Instead of all of this cpu-specific code to remap the kernel
to the correct location, use portable firmware calls to do
this instead.
What we do now is the following in position independant
assembler:
chosen_node = prom_finddevice("/chosen");
prom_mmu_ihandle_cache = prom_getint(chosen_node, "mmu");
vaddr = 4MB_ALIGN(current_text_addr());
prom_translate(vaddr, &paddr_high, &paddr_low, &mode);
prom_boot_mapping_mode = mode;
prom_boot_mapping_phys_high = paddr_high;
prom_boot_mapping_phys_low = paddr_low;
prom_map(-1, 8 * 1024 * 1024, KERNBASE, paddr_low);
and that replaces the massive amount of by-hand TLB probing and
programming we used to do here.
The new code should also handle properly the case where the kernel
is mapped at the correct address already (think: future kexec
support).
Consequently, the bulk of remap_kernel() dies as does the entirety
of arch/sparc64/prom/map.S
We try to share some strings in the PROM library with the ones used
at bootup, and while we're here mark input strings to oplib.h routines
with "const" when appropriate.
There are many more simplifications now possible. For one thing, we
can consolidate the two copies we now have of a lot of cpu setup code
sitting in head.S and trampoline.S.
This is a significant step towards CONFIG_DEBUG_PAGEALLOC support.
Signed-off-by: David S. Miller <davem@davemloft.net>
Because we don't access the PAGE_OFFSET linear mappings
any longer before we take over the trap table from the
firmware, we don't need to load dummy mappings there
into the TLB and we don't need the bootmap_base hack
any longer either.
While we are here, check for a larger than 8MB kernel
and halt the boot with an error message. We know that
doesn't work, so instead of failing mysteriously we
should let the user know exactly what's wrong.
Signed-off-by: David S. Miller <davem@davemloft.net>
Just allocate them physically starting from the end of
the kernel image. This incredibly simplifies our MM
bootstrap in that we don't need any mappings in the linear
PAGE_OFFSET area working in order to bootstrap ourselves and
take over the trap table from the firmware.
Many further simplifications are possible now, and this also
sets the stage for CONFIG_DEBUG_PAGEALLOC support.
Signed-off-by: David S. Miller <davem@davemloft.net>
This was kind of ugly, and actually buggy. The bug was that
we didn't handle a machine with memory starting > 4GB. If
the 'prompmd' was allocated in physical memory > 4GB we'd
croak because the obp_iaddr_patch and obp_daddr_patch things
only supported a 32-bit physical address.
So fix this by just loading the appropriate values from two
variables in the kernel image, which is locked into the TLB
and thus accesses to them can't cause a recursive TLB miss.
Signed-off-by: David S. Miller <davem@davemloft.net>
Arrange the modules, OBP, and vmalloc areas such that a range
verification can be done quite minimally.
Signed-off-by: David S. Miller <davem@davemloft.net>
This showed that arch/sparc64/kernel/ptrace.c was not getting
the define properly, and thus the code protected by this ifdef
was never actually compiled before. So fix that too.
Signed-off-by: David S. Miller <davem@davemloft.net>
Because we use byte loads/stores to cons up the value
in and out of registers, we can't expect the ASI endianness
setting to take care of this for us. So do it by hand.
This case is triggered by drivers/block/aoe/aoecmd.c in the
ataid_complete() function where it goes:
/* word 100: number lba48 sectors */
ssize = le64_to_cpup((__le64 *) &id[100<<1]);
This &id[100<<1] address is 4 byte, rather than 8 byte aligned,
thus triggering the unaligned exception.
Signed-off-by: David S. Miller <davem@davemloft.net>
Several implementations were essentialy a common piece of C code using
the cmpxchg() macro. Put the implementation in one spot that everyone
can share, and convert sparc64 over to using this.
Alpha is the lone arch-specific implementation, which codes up a
special fast path for the common case in order to avoid GP reloading
which a pure C version would require.
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch (written by me and also containing many suggestions of Arjan van
de Ven) does a major cleanup of the spinlock code. It does the following
things:
- consolidates and enhances the spinlock/rwlock debugging code
- simplifies the asm/spinlock.h files
- encapsulates the raw spinlock type and moves generic spinlock
features (such as ->break_lock) into the generic code.
- cleans up the spinlock code hierarchy to get rid of the spaghetti.
Most notably there's now only a single variant of the debugging code,
located in lib/spinlock_debug.c. (previously we had one SMP debugging
variant per architecture, plus a separate generic one for UP builds)
Also, i've enhanced the rwlock debugging facility, it will now track
write-owners. There is new spinlock-owner/CPU-tracking on SMP builds too.
All locks have lockup detection now, which will work for both soft and hard
spin/rwlock lockups.
