if items are ordered when a leaf is marked dirty
    (https://patchwork.kernel.org/patch/3955431/)

Basically while running the test, I got the following in dmesg:

    [28877.415877] WARNING: CPU: 2 PID: 10706 at fs/btrfs/file.c:553 btrfs_drop_extent_cache+0x435/0x440 [btrfs]()
    (...)
    [28877.415917] Call Trace:
    [28877.415922]  [<ffffffff816f1189>] dump_stack+0x4e/0x68
    [28877.415926]  [<ffffffff8104a32c>] warn_slowpath_common+0x8c/0xc0
    [28877.415929]  [<ffffffff8104a37a>] warn_slowpath_null+0x1a/0x20
    [28877.415944]  [<ffffffffa03775a5>] btrfs_drop_extent_cache+0x435/0x440 [btrfs]
    [28877.415949]  [<ffffffff8118e7be>] ? kmem_cache_alloc+0xfe/0x1c0
    [28877.415962]  [<ffffffffa03777d9>] fill_holes+0x229/0x3e0 [btrfs]
    [28877.415972]  [<ffffffffa0345865>] ? block_rsv_add_bytes+0x55/0x80 [btrfs]
    [28877.415984]  [<ffffffffa03792cb>] btrfs_fallocate+0xb6b/0xc20 [btrfs]
    (...)
    [29854.132560] BTRFS critical (device sdc): corrupt leaf, bad key order: block=955232256,root=1, slot=24
    [29854.132565] BTRFS info (device sdc): leaf 955232256 total ptrs 40 free space 778
    (...)
    [29854.132637] 	item 23 key (3486 108 667648) itemoff 2694 itemsize 53
    [29854.132638] 		extent data disk bytenr 14574411776 nr 286720
    [29854.132639] 		extent data offset 0 nr 286720 ram 286720
    [29854.132640] 	item 24 key (3486 108 954368) itemoff 2641 itemsize 53
    [29854.132641] 		extent data disk bytenr 0 nr 0
    [29854.132643] 		extent data offset 0 nr 0 ram 0
    [29854.132644] 	item 25 key (3486 108 954368) itemoff 2588 itemsize 53
    [29854.132645] 		extent data disk bytenr 8699670528 nr 77824
    [29854.132646] 		extent data offset 0 nr 77824 ram 77824
    [29854.132647] 	item 26 key (3486 108 1146880) itemoff 2535 itemsize 53
    [29854.132648] 		extent data disk bytenr 8699670528 nr 77824
    [29854.132649] 		extent data offset 0 nr 77824 ram 77824
    (...)
    [29854.132707] kernel BUG at fs/btrfs/ctree.h:3901!
    (...)
    [29854.132771] Call Trace:
    [29854.132779]  [<ffffffffa0342b5c>] setup_items_for_insert+0x2dc/0x400 [btrfs]
    [29854.132791]  [<ffffffffa0378537>] __btrfs_drop_extents+0xba7/0xdd0 [btrfs]
    [29854.132794]  [<ffffffff8109c0d6>] ? trace_hardirqs_on_caller+0x16/0x1d0
    [29854.132797]  [<ffffffff8109c29d>] ? trace_hardirqs_on+0xd/0x10
    [29854.132800]  [<ffffffff8118e7be>] ? kmem_cache_alloc+0xfe/0x1c0
    [29854.132810]  [<ffffffffa036783b>] insert_reserved_file_extent.constprop.66+0xab/0x310 [btrfs]
    [29854.132820]  [<ffffffffa036a6c6>] __btrfs_prealloc_file_range+0x116/0x340 [btrfs]
    [29854.132830]  [<ffffffffa0374d53>] btrfs_prealloc_file_range+0x23/0x30 [btrfs]
    (...)

So this is caused by getting an -ENOSPC error while punching a file hole, more
specifically, we get -ENOSPC error from __btrfs_drop_extents in the while loop
of file.c:btrfs_punch_hole() when it's unable to modify the btree to delete one
or more file extent items due to lack of enough free space. When this happens,
in btrfs_punch_hole(), we attempt to reclaim free space by switching our transaction
block reservation object to root->fs_info->trans_block_rsv, end our transaction and
start a new transaction basically - and, we keep increasing our current offset
(cur_offset) as long as it's smaller than the end of the target range (lockend) -
this makes use leave the loop with cur_offset == drop_end which in turn makes us
call fill_holes() for inserting a file extent item that represents a 0 bytes range
hole (and this insertion succeeds, as in the meanwhile more space became available).

