We load the stage2 context of a guest for different operations,
including running the guest and tlb maintenance on behalf of the
guest. As of now only the vttbr is private to the guest, but this
is about to change with IPA per VM. Add a helper to load the stage2
configuration for a VM, which could do the right thing with the
future changes.
Cc: Christoffer Dall <cdall@kernel.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We rely on cpufeature framework to detect and enable CNP so for KVM we
need to patch hyp to set CNP bit just before TTBR0_EL2 gets written.
For the guest we encode CNP bit while building vttbr, so we don't need
to bother with that in a world switch.
Reviewed-by: James Morse <james.morse@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When running without VHE, it is necessary to set SCTLR_EL2.DSSBS if SSBD
has been forcefully disabled on the kernel command-line.
Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
If trapping FPSIMD in the context of an AArch32 guest, it is critical
to set FPEXC32_EL2.EN to 1 so that the trapping is taken to EL2 and
not EL1.
Conversely, it is just as critical *not* to set FPEXC32_EL2.EN to 1
if we're not going to trap FPSIMD, as we then corrupt the existing
VFP state.
Moving the call to __activate_traps_fpsimd32 to the point where we
know for sure that we are going to trap ensures that we don't set that
bit spuriously.
Fixes: e6b673b741 ("KVM: arm64: Optimise FPSIMD handling to reduce guest/host thrashing")
Cc: stable@vger.kernel.org # v4.18
Cc: Dave Martin <dave.martin@arm.com>
Reported-by: Alexander Graf <agraf@suse.de>
Tested-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
- Support for Group0 interrupts in guests
- Cache management optimizations for ARMv8.4 systems
- Userspace interface for RAS, allowing error retrival and injection
- Fault path optimization
- Emulated physical timer fixes
- Random cleanups
-----BEGIN PGP SIGNATURE-----
iQJJBAABCAAzFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAltxmb4VHG1hcmMuenlu
Z2llckBhcm0uY29tAAoJECPQ0LrRPXpD7E0P/0qn1IMtskaC7EglFCm72+NXe1CW
ZAtxTHzetjf7977dA3bVsg4gEKvVx5b3YuRT76u4hBoSa0rFJ8Q9iSC8wL4u9Idf
JUQjwVIUxMeGW5fR0VFDkd9SkDYtNGdjQcVl2I8UpV+lnLC/2Vfr4xR5qBad2pAQ
zjthdpQMjZWClyhPkOv6WjVsW0lNw0xDkZWgCViBY+TdT7Gmw/q8hmvj9TEwbMGT
7tmQl9MupQ2bLY8WuTiGA6eNiEZld9esJGthI43xGQDJl4Y3FeciIZWcBru20+wu
GnC3QS3FlmYlp2WuWcKU9lEGXhmoX/7/1WVhZkoMsIvi05c2JCxSxstK7QNfUaAH
8q2/Wc0fYIGm2owH+b1Mpn0w37GZtgl7Bxxzakg7B7Ko0q/EnO7z6XVup1/abKRU
NtUKlWIL7NDiHjHO6j0hBb3rGi7B3wo86P7GTPJb12Dg9EBF5DVhekXeGI/ChzE9
WIV1PxR0seSapzlJ92HHmWLAtcRLtXXesqcctmN4d2URBtsx9DEwo0Upiz//reYE
TBncQbtniVt2xXEl7sqNEYei75IxC3Dg1AgDL/zVQDl8PW0UvKo8Qb0cW7EnF9Vg
AcjD6R72dAgbqUMYOP0nriKxzXwa0Jls9aF3zBgcikKMGeyD6Z/Exlq4LexhSeuw
cWKsrQUYcLGKZPRN
=b6+A
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-for-v4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm updates for 4.19
- Support for Group0 interrupts in guests
- Cache management optimizations for ARMv8.4 systems
- Userspace interface for RAS, allowing error retrival and injection
- Fault path optimization
- Emulated physical timer fixes
- Random cleanups
In order to generate Group0 SGIs, let's add some decoding logic to
access_gic_sgi(), and pass the generating group accordingly.
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Although vgic-v3 now supports Group0 interrupts, it still doesn't
deal with Group0 SGIs. As usually with the GIC, nothing is simple:
- ICC_SGI1R can signal SGIs of both groups, since GICD_CTLR.DS==1
with KVM (as per 8.1.10, Non-secure EL1 access)
- ICC_SGI0R can only generate Group0 SGIs
- ICC_ASGI1R sees its scope refocussed to generate only Group0
SGIs (as per the note at the bottom of Table 8-14)
We only support Group1 SGIs so far, so no material change.
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
ICC_SGI1R is a 64bit system register, even on AArch32. It is thus
pointless to have such an encoding in the 32bit cp15 array. Let's
drop it.
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
This adds support for the STACKLEAK gcc plugin to arm64 by implementing
stackleak_check_alloca(), based heavily on the x86 version, and adding the
two helpers used by the stackleak common code: current_top_of_stack() and
on_thread_stack(). The stack erasure calls are made at syscall returns.
Additionally, this disables the plugin in hypervisor and EFI stub code,
which are out of scope for the protection.
Acked-by: Alexander Popov <alex.popov@linux.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The get/set events helpers to do some work to check reserved
and padding fields are zero. This is useful on 32bit too.
Move this code into virt/kvm/arm/arm.c, and give the arch
code some underscores.
This is temporarily hidden behind __KVM_HAVE_VCPU_EVENTS until
32bit is wired up.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Dongjiu Geng <gengdongjiu@huawei.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
For the arm64 RAS Extension, user space can inject a virtual-SError
with specified ESR. So user space needs to know whether KVM support
to inject such SError, this interface adds this query for this capability.
KVM will check whether system support RAS Extension, if supported, KVM
returns true to user space, otherwise returns false.
Signed-off-by: Dongjiu Geng <gengdongjiu@huawei.com>
Reviewed-by: James Morse <james.morse@arm.com>
[expanded documentation wording]
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
For the migrating VMs, user space may need to know the exception
state. For example, in the machine A, KVM make an SError pending,
when migrate to B, KVM also needs to pend an SError.
This new IOCTL exports user-invisible states related to SError.
Together with appropriate user space changes, user space can get/set
the SError exception state to do migrate/snapshot/suspend.
Signed-off-by: Dongjiu Geng <gengdongjiu@huawei.com>
Reviewed-by: James Morse <james.morse@arm.com>
[expanded documentation wording]
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
When running on a non-VHE system, we initialize tpidr_el2 to
contain the per-CPU offset required to reach per-cpu variables.
Actually, we initialize it twice: the first time as part of the
EL2 initialization, by copying tpidr_el1 into its el2 counterpart,
and another time by calling into __kvm_set_tpidr_el2.
It turns out that the first part is wrong, as it includes the
distance between the kernel mapping and the linear mapping, while
EL2 only cares about the linear mapping. This was the last vestige
of the first per-cpu use of tpidr_el2 that came in with SDEI.
The only caller then was hyp_panic(), and its now using the
pc-relative get_host_ctxt() stuff, instead of kimage addresses
from the literal pool.
It is not a big deal, as we override it straight away, but it is
slightly confusing. In order to clear said confusion, let's
set this directly as part of the hyp-init code, and drop the
ad-hoc HYP helper.
Reviewed-by: James Morse <james.morse@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Set/Way handling is one of the ugliest corners of KVM. We shouldn't
have to handle that, but better safe than sorry.
Thankfully, FWB fixes this for us by not requiering any maintenance
(the guest is forced to use cacheable memory, no matter what it says,
and the whole system is garanteed to be cache coherent), which means
we don't have to emulate S/W CMOs, and don't have to track VM ops either.
We still have to trap S/W though, if only to prevent the guest from
doing something bad.
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Some code cares about the SPSR_ELx format for exceptions taken from
AArch32 to inspect or manipulate the SPSR_ELx value, which is already in
the SPSR_ELx format, and not in the AArch32 PSR format.
To separate these from cases where we care about the AArch32 PSR format,
migrate these cases to use the PSR_AA32_* definitions rather than
COMPAT_PSR_*.
There should be no functional change as a result of this patch.
Note that arm64 KVM does not support a compat KVM API, and always uses
the SPSR_ELx format, even for AArch32 guests.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Commit e6b673b ("KVM: arm64: Optimise FPSIMD handling to reduce
guest/host thrashing") uses fpsimd_save() to save the FPSIMD state
for a vcpu when scheduling the vcpu out. However, currently
current's value of TIF_SVE is restored before calling fpsimd_save()
which means that fpsimd_save() may erroneously attempt to save SVE
state from the vcpu. This enables current's vector state to be
polluted with guest data. current->thread.sve_state may be
unallocated or not large enough, so this can also trigger a NULL
dereference or buffer overrun.
Instead of this, TIF_SVE should be configured properly for the
guest when calling fpsimd_save() with the vcpu context loaded.
This patch ensures this by delaying restoration of current's
TIF_SVE until after the call to fpsimd_save().
Fixes: e6b673b741 ("KVM: arm64: Optimise FPSIMD handling to reduce guest/host thrashing")
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Commit e6b673b ("KVM: arm64: Optimise FPSIMD handling to reduce
guest/host thrashing") attempts to restore the configuration of
userspace SVE trapping via a call to fpsimd_bind_task_to_cpu(), but
the logic for determining when to do this is not correct.
The patch makes the errnoenous assumption that the only task that
may try to enter userspace with the currently loaded FPSIMD/SVE
register content is current. This may not be the case however: if
some other user task T is scheduled on the CPU during the execution
of the KVM run loop, and the vcpu does not try to use the registers
in the meantime, then T's state may be left there intact. If T
happens to be the next task to enter userspace on this CPU then the
hooks for reloading the register state and configuring traps will
be skipped.
(Also, current never has SVE state at this point anyway and should
always have the trap enabled, as a side-effect of the ioctl()
syscall needed to reach the KVM run loop in the first place.)
This patch instead restores the state of the EL0 trap from the
state observed at the most recent vcpu_load(), ensuring that the
trap is set correctly for the loaded context (if any).
Fixes: e6b673b741 ("KVM: arm64: Optimise FPSIMD handling to reduce guest/host thrashing")
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Commit e6b673b ("KVM: arm64: Optimise FPSIMD handling to reduce
guest/host thrashing") introduces a specific helper
kvm_arch_vcpu_put_fp() for saving the vcpu FPSIMD state during
vcpu_put().
This function uses local_bh_disable()/_enable() to protect the
FPSIMD context manipulation from interruption by softirqs.
This approach is not correct, because vcpu_put() can be invoked
either from the KVM host vcpu thread (when exiting the vcpu run
loop), or via a preempt notifier. In the former case, only
preemption is disabled. In the latter case, the function is called
from inside __schedule(), which means that IRQs are disabled.
Use of local_bh_disable()/_enable() with IRQs disabled is considerd
an error, resulting in lockdep splats while running VMs if lockdep
is enabled.
This patch disables IRQs instead of attempting to disable softirqs,
avoiding the problem of calling local_bh_enable() with IRQs
disabled in the __schedule() path. This creates an additional
interrupt blackout during vcpu run loop exit, but this is the rare
case and the blackout latency is still less than that of
__schedule().
Fixes: e6b673b741 ("KVM: arm64: Optimise FPSIMD handling to reduce guest/host thrashing")
Reported-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* ARM: lazy context-switching of FPSIMD registers on arm64, "split"
regions for vGIC redistributor
* s390: cleanups for nested, clock handling, crypto, storage keys and
control register bits
* x86: many bugfixes, implement more Hyper-V super powers,
implement lapic_timer_advance_ns even when the LAPIC timer
is emulated using the processor's VMX preemption timer. Two
security-related bugfixes at the top of the branch.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJbH8Z/AAoJEL/70l94x66DF+UIAJeOuTp6LGasT/9uAb2OovaN
+5kGmOPGFwkTcmg8BQHI2fXT4vhxMXWPFcQnyig9eXJVxhuwluXDOH4P9IMay0yw
VDCBsWRdMvZDQad2hn6Z5zR4Jx01XrSaG/KqvXbbDKDCy96mWG7SYAY2m3ZwmeQi
3Pa3O3BTijr7hBYnMhdXGkSn4ZyU8uPaAgIJ8795YKeOJ2JmioGYk6fj6y2WCxA3
ztJymBjTmIoZ/F8bjuVouIyP64xH4q9roAyw4rpu7vnbWGqx1fjPYJoB8yddluWF
JqCPsPzhKDO7mjZJy+lfaxIlzz2BN7tKBNCm88s5GefGXgZwk3ByAq/0GQ2M3rk=
=H5zI
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"Small update for KVM:
ARM:
- lazy context-switching of FPSIMD registers on arm64
- "split" regions for vGIC redistributor
s390:
- cleanups for nested
- clock handling
- crypto
- storage keys
- control register bits
x86:
- many bugfixes
- implement more Hyper-V super powers
- implement lapic_timer_advance_ns even when the LAPIC timer is
emulated using the processor's VMX preemption timer.
- two security-related bugfixes at the top of the branch"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (79 commits)
kvm: fix typo in flag name
kvm: x86: use correct privilege level for sgdt/sidt/fxsave/fxrstor access
KVM: x86: pass kvm_vcpu to kvm_read_guest_virt and kvm_write_guest_virt_system
KVM: x86: introduce linear_{read,write}_system
kvm: nVMX: Enforce cpl=0 for VMX instructions
kvm: nVMX: Add support for "VMWRITE to any supported field"
kvm: nVMX: Restrict VMX capability MSR changes
KVM: VMX: Optimize tscdeadline timer latency
KVM: docs: nVMX: Remove known limitations as they do not exist now
KVM: docs: mmu: KVM support exposing SLAT to guests
kvm: no need to check return value of debugfs_create functions
kvm: Make VM ioctl do valloc for some archs
kvm: Change return type to vm_fault_t
KVM: docs: mmu: Fix link to NPT presentation from KVM Forum 2008
kvm: x86: Amend the KVM_GET_SUPPORTED_CPUID API documentation
KVM: x86: hyperv: declare KVM_CAP_HYPERV_TLBFLUSH capability
KVM: x86: hyperv: simplistic HVCALL_FLUSH_VIRTUAL_ADDRESS_{LIST,SPACE}_EX implementation
KVM: x86: hyperv: simplistic HVCALL_FLUSH_VIRTUAL_ADDRESS_{LIST,SPACE} implementation
KVM: introduce kvm_make_vcpus_request_mask() API
KVM: x86: hyperv: do rep check for each hypercall separately
...
Now that all our infrastructure is in place, let's expose the
availability of ARCH_WORKAROUND_2 to guests. We take this opportunity
to tidy up a couple of SMCCC constants.
Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In order to forward the guest's ARCH_WORKAROUND_2 calls to EL3,
add a small(-ish) sequence to handle it at EL2. Special care must
be taken to track the state of the guest itself by updating the
workaround flags. We also rely on patching to enable calls into
the firmware.
Note that since we need to execute branches, this always executes
after the Spectre-v2 mitigation has been applied.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In order to offer ARCH_WORKAROUND_2 support to guests, we need
a bit of infrastructure.
Let's add a flag indicating whether or not the guest uses
SSBD mitigation. Depending on the state of this flag, allow
KVM to disable ARCH_WORKAROUND_2 before entering the guest,
and enable it when exiting it.
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The conversion of the FPSIMD context switch trap code to C has added
some overhead to calling it, due to the need to save registers that
the procedure call standard defines as caller-saved.
So, perhaps it is no longer worth invoking this trap handler quite
so early.
Instead, we can invoke it from fixup_guest_exit(), with little
likelihood of increasing the overhead much further.
As a convenience, this patch gives __hyp_switch_fpsimd() the same
return semantics fixup_guest_exit(). For now there is no
possibility of a spurious FPSIMD trap, so the function always
returns true, but this allows it to be tail-called with a single
return statement.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The entire tail of fixup_guest_exit() is contained in if statements
of the form if (x && *exit_code == ARM_EXCEPTION_TRAP). As a result,
we can check just once and bail out of the function early, allowing
the remaining if conditions to be simplified.
The only awkward case is where *exit_code is changed to
ARM_EXCEPTION_EL1_SERROR in the case of an illegal GICv2 CPU
interface access: in that case, the GICv3 trap handling code is
skipped using a goto. This avoids pointlessly evaluating the
static branch check for the GICv3 case, even though we can't have
vgic_v2_cpuif_trap and vgic_v3_cpuif_trap true simultaneously
unless we have a GICv3 and GICv2 on the host: that sounds stupid,
but I haven't satisfied myself that it can't happen.