The arch-level include files now only contain the minimally necessary
subset of the spinlock code - all the rest that can be generalized now
lives in the generic headers:
include/asm-i386/spinlock_types.h | 16
include/asm-x86_64/spinlock_types.h | 16
I have also split up the various spinlock variants into separate files,
making it easier to see which does what. The new layout is:
SMP | UP
----------------------------|-----------------------------------
asm/spinlock_types_smp.h | linux/spinlock_types_up.h
linux/spinlock_types.h | linux/spinlock_types.h
asm/spinlock_smp.h | linux/spinlock_up.h
linux/spinlock_api_smp.h | linux/spinlock_api_up.h
linux/spinlock.h | linux/spinlock.h
/*
* here's the role of the various spinlock/rwlock related include files:
*
* on SMP builds:
*
* asm/spinlock_types.h: contains the raw_spinlock_t/raw_rwlock_t and the
* initializers
*
* linux/spinlock_types.h:
* defines the generic type and initializers
*
* asm/spinlock.h: contains the __raw_spin_*()/etc. lowlevel
* implementations, mostly inline assembly code
*
* (also included on UP-debug builds:)
*
* linux/spinlock_api_smp.h:
* contains the prototypes for the _spin_*() APIs.
*
* linux/spinlock.h: builds the final spin_*() APIs.
*
* on UP builds:
*
* linux/spinlock_type_up.h:
* contains the generic, simplified UP spinlock type.
* (which is an empty structure on non-debug builds)
*
* linux/spinlock_types.h:
* defines the generic type and initializers
*
* linux/spinlock_up.h:
* contains the __raw_spin_*()/etc. version of UP
* builds. (which are NOPs on non-debug, non-preempt
* builds)
*
* (included on UP-non-debug builds:)
*
* linux/spinlock_api_up.h:
* builds the _spin_*() APIs.
*
* linux/spinlock.h: builds the final spin_*() APIs.
*/
All SMP and UP architectures are converted by this patch.
arm, i386, ia64, ppc, ppc64, s390/s390x, x64 was build-tested via
crosscompilers. m32r, mips, sh, sparc, have not been tested yet, but should
be mostly fine.
From: Grant Grundler <grundler@parisc-linux.org>
Booted and lightly tested on a500-44 (64-bit, SMP kernel, dual CPU).
Builds 32-bit SMP kernel (not booted or tested). I did not try to build
non-SMP kernels. That should be trivial to fix up later if necessary.
I converted bit ops atomic_hash lock to raw_spinlock_t. Doing so avoids
some ugly nesting of linux/*.h and asm/*.h files. Those particular locks
are well tested and contained entirely inside arch specific code. I do NOT
expect any new issues to arise with them.
If someone does ever need to use debug/metrics with them, then they will
need to unravel this hairball between spinlocks, atomic ops, and bit ops
that exist only because parisc has exactly one atomic instruction: LDCW
(load and clear word).
From: "Luck, Tony" <tony.luck@intel.com>
ia64 fix
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjanv@infradead.org>
Signed-off-by: Grant Grundler <grundler@parisc-linux.org>
Cc: Matthew Wilcox <willy@debian.org>
Signed-off-by: Hirokazu Takata <takata@linux-m32r.org>
Signed-off-by: Mikael Pettersson <mikpe@csd.uu.se>
Signed-off-by: Benoit Boissinot <benoit.boissinot@ens-lyon.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
With the use of RCU in files structure, the look-up of files using fds can now
be lock-free. The lookup is protected by rcu_read_lock()/rcu_read_unlock().
This patch changes the readers to use lock-free lookup.
Signed-off-by: Maneesh Soni <maneesh@in.ibm.com>
Signed-off-by: Ravikiran Thirumalai <kiran_th@gmail.com>
Signed-off-by: Dipankar Sarma <dipankar@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Fix sparc64 timod to use the new files_fdtable() api to get the fd table.
This is necessary for RCUification.
Signed-off-by: Dipankar Sarma <dipankar@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
In order for the RCU to work, the file table array, sets and their sizes must
be updated atomically. Instead of ensuring this through too many memory
barriers, we put the arrays and their sizes in a separate structure. This
patch takes the first step of putting the file table elements in a separate
structure fdtable that is embedded withing files_struct. It also changes all
the users to refer to the file table using files_fdtable() macro. Subsequent
applciation of RCU becomes easier after this.
Signed-off-by: Dipankar Sarma <dipankar@in.ibm.com>
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
There were three changes necessary in order to allow
sparc64 to use setup-res.c:
1) Sparc64 roots the PCI I/O and MEM address space using
parent resources contained in the PCI controller structure.
I'm actually surprised no other platforms do this, especially
ones like Alpha and PPC{,64}. These resources get linked into the
iomem/ioport tree when PCI controllers are probed.
So the hierarchy looks like this:
iomem --|
PCI controller 1 MEM space --|
device 1
device 2
etc.
