Commit Graph

1122831 Commits

Author SHA1 Message Date
Zach O'Keefe
1b03d0d558 selftests/vm: add thp collapse file and tmpfs testing
Add memory operations for file-backed and tmpfs memory.  Call existing
tests with these new memory operations to test collapse functionality of
khugepaged and MADV_COLLAPSE on file-backed and tmpfs memory.  Not all
tests are reusable; for example, collapse_swapin_single_pte() which checks
swap usage.

Refactor test arguments.  Usage is now:

Usage: ./khugepaged <test type> [dir]

        <test type>     : <context>:<mem_type>
        <context>       : [all|khugepaged|madvise]
        <mem_type>      : [all|anon|file]

        "file,all" mem_type requires [dir] argument

        "file,all" mem_type requires kernel built with
        CONFIG_READ_ONLY_THP_FOR_FS=y

        if [dir] is a (sub)directory of a tmpfs mount, tmpfs must be
        mounted with huge=madvise option for khugepaged tests to work

Refactor calling tests to make it clear what collapse context / memory
operations they support, but only invoke tests requested by user.  Also
log what test is being ran, and with what context / memory, to make test
logs more human readable.

A new test file is created and deleted for every test to ensure no pages
remain in the page cache between tests (tests also may attempt to collapse
different amount of memory).

For file-backed memory where the file is stored on a block device, disable
/sys/block/<device>/queue/read_ahead_kb so that pages don't find their way
into the page cache without the tests faulting them in.

Add file and shmem wrappers to vm_utils check for file and shmem hugepages
in smaps.

[zokeefe@google.com: fix "add thp collapse file and tmpfs testing" for
  tmpfs]
  Link: https://lkml.kernel.org/r/20220913212517.3163701-1-zokeefe@google.com
Link: https://lkml.kernel.org/r/20220907144521.3115321-8-zokeefe@google.com
Link: https://lkml.kernel.org/r/20220922224046.1143204-8-zokeefe@google.com
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Chris Kennelly <ckennelly@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:34 -07:00
Zach O'Keefe
8e638707a3 selftests/vm: modularize thp collapse memory operations
Modularize operations to setup, cleanup, fault, and check for huge pages,
for a given memory type.  This allows reusing existing tests with
additional memory types by defining new memory operations.  Following
patches will add file and shmem memory types.

Link: https://lkml.kernel.org/r/20220907144521.3115321-7-zokeefe@google.com
Link: https://lkml.kernel.org/r/20220922224046.1143204-7-zokeefe@google.com
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Chris Kennelly <ckennelly@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:34 -07:00
Zach O'Keefe
c07c343cda selftests/vm: dedup THP helpers
These files:

tools/testing/selftests/vm/vm_util.c
tools/testing/selftests/vm/khugepaged.c

Both contain logic to:

1) Determine hugepage size on current system
2) Read /proc/self/smaps to determine number of THPs at an address

Refactor selftests/vm/khugepaged.c to use the vm_util common helpers and
add it as a build dependency.

Since selftests/vm/khugepaged.c is the largest user of check_huge(),
change the signature of check_huge() to match selftests/vm/khugepaged.c's
useage: take an expected number of hugepages, and return a bool indicating
if the correct number of hugepages were found.  Add a wrapper,
check_huge_anon(), in anticipation of checking smaps for file and shmem
hugepages.

Update existing callsites to use the new pattern / function.

Likewise, check_for_pattern() was duplicated, and it's a general enough
helper to include in vm_util helpers as well.

Link: https://lkml.kernel.org/r/20220907144521.3115321-6-zokeefe@google.com
Link: https://lkml.kernel.org/r/20220922224046.1143204-6-zokeefe@google.com
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Chris Kennelly <ckennelly@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:34 -07:00
Zach O'Keefe
d41fd2016e mm/khugepaged: add tracepoint to hpage_collapse_scan_file()
Add huge_memory:trace_mm_khugepaged_scan_file tracepoint to
hpage_collapse_scan_file() analogously to hpage_collapse_scan_pmd().

While this change is targeted at debugging MADV_COLLAPSE pathway, the
"mm_khugepaged" prefix is retained for symmetry with
huge_memory:trace_mm_khugepaged_scan_pmd, which retains it's legacy name
to prevent changing kernel ABI as much as possible.

Link: https://lkml.kernel.org/r/20220907144521.3115321-5-zokeefe@google.com
Link: https://lkml.kernel.org/r/20220922224046.1143204-5-zokeefe@google.com
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Chris Kennelly <ckennelly@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:33 -07:00
Zach O'Keefe
34488399fa mm/madvise: add file and shmem support to MADV_COLLAPSE
Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed
memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y).

On success, the backing memory will be a hugepage.  For the memory range
and process provided, the page tables will synchronously have a huge pmd
installed, mapping the THP.  Other mappings of the file extent mapped by
the memory range may be added to a set of entries that khugepaged will
later process and attempt update their page tables to map the THP by a
pmd.

This functionality unlocks two important uses:

(1)	Immediately back executable text by THPs.  Current support provided
	by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large
	system which might impair services from serving at their full rated
	load after (re)starting.  Tricks like mremap(2)'ing text onto
	anonymous memory to immediately realize iTLB performance prevents
	page sharing and demand paging, both of which increase steady state
	memory footprint.  Now, we can have the best of both worlds: Peak
	upfront performance and lower RAM footprints.

(2)	userfaultfd-based live migration of virtual machines satisfy UFFD
	faults by fetching native-sized pages over the network (to avoid
	latency of transferring an entire hugepage).  However, after guest
	memory has been fully copied to the new host, MADV_COLLAPSE can
	be used to immediately increase guest performance.

Since khugepaged is single threaded, this change now introduces
possibility of collapse contexts racing in file collapse path.  There a
important few places to consider:

(1)	hpage_collapse_scan_file(), when we xas_pause() and drop RCU.
	We could have the memory collapsed out from under us, but
	the next xas_for_each() iteration will correctly pick up the
	hugepage.  The hugepage might not be up to date (insofar as
	copying of small page contents might not have completed - the
	page still may be locked), but regardless what small page index
	we were iterating over, we'll find the hugepage and identify it
	as a suitably aligned compound page of order HPAGE_PMD_ORDER.