No functional change.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
In fixup_guest_exit(), there are a couple of cases where after
checking what the exit code was, we assign it explicitly with the
value it already had.
Assuming this is not indicative of a bug, these assignments are not
needed.
This patch removes the redundant assignments, and simplifies some
if-nesting that becomes trivial as a result.
No functional change.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
This patch adds SVE context saving to the hyp FPSIMD context switch
path. This means that it is no longer necessary to save the host
SVE state in advance of entering the guest, when in use.
In order to avoid adding pointless complexity to the code, VHE is
assumed if SVE is in use. VHE is an architectural prerequisite for
SVE, so there is no good reason to turn CONFIG_ARM64_VHE off in
kernels that support both SVE and KVM.
Historically, software models exist that can expose the
architecturally invalid configuration of SVE without VHE, so if
this situation is detected at kvm_init() time then KVM will be
disabled.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
This patch refactors KVM to align the host and guest FPSIMD
save/restore logic with each other for arm64. This reduces the
number of redundant save/restore operations that must occur, and
reduces the common-case IRQ blackout time during guest exit storms
by saving the host state lazily and optimising away the need to
restore the host state before returning to the run loop.
Four hooks are defined in order to enable this:
* kvm_arch_vcpu_run_map_fp():
Called on PID change to map necessary bits of current to Hyp.
* kvm_arch_vcpu_load_fp():
Set up FP/SIMD for entering the KVM run loop (parse as
"vcpu_load fp").
* kvm_arch_vcpu_ctxsync_fp():
Get FP/SIMD into a safe state for re-enabling interrupts after a
guest exit back to the run loop.
For arm64 specifically, this involves updating the host kernel's
FPSIMD context tracking metadata so that kernel-mode NEON use
will cause the vcpu's FPSIMD state to be saved back correctly
into the vcpu struct. This must be done before re-enabling
interrupts because kernel-mode NEON may be used by softirqs.
* kvm_arch_vcpu_put_fp():
Save guest FP/SIMD state back to memory and dissociate from the
CPU ("vcpu_put fp").
Also, the arm64 FPSIMD context switch code is updated to enable it
to save back FPSIMD state for a vcpu, not just current. A few
helpers drive this:
* fpsimd_bind_state_to_cpu(struct user_fpsimd_state *fp):
mark this CPU as having context fp (which may belong to a vcpu)
currently loaded in its registers. This is the non-task
equivalent of the static function fpsimd_bind_to_cpu() in
fpsimd.c.
* task_fpsimd_save():
exported to allow KVM to save the guest's FPSIMD state back to
memory on exit from the run loop.
* fpsimd_flush_state():
invalidate any context's FPSIMD state that is currently loaded.
Used to disassociate the vcpu from the CPU regs on run loop exit.
These changes allow the run loop to enable interrupts (and thus
softirqs that may use kernel-mode NEON) without having to save the
guest's FPSIMD state eagerly.
Some new vcpu_arch fields are added to make all this work. Because
host FPSIMD state can now be saved back directly into current's
thread_struct as appropriate, host_cpu_context is no longer used
for preserving the FPSIMD state. However, it is still needed for
preserving other things such as the host's system registers. To
avoid ABI churn, the redundant storage space in host_cpu_context is
not removed for now.
arch/arm is not addressed by this patch and continues to use its
current save/restore logic. It could provide implementations of
the helpers later if desired.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
In struct vcpu_arch, the debug_flags field is used to store
debug-related flags about the vcpu state.
Since we are about to add some more flags related to FPSIMD and
SVE, it makes sense to add them to the existing flags field rather
than adding new fields. Since there is only one debug_flags flag
defined so far, there is plenty of free space for expansion.
In preparation for adding more flags, this patch renames the
debug_flags field to simply "flags", and updates comments
appropriately.
The flag definitions are also moved to <asm/kvm_host.h>, since
their presence in <asm/kvm_asm.h> was for purely historical
reasons: these definitions are not used from asm any more, and not
very likely to be as more Hyp asm is migrated to C.
KVM_ARM64_DEBUG_DIRTY_SHIFT has not been used since commit
1ea66d27e7 ("arm64: KVM: Move away from the assembly version of
the world switch"), so this patch gets rid of that too.
No functional change.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Acked-by: Christoffer Dall <christoffer.dall@arm.com>
[maz: fixed minor conflict]
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
To make the lazy FPSIMD context switch trap code easier to hack on,
this patch converts it to C.
This is not amazingly efficient, but the trap should typically only
be taken once per host context switch.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Proxying the cpuif accesses at EL2 makes use of vcpu_data_guest_to_host
and co, which check the endianness, which call into vcpu_read_sys_reg...
which isn't mapped at EL2 (it was inlined before, and got moved OoL
with the VHE optimizations).
The result is of course a nice panic. Let's add some specialized
cruft to keep the broken platforms that require this hack alive.
But, this code used vcpu_data_guest_to_host(), which expected us to
write the value to host memory, instead we have trapped the guest's
read or write to an mmio-device, and are about to replay it using the
host's readl()/writel() which also perform swabbing based on the host
endianness. This goes wrong when both host and guest are big-endian,
as readl()/writel() will undo the guest's swabbing, causing the
big-endian value to be written to device-memory.
What needs doing?
A big-endian guest will have pre-swabbed data before storing, undo this.
If its necessary for the host, writel() will re-swab it.
For a read a big-endian guest expects to swab the data after the load.
The hosts's readl() will correct for host endianness, giving us the
device-memory's value in the register. For a big-endian guest, swab it
as if we'd only done the load.
For a little-endian guest, nothing needs doing as readl()/writel() leave
the correct device-memory value in registers.
Tested on Juno with that rarest of things: a big-endian 64K host.
Based on a patch from Marc Zyngier.
Reported-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Fixes: bf8feb3964 ("arm64: KVM: vgic-v2: Add GICV access from HYP")
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Although we've implemented PSCI 0.1, 0.2 and 1.0, we expose either 0.1
or 1.0 to a guest, defaulting to the latest version of the PSCI
implementation that is compatible with the requested version. This is
no different from doing a firmware upgrade on KVM.
But in order to give a chance to hypothetical badly implemented guests
that would have a fit by discovering something other than PSCI 0.2,
let's provide a new API that allows userspace to pick one particular
version of the API.
This is implemented as a new class of "firmware" registers, where
we expose the PSCI version. This allows the PSCI version to be
save/restored as part of a guest migration, and also set to
any supported version if the guest requires it.
Cc: stable@vger.kernel.org #4.16
Reviewed-by: Christoffer Dall <cdall@kernel.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
While generating a message about guests probing for SVE/LORegions
is a useful debugging tool, considering it an error is slightly
over the top, as this is the only way the guest can find out
about the presence of the feature.
Let's turn these message into kvm_debug so that they can only
be seen if CONFIG_DYNAMIC_DEBUG, and kept quiet otherwise.
Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
bpi.S was introduced as we were starting to build the Spectre v2
mitigation framework, and it was rather unclear that it would
become strictly KVM specific.
Now that the picture is a lot clearer, let's move the content
of that file to hyp-entry.S, where it actually belong.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The function SMCCC_ARCH_WORKAROUND_1 was introduced as part of SMC
V1.1 Calling Convention to mitigate CVE-2017-5715. This patch uses
the standard call SMCCC_ARCH_WORKAROUND_1 for Falkor chips instead
of Silicon provider service ID 0xC2001700.
Cc: <stable@vger.kernel.org> # 4.14+
Signed-off-by: Shanker Donthineni <shankerd@codeaurora.org>
[maz: reworked errata framework integration]
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Creates far too many conflicts with arm64/for-next/core, to be
resent post -rc1.
This reverts commit f9f5dc1950.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The function SMCCC_ARCH_WORKAROUND_1 was introduced as part of SMC
V1.1 Calling Convention to mitigate CVE-2017-5715. This patch uses
the standard call SMCCC_ARCH_WORKAROUND_1 for Falkor chips instead
of Silicon provider service ID 0xC2001700.
Cc: <stable@vger.kernel.org> # 4.14+
Signed-off-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We're now ready to map our vectors in weird and wonderful locations.
On enabling ARM64_HARDEN_EL2_VECTORS, a vector slot gets allocated
if this hasn't been already done via ARM64_HARDEN_BRANCH_PREDICTOR
and gets mapped outside of the normal RAM region, next to the
idmap.
That way, being able to obtain VBAR_EL2 doesn't reveal the mapping
of the rest of the hypervisor code.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
So far, the branch from the vector slots to the main vectors can at
most be 4GB from the main vectors (the reach of ADRP), and this
distance is known at compile time. If we were to remap the slots
to an unrelated VA, things would break badly.
A way to achieve VA independence would be to load the absolute
address of the vectors (__kvm_hyp_vector), either using a constant
pool or a series of movs, followed by an indirect branch.
This patches implements the latter solution, using another instance
of a patching callback. Note that since we have to save a register
pair on the stack, we branch to the *second* instruction in the
vectors in order to compensate for it. This also results in having
to adjust this balance in the invalid vector entry point.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
There is no reason why the BP hardening vectors shouldn't be part
of the HYP text at compile time, rather than being mapped at runtime.
Also introduce a new config symbol that controls the compilation
of bpi.S.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
All our useful entry points into the hypervisor are starting by
saving x0 and x1 on the stack. Let's move those into the vectors
by introducing macros that annotate whether a vector is valid or
not, thus indicating whether we want to stash registers or not.
The only drawback is that we now also stash registers for el2_error,
but this should never happen, and we pop them back right at the
start of the handling sequence.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We currently provide the hyp-init code with a kernel VA, and expect
it to turn it into a HYP va by itself. As we're about to provide
the hypervisor with mappings that are not necessarily in the memory
range, let's move the kern_hyp_va macro to kvm_get_hyp_vector.
No functionnal change.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The main idea behind randomising the EL2 VA is that we usually have
a few spare bits between the most significant bit of the VA mask
and the most significant bit of the linear mapping.
Those bits could be a bunch of zeroes, and could be useful
to move things around a bit. Of course, the more memory you have,
the less randomisation you get...
Alternatively, these bits could be the result of KASLR, in which
case they are already random. But it would be nice to have a
*different* randomization, just to make the job of a potential
attacker a bit more difficult.
Inserting these random bits is a bit involved. We don't have a spare
register (short of rewriting all the kern_hyp_va call sites), and
the immediate we want to insert is too random to be used with the
ORR instruction. The best option I could come up with is the following
sequence:
and x0, x0, #va_mask
ror x0, x0, #first_random_bit
add x0, x0, #(random & 0xfff)
add x0, x0, #(random >> 12), lsl #12
ror x0, x0, #(63 - first_random_bit)
making it a fairly long sequence, but one that a decent CPU should
be able to execute without breaking a sweat. It is of course NOPed
out on VHE. The last 4 instructions can also be turned into NOPs
if it appears that there is no free bits to use.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
As we're moving towards a much more dynamic way to compute our
HYP VA, let's express the mask in a slightly different way.
Instead of comparing the idmap position to the "low" VA mask,
we directly compute the mask by taking into account the idmap's
(VA_BIT-1) bit.
No functionnal change.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
As we're about to change the way we map devices at HYP, we need
to move away from kern_hyp_va on an IO address.
One way of achieving this is to store the VAs in kvm_vgic_global_state,
and use that directly from the HYP code. This requires a small change
to create_hyp_io_mappings so that it can also return a HYP VA.
We take this opportunity to nuke the vctrl_base field in the emulated
distributor, as it is not used anymore.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
kvm_vgic_global_state is part of the read-only section, and is
usually accessed using a PC-relative address generation (adrp + add).
It is thus useless to use kern_hyp_va() on it, and actively problematic
if kern_hyp_va() becomes non-idempotent. On the other hand, there is
no way that the compiler is going to guarantee that such access is
always PC relative.
So let's bite the bullet and provide our own accessor.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
So far, we're using a complicated sequence of alternatives to
patch the kernel/hyp VA mask on non-VHE, and NOP out the
masking altogether when on VHE.
The newly introduced dynamic patching gives us the opportunity
to simplify that code by patching a single instruction with
the correct mask (instead of the mind bending cumulative masking
we have at the moment) or even a single NOP on VHE. This also
adds some initial code that will allow the patching callback
to switch to a more complex patching.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We can finally get completely rid of any calls to the VGICv3
save/restore functions when the AP lists are empty on VHE systems. This
requires carefully factoring out trap configuration from saving and
restoring state, and carefully choosing what to do on the VHE and
non-VHE path.
One of the challenges is that we cannot save/restore the VMCR lazily
because we can only write the VMCR when ICC_SRE_EL1.SRE is cleared when
emulating a GICv2-on-GICv3, since otherwise all Group-0 interrupts end
up being delivered as FIQ.
To solve this problem, and still provide fast performance in the fast
path of exiting a VM when no interrupts are pending (which also
optimized the latency for actually delivering virtual interrupts coming
from physical interrupts), we orchestrate a dance of only doing the
activate/deactivate traps in vgic load/put for VHE systems (which can
have ICC_SRE_EL1.SRE cleared when running in the host), and doing the
configuration on every round-trip on non-VHE systems.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Just like we can program the GICv2 hypervisor control interface directly
from the core vgic code, we can do the same for the GICv3 hypervisor
control interface on VHE systems.
We do this by simply calling the save/restore functions when we have VHE
and we can then get rid of the save/restore function calls from the VHE
world switch function.
One caveat is that we now write GICv3 system register state before the
potential early exit path in the run loop, and because we sync back
state in the early exit path, we have to ensure that we read a
consistent GIC state from the sync path, even though we have never
actually run the guest with the newly written GIC state. We solve this
by inserting an ISB in the early exit path.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The vgic-v2-sr.c file now only contains the logic to replay unaligned
accesses to the virtual CPU interface on 16K and 64K page systems, which
is only relevant on 64-bit platforms. Therefore move this file to the
arm64 KVM tree, remove the compile directive from the 32-bit side
makefile, and remove the ifdef in the C file.
Since this file also no longer saves/restores anything, rename the file
to vgic-v2-cpuif-proxy.c to more accurately describe the logic in this
file.
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We can program the GICv2 hypervisor control interface logic directly
from the core vgic code and can instead do the save/restore directly
from the flush/sync functions, which can lead to a number of future
optimizations.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
To make the code more readable and to avoid the overhead of a function
call, let's get rid of a pair of the alternative function selectors and
explicitly call the VHE and non-VHE functions using the has_vhe() static
key based selector instead, telling the compiler to try to inline the
static function if it can.
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We do not have to change the c15 trap setting on each switch to/from the
guest on VHE systems, because this setting only affects guest EL1/EL0
(and therefore not the VHE host).
The PMU and debug trap configuration can also be done on vcpu load/put
instead, because they don't affect how the VHE host kernel can access the
debug registers while executing KVM kernel code.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
There is no longer a need for an alternative to choose the right
function to tell us whether or not FPSIMD was enabled for the VM,
because we can simply can the appropriate functions directly from within
the _vhe and _nvhe run functions.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
As we are about to be more lazy with some of the trap configuration
register read/writes for VHE systems, move the logic that is currently
shared between VHE and non-VHE into a separate function which can be
called from either the world-switch path or from vcpu_load/vcpu_put.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
When running a 32-bit VM (EL1 in AArch32), the AArch32 system registers
can be deferred to vcpu load/put on VHE systems because neither
the host kernel nor host userspace uses these registers.
Note that we can't save DBGVCR32_EL2 conditionally based on the state of
the debug dirty flag on VHE after this change, because during
vcpu_load() we haven't calculated a valid debug flag yet, and when we've
restored the register during vcpu_load() we also have to save it during
vcpu_put(). This means that we'll always restore/save the register for
VHE on load/put, but luckily vcpu load/put are called rarely, so saving
an extra register unconditionally shouldn't significantly hurt
performance.
We can also not defer saving FPEXC32_32 because this register only holds
a guest-valid value for 32-bit guests during the exit path when the
guest has used FPSIMD registers and restored the register in the early
assembly handler from taking the EL2 fault, and therefore we have to
check if fpsimd is enabled for the guest in the exit path and save the
register then, for both VHE and non-VHE guests.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
32-bit registers are not used by a 64-bit host kernel and can be
deferred, but we need to rework the accesses to these register to access
the latest values depending on whether or not guest system registers are
loaded on the CPU or only reside in memory.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Some system registers do not affect the host kernel's execution and can
therefore be loaded when we are about to run a VCPU and we don't have to
restore the host state to the hardware before the time when we are
actually about to return to userspace or schedule out the VCPU thread.