PCI controller 2 MEM space --|
...
ioport --|
PCI controller 1 IO space --|
...
PCI controller 2 IO space --|
...
You get the idea. The drivers/pci/setup-res.c code allocates
using plain iomem_space and ioport_space as the root, so that
wouldn't work with the above setup.
So I added a pcibios_select_root() that is used to handle this.
It uses the PCI controller struct's io_space and mem_space on
sparc64, and io{port,mem}_resource on every other platform to
keep current behavior.
2) quirk_io_region() is buggy. It takes in raw BUS view addresses
and tries to use them as a PCI resource.
pci_claim_resource() expects the resource to be fully formed when
it gets called. The sparc64 implementation would do the translation
but that's absolutely wrong, because if the same resource gets
released then re-claimed we'll adjust things twice.
So I fixed up quirk_io_region() to do the proper pcibios_bus_to_resource()
conversion before passing it on to pci_claim_resource().
3) I was mistakedly __init'ing the function methods the PCI controller
drivers provide on sparc64 to implement some parts of these
routines. This was, of course, easy to fix.
So we end up with the following, and that nasty SPARC64 makefile
ifdef in drivers/pci/Makefile is finally zapped.
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Some PCI devices (e.g. 3c905B, 3c556B) lose all configuration
(including BARs) when transitioning from D3hot->D0. This leaves such
a device in an inaccessible state. The patch below causes the BARs
to be restored when enabling such a device, so that its driver will
be able to access it.
The patch also adds pci_restore_bars as a new global symbol, and adds a
correpsonding EXPORT_SYMBOL_GPL for that.
Some firmware (e.g. Thinkpad T21) leaves devices in D3hot after a
(re)boot. Most drivers call pci_enable_device very early, so devices
left in D3hot that lose configuration during the D3hot->D0 transition
will be inaccessible to their drivers.
Drivers could be modified to account for this, but it would
be difficult to know which drivers need modification. This is
especially true since often many devices are covered by the same
driver. It likely would be necessary to replicate code across dozens
of drivers.
The patch below should trigger only when transitioning from D3hot->D0
(or at boot), and only for devices that have the "no soft reset" bit
cleared in the PM control register. I believe it is safe to include
this patch as part of the PCI infrastructure.
The cleanest implementation of pci_restore_bars was to call
pci_update_resource. Unfortunately, that does not currently exist
for the sparc64 architecture. The patch below includes a null
implemenation of pci_update_resource for sparc64.
Some have expressed interest in making general use of the the
pci_restore_bars function, so that has been exported to GPL licensed
modules.
Signed-off-by: John W. Linville <linville@tuxdriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Since GCC has to emit a call and a delay slot to the
out-of-line "membar" routines in arch/sparc64/lib/mb.S
it is much better to just do the necessary predicted
branch inline instead as:
ba,pt %xcc, 1f
membar #whatever
1:
instead of the current:
call membar_foo
dslot
because this way GCC is not required to allocate a stack
frame if the function can be a leaf function.
This also makes this bug fix easier to backport to 2.4.x
Signed-off-by: David S. Miller <davem@davemloft.net>
Sanitized and fixed floppy dependencies: split the messy dependencies for
BLK_DEV_FD by introducing a new symbol (ARCH_MAY_HAVE_PC_FDC), making
BLK_DEV_FD depend on that one and taking declarations of ARCH_MAY_HAVE_PC_FDC
to arch/*/Kconfig. While we are at it, fixed several obvious cases when
BLK_DEV_FD should have been excluded (architectures lacking asm/floppy.h
are *not* going to have floppy.c compile, let alone work).
If you can come up with better name for that ("this architecture might
have working PC-compatible floppy disk controller"), you are more than
welcome - just s/ARCH_MAY_HAVE_PC_FDC/your_prefered_name/g in the patch
below...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch contains the sparc64 architecture specific changes to prevent the
possible race conditions.
Signed-off-by: Prasanna S Panchamukhi <prasanna@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
64 bit architectures all implement their own compatibility sys_open(),
when in fact the difference is simply not forcing the O_LARGEFILE
flag. So use the a common function instead.
Signed-off-by: Miklos Szeredi <miklos@szeredi.hu>
Cc: <viro@parcelfarce.linux.theplanet.co.uk>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch cleans up a commonly repeated set of changes to the NTP state
variables by adding two helper inline functions:
ntp_clear(): Clears the ntp state variables
ntp_synced(): Returns 1 if the system is synced with a time server.
This was compile tested for alpha, arm, i386, x86-64, ppc64, s390, sparc,
sparc64.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Need to use compat struct sizes and compat_sys_ioctl().
Reported by Adrian Bunk via kernel bugzilla #2683
Signed-off-by: David S. Miller <davem@davemloft.net>
This kills warnings when building drivers/ide/ide-iops.c
and puts us in-line with what other platforms do here.