This 0 bytes file hole extent item is a problem because any subsequent caller of
__btrfs_drop_extents (regular file writes, or fallocate calls for e.g.), with a
start file offset that is equal to the offset of the hole, will not remove this
extent item due to the following conditional in the while loop of
__btrfs_drop_extents:

    if (extent_end <= search_start) {
            path->slots[0]++;
            goto next_slot;
    }

This later makes the call to setup_items_for_insert() (at the very end of
__btrfs_drop_extents), insert a new file extent item with the same offset as
the 0 bytes file hole extent item that follows it. Needless is to say that this
causes chaos, either when reading the leaf from disk (btree_readpage_end_io_hook),
where we perform leaf sanity checks or in subsequent operations that manipulate
file extent items, as in the fallocate call as shown by the dmesg trace above.

Without my other patch to perform the leaf sanity checks once a leaf is marked
as dirty (if the integrity checker is enabled), it would have been much harder
to debug this issue.

This change might fix a few similar issues reported by users in the mailing
list regarding assertion failures in btrfs_set_item_key_safe calls performed
by __btrfs_drop_extents, such as the following report:

    http://comments.gmane.org/gmane.comp.file-systems.btrfs/32938

Asking fill_holes() to create a 0 bytes wide file hole item also produced the
first warning in the trace above, as we passed a range to btrfs_drop_extent_cache
that has an end smaller (by -1) than its start.

On 3.14 kernels this issue manifests itself through leaf corruption, as we get
duplicated file extent item keys in a leaf when calling setup_items_for_insert(),
but on older kernels, setup_items_for_insert() isn't called by __btrfs_drop_extents(),
instead we have callers of __btrfs_drop_extents(), namely the functions
inode.c:insert_inline_extent() and inode.c:insert_reserved_file_extent(), calling
btrfs_insert_empty_item() to insert the new file extent item, which would fail with
error -EEXIST, instead of inserting a duplicated key - which is still a serious
issue as it would make all similar file extent item replace operations keep
failing if they target the same file range.

Cc: stable@vger.kernel.org
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-06-09 17:20:26 -07:00
Liu Bo
d2cbf2a260 Btrfs: do not increment on bio_index one by one
'bio_index' is just a index, it's really not necessary to do increment
one by one.

Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2014-06-09 17:20:25 -07:00
Filipe Manana
a1a50f60a6 Btrfs: read inode size after acquiring the mutex when punching a hole
In a previous change, commit 12870f1c9b,
I accidentally moved the roundup of inode->i_size to outside of the
critical section delimited by the inode mutex, which is not atomic and
not correct since the size can be changed by other task before we acquire
the mutex. Therefore fix it.

Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-06-09 17:20:24 -07:00
Tobias Klauser
7fb18a0664 btrfs: Remove unnecessary check for NULL
iput() already checks for the inode being NULL, thus it's unnecessary to
check before calling.

Signed-off-by: Tobias Klauser <tklauser@distanz.ch>
Signed-off-by: Chris Mason <clm@fb.com>
2014-06-09 17:20:23 -07:00
Zach Brown
166ae5a418 btrfs: fix inline compressed read err corruption
uncompress_inline() is dropping the error from btrfs_decompress() after
testing it and zeroing the page that was supposed to hold decompressed
data.  This can silently turn compressed inline data in to zeros if
decompression fails due to corrupt compressed data or memory allocation
failure.

I verified this by manually forcing the error from btrfs_decompress()
for a silly named copy of od:

	if (!strcmp(current->comm, "failod"))
		ret = -ENOMEM;

  # od -x /mnt/btrfs/dir/80 | head -1
  0000000 3031 3038 310a 2d30 6f70 6e69 0a74 3031
  # echo 3 > /proc/sys/vm/drop_caches
  # cp $(which od) /tmp/failod
  # /tmp/failod -x /mnt/btrfs/dir/80 | head -1
  0000000 0000 0000 0000 0000 0000 0000 0000 0000

The fix is to pass the error to its caller.  Which still has a BUG_ON().
So we fix that too.

There seems to be no reason for the zeroing of the page on the error
from btrfs_decompress() but not from the allocation error a few lines
above.  So the page zeroing is removed.