The EL1 system registers and the userspace state registers only
affecting EL0 execution do not need to be saved and restored on every
switch between the VM and the host, because they don't affect the host
kernel's execution.
We mark all registers which are now deffered as such in the
vcpu_{read,write}_sys_reg accessors in sys-regs.c to ensure the most
up-to-date copy is always accessed.
Note MPIDR_EL1 (controlled via VMPIDR_EL2) is accessed from other vcpu
threads, for example via the GIC emulation, and therefore must be
declared as immediate, which is fine as the guest cannot modify this
value.
The 32-bit sysregs can also be deferred but we do this in a separate
patch as it requires a bit more infrastructure.
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
ELR_EL1 is not used by a VHE host kernel and can be deferred, but we
need to rework the accesses to this register to access the latest value
depending on whether or not guest system registers are loaded on the CPU
or only reside in memory.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
SPSR_EL1 is not used by a VHE host kernel and can be deferred, but we
need to rework the accesses to this register to access the latest value
depending on whether or not guest system registers are loaded on the CPU
or only reside in memory.
The handling of accessing the various banked SPSRs for 32-bit VMs is a
bit clunky, but this will be improved in following patches which will
first prepare and subsequently implement deferred save/restore of the
32-bit registers, including the 32-bit SPSRs.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We are about to defer saving and restoring some groups of system
registers to vcpu_put and vcpu_load on supported systems. This means
that we need some infrastructure to access system registes which
supports either accessing the memory backing of the register or directly
accessing the system registers, depending on the state of the system
when we access the register.
We do this by defining read/write accessor functions, which can handle
both "immediate" and "deferrable" system registers. Immediate registers
are always saved/restored in the world-switch path, but deferrable
registers are only saved/restored in vcpu_put/vcpu_load when supported
and sysregs_loaded_on_cpu will be set in that case.
Note that we don't use the deferred mechanism yet in this patch, but only
introduce infrastructure. This is to improve convenience of review in
the subsequent patches where it is clear which registers become
deferred.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Currently we access the system registers array via the vcpu_sys_reg()
macro. However, we are about to change the behavior to some times
modify the register file directly, so let's change this to two
primitives:
* Accessor macros vcpu_write_sys_reg() and vcpu_read_sys_reg()
* Direct array access macro __vcpu_sys_reg()
The accessor macros should be used in places where the code needs to
access the currently loaded VCPU's state as observed by the guest. For
example, when trapping on cache related registers, a write to a system
register should go directly to the VCPU version of the register.
The direct array access macro can be used in places where the VCPU is
known to never be running (for example userspace access) or for
registers which are never context switched (for example all the PMU
system registers).
This rewrites all users of vcpu_sys_regs to one of the macros described
above.
No functional change.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <cdall@cs.columbia.edu>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We currently handle 32-bit accesses to trapped VM system registers using
the 32-bit index into the coproc array on the vcpu structure, which is a
union of the coproc array and the sysreg array.
Since all the 32-bit coproc indices are created to correspond to the
architectural mapping between 64-bit system registers and 32-bit
coprocessor registers, and because the AArch64 system registers are the
double in size of the AArch32 coprocessor registers, we can always find
the system register entry that we must update by dividing the 32-bit
coproc index by 2.
This is going to make our lives much easier when we have to start
accessing system registers that use deferred save/restore and might
have to be read directly from the physical CPU.
Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
On non-VHE systems we need to save the ELR_EL2 and SPSR_EL2 so that we can
return to the host in EL1 in the same state and location where we issued a
hypercall to EL2, but on VHE ELR_EL2 and SPSR_EL2 are not useful because we
never enter a guest as a result of an exception entry that would be directly
handled by KVM. The kernel entry code already saves ELR_EL1/SPSR_EL1 on
exception entry, which is enough. Therefore, factor out these registers into
separate save/restore functions, making it easy to exclude them from the VHE
world-switch path later on.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
There is no need to have multiple identical functions with different
names for saving host and guest state. When saving and restoring state
for the host and guest, the state is the same for both contexts, and
that's why we have the kvm_cpu_context structure. Delete one
version and rename the other into simply save/restore.
Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The comment only applied to SPE on non-VHE systems, so we simply remove
it.
Suggested-by: Andrew Jones <drjones@redhat.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
As we are about to handle system registers quite differently between VHE
and non-VHE systems. In preparation for that, we need to split some of
the handling functions between VHE and non-VHE functionality.
For now, we simply copy the non-VHE functions, but we do change the use
of static keys for VHE and non-VHE functionality now that we have
separate functions.
Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
As we are about to move calls around in the sysreg save/restore logic,
let's first rewrite the alternative function callers, because it is
going to make the next patches much easier to read.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
There's a semantic difference between the EL1 registers that control
operation of a kernel running in EL1 and EL1 registers that only control
userspace execution in EL0. Since we can defer saving/restoring the
latter, move them into their own function.
The ARMv8 ARM (ARM DDI 0487C.a) Section D10.2.1 recommends that
ACTLR_EL1 has no effect on the processor when running the VHE host, and
we can therefore move this register into the EL1 state which is only
saved/restored on vcpu_put/load for a VHE host.
We also take this chance to rename the function saving/restoring the
remaining system register to make it clear this function deals with
the EL1 system registers.
Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The VHE switch function calls __timer_enable_traps and
__timer_disable_traps which don't do anything on VHE systems.
Therefore, simply remove these calls from the VHE switch function and
make the functions non-conditional as they are now only called from the
non-VHE switch path.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
There is no need to reset the VTTBR to zero when exiting the guest on
VHE systems. VHE systems don't use stage 2 translations for the EL2&0
translation regime used by the host.
Reviewed-by: Andrew Jones <drjones@redhat.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
VHE kernels run completely in EL2 and therefore don't have a notion of
kernel and hyp addresses, they are all just kernel addresses. Therefore
don't call kern_hyp_va() in the VHE switch function.
Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
So far this is mostly (see below) a copy of the legacy non-VHE switch
function, but we will start reworking these functions in separate
directions to work on VHE and non-VHE in the most optimal way in later
patches.
The only difference after this patch between the VHE and non-VHE run
functions is that we omit the branch-predictor variant-2 hardening for
QC Falkor CPUs, because this workaround is specific to a series of
non-VHE ARMv8.0 CPUs.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The current world-switch function has functionality to detect a number
of cases where we need to fixup some part of the exit condition and
possibly run the guest again, before having restored the host state.
This includes populating missing fault info, emulating GICv2 CPU
interface accesses when mapped at unaligned addresses, and emulating
the GICv3 CPU interface on systems that need it.
As we are about to have an alternative switch function for VHE systems,
but VHE systems still need the same early fixup logic, factor out this
logic into a separate function that can be shared by both switch
functions.
No functional change.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Instead of having multiple calls from the world switch path to the debug
logic, each figuring out if the dirty bit is set and if we should
save/restore the debug registers, let's just provide two hooks to the
debug save/restore functionality, one for switching to the guest
context, and one for switching to the host context, and we get the
benefit of only having to evaluate the dirty flag once on each path,
plus we give the compiler some more room to inline some of this
functionality.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The debug save/restore functions can be improved by using the has_vhe()
static key instead of the instruction alternative. Using the static key
uses the same paradigm as we're going to use elsewhere, it makes the
code more readable, and it generates slightly better code (no
stack setups and function calls unless necessary).
We also use a static key on the restore path, because it will be
marginally faster than loading a value from memory.
Finally, we don't have to conditionally clear the debug dirty flag if
it's set, we can just clear it.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
There is no need to figure out inside the world-switch if we should
save/restore the debug registers or not, we might as well do that in the
higher level debug setup code, making it easier to optimize down the
line.
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We have numerous checks around that checks if the HCR_EL2 has the RW bit
set to figure out if we're running an AArch64 or AArch32 VM. In some
cases, directly checking the RW bit (given its unintuitive name), is a
bit confusing, and that's not going to improve as we move logic around
for the following patches that optimize KVM on AArch64 hosts with VHE.
Therefore, introduce a helper, vcpu_el1_is_32bit, and replace existing
direct checks of HCR_EL2.RW with the helper.
Reviewed-by: Julien Grall <julien.grall@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
As we are about to move a bunch of save/restore logic for VHE kernels to
the load and put functions, we need some infrastructure to do this.
Reviewed-by: Andrew Jones <drjones@redhat.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We currently have a separate read-modify-write of the HCR_EL2 on entry
to the guest for the sole purpose of setting the VF and VI bits, if set.
Since this is most rarely the case (only when using userspace IRQ chip
and interrupts are in flight), let's get rid of this operation and
instead modify the bits in the vcpu->arch.hcr[_el2] directly when
needed.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We always set the IMO and FMO bits in the HCR_EL2 when running the
guest, regardless if we use the vgic or not. By moving these flags to
HCR_GUEST_FLAGS we can avoid one of the extra save/restore operations of
HCR_EL2 in the world switch code, and we can also soon get rid of the
other one.
This is safe, because even though the IMO and FMO bits control both
taking the interrupts to EL2 and remapping ICC_*_EL1 to ICV_*_EL1 when
executed at EL1, as long as we ensure that these bits are clear when
running the EL1 host, we're OK, because we reset the HCR_EL2 to only
have the HCR_RW bit set when returning to EL1 on non-VHE systems.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Shih-Wei Li <shihwei@cs.columbia.edu>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
VHE actually doesn't rely on clearing the VTTBR when returning to the
host kernel, and that is the current key mechanism of hyp_panic to
figure out how to attempt to return to a state good enough to print a
panic statement.
Therefore, we split the hyp_panic function into two functions, a VHE and
a non-VHE, keeping the non-VHE version intact, but changing the VHE
behavior.
The vttbr_el2 check on VHE doesn't really make that much sense, because
the only situation where we can get here on VHE is when the hypervisor
assembly code actually called into hyp_panic, which only happens when
VBAR_EL2 has been set to the KVM exception vectors. On VHE, we can
always safely disable the traps and restore the host registers at this
point, so we simply do that unconditionally and call into the panic
function directly.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We already have the percpu area for the host cpu state, which points to
the VCPU, so there's no need to store the VCPU pointer on the stack on
every context switch. We can be a little more clever and just use
tpidr_el2 for the percpu offset and load the VCPU pointer from the host
context.
This has the benefit of being able to retrieve the host context even
when our stack is corrupted, and it has a potential performance benefit
because we trade a store plus a load for an mrs and a load on a round
trip to the guest.
This does require us to calculate the percpu offset without including
the offset from the kernel mapping of the percpu array to the linear
mapping of the array (which is what we store in tpidr_el1), because a
PC-relative generated address in EL2 is already giving us the hyp alias
of the linear mapping of a kernel address. We do this in
__cpu_init_hyp_mode() by using kvm_ksym_ref().
The code that accesses ESR_EL2 was previously using an alternative to
use the _EL1 accessor on VHE systems, but this was actually unnecessary
as the _EL1 accessor aliases the ESR_EL2 register on VHE, and the _EL2
accessor does the same thing on both systems.
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Calling vcpu_load() registers preempt notifiers for this vcpu and calls
kvm_arch_vcpu_load(). The latter will soon be doing a lot of heavy
lifting on arm/arm64 and will try to do things such as enabling the
virtual timer and setting us up to handle interrupts from the timer
hardware.
Loading state onto hardware registers and enabling hardware to signal
interrupts can be problematic when we're not actually about to run the
VCPU, because it makes it difficult to establish the right context when
handling interrupts from the timer, and it makes the register access
code difficult to reason about.
Luckily, now when we call vcpu_load in each ioctl implementation, we can
simply remove the call from the non-KVM_RUN vcpu ioctls, and our
kvm_arch_vcpu_load() is only used for loading vcpu content to the
physical CPU when we're actually going to run the vcpu.
Reviewed-by: Julien Grall <julien.grall@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Some 32bits guest OS can use the CNTP timer, however KVM does not
handle the accesses, injecting a fault instead.
Use the proper handlers to emulate the EL1 Physical Timer (CNTP)
register accesses of AArch32 guests.
Signed-off-by: Jérémy Fanguède <j.fanguede@virtualopensystems.com>
Signed-off-by: Alvise Rigo <a.rigo@virtualopensystems.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
The HCR_EL2.TID3 flag needs to be set when trapping guest access to
the CPU ID registers is required. However, the decision about
whether to set this bit does not need to be repeated at every
switch to the guest.
Instead, it's sufficient to make this decision once and record the
outcome.
This patch moves the decision to vcpu_reset_hcr() and records the
choice made in vcpu->arch.hcr_el2. The world switch code can then
load this directly when switching to the guest without the need for
conditional logic on the critical path.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Suggested-by: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
We don't currently limit guest accesses to the LOR registers, which we
neither virtualize nor context-switch. As such, guests are provided with
unusable information/controls, and are not isolated from each other (or
the host).
To prevent these issues, we can trap register accesses and present the
illusion LORegions are unssupported by the CPU. To do this, we mask
ID_AA64MMFR1.LO, and set HCR_EL2.TLOR to trap accesses to the following
registers:
* LORC_EL1
* LOREA_EL1
* LORID_EL1
* LORN_EL1
* LORSA_EL1
... when trapped, we inject an UNDEFINED exception to EL1, simulating
their non-existence.
As noted in D7.2.67, when no LORegions are implemented, LoadLOAcquire
and StoreLORelease must behave as LoadAcquire and StoreRelease
respectively. We can ensure this by clearing LORC_EL1.EN when a CPU's
EL2 is first initialized, as the host kernel will not modify this.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Vladimir Murzin <vladimir.murzin@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
References to CPU part number MIDR_QCOM_FALKOR were dropped from the
mailing list patch due to mainline/arm64 branch dependency. So this
patch adds the missing part number.