	In khugepaged path, we locklessly check the value of the pmd,
	and only add it to deferred collapse array if we find pmd
	mapping pte table. This is fine, since other values that could
	have raced in right afterwards denote failure, or that the
	memory was successfully collapsed, so we don't need further
	processing.

	In madvise path, we'll take mmap_lock() in write to serialize
	against page table updates and will know what to do based on the
	true value of the pmd: recheck all ptes if we point to a pte table,
	directly install the pmd, if the pmd has been cleared, but
	memory not yet faulted, or nothing at all if we find a huge pmd.

	It's worth putting emphasis here on how we treat the none pmd
	here.  If khugepaged has processed this mm's page tables
	already, it will have left the pmd cleared (ready for refault by
	the process).  Depending on the VMA flags and sysfs settings,
	amount of RAM on the machine, and the current load, could be a
	relatively common occurrence - and as such is one we'd like to
	handle successfully in MADV_COLLAPSE.  When we see the none pmd
	in collapse_pte_mapped_thp(), we've locked mmap_lock in write
	and checked (a) huepaged_vma_check() to see if the backing
	memory is appropriate still, along with VMA sizing and
	appropriate hugepage alignment within the file, and (b) we've
	found a hugepage head of order HPAGE_PMD_ORDER at the offset
	in the file mapped by our hugepage-aligned virtual address.
	Even though the common-case is likely race with khugepaged,
	given these checks (regardless how we got here - we could be
	operating on a completely different file than originally checked
	in hpage_collapse_scan_file() for all we know) it should be safe
	to directly make the pmd a huge pmd pointing to this hugepage.

(2)	collapse_file() is mostly serialized on the same file extent by
	lock sequence:

		|	lock hupepage
		|		lock mapping->i_pages
		|			lock 1st page
		|		unlock mapping->i_pages
		|				<page checks>
		|		lock mapping->i_pages
		|				page_ref_freeze(3)
		|				xas_store(hugepage)
		|		unlock mapping->i_pages
		|				page_ref_unfreeze(1)
		|			unlock 1st page
		V	unlock hugepage

	Once a context (who already has their fresh hugepage locked)
	locks mapping->i_pages exclusively, it will hold said lock
	until it locks the first page, and it will hold that lock until
	the after the hugepage has been added to the page cache (and
	will unlock the hugepage after page table update, though that
	isn't important here).

	A racing context that loses the race for mapping->i_pages will
	then lose the race to locking the first page.  Here - depending
	on how far the other racing context has gotten - we might find
	the new hugepage (in which case we'll exit cleanly when we
	check PageTransCompound()), or we'll find the "old" 1st small
	page (in which we'll exit cleanly when we discover unexpected
	refcount of 2 after isolate_lru_page()).  This is assuming we
	are able to successfully lock the page we find - in shmem path,
	we could just fail the trylock and exit cleanly anyways.

	Failure path in collapse_file() is similar: once we hold lock
	on 1st small page, we are serialized against other collapse
	contexts.  Before the 1st small page is unlocked, we add it
	back to the pagecache and unfreeze the refcount appropriately.
	Contexts who lost the race to the 1st small page will then find
	the same 1st small page with the correct refcount and will be
	able to proceed.

[zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()]
  Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com
[shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove
	check for multi-add in khugepaged_add_pte_mapped_thp()]
  Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/
Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com
Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Chris Kennelly <ckennelly@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:33 -07:00
Zach O'Keefe
58ac9a8993 mm/khugepaged: attempt to map file/shmem-backed pte-mapped THPs by pmds
The main benefit of THPs are that they can be mapped at the pmd level,
increasing the likelihood of TLB hit and spending less cycles in page
table walks.  pte-mapped hugepages - that is - hugepage-aligned compound
pages of order HPAGE_PMD_ORDER mapped by ptes - although being contiguous
in physical memory, don't have this advantage.  In fact, one could argue
they are detrimental to system performance overall since they occupy a
precious hugepage-aligned/sized region of physical memory that could
otherwise be used more effectively.  Additionally, pte-mapped hugepages
can be the cheapest memory to collapse for khugepaged since no new
hugepage allocation or copying of memory contents is necessary - we only
need to update the mapping page tables.

In the anonymous collapse path, we are able to collapse pte-mapped
hugepages (albeit, perhaps suboptimally), but the file/shmem path makes no
effort when compound pages (of any order) are encountered.

Identify pte-mapped hugepages in the file/shmem collapse path.  The
final step of which makes a racy check of the value of the pmd to
ensure it maps a pte table.  This should be fine, since races that
result in false-positive (i.e.  attempt collapse even though we
shouldn't) will fail later in collapse_pte_mapped_thp() once we
actually lock mmap_lock and reinspect the pmd value.  Races that result
in false-negatives (i.e.  where we decide to not attempt collapse, but
should have) shouldn't be an issue, since in the worst case, we do
nothing - which is what we've done up to this point.  We make a similar
check in retract_page_tables().  If we do think we've found a
pte-mapped hugepgae in khugepaged context, attempt to update page
tables mapping this hugepage.

Note that these collapses still count towards the
/sys/kernel/mm/transparent_hugepage/khugepaged/pages_collapsed counter,
and if the pte-mapped hugepage was also mapped into multiple process'
address spaces, could be incremented for each page table update.  Since we
increment the counter when a pte-mapped hugepage is successfully added to
the list of to-collapse pte-mapped THPs, it's possible that we never
actually update the page table either.  This is different from how
file/shmem pages_collapsed accounting works today where only a successful
page cache update is counted (it's also possible here that no page tables
are actually changed).  Though it incurs some slop, this is preferred to
either not accounting for the event at all, or plumbing through data in
struct mm_slot on whether to account for the collapse or not.

Also note that work still needs to be done to support arbitrary compound
pages, and that this should all be converted to using folios.

[shy828301@gmail.com: Spelling mistake, update comment, and add Documentation]
  Link: https://lore.kernel.org/linux-mm/CAHbLzkpHwZxFzjfX9nxVoRhzup8WMjMfyL6Xiq8mZ9M-N3ombw@mail.gmail.com/
Link: https://lkml.kernel.org/r/20220907144521.3115321-3-zokeefe@google.com
Link: https://lkml.kernel.org/r/20220922224046.1143204-3-zokeefe@google.com
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Chris Kennelly <ckennelly@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:33 -07:00
Zach O'Keefe
7c6c6cc4d3 mm/shmem: add flag to enforce shmem THP in hugepage_vma_check()
Patch series "mm: add file/shmem support to MADV_COLLAPSE", v4.