Signed-off-by: Zach Brown <zab@redhat.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2014-06-09 17:20:23 -07:00
Zach Brown
774bcb35f0 btrfs: return ptr error from compression workspace
The btrfs compression wrappers translated errors from workspace
allocation to either -ENOMEM or -1.  The compression type workspace
allocators are already returning a ERR_PTR(-ENOMEM).  Just return that
and get rid of the magical -1.

This helps a future patch return errors from the compression wrappers.

Signed-off-by: Zach Brown <zab@redhat.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2014-06-09 17:20:22 -07:00
Zach Brown
60e1975acb btrfs: return errno instead of -1 from compression
The compression layer seems to have been built to return -1 and have
callers make up errors that make sense.  This isn't great because there
are different errors that originate down in the compression layer.

Let's return real negative errnos from the compression layer so that
callers can pass on the error without having to guess what happened.
ENOMEM for allocation failure, E2BIG when compression exceeds the
uncompressed input, and EIO for everything else.

This helps a future path return errors from btrfs_decompress().

Signed-off-by: Zach Brown <zab@redhat.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-06-09 17:20:21 -07:00
Stefan Behrens
98806b446d btrfs: check_int: propagate out-of-memory error upwards
This issue was not causing any harm but IMO (and in the opinion of the
static code checker) it is better to propagate this error status upwards.

Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-06-09 17:20:21 -07:00
Filipe Manana
61391d5622 Btrfs: fix hang on error (such as ENOSPC) when writing extent pages
When running low on available disk space and having several processes
doing buffered file IO, I got the following trace in dmesg:

[ 4202.720152] INFO: task kworker/u8:1:5450 blocked for more than 120 seconds.
[ 4202.720401]       Not tainted 3.13.0-fdm-btrfs-next-26+ #1
[ 4202.720596] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 4202.720874] kworker/u8:1    D 0000000000000001     0  5450      2 0x00000000
[ 4202.720904] Workqueue: btrfs-flush_delalloc normal_work_helper [btrfs]
[ 4202.720908]  ffff8801f62ddc38 0000000000000082 ffff880203ac2490 00000000001d3f40
[ 4202.720913]  ffff8801f62ddfd8 00000000001d3f40 ffff8800c4f0c920 ffff880203ac2490
[ 4202.720918]  00000000001d4a40 ffff88020fe85a40 ffff88020fe85ab8 0000000000000001
[ 4202.720922] Call Trace:
[ 4202.720931]  [<ffffffff816a3cb9>] schedule+0x29/0x70
[ 4202.720950]  [<ffffffffa01ec48d>] btrfs_start_ordered_extent+0x6d/0x110 [btrfs]
[ 4202.720956]  [<ffffffff8108e620>] ? bit_waitqueue+0xc0/0xc0
[ 4202.720972]  [<ffffffffa01ec559>] btrfs_run_ordered_extent_work+0x29/0x40 [btrfs]
[ 4202.720988]  [<ffffffffa0201987>] normal_work_helper+0x137/0x2c0 [btrfs]
[ 4202.720994]  [<ffffffff810680e5>] process_one_work+0x1f5/0x530
(...)
[ 4202.721027] 2 locks held by kworker/u8:1/5450:
[ 4202.721028]  #0:  (%s-%s){++++..}, at: [<ffffffff81068083>] process_one_work+0x193/0x530
[ 4202.721037]  #1:  ((&work->normal_work)){+.+...}, at: [<ffffffff81068083>] process_one_work+0x193/0x530
[ 4202.721054] INFO: task btrfs:7891 blocked for more than 120 seconds.
[ 4202.721258]       Not tainted 3.13.0-fdm-btrfs-next-26+ #1
[ 4202.721444] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 4202.721699] btrfs           D 0000000000000001     0  7891   7890 0x00000001
[ 4202.721704]  ffff88018c2119e8 0000000000000086 ffff8800a33d2490 00000000001d3f40
[ 4202.721710]  ffff88018c211fd8 00000000001d3f40 ffff8802144b0000 ffff8800a33d2490
[ 4202.721714]  ffff8800d8576640 ffff88020fe85bc0 ffff88020fe85bc8 7fffffffffffffff
[ 4202.721718] Call Trace:
[ 4202.721723]  [<ffffffff816a3cb9>] schedule+0x29/0x70
[ 4202.721727]  [<ffffffff816a2ebc>] schedule_timeout+0x1dc/0x270
[ 4202.721732]  [<ffffffff8109bd79>] ? mark_held_locks+0xb9/0x140
[ 4202.721736]  [<ffffffff816a90c0>] ? _raw_spin_unlock_irq+0x30/0x40
[ 4202.721740]  [<ffffffff8109bf0d>] ? trace_hardirqs_on_caller+0x10d/0x1d0
[ 4202.721744]  [<ffffffff816a488f>] wait_for_completion+0xdf/0x120
[ 4202.721749]  [<ffffffff8107fa90>] ? try_to_wake_up+0x310/0x310
[ 4202.721765]  [<ffffffffa01ebee4>] btrfs_wait_ordered_extents+0x1f4/0x280 [btrfs]
[ 4202.721781]  [<ffffffffa020526e>] btrfs_mksubvol.isra.62+0x30e/0x5a0 [btrfs]
[ 4202.721786]  [<ffffffff8108e620>] ? bit_waitqueue+0xc0/0xc0
[ 4202.721799]  [<ffffffffa02056a9>] btrfs_ioctl_snap_create_transid+0x1a9/0x1b0 [btrfs]
[ 4202.721813]  [<ffffffffa020583a>] btrfs_ioctl_snap_create_v2+0x10a/0x170 [btrfs]
(...)

