This commit creates a new srcu-lite option for the refscale.scale_type
module parameter that selects srcu_read_lock_lite() and
srcu_read_unlock_lite().
[ paulmck: Apply Dan Carpenter feedback. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andrii Nakryiko <andrii@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: <bpf@vger.kernel.org>
Reviewed-by: Neeraj Upadhyay <Neeraj.Upadhyay@amd.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
This commit causes bit 0x4 of rcutorture.reader_flavor to select the new
srcu_read_lock_lite() and srcu_read_unlock_lite() functions.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andrii Nakryiko <andrii@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: <bpf@vger.kernel.org>
Reviewed-by: Neeraj Upadhyay <Neeraj.Upadhyay@amd.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
This commit adds an rcutorture.reader_flavor parameter whose bits
correspond to reader flavors. For example, SRCU's readers are 0x1 for
normal and 0x2 for NMI-safe.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andrii Nakryiko <andrii@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: <bpf@vger.kernel.org>
Reviewed-by: Neeraj Upadhyay <Neeraj.Upadhyay@amd.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
This commit prepares for testing of multiple SRCU reader flavors by
expanding RCUTORTURE_RDR_MASK_1 and RCUTORTURE_RDR_MASK_2 from a single
bit to eight bits, allowing them to accommodate the return values from
multiple calls to srcu_read_lock*(). This will in turn permit better
testing coverage for these SRCU reader flavors, including testing of
the diagnostics for inproper use of mixed reader flavors.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andrii Nakryiko <andrii@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: <bpf@vger.kernel.org>
Reviewed-by: Neeraj Upadhyay <Neeraj.Upadhyay@amd.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
This commit moves __srcu_read_lock_lite() and __srcu_read_unlock_lite()
into include/linux/srcu.h and marks them "static inline" so that they
can be inlined into srcu_read_lock_lite() and srcu_read_unlock_lite(),
respectively. They are not hand-inlined due to Tree SRCU and Tiny SRCU
having different implementations.
The earlier removal of smp_mb() combined with the inlining produce
significant single-percentage performance wins.
Link: https://lore.kernel.org/all/CAEf4BzYgiNmSb=ZKQ65tm6nJDi1UX2Gq26cdHSH1mPwXJYZj5g@mail.gmail.com/
Reported-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andrii Nakryiko <andrii@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: <bpf@vger.kernel.org>
Reviewed-by: Neeraj Upadhyay <Neeraj.Upadhyay@amd.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
This patch adds srcu_read_lock_lite() and srcu_read_unlock_lite(), which
dispense with the read-side smp_mb() but also are restricted to code
regions that RCU is watching. If a given srcu_struct structure uses
srcu_read_lock_lite() and srcu_read_unlock_lite(), it is not permitted
to use any other SRCU read-side marker, before, during, or after.
Another price of light-weight readers is heavier weight grace periods.
Such readers mean that SRCU grace periods on srcu_struct structures
used by light-weight readers will incur at least two calls to
synchronize_rcu(). In addition, normal SRCU grace periods for
light-weight-reader srcu_struct structures never auto-expedite.
Note that expedited SRCU grace periods for light-weight-reader
srcu_struct structures still invoke synchronize_rcu(), not
synchronize_srcu_expedited(). Something about wishing to keep
the IPIs down to a dull roar.
The srcu_read_lock_lite() and srcu_read_unlock_lite() functions may not
(repeat, *not*) be used from NMI handlers, but if this is needed, an
additional flavor of SRCU reader can be added by some future commit.
[ paulmck: Apply Alexei Starovoitov expediting feedback. ]
[ paulmck: Apply kernel test robot feedback. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Tested-by: kernel test robot <oliver.sang@intel.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andrii Nakryiko <andrii@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: <bpf@vger.kernel.org>
Reviewed-by: Neeraj Upadhyay <Neeraj.Upadhyay@amd.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
This commit creates SRCU_READ_FLAVOR_NORMAL and SRCU_READ_FLAVOR_NMI
C-preprocessor macros for srcu_read_lock() and srcu_read_lock_nmisafe(),
respectively. These replace the old true/false values that were
previously passed to srcu_check_read_flavor(). In addition, the
srcu_check_read_flavor() function itself requires a bit of rework to
handle bitmasks instead of true/false values.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andrii Nakryiko <andrii@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: <bpf@vger.kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Neeraj Upadhyay <Neeraj.Upadhyay@amd.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Currently, there are only two flavors of readers, normal and NMI-safe.
Very straightforward state updates suffice to check for erroneous
mixing of reader flavors on a given srcu_struct structure. This commit
upgrades the checking in preparation for the addition of light-weight
(as in memory-barrier-free) readers.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andrii Nakryiko <andrii@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: <bpf@vger.kernel.org>
Reviewed-by: Neeraj Upadhyay <Neeraj.Upadhyay@amd.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Currently, there are only two flavors of readers, normal and NMI-safe.
A number of fields, functions, and types reflect this restriction.
This renaming-only commit prepares for the addition of light-weight
(as in memory-barrier-free) readers. OK, OK, there is also a drive-by
white-space fixeup!
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andrii Nakryiko <andrii@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: <bpf@vger.kernel.org>
Reviewed-by: Neeraj Upadhyay <Neeraj.Upadhyay@amd.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
As Documentation/filesystems/sysfs.rst suggested, show() should only use
sysfs_emit() or sysfs_emit_at() when formatting the value to be returned
to user space.
No functional change intended.
Link: https://lkml.kernel.org/r/20241105094941.33739-1-zhangguopeng@kylinos.cn
Signed-off-by: zhangguopeng <zhangguopeng@kylinos.cn>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Fabio Estevam <festevam@denx.de>
Cc: Joel Granados <joel.granados@kernel.org>
Cc: Thomas Weißschuh <linux@weissschuh.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "add detect count for hung tasks", v2.
This patchset adds a counter, hung_task_detect_count, to track the number
of times hung tasks are detected.
IHMO, hung tasks are a critical metric. Currently, we detect them by
periodically parsing dmesg. However, this method isn't as user-friendly
as using a counter.
Sometimes, a short-lived issue with NIC or hard drive can quickly decrease
the hung_task_warnings to zero. Without warnings, we must directly access
the node to ensure that there are no more hung tasks and that the system
has recovered. After all, load average alone cannot provide a clear
picture.
Once this counter is in place, in a high-density deployment pattern, we
plan to set hung_task_timeout_secs to a lower number to improve stability,
even though this might result in false positives. And then we can set a
time-based threshold: if hung tasks last beyond this duration, we will
automatically migrate containers to other nodes. Based on past
experience, this approach could help avoid many production disruptions.
Moreover, just like other important events such as OOM that already have
counters, having a dedicated counter for hung tasks makes sense ;)
This patch (of 2):
This commit adds a counter, hung_task_detect_count, to track the number of
times hung tasks are detected.
IHMO, hung tasks are a critical metric. Currently, we detect them by
periodically parsing dmesg. However, this method isn't as user-friendly as
using a counter.
Sometimes, a short-lived issue with NIC or hard drive can quickly decrease
the hung_task_warnings to zero. Without warnings, we must directly access
the node to ensure that there are no more hung tasks and that the system
has recovered. After all, load average alone cannot provide a clear
picture.
Once this counter is in place, in a high-density deployment pattern, we
plan to set hung_task_timeout_secs to a lower number to improve stability,
even though this might result in false positives. And then we can set a
time-based threshold: if hung tasks last beyond this duration, we will
automatically migrate containers to other nodes. Based on past experience,
this approach could help avoid many production disruptions.
Moreover, just like other important events such as OOM that already have
counters, having a dedicated counter for hung tasks makes sense.
[ioworker0@gmail.com: proc_doulongvec_minmax instead of proc_dointvec]
Link: https://lkml.kernel.org/r/20241101114833.8377-1-ioworker0@gmail.com
Link: https://lkml.kernel.org/r/20241027120747.42833-1-ioworker0@gmail.com
Link: https://lkml.kernel.org/r/20241027120747.42833-2-ioworker0@gmail.com
Signed-off-by: Mingzhe Yang <mingzhe.yang@ly.com>
Signed-off-by: Lance Yang <ioworker0@gmail.com>
Cc: Bang Li <libang.li@antgroup.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Huang Cun <cunhuang@tencent.com>
Cc: Joel Granados <j.granados@samsung.com>
Cc: Joel Granados <joel.granados@kernel.org>
Cc: John Siddle <jsiddle@redhat.com>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Thomas Weißschuh <linux@weissschuh.net>
Cc: Yongliang Gao <leonylgao@tencent.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
- The fair sched class currently has a bug where its balance() returns true
telling the sched core that it has tasks to run but then NULL from
pick_task(). This makes sched core call sched_ext's pick_task() without
preceding balance() which can lead to stalls in partial mode. For now,
work around by detecting the condition and forcing the CPU to go through
another scheduling cycle.
- Add a missing newline to an error message and fix drgn introspection tool
which went out of sync.
-----BEGIN PGP SIGNATURE-----
iIQEABYKACwWIQTfIjM1kS57o3GsC/uxYfJx3gVYGQUCZzI8sw4cdGpAa2VybmVs
Lm9yZwAKCRCxYfJx3gVYGb5KAP40b/o6TyAFDG+Hn6GxyxQT7rcAUMXsdB2bcEpg
/IjmzQEAwbHU5KP5vQXV6XHv+2V7Rs7u6ZqFtDnL88N0A9hf3wk=
=7hL8
-----END PGP SIGNATURE-----
Merge tag 'sched_ext-for-6.12-rc7-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext
Pull sched_ext fixes from Tejun Heo:
- The fair sched class currently has a bug where its balance() returns
true telling the sched core that it has tasks to run but then NULL
from pick_task(). This makes sched core call sched_ext's pick_task()
without preceding balance() which can lead to stalls in partial mode.
For now, work around by detecting the condition and forcing the CPU
to go through another scheduling cycle.
- Add a missing newline to an error message and fix drgn introspection
tool which went out of sync.
* tag 'sched_ext-for-6.12-rc7-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext:
sched_ext: Handle cases where pick_task_scx() is called without preceding balance_scx()
sched_ext: Update scx_show_state.py to match scx_ops_bypass_depth's new type
sched_ext: Add a missing newline at the end of an error message
* kvm-arm64/psci-1.3:
: PSCI v1.3 support, courtesy of David Woodhouse
:
: Bump KVM's PSCI implementation up to v1.3, with the added bonus of
: implementing the SYSTEM_OFF2 call. Like other system-scoped PSCI calls,
: this gets relayed to userspace for further processing with a new
: KVM_SYSTEM_EVENT_SHUTDOWN flag.
:
: As an added bonus, implement client-side support for hibernation with
: the SYSTEM_OFF2 call.
arm64: Use SYSTEM_OFF2 PSCI call to power off for hibernate
KVM: arm64: nvhe: Pass through PSCI v1.3 SYSTEM_OFF2 call
KVM: selftests: Add test for PSCI SYSTEM_OFF2
KVM: arm64: Add support for PSCI v1.2 and v1.3
KVM: arm64: Add PSCI v1.3 SYSTEM_OFF2 function for hibernation
firmware/psci: Add definitions for PSCI v1.3 specification
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
In sched_ext API, a repeatedly reported pain point is the overuse of the
verb "dispatch" and confusion around "consume":
- ops.dispatch()
- scx_bpf_dispatch[_vtime]()
- scx_bpf_consume()
- scx_bpf_dispatch[_vtime]_from_dsq*()
This overloading of the term is historical. Originally, there were only
built-in DSQs and moving a task into a DSQ always dispatched it for
execution. Using the verb "dispatch" for the kfuncs to move tasks into these
DSQs made sense.
Later, user DSQs were added and scx_bpf_dispatch[_vtime]() updated to be
able to insert tasks into any DSQ. The only allowed DSQ to DSQ transfer was
from a non-local DSQ to a local DSQ and this operation was named "consume".
This was already confusing as a task could be dispatched to a user DSQ from
ops.enqueue() and then the DSQ would have to be consumed in ops.dispatch().
Later addition of scx_bpf_dispatch_from_dsq*() made the confusion even worse
as "dispatch" in this context meant moving a task to an arbitrary DSQ from a
user DSQ.
Clean up the API with the following renames:
1. scx_bpf_dispatch[_vtime]() -> scx_bpf_dsq_insert[_vtime]()
2. scx_bpf_consume() -> scx_bpf_dsq_move_to_local()
3. scx_bpf_dispatch[_vtime]_from_dsq*() -> scx_bpf_dsq_move[_vtime]*()
This patch performs the third set of renames. Compatibility is maintained
by:
- The previous kfunc names are still provided by the kernel so that old
binaries can run. Kernel generates a warning when the old names are used.
- compat.bpf.h provides wrappers for the new names which automatically fall
back to the old names when running on older kernels. They also trigger
build error if old names are used for new builds.
- scx_bpf_dispatch[_vtime]_from_dsq*() were already wrapped in __COMPAT
macros as they were introduced during v6.12 cycle. Wrap new API in
__COMPAT macros too and trigger build errors on both __COMPAT prefixed and
naked usages of the old names.
The compat features will be dropped after v6.15.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Andrea Righi <arighi@nvidia.com>
Acked-by: Changwoo Min <changwoo@igalia.com>
Acked-by: Johannes Bechberger <me@mostlynerdless.de>
Acked-by: Giovanni Gherdovich <ggherdovich@suse.com>
Cc: Dan Schatzberg <dschatzberg@meta.com>
Cc: Ming Yang <yougmark94@gmail.com>
In sched_ext API, a repeatedly reported pain point is the overuse of the
verb "dispatch" and confusion around "consume":
- ops.dispatch()
- scx_bpf_dispatch[_vtime]()
- scx_bpf_consume()
- scx_bpf_dispatch[_vtime]_from_dsq*()
This overloading of the term is historical. Originally, there were only
built-in DSQs and moving a task into a DSQ always dispatched it for
execution. Using the verb "dispatch" for the kfuncs to move tasks into these
DSQs made sense.
Later, user DSQs were added and scx_bpf_dispatch[_vtime]() updated to be
able to insert tasks into any DSQ. The only allowed DSQ to DSQ transfer was
from a non-local DSQ to a local DSQ and this operation was named "consume".
This was already confusing as a task could be dispatched to a user DSQ from
ops.enqueue() and then the DSQ would have to be consumed in ops.dispatch().
Later addition of scx_bpf_dispatch_from_dsq*() made the confusion even worse
as "dispatch" in this context meant moving a task to an arbitrary DSQ from a
user DSQ.
Clean up the API with the following renames:
1. scx_bpf_dispatch[_vtime]() -> scx_bpf_dsq_insert[_vtime]()
2. scx_bpf_consume() -> scx_bpf_dsq_move_to_local()
3. scx_bpf_dispatch[_vtime]_from_dsq*() -> scx_bpf_dsq_move[_vtime]*()
This patch performs the second rename. Compatibility is maintained by:
- The previous kfunc names are still provided by the kernel so that old
binaries can run. Kernel generates a warning when the old names are used.
- compat.bpf.h provides wrappers for the new names which automatically fall
back to the old names when running on older kernels. They also trigger
build error if old names are used for new builds.
The compat features will be dropped after v6.15.
v2: Comment and documentation updates.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Andrea Righi <arighi@nvidia.com>
Acked-by: Changwoo Min <changwoo@igalia.com>
Acked-by: Johannes Bechberger <me@mostlynerdless.de>
Acked-by: Giovanni Gherdovich <ggherdovich@suse.com>
Cc: Dan Schatzberg <dschatzberg@meta.com>
Cc: Ming Yang <yougmark94@gmail.com>
In sched_ext API, a repeatedly reported pain point is the overuse of the
verb "dispatch" and confusion around "consume":
- ops.dispatch()
- scx_bpf_dispatch[_vtime]()
- scx_bpf_consume()
- scx_bpf_dispatch[_vtime]_from_dsq*()
This overloading of the term is historical. Originally, there were only
built-in DSQs and moving a task into a DSQ always dispatched it for
execution. Using the verb "dispatch" for the kfuncs to move tasks into these
DSQs made sense.
Later, user DSQs were added and scx_bpf_dispatch[_vtime]() updated to be
able to insert tasks into any DSQ. The only allowed DSQ to DSQ transfer was
from a non-local DSQ to a local DSQ and this operation was named "consume".
This was already confusing as a task could be dispatched to a user DSQ from
ops.enqueue() and then the DSQ would have to be consumed in ops.dispatch().
Later addition of scx_bpf_dispatch_from_dsq*() made the confusion even worse
as "dispatch" in this context meant moving a task to an arbitrary DSQ from a
user DSQ.