This series builds on top of the previous "mm: userspace hugepage
collapse" series which introduced the MADV_COLLAPSE madvise mode and added
support for private, anonymous mappings[2], by adding support for file and
shmem backed memory to CONFIG_READ_ONLY_THP_FOR_FS=y kernels.

File and shmem support have been added with effort to align with existing
MADV_COLLAPSE semantics and policy decisions[3].  Collapse of shmem-backed
memory ignores kernel-guiding directives and heuristics including all
sysfs settings (transparent_hugepage/shmem_enabled), and tmpfs huge= mount
options (shmem always supports large folios).  Like anonymous mappings, on
successful return of MADV_COLLAPSE on file/shmem memory, the contents of
memory mapped by the addresses provided will be synchronously pmd-mapped
THPs.

This functionality unlocks two important uses:

(1)	Immediately back executable text by THPs.  Current support provided
	by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large
	system which might impair services from serving at their full rated
	load after (re)starting.  Tricks like mremap(2)'ing text onto
	anonymous memory to immediately realize iTLB performance prevents
	page sharing and demand paging, both of which increase steady state
	memory footprint.  Now, we can have the best of both worlds: Peak
	upfront performance and lower RAM footprints.

(2)	userfaultfd-based live migration of virtual machines satisfy UFFD
	faults by fetching native-sized pages over the network (to avoid
	latency of transferring an entire hugepage).  However, after guest
	memory has been fully copied to the new host, MADV_COLLAPSE can
	be used to immediately increase guest performance.

khugepaged has received a small improvement by association and can now
detect and collapse pte-mapped THPs.  However, there is still work to be
done along the file collapse path.  Compound pages of arbitrary order
still needs to be supported and THP collapse needs to be converted to
using folios in general.  Eventually, we'd like to move away from the
read-only and executable-mapped constraints currently imposed on eligible
files and support any inode claiming huge folio support.  That said, I
think the series as-is covers enough to claim that MADV_COLLAPSE supports
file/shmem memory.

Patches 1-3	Implement the guts of the series.
Patch 4 	Is a tracepoint for debugging.
Patches 5-9 	Refactor existing khugepaged selftests to work with new
		memory types + new collapse tests.
Patch 10 	Adds a userfaultfd selftest mode to mimic a functional test
		of UFFDIO_REGISTER_MODE_MINOR+MADV_COLLAPSE live migration.
		(v4 note: "userfaultfd shmem" selftest is failing as of
		Sep 22 mm-unstable)

[1] https://lore.kernel.org/linux-mm/YyiK8YvVcrtZo0z3@google.com/
[2] https://lore.kernel.org/linux-mm/20220706235936.2197195-1-zokeefe@google.com/
[3] https://lore.kernel.org/linux-mm/YtBmhaiPHUTkJml8@google.com/
[4] https://lore.kernel.org/linux-mm/20220922222731.1124481-1-zokeefe@google.com/
[5] https://lore.kernel.org/linux-mm/20220922184651.1016461-1-zokeefe@google.com/


This patch (of 10):

Extend 'mm/thp: add flag to enforce sysfs THP in hugepage_vma_check()' to
shmem, allowing callers to ignore
/sys/kernel/transparent_hugepage/shmem_enabled and tmpfs huge= mount.

This is intended to be used by MADV_COLLAPSE, and the rationale is
analogous to the anon/file case: MADV_COLLAPSE is not coupled to
directives that advise the kernel's decisions on when THPs should be
considered eligible.  shmem/tmpfs always claims large folio support,
regardless of sysfs or mount options.

[shy828301@gmail.com: test shmem_huge_force explicitly]
  Link: https://lore.kernel.org/linux-mm/CAHbLzko3A5-TpS0BgBeKkx5cuOkWgLvWXQH=TdgW-baO4rPtdg@mail.gmail.com/
Link: https://lkml.kernel.org/r/20220922224046.1143204-1-zokeefe@google.com
Link: https://lkml.kernel.org/r/20220907144521.3115321-2-zokeefe@google.com
Link: https://lkml.kernel.org/r/20220922224046.1143204-2-zokeefe@google.com
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Chris Kennelly <ckennelly@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:33 -07:00
Zach O'Keefe
3505c8e62a selftests/vm: retry on EAGAIN for MADV_COLLAPSE selftest
MADV_COLLAPSE is a best-effort request that will set errno to an
actionable value if the request cannot be performed.

For example, if pages are not found on the LRU, or if they are currently
locked by something else, MADV_COLLAPSE will fail and set errno to EAGAIN
to inform callers that they may try again.

Since the khugepaged selftest is the first public use of MADV_COLLAPSE,
set a best practice of checking errno and retrying on EAGAIN.

Link: https://lkml.kernel.org/r/20220922184651.1016461-2-zokeefe@google.com
Fixes: 9330694de5 ("selftests/vm: add MADV_COLLAPSE collapse context to selftests")
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Chris Kennelly <ckennelly@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:33 -07:00
Zach O'Keefe
0f3e2a2c42 mm/madvise: MADV_COLLAPSE return EAGAIN when page cannot be isolated
MADV_COLLAPSE is a best-effort request that attempts to set an actionable
errno value if the request cannot be fulfilled at the time.  EAGAIN should
be used to communicate that a resource was temporarily unavailable, but
that the user may try again immediately.

SCAN_DEL_PAGE_LRU is an internal result code used when a page cannot be
isolated from it's LRU list.  Since this, like SCAN_PAGE_LRU, is likely a
transitory state, make MADV_COLLAPSE return EAGAIN so that users know they
may reattempt the operation.

Another important scenario to consider is race with khugepaged. 
khugepaged might isolate a page while MADV_COLLAPSE is interested in it. 
Even though racing with khugepaged might mean that the memory has already
been collapsed, signalling an errno that is non-intrinsic to that memory
or arguments provided to madvise(2) lets the user know that future
attempts might (and in this case likely would) succeed, and avoids
false-negative assumptions by the user.