It turns out that extent_io.c:__extent_writepage(), which ends up being called
through filemap_fdatawrite_range() in btrfs_start_ordered_extent(), was getting
-ENOSPC when calling the fill_delalloc callback. In this situation, it returned
without the writepage_end_io_hook callback (inode.c:btrfs_writepage_end_io_hook)
ever being called for the respective page, which prevents the ordered extent's
bytes_left count from ever reaching 0, and therefore a finish_ordered_fn work
is never queued into the endio_write_workers queue. This makes the task that
called btrfs_start_ordered_extent() hang forever on the wait queue of the ordered
extent.

This is fairly easy to reproduce using a small filesystem and fsstress on
a quad core vm:

    mkfs.btrfs -f -b `expr 2100 \* 1024 \* 1024` /dev/sdd
    mount /dev/sdd /mnt

    fsstress -p 6 -d /mnt -n 100000 -x \
        "btrfs subvolume snapshot -r /mnt /mnt/mysnap" \
	    -f allocsp=0 \
	    -f bulkstat=0 \
	    -f bulkstat1=0 \
	    -f chown=0 \
	    -f creat=1 \
	    -f dread=0 \
	    -f dwrite=0 \
	    -f fallocate=1 \
	    -f fdatasync=0 \
	    -f fiemap=0 \
	    -f freesp=0 \
	    -f fsync=0 \
	    -f getattr=0 \
	    -f getdents=0 \
	    -f link=0 \
	    -f mkdir=0 \
	    -f mknod=0 \
	    -f punch=1 \
	    -f read=0 \
	    -f readlink=0 \
	    -f rename=0 \
	    -f resvsp=0 \
	    -f rmdir=0 \
	    -f setxattr=0 \
	    -f stat=0 \
	    -f symlink=0 \
	    -f sync=0 \
	    -f truncate=1 \
	    -f unlink=0 \
	    -f unresvsp=0 \
	    -f write=4

So just ensure that if an error happens while writing the extent page
we call the writepage_end_io_hook callback. Also make it return the
error code and ensure the caller (extent_write_cache_pages) processes
all pages in the page vector even if an error happens only for some
of them, so that ordered extents end up released.

Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-06-09 17:20:20 -07:00
Linus Torvalds
1860e37987 Linux 3.15 2014-06-08 11:19:54 -07:00
Linus Torvalds
bb077d6006 Revert "x86/smpboot: Initialize secondary CPU only if master CPU will wait for it"
This reverts commit 3e1a878b7c.

It came in very late, and already has one reported failure: Sitsofe
reports that the current tree fails to boot on his EeePC, and bisected
it down to this.  Rather than waste time trying to figure out what's
wrong, just revert it.

Reported-by: Sitsofe Wheeler <sitsofe@gmail.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-08 10:09:49 -07:00
Linus Torvalds
c593e89787 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fix from Chris Mason:
 "I had this in my 3.16 merge window queue, but it is small and obvious
  enough for 3.15.  I cherry-picked and retested against current rc8"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  Btrfs: send, fix corrupted path strings for long paths
2014-06-07 15:12:18 -07:00
Linus Torvalds
052e5c7e28 Merge git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pending
Pull SCSI target fixes from Nicholas Bellinger:
 "Here are the remaining fixes for v3.15.