Fixes: ec82b567a7 ("arm64: Implement branch predictor hardening for Falkor")
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
ARM:
- Include icache invalidation optimizations, improving VM startup time
- Support for forwarded level-triggered interrupts, improving
performance for timers and passthrough platform devices
- A small fix for power-management notifiers, and some cosmetic changes
PPC:
- Add MMIO emulation for vector loads and stores
- Allow HPT guests to run on a radix host on POWER9 v2.2 CPUs without
requiring the complex thread synchronization of older CPU versions
- Improve the handling of escalation interrupts with the XIVE interrupt
controller
- Support decrement register migration
- Various cleanups and bugfixes.
s390:
- Cornelia Huck passed maintainership to Janosch Frank
- Exitless interrupts for emulated devices
- Cleanup of cpuflag handling
- kvm_stat counter improvements
- VSIE improvements
- mm cleanup
x86:
- Hypervisor part of SEV
- UMIP, RDPID, and MSR_SMI_COUNT emulation
- Paravirtualized TLB shootdown using the new KVM_VCPU_PREEMPTED bit
- Allow guests to see TOPOEXT, GFNI, VAES, VPCLMULQDQ, and more AVX512
features
- Show vcpu id in its anonymous inode name
- Many fixes and cleanups
- Per-VCPU MSR bitmaps (already merged through x86/pti branch)
- Stable KVM clock when nesting on Hyper-V (merged through x86/hyperv)
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJafvMtAAoJEED/6hsPKofo6YcH/Rzf2RmshrWaC3q82yfIV0Qz
Z8N8yJHSaSdc3Jo6cmiVj0zelwAxdQcyjwlT7vxt5SL2yML+/Q0st9Hc3EgGGXPm
Il99eJEl+2MYpZgYZqV8ff3mHS5s5Jms+7BITAeh6Rgt+DyNbykEAvzt+MCHK9cP
xtsIZQlvRF7HIrpOlaRzOPp3sK2/MDZJ1RBE7wYItK3CUAmsHim/LVYKzZkRTij3
/9b4LP1yMMbziG+Yxt1o682EwJB5YIat6fmDG9uFeEVI5rWWN7WFubqs8gCjYy/p
FX+BjpOdgTRnX+1m9GIj0Jlc/HKMXryDfSZS07Zy4FbGEwSiI5SfKECub4mDhuE=
=C/uD
-----END PGP SIGNATURE-----
Merge tag 'kvm-4.16-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Radim Krčmář:
"ARM:
- icache invalidation optimizations, improving VM startup time
- support for forwarded level-triggered interrupts, improving
performance for timers and passthrough platform devices
- a small fix for power-management notifiers, and some cosmetic
changes
PPC:
- add MMIO emulation for vector loads and stores
- allow HPT guests to run on a radix host on POWER9 v2.2 CPUs without
requiring the complex thread synchronization of older CPU versions
- improve the handling of escalation interrupts with the XIVE
interrupt controller
- support decrement register migration
- various cleanups and bugfixes.
s390:
- Cornelia Huck passed maintainership to Janosch Frank
- exitless interrupts for emulated devices
- cleanup of cpuflag handling
- kvm_stat counter improvements
- VSIE improvements
- mm cleanup
x86:
- hypervisor part of SEV
- UMIP, RDPID, and MSR_SMI_COUNT emulation
- paravirtualized TLB shootdown using the new KVM_VCPU_PREEMPTED bit
- allow guests to see TOPOEXT, GFNI, VAES, VPCLMULQDQ, and more
AVX512 features
- show vcpu id in its anonymous inode name
- many fixes and cleanups
- per-VCPU MSR bitmaps (already merged through x86/pti branch)
- stable KVM clock when nesting on Hyper-V (merged through
x86/hyperv)"
* tag 'kvm-4.16-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (197 commits)
KVM: PPC: Book3S: Add MMIO emulation for VMX instructions
KVM: PPC: Book3S HV: Branch inside feature section
KVM: PPC: Book3S HV: Make HPT resizing work on POWER9
KVM: PPC: Book3S HV: Fix handling of secondary HPTEG in HPT resizing code
KVM: PPC: Book3S PR: Fix broken select due to misspelling
KVM: x86: don't forget vcpu_put() in kvm_arch_vcpu_ioctl_set_sregs()
KVM: PPC: Book3S PR: Fix svcpu copying with preemption enabled
KVM: PPC: Book3S HV: Drop locks before reading guest memory
kvm: x86: remove efer_reload entry in kvm_vcpu_stat
KVM: x86: AMD Processor Topology Information
x86/kvm/vmx: do not use vm-exit instruction length for fast MMIO when running nested
kvm: embed vcpu id to dentry of vcpu anon inode
kvm: Map PFN-type memory regions as writable (if possible)
x86/kvm: Make it compile on 32bit and with HYPYERVISOR_GUEST=n
KVM: arm/arm64: Fixup userspace irqchip static key optimization
KVM: arm/arm64: Fix userspace_irqchip_in_use counting
KVM: arm/arm64: Fix incorrect timer_is_pending logic
MAINTAINERS: update KVM/s390 maintainers
MAINTAINERS: add Halil as additional vfio-ccw maintainer
MAINTAINERS: add David as a reviewer for KVM/s390
...
Spectre v1 mitigation:
- back-end version of array_index_mask_nospec()
- masking of the syscall number to restrict speculation through the
syscall table
- masking of __user pointers prior to deference in uaccess routines
Spectre v2 mitigation update:
- using the new firmware SMC calling convention specification update
- removing the current PSCI GET_VERSION firmware call mitigation as
vendors are deploying new SMCCC-capable firmware
- additional branch predictor hardening for synchronous exceptions and
interrupts while in user mode
Meltdown v3 mitigation update for Cavium Thunder X: unaffected but
hardware erratum gets in the way. The kernel now starts with the page
tables mapped as global and switches to non-global if kpti needs to be
enabled.
Other:
- Theoretical trylock bug fixed
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAlp8lqcACgkQa9axLQDI
XvH2lxAAnsYqthpGQ11MtDJB+/UiBAFkg9QWPDkwrBDvNhgpll+J0VQuCN1QJ2GX
qQ8rkv8uV+y4Fqr8hORGJy5At+0aI63ZCJ72RGkZTzJAtbFbFGIDHP7RhAEIGJBS
Lk9kDZ7k39wLEx30UXIFYTTVzyHar397TdI7vkTcngiTzZ8MdFATfN/hiKO906q3
14pYnU9Um4aHUdcJ+FocL3dxvdgniuuMBWoNiYXyOCZXjmbQOnDNU2UrICroV8lS
mB+IHNEhX1Gl35QzNBtC0ET+aySfHBMJmM5oln+uVUljIGx6En1WLj6mrHYcx8U2
rIBm5qO/X/4iuzYPGkxwQtpjq3wPYxsSUnMdKJrsUZqAfy2QeIhFx6XUtJsZPB2J
/lgls5xSXMOS7oiOQtmVjcDLBURDmYXGwljXR4n4jLm4CT1V9qSLcKHu1gdFU9Mq
VuMUdPOnQub1vqKndi154IoYDTo21jAib2ktbcxpJfSJnDYoit4Gtnv7eWY+M3Pd
Toaxi8htM2HSRwbvslHYGW8ZcVpI79Jit+ti7CsFg7m9Lvgs0zxcnNui4uPYDymT
jh2JYxuirIJbX9aGGhnmkNhq9REaeZJg9LA2JM8S77FCHN3bnlSdaG6wy899J6EI
lK4anCuPQKKKhUia/dc1MeKwrmmC18EfPyGUkOzywg/jGwGCmZM=
=Y0TT
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull more arm64 updates from Catalin Marinas:
"As I mentioned in the last pull request, there's a second batch of
security updates for arm64 with mitigations for Spectre/v1 and an
improved one for Spectre/v2 (via a newly defined firmware interface
API).
Spectre v1 mitigation:
- back-end version of array_index_mask_nospec()
- masking of the syscall number to restrict speculation through the
syscall table
- masking of __user pointers prior to deference in uaccess routines
Spectre v2 mitigation update:
- using the new firmware SMC calling convention specification update
- removing the current PSCI GET_VERSION firmware call mitigation as
vendors are deploying new SMCCC-capable firmware
- additional branch predictor hardening for synchronous exceptions
and interrupts while in user mode
Meltdown v3 mitigation update:
- Cavium Thunder X is unaffected but a hardware erratum gets in the
way. The kernel now starts with the page tables mapped as global
and switches to non-global if kpti needs to be enabled.
Other:
- Theoretical trylock bug fixed"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (38 commits)
arm64: Kill PSCI_GET_VERSION as a variant-2 workaround
arm64: Add ARM_SMCCC_ARCH_WORKAROUND_1 BP hardening support
arm/arm64: smccc: Implement SMCCC v1.1 inline primitive
arm/arm64: smccc: Make function identifiers an unsigned quantity
firmware/psci: Expose SMCCC version through psci_ops
firmware/psci: Expose PSCI conduit
arm64: KVM: Add SMCCC_ARCH_WORKAROUND_1 fast handling
arm64: KVM: Report SMCCC_ARCH_WORKAROUND_1 BP hardening support
arm/arm64: KVM: Turn kvm_psci_version into a static inline
arm/arm64: KVM: Advertise SMCCC v1.1
arm/arm64: KVM: Implement PSCI 1.0 support
arm/arm64: KVM: Add smccc accessors to PSCI code
arm/arm64: KVM: Add PSCI_VERSION helper
arm/arm64: KVM: Consolidate the PSCI include files
arm64: KVM: Increment PC after handling an SMC trap
arm: KVM: Fix SMCCC handling of unimplemented SMC/HVC calls
arm64: KVM: Fix SMCCC handling of unimplemented SMC/HVC calls
arm64: entry: Apply BP hardening for suspicious interrupts from EL0
arm64: entry: Apply BP hardening for high-priority synchronous exceptions
arm64: futex: Mask __user pointers prior to dereference
...
Now that we've standardised on SMCCC v1.1 to perform the branch
prediction invalidation, let's drop the previous band-aid.
If vendors haven't updated their firmware to do SMCCC 1.1, they
haven't updated PSCI either, so we don't loose anything.
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
We want SMCCC_ARCH_WORKAROUND_1 to be fast. As fast as possible.
So let's intercept it as early as we can by testing for the
function call number as soon as we've identified a HVC call
coming from the guest.
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
We're about to need kvm_psci_version in HYP too. So let's turn it
into a static inline, and pass the kvm structure as a second
parameter (so that HYP can do a kern_hyp_va on it).
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The new SMC Calling Convention (v1.1) allows for a reduced overhead
when calling into the firmware, and provides a new feature discovery
mechanism.
Make it visible to KVM guests.
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
As we're about to update the PSCI support, and because I'm lazy,
let's move the PSCI include file to include/kvm so that both
ARM architectures can find it.
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When handling an SMC trap, the "preferred return address" is set
to that of the SMC, and not the next PC (which is a departure from
the behaviour of an SMC that isn't trapped).
Increment PC in the handler, as the guest is otherwise forever
stuck...
Cc: stable@vger.kernel.org
Fixes: acfb3b883f ("arm64: KVM: Fix SMCCC handling of unimplemented SMC/HVC calls")
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
KVM doesn't follow the SMCCC when it comes to unimplemented calls,
and inject an UNDEF instead of returning an error. Since firmware
calls are now used for security mitigation, they are becoming more
common, and the undef is counter productive.
Instead, let's follow the SMCCC which states that -1 must be returned
to the caller when getting an unknown function number.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Since AArch64 assembly instructions take the destination register as
their first operand, do the same thing for the phys_to_ttbr macro.
Acked-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The ARM architecture defines the memory locations that are permitted
to be accessed as the result of a speculative instruction fetch from
an exception level for which all stages of translation are disabled.
Specifically, the core is permitted to speculatively fetch from the
4KB region containing the current program counter 4K and next 4K.
When translation is changed from enabled to disabled for the running
exception level (SCTLR_ELn[M] changed from a value of 1 to 0), the
Falkor core may errantly speculatively access memory locations outside
of the 4KB region permitted by the architecture. The errant memory
access may lead to one of the following unexpected behaviors.
1) A System Error Interrupt (SEI) being raised by the Falkor core due
to the errant memory access attempting to access a region of memory
that is protected by a slave-side memory protection unit.
2) Unpredictable device behavior due to a speculative read from device
memory. This behavior may only occur if the instruction cache is
disabled prior to or coincident with translation being changed from
enabled to disabled.
The conditions leading to this erratum will not occur when either of the
following occur:
1) A higher exception level disables translation of a lower exception level
(e.g. EL2 changing SCTLR_EL1[M] from a value of 1 to 0).
2) An exception level disabling its stage-1 translation if its stage-2
translation is enabled (e.g. EL1 changing SCTLR_EL1[M] from a value of 1
to 0 when HCR_EL2[VM] has a value of 1).
To avoid the errant behavior, software must execute an ISB immediately
prior to executing the MSR that will change SCTLR_ELn[M] from 1 to 0.
Signed-off-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The changes for this version include icache invalidation optimizations
(improving VM startup time), support for forwarded level-triggered
interrupts (improved performance for timers and passthrough platform
devices), a small fix for power-management notifiers, and some cosmetic
changes.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJacYnLAAoJEEtpOizt6ddyhHUH/1f/AHC4t6sNJJ4LAbWAjuve
77scB7vsVVpZqHUeA1i8d0vrWJQeqg8CEQ+iP/OVLC+bWVX0yeBtrt/pMJA8sXrV
Jbo5kQu3NyrRUAew83rcvoqsVVf67BB/NohL7C7sQDvNp2bg2cgzxhpgNJUuUXQC
WcEOhqstWo6NYJ7xYz5f+utzYQRO0YfnIzoTsoaNgDHSw/V37Ny9O0tYqTQGNYUm
zZ+cRo3nFRFywbmHhIHvXkxmS0lGdACQWTzyd+qDsgiPJ463vRT6Fc035SSuqX9x
MmS87cBdt1IK9yi0Firqhuy6CGgHZmnagHizE0arMv72Pcv/ucrkCDRqLQDhSMY=
=bZLm
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-for-v4.16' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm
KVM/ARM Changes for v4.16
The changes for this version include icache invalidation optimizations
(improving VM startup time), support for forwarded level-triggered
interrupts (improved performance for timers and passthrough platform
devices), a small fix for power-management notifiers, and some cosmetic
changes.
- Security mitigations:
- variant 2: invalidating the branch predictor with a call to secure firmware
- variant 3: implementing KPTI for arm64
- 52-bit physical address support for arm64 (ARMv8.2)
- arm64 support for RAS (firmware first only) and SDEI (software
delegated exception interface; allows firmware to inject a RAS error
into the OS)
- Perf support for the ARM DynamIQ Shared Unit PMU
- CPUID and HWCAP bits updated for new floating point multiplication
instructions in ARMv8.4
- Removing some virtual memory layout printks during boot
- Fix initial page table creation to cope with larger than 32M kernel
images when 16K pages are enabled
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAlpwxDMACgkQa9axLQDI
XvF55BAAniMpxPXnYNfv6l7/4O8eKo1lJIaG1wbej4JRZ/rT3K4Z3OBXW1dKHO8d
/PTbVmZ90IqIGROkoDrE+6xyjjn9yK3uuW4ytN2zQkBa8VFaHAnHlX+zKQcuwy9f
yxwiHk+C7vK5JR7mpXTazjRknsUv1MPtlTt7DQrSdq0KRDJVDNFC+grmbew2rz0X
cjQDqZqgzuFyrKxdiQVjDmc3zH9NsNBhDo0hlGHf2jK6bGJsAPtI8M2JcLrK8ITG
Ye/dD7BJp1mWD8ff0BPaMxu24qfAMNLH8f2dpTa986/H78irVz7i/t5HG0/1+5Jh
EE4OFRTKZ59Qgyo1zWcaJvdp8YjiaX/L4PWJg8CxM5OhP9dIac9ydcFQfWzpKpUs
xyZfmK6XliGFReAkVOOf5tEqFUDhMtsqhzPYmbmU1lp61wmSYIZ8CTenpWWCJSRO
NOGyG1X2uFBvP69+iPNlfTGz1r7tg1URY5iO8fUEIhY8LrgyORkiqw4OvPEgnMXP
Ngy+dXhyvnps2AAWbSX0O4puRlTgEYLT5KaMLzH/+gWsXATT0rzUCD/aOwUQq/Y7
SWXZHkb3jpmOZZnzZsLL2MNzEIPCFBwSUE9fSv4dA9d/N6tUmlmZALJjHkfzCDpj
+mPsSmAMTj72kUYzm0b5GCtOu/iQ2kDWOZjOM1m4+v/B+f7JoEE=
=iEjP
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
"The main theme of this pull request is security covering variants 2
and 3 for arm64. I expect to send additional patches next week
covering an improved firmware interface (requires firmware changes)
for variant 2 and way for KPTI to be disabled on unaffected CPUs
(Cavium's ThunderX doesn't work properly with KPTI enabled because of
a hardware erratum).
Summary:
- Security mitigations:
- variant 2: invalidate the branch predictor with a call to
secure firmware
- variant 3: implement KPTI for arm64
- 52-bit physical address support for arm64 (ARMv8.2)
- arm64 support for RAS (firmware first only) and SDEI (software
delegated exception interface; allows firmware to inject a RAS
error into the OS)
- perf support for the ARM DynamIQ Shared Unit PMU
- CPUID and HWCAP bits updated for new floating point multiplication
instructions in ARMv8.4
- remove some virtual memory layout printks during boot
- fix initial page table creation to cope with larger than 32M kernel
images when 16K pages are enabled"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (104 commits)
arm64: Fix TTBR + PAN + 52-bit PA logic in cpu_do_switch_mm
arm64: Turn on KPTI only on CPUs that need it
arm64: Branch predictor hardening for Cavium ThunderX2
arm64: Run enable method for errata work arounds on late CPUs
arm64: Move BP hardening to check_and_switch_context
arm64: mm: ignore memory above supported physical address size
arm64: kpti: Fix the interaction between ASID switching and software PAN
KVM: arm64: Emulate RAS error registers and set HCR_EL2's TERR & TEA
KVM: arm64: Handle RAS SErrors from EL2 on guest exit
KVM: arm64: Handle RAS SErrors from EL1 on guest exit
KVM: arm64: Save ESR_EL2 on guest SError
KVM: arm64: Save/Restore guest DISR_EL1
KVM: arm64: Set an impdef ESR for Virtual-SError using VSESR_EL2.