Link: https://lkml.kernel.org/r/20220922184651.1016461-1-zokeefe@google.com
Fixes: 7d8faaf155 ("mm/madvise: introduce MADV_COLLAPSE sync hugepage collapse")
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Chris Kennelly <ckennelly@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:32 -07:00
Zach O'Keefe
780a4b6fb8 mm/khugepaged: check compound_order() in collapse_pte_mapped_thp()
By the time we lock a page in collapse_pte_mapped_thp(), the page mapped
by the address pushed onto the slot's .pte_mapped_thp[] array might have
changed arbitrarily since we last looked at it.  We revalidate that the
page is still the head of a compound page, but we don't revalidate if the
compound page is of order HPAGE_PMD_ORDER before applying rmap and page
table updates.

Since the kernel now supports large folios of arbitrary order, and since
replacing page's pte mappings by a pmd mapping only makes sense for
compound pages of order HPAGE_PMD_ORDER, revalidate that the compound
order is indeed of order HPAGE_PMD_ORDER before proceeding.

Link: https://lore.kernel.org/linux-mm/CAHbLzkon+2ky8v9ywGcsTUgXM_B35jt5NThYqQKXW2YV_GUacw@mail.gmail.com/
Link: https://lkml.kernel.org/r/20220922222731.1124481-1-zokeefe@google.com
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Suggested-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Chris Kennelly <ckennelly@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:32 -07:00
Liu Shixin
958f32ce83 mm: hugetlb: fix UAF in hugetlb_handle_userfault
The vma_lock and hugetlb_fault_mutex are dropped before handling userfault
and reacquire them again after handle_userfault(), but reacquire the
vma_lock could lead to UAF[1,2] due to the following race,

hugetlb_fault
  hugetlb_no_page
    /*unlock vma_lock */
    hugetlb_handle_userfault
      handle_userfault
        /* unlock mm->mmap_lock*/
                                           vm_mmap_pgoff
                                             do_mmap
                                               mmap_region
                                                 munmap_vma_range
                                                   /* clean old vma */
        /* lock vma_lock again  <--- UAF */
    /* unlock vma_lock */

Since the vma_lock will unlock immediately after
hugetlb_handle_userfault(), let's drop the unneeded lock and unlock in
hugetlb_handle_userfault() to fix the issue.

[1] https://lore.kernel.org/linux-mm/000000000000d5e00a05e834962e@google.com/
[2] https://lore.kernel.org/linux-mm/20220921014457.1668-1-liuzixian4@huawei.com/
Link: https://lkml.kernel.org/r/20220923042113.137273-1-liushixin2@huawei.com
Fixes: 1a1aad8a9b ("userfaultfd: hugetlbfs: add userfaultfd hugetlb hook")
Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reported-by: syzbot+193f9cee8638750b23cf@syzkaller.appspotmail.com
Reported-by: Liu Zixian <liuzixian4@huawei.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: <stable@vger.kernel.org>	[4.14+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:32 -07:00
Kairui Song
c1b8fdae62 mm: memcontrol: make cgroup_memory_noswap a static key
cgroup_memory_noswap is used in many hot path, so make it a static key
to lower the kernel overhead.

Using 8G of ZRAM as SWAP, benchmark using `perf stat -d -d -d --repeat 100`
with the following code snip in a non-root cgroup:

   #include <stdio.h>
   #include <string.h>
   #include <linux/mman.h>
   #include <sys/mman.h>
   #define MB 1024UL * 1024UL
   int main(int argc, char **argv){
      void *p = mmap(NULL, 8000 * MB, PROT_READ | PROT_WRITE,
                     MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
      memset(p, 0xff, 8000 * MB);
      madvise(p, 8000 * MB, MADV_PAGEOUT);
      memset(p, 0xff, 8000 * MB);
      return 0;
   }

Before:
          7,021.43 msec task-clock                #    0.967 CPUs utilized            ( +-  0.03% )
             4,010      context-switches          #  573.853 /sec                     ( +-  0.01% )
                 0      cpu-migrations            #    0.000 /sec
         2,052,057      page-faults               #  293.661 K/sec                    ( +-  0.00% )
    12,616,546,027      cycles                    #    1.805 GHz                      ( +-  0.06% )  (39.92%)
       156,823,666      stalled-cycles-frontend   #    1.25% frontend cycles idle     ( +-  0.10% )  (40.25%)
       310,130,812      stalled-cycles-backend    #    2.47% backend cycles idle      ( +-  4.39% )  (40.73%)
    18,692,516,591      instructions              #    1.49  insn per cycle
                                                  #    0.01  stalled cycles per insn  ( +-  0.04% )  (40.75%)
     4,907,447,976      branches                  #  702.283 M/sec                    ( +-  0.05% )  (40.30%)
        13,002,578      branch-misses             #    0.26% of all branches          ( +-  0.08% )  (40.48%)
     7,069,786,296      L1-dcache-loads           #    1.012 G/sec                    ( +-  0.03% )  (40.32%)
       649,385,847      L1-dcache-load-misses     #    9.13% of all L1-dcache accesses  ( +-  0.07% )  (40.10%)
     1,485,448,688      L1-icache-loads           #  212.576 M/sec                    ( +-  0.15% )  (39.49%)
        31,628,457      L1-icache-load-misses     #    2.13% of all L1-icache accesses  ( +-  0.40% )  (39.57%)
         6,667,311      dTLB-loads                #  954.129 K/sec                    ( +-  0.21% )  (39.50%)
         5,668,555      dTLB-load-misses          #   86.40% of all dTLB cache accesses  ( +-  0.12% )  (39.03%)
               765      iTLB-loads                #  109.476 /sec                     ( +- 21.81% )  (39.44%)
         4,370,351      iTLB-load-misses          # 214320.09% of all iTLB cache accesses  ( +-  1.44% )  (39.86%)
       149,207,254      L1-dcache-prefetches      #   21.352 M/sec                    ( +-  0.13% )  (40.27%)

           7.25869 +- 0.00203 seconds time elapsed  ( +-  0.03% )