Clean up the API with the following renames:
1. scx_bpf_dispatch[_vtime]() -> scx_bpf_dsq_insert[_vtime]()
2. scx_bpf_consume() -> scx_bpf_dsq_move_to_local()
3. scx_bpf_dispatch[_vtime]_from_dsq*() -> scx_bpf_dsq_move[_vtime]*()
This patch performs the first set of renames. Compatibility is maintained
by:
- The previous kfunc names are still provided by the kernel so that old
binaries can run. Kernel generates a warning when the old names are used.
- compat.bpf.h provides wrappers for the new names which automatically fall
back to the old names when running on older kernels. They also trigger
build error if old names are used for new builds.
The compat features will be dropped after v6.15.
v2: Documentation updates.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Andrea Righi <arighi@nvidia.com>
Acked-by: Changwoo Min <changwoo@igalia.com>
Acked-by: Johannes Bechberger <me@mostlynerdless.de>
Acked-by: Giovanni Gherdovich <ggherdovich@suse.com>
Cc: Dan Schatzberg <dschatzberg@meta.com>
Cc: Ming Yang <yougmark94@gmail.com>
Logic to prevent callbacks from acquiring new references for the program
(i.e. leaving acquired references), and releasing caller references
(i.e. those acquired in parent frames) was introduced in commit
9d9d00ac29 ("bpf: Fix reference state management for synchronous callbacks").
This was necessary because back then, the verifier simulated each
callback once (that could potentially be executed N times, where N can
be zero). This meant that callbacks that left lingering resources or
cleared caller resources could do it more than once, operating on
undefined state or leaking memory.
With the fixes to callback verification in commit
ab5cfac139 ("bpf: verify callbacks as if they are called unknown number of times"),
all of this extra logic is no longer necessary. Hence, drop it as part
of this commit.
Cc: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20241109231430.2475236-3-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
When bpf_spin_lock was introduced originally, there was deliberation on
whether to use an array of lock IDs, but since bpf_spin_lock is limited
to holding a single lock at any given time, we've been using a single ID
to identify the held lock.
In preparation for introducing spin locks that can be taken multiple
times, introduce support for acquiring multiple lock IDs. For this
purpose, reuse the acquired_refs array and store both lock and pointer
references. We tag the entry with REF_TYPE_PTR or REF_TYPE_LOCK to
disambiguate and find the relevant entry. The ptr field is used to track
the map_ptr or btf (for bpf_obj_new allocations) to ensure locks can be
matched with protected fields within the same "allocation", i.e.
bpf_obj_new object or map value.
The struct active_lock is changed to an int as the state is part of the
acquired_refs array, and we only need active_lock as a cheap way of
detecting lock presence.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20241109231430.2475236-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
For htab of maps, when the map is removed from the htab, it may hold the
last reference of the map. bpf_map_fd_put_ptr() will invoke
bpf_map_free_id() to free the id of the removed map element. However,
bpf_map_fd_put_ptr() is invoked while holding a bucket lock
(raw_spin_lock_t), and bpf_map_free_id() attempts to acquire map_idr_lock
(spinlock_t), triggering the following lockdep warning:
=============================
[ BUG: Invalid wait context ]
6.11.0-rc4+ #49 Not tainted
-----------------------------
test_maps/4881 is trying to lock:
ffffffff84884578 (map_idr_lock){+...}-{3:3}, at: bpf_map_free_id.part.0+0x21/0x70
other info that might help us debug this:
context-{5:5}
2 locks held by test_maps/4881:
#0: ffffffff846caf60 (rcu_read_lock){....}-{1:3}, at: bpf_fd_htab_map_update_elem+0xf9/0x270
#1: ffff888149ced148 (&htab->lockdep_key#2){....}-{2:2}, at: htab_map_update_elem+0x178/0xa80
stack backtrace:
CPU: 0 UID: 0 PID: 4881 Comm: test_maps Not tainted 6.11.0-rc4+ #49
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), ...
Call Trace:
<TASK>
dump_stack_lvl+0x6e/0xb0
dump_stack+0x10/0x20
__lock_acquire+0x73e/0x36c0
lock_acquire+0x182/0x450
_raw_spin_lock_irqsave+0x43/0x70
bpf_map_free_id.part.0+0x21/0x70
bpf_map_put+0xcf/0x110
bpf_map_fd_put_ptr+0x9a/0xb0
free_htab_elem+0x69/0xe0
htab_map_update_elem+0x50f/0xa80
bpf_fd_htab_map_update_elem+0x131/0x270
htab_map_update_elem+0x50f/0xa80
bpf_fd_htab_map_update_elem+0x131/0x270
bpf_map_update_value+0x266/0x380
__sys_bpf+0x21bb/0x36b0
__x64_sys_bpf+0x45/0x60
x64_sys_call+0x1b2a/0x20d0
do_syscall_64+0x5d/0x100
entry_SYSCALL_64_after_hwframe+0x76/0x7e
One way to fix the lockdep warning is using raw_spinlock_t for
map_idr_lock as well. However, bpf_map_alloc_id() invokes
idr_alloc_cyclic() after acquiring map_idr_lock, it will trigger a
similar lockdep warning because the slab's lock (s->cpu_slab->lock) is
still a spinlock.
Instead of changing map_idr_lock's type, fix the issue by invoking
htab_put_fd_value() after htab_unlock_bucket(). However, only deferring
the invocation of htab_put_fd_value() is not enough, because the old map
pointers in htab of maps can not be saved during batched deletion.
Therefore, also defer the invocation of free_htab_elem(), so these
to-be-freed elements could be linked together similar to lru map.
There are four callers for ->map_fd_put_ptr:
(1) alloc_htab_elem() (through htab_put_fd_value())
It invokes ->map_fd_put_ptr() under a raw_spinlock_t. The invocation of
htab_put_fd_value() can not simply move after htab_unlock_bucket(),
because the old element has already been stashed in htab->extra_elems.
It may be reused immediately after htab_unlock_bucket() and the
invocation of htab_put_fd_value() after htab_unlock_bucket() may release
the newly-added element incorrectly. Therefore, saving the map pointer
of the old element for htab of maps before unlocking the bucket and
releasing the map_ptr after unlock. Beside the map pointer in the old
element, should do the same thing for the special fields in the old
element as well.
(2) free_htab_elem() (through htab_put_fd_value())
Its caller includes __htab_map_lookup_and_delete_elem(),
htab_map_delete_elem() and __htab_map_lookup_and_delete_batch().
For htab_map_delete_elem(), simply invoke free_htab_elem() after
htab_unlock_bucket(). For __htab_map_lookup_and_delete_batch(), just
like lru map, linking the to-be-freed element into node_to_free list
and invoking free_htab_elem() for these element after unlock. It is safe
to reuse batch_flink as the link for node_to_free, because these
elements have been removed from the hash llist.
Because htab of maps doesn't support lookup_and_delete operation,
__htab_map_lookup_and_delete_elem() doesn't have the problem, so kept
it as is.
(3) fd_htab_map_free()
It invokes ->map_fd_put_ptr without raw_spinlock_t.
(4) bpf_fd_htab_map_update_elem()
It invokes ->map_fd_put_ptr without raw_spinlock_t.
After moving free_htab_elem() outside htab bucket lock scope, using
pcpu_freelist_push() instead of __pcpu_freelist_push() to disable
the irq before freeing elements, and protecting the invocations of
bpf_mem_cache_free() with migrate_{disable|enable} pair.
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20241106063542.357743-2-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Placing bpf_session_run_ctx layer in between bpf_run_ctx and
bpf_uprobe_multi_run_ctx, so the session data can be retrieved
from uprobe_multi link.
Plus granting session kfuncs access to uprobe session programs.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20241108134544.480660-5-jolsa@kernel.org
Adding support to attach BPF program for entry and return probe
of the same function. This is common use case which at the moment
requires to create two uprobe multi links.
Adding new BPF_TRACE_UPROBE_SESSION attach type that instructs
kernel to attach single link program to both entry and exit probe.
It's possible to control execution of the BPF program on return
probe simply by returning zero or non zero from the entry BPF
program execution to execute or not the BPF program on return
probe respectively.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20241108134544.480660-4-jolsa@kernel.org
As suggested by Andrii make uprobe multi bpf programs to always return 0,
so they can't force uprobe removal.
Keeping the int return type for uprobe_prog_run, because it will be used
in following session changes.
Fixes: 89ae89f53d ("bpf: Add multi uprobe link")
Suggested-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20241108134544.480660-3-jolsa@kernel.org
The kprobe session program can return only 0 or 1,
instruct verifier to check for that.
Fixes: 535a3692ba ("bpf: Add support for kprobe session attach")
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20241108134544.480660-2-jolsa@kernel.org
Introduce FORCE_CON flag to printk. The new flag will make it possible to
create a context where printk messages will never be suppressed.
This mechanism will be used in the next patch to create a force_con
context on sysrq handling, removing an existing workaround on the
loglevel global variable. The workaround existed to make sure that sysrq
header messages were sent to all consoles, but this doesn't work with
deferred messages because the loglevel might be restored to its original
value before a console flushes the messages.
Signed-off-by: Marcos Paulo de Souza <mpdesouza@suse.com>
Reviewed-by: John Ogness <john.ogness@linutronix.de>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Link: https://lore.kernel.org/r/20241105-printk-loud-con-v2-1-bd3ecdf7b0e4@suse.com
Signed-off-by: Petr Mladek <pmladek@suse.com>
Add a light version of override/revert_creds(), this should only be
used when the credentials in question will outlive the critical
section and the critical section doesn't change the ->usage of the
credentials.
Suggested-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Pick up e7ac4daeed ("mm: count zeromap read and set for swapout and
swapin") in order to move
mm: define obj_cgroup_get() if CONFIG_MEMCG is not defined
mm: zswap: modify zswap_compress() to accept a page instead of a folio
mm: zswap: rename zswap_pool_get() to zswap_pool_tryget()
mm: zswap: modify zswap_stored_pages to be atomic_long_t
mm: zswap: support large folios in zswap_store()
mm: swap: count successful large folio zswap stores in hugepage zswpout stats
mm: zswap: zswap_store_page() will initialize entry after adding to xarray.
mm: add per-order mTHP swpin counters
from mm-unstable into mm-stable.
Three affect DAMON. Lorenzo's five-patch series to address the
mmap_region error handling is here also.
Apart from that, various singletons.
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZzBVmAAKCRDdBJ7gKXxA
ju42AQD0EEnzW+zFyI+E7x5FwCmLL6ofmzM8Sw9YrKjaeShdZgEAhcyS2Rc/AaJq
Uty2ZvVMDF2a9p9gqHfKKARBXEbN2w0=
=n+lO
-----END PGP SIGNATURE-----
Merge tag 'mm-hotfixes-stable-2024-11-09-22-40' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull misc fixes from Andrew Morton:
"20 hotfixes, 14 of which are cc:stable.
Three affect DAMON. Lorenzo's five-patch series to address the
mmap_region error handling is here also.
Apart from that, various singletons"
* tag 'mm-hotfixes-stable-2024-11-09-22-40' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm:
mailmap: add entry for Thorsten Blum
ocfs2: remove entry once instead of null-ptr-dereference in ocfs2_xa_remove()
signal: restore the override_rlimit logic
fs/proc: fix compile warning about variable 'vmcore_mmap_ops'
ucounts: fix counter leak in inc_rlimit_get_ucounts()
selftests: hugetlb_dio: check for initial conditions to skip in the start
mm: fix docs for the kernel parameter ``thp_anon=``
mm/damon/core: avoid overflow in damon_feed_loop_next_input()
mm/damon/core: handle zero schemes apply interval
mm/damon/core: handle zero {aggregation,ops_update} intervals
mm/mlock: set the correct prev on failure
objpool: fix to make percpu slot allocation more robust
mm/page_alloc: keep track of free highatomic
mm: resolve faulty mmap_region() error path behaviour
mm: refactor arch_calc_vm_flag_bits() and arm64 MTE handling
mm: refactor map_deny_write_exec()
mm: unconditionally close VMAs on error
mm: avoid unsafe VMA hook invocation when error arises on mmap hook
mm/thp: fix deferred split unqueue naming and locking
mm/thp: fix deferred split queue not partially_mapped
In commit 24cc57d8fa ("padata: Honor the caller's alignment in case of
chunk_size 0"), the line 'ps.chunk_size = max(ps.chunk_size, 1ul)' was
added, making 'ps.chunk_size = 1U' redundant and never executed.
Signed-off-by: Zicheng Qu <quzicheng@huawei.com>
Acked-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
sched_ext dispatches tasks from the BPF scheduler from balance_scx() and
thus every pick_task_scx() call must be preceded by balance_scx(). While
this usually holds, due to a bug, there are cases where the fair class's
balance() returns true indicating that it has tasks to run on the CPU and
thus terminating balance() calls but fails to actually find the next task to
run when pick_task() is called. In such cases, pick_task_scx() can be called
without preceding balance_scx().
Detect this condition using SCX_RQ_BAL_PENDING flags. If detected, keep
running the previous task if possible and avoid stalling from entering idle
without balancing.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/Ztj_h5c2LYsdXYbA@slm.duckdns.org
4c30f5ce4f ("sched_ext: Implement scx_bpf_dispatch[_vtime]_from_dsq()")
added four kfuncs for dispatching while iterating. They are allowed from the
dispatch and unlocked contexts but two of the kfuncs were only added in the
dispatch section. Add missing declarations in the unlocked section.
Signed-off-by: Tejun Heo <tj@kernel.org>
Fixes: 4c30f5ce4f ("sched_ext: Implement scx_bpf_dispatch[_vtime]_from_dsq()")
scf_handler() is used as a SMP function call. This function is always
invoked in IRQ-context even with forced-threading enabled. This function
frees memory which not allowed on PREEMPT_RT because the locking
underneath is using sleeping locks.
Add a per-CPU scf_free_pool where each SMP functions adds its memory to
be freed. This memory is then freed by scftorture_invoker() on each
iteration. On the majority of invocations the number of items is less
than five. If the thread sleeps/ gets delayed the number exceed 350 but
did not reach 400 in testing. These were the spikes during testing.
The bulk free of 64 pointers at once should improve the give-back if the
list grows. The list size is ~1.3 items per invocations.
Having one global scf_free_pool with one cleaning thread let the list
grow to over 10.000 items with 32 CPUs (again, spikes not the average)
especially if the CPU went to sleep. The per-CPU part looks like a good
compromise.
Reported-by: "Paul E. McKenney" <paulmck@kernel.org>
Closes: https://lore.kernel.org/lkml/41619255-cdc2-4573-a360-7794fc3614f7@paulmck-laptop/
Tested-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Boqun Feng <boqun.feng@gmail.com>
Tested-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Memory allocations can not happen within regions with explicit disabled
preemption PREEMPT_RT. The problem is that the locking structures
underneath are sleeping locks.
Move the memory allocation outside of the preempt-disabled section. Keep
the GFP_ATOMIC for the allocation to behave like a "ememergncy
allocation".
Tested-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Boqun Feng <boqun.feng@gmail.com>
Tested-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The smp_call_function() needs to be invoked with the wait flag set to
wait until scf_cleanup_handler() is done. This ensures that all SMP
function calls, that have been queued earlier, complete at this point.
Tested-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Boqun Feng <boqun.feng@gmail.com>
Tested-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Replace "scfp->cpu % nr_cpu_ids" with "cpu". This has been computed
earlier.
Tested-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Boqun Feng <boqun.feng@gmail.com>
Tested-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Update the comments in sched_ext_ops to clarify this table is for
a BPF scheduler and a userland scheduler should also rely on the
sched_ext_ops table through the BPF scheduler.
Signed-off-by: Changwoo Min <changwoo@igalia.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
On 2 x Intel Sapphire Rapids machines with 224 logical CPUs, a poorly
behaving BPF scheduler can live-lock the system by making multiple CPUs bang
on the same DSQ to the point where soft-lockup detection triggers before
SCX's own watchdog can take action. It also seems possible that the machine
can be live-locked enough to prevent scx_ops_helper, which is an RT task,
from running in a timely manner.
Implement scx_softlockup() which is called when three quarters of
soft-lockup threshold has passed. The function immediately enables the ops
breather and triggers an ops error to initiate ejection of the BPF
scheduler.
The previous and this patch combined enable the kernel to reliably recover
the system from live-lock conditions that can be triggered by a poorly
behaving BPF scheduler on Intel dual socket systems.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Douglas Anderson <dianders@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
A poorly behaving BPF scheduler can live-lock the system by e.g. incessantly
banging on the same DSQ on a large NUMA system to the point where switching
to the bypass mode can take a long time. Turning on the bypass mode requires
dequeueing and re-enqueueing currently runnable tasks, if the DSQs that they
are on are live-locked, this can take tens of seconds cascading into other
failures. This was observed on 2 x Intel Sapphire Rapids machines with 224
logical CPUs.
Inject artifical delays while the bypass mode is switching to guarantee
timely completion.