  This series includes:

   - iser-target fix for ImmediateData exception reference count bug
     (Sagi + nab)
   - iscsi-target fix for MC/S login + potential iser-target MRDSL
     buffer overrun (Santosh + Roland)
   - iser-target fix for v3.15-rc multi network portal shutdown
     regression (nab)
   - target fix for allowing READ_CAPCITY during ALUA Standby access
     state (Chris + nab)
   - target fix for NULL pointer dereference of alua_access_state for
     un-configured devices (Chris + nab)"

* git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pending:
  target: Fix alua_access_state attribute OOPs for un-configured devices
  target: Allow READ_CAPACITY opcode in ALUA Standby access state
  iser-target: Fix multi network portal shutdown regression
  iscsi-target: Fix wrong buffer / buffer overrun in iscsi_change_param_value()
  iser-target: Add missing target_put_sess_cmd for ImmedateData failure
2014-06-07 15:01:39 -07:00
Linus Torvalds
813895f8dc Merge branch 'x86/urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Peter Anvin:
 "A significantly larger than I'd like set of patches for just below the
  wire.  All of these, however, fix real problems.

  The one thing that is genuinely scary in here is the change of SMP
  initialization, but that *does* fix a confirmed hang when booting
  virtual machines.

  There is also a patch to actually do the right thing about not
  offlining a CPU when there are not enough interrupt vectors available
  in the system; the accounting was done incorrectly.  The worst case
  for that patch is that we fail to offline CPUs when we should (the new
  code is strictly more conservative than the old), so is not
  particularly risky.

  Most of the rest is minor stuff; the EFI patches are all about
  exporting correct information to boot loaders and kexec"

* 'x86/urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/boot: EFI_MIXED should not prohibit loading above 4G
  x86/smpboot: Initialize secondary CPU only if master CPU will wait for it
  x86/smpboot: Log error on secondary CPU wakeup failure at ERR level
  x86: Fix list/memory corruption on CPU hotplug
  x86: irq: Get correct available vectors for cpu disable
  x86/efi: Do not export efi runtime map in case old map
  x86/efi: earlyprintk=efi,keep fix
2014-06-07 14:50:38 -07:00
Matt Fleming
745c51673e x86/boot: EFI_MIXED should not prohibit loading above 4G
commit 7d453eee36 ("x86/efi: Wire up CONFIG_EFI_MIXED") introduced a
regression for the functionality to load kernels above 4G. The relevant
(incorrect) reasoning behind this change can be seen in the commit
message,

  "The xloadflags field in the bzImage header is also updated to reflect
  that the kernel supports both entry points by setting both of
  XLF_EFI_HANDOVER_32 and XLF_EFI_HANDOVER_64 when CONFIG_EFI_MIXED=y.
  XLF_CAN_BE_LOADED_ABOVE_4G is disabled so that the kernel text is
  guaranteed to be addressable with 32-bits."

This is obviously bogus since 32-bit EFI loaders will never place the
kernel above the 4G mark. So this restriction is entirely unnecessary.

But things are worse than that - since we want to encourage people to
always compile with CONFIG_EFI_MIXED=y so that their kernels work out of
the box for both 32-bit and 64-bit firmware, commit 7d453eee36
effectively disables XLF_CAN_BE_LOADED_ABOVE_4G completely.

Remove the overzealous and superfluous restriction and restore the
XLF_CAN_BE_LOADED_ABOVE_4G functionality.

Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Link: http://lkml.kernel.org/r/1402140380-15377-1-git-send-email-matt@console-pimps.org
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2014-06-07 09:31:00 -07:00
Naoya Horiguchi
d4c54919ed mm: add !pte_present() check on existing hugetlb_entry callbacks
The age table walker doesn't check non-present hugetlb entry in common
path, so hugetlb_entry() callbacks must check it.  The reason for this
behavior is that some callers want to handle it in its own way.

[ I think that reason is bogus, btw - it should just do what the regular
  code does, which is to call the "pte_hole()" function for such hugetlb
  entries  - Linus]

However, some callers don't check it now, which causes unpredictable
result, for example when we have a race between migrating hugepage and
reading /proc/pid/numa_maps.  This patch fixes it by adding !pte_present
checks on buggy callbacks.

This bug exists for years and got visible by introducing hugepage
migration.