KVM: arm/arm64: mask/unmask daif around VHE guests
arm64: kernel: Prepare for a DISR user
arm64: Unconditionally enable IESB on exception entry/return for firmware-first
arm64: kernel: Survive corrected RAS errors notified by SError
arm64: cpufeature: Detect CPU RAS Extentions
arm64: sysreg: Move to use definitions for all the SCTLR bits
arm64: cpufeature: __this_cpu_has_cap() shouldn't stop early
...
Three more fixes for v4.15 fixing incorrect huge page mappings on systems using
the contigious hint for hugetlbfs; supporting an alternative GICv4 init
sequence; and correctly implementing the ARM SMCC for HVC and SMC handling.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJaXi9yAAoJEEtpOizt6ddymb4H/R6Q7uPSNY31d/wcMHg8qYS7
foDW76r7mKliRVmCJoq9oqLqC7BLpQszfZ8dFjPSfdLA4xVMsuZ3GG3S7jlghiuN
9+rZK+ZZX8g5uQNsqVITC3WrXmozBj+VEs/uH2Z1pu0g+siPTp7J2iv5+A5tvM3A
NCySqgEjefQyy7Zs2r7TuvM+E3p9MY7jZih9E2o8mn2TQipVKrcnHRN3IjNNtI4u
C17x70OQ1ZY7bwnmPnuPPqnX3H1fQ6+UgwtfDCu3KP7DAFVjqAz03X6wbf1nCLAB
zzKok/SnIFWpr56JUSOzMpHWG8sOFscdVXxW97a2Ova0ur0rHW2iPiucTb8jOjQ=
=gJL6
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-fixes-for-v4.15-3-v2' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm
KVM/ARM Fixes for v4.15, Round 3 (v2)
Three more fixes for v4.15 fixing incorrect huge page mappings on systems using
the contigious hint for hugetlbfs; supporting an alternative GICv4 init
sequence; and correctly implementing the ARM SMCC for HVC and SMC handling.
KVM doesn't follow the SMCCC when it comes to unimplemented calls,
and inject an UNDEF instead of returning an error. Since firmware
calls are now used for security mitigation, they are becoming more
common, and the undef is counter productive.
Instead, let's follow the SMCCC which states that -1 must be returned
to the caller when getting an unknown function number.
Cc: <stable@vger.kernel.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
ARMv8.2 adds a new bit HCR_EL2.TEA which routes synchronous external
aborts to EL2, and adds a trap control bit HCR_EL2.TERR which traps
all Non-secure EL1&0 error record accesses to EL2.
This patch enables the two bits for the guest OS, guaranteeing that
KVM takes external aborts and traps attempts to access the physical
error registers.
ERRIDR_EL1 advertises the number of error records, we return
zero meaning we can treat all the other registers as RAZ/WI too.
Signed-off-by: Dongjiu Geng <gengdongjiu@huawei.com>
[removed specific emulation, use trap_raz_wi() directly for everything,
rephrased parts of the commit message]
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
We expect to have firmware-first handling of RAS SErrors, with errors
notified via an APEI method. For systems without firmware-first, add
some minimal handling to KVM.
There are two ways KVM can take an SError due to a guest, either may be a
RAS error: we exit the guest due to an SError routed to EL2 by HCR_EL2.AMO,
or we take an SError from EL2 when we unmask PSTATE.A from __guest_exit.
The current SError from EL2 code unmasks SError and tries to fence any
pending SError into a single instruction window. It then leaves SError
unmasked.
With the v8.2 RAS Extensions we may take an SError for a 'corrected'
error, but KVM is only able to handle SError from EL2 if they occur
during this single instruction window...
The RAS Extensions give us a new instruction to synchronise and
consume SErrors. The RAS Extensions document (ARM DDI0587),
'2.4.1 ESB and Unrecoverable errors' describes ESB as synchronising
SError interrupts generated by 'instructions, translation table walks,
hardware updates to the translation tables, and instruction fetches on
the same PE'. This makes ESB equivalent to KVMs existing
'dsb, mrs-daifclr, isb' sequence.
Use the alternatives to synchronise and consume any SError using ESB
instead of unmasking and taking the SError. Set ARM_EXIT_WITH_SERROR_BIT
in the exit_code so that we can restart the vcpu if it turns out this
SError has no impact on the vcpu.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
We expect to have firmware-first handling of RAS SErrors, with errors
notified via an APEI method. For systems without firmware-first, add
some minimal handling to KVM.
There are two ways KVM can take an SError due to a guest, either may be a
RAS error: we exit the guest due to an SError routed to EL2 by HCR_EL2.AMO,
or we take an SError from EL2 when we unmask PSTATE.A from __guest_exit.
For SError that interrupt a guest and are routed to EL2 the existing
behaviour is to inject an impdef SError into the guest.
Add code to handle RAS SError based on the ESR. For uncontained and
uncategorized errors arm64_is_fatal_ras_serror() will panic(), these
errors compromise the host too. All other error types are contained:
For the fatal errors the vCPU can't make progress, so we inject a virtual
SError. We ignore contained errors where we can make progress as if
we're lucky, we may not hit them again.
If only some of the CPUs support RAS the guest will see the cpufeature
sanitised version of the id registers, but we may still take RAS SError
on this CPU. Move the SError handling out of handle_exit() into a new
handler that runs before we can be preempted. This allows us to use
this_cpu_has_cap(), via arm64_is_ras_serror().
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When we exit a guest due to an SError the vcpu fault info isn't updated
with the ESR. Today this is only done for traps.
The v8.2 RAS Extensions define ISS values for SError. Update the vcpu's
fault_info with the ESR on SError so that handle_exit() can determine
if this was a RAS SError and decode its severity.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
If we deliver a virtual SError to the guest, the guest may defer it
with an ESB instruction. The guest reads the deferred value via DISR_EL1,
but the guests view of DISR_EL1 is re-mapped to VDISR_EL2 when HCR_EL2.AMO
is set.
Add the KVM code to save/restore VDISR_EL2, and make it accessible to
userspace as DISR_EL1.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Prior to v8.2's RAS Extensions, the HCR_EL2.VSE 'virtual SError' feature
generated an SError with an implementation defined ESR_EL1.ISS, because we
had no mechanism to specify the ESR value.
On Juno this generates an all-zero ESR, the most significant bit 'ISV'
is clear indicating the remainder of the ISS field is invalid.
With the RAS Extensions we have a mechanism to specify this value, and the
most significant bit has a new meaning: 'IDS - Implementation Defined
Syndrome'. An all-zero SError ESR now means: 'RAS error: Uncategorized'
instead of 'no valid ISS'.
Add KVM support for the VSESR_EL2 register to specify an ESR value when
HCR_EL2.VSE generates a virtual SError. Change kvm_inject_vabt() to
specify an implementation-defined value.
We only need to restore the VSESR_EL2 value when HCR_EL2.VSE is set, KVM
save/restores this bit during __{,de}activate_traps() and hardware clears the
bit once the guest has consumed the virtual-SError.
Future patches may add an API (or KVM CAP) to pend a virtual SError with
a specified ESR.
Cc: Dongjiu Geng <gengdongjiu@huawei.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Now that a VHE host uses tpidr_el2 for the cpu offset we no longer
need KVM to save/restore tpidr_el1. Move this from the 'common' code
into the non-vhe code. While we're at it, on VHE we don't need to
save the ELR or SPSR as kernel_entry in entry.S will have pushed these
onto the kernel stack, and will restore them from there. Move these
to the non-vhe code as we need them to get back to the host.
Finally remove the always-copy-tpidr we hid in the stage2 setup
code, cpufeature's enable callback will do this for VHE, we only
need KVM to do it for non-vhe. Add the copy into kvm-init instead.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Make tpidr_el2 a cpu-offset for per-cpu variables in the same way the
host uses tpidr_el1. This lets tpidr_el{1,2} have the same value, and
on VHE they can be the same register.
KVM calls hyp_panic() when anything unexpected happens. This may occur
while a guest owns the EL1 registers. KVM stashes the vcpu pointer in
tpidr_el2, which it uses to find the host context in order to restore
the host EL1 registers before parachuting into the host's panic().
The host context is a struct kvm_cpu_context allocated in the per-cpu
area, and mapped to hyp. Given the per-cpu offset for this CPU, this is
easy to find. Change hyp_panic() to take a pointer to the
struct kvm_cpu_context. Wrap these calls with an asm function that
retrieves the struct kvm_cpu_context from the host's per-cpu area.
Copy the per-cpu offset from the hosts tpidr_el1 into tpidr_el2 during
kvm init. (Later patches will make this unnecessary for VHE hosts)
We print out the vcpu pointer as part of the panic message. Add a back
reference to the 'running vcpu' in the host cpu context to preserve this.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
KVM uses tpidr_el2 as its private vcpu register, which makes sense for
non-vhe world switch as only KVM can access this register. This means
vhe Linux has to use tpidr_el1, which KVM has to save/restore as part
of the host context.
If the SDEI handler code runs behind KVMs back, it mustn't access any
per-cpu variables. To allow this on systems with vhe we need to make
the host use tpidr_el2, saving KVM from save/restoring it.
__guest_enter() stores the host_ctxt on the stack, do the same with
the vcpu.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Falkor is susceptible to branch predictor aliasing and can
theoretically be attacked by malicious code. This patch
implements a mitigation for these attacks, preventing any
malicious entries from affecting other victim contexts.
Signed-off-by: Shanker Donthineni <shankerd@codeaurora.org>
[will: fix label name when !CONFIG_KVM and remove references to MIDR_FALKOR]
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
For those CPUs that require PSCI to perform a BP invalidation,
going all the way to the PSCI code for not much is a waste of
precious cycles. Let's terminate that call as early as possible.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Now that we have per-CPU vectors, let's plug then in the KVM/arm64 code.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
kvm_hyp.h has an odd dependency on kvm_mmu.h, which makes the
opposite inclusion impossible. Let's start with breaking that
useless dependency.
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Commit 0c0543a128 breaks migration and
introduces a regression with existing userspace because it introduces an
ordering requirement of setting up all VCPU features before writing ID
registers which we didn't have before.
Revert this commit for now until we have a proper fix.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Since commit 93390c0a1b ("arm64: KVM: Hide unsupported AArch64 CPU
features from guests") we can hide cpu features from guests. Apply
this to a long standing issue where guests see a PMU available, but
it's not, because it was not enabled by KVM's userspace.
Signed-off-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Currently, when using VA_BITS < 48, if the ID map text happens to be
placed in physical memory above VA_BITS, we increase the VA size (up to
48) and create a new table level, in order to map in the ID map text.
This is okay because the system always supports 48 bits of VA.
This patch extends the code such that if the system supports 52 bits of
VA, and the ID map text is placed that high up, then we increase the VA
size accordingly, up to 52.
One difference from the current implementation is that so far the
condition of VA_BITS < 48 has meant that the top level table is always
"full", with the maximum number of entries, and an extra table level is
always needed. Now, when VA_BITS = 48 (and using 64k pages), the top
level table is not full, and we simply need to increase the number of
entries in it, instead of creating a new table level.
Tested-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Bob Picco <bob.picco@oracle.com>
Reviewed-by: Bob Picco <bob.picco@oracle.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
[catalin.marinas@arm.com: reduce arguments to __create_hyp_mappings()]
[catalin.marinas@arm.com: reworked/renamed __cpu_uses_extended_idmap_level()]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The top 4 bits of a 52-bit physical address are positioned at bits 2..5
in the TTBR registers. Introduce a couple of macros to move the bits
there, and change all TTBR writers to use them.
Leave TTBR0 PAN code unchanged, to avoid complicating it. A system with
52-bit PA will have PAN anyway (because it's ARMv8.1 or later), and a
system without 52-bit PA can only use up to 48-bit PAs. A later patch in
this series will add a kconfig dependency to ensure PAN is configured.
In addition, when using 52-bit PA there is a special alignment
requirement on the top-level table. We don't currently have any VA_BITS
configuration that would violate the requirement, but one could be added
in the future, so add a compile-time BUG_ON to check for it.
Tested-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Bob Picco <bob.picco@oracle.com>
Reviewed-by: Bob Picco <bob.picco@oracle.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
[catalin.marinas@arm.com: added TTBR_BADD_MASK_52 comment]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
We currently copy the physical address size from
ID_AA64MMFR0_EL1.PARange directly into TCR.(I)PS. This will not work for
4k and 16k granule kernels on systems that support 52-bit physical
addresses, since 52-bit addresses are only permitted with the 64k
granule.
To fix this, fall back to 48 bits when configuring the PA size when the
kernel does not support 52-bit PAs. When it does, fall back to 52, to
avoid similar problems in the future if the PA size is ever increased
above 52.
Tested-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Bob Picco <bob.picco@oracle.com>
Reviewed-by: Bob Picco <bob.picco@oracle.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
[catalin.marinas@arm.com: tcr_set_pa_size macro renamed to tcr_compute_pa_size]
[catalin.marinas@arm.com: comments added to tcr_compute_pa_size]
[catalin.marinas@arm.com: definitions added for TCR_*PS_SHIFT]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
- A bug in handling of SPE state for non-vhe systems
- A fix for a crash on system shutdown
- Three timer fixes, introduced by the timer optimizations for v4.15
x86 fixes:
- fix for a WARN that was introduced in 4.15
- fix for SMM when guest uses PCID
- fixes for several bugs found by syzkaller
... and a dozen papercut fixes for the kvm_stat tool.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJaO6N9AAoJEL/70l94x66DC1wH/Rf+u0Cj6ZQil6LK6Nf8bfPd
3TqrwrxUDeXwi8GzsvK14izBr1mDzidSHIO0Q4XINFRSRdaf43h3R2im/SJqvNhP
xktCmJI2CxN96oaC7kIExgwf3YKhFdLIADfbT8oR9p3xZG/+c97dkr3b4XtmVCDb
ZXdUEOcKnoW4zwpfJN30FLlq4OwYvuYVz02AEfPivZRDfhhus/TYSnuSdxH8CLNf
75ymuKyXoo/RELbimwbMk8Cm9+ey7PjlUGOgbnbXIFtmgznXhLzAOeES2B+46J5b
sMBPlmiJrn6N//lM18CC5yOBzBLGsYOoXggtw4aU/5nM4GVcFebWedpcoD4D8Jw=
=Bt8w
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Paolo Bonzini:
"ARM fixes:
- A bug in handling of SPE state for non-vhe systems
- A fix for a crash on system shutdown
- Three timer fixes, introduced by the timer optimizations for v4.15
x86 fixes:
- fix for a WARN that was introduced in 4.15
- fix for SMM when guest uses PCID
- fixes for several bugs found by syzkaller
... and a dozen papercut fixes for the kvm_stat tool"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (22 commits)
tools/kvm_stat: sort '-f help' output
kvm: x86: fix RSM when PCID is non-zero
KVM: Fix stack-out-of-bounds read in write_mmio
KVM: arm/arm64: Fix timer enable flow
KVM: arm/arm64: Properly handle arch-timer IRQs after vtimer_save_state
KVM: arm/arm64: timer: Don't set irq as forwarded if no usable GIC
KVM: arm/arm64: Fix HYP unmapping going off limits
arm64: kvm: Prevent restoring stale PMSCR_EL1 for vcpu
KVM/x86: Check input paging mode when cs.l is set
tools/kvm_stat: add line for totals
tools/kvm_stat: stop ignoring unhandled arguments
tools/kvm_stat: suppress usage information on command line errors
tools/kvm_stat: handle invalid regular expressions
tools/kvm_stat: add hint on '-f help' to man page
tools/kvm_stat: fix child trace events accounting
tools/kvm_stat: fix extra handling of 'help' with fields filter
tools/kvm_stat: fix missing field update after filter change
tools/kvm_stat: fix drilldown in events-by-guests mode
tools/kvm_stat: fix command line option '-g'
kvm: x86: fix WARN due to uninitialized guest FPU state
...
When VHE is not present, KVM needs to save and restores PMSCR_EL1 when
possible. If SPE is used by the host, value of PMSCR_EL1 cannot be saved
for the guest.
If the host starts using SPE between two save+restore on the same vcpu,
restore will write the value of PMSCR_EL1 read during the first save.
Make sure __debug_save_spe_nvhe clears the value of the saved PMSCR_EL1
when the guest cannot use SPE.
Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: <stable@vger.kernel.org>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_set_guest_debug().
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The ARM architecture defines the memory locations that are permitted
to be accessed as the result of a speculative instruction fetch from
an exception level for which all stages of translation are disabled.