While at it, move __scx_ops_bypass_lock into scx_ops_bypass() and rename it
to bypass_lock.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Valentin Andrei <vandrei@meta.com>
Reported-by: Patrick Lu <patlu@meta.com>
Pull sched_ext/for-6.12-fixes to receive 0e7ffff1b8 ("scx: Fix raciness in
scx_ops_bypass()"). Planned updates for scx_ops_bypass() depends on it.
Signed-off-by: Tejun Heo <tj@kernel.org>
There is no reason to use a bitwise AND when checking the conditions to
enable NUMA optimization for the built-in CPU idle selection policy, so
use a logical AND instead.
Fixes: f6ce6b9493 ("sched_ext: Do not enable LLC/NUMA optimizations when domains overlap")
Reported-by: Nathan Chancellor <nathan@kernel.org>
Closes: https://lore.kernel.org/lkml/20241108181753.GA2681424@thelio-3990X/
Signed-off-by: Andrea Righi <arighi@nvidia.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
trace_dma_alloc_sgt_err was called with the dir and flags arguments
swapped. Fix this.
Fixes: 68b6dbf1f4 ("dma-mapping: trace more error paths")
Signed-off-by: Sean Anderson <sean.anderson@linux.dev>
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202410302243.1wnTlPk3-lkp@intel.com/
Signed-off-by: Christoph Hellwig <hch@lst.de>
When the LLC and NUMA domains fully overlap, enabling both optimizations
in the built-in idle CPU selection policy is redundant, as it leads to
searching for an idle CPU within the same domain twice.
Likewise, if all online CPUs are within a single LLC domain, LLC
optimization is unnecessary.
Therefore, detect overlapping domains and enable topology optimizations
only when necessary.
Moreover, rely on the online CPUs for this detection logic, instead of
using the possible CPUs.
Fixes: 860a45219b ("sched_ext: Introduce NUMA awareness to the default idle selection policy")
Signed-off-by: Andrea Righi <arighi@nvidia.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
There are several places which currently open-code page_pgoff(), convert
them to call it.
Link: https://lkml.kernel.org/r/20241005200121.3231142-3-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
When a module gets unloaded there is a possibility that some of the
allocations it made are still used and therefore the allocation tags
corresponding to these allocations are still referenced. As such, the
memory for these tags can't be freed. This is currently handled as an
abnormal situation and module's data section is not being unloaded. To
handle this situation without keeping module's data in memory, allow
codetags with longer lifespan than the module to be loaded into their own
separate memory. The in-use memory areas and gaps after module unloading
in this separate memory are tracked using maple trees. Allocation tags
arrange their separate memory so that it is virtually contiguous and that
will allow simple allocation tag indexing later on in this patchset. The
size of this virtually contiguous memory is set to store up to 100000
allocation tags.
[surenb@google.com: fix empty codetag module section handling]
Link: https://lkml.kernel.org/r/20241101000017.3856204-1-surenb@google.com
[akpm@linux-foundation.org: update comment, per Dan]
Link: https://lkml.kernel.org/r/20241023170759.999909-4-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Daniel Gomez <da.gomez@samsung.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport (Microsoft) <rppt@kernel.org>
Cc: Minchan Kim <minchan@google.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Petr Pavlu <petr.pavlu@suse.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Sami Tolvanen <samitolvanen@google.com>
Cc: Sourav Panda <souravpanda@google.com>
Cc: Steven Rostedt (Google) <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Huth <thuth@redhat.com>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Xiongwei Song <xiongwei.song@windriver.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
In order to support ROX allocations for module text, it is necessary to
handle modifications to the code, such as relocations and alternatives
patching, without write access to that memory.
One option is to use text patching, but this would make module loading
extremely slow and will expose executable code that is not finally formed.
A better way is to have memory allocated with ROX permissions contain
invalid instructions and keep a writable, but not executable copy of the
module text. The relocations and alternative patches would be done on the
writable copy using the addresses of the ROX memory. Once the module is
completely ready, the updated text will be copied to ROX memory using text
patching in one go and the writable copy will be freed.
Add support for that to module initialization code and provide necessary
interfaces in execmem.
Link: https://lkml.kernel.org/r/20241023162711.2579610-5-rppt@kernel.org
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Reviewd-by: Luis Chamberlain <mcgrof@kernel.org>
Tested-by: kdevops <kdevops@lists.linux.dev>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Brian Cain <bcain@quicinc.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dinh Nguyen <dinguyen@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guo Ren <guoren@kernel.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Berg <johannes@sipsolutions.net>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Song Liu <song@kernel.org>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Steven Rostedt (Google) <rostedt@goodmis.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Vineet Gupta <vgupta@kernel.org>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Prior to commit d646969055 ("Reimplement RLIMIT_SIGPENDING on top of
ucounts") UCOUNT_RLIMIT_SIGPENDING rlimit was not enforced for a class of
signals. However now it's enforced unconditionally, even if
override_rlimit is set. This behavior change caused production issues.
For example, if the limit is reached and a process receives a SIGSEGV
signal, sigqueue_alloc fails to allocate the necessary resources for the
signal delivery, preventing the signal from being delivered with siginfo.
This prevents the process from correctly identifying the fault address and
handling the error. From the user-space perspective, applications are
unaware that the limit has been reached and that the siginfo is
effectively 'corrupted'. This can lead to unpredictable behavior and
crashes, as we observed with java applications.
Fix this by passing override_rlimit into inc_rlimit_get_ucounts() and skip
the comparison to max there if override_rlimit is set. This effectively
restores the old behavior.
Link: https://lkml.kernel.org/r/20241104195419.3962584-1-roman.gushchin@linux.dev
Fixes: d646969055 ("Reimplement RLIMIT_SIGPENDING on top of ucounts")
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Co-developed-by: Andrei Vagin <avagin@google.com>
Signed-off-by: Andrei Vagin <avagin@google.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Alexey Gladkov <legion@kernel.org>
Cc: Kees Cook <kees@kernel.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The inc_rlimit_get_ucounts() increments the specified rlimit counter and
then checks its limit. If the value exceeds the limit, the function
returns an error without decrementing the counter.
Link: https://lkml.kernel.org/r/20241101191940.3211128-1-roman.gushchin@linux.dev
Fixes: 15bc01effe ("ucounts: Fix signal ucount refcounting")
Signed-off-by: Andrei Vagin <avagin@google.com>
Co-developed-by: Roman Gushchin <roman.gushchin@linux.dev>
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Tested-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Alexey Gladkov <legion@kernel.org>
Cc: Kees Cook <kees@kernel.org>
Cc: Andrei Vagin <avagin@google.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Alexey Gladkov <legion@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
While PREEMPT_RT is undoubtedly totally awesome, it does not, at this
time, make sense to have all{yes,mod}config select it.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Fixes: 35772d627b ("sched: Enable PREEMPT_DYNAMIC for PREEMPT_RT")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
For clarity. It's increasingly hard to reason about the code, when KASLR
is moving around the boundaries. In this case where KASLR is randomizing
the location of the kernel image within physical memory, the maximum
number of address bits for physical memory has not changed.
What has changed is the ending address of memory that is allowed to be
directly mapped by the kernel.
Let's name the variable, and the associated macro accordingly.
Also, enhance the comment above the direct_map_physmem_end definition,
to further clarify how this all works.
Link: https://lkml.kernel.org/r/20241009025024.89813-1-jhubbard@nvidia.com
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Pankaj Gupta <pankaj.gupta@amd.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Will Deacon <will@kernel.org>
Reviewed-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Jordan Niethe <jniethe@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
hrtimer_setup() and hrtimer_setup_on_stack() take the callback function
pointer as argument and initialize the timer completely.
Replace the hrtimer_init*() variants and the open coded initialization of
hrtimer::function with the new setup mechanism.
Switch to use the new functions.
Signed-off-by: Nam Cao <namcao@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/2bae912336103405adcdab96b88d3ea0353b4228.1730386209.git.namcao@linutronix.de
hrtimer_setup_on_stack() takes the callback function pointer as argument
and initializes the timer completely.
Replace hrtimer_init_on_stack() and the open coded initialization of
hrtimer::function with the new setup mechanism.
The conversion was done with Coccinelle.
Signed-off-by: Nam Cao <namcao@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/17f9421fed6061df4ad26a4cc91873d2c078cb0f.1730386209.git.namcao@linutronix.de
The hrtimer_init*() API is replaced by hrtimer_setup*() variants to
initialize the timer including the callback function at once.
hrtimer_init_sleeper_on_stack() does not need user to setup the callback
function separately, so a new variant would not be strictly necessary.
Nonetheless, to keep the naming convention consistent, introduce
hrtimer_setup_sleeper_on_stack(). hrtimer_init_on_stack() will be removed
once all users are converted.
Signed-off-by: Nam Cao <namcao@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/7b5e18e6dd0ace9eaa211201528cb9dc23752454.1730386209.git.namcao@linutronix.de
To initialize hrtimer on stack, hrtimer_init_on_stack() needs to be called
and also hrtimer::function must be set. This is error-prone and awkward to
use.
Introduce hrtimer_setup_on_stack() which does both of these things, so that
users of hrtimer can be simplified.
The new setup function also has a sanity check for the provided function
pointer. If NULL, a warning is emitted and a dummy callback installed.
hrtimer_init_on_stack() will be removed as soon as all of its users have
been converted to the new function.
Signed-off-by: Nam Cao <namcao@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/4b05e2ab3a82c517adf67fabc0f0cd8fe118b97c.1730386209.git.namcao@linutronix.de
To initialize hrtimer, hrtimer_init() needs to be called and also
hrtimer::function must be set. This is error-prone and awkward to use.
Introduce hrtimer_setup() which does both of these things, so that users of
hrtimer can be simplified.
The new setup function also has a sanity check for the provided function
pointer. If NULL, a warning is emitted and a dummy callback installed.
hrtimer_init() will be removed as soon as all of its users have been
converted to the new function.
Signed-off-by: Nam Cao <namcao@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/5057c1ddbfd4b92033cd93d37fe38e6b069d5ba6.1730386209.git.namcao@linutronix.de
hrtimer_init*_on_stack() is not covered by tracing when
CONFIG_DEBUG_OBJECTS_TIMERS=y.
Rework the functions similar to hrtimer_init() and hrtimer_init_sleeper()
so that the hrtimer_init() tracepoint is unconditionally available.
The rework makes hrtimer_init_sleeper() unused. Delete it.
Signed-off-by: Nam Cao <namcao@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/74528e8abf2bb96e8bee85ffacbf14e15cf89f0d.1730386209.git.namcao@linutronix.de
The timer and hrtimer soft interrupts are raised in hard interrupt
context. With threaded interrupts force enabled or on PREEMPT_RT this leads
to waking the ksoftirqd for the processing of the soft interrupt.
ksoftirqd runs as SCHED_OTHER task which means it will compete with other
tasks for CPU resources. This can introduce long delays for timer
processing on heavy loaded systems and is not desired.
Split the TIMER_SOFTIRQ and HRTIMER_SOFTIRQ processing into a dedicated
timers thread and let it run at the lowest SCHED_FIFO priority.
Wake-ups for RT tasks happen from hardirq context so only timer_list timers
and hrtimers for "regular" tasks are processed here. The higher priority
ensures that wakeups are performed before scheduling SCHED_OTHER tasks.
Using a dedicated variable to store the pending softirq bits values ensure
that the timer are not accidentally picked up by ksoftirqd and other
threaded interrupts.
It shouldn't be picked up by ksoftirqd since it runs at lower priority.
However if ksoftirqd is already running while a timer fires, then ksoftird
will be PI-boosted due to the BH-lock to ktimer's priority.
The timer thread can pick up pending softirqs from ksoftirqd but only
if the softirq load is high. It is not be desired that the picked up
softirqs are processed at SCHED_FIFO priority under high softirq load
but this can already happen by a PI-boost by a force-threaded interrupt.
[ frederic@kernel.org: rcutorture.c fixes, storm fix by introduction of
local_timers_pending() for tick_nohz_next_event() ]
[ junxiao.chang@intel.com: Ensure ktimersd gets woken up even if a
softirq is currently served. ]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org> [rcutorture]
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/all/20241106150419.2593080-4-bigeasy@linutronix.de
Raising the timer soft interrupt is always done from hard interrupt
context, so it can be reduced to just setting the TIMER soft interrupt
flag. The soft interrupt will be invoked on return from interrupt.
Use therefore __raise_softirq_irqoff() to raise the TIMER soft interrupt,
which is a trivial optimization.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/all/20241106150419.2593080-3-bigeasy@linutronix.de
Raising the hrtimer soft interrupt is always done from hard interrupt
context, so it can be reduced to just setting the HRTIMER soft interrupt
flag. The soft interrupt will be invoked on return from interrupt.
Use therefore __raise_softirq_irqoff() to raise the HRTIMER soft interrupt,
which is a trivial optimization.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/all/20241106150419.2593080-2-bigeasy@linutronix.de
Now that the SIG_IGN problem is solved in the core code, the alarmtimer
callbacks do not require a return value anymore.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/all/20241105064214.318837272@linutronix.de
Now that ignored posix timer signals are requeued and the timers are
rearmed on signal delivery the workaround to keep such timers alive and
self rearm them is not longer required.
Remove the unused alarm timer parts.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241105064214.252443020@linutronix.de
Now that ignored posix timer signals are requeued and the timers are
rearmed on signal delivery the workaround to keep such timers alive and
self rearm them is not longer required.
Remove the relevant hacks and the not longer required return values from
the related functions. The alarm timer workarounds will be cleaned up in a
separate step.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241105064214.187239060@linutronix.de
Queue posixtimers which have their signal ignored on the ignored list:
1) When the timer fires and the signal has SIG_IGN set
2) When SIG_IGN is installed via sigaction() and a timer signal
is already queued
This only happens when the signal is for a valid timer, which delivered the
signal in periodic mode. One-shot timer signals are correctly dropped.
Due to the lock order constraints (sighand::siglock nests inside
timer::lock) the signal code cannot access any of the timer fields which
are relevant to make this decision, e.g. timer::it_status.
This is addressed by establishing a protection scheme which requires to
lock both locks on the timer side for modifying decision fields in the
timer struct and therefore makes it possible for the signal delivery to
evaluate with only sighand:siglock being held:
1) Move the NULLification of timer->it_signal into the sighand::siglock
protected section of timer_delete() and check timer::it_signal in the
code path which determines whether the signal is dropped or queued on
the ignore list.
This ensures that a deleted timer cannot be moved onto the ignore
list, which would prevent it from being freed on exit() as it is not
longer in the process' posix timer list.
If the timer got moved to the ignored list before deletion then it is
removed from the ignored list under sighand lock in timer_delete().
2) Provide a new timer::it_sig_periodic flag, which gets set in the
signal queue path with both timer and sighand locks held if the timer
is actually in periodic mode at expiry time.
The ignore list code checks this flag under sighand::siglock and drops
the signal when it is not set.
If it is set, then the signal is moved to the ignored list independent
of the actual state of the timer.
When the signal is un-ignored later then the signal is moved back to
the signal queue. On signal delivery the posix timer side decides
about dropping the signal if the timer was re-armed, dis-armed or
deleted based on the signal sequence counter check.
If the thread/process exits then not yet delivered signals are
discarded which means the reference of the timer containing the
sigqueue is dropped and frees the timer.
This is way cheaper than requiring all code paths to lock
sighand::siglock of the target thread/process on any modification of
timer::it_status or going all the way and removing pending signals
from the signal queues on every rearm, disarm or delete operation.
So the protection scheme here is that on the timer side both timer::lock
and sighand::siglock have to be held for modifying
timer::it_signal
timer::it_sig_periodic
which means that on the signal side holding sighand::siglock is enough to
evaluate these fields.
In posixtimer_deliver_signal() holding timer::lock is sufficient to do the
sequence validation against timer::it_signal_seq because a concurrent
expiry is waiting on timer::lock to be released.
This completes the SIG_IGN handling and such timers are not longer self
rearmed which avoids pointless wakeups.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241105064214.120756416@linutronix.de
When a real handler (including SIG_DFL) is installed for a signal, which
had previously SIG_IGN set, then the list of ignored posix timers has to be
checked for timers which are affected by this change.
Add a list walk function which checks for the matching signal number and if
found requeues the timers signal, so the timer is rearmed on signal
delivery.
Rearming the timer right away is not possible because that requires to drop
sighand lock.
No functional change as the counter part which queues the timers on the
ignored list is still missing.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241105064214.054091076@linutronix.de
To handle posix timer signals on sigaction(SIG_IGN) properly, the timers
will be queued on a separate ignored list.
Add the necessary cleanup code for timer_delete() and exit_itimers().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241105064213.987530588@linutronix.de
To prepare for handling posix timer signals on sigaction(SIG_IGN) properly,
add a list to task::signal.
This list will be used to queue posix timers so their signal can be
requeued when SIG_IGN is lifted later.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241105064213.920101900@linutronix.de
The posix timer signal handling uses siginfo::si_sys_private for handling
the sequence counter check. That indirection is not longer required and the
sequence count value at signal queueing time can be stored in struct
k_itimer itself.