After:
          6,576.16 msec task-clock                #    0.953 CPUs utilized            ( +-  0.10% )
             4,020      context-switches          #  605.595 /sec                     ( +-  0.01% )
                 0      cpu-migrations            #    0.000 /sec
         2,052,056      page-faults               #  309.133 K/sec                    ( +-  0.00% )
    11,967,619,180      cycles                    #    1.803 GHz                      ( +-  0.36% )  (38.76%)
       161,259,240      stalled-cycles-frontend   #    1.38% frontend cycles idle     ( +-  0.27% )  (36.58%)
       253,605,302      stalled-cycles-backend    #    2.16% backend cycles idle      ( +-  4.45% )  (34.78%)
    19,328,171,892      instructions              #    1.65  insn per cycle
                                                  #    0.01  stalled cycles per insn  ( +-  0.10% )  (31.46%)
     5,213,967,902      branches                  #  785.461 M/sec                    ( +-  0.18% )  (30.68%)
        12,385,170      branch-misses             #    0.24% of all branches          ( +-  0.26% )  (34.13%)
     7,271,687,822      L1-dcache-loads           #    1.095 G/sec                    ( +-  0.12% )  (35.29%)
       649,873,045      L1-dcache-load-misses     #    8.93% of all L1-dcache accesses  ( +-  0.11% )  (41.41%)
     1,950,037,608      L1-icache-loads           #  293.764 M/sec                    ( +-  0.33% )  (43.11%)
        31,365,566      L1-icache-load-misses     #    1.62% of all L1-icache accesses  ( +-  0.39% )  (45.89%)
         6,767,809      dTLB-loads                #    1.020 M/sec                    ( +-  0.47% )  (48.42%)
         6,339,590      dTLB-load-misses          #   95.43% of all dTLB cache accesses  ( +-  0.50% )  (46.60%)
               736      iTLB-loads                #  110.875 /sec                     ( +-  1.79% )  (48.60%)
         4,314,836      iTLB-load-misses          # 518653.73% of all iTLB cache accesses  ( +-  0.63% )  (42.91%)
       144,950,156      L1-dcache-prefetches      #   21.836 M/sec                    ( +-  0.37% )  (41.39%)

           6.89935 +- 0.00703 seconds time elapsed  ( +-  0.10% )

The performance is clearly better. There is no significant hotspot
improvement according to perf report, as there are quite a few
callers of memcg_swap_enabled and do_memsw_account (which calls
memcg_swap_enabled). Many pieces of minor optimizations resulted
in lower overhead for the branch predictor, and bettter performance.

Link: https://lkml.kernel.org/r/20220919180634.45958-3-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Muchun Song <songmuchun@bytedance.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:32 -07:00
Kairui Song
2eb989195d mm: memcontrol: use memcg_kmem_enabled in count_objcg_event
Patch series "mm: memcontrol: cleanup and optimize for two accounting
params", v2.


This patch (of 2):

There are currently two helpers for checking if cgroup kmem
accounting is enabled:

- mem_cgroup_kmem_disabled
- memcg_kmem_enabled

mem_cgroup_kmem_disabled is a simple helper that returns true
if cgroup.memory=nokmem is specified, otherwise returns false.

memcg_kmem_enabled is a bit different, it returns true if
cgroup.memory=nokmem is not specified and there was at least one
non-root memory control enabled cgroup ever created. This help improve
performance when kmem accounting was not actually activated. And it's
optimized with static branch.

The usage of mem_cgroup_kmem_disabled is for sub-systems that need to
preallocate data for kmem accounting since they could be initialized
before kmem accounting is activated. But count_objcg_event doesn't
need that, so using memcg_kmem_enabled is better here.

Link: https://lkml.kernel.org/r/20220919180634.45958-1-ryncsn@gmail.com
Link: https://lkml.kernel.org/r/20220919180634.45958-2-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Muchun Song <songmuchun@bytedance.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:32 -07:00
Kaixu Xia
233f0b31bd mm/damon: deduplicate damon_{reclaim,lru_sort}_apply_parameters()
The bodies of damon_{reclaim,lru_sort}_apply_parameters() contain
duplicates.  This commit adds a common function
damon_set_region_biggest_system_ram_default() to remove the duplicates.

Link: https://lkml.kernel.org/r/6329f00d.a70a0220.9bb29.3678SMTPIN_ADDED_BROKEN@mx.google.com
Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
Suggested-by: SeongJae Park <sj@kernel.org>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:31 -07:00
Xin Hao
30b6242c49 mm/damon/sysfs: return 'err' value when call kstrtoul() failed
We had better return the 'err' value when calling kstrtoul() failed, so
the user will know why it really fails, there do little change, let it
return the 'err' value when failed.

Link: https://lkml.kernel.org/r/6329ebe0.050a0220.ec4bd.297cSMTPIN_ADDED_BROKEN@mx.google.com
Suggested-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Xin Hao <xhao@linux.alibaba.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: SeongJae Park <sj@kernel.org>
Reviewed-by: Xin Hao <xhao@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:31 -07:00
Ran Xiaokai
a57ae9ef9e mm/page_alloc: update comments for rmqueue()
Since commit 44042b4498 ("mm/page_alloc: allow high-order pages to be
stored on the per-cpu lists"), the per-cpu page allocators (PCP) is not
only for order-0 pages.  Update the comments.

Link: https://lkml.kernel.org/r/20220918025640.208586-1-ran.xiaokai@zte.com.cn
Signed-off-by: Ran Xiaokai <ran.xiaokai@zte.com.cn>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:31 -07:00
Kaixu Xia
e3e486e634 mm/damon: rename damon_pageout_score() to damon_cold_score()
In the beginning there is only one damos_action 'DAMOS_PAGEOUT' that need
to get the coldness score of a region for a scheme, which using
damon_pageout_score() to do that.  But now there are also other
damos_action actions need the coldness score, so rename it to
damon_cold_score() to make more sense.

Link: https://lkml.kernel.org/r/1663423014-28907-1-git-send-email-kaixuxia@tencent.com
Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:31 -07:00
Mike Kravetz
2b21624fc2 hugetlb: freeze allocated pages before creating hugetlb pages
When creating hugetlb pages, the hugetlb code must first allocate
contiguous pages from a low level allocator such as buddy, cma or
memblock.  The pages returned from these low level allocators are ref
counted.  This creates potential issues with other code taking speculative
references on these pages before they can be transformed to a hugetlb
page.  This issue has been addressed with methods and code such as that
provided in [1].