Signed-off-by: David S. Miller <davem@davemloft.net>
We can put the __softirq_pending mask in the cpudata,
no need for the silly NR_CPUS array in kernel/softirq.c
Signed-off-by: David S. Miller <davem@davemloft.net>
It appears that a memory barrier soon after a mispredicted
branch, not just in the delay slot, can cause the hang
condition of this cpu errata.
So move them out-of-line, and explicitly put them into
a "branch always, predict taken" delay slot which should
fully kill this problem.
Signed-off-by: David S. Miller <davem@davemloft.net>
When the spinlock routines were moved out of line into
kernel/spinlock.c this made it so that the debugging
spinlocks record lock acquisition program counts in the
kernel/spinlock.c functions not in their callers.
This makes the debugging info kind of useless.
So record the correct caller's program counter and
now this feature is useful once more.
Signed-off-by: David S. Miller <davem@davemloft.net>
Removed sparc64 architecture specific users of asm/segment.h and
asm-sparc64/segment.h itself
Signed-off-by: Kumar Gala <kumar.gala@freescale.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Current uncorrectable error handling was poor enough
that the processor could just loop taking the same
trap over and over again. Fix things up so that we
at least get a log message and perhaps even some register
state.
In the process, much consolidation became possible,
particularly with the correctable error handler.
Prefix assembler and C function names with "spitfire"
to indicate that these are for Ultra-I/II/IIi/IIe only.
More work is needed to make these routines robust and
featureful to the level of the Ultra-III error handlers.
Signed-off-by: David S. Miller <davem@davemloft.net>
Verify we really are taking a data access exception trap, at TL1, from
one of the window spill/fill handlers.
Else call a new function, data_access_exception_tl1, to log the error.
Signed-off-by: David S. Miller <davem@davemloft.net>
1) Read ASI_IMMU SFSR not ASI_DMMU.
2) IMMU has no SFAR, read TPC instead
3) Delete old and incorrect comment about the DTLB protection
trap having a dependency on the SFSR contents in order to
function correctly
Signed-off-by: David S. Miller <davem@davemloft.net>
It has been reported that the way Linux handles NODEFER for signals is
not consistent with the way other Unix boxes handle it. I've written a
program to test the behavior of how this flag affects signals and had
several reports from people who ran this on various Unix boxes,
confirming that Linux seems to be unique on the way this is handled.
The way NODEFER affects signals on other Unix boxes is as follows:
1) If NODEFER is set, other signals in sa_mask are still blocked.
2) If NODEFER is set and the signal is in sa_mask, then the signal is
still blocked. (Note: this is the behavior of all tested but Linux _and_
NetBSD 2.0 *).
The way NODEFER affects signals on Linux:
1) If NODEFER is set, other signals are _not_ blocked regardless of
sa_mask (Even NetBSD doesn't do this).
2) If NODEFER is set and the signal is in sa_mask, then the signal being
handled is not blocked.
The patch converts signal handling in all current Linux architectures to
the way most Unix boxes work.
Unix boxes that were tested: DU4, AIX 5.2, Irix 6.5, NetBSD 2.0, SFU
3.5 on WinXP, AIX 5.3, Mac OSX, and of course Linux 2.6.13-rcX.
* NetBSD was the only other Unix to behave like Linux on point #2. The
main concern was brought up by point #1 which even NetBSD isn't like
Linux. So with this patch, we leave NetBSD as the lonely one that
behaves differently here with #2.
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
pcibios_bus_to_resource is exported on all architectures except ia64
and sparc. Add exports for the two missing architectures. Needed when
Yenta socket support is compiled as a module.
Signed-off-by: Keith Owens <kaos@sgi.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
GCC 4.x really dislikes the games we are playing in
unaligned.c, and the cleanest way to fix this is to
move things into assembler.
Noted by Al Viro.
Signed-off-by: David S. Miller <davem@davemloft.net>
From: Dave Johnson <djohnson+linux-kernel@sw.starentnetworks.com>
sendmsg()/recvmsg() syscalls from o32/n32 apps to a 64bit kernel will
cause a kernel memory leak if iov_len > UIO_FASTIOV for each syscall!
This is because both sys_sendmsg() and verify_compat_iovec() kmalloc a
new iovec structure. Only the one from sys_sendmsg() is free'ed.
I wrote a simple test program to confirm this after identifying the
problem:
http://davej.org/programs/testsendmsg.c
Note that the below fix will break solaris_sendmsg()/solaris_recvmsg() as
it also calls verify_compat_iovec() but expects it to malloc internally.
[ I fixed that. -DaveM ]
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Revert commit fec59a711e, which is
breaking sparc64 that doesn't have a working pci_update_resource.
We'll re-do this after 2.6.13 when we'll do it all properly.