ChangeLog v2:
- fix if condition (check !pte_present() instead of pte_present())

Reported-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org> [3.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
[ Backported to 3.15.  Signed-off-by: Josh Boyer <jwboyer@fedoraproject.org> ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-06 13:21:16 -07:00
Filipe Manana
01a9a8a9e2 Btrfs: send, fix corrupted path strings for long paths
If a path has more than 230 characters, we allocate a new buffer to
use for the path, but we were forgotting to copy the contents of the
previous buffer into the new one, which has random content from the
kmalloc call.

Test:

    mkfs.btrfs -f /dev/sdd
    mount /dev/sdd /mnt

    TEST_PATH="/mnt/fdmanana/.config/google-chrome-mysetup/Default/Pepper_Data/Shockwave_Flash/WritableRoot/#SharedObjects/JSHJ4ZKN/s.wsj.net/[[IMPORT]]/players.edgesuite.net/flash/plugins/osmf/advanced-streaming-plugin/v2.7/osmf1.6/Ak#"
    mkdir -p $TEST_PATH
    echo "hello world" > $TEST_PATH/amaiAdvancedStreamingPlugin.txt

    btrfs subvolume snapshot -r /mnt /mnt/mysnap1
    btrfs send /mnt/mysnap1 -f /tmp/1.snap

A test for xfstests follows.

Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Cc: Marc Merlin <marc@merlins.org>
Tested-by: Marc MERLIN <marc@merlins.org>
Signed-off-by: Chris Mason <clm@fb.com>
2014-06-06 12:00:46 -07:00
Linus Torvalds
d54d14bfb4 Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Ingo Molnar:
 "Four misc fixes: each was deemed serious enough to warrant v3.15
  inclusion"

* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  sched/fair: Fix tg_set_cfs_bandwidth() deadlock on rq->lock
  sched/dl: Fix race in dl_task_timer()
  sched: Fix sched_policy < 0 comparison
  sched/numa: Fix use of spin_{un}lock_irq() when interrupts are disabled
2014-06-06 09:53:32 -07:00
Andrey Ryabinin
624483f3ea mm: rmap: fix use-after-free in __put_anon_vma
While working address sanitizer for kernel I've discovered
use-after-free bug in __put_anon_vma.

For the last anon_vma, anon_vma->root freed before child anon_vma.
Later in anon_vma_free(anon_vma) we are referencing to already freed
anon_vma->root to check rwsem.

This fixes it by freeing the child anon_vma before freeing
anon_vma->root.

Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: <stable@vger.kernel.org> # v3.0+
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-06 08:53:41 -07:00
Nicholas Bellinger
f145377351 target: Fix alua_access_state attribute OOPs for un-configured devices
This patch fixes a OOPs where an attempt to write to the per-device
alua_access_state configfs attribute at:

  /sys/kernel/config/target/core/$HBA/$DEV/alua/$TG_PT_GP/alua_access_state

results in an NULL pointer dereference when the backend device has not
yet been configured.

This patch adds an explicit check for DF_CONFIGURED, and fails with
-ENODEV to avoid this case.

Reported-by: Chris Boot <crb@tiger-computing.co.uk>
Reported-by: Philip Gaw <pgaw@darktech.org.uk>
Cc: Chris Boot <crb@tiger-computing.co.uk>
Cc: Philip Gaw <pgaw@darktech.org.uk>
Cc: stable@vger.kernel.org # 3.8+
Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2014-06-06 01:22:41 -07:00
Nicholas Bellinger
e7810c2d2c target: Allow READ_CAPACITY opcode in ALUA Standby access state
This patch allows READ_CAPACITY + SAI_READ_CAPACITY_16 opcode
processing to occur while the associated ALUA group is in Standby
access state.

This is required to avoid host side LUN probe failures during the
initial scan if an ALUA group has already implicitly changed into
Standby access state.

This addresses a bug reported by Chris + Philip using dm-multipath
+ ESX hosts configured with ALUA multipath.