Recent discussions about vmemmap freeing [2] have indicated that it would
be beneficial to freeze all sub pages, including the head page of pages
returned from low level allocators before converting to a hugetlb page. 
This helps avoid races if we want to replace the page containing vmemmap
for the head page.

There have been proposals to change at least the buddy allocator to return
frozen pages as described at [3].  If such a change is made, it can be
employed by the hugetlb code.  However, as mentioned above hugetlb uses
several low level allocators so each would need to be modified to return
frozen pages.  For now, we can manually freeze the returned pages.  This
is done in two places:

1) alloc_buddy_huge_page, only the returned head page is ref counted.
   We freeze the head page, retrying once in the VERY rare case where
   there may be an inflated ref count.
2) prep_compound_gigantic_page, for gigantic pages the current code
   freezes all pages except the head page.  New code will simply freeze
   the head page as well.

In a few other places, code checks for inflated ref counts on newly
allocated hugetlb pages.  With the modifications to freeze after
allocating, this code can be removed.

After hugetlb pages are freshly allocated, they are often added to the
hugetlb free lists.  Since these pages were previously ref counted, this
was done via put_page() which would end up calling the hugetlb destructor:
free_huge_page.  With changes to freeze pages, we simply call
free_huge_page directly to add the pages to the free list.

In a few other places, freshly allocated hugetlb pages were immediately
put into use, and the expectation was they were already ref counted.  In
these cases, we must manually ref count the page.

[1] https://lore.kernel.org/linux-mm/20210622021423.154662-3-mike.kravetz@oracle.com/
[2] https://lore.kernel.org/linux-mm/20220802180309.19340-1-joao.m.martins@oracle.com/
[3] https://lore.kernel.org/linux-mm/20220809171854.3725722-1-willy@infradead.org/

[mike.kravetz@oracle.com: fix NULL pointer dereference]
  Link: https://lkml.kernel.org/r/20220921202702.106069-1-mike.kravetz@oracle.com
Link: https://lkml.kernel.org/r/20220916214638.155744-1-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:31 -07:00
Miaohe Lin
c9b3637f8a mm/page_alloc: fix obsolete comment in deferred_pfn_valid()
There are no architectures that can have holes in the memory map within a
pageblock since commit 859a85ddf9 ("mm: remove pfn_valid_within() and
CONFIG_HOLES_IN_ZONE").  Update the corresponding comment.

Link: https://lkml.kernel.org/r/20220916072257.9639-17-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:30 -07:00
Miaohe Lin
def76fd549 mm/page_alloc: remove obsolete gfpflags_normal_context()
Since commit dacb5d8875 ("tcp: fix page frag corruption on page fault"),
there's no caller of gfpflags_normal_context().  Remove it as this helper
is strictly tied to the sk page frag usage and there won't be other user
in the future.

[linmiaohe@huawei.com: fix htmldocs]
  Link: https://lkml.kernel.org/r/1bc55727-9b66-0e9e-c306-f10c4716ea89@huawei.com
Link: https://lkml.kernel.org/r/20220916072257.9639-16-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:30 -07:00
Miaohe Lin
896c4d5253 mm/page_alloc: use costly_order in WARN_ON_ONCE_GFP()
There's no need to check whether order > PAGE_ALLOC_COSTLY_ORDER again. 
Minor readability improvement.

Link: https://lkml.kernel.org/r/20220916072257.9639-15-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:30 -07:00
Miaohe Lin
dae37a5dcc mm/page_alloc: init local variable buddy_pfn
The local variable buddy_pfn could be passed to buddy_merge_likely()
without initialization if the passed in order is MAX_ORDER - 1.  This
looks buggy but buddy_pfn won't be used in this case as there's a order >=
MAX_ORDER - 2 check.  Init buddy_pfn to 0 anyway to avoid possible future
misuse.

Link: https://lkml.kernel.org/r/20220916072257.9639-14-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:30 -07:00
Miaohe Lin
c940e0207a mm/page_alloc: use helper macro SZ_1{K,M}
Use helper macro SZ_1K and SZ_1M to do the size conversion.  Minor
readability improvement.

Link: https://lkml.kernel.org/r/20220916072257.9639-13-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:30 -07:00
Miaohe Lin
6dc2c87a5a mm/page_alloc: make boot_nodestats static
It's only used in mm/page_alloc.c now.  Make it static.

Link: https://lkml.kernel.org/r/20220916072257.9639-12-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:30 -07:00
Miaohe Lin
f774a6a6fd mm, memory_hotplug: remove obsolete generic_free_nodedata()
Commit 390511e147 ("mm, memory_hotplug: drop arch_free_nodedata") drops
the last caller of generic_free_nodedata().  Remove it too.

Link: https://lkml.kernel.org/r/20220916072257.9639-11-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:29 -07:00
Miaohe Lin
c035290424 mm/page_alloc: use local variable zone_idx directly
Use local variable zone_idx directly since it holds the exact value of
zone_idx().  No functional change intended.

Link: https://lkml.kernel.org/r/20220916072257.9639-10-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:29 -07:00
Miaohe Lin
b36184553d mm/page_alloc: add missing is_migrate_isolate() check in set_page_guard()
In MIGRATE_ISOLATE case, zone freepage state shouldn't be modified as
caller will take care of it.  Add missing is_migrate_isolate() here to
avoid possible unbalanced freepage state.  This would happen if someone
isolates the block, and then we face an MCE failure/soft-offline on a page
within that block.  __mod_zone_freepage_state() will be triggered via
below call trace which already had been triggered back when block was
isolated:

take_page_off_buddy
  break_down_buddy_pages
    set_page_guard

Link: https://lkml.kernel.org/r/20220916072257.9639-9-linmiaohe@huawei.com
Fixes: 06be6ff3d2 ("mm,hwpoison: rework soft offline for free pages")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:29 -07:00
Miaohe Lin
30e3b5d7c8 mm: remove obsolete pgdat_is_empty()
There's no caller.  Remove it.