Specifically, the core is permitted to speculatively fetch from the
4KB region containing the current program counter 4K and next 4K.
When translation is changed from enabled to disabled for the running
exception level (SCTLR_ELn[M] changed from a value of 1 to 0), the
Falkor core may errantly speculatively access memory locations outside
of the 4KB region permitted by the architecture. The errant memory
access may lead to one of the following unexpected behaviors.
1) A System Error Interrupt (SEI) being raised by the Falkor core due
to the errant memory access attempting to access a region of memory
that is protected by a slave-side memory protection unit.
2) Unpredictable device behavior due to a speculative read from device
memory. This behavior may only occur if the instruction cache is
disabled prior to or coincident with translation being changed from
enabled to disabled.
The conditions leading to this erratum will not occur when either of the
following occur:
1) A higher exception level disables translation of a lower exception level
(e.g. EL2 changing SCTLR_EL1[M] from a value of 1 to 0).
2) An exception level disabling its stage-1 translation if its stage-2
translation is enabled (e.g. EL1 changing SCTLR_EL1[M] from a value of 1
to 0 when HCR_EL2[VM] has a value of 1).
To avoid the errant behavior, software must execute an ISB immediately
prior to executing the MSR that will change SCTLR_ELn[M] from 1 to 0.
Signed-off-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
There is a fast-path of MMIO emulation inside hyp mode. The handling
of single-step is broadly the same as kvm_arm_handle_step_debug()
except we just setup ESR/HSR so handle_exit() does the correct thing
as we exit.
For the case of an emulated illegal access causing an SError we will
exit via the ARM_EXCEPTION_EL1_SERROR path in handle_exit(). We behave
as we would during a real SError and clear the DBG_SPSR_SS bit for the
emulated instruction.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
When an SError arrives during single-step both the SError and debug
exceptions may be pending when the step is completed, and the
architecture doesn't define the ordering of the two. This means that we
can observe en SError even though we've just completed a step, without
receiving a debug exception. In that case the DBG_SPSR_SS bit will have
flipped as the instruction executed. After handling the abort in
handle_exit() we test to see if the bit is clear and we were
single-stepping before deciding if we need to exit to user space.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
If we are using guest debug to single-step the guest, we need to ensure
that we exit after emulating the instruction. This only affects
instructions completely emulated by the kernel. For instructions
emulated in userspace, we need to exit and return to complete the
emulation.
The kvm_arm_handle_step_debug() helper sets up the necessary exit
state if needed.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
After emulating instructions we may want return to user-space to handle
single-step debugging. Introduce a helper function, which, if
single-step is enabled, sets the run structure for return and returns
true.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJaBYxhAAoJEEtpOizt6ddyOc4H/1qADSdnZFVVE5v15Y+E8HLv
EOXAo/yYJg26fY/TBIXo7gxSZFCd0Ah703aucPGTRFyOb8t0VqIvI07rS1u4sKPp
mxfidYIZwLMibgno8NBdWB2mFeXrNlWTmwNt/IoO0iMn7IGqQZ/FZdf3GmWEVEsG
CU/DrQRXArJqS77NuZtkhhZOKBxB0lQNv52DkVgy/QlcBagAI14hbezkLQAco4oT
NUC4GyXn9yHzpTfhuQXv5hLd4xCqg9e51OgYNSL9oC/JXSByd7edQuqpd4fmnG4Y
qoDPJ11wmkuUKEDaGbC7nZWIaiVc/TfJy2Hwj3bUVwQFbopCeYhQqCDUSKftncA=
=o4u7
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-gicv4-for-v4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
GICv4 Support for KVM/ARM for v4.15
Common:
- Python 3 support in kvm_stat
- Accounting of slabs to kmemcg
ARM:
- Optimized arch timer handling for KVM/ARM
- Improvements to the VGIC ITS code and introduction of an ITS reset
ioctl
- Unification of the 32-bit fault injection logic
- More exact external abort matching logic
PPC:
- Support for running hashed page table (HPT) MMU mode on a host that
is using the radix MMU mode; single threaded mode on POWER 9 is
added as a pre-requisite
- Resolution of merge conflicts with the last second 4.14 HPT fixes
- Fixes and cleanups
s390:
- Some initial preparation patches for exitless interrupts and crypto
- New capability for AIS migration
- Fixes
x86:
- Improved emulation of LAPIC timer mode changes, MCi_STATUS MSRs, and
after-reset state
- Refined dependencies for VMX features
- Fixes for nested SMI injection
- A lot of cleanups
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJaDayXAAoJEED/6hsPKofo/3UH/3HvlcHt+ADTkCU1/iiKAs+i
0zngIOXIxgHDnV0ww6bV+Znww0BzTYgKCAXX76z603jdpDwG/pzQQcbLDF5ZoJnD
sQtF10gZinWaRsHlfbLqjrHGL2pGDHO1UKBKLJ0bAIyORPZBxs7i+VmrY/blnr9c
0wsybJ8RbvwAxjsDL5jeX/z4NehPupmKUc4Lf0eZdSHwVOf9sjn+MP6jJ0r2JcIb
D+zddPBiLStzN97t4gZpQsrlj3LKrDS+6hY+1TjSvlh+yHKFVFh58VhLm4DuDeb5
bYOAlWJ/gAWEzfvr5Ld+Nd7SqWWn/14logPkQ4gcU4BI/neAOzk4c6hJfCHl1nk=
=593n
-----END PGP SIGNATURE-----
Merge tag 'kvm-4.15-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Radim Krčmář:
"First batch of KVM changes for 4.15
Common:
- Python 3 support in kvm_stat
- Accounting of slabs to kmemcg
ARM:
- Optimized arch timer handling for KVM/ARM
- Improvements to the VGIC ITS code and introduction of an ITS reset
ioctl
- Unification of the 32-bit fault injection logic
- More exact external abort matching logic
PPC:
- Support for running hashed page table (HPT) MMU mode on a host that
is using the radix MMU mode; single threaded mode on POWER 9 is
added as a pre-requisite
- Resolution of merge conflicts with the last second 4.14 HPT fixes
- Fixes and cleanups
s390:
- Some initial preparation patches for exitless interrupts and crypto
- New capability for AIS migration
- Fixes
x86:
- Improved emulation of LAPIC timer mode changes, MCi_STATUS MSRs,
and after-reset state
- Refined dependencies for VMX features
- Fixes for nested SMI injection
- A lot of cleanups"
* tag 'kvm-4.15-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (89 commits)
KVM: s390: provide a capability for AIS state migration
KVM: s390: clear_io_irq() requests are not expected for adapter interrupts
KVM: s390: abstract conversion between isc and enum irq_types
KVM: s390: vsie: use common code functions for pinning
KVM: s390: SIE considerations for AP Queue virtualization
KVM: s390: document memory ordering for kvm_s390_vcpu_wakeup
KVM: PPC: Book3S HV: Cosmetic post-merge cleanups
KVM: arm/arm64: fix the incompatible matching for external abort
KVM: arm/arm64: Unify 32bit fault injection
KVM: arm/arm64: vgic-its: Implement KVM_DEV_ARM_ITS_CTRL_RESET
KVM: arm/arm64: Document KVM_DEV_ARM_ITS_CTRL_RESET
KVM: arm/arm64: vgic-its: Free caches when GITS_BASER Valid bit is cleared
KVM: arm/arm64: vgic-its: New helper functions to free the caches
KVM: arm/arm64: vgic-its: Remove kvm_its_unmap_device
arm/arm64: KVM: Load the timer state when enabling the timer
KVM: arm/arm64: Rework kvm_timer_should_fire
KVM: arm/arm64: Get rid of kvm_timer_flush_hwstate
KVM: arm/arm64: Avoid phys timer emulation in vcpu entry/exit
KVM: arm/arm64: Move phys_timer_emulate function
KVM: arm/arm64: Use kvm_arm_timer_set/get_reg for guest register traps
...
Plenty of acronym soup here:
- Initial support for the Scalable Vector Extension (SVE)
- Improved handling for SError interrupts (required to handle RAS events)
- Enable GCC support for 128-bit integer types
- Remove kernel text addresses from backtraces and register dumps
- Use of WFE to implement long delay()s
- ACPI IORT updates from Lorenzo Pieralisi
- Perf PMU driver for the Statistical Profiling Extension (SPE)
- Perf PMU driver for Hisilicon's system PMUs
- Misc cleanups and non-critical fixes
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJaCcLqAAoJELescNyEwWM0JREH/2FbmD/khGzEtP8LW+o9D8iV
TBM02uWQxS1bbO1pV2vb+512YQO+iWfeQwJH9Jv2FZcrMvFv7uGRnYgAnJuXNGrl
W+LL6OhN22A24LSawC437RU3Xe7GqrtONIY/yLeJBPablfcDGzPK1eHRA0pUzcyX
VlyDruSHWX44VGBPV6JRd3x0vxpV8syeKOjbRvopRfn3Nwkbd76V3YSfEgwoTG5W
ET1sOnXLmHHdeifn/l1Am5FX1FYstpcd7usUTJ4Oto8y7e09tw3bGJCD0aMJ3vow
v1pCUWohEw7fHqoPc9rTrc1QEnkdML4vjJvMPUzwyTfPrN+7uEuMIEeJierW+qE=
=0qrg
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"The big highlight is support for the Scalable Vector Extension (SVE)
which required extensive ABI work to ensure we don't break existing
applications by blowing away their signal stack with the rather large
new vector context (<= 2 kbit per vector register). There's further
work to be done optimising things like exception return, but the ABI
is solid now.
Much of the line count comes from some new PMU drivers we have, but
they're pretty self-contained and I suspect we'll have more of them in
future.
Plenty of acronym soup here:
- initial support for the Scalable Vector Extension (SVE)
- improved handling for SError interrupts (required to handle RAS
events)
- enable GCC support for 128-bit integer types
- remove kernel text addresses from backtraces and register dumps
- use of WFE to implement long delay()s
- ACPI IORT updates from Lorenzo Pieralisi
- perf PMU driver for the Statistical Profiling Extension (SPE)
- perf PMU driver for Hisilicon's system PMUs
- misc cleanups and non-critical fixes"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (97 commits)
arm64: Make ARMV8_DEPRECATED depend on SYSCTL
arm64: Implement __lshrti3 library function
arm64: support __int128 on gcc 5+
arm64/sve: Add documentation
arm64/sve: Detect SVE and activate runtime support
arm64/sve: KVM: Hide SVE from CPU features exposed to guests
arm64/sve: KVM: Treat guest SVE use as undefined instruction execution
arm64/sve: KVM: Prevent guests from using SVE
arm64/sve: Add sysctl to set the default vector length for new processes
arm64/sve: Add prctl controls for userspace vector length management
arm64/sve: ptrace and ELF coredump support
arm64/sve: Preserve SVE registers around EFI runtime service calls
arm64/sve: Preserve SVE registers around kernel-mode NEON use
arm64/sve: Probe SVE capabilities and usable vector lengths
arm64: cpufeature: Move sys_caps_initialised declarations
arm64/sve: Backend logic for setting the vector length
arm64/sve: Signal handling support
arm64/sve: Support vector length resetting for new processes
arm64/sve: Core task context handling
arm64/sve: Low-level CPU setup
...
In order to control the GICv4 view of virtual CPUs, we rely
on an irqdomain allocated for that purpose. Let's add a couple
of helpers to that effect.
At the same time, the vgic data structures gain new fields to
track all this... erm... wonderful stuff.
The way we hook into the vgic init is slightly convoluted. We
need the vgic to be initialized (in order to guarantee that
the number of vcpus is now fixed), and we must have a vITS
(otherwise this is all very pointless). So we end-up calling
the init from both vgic_init and vgic_its_create.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
This patch selects IRQ_BYPASS_MANAGER and HAVE_KVM_IRQ_BYPASS
configs for ARM/ARM64.
kvm_arch_has_irq_bypass() now is implemented and returns true.
As a consequence the irq bypass consumer will be registered for
ARM/ARM64 with the forwarding callbacks:
- stop/start: halt/resume guest execution
- add/del_producer: set/unset forwarding at vgic/irqchip level
We don't have any actual support yet, so nothing gets actually
forwarded.
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Eric Auger <eric.auger@redhat.com>
[maz: dropped the DEOI stuff for the time being in order to
reduce the dependency chain, amended commit message]
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Both arm and arm64 implementations are capable of injecting
faults, and yet have completely divergent implementations,
leading to different bugs and reduced maintainability.
Let's elect the arm64 version as the canonical one
and move it into aarch32.c, which is common to both
architectures.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
When trapping on a guest access to one of the timer registers, we were
messing with the internals of the timer state from the sysregs handling
code, and that logic was about to receive more added complexity when
optimizing the timer handling code.
Therefore, since we already have timer register access functions (to
access registers from userspace), reuse those for the timer register
traps from a VM and let the timer code maintain its own consistency.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
As we are about to be lazy with saving and restoring the timer
registers, we prepare by moving all possible timer configuration logic
out of the hyp code. All virtual timer registers can be programmed from
EL1 and since the arch timer is always a level triggered interrupt we
can safely do this with interrupts disabled in the host kernel on the
way to the guest without taking vtimer interrupts in the host kernel
(yet).
The downside is that the cntvoff register can only be programmed from
hyp mode, so we jump into hyp mode and back to program it. This is also
safe, because the host kernel doesn't use the virtual timer in the KVM
code. It may add a little performance performance penalty, but only
until following commits where we move this operation to vcpu load/put.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
x86 KVM guest fix.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJZ/fZuAAoJEL/70l94x66DHVkH/i99gyP/BoFaNfooesXpy89o
VcjuHzp4XYvUmhP1rCGYqYQEVZYrgsqKAsxL5cyN1nF5SWxebpM8cD96yM7lQx2Y
Ap5rxYWldn41ZmRRLQzCRKgwPG+V+yMlVTDM8FG/PKJyRTG7fMUEN6IBlRZF2yZr
DNmy2s//JafEUL3TDq2IXCvfZ1d5VEsCfI2xiYsIzQxwKZ1bHFNqbTqWJZr3Xns1
xL9e0VjMtNaGtyyCs0ZDjco3kAVQp58Q5+BhnL4/P+uqThjFDrpjQ3RmF0mtC95n
TKQuUP7QpLUoq74RwHa8tP4IpWj2EZLjefOw/s1Uv2XtieJrRmNIHT0OOGBj9O8=
=uYvL
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Paolo Bonzini:
"Fixes for interrupt controller emulation in ARM/ARM64 and x86, plus a
one-liner x86 KVM guest fix"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: x86: Update APICv on APIC reset
KVM: VMX: Do not fully reset PI descriptor on vCPU reset
kvm: Return -ENODEV from update_persistent_clock
KVM: arm/arm64: vgic-its: Check GITS_BASER Valid bit before saving tables
KVM: arm/arm64: vgic-its: Check CBASER/BASER validity before enabling the ITS
KVM: arm/arm64: vgic-its: Fix vgic_its_restore_collection_table returned value
KVM: arm/arm64: vgic-its: Fix return value for device table restore
arm/arm64: kvm: Disable branch profiling in HYP code
arm/arm64: kvm: Move initialization completion message
arm/arm64: KVM: set right LR register value for 32 bit guest when inject abort
KVM: arm64: its: Fix missing dynamic allocation check in scan_its_table
KVM guests cannot currently use SVE, because SVE is always
configured to trap to EL2.
However, a guest that sees SVE reported as present in
ID_AA64PFR0_EL1 may legitimately expect that SVE works and try to
use it. Instead of working, the guest will receive an injected
undef exception, which may cause the guest to oops or go into a
spin.
To avoid misleading the guest into believing that SVE will work,
this patch masks out the SVE field from ID_AA64PFR0_EL1 when a
guest attempts to read this register. No support is explicitly
added for ID_AA64ZFR0_EL1 either, so that is still emulated as
reading as zero, which is consistent with SVE not being
implemented.
This is a temporary measure, and will be removed in a later series
when full KVM support for SVE is implemented.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
When trapping forbidden attempts by a guest to use SVE, we want the
guest to see a trap consistent with SVE not being implemented.
This patch injects an undefined instruction exception into the
guest in response to such an exception.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Until KVM has full SVE support, guests must not be allowed to
execute SVE instructions.
This patch enables the necessary traps, and also ensures that the
traps are disabled again on exit from the guest so that the host
can still use SVE if it wants to.
