This patch introduces the init_kvm_nested_mmu() function
which is used to re-initialize the nested mmu when the l2
guest changes its paging mode.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This patch introduces the kvm_read_guest_page_x86 function
which reads from the physical memory of the guest. If the
guest is running in guest-mode itself with nested paging
enabled it will read from the guest's guest physical memory
instead.
The patch also changes changes the code to use this function
where it is necessary.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This patch adds a function which can read from the guests
physical memory or from the guest's guest physical memory.
This will be used in the two-dimensional page table walker.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This patch introduces the walk_mmu pointer which points to
the mmu-context currently used for gva_to_gpa translations.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This patch introduces a mmu-callback to translate gpa
addresses in the walk_addr code. This is later used to
translate l2_gpa addresses into l1_gpa addresses.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This patch introduces a struct with two new fields in
vcpu_arch for x86:
* fault.address
* fault.error_code
This will be used to correctly propagate page faults back
into the guest when we could have either an ordinary page
fault or a nested page fault. In the case of a nested page
fault the fault-address is different from the original
address that should be walked. So we need to keep track
about the real fault-address.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Some operating systems store data about the host processor at the
time of installation, and when booted on a more uptodate cpu tries
to read MSR_EBC_FREQUENCY_ID. This has been found with XP.
Signed-off-by: Jes Sorensen <Jes.Sorensen@redhat.com>
Reviewed-by: Juan Quintela <quintela@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
MSR_K7_CLK_CTL is a no longer documented MSR, which is only relevant
on said old AMD CPU models. This change returns the expected value,
which the Linux kernel is expecting to avoid writing back the MSR,
plus it ignores all writes to the MSR.
Signed-off-by: Jes Sorensen <Jes.Sorensen@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
x86_emulate_insn() will return 1 if instruction can be restarted
without re-entering a guest.
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Kernel time, which advances in discrete steps may progress much slower
than TSC. As a result, when kvmclock is adjusted to a new base, the
apparent time to the guest, which runs at a much higher, nsec scaled
rate based on the current TSC, may have already been observed to have
a larger value (kernel_ns + scaled tsc) than the value to which we are
setting it (kernel_ns + 0).
We must instead compute the clock as potentially observed by the guest
for kernel_ns to make sure it does not go backwards.
Signed-off-by: Zachary Amsden <zamsden@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
If there are active VCPUs which are marked as belonging to
a particular hardware CPU, request a clock sync for them when
enabling hardware; the TSC could be desynchronized on a newly
arriving CPU, and we need to recompute guests system time
relative to boot after a suspend event.
This covers both cases.
Note that it is acceptable to take the spinlock, as either
no other tasks will be running and no locks held (BSP after
resume), or other tasks will be guaranteed to drop the lock
relatively quickly (AP on CPU_STARTING).
Noting we now get clock synchronization requests for VCPUs
which are starting up (or restarting), it is tempting to
attempt to remove the arch/x86/kvm/x86.c CPU hot-notifiers
at this time, however it is not correct to do so; they are
required for systems with non-constant TSC as the frequency
may not be known immediately after the processor has started
until the cpufreq driver has had a chance to run and query
the chipset.
Updated: implement better locking semantics for hardware_enable
Removed the hack of dropping and retaking the lock by adding the
semantic that we always hold kvm_lock when hardware_enable is
called. The one place that doesn't need to worry about it is
resume, as resuming a frozen CPU, the spinlock won't be taken.
Signed-off-by: Zachary Amsden <zamsden@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Make the match of TSC find TSC writes that are close to each other
instead of perfectly identical; this allows the compensator to also
work in migration / suspend scenarios.
Signed-off-by: Zachary Amsden <zamsden@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Add a helper function to compute the kernel time and convert nanoseconds
back to CPU specific cycles. Note that these must not be called in preemptible
context, as that would mean the kernel could enter software suspend state,
which would cause non-atomic operation.
Also, convert the KVM_SET_CLOCK / KVM_GET_CLOCK ioctls to use the kernel
time helper, these should be bootbased as well.
Signed-off-by: Zachary Amsden <zamsden@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
When CPUs with unstable TSCs enter deep C-state, TSC may stop
running. This causes us to require resynchronization. Since
we can't tell when this may potentially happen, we assume the
worst by forcing re-compensation for it at every point the VCPU
task is descheduled.
Signed-off-by: Zachary Amsden <zamsden@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Move the TSC control logic from the vendor backends into x86.c
by adding adjust_tsc_offset to x86 ops. Now all TSC decisions
can be done in one place.
Signed-off-by: Zachary Amsden <zamsden@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
If creating an SMP guest with unstable host TSC, issue a warning
Signed-off-by: Zachary Amsden <zamsden@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
This simplifies much of the init code; we can now simply always
call tsc_khz_changed, optionally passing it a new value, or letting
it figure out the existing value (while interrupts are disabled, and
thus, by inference from the rule, not raceful against CPU hotplug or
frequency updates, which will issue IPIs to the local CPU to perform
this very same task).
Signed-off-by: Zachary Amsden <zamsden@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Attempt to synchronize TSCs which are reset to the same value. In the
case of a reliable hardware TSC, we can just re-use the same offset, but
on non-reliable hardware, we can get closer by adjusting the offset to
match the elapsed time.
Signed-off-by: Zachary Amsden <zamsden@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Also, ensure that the storing of the offset and the reading of the TSC
are never preempted by taking a spinlock. While the lock is overkill
now, it is useful later in this patch series.
Signed-off-by: Zachary Amsden <zamsden@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
This is used only by the VMX code, and is not done properly;
if the TSC is indeed backwards, it is out of sync, and will
need proper handling in the logic at each and every CPU change.