This removes the requirement of treating siginfo::si_sys_private special as
it's now always zero as the kernel does not touch it anymore.
Suggested-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Link: https://lore.kernel.org/all/20241105064213.852619866@linutronix.de
Remove the leftovers of sigqueue preallocation as it's not longer used.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241105064213.786506636@linutronix.de
To cure the SIG_IGN handling for posix interval timers, the preallocated
sigqueue needs to be embedded into struct k_itimer to prevent life time
races of all sorts.
Now that the prerequisites are in place, embed the sigqueue into struct
k_itimer and fixup the relevant usage sites.
Aside of preparing for proper SIG_IGN handling, this spares an extra
allocation.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241105064213.719695194@linutronix.de
In preparation for handling ignored posix timer signals correctly and
embedding the sigqueue struct into struct k_itimer, hand down a pointer to
the sigqueue struct into posix_timer_deliver_signal() instead of just
having a boolean flag.
No functional change.
Suggested-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Link: https://lore.kernel.org/all/20241105064213.652658158@linutronix.de
To handle posix timers which have their signal ignored via SIG_IGN properly
it is required to requeue a ignored signal for delivery when SIG_IGN is
lifted so the timer gets rearmed.
Split the required code out of send_sigqueue() so it can be reused in
context of sigaction().
While at it rename send_sigqueue() to posixtimer_send_sigqueue() so its
clear what this is about.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241105064213.586453412@linutronix.de
instead of re-evaluating the signal delivery mode everywhere.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241105064213.519086500@linutronix.de
To cure the SIG_IGN handling for posix interval timers, the preallocated
sigqueue needs to be embedded into struct k_itimer to prevent life time
races of all sorts.
Provide a new function to initialize the embedded sigqueue to prepare for
that.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241105064213.450427515@linutronix.de
To cure the SIG_IGN handling for posix interval timers, the preallocated
sigqueue needs to be embedded into struct k_itimer to prevent life time
races of all sorts.
Reorganize __sigqueue_alloc() so the ucounts retrieval and the
initialization can be used independently.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241105064213.371410037@linutronix.de
To cure the SIG_IGN handling for posix interval timers, the preallocated
sigqueue needs to be embedded into struct k_itimer to prevent life time
races of all sorts.
To make that work correctly it needs reference counting so that timer
deletion does not free the timer prematuraly when there is a signal queued
or delivered concurrently.
Add a rcuref to the posix timer part.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241105064213.304756440@linutronix.de
POSIX CPU timer nanosleep creates a k_itimer on stack and uses the sigq
pointer to detect the nanosleep case in the expiry function.
Prepare for embedding sigqueue into struct k_itimer by using a dedicated
flag for nanosleep.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241105064213.238550394@linutronix.de
The firing flag of a posix CPU timer is tristate:
0: when the timer is not about to deliver a signal
1: when the timer has expired, but the signal has not been delivered yet
-1: when the timer was queued for signal delivery and a rearm operation
raced against it and supressed the signal delivery.
This is a pointless exercise as this can be simply expressed with a
boolean. Only if set, the signal is delivered. This makes delete and rearm
consistent with the rest of the posix timers.
Convert firing to bool and fixup the usage sites accordingly and add
comments why the timer cannot be dequeued right away.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/all/20241105064213.172848618@linutronix.de
The handling of the timer overrun in the signal code is inconsistent as it
takes previous overruns into account. This is just wrong as after the
reprogramming of a timer the overrun count starts over from a clean state,
i.e. 0.
Don't touch info::si_overrun in send_sigqueue() and only store the overrun
value at signal delivery time, which is computed from the timer itself
relative to the expiry time.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241105064213.106738193@linutronix.de
Signals of timers which are reprogammed, disarmed or deleted can deliver
signals related to the past. The POSIX spec is blury about this:
- "The effect of disarming or resetting a timer with pending expiration
notifications is unspecified."
- "The disposition of pending signals for the deleted timer is
unspecified."
In both cases it is reasonable to expect that pending signals are
discarded. Especially in the reprogramming case it does not make sense to
account for previous overruns or to deliver a signal for a timer which has
been disarmed. This makes the behaviour consistent and understandable.
Remove the si_sys_private check from the signal delivery code and invoke
posix_timer_deliver_signal() unconditionally for posix timer related
signals.
Change posix_timer_deliver_signal() so it controls the actual signal
delivery via the return value. It now instructs the signal code to drop the
signal when:
1) The timer does not longer exist in the hash table
2) The timer signal_seq value is not the same as the si_sys_private value
which was set when the signal was queued.
This is also a preparatory change to embed the sigqueue into the k_itimer
structure, which in turn allows to remove the si_sys_private magic.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/all/20241105064213.040348644@linutronix.de
If posix_cpu_timer_del() exits early due to task not found or sighand
invalid, it fails to clear the state of the timer. That's harmless but
inconsistent.
These early exits are accounted as successful delete. Move the update of
the timer state into the success return path, so all "successful" deletions
are handled.
Reported-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/all/20241105064212.974053438@linutronix.de
Currently, if __region_intersects() finds any overlapped but unmatched
resource, it walks the descendant resource tree to check for overlapped
and matched descendant resources using for_each_resource(). However, in
current kernel, for_each_resource() iterates not only the descendant tree,
but also subsequent sibling trees in certain scenarios. While this
doesn't introduce bugs, it makes code hard to be understood and
potentially inefficient.
So, the patch revises next_resource() and for_each_resource() and makes
for_each_resource() traverse the subtree under the specified subtree root
only. Test shows that this avoids unnecessary resource tree walking in
__region_intersects().
For the example resource tree as follows,
X
|
A----D----E
|
B--C
if 'A' is the overlapped but unmatched resource, original kernel
iterates 'B', 'C', 'D', 'E' when it walks the descendant tree. While
the patched kernel iterates only 'B', 'C'.
Thanks David Hildenbrand for providing a good resource tree example.
Link: https://lkml.kernel.org/r/20241029122735.79164-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Jonathan Cameron <jonathan.cameron@huawei.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Alison Schofield <alison.schofield@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The commit 78ff640819 ("vfs: Convert tracefs to use the new mount API")
broke the gid setting when set by fstab or other mount utility.
It is ignored when it is set. Fix the code so that it recognises the
option again and will honor the settings on mount at boot up.
Update the internal documentation and create a selftest to make sure
it doesn't break again in the future.
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZyuidRQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qsgQAQDuV0x4RLpCrrowDS/ITQw/eb/WjhR7
lhkXVROLN6RK6wD+JWmbaCP82q2S4A2Vx0Rjc72gUMmTzDb1HQflhQiLhwU=
=0dZF
-----END PGP SIGNATURE-----
Merge tag 'tracefs-v6.12-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull tracefs fixes from Steven Rostedt:
"Fix tracefs mount options.
Commit 78ff640819 ("vfs: Convert tracefs to use the new mount API")
broke the gid setting when set by fstab or other mount utility. It is
ignored when it is set. Fix the code so that it recognises the option
again and will honor the settings on mount at boot up.
Update the internal documentation and create a selftest to make sure
it doesn't break again in the future"
* tag 'tracefs-v6.12-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
tracing/selftests: Add tracefs mount options test
tracing: Document tracefs gid mount option
tracing: Fix tracefs mount options
After introducing the default builtin swap implementation, update the
min_heap_callbacks to replace the swp function pointer with NULL. This
change allows the min heap to directly utilize the builtin swap,
simplifying the code.
Link: https://lkml.kernel.org/r/20241020040200.939973-6-visitorckw@gmail.com
Signed-off-by: Kuan-Wei Chiu <visitorckw@gmail.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Ching-Chun (Jim) Huang <jserv@ccns.ncku.edu.tw>
Cc: Coly Li <colyli@suse.de>
Cc: Ian Rogers <irogers@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: "Liang, Kan" <kan.liang@linux.intel.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Sakai <msakai@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "Enhance min heap API with non-inline functions and
optimizations", v2.
Add non-inline versions of the min heap API functions in lib/min_heap.c
and updates all users outside of kernel/events/core.c to use these
non-inline versions. To mitigate the performance impact of indirect
function calls caused by the non-inline versions of the swap and compare
functions, a builtin swap has been introduced that swaps elements based on
their size. Additionally, it micro-optimizes the efficiency of the min
heap by pre-scaling the counter, following the same approach as in
lib/sort.c. Documentation for the min heap API has also been added to the
core-api section.
This patch (of 10):
All current min heap API functions are marked with '__always_inline'.
However, as the number of users increases, inlining these functions
everywhere leads to a increase in kernel size.
In performance-critical paths, such as when perf events are enabled and
min heap functions are called on every context switch, it is important to
retain the inline versions for optimal performance. To balance this, the
original inline functions are kept, and additional non-inline versions of
the functions have been added in lib/min_heap.c.
Link: https://lkml.kernel.org/r/20241020040200.939973-1-visitorckw@gmail.com
Link: https://lore.kernel.org/20240522161048.8d8bbc7b153b4ecd92c50666@linux-foundation.org
Link: https://lkml.kernel.org/r/20241020040200.939973-2-visitorckw@gmail.com
Signed-off-by: Kuan-Wei Chiu <visitorckw@gmail.com>
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Ching-Chun (Jim) Huang <jserv@ccns.ncku.edu.tw>
Cc: Coly Li <colyli@suse.de>
Cc: Ian Rogers <irogers@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: Kuan-Wei Chiu <visitorckw@gmail.com>
Cc: "Liang, Kan" <kan.liang@linux.intel.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Sakai <msakai@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Use ERR_PTR_PCPU() when returning error pointer in the percpu address
space. Use IS_ERR_PCPU() and PTR_ERR_PCPU() when returning the error
pointer from the percpu address space. These macros add intermediate cast
to unsigned long when switching named address spaces.
The patch will avoid future build errors due to pointer address space
mismatch with enabled strict percpu address space checks.
Link: https://lkml.kernel.org/r/20240924090813.1353586-1-ubizjak@gmail.com
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Ian Rogers <irogers@google.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: "Liang, Kan" <kan.liang@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
All the functions related to the reboot notifier list are in
kernel/reboot.c. Move the list itself, too. As there are no direct users
anymore, make the declaration static.
Link: https://lkml.kernel.org/r/20241012-reboot_notifier_list-v1-1-6093bb9455ce@weissschuh.net
Signed-off-by: Thomas Weißschuh <linux@weissschuh.net>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
reallocate_resource() documentation claims constraint is about "the size
and alignment" but the size is provided in another parameter. Instead of
size, constraint has the allowed memory range (min, max) so change the
wording to reflect that.
Link: https://lkml.kernel.org/r/20241009125751.8090-1-ilpo.jarvinen@linux.intel.com
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Using strscpy() to read the task comm ensures that the name is always
NUL-terminated, regardless of the source string. This approach also
facilitates future extensions to the task comm.
Link: https://lkml.kernel.org/r/20241007144911.27693-3-laoar.shao@gmail.com
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Acked-by: Paul Moore <paul@paul-moore.com>
Reviewed-by: Justin Stitt <justinstitt@google.com>
Cc: Eric Paris <eparis@redhat.com>
Cc: Alejandro Colomar <alx@kernel.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Cc: Andy Shevchenko <andy.shevchenko@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Airlie <airlied@gmail.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: James Morris <jmorris@namei.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matus Jokay <matus.jokay@stuba.sk>
Cc: Maxime Ripard <mripard@kernel.org>
Cc: Ondrej Mosnacek <omosnace@redhat.com>
Cc: Quentin Monnet <qmo@kernel.org>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Simon Horman <horms@kernel.org>
Cc: Stephen Smalley <stephen.smalley.work@gmail.com>
Cc: Steven Rostedt (Google) <rostedt@goodmis.org>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Zimmermann <tzimmermann@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "Improve the copy of task comm", v8.
Using {memcpy,strncpy,strcpy,kstrdup} to copy the task comm relies on the
length of task comm. Changes in the task comm could result in a
destination string that is overflow. Therefore, we should explicitly
ensure the destination string is always NUL-terminated, regardless of the
task comm. This approach will facilitate future extensions to the task
comm.
As suggested by Linus [0], we can identify all relevant code with the
following git grep command:
git grep 'memcpy.*->comm\>'
git grep 'kstrdup.*->comm\>'
git grep 'strncpy.*->comm\>'
git grep 'strcpy.*->comm\>'
PATCH #2~#4: memcpy
PATCH #5~#6: kstrdup
PATCH #7: strcpy
Please note that strncpy() is not included in this series as it is being
tracked by another effort. [1]
This patch (of 7):
We want to eliminate the use of __get_task_comm() for the following
reasons:
- The task_lock() is unnecessary
Quoted from Linus [0]:
: Since user space can randomly change their names anyway, using locking
: was always wrong for readers (for writers it probably does make sense
: to have some lock - although practically speaking nobody cares there
: either, but at least for a writer some kind of race could have
: long-term mixed results
Link: https://lkml.kernel.org/r/20241007144911.27693-1-laoar.shao@gmail.com
Link: https://lkml.kernel.org/r/20241007144911.27693-2-laoar.shao@gmail.com
Link: https://lore.kernel.org/all/CAHk-=wivfrF0_zvf+oj6==Sh=-npJooP8chLPEfaFV0oNYTTBA@mail.gmail.com [0]
Link: https://lore.kernel.org/all/CAHk-=whWtUC-AjmGJveAETKOMeMFSTwKwu99v7+b6AyHMmaDFA@mail.gmail.com/
Link: https://lore.kernel.org/all/CAHk-=wjAmmHUg6vho1KjzQi2=psR30+CogFd4aXrThr2gsiS4g@mail.gmail.com/ [0]
Link: https://github.com/KSPP/linux/issues/90 [1]
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Cc: Matus Jokay <matus.jokay@stuba.sk>
Cc: Alejandro Colomar <alx@kernel.org>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Justin Stitt <justinstitt@google.com>
Cc: Steven Rostedt (Google) <rostedt@goodmis.org>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Andy Shevchenko <andy.shevchenko@gmail.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Airlie <airlied@gmail.com>
Cc: Eric Paris <eparis@redhat.com>
Cc: James Morris <jmorris@namei.org>
Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Maxime Ripard <mripard@kernel.org>
Cc: Ondrej Mosnacek <omosnace@redhat.com>
Cc: Paul Moore <paul@paul-moore.com>
Cc: Quentin Monnet <qmo@kernel.org>
Cc: Simon Horman <horms@kernel.org>
Cc: Stephen Smalley <stephen.smalley.work@gmail.com>
Cc: Thomas Zimmermann <tzimmermann@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
There are already a couple of places where we may replace a few lines of
code by calling a helper, which increases readability while deduplicating
the code.
Introduce is_type_match() helper and use it.
Link: https://lkml.kernel.org/r/20240925154355.1170859-3-andriy.shevchenko@linux.intel.com
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "resource: A couple of cleanups".
A couple of ad-hoc cleanups since there was a recent development of
the code in question. No functional changes intended.
This patch (of 2):
__region_intersects() uses open coded resource_intersection(). Replace it
with existing API which also make more clear what we are checking.
Link: https://lkml.kernel.org/r/20240925154355.1170859-1-andriy.shevchenko@linux.intel.com
Link: https://lkml.kernel.org/r/20240925154355.1170859-2-andriy.shevchenko@linux.intel.com
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The following errors are observed when kexec is done with SMT=off on
powerpc.
[ 358.458385] Removing IBM Power 842 compression device
[ 374.795734] kexec_core: Starting new kernel
[ 374.795748] kexec: Waking offline cpu 1.
[ 374.875695] crash hp: kexec_trylock() failed, elfcorehdr may be inaccurate
[ 374.935833] kexec: Waking offline cpu 2.
[ 375.015664] crash hp: kexec_trylock() failed, elfcorehdr may be inaccurate
snip..
[ 375.515823] kexec: Waking offline cpu 6.
[ 375.635667] crash hp: kexec_trylock() failed, elfcorehdr may be inaccurate
[ 375.695836] kexec: Waking offline cpu 7.
To avoid kexec kernel boot failure on PowerPC, all the present CPUs that
are offline are brought online during kexec. For more information, refer
to commit e8e5c2155b ("powerpc/kexec: Fix orphaned offline CPUs across
kexec"). Bringing the CPUs online triggers the crash hotplug handler,
crash_handle_hotplug_event(), to update the kdump image. Since the system
is on the kexec kernel boot path and the kexec lock is held, the
crash_handle_hotplug_event() function fails to acquire the same lock to
update the kdump image, resulting in the error messages mentioned above.
To fix this, return from crash_handle_hotplug_event() without printing the
error message if kexec is in progress.
The same applies to the crash_check_hotplug_support() function. Return 0
if kexec is in progress because kernel is not in a position to update the
kdump image.