Some PCI devices (e.g. 3c905B, 3c556B) lose all configuration
(including BARs) when transitioning from D3hot->D0. This leaves such
a device in an inaccessible state. The patch below causes the BARs
to be restored when enabling such a device, so that its driver will
be able to access it.
The patch also adds pci_restore_bars as a new global symbol, and adds a
correpsonding EXPORT_SYMBOL_GPL for that.
Some firmware (e.g. Thinkpad T21) leaves devices in D3hot after a
(re)boot. Most drivers call pci_enable_device very early, so devices
left in D3hot that lose configuration during the D3hot->D0 transition
will be inaccessible to their drivers.
Drivers could be modified to account for this, but it would
be difficult to know which drivers need modification. This is
especially true since often many devices are covered by the same
driver. It likely would be necessary to replicate code across dozens
of drivers.
The patch below should trigger only when transitioning from D3hot->D0
(or at boot), and only for devices that have the "no soft reset" bit
cleared in the PM control register. I believe it is safe to include
this patch as part of the PCI infrastructure.
The cleanest implementation of pci_restore_bars was to call
pci_update_resource. Unfortunately, that does not currently exist
for the sparc64 architecture. The patch below includes a null
implemenation of pci_update_resource for sparc64.
Some have expressed interest in making general use of the the
pci_restore_bars function, so that has been exported to GPL licensed
modules.
Signed-off-by: John W. Linville <linville@tuxdriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The page->flags D-cache dirty state tracking depended upon
NR_CPUS being a power-of-2 via it's "NR_CPUS - 1" masking.
Fix that to use a fixed (256 - 1) mask as that is the limit
imposed by thread_info->cpu which is a "u8".
Finally, add a compile time check that NR_CPUS is not greater
than 256.
Signed-off-by: David S. Miller <davem@davemloft.net>
machine_restart, machine_halt and machine_power_off are machine
specific hooks deep into the reboot logic, that modules
have no business messing with. Usually code should be calling
kernel_restart, kernel_halt, kernel_power_off, or
emergency_restart. So don't export machine_restart,
machine_halt, and machine_power_off so we can catch buggy users.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
These two bits were accesses non-atomically from assembler
code. So, in order to eliminate any potential races resulting
from that, move these pieces of state into two bytes elsewhere
in struct thread_info.
Signed-off-by: David S. Miller <davem@davemloft.net>
It is only used by some localized code in irq.c, and also
delete enable_prom_timer() as that is totally unused.
Signed-off-by: David S. Miller <davem@davemloft.net>
arch/sparc64/kernel/smp.c:48: error: parse error before "__attribute__"
arch/sparc64/kernel/smp.c:49: error: parse error before "__attribute__"
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Create a new top-level menu named "Networking" thus moving
net related options and protocol selection way from the drivers
menu and up on the top-level where they belong.
To implement this all architectures has to source "net/Kconfig" before
drivers/*/Kconfig in their Kconfig file. This change has been
implemented for all architectures.
Device drivers for ordinary NIC's are still to be found
in the Device Drivers section, but Bluetooth, IrDA and ax25
are located with their corresponding menu entries under the new
networking menu item.
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Also fix a bug in 32-bit syscall tracing. We forgot to update
this code when we moved over to the convention that all 32-bit
syscall arguments are zero extended by default.
Signed-off-by: David S. Miller <davem@davemloft.net>
The membar changes made the size of __cheetah_flush_tlb_pending
grow by one instruction, but the boot-time code patching was
not updated to match.
Signed-off-by: David S. Miller <davem@davemloft.net>
The following renames arch_init, a kprobes function for performing any
architecture specific initialization, to arch_init_kprobes in order to
cleanup the namespace.
Also, this patch adds arch_init_kprobes to sparc64 to fix the sparc64 kprobes
build from the last return probe patch.
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Use macro instead of magic value for Tomatillo discard-
timeout interrupt enable register bit.
Leave OBP programming PTO value unless Tomatillo and
version >= 0x2.
If no-bus-parking property is present, explicitly clear
PCICTRL_PARK bit.
Signed-off-by: David S. Miller <davem@davemloft.net>
This was the main impetus behind adding the PCI IRQ shim.
In order to properly order DMA writes wrt. interrupts, you have to
write to a PCI controller register, then poll for that bit clearing.
There is one bit for each interrupt source, and setting this register
bit tells Tomatillo to drain all pending DMA from that device.
Furthermore, Tomatillo's with revision less than 4 require us to do a
block store due to some memory transaction ordering issues it has on
JBUS.
Signed-off-by: David S. Miller <davem@davemloft.net>
This allows a PCI controller to shim into IRQ delivery
so that DMA queues can be drained, if necessary.
If some bus specific code needs to run before an IRQ
handler is invoked, the bus driver simply needs to setup
the function pointer in bucket->irq_info->pre_handler and
the two args bucket->irq_info->pre_handler_arg[12].