Reported-by: Chris Boot <crb@tiger-computing.co.uk>
Reported-by: Philip Gaw <pgaw@darktech.org.uk>
Cc: Chris Boot <crb@tiger-computing.co.uk>
Cc: Philip Gaw <pgaw@darktech.org.uk>
Cc: Hannes Reinecke <hare@suse.de>
Cc: stable@vger.kernel.org
Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2014-06-06 01:21:12 -07:00
H. Peter Anvin
177875423e * Fix earlyprintk=efi,keep support by switching to an ioremap() mapping
of the framebuffer when early_ioremap() is no longer available and
    dropping __init from functions that may be invoked after
    free_initmem() - Dave Young
 
  * We shouldn't be exporting the EFI runtime map in sysfs if not using
    the new 1:1 EFI mapping code since in that case the mappings are not
    static across a kexec reboot - Dave Young
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJTj0xzAAoJEC84WcCNIz1VgBgP/3rzGcVB6JBT5qAy2SCcKkL1
 zKAvMNiFWpfyOwICE1gbfZzDky9DIVRXpzriLIe27aQzgn/GYBLH9hAIsYO/5W1m
 uw/KRMKbUkvfnUKPxZUMe95OMsXqwhYth7oGJXq1yFa6SsQdCU4jnmMflUQ6IWfy
 sXtQzlV7frFO0W55Gxv4jRB/nxrExtTHm9Fc01H9xvguKO2l0KEh0C9PbyfZLQp0
 FffxGhcVSZXG23fB5eU0yKLV69buDk83O1y4lQ79zETvCTjuzbpGe2agFDxrlJ/u
 wxZROMStvthkHqapheGwwBu4SySoKsuNRQHKxeJ2t3XEVSBuW+c9jiYYMmpDS0t6
 LhIdLdDtBk8ItsTY60r6w86oLvQVTnkwLxwX/XdzUyA/bSzf/EzHENw2iPbJhpjn
 qfq2ZonXD8j/EVPyYXk65wUea4tMmG1QYpi9oPqMp3b4hCgoJr7qosOqvT9v+E3/
 bbGTjr6bgzOaXdctOocmEg0qfhMw/Ol63V9P4wsiN5mUq1nRJnJcKQtqA3Do08IP
 RgZJg8yQAe9FAfZ0RDaRKs5OSPgnC42t/d6pr9JdiFzgR5Ktw7BymfmOu52o7Koq
 EJFf1TlD+Kipdyo/1Q4s9vtZ1ijO5If6FSL9rYJoduWMWCPSZ9by43uCIbEobEQh
 aXD9ZvSyeu5IwD4BoBiO
 =7zSB
 -----END PGP SIGNATURE-----

Merge tag 'efi-urgent' into x86/urgent

 * Fix earlyprintk=efi,keep support by switching to an ioremap() mapping
   of the framebuffer when early_ioremap() is no longer available and
   dropping __init from functions that may be invoked after
   free_initmem() - Dave Young

 * We shouldn't be exporting the EFI runtime map in sysfs if not using
   the new 1:1 EFI mapping code since in that case the mappings are not
   static across a kexec reboot - Dave Young

Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2014-06-05 13:09:44 -07:00
Linus Torvalds
951e273060 Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf fixes from Ingo Molnar:
 "Two last minute tooling fixes"

* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  perf probe: Fix perf probe to find correct variable DIE
  perf probe: Fix a segfault if asked for variable it doesn't find
2014-06-05 12:51:05 -07:00
Linus Torvalds
1c5aefb5b1 Merge branch 'futex-fixes' (futex fixes from Thomas Gleixner)
Merge futex fixes from Thomas Gleixner:
 "So with more awake and less futex wreckaged brain, I went through my
  list of points again and came up with the following 4 patches.

  1) Prevent pi requeueing on the same futex

     I kept Kees check for uaddr1 == uaddr2 as a early check for private
     futexes and added a key comparison to both futex_requeue and
     futex_wait_requeue_pi.

     Sebastian, sorry for the confusion yesterday night.  I really
     misunderstood your question.

     You are right the check is pointless for shared futexes where the
     same physical address is mapped to two different virtual addresses.

  2) Sanity check atomic acquisiton in futex_lock_pi_atomic

     That's basically what Darren suggested.

     I just simplified it to use futex_top_waiter() to find kernel
     internal state.  If state is found return -EINVAL and do not bother
     to fix up the user space variable.  It's corrupted already.

  3) Ensure state consistency in futex_unlock_pi

     The code is silly versus the owner died bit.  There is no point to
     preserve it on unlock when the user space thread owns the futex.

     What's worse is that it does not update the user space value when
     the owner died bit is set.  So the kernel itself creates observable
     inconsistency.