Link: https://lkml.kernel.org/r/20240921103745.560430-1-sourabhjain@linux.ibm.com
Signed-off-by: Sourabh Jain <sourabhjain@linux.ibm.com>
Acked-by: Baoquan he <bhe@redhat.com>
Reported-by: Sachin P Bappalige <sachinpb@linux.vnet.ibm.com>
Cc: Hari Bathini <hbathini@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The types of mm flags are now far beyond the core dump related features.
This patch moves mm flags from linux/sched/coredump.h to linux/mm_types.h.
The linux/sched/coredump.h has include the mm_types.h, so the C files
related to coredump does not need to change head file inclusion. In
addition, the inclusion of sched/coredump.h now can be deleted from the C
files that irrelevant to core dump.
Link: https://lkml.kernel.org/r/20240926074922.2721274-1-sunnanyong@huawei.com
Signed-off-by: Nanyong Sun <sunnanyong@huawei.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
mm_access() can return NULL if the mm is not found, but this is handled
the same as an error in all callers, with some translating this into an
-ESRCH error.
Only proc_mem_open() returns NULL if no mm is found, however in this case
it is clearer and makes more sense to explicitly handle the error.
Additionally we take the opportunity to refactor the function to eliminate
unnecessary nesting.
Simplify things by simply returning -ESRCH if no mm is found - this both
eliminates confusing use of the IS_ERR_OR_NULL() macro, and simplifies
callers which would return -ESRCH by returning this error directly.
[lorenzo.stoakes@oracle.com: prefer neater pointer error comparison]
Link: https://lkml.kernel.org/r/2fae1834-749a-45e1-8594-5e5979cf7103@lucifer.local
Link: https://lkml.kernel.org/r/20240924201023.193135-1-lorenzo.stoakes@oracle.com
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Suggested-by: Arnd Bergmann <arnd@arndb.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Hardware traces, such as instruction traces, can produce a vast amount of
trace data, so being able to reduce tracing to more specific circumstances
can be useful.
The ability to pause or resume tracing when another event happens, can do
that.
Add ability for an event to "pause" or "resume" AUX area tracing.
Add aux_pause bit to perf_event_attr to indicate that, if the event
happens, the associated AUX area tracing should be paused. Ditto
aux_resume. Do not allow aux_pause and aux_resume to be set together.
Add aux_start_paused bit to perf_event_attr to indicate to an AUX area
event that it should start in a "paused" state.
Add aux_paused to struct hw_perf_event for AUX area events to keep track of
the "paused" state. aux_paused is initialized to aux_start_paused.
Add PERF_EF_PAUSE and PERF_EF_RESUME modes for ->stop() and ->start()
callbacks. Call as needed, during __perf_event_output(). Add
aux_in_pause_resume to struct perf_buffer to prevent races with the NMI
handler. Pause/resume in NMI context will miss out if it coincides with
another pause/resume.
To use aux_pause or aux_resume, an event must be in a group with the AUX
area event as the group leader.
Example (requires Intel PT and tools patches also):
$ perf record --kcore -e intel_pt/aux-action=start-paused/k,syscalls:sys_enter_newuname/aux-action=resume/,syscalls:sys_exit_newuname/aux-action=pause/ uname
Linux
[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 0.043 MB perf.data ]
$ perf script --call-trace
uname 30805 [000] 24001.058782799: name: 0x7ffc9c1865b0
uname 30805 [000] 24001.058784424: psb offs: 0
uname 30805 [000] 24001.058784424: cbr: 39 freq: 3904 MHz (139%)
uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) debug_smp_processor_id
uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) __x64_sys_newuname
uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) down_read
uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) __cond_resched
uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) preempt_count_add
uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) in_lock_functions
uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) preempt_count_sub
uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) up_read
uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) preempt_count_add
uname 30805 [000] 24001.058784838: ([kernel.kallsyms]) in_lock_functions
uname 30805 [000] 24001.058784838: ([kernel.kallsyms]) preempt_count_sub
uname 30805 [000] 24001.058784838: ([kernel.kallsyms]) _copy_to_user
uname 30805 [000] 24001.058784838: ([kernel.kallsyms]) syscall_exit_to_user_mode
uname 30805 [000] 24001.058784838: ([kernel.kallsyms]) syscall_exit_work
uname 30805 [000] 24001.058784838: ([kernel.kallsyms]) perf_syscall_exit
uname 30805 [000] 24001.058784838: ([kernel.kallsyms]) debug_smp_processor_id
uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) perf_trace_buf_alloc
uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) perf_swevent_get_recursion_context
uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) debug_smp_processor_id
uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) debug_smp_processor_id
uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) perf_tp_event
uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) perf_trace_buf_update
uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) tracing_gen_ctx_irq_test
uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) perf_swevent_event
uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) __perf_event_account_interrupt
uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) __this_cpu_preempt_check
uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) perf_event_output_forward
uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) perf_event_aux_pause
uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) ring_buffer_get
uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) __rcu_read_lock
uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) __rcu_read_unlock
uname 30805 [000] 24001.058785254: ([kernel.kallsyms]) pt_event_stop
uname 30805 [000] 24001.058785254: ([kernel.kallsyms]) debug_smp_processor_id
uname 30805 [000] 24001.058785254: ([kernel.kallsyms]) debug_smp_processor_id
uname 30805 [000] 24001.058785254: ([kernel.kallsyms]) native_write_msr
uname 30805 [000] 24001.058785463: ([kernel.kallsyms]) native_write_msr
uname 30805 [000] 24001.058785639: 0x0
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: James Clark <james.clark@arm.com>
Link: https://lkml.kernel.org/r/20241022155920.17511-3-adrian.hunter@intel.com
In order to enable PREEMPT_DYNAMIC for PREEMPT_RT, remove PREEMPT_RT
from the 'Preemption Model' choice. Strictly speaking PREEMPT_RT is
not a change in how preemption works, but rather it makes a ton more
code preemptible.
Notably, take away NONE and VOLUNTARY options for PREEMPT_RT, they make
no sense (but are techincally possible).
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Link: https://lkml.kernel.org/r/20241007075055.441622332@infradead.org
Change fair to use resched_curr_lazy(), which, when the lazy
preemption model is selected, will set TIF_NEED_RESCHED_LAZY.
This LAZY bit will be promoted to the full NEED_RESCHED bit on tick.
As such, the average delay between setting LAZY and actually
rescheduling will be TICK_NSEC/2.
In short, Lazy preemption will delay preemption for fair class but
will function as Full preemption for all the other classes, most
notably the realtime (RR/FIFO/DEADLINE) classes.
The goal is to bridge the performance gap with Voluntary, such that we
might eventually remove that option entirely.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Link: https://lkml.kernel.org/r/20241007075055.331243614@infradead.org
Add the basic infrastructure to split the TIF_NEED_RESCHED bit in two.
Either bit will cause a resched on return-to-user, but only
TIF_NEED_RESCHED will drive IRQ preemption.
No behavioural change intended.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Link: https://lkml.kernel.org/r/20241007075055.219540785@infradead.org
Instead of solving the underlying problem of the double invocation of
__sched_fork() for idle tasks, sched-ext decided to hack around the issue
by partially clearing out the entity struct to preserve the already
enqueued node. A provided analysis and solution has been ignored for four
months.
Now that someone else has taken care of cleaning it up, remove the
disgusting hack and clear out the full structure. Remove the comment in the
structure declaration as well, as there is no requirement for @node being
the last element anymore.
Fixes: f0e1a0643a ("sched_ext: Implement BPF extensible scheduler class")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/r/87ldy82wkc.ffs@tglx
Idle tasks are initialized via __sched_fork() twice:
fork_idle()
copy_process()
sched_fork()
__sched_fork()
init_idle()
__sched_fork()
Instead of cleaning this up, sched_ext hacked around it. Even when analyis
and solution were provided in a discussion, nobody cared to clean this up.
init_idle() is also invoked from sched_init() to initialize the boot CPU's
idle task, which requires the __sched_fork() invocation. But this can be
trivially solved by invoking __sched_fork() before init_idle() in
sched_init() and removing the __sched_fork() invocation from init_idle().
Do so and clean up the comments explaining this historical leftover.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20241028103142.359584747@linutronix.de
Switch all instrumentable users of the seqcount_latch interface over to
the non-raw interface.
Co-developed-by: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Signed-off-by: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20241104161910.780003-5-elver@google.com
Most of sched_clock()'s implementation is ineligible for instrumentation
due to relying on sched_clock_noinstr().
Split the implementation off into an __always_inline function
__sched_clock(), which is then used by the noinstr and instrumentable
version, to allow more of sched_clock() to be covered by various
instrumentation.
This will allow instrumentation with the various sanitizers (KASAN,
KCSAN, KMSAN, UBSAN). For KCSAN, we know that raw seqcount_latch usage
without annotations will result in false positive reports: tell it that
all of __sched_clock() is "atomic" for the latch reader; later changes
in this series will take care of the writers.
Co-developed-by: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Signed-off-by: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20241104161910.780003-3-elver@google.com
Swap the writes to the odd and even copies to make the writer critical
section look like all other seqcount_latch writers.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20241104161910.780003-2-elver@google.com
On some devices there are HW dependencies for shared frequency and voltage
between devices. It will impact Energy Aware Scheduler (EAS) decision,
where CPUs share the voltage & frequency domain with other CPUs or devices
e.g.
- Mid CPUs + Big CPU
- Little CPU + L3 cache in DSU
- some other device + Little CPUs
Detailed explanation of one example:
When the L3 cache frequency is increased, the affected Little CPUs might
run at higher voltage and frequency. That higher voltage causes higher CPU
power and thus more energy is used for running the tasks. This is
important for background running tasks, which try to run on energy
efficient CPUs.
Therefore, add performance state limits which are applied for the device
(in this case CPU). This is important on SoCs with HW dependencies
mentioned above so that the Energy Aware Scheduler (EAS) does not use
performance states outside the valid min-max range for energy calculation.
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Link: https://patch.msgid.link/20241030164126.1263793-2-lukasz.luba@arm.com
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Arguments to a raw tracepoint are tagged as trusted, which carries the
semantics that the pointer will be non-NULL. However, in certain cases,
a raw tracepoint argument may end up being NULL. More context about this
issue is available in [0].
Thus, there is a discrepancy between the reality, that raw_tp arguments
can actually be NULL, and the verifier's knowledge, that they are never
NULL, causing explicit NULL checks to be deleted, and accesses to such
pointers potentially crashing the kernel.
To fix this, mark raw_tp arguments as PTR_MAYBE_NULL, and then special
case the dereference and pointer arithmetic to permit it, and allow
passing them into helpers/kfuncs; these exceptions are made for raw_tp
programs only. Ensure that we don't do this when ref_obj_id > 0, as in
that case this is an acquired object and doesn't need such adjustment.
The reason we do mask_raw_tp_trusted_reg logic is because other will
recheck in places whether the register is a trusted_reg, and then
consider our register as untrusted when detecting the presence of the
PTR_MAYBE_NULL flag.
To allow safe dereference, we enable PROBE_MEM marking when we see loads
into trusted pointers with PTR_MAYBE_NULL.
While trusted raw_tp arguments can also be passed into helpers or kfuncs
where such broken assumption may cause issues, a future patch set will
tackle their case separately, as PTR_TO_BTF_ID (without PTR_TRUSTED) can
already be passed into helpers and causes similar problems. Thus, they
are left alone for now.
It is possible that these checks also permit passing non-raw_tp args
that are trusted PTR_TO_BTF_ID with null marking. In such a case,
allowing dereference when pointer is NULL expands allowed behavior, so
won't regress existing programs, and the case of passing these into
helpers is the same as above and will be dealt with later.
Also update the failure case in tp_btf_nullable selftest to capture the
new behavior, as the verifier will no longer cause an error when
directly dereference a raw tracepoint argument marked as __nullable.
[0]: https://lore.kernel.org/bpf/ZrCZS6nisraEqehw@jlelli-thinkpadt14gen4.remote.csb
Reviewed-by: Jiri Olsa <jolsa@kernel.org>
Reported-by: Juri Lelli <juri.lelli@redhat.com>
Tested-by: Juri Lelli <juri.lelli@redhat.com>
Fixes: 3f00c52393 ("bpf: Allow trusted pointers to be passed to KF_TRUSTED_ARGS kfuncs")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20241104171959.2938862-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
There are similar checks for covering locks, references, RCU read
sections and preempt_disable sections in 3 places in the verifer, i.e.
for tail calls, bpf_ld_[abs, ind], and exit path (for BPF_EXIT and
bpf_throw). Unify all of these into a common check_resource_leak
function to avoid code duplication.
Also update the error strings in selftests to the new ones in the same
change to ensure clean bisection.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20241103225940.1408302-3-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
There are three situations when a program logically exits and transfers
control to the kernel or another program: bpf_throw, BPF_EXIT, and tail
calls. The former two check for any lingering locks and references, but
tail calls currently do not. Expand the checks to check for spin locks,
RCU read sections and preempt disabled sections.
Spin locks are indirectly preventing tail calls as function calls are
disallowed, but the checks for preemption and RCU are more relaxed,
hence ensure tail calls are prevented in their presence.
Fixes: 9bb00b2895 ("bpf: Add kfunc bpf_rcu_read_lock/unlock()")
Fixes: fc7566ad0a ("bpf: Introduce bpf_preempt_[disable,enable] kfuncs")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20241103225940.1408302-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This commit pushes the grace-period-end checks further down into
rcu_dump_cpu_stacks(), and also uses lockless checks coupled with
finer-grained locking.
The result is that the current leaf rcu_node structure's ->lock is
acquired only if a stack backtrace might be needed from the current CPU,
and is held across only that CPU's backtrace. As a result, if there are
no stalled CPUs associated with a given rcu_node structure, then its
->lock will not be acquired at all. On large systems, it is usually
(though not always) the case that a small number of CPUs are stalling
the current grace period, which means that the ->lock need be acquired
only for a small fraction of the rcu_node structures.
[ paulmck: Apply Dan Carpenter feedback. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
When a thread is cloned, the posix CPU timers are not inherited.
If the parent has a CPU timer armed the corresponding tick dependency in
the tasks tick_dep_mask is set and copied to the new thread, which means
the new thread and all decendants will prevent the system to go into full
NOHZ operation.
Clear the tick dependency mask in copy_process() to fix this.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmcnT/oTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoZw5D/0bqjjMYiE0ws8nuuXN1gL2T1wt6P2C
2zzEKnk6nsxnGbMfFs7XifDkqSOHNVro7F6kCkz6cH4U/VSK6R2nNONbufz4mNWk
6uDvdlZps30ekmxN+C3fB6S/4MNVOhXFFXjsQhT/PxX/CfibVP5fATLtcRLq9Lfx
mV3nnxKTHPjDGz2/2QRyYpA3G1fzOj/l2QeJsVAIC8GxCo7drLVe0yn5Yt+13zhU
JMjgt9ox4PKFsjaXrqvt1yKNTtb+evjYSIVXxIg60oxUkfva6XFLXJv3rjbARUNj
aqBHfkZ1/d2Hwc0WexDZfvhNWeCqnfUA+db7ALSYICbNd37EVxWVZA2TwfkkWKSt
RDq3xX6NJSd71h0lxDvzv7Ph3NUq23rq3LycAkjqfhiFjPQmE6axtnioXcR5mtVp
q9tilB/3I4zj4BIYPfd9KowkdclRSK+B3Oo0DTyuVhKLggF0UD3poDxT4HxnBCFB
uKDV8GDsoD8Ksjsl0/X/D4oorqLYAT0tG9gxMw1Kii16gijhhu5qeqTWY+qs9ieg
2J+Ku83QLQgljvy2s7y0AnMZMxaeKN5YMs6zNV+yGAoTFyft3CnBMKalPHfOCI0A
fdKHi2aKm+lLrp/UIG2Yw9N1xfcrGWA2moH+9dw6zTyAei+TInP+WYndI7VR5EDf
3KvW3OoRf0sywA==
=83r/
-----END PGP SIGNATURE-----
Merge tag 'timers-urgent-2024-11-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer fix from Thomas Gleixner:
"A single fix for posix CPU timers.
When a thread is cloned, the posix CPU timers are not inherited.
If the parent has a CPU timer armed the corresponding tick dependency
in the tasks tick_dep_mask is set and copied to the new thread, which
means the new thread and all decendants will prevent the system to go
into full NOHZ operation.
Clear the tick dependency mask in copy_process() to fix this"
* tag 'timers-urgent-2024-11-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
posix-cpu-timers: Clear TICK_DEP_BIT_POSIX_TIMER on clone
- Plug a race between pick_next_task_fair() and try_to_wake_up() where
both try to write to the same task, even though both paths hold a
runqueue lock, but obviously from different runqueues.
The problem is that the store to task::on_rq in __block_task() is
visible to try_to_wake_up() which assumes that the task is not queued.