Link: https://lkml.kernel.org/r/20220916072257.9639-8-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:29 -07:00
Miaohe Lin
022e7fa0f7 mm/page_alloc: fix freeing static percpu memory
The size of struct per_cpu_zonestat can be 0 on !SMP && !NUMA.  In that
case, zone->per_cpu_zonestats will always equal to boot_zonestats.  But in
zone_pcp_reset(), zone->per_cpu_zonestats is freed via free_percpu()
directly without checking against boot_zonestats first.  boot_zonestats
will be released by free_percpu() unexpectedly.

Link: https://lkml.kernel.org/r/20220916072257.9639-7-linmiaohe@huawei.com
Fixes: 28f836b677 ("mm/page_alloc: split per cpu page lists and zone stats")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:29 -07:00
Miaohe Lin
5749fcc5f0 mm/page_alloc: add __init annotations to init_mem_debugging_and_hardening()
It's only called by mm_init(). Add __init annotations to it.

Link: https://lkml.kernel.org/r/20220916072257.9639-6-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:28 -07:00
Miaohe Lin
709924bc75 mm/page_alloc: remove obsolete comment in zone_statistics()
Since commit 43c95bcc51 ("mm/page_alloc: reduce duration that IRQs are
disabled for VM counters"), zone_statistics() is not called with
interrupts disabled.  Update the corresponding comment.

Link: https://lkml.kernel.org/r/20220916072257.9639-5-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:28 -07:00
Miaohe Lin
638a9ae97a mm: remove obsolete macro NR_PCP_ORDER_MASK and NR_PCP_ORDER_WIDTH
Since commit 8b10b465d0 ("mm/page_alloc: free pages in a single pass
during bulk free"), they're not used anymore.  Remove them.

Link: https://lkml.kernel.org/r/20220916072257.9639-4-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:28 -07:00
Miaohe Lin
b89f173516 mm/page_alloc: make zone_pcp_update() static
Since commit b92ca18e8c ("mm/page_alloc: disassociate the pcp->high from
pcp->batch"), zone_pcp_update() is only used in mm/page_alloc.c.  Move
zone_pcp_update() up to avoid forward declaration and then make it static.
No functional change intended.

Link: https://lkml.kernel.org/r/20220916072257.9639-3-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:28 -07:00
Miaohe Lin
ce96fa6223 mm/page_alloc: ensure kswapd doesn't accidentally go to sleep
Patch series "A few cleanup patches for mm", v2.

This series contains a few cleanup patches to remove the obsolete comments
and functions, use helper macro to improve readability and so on.  More
details can be found in the respective changelogs.


This patch (of 16):

If ALLOC_KSWAPD is set, wake_all_kswapds() will be called to ensure kswapd
doesn't accidentally go to sleep.  But when reserve_flags is set,
alloc_flags will be overwritten and ALLOC_KSWAPD is thus lost.  Preserve
the ALLOC_KSWAPD flag in alloc_flags to ensure kswapd won't go to sleep
accidentally.

Link: https://lkml.kernel.org/r/20220916072257.9639-1-linmiaohe@huawei.com
Link: https://lkml.kernel.org/r/20220916072257.9639-2-linmiaohe@huawei.com
Fixes: 0a79cdad5e ("mm: use alloc_flags to record if kswapd can wake")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:28 -07:00
Chih-En Lin
3ae6d3e30a mm/page_table_check: fix typos
Link: https://lkml.kernel.org/r/20220916090434.701194-1-shiyn.lin@gmail.com
Signed-off-by: Chih-En Lin <shiyn.lin@gmail.com>
Acked-by: Pasha Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:27 -07:00
Kaixu Xia
cc713520bd mm/damon: return void from damon_set_schemes()
There is no point in returning an int from damon_set_schemes().  It always
returns 0 which is meaningless for the caller, so change it to return void
directly.

Link: https://lkml.kernel.org/r/1663341635-12675-1-git-send-email-kaixuxia@tencent.com
Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:27 -07:00
Xiu Jianfeng
1ea41595f6 mm/secretmem: add __init annotation to secretmem_init()
It's a fs_initcall entry, add __init annotation to it.

Link: https://lkml.kernel.org/r/20220915011602.176967-1-xiujianfeng@huawei.com
Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com>
Cc: Mike Rapoport <rppt@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:27 -07:00
Yang Yingliang
e47b082579 mm/damon/lru_sort: change damon_lru_sort_wmarks to static
damon_lru_sort_wmarks is only used in lru_sort.c now, change it to static.

Link: https://lkml.kernel.org/r/20220915021024.4177940-2-yangyingliang@huawei.com
Fixes: 189aa3d58206 ("mm/damon/lru_sort: use watermarks parameters generator macro")
Signed-off-by: Yang Yingliang <yangyingliang@huawei.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:27 -07:00
Yang Yingliang
81f8f57f85 mm/damon/reclaim: change damon_reclaim_wmarks to static
damon_reclaim_wmarks is only used in reclaim.c now, change it to static.

Link: https://lkml.kernel.org/r/20220915021024.4177940-1-yangyingliang@huawei.com
Fixes: 89dd02d8abd1 ("mm/damon/reclaim: use watermarks parameters generator macro")
Signed-off-by: Yang Yingliang <yangyingliang@huawei.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:27 -07:00
Kaixu Xia
16bc1b0f02 mm/damon: use 'struct damon_target *' instead of 'void *' in target_valid()
We could use 'struct damon_target *' directly instead of 'void *' in
target_valid() operation to make code simple.

Link: https://lkml.kernel.org/r/1663241621-13293-1-git-send-email-kaixuxia@tencent.com
Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:26 -07:00
Xin Hao
a07b8eafa4 mm/damon: simplify scheme create in lru_sort.c
In damon_lru_sort_new_hot_scheme() and damon_lru_sort_new_cold_scheme(),
they have so much in common, so we can combine them into a single
function, and we just need to distinguish their differences.

[yangyingliang@huawei.com: change damon_lru_sort_stub_pattern to static]
  Link: https://lkml.kernel.org/r/20220917121228.1889699-1-yangyingliang@huawei.com
Link: https://lkml.kernel.org/r/20220915133041.71819-1-sj@kernel.org
Signed-off-by: Xin Hao <xhao@linux.alibaba.com>
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Yang Yingliang <yangyingliang@huawei.com>
Suggested-by: SeongJae Park <sj@kernel.org>
Reviewed-by: Xin Hao <xhao@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:26 -07:00
Xin Hao
871f697b49 mm/damon/sysfs: avoid call damon_target_has_pid() repeatedly
In damon_sysfs_destroy_targets(), we call damon_target_has_pid() to check
whether the 'ctx' include a valid pid, but there no need to call
damon_target_has_pid() to check repeatedly, just need call it once.