On guest exit, high bits of the SVE Zn registers may have been
clobbered as a side-effect the execution of FPSIMD instructions in
the guest. The existing KVM host FPSIMD restore code is not
sufficient to restore these bits, so this patch explicitly marks
the CPU as not containing cached vector state for any task, thus
forcing a reload on the next return to userspace. This is an
interim measure, in advance of adding full SVE awareness to KVM.
This marking of cached vector state in the CPU as invalid is done
using __this_cpu_write(fpsimd_last_state, NULL) in fpsimd.c. Due
to the repeated use of this rather obscure operation, it makes
sense to factor it out as a separate helper with a clearer name.
This patch factors it out as fpsimd_flush_cpu_state(), and ports
all callers to use it.
As a side effect of this refactoring, a this_cpu_write() in
fpsimd_cpu_pm_notifier() is changed to __this_cpu_write(). This
should be fine, since cpu_pm_enter() is supposed to be called only
with interrupts disabled.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Currently, a guest kernel sees the true CPU feature registers
(ID_*_EL1) when it reads them using MRS instructions. This means
that the guest may observe features that are present in the
hardware but the host doesn't understand or doesn't provide support
for. A guest may legimitately try to use such a feature as per the
architecture, but use of the feature may trap instead of working
normally, triggering undef injection into the guest.
This is not a problem for the host, but the guest may go wrong when
running on newer hardware than the host knows about.
This patch hides from guest VMs any AArch64-specific CPU features
that the host doesn't support, by exposing to the guest the
sanitised versions of the registers computed by the cpufeatures
framework, instead of the true hardware registers. To achieve
this, HCR_EL2.TID3 is now set for AArch64 guests, and emulation
code is added to KVM to report the sanitised versions of the
affected registers in response to MRS and register reads from
userspace.
The affected registers are removed from invariant_sys_regs[] (since
the invariant_sys_regs handling is no longer quite correct for
them) and added to sys_reg_desgs[], with appropriate access(),
get_user() and set_user() methods. No runtime vcpu storage is
allocated for the registers: instead, they are read on demand from
the cpufeatures framework. This may need modification in the
future if there is a need for userspace to customise the features
visible to the guest.
Attempts by userspace to write the registers are handled similarly
to the current invariant_sys_regs handling: writes are permitted,
but only if they don't attempt to change the value. This is
sufficient to support VM snapshot/restore from userspace.
Because of the additional registers, restoring a VM on an older
kernel may not work unless userspace knows how to handle the extra
VM registers exposed to the KVM user ABI by this patch.
Under the principle of least damage, this patch makes no attempt to
handle any of the other registers currently in
invariant_sys_regs[], or to emulate registers for AArch32: however,
these could be handled in a similar way in future, as necessary.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When HYP code runs into branch profiling code, it attempts to jump to
unmapped memory, causing a HYP Panic.
Disable the branch profiling for code designed to run at HYP mode.
Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: <stable@vger.kernel.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
When a exception is trapped to EL2, hardware uses ELR_ELx to hold
the current fault instruction address. If KVM wants to inject a
abort to 32 bit guest, it needs to set the LR register for the
guest to emulate this abort happened in the guest. Because ARM32
architecture is pipelined execution, so the LR value has an offset to
the fault instruction address.
The offsets applied to Link value for exceptions as shown below,
which should be added for the ARM32 link register(LR).
Table taken from ARMv8 ARM DDI0487B-B, table G1-10:
Exception Offset, for PE state of:
A32 T32
Undefined Instruction +4 +2
Prefetch Abort +4 +4
Data Abort +8 +8
IRQ or FIQ +4 +4
[ Removed unused variables in inject_abt to avoid compile warnings.
-- Christoffer ]
Cc: <stable@vger.kernel.org>
Signed-off-by: Dongjiu Geng <gengdongjiu@huawei.com>
Tested-by: Haibin Zhang <zhanghaibin7@huawei.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
SPE is part of the v8.2 architecture, so move its system register and
field definitions into sysreg.h and the new PSB barrier into barrier.h
Finally, move KVM over to using the generic definitions so that it
doesn't have to open-code its own versions.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Common:
- improve heuristic for boosting preempted spinlocks by ignoring VCPUs
in user mode
ARM:
- fix for decoding external abort types from guests
- added support for migrating the active priority of interrupts when
running a GICv2 guest on a GICv3 host
- minor cleanup
PPC:
- expose storage keys to userspace
- merge powerpc/topic/ppc-kvm branch that contains
find_linux_pte_or_hugepte and POWER9 thread management cleanup
- merge kvm-ppc-fixes with a fix that missed 4.13 because of vacations
- fixes
s390:
- merge of topic branch tlb-flushing from the s390 tree to get the
no-dat base features
- merge of kvm/master to avoid conflicts with additional sthyi fixes
- wire up the no-dat enhancements in KVM
- multiple epoch facility (z14 feature)
- Configuration z/Architecture Mode
- more sthyi fixes
- gdb server range checking fix
- small code cleanups
x86:
- emulate Hyper-V TSC frequency MSRs
- add nested INVPCID
- emulate EPTP switching VMFUNC
- support Virtual GIF
- support 5 level page tables
- speedup nested VM exits by packing byte operations
- speedup MMIO by using hardware provided physical address
- a lot of fixes and cleanups, especially nested
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJZspE1AAoJEED/6hsPKofoDcMIALT11n+LKV50QGwQdg2W1GOt
aChbgnj/Kegit3hQlDhVNb8kmdZEOZzSL81Lh0VPEr7zXU8QiWn2snbizDPv8sde
MpHhcZYZZ0YrpoiZKjl8yiwcu88OWGn2qtJ7OpuTS5hvEGAfxMncp0AMZho6fnz/
ySTwJ9GK2MTgBw39OAzCeDOeoYn4NKYMwjJGqBXRhNX8PG/1wmfqv0vPrd6wfg31
KJ58BumavwJjr8YbQ1xELm9rpQrAmaayIsG0R1dEUqCbt5a1+t2gt4h2uY7tWcIv
ACt2bIze7eF3xA+OpRs+eT+yemiH3t9btIVmhCfzUpnQ+V5Z55VMSwASLtTuJRQ=
=R8Ry
-----END PGP SIGNATURE-----
Merge tag 'kvm-4.14-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Radim Krčmář:
"First batch of KVM changes for 4.14
Common:
- improve heuristic for boosting preempted spinlocks by ignoring
VCPUs in user mode
ARM:
- fix for decoding external abort types from guests
- added support for migrating the active priority of interrupts when
running a GICv2 guest on a GICv3 host
- minor cleanup
PPC:
- expose storage keys to userspace
- merge kvm-ppc-fixes with a fix that missed 4.13 because of
vacations
- fixes
s390:
- merge of kvm/master to avoid conflicts with additional sthyi fixes
- wire up the no-dat enhancements in KVM
- multiple epoch facility (z14 feature)
- Configuration z/Architecture Mode
- more sthyi fixes
- gdb server range checking fix
- small code cleanups
x86:
- emulate Hyper-V TSC frequency MSRs
- add nested INVPCID
- emulate EPTP switching VMFUNC
- support Virtual GIF
- support 5 level page tables
- speedup nested VM exits by packing byte operations
- speedup MMIO by using hardware provided physical address
- a lot of fixes and cleanups, especially nested"
* tag 'kvm-4.14-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (67 commits)
KVM: arm/arm64: Support uaccess of GICC_APRn
KVM: arm/arm64: Extract GICv3 max APRn index calculation
KVM: arm/arm64: vITS: Drop its_ite->lpi field
KVM: arm/arm64: vgic: constify seq_operations and file_operations
KVM: arm/arm64: Fix guest external abort matching
KVM: PPC: Book3S HV: Fix memory leak in kvm_vm_ioctl_get_htab_fd
KVM: s390: vsie: cleanup mcck reinjection
KVM: s390: use WARN_ON_ONCE only for checking
KVM: s390: guestdbg: fix range check
KVM: PPC: Book3S HV: Report storage key support to userspace
KVM: PPC: Book3S HV: Fix case where HDEC is treated as 32-bit on POWER9
KVM: PPC: Book3S HV: Fix invalid use of register expression
KVM: PPC: Book3S HV: Fix H_REGISTER_VPA VPA size validation
KVM: PPC: Book3S HV: Fix setting of storage key in H_ENTER
KVM: PPC: e500mc: Fix a NULL dereference
KVM: PPC: e500: Fix some NULL dereferences on error
KVM: PPC: Book3S HV: Protect updates to spapr_tce_tables list
KVM: s390: we are always in czam mode
KVM: s390: expose no-DAT to guest and migration support
KVM: s390: sthyi: remove invalid guest write access
...
As we are about to access the APRs from the GICv2 uaccess interface,
make this logic generally available.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Since the pte handling for hardware AF/DBM works even when the hardware
feature is not present, make the pte accessors implementation permanent
and remove the corresponding #ifdefs. The Kconfig option is kept as it
can still be used to disable the feature at the hardware level.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This implements the kvm_arch_vcpu_in_kernel() for ARM, and adjusts
the calls to kvm_vcpu_on_spin().
Signed-off-by: Longpeng(Mike) <longpeng2@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If a vcpu exits due to request a user mode spinlock, then
the spinlock-holder may be preempted in user mode or kernel mode.
(Note that not all architectures trap spin loops in user mode,
only AMD x86 and ARM/ARM64 currently do).
But if a vcpu exits in kernel mode, then the holder must be
preempted in kernel mode, so we should choose a vcpu in kernel mode
as a more likely candidate for the lock holder.
This introduces kvm_arch_vcpu_in_kernel() to decide whether the
vcpu is in kernel-mode when it's preempted. kvm_vcpu_on_spin's
new argument says the same of the spinning VCPU.
Signed-off-by: Longpeng(Mike) <longpeng2@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_pmu_overflow_set() is called from perf's interrupt handler,
making the call of kvm_vgic_inject_irq() from it introduced with
"KVM: arm/arm64: PMU: remove request-less vcpu kick" a really bad
idea, as it's quite easy to try and retake a lock that the
interrupted context is already holding. The fix is to use a vcpu
kick, leaving the interrupt injection to kvm_pmu_sync_hwstate(),
like it was doing before the refactoring. We don't just revert,
though, because before the kick was request-less, leaving the vcpu
exposed to the request-less vcpu kick race, and also because the
kick was used unnecessarily from register access handlers.
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
- Added TRACE_DEFINE_SIZEOF() which allows trace events that use
sizeof() it the TP_printk() to be converted to the actual size such
that trace-cmd and perf can parse them correctly.
- Some rework of the TRACE_DEFINE_ENUM() such that the above
TRACE_DEFINE_SIZEOF() could reuse the same code.
- Recording of tgid (Thread Group ID). This is similar to how
task COMMs are recorded (cached at sched_switch), where it is
in a table and used on output of the trace and trace_pipe files.
- Have ":mod:<module>" be cached when written into set_ftrace_filter.
Then the functions of the module will be traced at module load.
- Some random clean ups and small fixes.
-----BEGIN PGP SIGNATURE-----
iQExBAABCAAbBQJZXjYuFBxyb3N0ZWR0QGdvb2RtaXMub3JnAAoJEMm5BfJq2Y3L
fsgIAKUvhpn2igoYCR9tWqu+DovEmwxCIumbCzmCFQcRKlLttRte94yY5+W9hnV0
JPzd9T9zBDVqq1fI7iIop1SuTwEfKW6lJom0usZ8AFpK+YKm6FHnQ28POlvHzre2
lzO41tpRWiehLQsITZ47eByhsvEfhx86mYT/oM1JSR6Pii1OpjyNYmDMw6BaMNBT
kSCQFgIhzAhVuHjwAnB/S++E/ou7M5bCwCb5CNh7MubKubV5upHpoJcgYGO+WWa6
56H/iEhff4EECTGJVefd8e78MtJPL8EsuM0nAcMPlnl8AaiOpP7XCdlgTwdefLvP
b3o+nP15voSHkARGXC6eM6gH0po=
=rvGB
-----END PGP SIGNATURE-----
Merge tag 'trace-v4.13' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt:
"The new features of this release:
- Added TRACE_DEFINE_SIZEOF() which allows trace events that use
sizeof() it the TP_printk() to be converted to the actual size such
that trace-cmd and perf can parse them correctly.
- Some rework of the TRACE_DEFINE_ENUM() such that the above
TRACE_DEFINE_SIZEOF() could reuse the same code.
- Recording of tgid (Thread Group ID). This is similar to how task
COMMs are recorded (cached at sched_switch), where it is in a table
and used on output of the trace and trace_pipe files.
- Have ":mod:<module>" be cached when written into set_ftrace_filter.
Then the functions of the module will be traced at module load.
- Some random clean ups and small fixes"
* tag 'trace-v4.13' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (26 commits)
ftrace: Test for NULL iter->tr in regex for stack_trace_filter changes
ftrace: Decrement count for dyn_ftrace_total_info for init functions
ftrace: Unlock hash mutex on failed allocation in process_mod_list()
tracing: Add support for display of tgid in trace output
tracing: Add support for recording tgid of tasks
ftrace: Decrement count for dyn_ftrace_total_info file
ftrace: Remove unused function ftrace_arch_read_dyn_info()
sh/ftrace: Remove only user of ftrace_arch_read_dyn_info()
ftrace: Have cached module filters be an active filter
ftrace: Implement cached modules tracing on module load
ftrace: Have the cached module list show in set_ftrace_filter
ftrace: Add :mod: caching infrastructure to trace_array
tracing: Show address when function names are not found
ftrace: Add missing comment for FTRACE_OPS_FL_RCU
tracing: Rename update the enum_map file
tracing: Add TRACE_DEFINE_SIZEOF() macros
tracing: define TRACE_DEFINE_SIZEOF() macro to map sizeof's to their values
tracing: Rename enum_replace to eval_replace
trace: rename enum_map functions
trace: rename trace.c enum functions
...
Almost all of the arm64 KVM code uses the sysreg mnemonics for AArch64
register descriptions. Move the last straggler over.
To match what we do for SYS_ICH_AP*R*_EL2, the SYS_ICC_AP*R*_EL1
mnemonics are expanded in <asm/sysreg.h>.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Acked-by: Christoffer Dall <cdall@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Per ARM DDI 0487B.a, the registers are named ICC_IGRPEN*_EL1 rather than
ICC_GRPEN*_EL1. Correct our mnemonics and comments to match, before we
add more GICv3 register definitions.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Acked-by: Christoffer Dall <cdall@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
A write-to-read-only GICv3 access should UNDEF at EL1. But since
we're in complete paranoia-land with broken CPUs, let's assume the
worse and gracefully handle the case.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
A read-from-write-only GICv3 access should UNDEF at EL1. But since
we're in complete paranoia-land with broken CPUs, let's assume the
worse and gracefully handle the case.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
In order to start handling guest access to GICv3 system registers,
let's add a hook that will get called when we trap a system register
access. This is gated by a new static key (vgic_v3_cpuif_trap).
Tested-by: Alexander Graf <agraf@suse.de>
Acked-by: David Daney <david.daney@cavium.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
There are a few places in the kernel where sizeof() is already
being used. Update those locations with TRACE_DEFINE_SIZEOF.
Link: http://lkml.kernel.org/r/20170531215653.3240-12-jeremy.linton@arm.com
Signed-off-by: Jeremy Linton <jeremy.linton@arm.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
First we define an ABI using the vcpu devices that lets userspace set
the interrupt numbers for the various timers on both the 32-bit and
64-bit KVM/ARM implementations.
Second, we add the definitions for the groups and attributes introduced
by the above ABI. (We add the PMU define on the 32-bit side as well for
symmetry and it may get used some day.)
Third, we set up the arch-specific vcpu device operation handlers to
call into the timer code for anything related to the
KVM_ARM_VCPU_TIMER_CTRL group.
Fourth, we implement support for getting and setting the timer interrupt
numbers using the above defined ABI in the arch timer code.
Fifth, we introduce error checking upon enabling the arch timer (which
is called when first running a VCPU) to check that all VCPUs are
configured to use the same PPI for the timer (as mandated by the
architecture) and that the virtual and physical timers are not
configured to use the same IRQ number.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
We currently initialize the arch timer IRQ numbers from the reset code,
presumably because we once intended to model multiple CPU or SoC types
from within the kernel and have hard-coded reset values in the reset
code.