Both sides then operate on the same task.
Cure it by rearranging __block_task() so the the store to task::on_rq is
the last operation on the task.
- Prevent a potential NULL pointer dereference in task_numa_work()
task_numa_work() iterates the VMAs of a process. A concurrent unmap of
the address space can result in a NULL pointer return from vma_next()
which is unchecked.
Add the missing NULL pointer check to prevent this.
- Operate on the correct scheduler policy in task_should_scx()
task_should_scx() returns true when a task should be handled by sched
EXT. It checks the tasks scheduling policy.
This fails when the check is done before a policy has been set.
Cure it by handing the policy into task_should_scx() so it operates
on the requested value.
- Add the missing handling of sched EXT in the delayed dequeue
mechanism. This was simply forgotten.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmcnTqATHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoX/aD/4yvskeG9i7wAj2NOdDTAs1K0gLURt+
nHDb1YkoIOXOfanaG7ZdBWb4sYnsnLX/KIhVsDQiXACFr6G0IjQ1zaN1iRtEkH79
5BfVi98gAXdFU3y+EGqyaqiAp7MFOBTmsfJi5095fX0L+2aViSAjDEvHzvvC/hXD
tmq47vFQEgIZPSxljEaKPaNmyDM+geusv5lX/lABH5MG0fYsT85VV6BQ2T1LsN1O
WFBLD/uPEOSXumyZW8nV8yE2PioLDJz8W+uSnr38/HCH99mtJApqZyskaagKtr0g
vLhOfoaYVR/j5ODUk6LExZ8zy140zDzUWzC5+RNnyb8jQf/Lx88fTNZY8/Wsm5m9
oKtoiGzkL0LG/c05Cjh/vqReK26qILK4+ynDGaowDmTlUTS2jeNZL1ABlIwWkaLP
5TDegJPkoUA1Z4YegxtRFROGHp1J+lfbqz537bghMaqdJXMaG84qjSszsPz9NbS9
F7K63JKjfXAF6N8bhKvZk4jAbD97EYf3B0o8E69TjoZxaiuKf00xK7HGWmuQD3u3
lOHkfIZzf5b7ELNgcketCYsbJvxbI4oQrp/9V425ORSr1Ih2GxCT51/x/NlFHoEH
ujIjAe2YQyLhb26M0RG8Xao3BPT7RGMR058C8lwxtPLuPNIwB8MqCsXmU9xlEypg
iexGnsj6zXTddg==
=4mie
-----END PGP SIGNATURE-----
Merge tag 'sched-urgent-2024-11-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Thomas Gleixner:
- Plug a race between pick_next_task_fair() and try_to_wake_up() where
both try to write to the same task, even though both paths hold a
runqueue lock, but obviously from different runqueues.
The problem is that the store to task::on_rq in __block_task() is
visible to try_to_wake_up() which assumes that the task is not
queued. Both sides then operate on the same task.
Cure it by rearranging __block_task() so the the store to task::on_rq
is the last operation on the task.
- Prevent a potential NULL pointer dereference in task_numa_work()
task_numa_work() iterates the VMAs of a process. A concurrent unmap
of the address space can result in a NULL pointer return from
vma_next() which is unchecked.
Add the missing NULL pointer check to prevent this.
- Operate on the correct scheduler policy in task_should_scx()
task_should_scx() returns true when a task should be handled by sched
EXT. It checks the tasks scheduling policy.
This fails when the check is done before a policy has been set.
Cure it by handing the policy into task_should_scx() so it operates
on the requested value.
- Add the missing handling of sched EXT in the delayed dequeue
mechanism. This was simply forgotten.
* tag 'sched-urgent-2024-11-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/ext: Fix scx vs sched_delayed
sched: Pass correct scheduling policy to __setscheduler_class
sched/numa: Fix the potential null pointer dereference in task_numa_work()
sched: Fix pick_next_task_fair() vs try_to_wake_up() race
perf_event_clear_cpumask() uses list_for_each_entry_rcu() without being
in a RCU read side critical section, which triggers a "suspicious RCU
usage" warning.
It turns out that the list walk does not be RCU protected because the
write side lock is held in this contxt.
Change it to a regular list walk.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmcnSfoTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoVERD/0fMj1Y79mC2DoAB9XBy6d7xumHbDlN
Jt4v3Hq0oADjqrGAro/XDbAm9y7gK9b5BhV2UH4ehvJj+WeesGRikV26Fdh3WuWo
aTyNTh7PxsMoNRqIWWBiGbumHya9+INZKyKFAMD/WtQ3Av2emws0nnm9uv+eJzVZ
zr1+NiofUDsu1I04E6zVXBra3aLqIbsWg5NOCsJAdW/9AKE+GQMA0/aw14Z2ftqH
Mry4PqW4aGcTnCRNtoaHHwbP4677ZXX6pQnbUTGYZ4ywJJFKQ54YH1mUqUUP6cOo
GWg20gVK4PTkJSt2nL/I+i1RVq7Ipw725e540XEAFDsDVj5jy/rJbmrmyUys6sr7
Xu6cXbjAs/kV/A9TB1wBsb+iMUnHTNbRWMS1d8bsxaUWSIe9wouDJHAIumCMr3B3
qALdXxHqppPZuccMFWHyxAClJEY8YEp9+n32BMpePASLhv3JBJHOUSn8HWr+GIgC
N4slnJvLevETlO0HcQ3IUifwqfQBJ6O0Kyu0IXmrb3aCV9TzrbE1iZDgv6HbZBVP
FsUaMBB/se24R/4zxSsH+u7yLFcgEJKVWVzngXzNoUvRX8xF4um6x1y89049Q0CC
iGdRq3/fV/b/Tp7wvEuIxCr0GPUi28OCZTwjESmluUIS6ZSd83oDajBXix725hk+
1YIwANTHMeBadQ==
=qlTN
-----END PGP SIGNATURE-----
Merge tag 'perf-urgent-2024-11-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf fix from Thomas Gleixner:
"perf_event_clear_cpumask() uses list_for_each_entry_rcu() without
being in a RCU read side critical section, which triggers a
'suspicious RCU usage' warning.
It turns out that the list walk does not be RCU protected because the
write side lock is held in this context.
Change it to a regular list walk"
* tag 'perf-urgent-2024-11-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf: Fix missing RCU reader protection in perf_event_clear_cpumask()
- Fix an off-by-one error in the failure path of msi_domain_alloc(),
which causes the cleanup loop to terminate early and leaking the first
allocated interrupt.
- Handle a corner case in GIC-V4 versus a lazily mapped Virtual
Processing Element (VPE). If the VPE has not been mapped because the
guest has not yet emitted a mapping command, then the set_affinity()
callback returns an error code, which causes the vCPU management to fail.
Return success in this case without touching the hardware. This will be
done later when the guest issues the mapping command.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmcnSPwTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoYp6D/9VtT4/JrR8mc44OIfAPKdFfQFkAowB
+lqyv+8PXl41/BY2gMv6kdoaHZzI/nJspbgs8nh4DfIOfhoZXo+jVe0ewn0kvgEw
NzEsN2l5TfFWk6W3pJ/dzklPEepja1Ju9/7E9bHX0sJlZwfl43PGJqqBXQjKyhJB
+NXlqCh66P137V6LgTBobjfO8B+gdbZn80+LHtBsA7M8dEyK7zdYINM3OwK3li0V
umNTsvabimxY7om8xZVI03h8wedABG+/itINzfiEu3fR9Dpp4gwQrbOzQTxion7S
4WkbVCh2OKiEJGcjstzHeaNYZatCvkEKyvSBIRDrI2+JCJlnFax8fhZn9w65ExMv
BeU0mG/ip6tfH9ieaqm82IT7yYX4PPv+ma6L3BGmdDkM1o0z317Orm/mbcE4a6MD
EPxnUxOEGqBKc+ylsvZiHriYRtUsyxR2y343XSuCZuYZHpdB1IN+Q1qFBoNY0MlU
q7igpXj6FM0qD3zadz5H4Kb4Sj09oWMnhGJCUMEqknOzd1U0cBwWsIvuNUq3VWCe
8P9arwFK4fa7B1YZ8cgLVw9JYqazpdY1GOn6k0lBDdF0tnieP4NaOvWs/imlkt4s
kX9Qr/mFoA2EV4vBiURPsK43TlGpRm0kEJgIeElvsXVFlmiTBkVFS2CR7Ep2dFs4
ezIo15/4GmlRsQ==
=6Li6
-----END PGP SIGNATURE-----
Merge tag 'irq-urgent-2024-11-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull irq fixes from Thomas Gleixner:
- Fix an off-by-one error in the failure path of msi_domain_alloc(),
which causes the cleanup loop to terminate early and leaking the
first allocated interrupt.
- Handle a corner case in GIC-V4 versus a lazily mapped Virtual
Processing Element (VPE). If the VPE has not been mapped because the
guest has not yet emitted a mapping command, then the set_affinity()
callback returns an error code, which causes the vCPU management to
fail.
Return success in this case without touching the hardware. This will
be done later when the guest issues the mapping command.
* tag 'irq-urgent-2024-11-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
irqchip/gic-v4: Correctly deal with set_affinity on lazily-mapped VPEs
genirq/msi: Fix off-by-one error in msi_domain_alloc()
reference acquired there by fget_raw() is not stashed anywhere -
we could as well borrow instead.
Reviewed-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
all failure exits prior to fdget() leave the scope, all matching fdput()
are immediately followed by leaving the scope.
[xfs_ioc_commit_range() chunk moved here as well]
Reviewed-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
fdget() is the first thing done in scope, all matching fdput() are
immediately followed by leaving the scope.
Reviewed-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Lift fdget() and fdput() out of perf_fget_light(), turning it into
is_perf_file(struct fd f). The life gets easier in both callers
if we do fdget() unconditionally, including the case when we are
given -1 instead of a descriptor - that avoids a reassignment in
perf_event_open(2) and it avoids a nasty temptation in _perf_ioctl()
where we must *not* lift output_event out of scope for output.
Reviewed-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
With few exceptions emptiness checks are done as fd_file(...) in boolean
context (usually something like if (!fd_file(f))...); those will be
taken care of later.
However, there's a couple of places where we do those checks as
'store fd_file(...) into a variable, then check if this variable is
NULL' and those are harder to spot.
Get rid of those now.
use fd_empty() instead of extracting file and then checking it for NULL.
Reviewed-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
clocksource_delta() has two variants. One with a check for negative motion,
which is only selected by x86. This is a historic leftover as this function
was previously used in the time getter hot paths.
Since 135225a363 timekeeping_cycles_to_ns() has unconditional protection
against this as a by-product of the protection against 64bit math overflow.
clocksource_delta() is only used in the clocksource watchdog and in
timekeeping_advance(). The extra conditional there is not hurting anyone.
Remove the config option and unconditionally prevent negative motion of the
readout.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/all/20241031120328.599430157@linutronix.de
Since 135225a363 timekeeping_cycles_to_ns() handles large offsets which
would lead to 64bit multiplication overflows correctly. It's also protected
against negative motion of the clocksource unconditionally, which was
exclusive to x86 before.
timekeeping_advance() handles large offsets already correctly.
That means the value of CONFIG_DEBUG_TIMEKEEPING which analyzed these cases
is very close to zero. Remove all of it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/all/20241031120328.536010148@linutronix.de
Fix the breakpoint enable command (be) to a logic that is inline with the
breakpoint disable command (bd) in which if the breakpoint is already in
an enabled state, do not print the message of enabled again to the user.
Also a small nit fix of the new line in a separate print.
Signed-off-by: Nir Lichtman <nir@lichtman.org>
Link: https://lore.kernel.org/r/20241027204729.GA907155@lichtman.org
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
Remove logic that enables a fallback of interpreting numbers supplied in KDB CLI
to be interpreted as hex without explicit "0x" prefix as this can be confusing
for the end users.
Suggested-by: Douglas Anderson <dianders@chromium.org>
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Signed-off-by: Nir Lichtman <nir@lichtman.org>
Link: https://lore.kernel.org/r/20241028192228.GC918454@lichtman.org
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
The function simple_strtoul performs no error checking in scenarios
where the input value overflows the intended output variable.
This results in this function successfully returning, even when the
output does not match the input string (aka the function returns
successfully even when the result is wrong).
Or as it was mentioned [1], "...simple_strtol(), simple_strtoll(),
simple_strtoul(), and simple_strtoull() functions explicitly ignore
overflows, which may lead to unexpected results in callers."
Hence, the use of those functions is discouraged.
This patch replaces all uses of the simple_strtoul with the safer
alternatives kstrtoint and kstrtol.
[1] https://www.kernel.org/doc/html/latest/process/deprecated.html#simple-strtol-simple-strtoll-simple-strtoul-simple-strtoull
Signed-off-by: Yuran Pereira <yuran.pereira@hotmail.com>
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Acked-by: Steven Rostedt (Google) <rostedt@goodmis.org>
[nir: style fixes]
Signed-off-by: Nir Lichtman <nir@lichtman.org>
Link: https://lore.kernel.org/r/20241028192100.GB918454@lichtman.org
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
The simple_str* family of functions perform no error checking in
scenarios where the input value overflows the intended output variable.
This results in these functions successfully returning even when the
output does not match the input string.
Or as it was mentioned [1], "...simple_strtol(), simple_strtoll(),
simple_strtoul(), and simple_strtoull() functions explicitly ignore
overflows, which may lead to unexpected results in callers."
Hence, the use of those functions is discouraged.
This patch replaces all uses of the simple_strto* series of functions
with their safer kstrto* alternatives.
Side effects of this patch:
- Every string to long or long long conversion using kstrto* is now
checked for failure.
- kstrto* errors are handled with appropriate `KDB_BADINT` wherever
applicable.
- A good side effect is that we end up saving a few lines of code
since unlike in simple_strto* functions, kstrto functions do not
need an additional "end pointer" variable, and the return values
of the latter can be directly checked in an "if" statement without
the need to define additional `ret` or `err` variables.
This, of course, results in cleaner, yet still easy to understand
code.
[1] https://www.kernel.org/doc/html/latest/process/deprecated.html#simple-strtol-simple-strtoll-simple-strtoul-simple-strtoull
Signed-off-by: Yuran Pereira <yuran.pereira@hotmail.com>
[nir: addressed review comments by fixing styling, invalid conversion and a missing error return]
Signed-off-by: Nir Lichtman <nir@lichtman.org>
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Link: https://lore.kernel.org/r/20241028191916.GA918454@lichtman.org
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
Now that kernel supports sleepable tracepoints, the fact that
bpf_probe_unregister() is asynchronous, i.e., that it doesn't wait for
any in-flight tracepoints to conclude before returning, we now need to
delay BPF raw tp link's deallocation and bpf_prog_put() of its
underlying BPF program (regardless of program's own sleepable semantics)
until after full RCU Tasks Trace GP. With that GP over, we'll have
a guarantee that no tracepoint can reach BPF link and thus its BPF program.
We use newly added tracepoint_is_faultable() check to know when this RCU
Tasks Trace GP is necessary and utilize BPF link's own sleepable flag
passed through bpf_link_init_sleepable() initializer.
Link: https://lore.kernel.org/20241101181754.782341-3-andrii@kernel.org
Tested-by: Jordan Rife <jrife@google.com>
Reported-by: Jordan Rife <jrife@google.com>
Fixes: a363d27cdb ("tracing: Allow system call tracepoints to handle page faults")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
BPF link's lifecycle protection scheme depends on both BPF hook and BPF
program. If *either* of those require RCU Tasks Trace GP, then we need
to go through a chain of GPs before putting BPF program refcount and
deallocating BPF link memory.
This patch adds bpf_link-specific sleepable flag, which can be set to
true even if underlying BPF program is not sleepable itself. If either
link->sleepable or link->prog->sleepable is true, we'll go through
a chain of RCU Tasks Trace GP and RCU GP before putting BPF program and
freeing memory.
This will be used to protect BPF link for sleepable (faultable) raw
tracepoints in the next patch.
Link: https://lore.kernel.org/20241101181754.782341-2-andrii@kernel.org
Tested-by: Jordan Rife <jrife@google.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
In general, BPF link's underlying BPF program should be considered to be
reachable through attach hook -> link -> prog chain, and, pessimistically,
we have to assume that as long as link's memory is not safe to free,
attach hook's code might hold a pointer to BPF program and use it.
As such, it's not (generally) correct to put link's program early before
waiting for RCU GPs to go through. More eager bpf_prog_put() that we
currently do is mostly correct due to BPF program's release code doing
similar RCU GP waiting, but as will be shown in the following patches,
BPF program can be non-sleepable (and, thus, reliant on only "classic"
RCU GP), while BPF link's attach hook can have sleepable semantics and
needs to be protected by RCU Tasks Trace, and for such cases BPF link
has to go through RCU Tasks Trace + "classic" RCU GPs before being
deallocated. And so, if we put BPF program early, we might free BPF
program before we free BPF link, leading to use-after-free situation.