The Schizo PCI driver is converted over to use a pre-handler
for the DMA write-sync processing it needs when a device
is behind a PCI->PCI bus deeper than the top-level APB
bridges.
While we're here, clean up all of the action allocation
and handling. Now, we allocate the irqaction as part of
the bucket->irq_info area. There is an array of 4 irqaction
(for PCI irq sharing) and a bitmask saying which entries
are active.
The bucket->irq_info is allocated at build_irq() time, not
at request_irq() time. This simplifies request_irq() and
free_irq() tremendously.
The SMP dynamic IRQ retargetting code got removed in this
change too. It was disabled for a few months now, and we
can resurrect it in the future if we want.
Signed-off-by: David S. Miller <davem@davemloft.net>
The following patch adds some ioctls to include/linux/compat_ioctl.h
to allow using ppdev from the 32 bit user space on sparc64.
This patch also adds the PPDEV option in the sparc64 menu, near Parallel
printer support in the 'General machine setup' submenu.
All those ioctls seem to be compatible, since (correct me if I'm wrong)
they dont use the 'long' type. See include/linux/ppdev.h.
The application I used to test the new ioctls only used the following:
PPEXCL
PPCLAIM
PPNEGOT
PPGETMODES
PPRCONTROL
PPWCONTROL
PPDATADIR
PPWDATA
PPRDATA
But I beleive that the other ioctls will work fine.
Signed-off-by: David S. Miller <davem@davemloft.net>
The only real user was the assembler floppy interrupt
handler, which does not need to be in assembly.
This makes it so that there are less pieces of code which
know about the internal layout of ivector_table[] and
friends.
Signed-off-by: David S. Miller <davem@davemloft.net>
In particular, avoid membar instructions in the delay
slot of a jmpl instruction.
UltraSPARC-I, II, IIi, and IIe have a bug, documented in
the UltraSPARC-IIi User's Manual, Appendix K, Erratum 51
The long and short of it is that if the IMU unit misses
on a branch or jmpl, and there is a store buffer synchronizing
membar in the delay slot, the chip can stop fetching instructions.
If interrupts are enabled or some other trap is enabled, the
chip will unwedge itself, but performance will suffer.
We already had a workaround for this bug in a few spots, but
it's better to have the entire tree sanitized for this rule.
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch is based on work by Carlos O'Donell and Matthew Wilcox. It
introduces/updates the compat_time_t type and uses it for compat siginfo
structures. I have built this on ppc64 and x86_64.
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch includes sparc64 architecture specific changes to support temporary
disarming on reentrancy of probes.
Signed-of-by: Prasanna S Panchamukhi <prasanna@in.ibm.com>
Cc: "David S. Miller" <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The architecture independent code of the current kprobes implementation is
arming and disarming kprobes at registration time. The problem is that the
code is assuming that arming and disarming is a just done by a simple write
of some magic value to an address. This is problematic for ia64 where our
instructions look more like structures, and we can not insert break points
by just doing something like:
*p->addr = BREAKPOINT_INSTRUCTION;
The following patch to 2.6.12-rc4-mm2 adds two new architecture dependent
functions:
* void arch_arm_kprobe(struct kprobe *p)
* void arch_disarm_kprobe(struct kprobe *p)
and then adds the new functions for each of the architectures that already
implement kprobes (spar64/ppc64/i386/x86_64).
I thought arch_[dis]arm_kprobe was the most descriptive of what was really
happening, but each of the architectures already had a disarm_kprobe()
function that was really a "disarm and do some other clean-up items as
needed when you stumble across a recursive kprobe." So... I took the
liberty of changing the code that was calling disarm_kprobe() to call
arch_disarm_kprobe(), and then do the cleanup in the block of code dealing
with the recursive kprobe case.
So far this patch as been tested on i386, x86_64, and ppc64, but still
needs to be tested in sparc64.
Signed-off-by: Rusty Lynch <rusty.lynch@intel.com>
Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
For all architectures, this just means that you'll see a "Memory Model"
choice in your architecture menu. For those that implement DISCONTIGMEM,
you may eventually want to make your ARCH_DISCONTIGMEM_ENABLE a "def_bool
y" and make your users select DISCONTIGMEM right out of the new choice
menu. The only disadvantage might be if you have some specific things that
you need in your help option to explain something about DISCONTIGMEM.
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Ingo recently introduced a great speedup for allocating new mmaps using the
free_area_cache pointer which boosts the specweb SSL benchmark by 4-5% and
causes huge performance increases in thread creation.
The downside of this patch is that it does lead to fragmentation in the
mmap-ed areas (visible via /proc/self/maps), such that some applications
that work fine under 2.4 kernels quickly run out of memory on any 2.6
kernel.
The problem is twofold:
1) the free_area_cache is used to continue a search for memory where
the last search ended. Before the change new areas were always
searched from the base address on.