     Another "optimization" is to retry an atomic unlock.  That's
     pointless as in a sane environment user space would not call into
     that code if it could have unlocked it atomically.  So we always
     check whether there is kernel state around and only if there is
     none, we do the unlock by setting the user space value to 0.

  4) Sanitize lookup_pi_state

     lookup_pi_state is ambigous about TID == 0 in the user space value.

     This can be a valid state even if there is kernel state on this
     uaddr, but we miss a few corner case checks.

     I tried to come up with a smaller solution hacking the checks into
     the current cruft, but it turned out to be ugly as hell and I got
     more confused than I was before.  So I rewrote the sanity checks
     along the state documentation with awful lots of commentry"

* emailed patches from Thomas Gleixner <tglx@linutronix.de>:
  futex: Make lookup_pi_state more robust
  futex: Always cleanup owner tid in unlock_pi
  futex: Validate atomic acquisition in futex_lock_pi_atomic()
  futex-prevent-requeue-pi-on-same-futex.patch futex: Forbid uaddr == uaddr2 in futex_requeue(..., requeue_pi=1)
2014-06-05 12:31:32 -07:00
Thomas Gleixner
54a217887a futex: Make lookup_pi_state more robust
The current implementation of lookup_pi_state has ambigous handling of
the TID value 0 in the user space futex.  We can get into the kernel
even if the TID value is 0, because either there is a stale waiters bit
or the owner died bit is set or we are called from the requeue_pi path
or from user space just for fun.

The current code avoids an explicit sanity check for pid = 0 in case
that kernel internal state (waiters) are found for the user space
address.  This can lead to state leakage and worse under some
circumstances.

Handle the cases explicit:

       Waiter | pi_state | pi->owner | uTID      | uODIED | ?

  [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
  [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid

  [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid

  [4]  Found  | Found    | NULL      | 0         | 1      | Valid
  [5]  Found  | Found    | NULL      | >0        | 1      | Invalid

  [6]  Found  | Found    | task      | 0         | 1      | Valid

  [7]  Found  | Found    | NULL      | Any       | 0      | Invalid

  [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
  [9]  Found  | Found    | task      | 0         | 0      | Invalid
  [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid

 [1] Indicates that the kernel can acquire the futex atomically. We
     came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.

 [2] Valid, if TID does not belong to a kernel thread. If no matching
     thread is found then it indicates that the owner TID has died.

 [3] Invalid. The waiter is queued on a non PI futex

 [4] Valid state after exit_robust_list(), which sets the user space
     value to FUTEX_WAITERS | FUTEX_OWNER_DIED.

 [5] The user space value got manipulated between exit_robust_list()
     and exit_pi_state_list()

 [6] Valid state after exit_pi_state_list() which sets the new owner in
     the pi_state but cannot access the user space value.

 [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.

 [8] Owner and user space value match

 [9] There is no transient state which sets the user space TID to 0
     except exit_robust_list(), but this is indicated by the
     FUTEX_OWNER_DIED bit. See [4]

[10] There is no transient state which leaves owner and user space
     TID out of sync.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Will Drewry <wad@chromium.org>
Cc: Darren Hart <dvhart@linux.intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05 12:31:07 -07:00
Thomas Gleixner
13fbca4c6e futex: Always cleanup owner tid in unlock_pi
If the owner died bit is set at futex_unlock_pi, we currently do not
cleanup the user space futex.  So the owner TID of the current owner
(the unlocker) persists.  That's observable inconsistant state,
especially when the ownership of the pi state got transferred.

Clean it up unconditionally.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Will Drewry <wad@chromium.org>
Cc: Darren Hart <dvhart@linux.intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05 12:31:07 -07:00
Thomas Gleixner
b3eaa9fc5c futex: Validate atomic acquisition in futex_lock_pi_atomic()
We need to protect the atomic acquisition in the kernel against rogue
user space which sets the user space futex to 0, so the kernel side
acquisition succeeds while there is existing state in the kernel
associated to the real owner.

Verify whether the futex has waiters associated with kernel state.  If
it has, return -EINVAL.  The state is corrupted already, so no point in
cleaning it up.  Subsequent calls will fail as well.  Not our problem.

[ tglx: Use futex_top_waiter() and explain why we do not need to try
  	restoring the already corrupted user space state. ]

Signed-off-by: Darren Hart <dvhart@linux.intel.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Will Drewry <wad@chromium.org>
Cc: stable@vger.kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05 12:31:07 -07:00