As we are moving towards userspace being in charge of more fine-grained
CPU emulation and stitching together the pieces needed to emulate a
particular type of CPU, we should no longer have a tight coupling
between resetting a VCPU and setting IRQ numbers.
Therefore, move the logic to define and use the default IRQ numbers to
the timer code and set the IRQ number immediately when creating the
VCPU.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
We currently have the SCTLR_EL2.A bit set, trapping unaligned accesses
at EL2, but we're not really prepared to deal with it. So far, this
has been unnoticed, until GCC 7 started emitting those (in particular
64bit writes on a 32bit boundary).
Since the rest of the kernel is pretty happy about that, let's follow
its example and set SCTLR_EL2.A to zero. Modern CPUs don't really
care.
Cc: stable@vger.kernel.org
Reported-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
__do_hyp_init has the rather bad habit of ignoring RES1 bits and
writing them back as zero. On a v8.0-8.2 CPU, this doesn't do anything
bad, but may end-up being pretty nasty on future revisions of the
architecture.
Let's preserve those bits so that we don't have to fix this later on.
Cc: stable@vger.kernel.org
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
arm/arm64 already has one VCPU request used when setting pause,
but it doesn't properly check requests in VCPU RUN. Check it
and also make sure we set vcpu->mode at the appropriate time
(before the check) and with the appropriate barriers. See
Documentation/virtual/kvm/vcpu-requests.rst. Also make sure we
don't leave any vcpu requests we don't intend to handle later
set in the request bitmap. If we don't clear them, then
kvm_request_pending() may return true when it shouldn't.
Using VCPU requests properly fixes a small race where pause
could get set just as a VCPU was entering guest mode.
Signed-off-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
We have been a little loose with our intermediate VMCR representation
where we had a 'ctlr' field, but we failed to differentiate between the
GICv2 GICC_CTLR and ICC_CTLR_EL1 layouts, and therefore ended up mapping
the wrong bits into the individual fields of the ICH_VMCR_EL2 when
emulating a GICv2 on a GICv3 system.
Fix this by using explicit fields for the VMCR bits instead.
Cc: Eric Auger <eric.auger@redhat.com>
Reported-by: wanghaibin <wanghaibin.wang@huawei.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Marc Zyngier <marc.zyngier@arm.com>
When KVM panics, it hurridly restores the host context and parachutes
into the host's panic() code. At some point panic() touches the physical
timer/counter. Unless we are an arm64 system with VHE, this traps back
to EL2. If we're lucky, we panic again.
Add a __timer_save_state() call to KVMs hyp_panic() path, this saves the
guest registers and disables the traps for the host.
Fixes: 53fd5b6487 ("arm64: KVM: Add panic handling")
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
We like living dangerously. Nothing explicitely forbids stack-protector
to be used in the EL2 code, while distributions routinely compile their
kernel with it. We're just lucky that no code actually triggers the
instrumentation.
Let's not try our luck for much longer, and disable stack-protector
for code living at EL2.
Cc: stable@vger.kernel.org
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Changes include:
- A fix related to the 32-bit idmap stub
- A fix to the bitmask used to deode the operands of an AArch32 CP
instruction
- We have moved the files shared between arch/arm/kvm and
arch/arm64/kvm to virt/kvm/arm
- We add support for saving/restoring the virtual ITS state to
userspace
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJZEZihAAoJEEtpOizt6ddyGDYH/jmGjDMnryORn2P2o10dUQKJ
RnHTQYnpOYqnprlkFtZFpmK+mjl/a8R1Btb7GK2EwmovTR95pMYPRqtrCTOL0aQA
4OToh7+vFGatwxsGCS6utazdhmx0UT/LhO/GEF4G1zOb7eVa4ZtS1NKLP2WjPD1E
RU3Qn8wa0pESv3tJScv8qo2+PWVX4krbFllhY2Hk0AkVQcI66ExkdVq4ikm1eUXn
rxzIayLG2bv3KEPNCzozdwoY9tDL+b40q6vN/RHGJmM05SZbbSx2/Bkw2RbslSpD
2hvhHWX7xeuEBcd5mZO7sP4WS3hM/BI8eX7q+uMeNJ9B+nM82yjGfOTtglVi2cc=
=JfvQ
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-for-v4.12-round2' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
Second round of KVM/ARM Changes for v4.12.
Changes include:
- A fix related to the 32-bit idmap stub
- A fix to the bitmask used to deode the operands of an AArch32 CP
instruction
- We have moved the files shared between arch/arm/kvm and
arch/arm64/kvm to virt/kvm/arm
- We add support for saving/restoring the virtual ITS state to
userspace
support; virtual interrupt controller performance improvements; support
for userspace virtual interrupt controller (slower, but necessary for
KVM on the weird Broadcom SoCs used by the Raspberry Pi 3)
* MIPS: basic support for hardware virtualization (ImgTec
P5600/P6600/I6400 and Cavium Octeon III)
* PPC: in-kernel acceleration for VFIO
* s390: support for guests without storage keys; adapter interruption
suppression
* x86: usual range of nVMX improvements, notably nested EPT support for
accessed and dirty bits; emulation of CPL3 CPUID faulting
* generic: first part of VCPU thread request API; kvm_stat improvements
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJZEHUkAAoJEL/70l94x66DBeYH/09wrpJ2FjU4Rqv7FxmqgWfH
9WGi4wvn/Z+XzQSyfMJiu2SfZVzU69/Y67OMHudy7vBT6knB+ziM7Ntoiu/hUfbG
0g5KsDX79FW15HuvuuGh9kSjUsj7qsQdyPZwP4FW/6ZoDArV9mibSvdjSmiUSMV/
2wxaoLzjoShdOuCe9EABaPhKK0XCrOYkygT6Paz1pItDxaSn8iW3ulaCuWMprUfG
Niq+dFemK464E4yn6HVD88xg5j2eUM6bfuXB3qR3eTR76mHLgtwejBzZdDjLG9fk
32PNYKhJNomBxHVqtksJ9/7cSR6iNPs7neQ1XHemKWTuYqwYQMlPj1NDy0aslQU=
=IsiZ
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"ARM:
- HYP mode stub supports kexec/kdump on 32-bit
- improved PMU support
- virtual interrupt controller performance improvements
- support for userspace virtual interrupt controller (slower, but
necessary for KVM on the weird Broadcom SoCs used by the Raspberry
Pi 3)
MIPS:
- basic support for hardware virtualization (ImgTec P5600/P6600/I6400
and Cavium Octeon III)
PPC:
- in-kernel acceleration for VFIO
s390:
- support for guests without storage keys
- adapter interruption suppression
x86:
- usual range of nVMX improvements, notably nested EPT support for
accessed and dirty bits
- emulation of CPL3 CPUID faulting
generic:
- first part of VCPU thread request API
- kvm_stat improvements"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (227 commits)
kvm: nVMX: Don't validate disabled secondary controls
KVM: put back #ifndef CONFIG_S390 around kvm_vcpu_kick
Revert "KVM: Support vCPU-based gfn->hva cache"
tools/kvm: fix top level makefile
KVM: x86: don't hold kvm->lock in KVM_SET_GSI_ROUTING
KVM: Documentation: remove VM mmap documentation
kvm: nVMX: Remove superfluous VMX instruction fault checks
KVM: x86: fix emulation of RSM and IRET instructions
KVM: mark requests that need synchronization
KVM: return if kvm_vcpu_wake_up() did wake up the VCPU
KVM: add explicit barrier to kvm_vcpu_kick
KVM: perform a wake_up in kvm_make_all_cpus_request
KVM: mark requests that do not need a wakeup
KVM: remove #ifndef CONFIG_S390 around kvm_vcpu_wake_up
KVM: x86: always use kvm_make_request instead of set_bit
KVM: add kvm_{test,clear}_request to replace {test,clear}_bit
s390: kvm: Cpu model support for msa6, msa7 and msa8
KVM: x86: remove irq disablement around KVM_SET_CLOCK/KVM_GET_CLOCK
kvm: better MWAIT emulation for guests
KVM: x86: virtualize cpuid faulting
...
For some time now we have been having a lot of shared functionality
between the arm and arm64 KVM support in arch/arm, which not only
required a horrible inter-arch reference from the Makefile in
arch/arm64/kvm, but also created confusion for newcomers to the code
base, as was recently seen on the mailing list.
Further, it causes confusion for things like cscope, which needs special
attention to index specific shared files for arm64 from the arm tree.
Move the shared files into virt/kvm/arm and move the trace points along
with it. When moving the tracepoints we have to modify the way the vgic
creates definitions of the trace points, so we take the chance to
include the VGIC tracepoints in its very own special vgic trace.h file.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Our 32bit CP14/15 handling inherited some of the ARMv7 code for handling
the trapped system registers, completely missing the fact that the
fields for Rt and Rt2 are now 5 bit wide, and not 4...
Let's fix it, and provide an accessor for the most common Rt case.
Cc: stable@vger.kernel.org
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
We now return HVC_STUB_ERR when a stub hypercall fails, but we
leave whatever was in x0 on success. Zeroing it on return seems
like a good idea.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Nobody is using __hyp_get_vectors anymore, so let's remove both
implementations (hyp-stub and KVM).
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Another missing stub hypercall is HVC_SOFT_RESTART. It turns out
that it is pretty easy to implement in terms of HVC_RESET_VECTORS
(since it needs to turn the MMU off).
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
We are now able to use the hyp stub to reset HYP mode. Time to
kiss __kvm_hyp_reset goodbye, and use __hyp_reset_vectors.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
We now have a full hyp-stub implementation in the KVM init code,
but the main KVM code only supports HVC_GET_VECTORS, which is not
enough.
Instead of reinventing the wheel, let's reuse the init implementation
by branching to the idmap page when called with a hyp-stub hypercall.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Now that we have an infrastructure to handle hypercalls in the KVM
init code, let's implement HVC_GET_VECTORS there.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
In order to restore HYP mode to its original condition, KVM currently
implements __kvm_hyp_reset(). As we're moving towards a hyp-stub
defined API, it becomes necessary to implement HVC_RESET_VECTORS.
This patch adds the HVC_RESET_VECTORS hypercall to the KVM init
code, which so far lacked any form of hypercall support.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
At the moment, we only save/restore lr if on VHE, as we rely only
the EL1 code to have preserved it in the non-VHE case.
As we're about to get rid of the latter, let's move the save/restore
code to the do_el2_call macro, unifying both code paths.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
If we fail to emulate a mrrc instruction, we:
1) deliver an exception,
2) spit a nastygram on the console,
3) write back some garbage to Rt/Rt2
While 1) and 2) are perfectly acceptable, 3) is out of the scope of
the architecture... Let's mimick the code in kvm_handle_cp_32 and
be more cautious.
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Instead of considering that a sysreg accessor has failed when
returning false, let's consider that it is *always* successful
(after all, we won't stand for an incomplete emulation).
The return value now simply indicates whether we should skip
the instruction (because it has now been emulated), or if we
should leave the PC alone if the emulation has injected an
exception.
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
PMSWINC_EL0 is a WO register, so let's UNDEF when reading from it
(in the highly hypothetical case where this doesn't UNDEF at EL1).
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reads from write-only system registers are generally confined to
EL1 and not propagated to EL2 (that's what the architecture
mantates). In order to be sure that we have a sane behaviour
even in the unlikely event that we have a broken system, we still
handle it in KVM.
In that case, let's inject an undef into the guest.
Let's also remove write_to_read_only which isn't used anywhere.
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
access_pminten() and access_pmuserenr() can only be accessed when
the CPU is in a priviledged mode. If it is not, let's inject an
UNDEF exception.
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Both pmu_*_el0_disabled() and pmu_counter_idx_valid() perform checks
on the validity of an access, but only return a boolean indicating
if the access is valid or not.
Let's allow these functions to also inject an UNDEF exception if
the access was illegal.
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
There is a lot of duplication in the pmu_*_el0_disabled helpers,
and as we're going to modify them shortly, let's move all the
common stuff in a single function.
No functional change.
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
read_system_reg() can readily be confused with read_sysreg(),
whereas these are really quite different in their meaning.
This patches attempts to reduce the ambiguity be reserving "sysreg"
for the actual system register accessors.
read_system_reg() is instead renamed to read_sanitised_ftr_reg(),
to make it more obvious that the Linux-defined sanitised feature
register cache is being accessed here, not the underlying
architectural system registers.
cpufeature.c's internal __raw_read_system_reg() function is renamed
in line with its actual purpose: a form of read_sysreg() that
indexes on (non-compiletime-constant) encoding rather than symbolic
register name.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Now that we have common definitions for the encoding of Set/Way cache
maintenance operations, make the KVM code use these, simplifying the
sys_reg_descs table.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Now that we have common definitions for the remaining register encodings
required by KVM, make the KVM code use these, simplifying the
sys_reg_descs table and the genericv8_sys_regs table.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Now that we have common definitions for the register encodings used by
KVM, make the KVM code uses thse for invariant sysreg definitions. This
makes said definitions a reasonable amount shorter, especially as many
comments are rendered redundant and can be removed.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Now that we have common definitions for the physical timer control
registers, make the KVM code use these, simplifying the sys_reg_descs
table.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Now that we have common definitions for the GICv3 register encodings,
make the KVM code use these, simplifying the sys_reg_descs table.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Now that we have common definitions for the performance monitor register
encodings, make the KVM code use these, simplifying the sys_reg_descs
table.
The comments for PMUSERENR_EL0 and PMCCFILTR_EL0 are kept, as these
describe non-obvious details regarding the registers. However, a slight
fixup is applied to bring these into line with the usual comment style.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Now that we have common definitions for the debug register encodings,
make the KVM code use these, simplifying the sys_reg_descs table.
The table previously erroneously referred to MDCCSR_EL0 as MDCCSR_EL1.
This is corrected (as is necessary in order to use the common sysreg
definition).
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
This patch adds a macro enabling us to initialise sys_reg_desc
structures based on common sysreg encoding definitions in
<asm/sysreg.h>. Subsequent patches will use this to simplify the KVM
code.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
A VPIPT I-cache has two main properties:
1. Lines allocated into the cache are tagged by VMID and a lookup can
only hit lines that were allocated with the current VMID.
2. I-cache invalidation from EL1/0 only invalidates lines that match the
current VMID of the CPU doing the invalidation.
This can cause issues with non-VHE configurations, where the host runs
at EL1 and wants to invalidate I-cache entries for a guest running with
a different VMID. VHE is not affected, because the host runs at EL2 and
I-cache invalidation applies as expected.
This patch solves the problem by invalidating the I-cache when unmapping
a page at stage 2 on a system with a VPIPT I-cache but not running with
VHE enabled. Hopefully this is an obscure enough configuration that the
overhead isn't anything to worry about, although it does mean that the
by-range I-cache invalidation currently performed when mapping at stage
2 can be elided on such systems, because the I-cache will be clean for
the guest VMID following a rollover event.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently we BUG() if we see an ESR_EL2.EC value we don't recognise. As
configurable disables/enables are added to the architecture (controlled
by RES1/RES0 bits respectively), with associated synchronous exceptions,
it may be possible for a guest to trigger exceptions with classes that
we don't recognise.
While we can't service these exceptions in a manner useful to the guest,
we can avoid bringing down the host. Per ARM DDI 0487A.k_iss10775, page
D7-1937, EC values within the range 0x00 - 0x2c are reserved for future
use with synchronous exceptions, and EC values within the range 0x2d -
0x3f may be used for either synchronous or asynchronous exceptions.
The patch makes KVM handle any unknown EC by injecting an UNDEFINED
exception into the guest, with a corresponding (ratelimited) warning in
the host dmesg. We could later improve on this with with a new (opt-in)
exit to the host userspace.
Cc: Dave Martin <dave.martin@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
When invalidating guest TLBs, special care must be taken to
actually shoot the guest TLBs and not the host ones if we're
running on a VHE system. This is controlled by the HCR_EL2.TGE
bit, which we forget to clear before invalidating TLBs.
Address the issue by introducing two wrappers (__tlb_switch_to_guest
and __tlb_switch_to_host) that take care of both the VTTBR_EL2
and HCR_EL2.TGE switching.
Reported-by: Tomasz Nowicki <tnowicki@caviumnetworks.com>
Tested-by: Tomasz Nowicki <tnowicki@caviumnetworks.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Cc: stable@vger.kernel.org
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>