For now, drop this test during init as misguided.
Signed-off-by: Zachary Amsden <zamsden@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
arch.n_alloc_mmu_pages is a poor choice of name. This value truly
means, "the number of pages which _may_ be allocated". But,
reading the name, "n_alloc_mmu_pages" implies "the number of allocated
mmu pages", which is dead wrong.
It's really the high watermark, so let's give it a name to match:
nr_max_mmu_pages. This change will make the next few patches
much more obvious and easy to read.
Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com>
Signed-off-by: Tim Pepper <lnxninja@linux.vnet.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
The code for initializing the emulation context is duplicated at two
locations (emulate_instruction() and kvm_task_switch()). Separate it
in a separate function and call it from there.
Signed-off-by: Mohammed Gamal <m.gamal005@gmail.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
The patch adds a new member get_idt() to x86_emulate_ops.
It also adds a function to get the idt in order to be used by the emulator.
This is needed for real mode interrupt injection and the emulation of int
instructions.
Signed-off-by: Mohammed Gamal <m.gamal005@gmail.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
No need to update vcpu state since instruction is in the middle of the
emulation.
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
It doesn't ever change, so we don't need to pass it around everywhere.
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
* 'kvm-updates/2.6.36' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: PIT: free irq source id in handling error path
KVM: destroy workqueue on kvm_create_pit() failures
KVM: fix poison overwritten caused by using wrong xstate size
fpu.state is allocated from task_xstate_cachep, the size of task_xstate_cachep
is xstate_size. xstate_size is set from cpuid instruction, which is often
smaller than sizeof(struct xsave_struct). kvm is using sizeof(struct xsave_struct)
to fill in/out fpu.state.xsave, as what we allocated for fpu.state is
xstate_size, kernel will write out of memory and caused poison/redzone/padding
overwritten warnings.
Signed-off-by: Xiaotian Feng <dfeng@redhat.com>
Reviewed-by: Sheng Yang <sheng@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Sheng Yang <sheng@linux.intel.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Gleb Natapov <gleb@redhat.com>
Cc: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
If the destination is a memory operand and the memory cannot
map to a valid page, the xchg instruction emulation and locked
instruction will not work on io regions and stuck in endless
loop. We should emulate exchange as write to fix it.
Signed-off-by: Wei Yongjun <yjwei@cn.fujitsu.com>
Acked-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
With tdp enabled we should get into emulator only when emulating io, so
reexecution will always bring us back into emulator.
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Userspace needs to reset and save/restore these MSRs.
The MCE banks are not exposed since their number varies from vcpu to vcpu.
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
When shadow pages are in use sometimes KVM try to emulate an instruction
when it accesses a shadowed page. If emulation fails KVM un-shadows the
page and reenter guest to allow vcpu to execute the instruction. If page
is not in shadow page hash KVM assumes that this was attempt to do MMIO
and reports emulation failure to userspace since there is no way to fix
the situation. This logic has a race though. If two vcpus tries to write
to the same shadowed page simultaneously both will enter emulator, but
only one of them will find the page in shadow page hash since the one who
founds it also removes it from there, so another cpu will report failure
to userspace and will abort the guest.
Fix this by checking (in addition to checking shadowed page hash) that
page that caused the emulation belongs to valid memory slot. If it is
then reenter the guest to allow vcpu to reexecute the instruction.
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Some guest device driver may leverage the "Non-Snoop" I/O, and explicitly
WBINVD or CLFLUSH to a RAM space. Since migration may occur before WBINVD or
CLFLUSH, we need to maintain data consistency either by:
1: flushing cache (wbinvd) when the guest is scheduled out if there is no
wbinvd exit, or
2: execute wbinvd on all dirty physical CPUs when guest wbinvd exits.
Signed-off-by: Yaozu (Eddie) Dong <eddie.dong@intel.com>
Signed-off-by: Sheng Yang <sheng@linux.intel.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
No need to reload the mmu in between two different vcpu->requests checks.
kvm_mmu_reload() may trigger KVM_REQ_TRIPLE_FAULT, but that will be caught
during atomic guest entry later.
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Enable Intel(R) Advanced Vector Extension(AVX) for guest.
The detection of AVX feature includes OSXSAVE bit testing. When OSXSAVE bit is
not set, even if AVX is supported, the AVX instruction would result in UD as
well. So we're safe to expose AVX bits to guest directly.
Signed-off-by: Sheng Yang <sheng@linux.intel.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
If a process with a memory slot is COWed, the page will change its address
(despite having an elevated reference count). This breaks internal memory
slots which have their physical addresses loaded into vmcs registers (see
the APIC access memory slot).
Signed-off-by: Avi Kivity <avi@redhat.com>
As advertised in feature-removal-schedule.txt. Equivalent support is provided
by overlapping memory regions.
Signed-off-by: Avi Kivity <avi@redhat.com>
Instead of three temporary variables and three free calls, have one temporary
variable (with four names) and one free call.
Signed-off-by: Avi Kivity <avi@redhat.com>
On Intel, we call skip_emulated_instruction() even if we injected a #GP,
resulting in the #GP pointing at the wrong address.
Fix by injecting the exception and skipping the instruction at the same place,
so we can do just one or the other.
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
On Intel, we call skip_emulated_instruction() even if we injected a #GP,
resulting in the #GP pointing at the wrong address.
Fix by injecting the exception and skipping the instruction at the same place,
so we can do just one or the other.
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
On Intel, we call skip_emulated_instruction() even if we injected a #GP,
resulting in the #GP pointing at the wrong address.
Fix by injecting the exception and skipping the instruction at the same place,
so we can do just one or the other.
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>