[xhao@linux.alibaba.com: more simplified code calls damon_target_has_pid()]
  Link: https://lkml.kernel.org/r/20220916133535.7428-1-xhao@linux.alibaba.com
Link: https://lkml.kernel.org/r/20220915142237.92529-1-xhao@linux.alibaba.com
Signed-off-by: Xin Hao <xhao@linux.alibaba.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:26 -07:00
Alexander Potapenko
ce732a7520 x86: kmsan: handle CPU entry area
Among other data, CPU entry area holds exception stacks, so addresses from
this area can be passed to kmsan_get_metadata().

This previously led to kmsan_get_metadata() returning NULL, which in turn
resulted in a warning that triggered further attempts to call
kmsan_get_metadata() in the exception context, which quickly exhausted the
exception stack.

This patch allocates shadow and origin for the CPU entry area on x86 and
introduces arch_kmsan_get_meta_or_null(), which performs arch-specific
metadata mapping.

Link: https://lkml.kernel.org/r/20220928123219.1101883-1-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Fixes: 21d723a7c1409 ("kmsan: add KMSAN runtime core")
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Ilya Leoshkevich <iii@linux.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Marco Elver <elver@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:26 -07:00
Alexander Potapenko
4ca8cc8d1b x86: kmsan: enable KMSAN builds for x86
Make KMSAN usable by adding the necessary Kconfig bits.

Also declare x86-specific functions checking address validity in
arch/x86/include/asm/kmsan.h.

Link: https://lkml.kernel.org/r/20220915150417.722975-44-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Ilya Leoshkevich <iii@linux.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Marco Elver <elver@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:26 -07:00
Alexander Potapenko
1468c6f455 mm: fs: initialize fsdata passed to write_begin/write_end interface
Functions implementing the a_ops->write_end() interface accept the `void
*fsdata` parameter that is supposed to be initialized by the corresponding
a_ops->write_begin() (which accepts `void **fsdata`).

However not all a_ops->write_begin() implementations initialize `fsdata`
unconditionally, so it may get passed uninitialized to a_ops->write_end(),
resulting in undefined behavior.

Fix this by initializing fsdata with NULL before the call to
write_begin(), rather than doing so in all possible a_ops implementations.

This patch covers only the following cases found by running x86 KMSAN
under syzkaller:

 - generic_perform_write()
 - cont_expand_zero() and generic_cont_expand_simple()
 - page_symlink()

Other cases of passing uninitialized fsdata may persist in the codebase.

Link: https://lkml.kernel.org/r/20220915150417.722975-43-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Ilya Leoshkevich <iii@linux.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Marco Elver <elver@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:25 -07:00
Alexander Potapenko
a6a7aaba7f bpf: kmsan: initialize BPF registers with zeroes
When executing BPF programs, certain registers may get passed
uninitialized to helper functions.  E.g.  when performing a JMP_CALL,
registers BPF_R1-BPF_R5 are always passed to the helper, no matter how
many of them are actually used.

Passing uninitialized values as function parameters is technically
undefined behavior, so we work around it by always initializing the
registers.

Link: https://lkml.kernel.org/r/20220915150417.722975-42-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Ilya Leoshkevich <iii@linux.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Marco Elver <elver@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:25 -07:00
Alexander Potapenko
6cae637fa2 entry: kmsan: introduce kmsan_unpoison_entry_regs()
struct pt_regs passed into IRQ entry code is set up by uninstrumented asm
functions, therefore KMSAN may not notice the registers are initialized.

kmsan_unpoison_entry_regs() unpoisons the contents of struct pt_regs,
preventing potential false positives.  Unlike kmsan_unpoison_memory(), it
can be called under kmsan_in_runtime(), which is often the case in IRQ
entry code.

Link: https://lkml.kernel.org/r/20220915150417.722975-41-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Ilya Leoshkevich <iii@linux.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Marco Elver <elver@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:25 -07:00
Alexander Potapenko
37ad4ee836 x86: kmsan: don't instrument stack walking functions
Upon function exit, KMSAN marks local variables as uninitialized.  Further
function calls may result in the compiler creating the stack frame where
these local variables resided.  This results in frame pointers being
marked as uninitialized data, which is normally correct, because they are
not stack-allocated.

However stack unwinding functions are supposed to read and dereference the
frame pointers, in which case KMSAN might be reporting uses of
uninitialized values.

To work around that, we mark update_stack_state(), unwind_next_frame() and
show_trace_log_lvl() with __no_kmsan_checks, preventing all KMSAN reports
inside those functions and making them return initialized values.

Link: https://lkml.kernel.org/r/20220915150417.722975-40-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Ilya Leoshkevich <iii@linux.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Marco Elver <elver@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:25 -07:00
Alexander Potapenko
7cf8f44a5a x86: fs: kmsan: disable CONFIG_DCACHE_WORD_ACCESS
dentry_string_cmp() calls read_word_at_a_time(), which might read
uninitialized bytes to optimize string comparisons.  Disabling
CONFIG_DCACHE_WORD_ACCESS should prohibit this optimization, as well as
(probably) similar ones.

Link: https://lkml.kernel.org/r/20220915150417.722975-39-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Suggested-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Ilya Leoshkevich <iii@linux.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Marco Elver <elver@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:25 -07:00
Alexander Potapenko
d911c67e10 x86: kasan: kmsan: support CONFIG_GENERIC_CSUM on x86, enable it for KASAN/KMSAN
This is needed to allow memory tools like KASAN and KMSAN see the memory
accesses from the checksum code.  Without CONFIG_GENERIC_CSUM the tools
can't see memory accesses originating from handwritten assembly code.

For KASAN it's a question of detecting more bugs, for KMSAN using the C
implementation also helps avoid false positives originating from seemingly
uninitialized checksum values.

Link: https://lkml.kernel.org/r/20220915150417.722975-38-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Ilya Leoshkevich <iii@linux.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Marco Elver <elver@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-03 14:03:24 -07:00