So, this patch defers bpf_prog_put() until we are ready to perform
bpf_link's deallocation. At worst, this delays BPF program freeing by
one extra RCU GP, but that seems completely acceptable. Alternatively,
we'd need more elaborate ways to determine BPF hook, BPF link, and BPF
program lifetimes, and how they relate to each other, which seems like
an unnecessary complication.
Note, for most BPF links we still will perform eager bpf_prog_put() and
link dealloc, so for those BPF links there are no observable changes
whatsoever. Only BPF links that use deferred dealloc might notice
slightly delayed freeing of BPF programs.
Also, to reduce code and logic duplication, extract program put + link
dealloc logic into bpf_link_dealloc() helper.
Link: https://lore.kernel.org/20241101181754.782341-1-andrii@kernel.org
Tested-by: Jordan Rife <jrife@google.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The grace period used internally within tracepoint.c:release_probes()
uses call_rcu() to batch waiting for quiescence of old probe arrays,
rather than using the tracepoint_synchronize_unregister() which blocks
while waiting for quiescence.
With the introduction of faultable syscall tracepoints, this causes
use-after-free issues reproduced with syzkaller.
Fix this by using the appropriate call_rcu() or call_rcu_tasks_trace()
before invoking the rcu_free_old_probes callback. This can be chosen
using the tracepoint_is_faultable() API.
A similar issue exists in bpf use of call_rcu(). Fixing this is left to
a separate change.
Reported-by: syzbot+b390c8062d8387b6272a@syzkaller.appspotmail.com
Fixes: a363d27cdb ("tracing: Allow system call tracepoints to handle page faults")
Tested-by: Jordan Rife <jrife@google.com>
Cc: Michael Jeanson <mjeanson@efficios.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Yonghong Song <yhs@fb.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Andrii Nakryiko <andrii.nakryiko@gmail.com>
Cc: bpf@vger.kernel.org
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Jordan Rife <jrife@google.com>
Cc: linux-trace-kernel@vger.kernel.org
Link: https://lore.kernel.org/20241031152056.744137-4-mathieu.desnoyers@efficios.com
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Shrink the struct tracepoint size from 80 bytes to 72 bytes on x86-64 by
moving the (typically NULL) regfunc/unregfunc pointers to an extended
structure.
Tested-by: Jordan Rife <jrife@google.com>
Cc: Michael Jeanson <mjeanson@efficios.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Yonghong Song <yhs@fb.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Andrii Nakryiko <andrii.nakryiko@gmail.com>
Cc: bpf@vger.kernel.org
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Jordan Rife <jrife@google.com>
Cc: linux-trace-kernel@vger.kernel.org
Link: https://lore.kernel.org/20241031152056.744137-2-mathieu.desnoyers@efficios.com
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
It was possible to enable tracing with no IRQ tracing support. The
tracing infrastructure would then record TRACE_FLAG_IRQS_NOSUPPORT as
the only tracing flag and show an 'X' in the output.
The last user of this feature was PPC32 which managed to implement it
during PowerPC merge in 2009. Since then, it was unused and the PPC32
dependency was finally removed in commit 0ea5ee0351 ("tracing: Remove
PPC32 wart from config TRACING_SUPPORT").
Since the PowerPC merge the code behind !CONFIG_TRACE_IRQFLAGS_SUPPORT
with TRACING enabled can no longer be selected used and the 'X' is not
displayed or recorded.
Remove the CONFIG_TRACE_IRQFLAGS_SUPPORT from the tracing code. Remove
TRACE_FLAG_IRQS_NOSUPPORT.
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20241022110112.XJI8I9T2@linutronix.de
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Add a new open coded iterator for kmem_cache which can be called from a
BPF program like below. It doesn't take any argument and traverses all
kmem_cache entries.
struct kmem_cache *pos;
bpf_for_each(kmem_cache, pos) {
...
}
As it needs to grab slab_mutex, it should be called from sleepable BPF
programs only.
Also update the existing iterator code to use the open coded version
internally as suggested by Andrii.
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Link: https://lore.kernel.org/r/20241030222819.1800667-1-namhyung@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Commit ee7f366699 ("tracefs: Have new files inherit the ownership of
their parent") and commit 48b27b6b51 ("tracefs: Set all files to the
same group ownership as the mount option") introduced a new gid mount
option that allows specifying a group to apply to all entries in tracefs.
Document this in the tracing readme.
Cc: Eric Sandeen <sandeen@redhat.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Ali Zahraee <ahzahraee@gmail.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Link: https://lore.kernel.org/20241030171928.4168869-3-kaleshsingh@google.com
Signed-off-by: Kalesh Singh <kaleshsingh@google.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
- Fix BPF verifier to force a checkpoint when the program's jump
history becomes too long (Eduard Zingerman)
- Add several fixes to the BPF bits iterator addressing issues
like memory leaks and overflow problems (Hou Tao)
- Fix an out-of-bounds write in trie_get_next_key (Byeonguk Jeong)
- Fix BPF test infra's LIVE_FRAME frame update after a page has
been recycled (Toke Høiland-Jørgensen)
- Fix BPF verifier and undo the 40-bytes extra stack space for
bpf_fastcall patterns due to various bugs (Eduard Zingerman)
- Fix a BPF sockmap race condition which could trigger a NULL
pointer dereference in sock_map_link_update_prog (Cong Wang)
- Fix tcp_bpf_recvmsg_parser to retrieve seq_copied from tcp_sk
under the socket lock (Jiayuan Chen)
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
-----BEGIN PGP SIGNATURE-----
iIsEABYIADMWIQTFp0I1jqZrAX+hPRXbK58LschIgwUCZyQO/RUcZGFuaWVsQGlv
Z2VhcmJveC5uZXQACgkQ2yufC7HISIO2vAD+NAng11x6W9tnIOVDHTwvsWL4aafQ
pmf1zda90bwCIyIA/07ptFPWOH+WTmWqP8pZ9PGY5279KAxurZZDud0SOwIO
=28aY
-----END PGP SIGNATURE-----
Merge tag 'bpf-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
Pull bpf fixes from Daniel Borkmann:
- Fix BPF verifier to force a checkpoint when the program's jump
history becomes too long (Eduard Zingerman)
- Add several fixes to the BPF bits iterator addressing issues like
memory leaks and overflow problems (Hou Tao)
- Fix an out-of-bounds write in trie_get_next_key (Byeonguk Jeong)
- Fix BPF test infra's LIVE_FRAME frame update after a page has been
recycled (Toke Høiland-Jørgensen)
- Fix BPF verifier and undo the 40-bytes extra stack space for
bpf_fastcall patterns due to various bugs (Eduard Zingerman)
- Fix a BPF sockmap race condition which could trigger a NULL pointer
dereference in sock_map_link_update_prog (Cong Wang)
- Fix tcp_bpf_recvmsg_parser to retrieve seq_copied from tcp_sk under
the socket lock (Jiayuan Chen)
* tag 'bpf-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf:
bpf, test_run: Fix LIVE_FRAME frame update after a page has been recycled
selftests/bpf: Add three test cases for bits_iter
bpf: Use __u64 to save the bits in bits iterator
bpf: Check the validity of nr_words in bpf_iter_bits_new()
bpf: Add bpf_mem_alloc_check_size() helper
bpf: Free dynamically allocated bits in bpf_iter_bits_destroy()
bpf: disallow 40-bytes extra stack for bpf_fastcall patterns
selftests/bpf: Add test for trie_get_next_key()
bpf: Fix out-of-bounds write in trie_get_next_key()
selftests/bpf: Test with a very short loop
bpf: Force checkpoint when jmp history is too long
bpf: fix filed access without lock
sock_map: fix a NULL pointer dereference in sock_map_link_update_prog()
The PSCI v1.3 specification adds support for a SYSTEM_OFF2 function
which is analogous to ACPI S4 state. This will allow hosting
environments to determine that a guest is hibernated rather than just
powered off, and handle that state appropriately on subsequent launches.
Since commit 60c0d45a7f ("efi/arm64: use UEFI for system reset and
poweroff") the EFI shutdown method is deliberately preferred over PSCI
or other methods. So register a SYS_OFF_MODE_POWER_OFF handler which
*only* handles the hibernation, leaving the original PSCI SYSTEM_OFF as
a last resort via the legacy pm_power_off function pointer.
The hibernation code already exports a system_entering_hibernation()
function which is be used by the higher-priority handler to check for
hibernation. That existing function just returns the value of a static
boolean variable from hibernate.c, which was previously only set in the
hibernation_platform_enter() code path. Set the same flag in the simpler
code path around the call to kernel_power_off() too.
An alternative way to hook SYSTEM_OFF2 into the hibernation code would
be to register a platform_hibernation_ops structure with an ->enter()
method which makes the new SYSTEM_OFF2 call. But that would have the
unwanted side-effect of making hibernation take a completely different
code path in hibernation_platform_enter(), invoking a lot of special dpm
callbacks.
Another option might be to add a new SYS_OFF_MODE_HIBERNATE mode, with
fallback to SYS_OFF_MODE_POWER_OFF. Or to use the sys_off_data to
indicate whether the power off is for hibernation.
But this version works and is relatively simple.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Acked-by: Rafael J. Wysocki <rafael@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20241019172459.2241939-7-dwmw2@infradead.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
__run_timer_base() checks base::next_expiry without holding
base::lock. That can race with a remote CPU updating next_expiry under the
lock. This is an intentional and harmless data race, but lacks a
READ_ONCE(), so KCSAN complains about this.
Add the missing READ_ONCE(). All other places are covered already.
Fixes: 79f8b28e85 ("timers: Annotate possible non critical data race of next_expiry")
Reported-by: kernel test robot <oliver.sang@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/all/87a5emyqk0.ffs@tglx
Closes: https://lore.kernel.org/oe-lkp/202410301205.ef8e9743-lkp@intel.com
The generic clockevent layer now detaches and stops the underlying
clockevent from the dying CPU, unifying the tick behaviour for both
periodic and oneshot mode on offline CPUs. There is no more need for
the tick layer to care about that.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20241029125451.54574-4-frederic@kernel.org
The way the clockevent devices are finally stopped while a CPU is
offlining is currently chaotic. The layout being by order:
1) tick_sched_timer_dying() stops the tick and the underlying clockevent
but only for oneshot case. The periodic tick and its related
clockevent still runs.
2) tick_broadcast_offline() detaches and stops the per-cpu oneshot
broadcast and append it to the released list.
3) Some individual clockevent drivers stop the clockevents (a second time if
the tick is oneshot)
4) Once the CPU is dead, a control CPU remotely detaches and stops
(a 3rd time if oneshot mode) the CPU clockevent and adds it to the
released list.
5) The released list containing the broadcast device released on step 2)
and the remotely detached clockevent from step 4) are unregistered.
These random events can be factorized if the current clockevent is
detached and stopped by the dying CPU at the generic layer, that is
from the dying CPU:
a) Stop the tick
b) Stop/detach the underlying per-cpu oneshot broadcast clockevent
c) Stop/detach the underlying clockevent
d) Release / unregister the clockevents from b) and c)
e) Release / unregister the remaining clockevents from the dying CPU.
This part could be performed by the dying CPU
This way the drivers and the tick layer don't need to care about
clockevent operations during cpuhotplug down. This also unifies the tick
behaviour on offline CPUs between oneshot and periodic modes, avoiding
offline ticks altogether for sanity.
Adopt the simplification.
[ tglx: Remove the WARN_ON() in clockevents_register_device() as that
is called from an upcoming CPU before the CPU is marked online ]
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20241029125451.54574-3-frederic@kernel.org
When a new clockevent device is added and replaces a previous device,
the latter is put into the released list. Then the released list is
added back.
This may look counter-intuitive but the reason is that released device
might be suitable for other uses. For example a released CPU regular
clockevent can be a better replacement for the current broadcast event.
Similarly a released broadcast clockevent can be a better replacement
for the current regular clockevent of a given CPU.
Improve comments stating about these subtleties.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20241029125451.54574-2-frederic@kernel.org
__get_insn_slot() allocates 'struct kprobe_insn_page' using a custom
structure size calculation macro, KPROBE_INSN_PAGE_SIZE. Replace
KPROBE_INSN_PAGE_SIZE with the struct_size() macro, which is the
preferred way to calculate the size of flexible structures in the kernel
because it handles overflow and makes it easier to change and audit how
flexible structures are allocated across the entire tree.
Link: https://lore.kernel.org/all/20241030-kprobes-fix-counted-by-annotation-v1-2-8f266001fad0@kernel.org/
(Masami modofied this to be applicable without the 1st patch in the series.)
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
If kip->nused is not zero, collect_one_slot() return false, otherwise do
a lot of linked list operations, reverse the processing order to make the
code if nesting more concise. __disable_kprobe() is the same as well.
Link: https://lore.kernel.org/all/20240813115334.3922580-4-ruanjinjie@huawei.com/
Signed-off-by: Jinjie Ruan <ruanjinjie@huawei.com>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
The CONFIG_KPROBES_ON_FTRACE #if/#else/#endif section is small and doesn't
nest additional #ifdefs so the comment is useless and should be removed,
but the __ARCH_WANT_KPROBES_INSN_SLOT and CONFIG_OPTPROBES() nest is long,
it is better to add comment for reading.
Link: https://lore.kernel.org/all/20240813115334.3922580-3-ruanjinjie@huawei.com/
Signed-off-by: Jinjie Ruan <ruanjinjie@huawei.com>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
strncpy() is deprecated for use on NUL-terminated destination strings [1] and
as such we should prefer more robust and less ambiguous string interfaces.
String copy operations involving manual pointer offset and length
calculations followed by explicit NUL-byte assignments are best changed
to either strscpy or memcpy.
strscpy is not a drop-in replacement as @len would need a one subtracted
from it to avoid truncating the source string.
To not sabotage readability of the current code, use memcpy (retaining
the manual NUL assignment) as this unambiguously describes the desired
behavior.
Link: https://www.kernel.org/doc/html/latest/process/deprecated.html#strncpy-on-nul-terminated-strings [1]
Link: https://github.com/KSPP/linux/issues/90 [2]
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: linux-hardening@vger.kernel.org
Link: https://lore.kernel.org/20241014-strncpy-kernel-trace-trace_events_filter-c-v2-1-d821e81e371e@google.com
Reviewed-by: Kees Cook <kees@kernel.org>
Signed-off-by: Justin Stitt <justinstitt@google.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Previously the size of "struct ftrace_stacks" depended upon PAGE_SIZE.
For the common 4K page size, on a 64-bit system, sizeof(struct
ftrace_stacks) was 32K. But for a 64K page size, sizeof(struct
ftrace_stacks) was 512K.
But ftrace stack usage requirements should be invariant to page size. So
let's redefine FTRACE_KSTACK_ENTRIES so that "struct ftrace_stacks" is
always sized at 32K for 64-bit and 16K for 32-bit.
As a side effect, it removes the PAGE_SIZE compile-time constant
assumption from this code, which is required to reach the goal of
boot-time page size selection.
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20241021141832.3668264-1-ryan.roberts@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Since the beginning of ftrace, the code that did the patching had its
timings saved on how long it took to complete. But this information was
never exposed. It was used for debugging and exposing it was always
something that was on the TODO list. Now it's time to expose it. There's
even a file that is where it should go!
Also include how long patching modules took as a separate value.
# cat /sys/kernel/tracing/dyn_ftrace_total_info
57680 pages:231 groups: 9
ftrace boot update time = 14024666 (ns)
ftrace module total update time = 126070 (ns)
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/20241017113105.1edfa943@gandalf.local.home
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Avoid taking refcount on uprobe in prepare_uretprobe(), instead take
uretprobe-specific SRCU lock and keep it active as kernel transfers
control back to user space.
Given we can't rely on user space returning from traced function within
reasonable time period, we need to make sure not to keep SRCU lock
active for too long, though. To that effect, we employ a timer callback
which is meant to terminate SRCU lock region after predefined timeout
(currently set to 100ms), and instead transfer underlying struct
uprobe's lifetime protection to refcounting.
This fallback to less scalable refcounting after 100ms is a fine
tradeoff from uretprobe's scalability and performance perspective,
because uretprobing *long running* user functions inherently doesn't run
into scalability issues (there is just not enough frequency to cause
noticeable issues with either performance or scalability).
The overall trick is in ensuring synchronization between current thread
and timer's callback fired on some other thread. To cope with that with
minimal logic complications, we add hprobe wrapper which is used to
contain all the synchronization related issues behind a small number of
basic helpers: hprobe_expire() for "downgrading" uprobe from SRCU-protected
state to refcounted state, and a hprobe_consume() and hprobe_finalize()
pair of single-use consuming helpers. Other than that, whatever current
thread's logic is there stays the same, as timer thread cannot modify
return_instance state (or add new/remove old return_instances). It only
takes care of SRCU unlock and uprobe refcounting, which is hidden from
the higher-level uretprobe handling logic.