So now new small areas are cluttering holes of all sizes
throughout the whole mmap-able region whereas before small holes
tended to close holes near the base leaving holes far from the base
large and available for larger requests.
2) the free_area_cache also is set to the location of the last
munmap-ed area so in scenarios where we allocate e.g. five regions of
1K each, then free regions 4 2 3 in this order the next request for 1K
will be placed in the position of the old region 3, whereas before we
appended it to the still active region 1, placing it at the location
of the old region 2. Before we had 1 free region of 2K, now we only
get two free regions of 1K -> fragmentation.
The patch addresses thes issues by introducing yet another cache descriptor
cached_hole_size that contains the largest known hole size below the
current free_area_cache. If a new request comes in the size is compared
against the cached_hole_size and if the request can be filled with a hole
below free_area_cache the search is started from the base instead.
The results look promising: Whereas 2.6.12-rc4 fragments quickly and my
(earlier posted) leakme.c test program terminates after 50000+ iterations
with 96 distinct and fragmented maps in /proc/self/maps it performs nicely
(as expected) with thread creation, Ingo's test_str02 with 20000 threads
requires 0.7s system time.
Taking out Ingo's patch (un-patch available per request) by basically
deleting all mentions of free_area_cache from the kernel and starting the
search for new memory always at the respective bases we observe: leakme
terminates successfully with 11 distinctive hardly fragmented areas in
/proc/self/maps but thread creating is gringdingly slow: 30+s(!) system
time for Ingo's test_str02 with 20000 threads.
Now - drumroll ;-) the appended patch works fine with leakme: it ends with
only 7 distinct areas in /proc/self/maps and also thread creation seems
sufficiently fast with 0.71s for 20000 threads.
Signed-off-by: Wolfgang Wander <wwc@rentec.com>
Credit-to: "Richard Purdie" <rpurdie@rpsys.net>
Signed-off-by: Ken Chen <kenneth.w.chen@intel.com>
Acked-by: Ingo Molnar <mingo@elte.hu> (partly)
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
A lot of the code in arch/*/mm/hugetlbpage.c is quite similar. This patch
attempts to consolidate a lot of the code across the arch's, putting the
combined version in mm/hugetlb.c. There are a couple of uglyish hacks in
order to covert all the hugepage archs, but the result is a very large
reduction in the total amount of code. It also means things like hugepage
lazy allocation could be implemented in one place, instead of six.
Tested, at least a little, on ppc64, i386 and x86_64.
Notes:
- this patch changes the meaning of set_huge_pte() to be more
analagous to set_pte()
- does SH4 need s special huge_ptep_get_and_clear()??
Acked-by: William Lee Irwin <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch implements a number of smp_processor_id() cleanup ideas that
Arjan van de Ven and I came up with.
The previous __smp_processor_id/_smp_processor_id/smp_processor_id API
spaghetti was hard to follow both on the implementational and on the
usage side.
Some of the complexity arose from picking wrong names, some of the
complexity comes from the fact that not all architectures defined
__smp_processor_id.
In the new code, there are two externally visible symbols:
- smp_processor_id(): debug variant.
- raw_smp_processor_id(): nondebug variant. Replaces all existing
uses of _smp_processor_id() and __smp_processor_id(). Defined
by every SMP architecture in include/asm-*/smp.h.
There is one new internal symbol, dependent on DEBUG_PREEMPT:
- debug_smp_processor_id(): internal debug variant, mapped to
smp_processor_id().
Also, i moved debug_smp_processor_id() from lib/kernel_lock.c into a new
lib/smp_processor_id.c file. All related comments got updated and/or
clarified.
I have build/boot tested the following 8 .config combinations on x86:
{SMP,UP} x {PREEMPT,!PREEMPT} x {DEBUG_PREEMPT,!DEBUG_PREEMPT}
I have also build/boot tested x64 on UP/PREEMPT/DEBUG_PREEMPT. (Other
architectures are untested, but should work just fine.)
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjan@infradead.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The initial peek read PIO of the match register is just a waste.
Just do the flush writes first, as that is more efficient.
Signed-off-by: David S. Miller <davem@davemloft.net>
Firstly, if the direction is TODEVICE, then dirty data in the
streaming cache is impossible so we can elide the flush-flag
synchronization in that case.
Next, the context allocator is broken. It is highly likely
that contexts get used multiple times for different dma
mappings, which confuses the strbuf flushing code and makes
it run inefficiently.
Signed-off-by: David S. Miller <davem@davemloft.net>
Older UltraSPARC-III chips have a P-Cache bug that makes us disable it
by default at boot time.
However, this does hurt performance substantially, particularly with
memcpy(), and the bug is _incredibly_ obscure. I have never seen it
triggered in practice, ever.
So provide a "-P" boot option that forces the P-Cache on. It taints
the kernel, so if it does trigger and cause some data corruption or
OOPS, we will find out in the logs that this option was on when it
happened.
Signed-off-by: David S. Miller <davem@davemloft.net>
The recent change to add a timeout to strbuf flushing had
a negative performance impact. The udelay()'s are too long,
and they were done in the wrong order wrt. the register read
checks. Fix both, and things are happy again.
There are more possible improvements in this area. In fact,
PCI streaming buffer flushing seems to be part of the bottleneck
in network receive performance on my SunBlade1000 box.
Signed-off-by: David S. Miller <davem@davemloft.net>
If some hardware error occurs and the flush flag never updates,
we will hang forever in these routines. Add a timeout, and
print out a diagnostic if it is reached.
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently sparc and sparc64's UP cpu_idle() checks current pid. This
is old time legacy. Now it's paranoia.
Signed-off-by: Coywolf Qi Hunt <coywolf@lovecn.org>
Acked-by: William Irwin <wli@holomorphy.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
There is some race whereby IRQs get stuck, the IRQ status
is pending but no processor actually handles the IRQ vector
and thus the interrupt.
This is a temporary workaround.
Signed-off-by: David S. Miller <davem@davemloft.net>
We would never advance the goal_cpu counter like we
should, so all IRQs would go to a single processor.
Signed-off-by: David S. Miller <davem@davemloft.net>
Convert most of the current code that uses _NSIG directly to instead use
valid_signal(). This avoids gcc -W warnings and off-by-one errors.
Signed-off-by: Jesper Juhl <juhl-lkml@dif.dk>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
void * __iomem foo is not a pointer to iomem - it's an iomem variable
containing void *. A pile of such guys in arch/sparc64/kernel/time.c,
drivers/sbus/char/rtc.c and include/asm-sparc64/mostek.h turned into
intended void __iomem *.
Signed-off-by: Al Viro <viro@parcelfarce.linux.theplanet.co.uk>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
CONFIG_HW_CONSOLE selects vt.c; without the stuff pulled by CONFIG_VT it
will not build. Normally we get both in drivers/char/Kconfig and there
HW_CONSOLE depends on VT. sparc64 does not pull drivers/char/Kconfig
and has that sutff in arch/sparc64/Kconfig instead. However, it forgets
to add the same dependency. As the result, turning VT off [which is
possible] will end up with broken build. For no good reason...
Signed-off-by: Al Viro <viro@parcelfarce.linux.theplanet.co.uk>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Provide support for drivers/char/rtc.c ioctls in the
Mostek rtc driver as well as the Sparc specific RTCGET
and RTCSET.
This allows userspace to be much less messy. Currently
util-linux and other spots jump through hoops trying
various ioctl variants until it hits the right one whatever
driver actually being used supports.
Eventually all of this should move over to the genrtc.c
driver, but not today...
While we are here, fix up the register types for sparse.
Thanks to Frans Pop for helping point out this issue.
Signed-off-by: David S. Miller <davem@davemloft.net>
Like Alpha, sparc64's struct stat was defined before we had the
nanosecond et al. fields added. So like Alpha I have to cons up a
struct stat64 to get this stuff. I'll work on the glibc bits soon.
Also, we were forgetting to fill in the nanosecond fields in the sparc
compat stat64 syscalls.
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The compat routine to copy over this data structure was not
handling SI_POLL correctly, breaking various fcntl() variants
in compat tasks.
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
We were flushing the D-cache excessively for ptrace() processing
and this makes debugging threads so slow as to be totally unusable.
All process page accesses via ptrace() go via access_process_vm().
This routine, for each process page, uses get_user_pages(). That
in turn does a flush_dcache_page() on the child pages before we
copy in/out the ptrace request data.
Therefore, all we need to do after the data movement is:
1) Flush the D-cache pages if the kernel maps the page to a different
color than userspace does.
2) If we wrote to the page, we need to flush the I-cache on older cpus.
Previously we just flushed the entire cache at the end of a ptrace()
request, and that was beyond stupid.
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
SunOS aparently had this weird PTRACE_CONT semantic which
we copied. If the addr argument is something other than
1, it sets the process program counter to whatever that
value is.
This is different from every other Linux architecture, which
don't do anything with the addr and data args.
This difference in particular breaks the Linux native GDB support
for fork and vfork tracing on sparc and sparc64.
There is no interest in running SunOS binaries using this weird
PTRACE_CONT behavior, so just delete it so we behave like other
platforms do.
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
A couple message queue system call entries for compat tasks
were not using the necessary compat_sys_*() functions, causing
some glibc test cases to fail.
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This case actually can get exercised a lot during an ELF
coredump of a process which contains a lot of non-COW'd
anonymous pages. GDB has this test case which in partiaular
creates near terabyte process full of ZERO_PAGEes. It takes
forever to just walk through the page tables because of
all of these spurious cache flushes on sparc64.
With this change it takes only a second or so.
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!