We use atomic xchg() in hprobe_consume(), which is called from
performance critical handle_uretprobe_chain() function run in the
current context. When uncontended, this xchg() doesn't seem to hurt
performance as there are no other competing CPUs fighting for the same
cache line. We also mark struct return_instance as ____cacheline_aligned
to ensure no false sharing can happen.
Another technical moment. We need to make sure that the list of return
instances can be safely traversed under RCU from timer callback, so we
delay return_instance freeing with kfree_rcu() and make sure that list
modifications use RCU-aware operations.
Also, given SRCU lock survives transition from kernel to user space and
back we need to use lower-level __srcu_read_lock() and
__srcu_read_unlock() to avoid lockdep complaining.
Just to give an impression of a kind of performance improvements this
change brings, below are benchmarking results with and without these
SRCU changes, assuming other uprobe optimizations (mainly RCU Tasks
Trace for entry uprobes, lockless RB-tree lookup, and lockless VMA to
uprobe lookup) are left intact:
WITHOUT SRCU for uretprobes
===========================
uretprobe-nop ( 1 cpus): 2.197 ± 0.002M/s ( 2.197M/s/cpu)
uretprobe-nop ( 2 cpus): 3.325 ± 0.001M/s ( 1.662M/s/cpu)
uretprobe-nop ( 3 cpus): 4.129 ± 0.002M/s ( 1.376M/s/cpu)
uretprobe-nop ( 4 cpus): 6.180 ± 0.003M/s ( 1.545M/s/cpu)
uretprobe-nop ( 8 cpus): 7.323 ± 0.005M/s ( 0.915M/s/cpu)
uretprobe-nop (16 cpus): 6.943 ± 0.005M/s ( 0.434M/s/cpu)
uretprobe-nop (32 cpus): 5.931 ± 0.014M/s ( 0.185M/s/cpu)
uretprobe-nop (64 cpus): 5.145 ± 0.003M/s ( 0.080M/s/cpu)
uretprobe-nop (80 cpus): 4.925 ± 0.005M/s ( 0.062M/s/cpu)
WITH SRCU for uretprobes
========================
uretprobe-nop ( 1 cpus): 1.968 ± 0.001M/s ( 1.968M/s/cpu)
uretprobe-nop ( 2 cpus): 3.739 ± 0.003M/s ( 1.869M/s/cpu)
uretprobe-nop ( 3 cpus): 5.616 ± 0.003M/s ( 1.872M/s/cpu)
uretprobe-nop ( 4 cpus): 7.286 ± 0.002M/s ( 1.822M/s/cpu)
uretprobe-nop ( 8 cpus): 13.657 ± 0.007M/s ( 1.707M/s/cpu)
uretprobe-nop (32 cpus): 45.305 ± 0.066M/s ( 1.416M/s/cpu)
uretprobe-nop (64 cpus): 42.390 ± 0.922M/s ( 0.662M/s/cpu)
uretprobe-nop (80 cpus): 47.554 ± 2.411M/s ( 0.594M/s/cpu)
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20241024044159.3156646-3-andrii@kernel.org
Currently put_uprobe() might trigger mutex_lock()/mutex_unlock(), which
makes it unsuitable to be called from more restricted context like softirq.
Let's make put_uprobe() agnostic to the context in which it is called,
and use work queue to defer the mutex-protected clean up steps.
RB tree removal step is also moved into work-deferred callback to avoid
potential deadlock between softirq-based timer callback, added in the
next patch, and the rest of uprobe code.
We can rework locking altogher as a follow up, but that's significantly
more tricky, so warrants its own patch set. For now, we need to make
sure that changes in the next patch that add timer thread work correctly
with existing approach, while concentrating on SRCU + timeout logic.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20241024044159.3156646-2-andrii@kernel.org
On 32-bit hosts (e.g., arm32), when a bpf program passes a u64 to
bpf_iter_bits_new(), bpf_iter_bits_new() will use bits_copy to store the
content of the u64. However, bits_copy is only 4 bytes, leading to stack
corruption.
The straightforward solution would be to replace u64 with unsigned long
in bpf_iter_bits_new(). However, this introduces confusion and problems
for 32-bit hosts because the size of ulong in bpf program is 8 bytes,
but it is treated as 4-bytes after passed to bpf_iter_bits_new().
Fix it by changing the type of both bits and bit_count from unsigned
long to u64. However, the change is not enough. The main reason is that
bpf_iter_bits_next() uses find_next_bit() to find the next bit and the
pointer passed to find_next_bit() is an unsigned long pointer instead
of a u64 pointer. For 32-bit little-endian host, it is fine but it is
not the case for 32-bit big-endian host. Because under 32-bit big-endian
host, the first iterated unsigned long will be the bits 32-63 of the u64
instead of the expected bits 0-31. Therefore, in addition to changing
the type, swap the two unsigned longs within the u64 for 32-bit
big-endian host.
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20241030100516.3633640-5-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Check the validity of nr_words in bpf_iter_bits_new(). Without this
check, when multiplication overflow occurs for nr_bits (e.g., when
nr_words = 0x0400-0001, nr_bits becomes 64), stack corruption may occur
due to bpf_probe_read_kernel_common(..., nr_bytes = 0x2000-0008).
Fix it by limiting the maximum value of nr_words to 511. The value is
derived from the current implementation of BPF memory allocator. To
ensure compatibility if the BPF memory allocator's size limitation
changes in the future, use the helper bpf_mem_alloc_check_size() to
check whether nr_bytes is too larger. And return -E2BIG instead of
-ENOMEM for oversized nr_bytes.
Fixes: 4665415975 ("bpf: Add bits iterator")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20241030100516.3633640-4-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Introduce bpf_mem_alloc_check_size() to check whether the allocation
size exceeds the limitation for the kmalloc-equivalent allocator. The
upper limit for percpu allocation is LLIST_NODE_SZ bytes larger than
non-percpu allocation, so a percpu argument is added to the helper.
The helper will be used in the following patch to check whether the size
parameter passed to bpf_mem_alloc() is too big.
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20241030100516.3633640-3-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
bpf_iter_bits_destroy() uses "kit->nr_bits <= 64" to check whether the
bits are dynamically allocated. However, the check is incorrect and may
cause a kmemleak as shown below:
unreferenced object 0xffff88812628c8c0 (size 32):
comm "swapper/0", pid 1, jiffies 4294727320
hex dump (first 32 bytes):
b0 c1 55 f5 81 88 ff ff f0 f0 f0 f0 f0 f0 f0 f0 ..U...........
f0 f0 f0 f0 f0 f0 f0 f0 00 00 00 00 00 00 00 00 ..............
backtrace (crc 781e32cc):
[<00000000c452b4ab>] kmemleak_alloc+0x4b/0x80
[<0000000004e09f80>] __kmalloc_node_noprof+0x480/0x5c0
[<00000000597124d6>] __alloc.isra.0+0x89/0xb0
[<000000004ebfffcd>] alloc_bulk+0x2af/0x720
[<00000000d9c10145>] prefill_mem_cache+0x7f/0xb0
[<00000000ff9738ff>] bpf_mem_alloc_init+0x3e2/0x610
[<000000008b616eac>] bpf_global_ma_init+0x19/0x30
[<00000000fc473efc>] do_one_initcall+0xd3/0x3c0
[<00000000ec81498c>] kernel_init_freeable+0x66a/0x940
[<00000000b119f72f>] kernel_init+0x20/0x160
[<00000000f11ac9a7>] ret_from_fork+0x3c/0x70
[<0000000004671da4>] ret_from_fork_asm+0x1a/0x30
That is because nr_bits will be set as zero in bpf_iter_bits_next()
after all bits have been iterated.
Fix the issue by setting kit->bit to kit->nr_bits instead of setting
kit->nr_bits to zero when the iteration completes in
bpf_iter_bits_next(). In addition, use "!nr_bits || bits >= nr_bits" to
check whether the iteration is complete and still use "nr_bits > 64" to
indicate whether bits are dynamically allocated. The "!nr_bits" check is
necessary because bpf_iter_bits_new() may fail before setting
kit->nr_bits, and this condition will stop the iteration early instead
of accessing the zeroed or freed kit->bits.
Considering the initial value of kit->bits is -1 and the type of
kit->nr_bits is unsigned int, change the type of kit->nr_bits to int.
The potential overflow problem will be handled in the following patch.
Fixes: 4665415975 ("bpf: Add bits iterator")
Acked-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20241030100516.3633640-2-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
- cgroup_bpf_release_fn() could saturate system_wq with
cgrp->bpf.release_work which can then form a circular dependency leading
to deadlocks. Fix by using a dedicated workqueue. The system_wq's max
concurrency limit is being increased separately.
- Fix theoretical off-by-one bug when enforcing max cgroup hierarchy depth.
-----BEGIN PGP SIGNATURE-----
iIQEABYKACwWIQTfIjM1kS57o3GsC/uxYfJx3gVYGQUCZyGCPA4cdGpAa2VybmVs
Lm9yZwAKCRCxYfJx3gVYGS2MAQDmtRNBlDYl36fiLAsylU4Coz5P0Y4ISmtSWT+c
zrEUZAD/WKSlCfy4RFngmnfkYbrJ+tWOVTMtsDqby8IzYLDGBw8=
=glRQ
-----END PGP SIGNATURE-----
Merge tag 'cgroup-for-6.12-rc5-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup fixes from Tejun Heo:
- cgroup_bpf_release_fn() could saturate system_wq with
cgrp->bpf.release_work which can then form a circular dependency
leading to deadlocks. Fix by using a dedicated workqueue. The
system_wq's max concurrency limit is being increased separately.
- Fix theoretical off-by-one bug when enforcing max cgroup hierarchy
depth
* tag 'cgroup-for-6.12-rc5-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: Fix potential overflow issue when checking max_depth
cgroup/bpf: use a dedicated workqueue for cgroup bpf destruction
- Instances of scx_ops_bypass() could race each other leading to
misbehavior. Fix by protecting the operation with a spinlock.
- selftest and userspace header fixes.
-----BEGIN PGP SIGNATURE-----
iIQEABYKACwWIQTfIjM1kS57o3GsC/uxYfJx3gVYGQUCZyF/5Q4cdGpAa2VybmVs
Lm9yZwAKCRCxYfJx3gVYGRi+AP4+jGUz+O1LS0bCNj44Xlr0v6kci5dfJR7TlBv5
hwROcgEA84i7nRq6oJ1IkK7ItLbZYwgZyxqdn0Pgsq+oMWhgAwE=
=R766
-----END PGP SIGNATURE-----
Merge tag 'sched_ext-for-6.12-rc5-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext
Pull sched_ext fixes from Tejun Heo:
- Instances of scx_ops_bypass() could race each other leading to
misbehavior. Fix by protecting the operation with a spinlock.
- selftest and userspace header fixes
* tag 'sched_ext-for-6.12-rc5-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext:
sched_ext: Fix enq_last_no_enq_fails selftest
sched_ext: Make cast_mask() inline
scx: Fix raciness in scx_ops_bypass()
scx: Fix exit selftest to use custom DSQ
sched_ext: Fix function pointer type mismatches in BPF selftests
selftests/sched_ext: add order-only dependency of runner.o on BPFOBJ
trie_get_next_key() allocates a node stack with size trie->max_prefixlen,
while it writes (trie->max_prefixlen + 1) nodes to the stack when it has
full paths from the root to leaves. For example, consider a trie with
max_prefixlen is 8, and the nodes with key 0x00/0, 0x00/1, 0x00/2, ...
0x00/8 inserted. Subsequent calls to trie_get_next_key with _key with
.prefixlen = 8 make 9 nodes be written on the node stack with size 8.
Fixes: b471f2f1de ("bpf: implement MAP_GET_NEXT_KEY command for LPM_TRIE map")
Signed-off-by: Byeonguk Jeong <jungbu2855@gmail.com>
Reviewed-by: Toke Høiland-Jørgensen <toke@kernel.org>
Tested-by: Hou Tao <houtao1@huawei.com>
Acked-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/Zxx384ZfdlFYnz6J@localhost.localdomain
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Similarly to commit dfa4ed29b1 ("sched_ext: Introduce LLC awareness to
the default idle selection policy"), extend the built-in idle CPU
selection policy to also prioritize CPUs within the same NUMA node.
With this change applied, the built-in CPU idle selection policy follows
this logic:
- always prioritize CPUs from fully idle SMT cores,
- select the same CPU if possible,
- select a CPU within the same LLC domain,
- select a CPU within the same NUMA node.
Both NUMA and LLC awareness features are enabled only when the system
has multiple NUMA nodes or multiple LLC domains.
In the future, we may want to improve the NUMA node selection to account
the node distance from prev_cpu. Currently, the logic only tries to keep
tasks running on the same NUMA node. If all CPUs within a node are busy,
the next NUMA node is chosen randomly.
Signed-off-by: Andrea Righi <arighi@nvidia.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
A specifically crafted program might trick verifier into growing very
long jump history within a single bpf_verifier_state instance.
Very long jump history makes mark_chain_precision() unreasonably slow,
especially in case if verifier processes a loop.
Mitigate this by forcing new state in is_state_visited() in case if
current state's jump history is too long.
Use same constant as in `skip_inf_loop_check`, but multiply it by
arbitrarily chosen value 2 to account for jump history containing not
only information about jumps, but also information about stack access.
For an example of problematic program consider the code below,
w/o this patch the example is processed by verifier for ~15 minutes,
before failing to allocate big-enough chunk for jmp_history.
0: r7 = *(u16 *)(r1 +0);"
1: r7 += 0x1ab064b9;"
2: if r7 & 0x702000 goto 1b;
3: r7 &= 0x1ee60e;"
4: r7 += r1;"
5: if r7 s> 0x37d2 goto +0;"
6: r0 = 0;"
7: exit;"
Perf profiling shows that most of the time is spent in
mark_chain_precision() ~95%.
The easiest way to explain why this program causes problems is to
apply the following patch:
diff --git a/include/linux/bpf.h b/include/linux/bpf.h
index 0c216e71cec7..4b4823961abe 100644
\--- a/include/linux/bpf.h
\+++ b/include/linux/bpf.h
\@@ -1926,7 +1926,7 @@ struct bpf_array {
};
};
-#define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */
+#define BPF_COMPLEXITY_LIMIT_INSNS 256 /* yes. 1M insns */
#define MAX_TAIL_CALL_CNT 33
/* Maximum number of loops for bpf_loop and bpf_iter_num.
diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c
index f514247ba8ba..75e88be3bb3e 100644
\--- a/kernel/bpf/verifier.c
\+++ b/kernel/bpf/verifier.c
\@@ -18024,8 +18024,13 @@ static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
skip_inf_loop_check:
if (!force_new_state &&
env->jmps_processed - env->prev_jmps_processed < 20 &&
- env->insn_processed - env->prev_insn_processed < 100)
+ env->insn_processed - env->prev_insn_processed < 100) {
+ verbose(env, "is_state_visited: suppressing checkpoint at %d, %d jmps processed, cur->jmp_history_cnt is %d\n",
+ env->insn_idx,
+ env->jmps_processed - env->prev_jmps_processed,
+ cur->jmp_history_cnt);
add_new_state = false;
+ }
goto miss;
}
/* If sl->state is a part of a loop and this loop's entry is a part of
\@@ -18142,6 +18147,9 @@ static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
if (!add_new_state)
return 0;
+ verbose(env, "is_state_visited: new checkpoint at %d, resetting env->jmps_processed\n",
+ env->insn_idx);
+
/* There were no equivalent states, remember the current one.
* Technically the current state is not proven to be safe yet,
* but it will either reach outer most bpf_exit (which means it's safe)
And observe verification log:
...
is_state_visited: new checkpoint at 5, resetting env->jmps_processed
5: R1=ctx() R7=ctx(...)
5: (65) if r7 s> 0x37d2 goto pc+0 ; R7=ctx(...)
6: (b7) r0 = 0 ; R0_w=0
7: (95) exit
from 5 to 6: R1=ctx() R7=ctx(...) R10=fp0
6: R1=ctx() R7=ctx(...) R10=fp0
6: (b7) r0 = 0 ; R0_w=0
7: (95) exit
is_state_visited: suppressing checkpoint at 1, 3 jmps processed, cur->jmp_history_cnt is 74
from 2 to 1: R1=ctx() R7_w=scalar(...) R10=fp0
1: R1=ctx() R7_w=scalar(...) R10=fp0
1: (07) r7 += 447767737
is_state_visited: suppressing checkpoint at 2, 3 jmps processed, cur->jmp_history_cnt is 75
2: R7_w=scalar(...)
2: (45) if r7 & 0x702000 goto pc-2
... mark_precise 152 steps for r7 ...
2: R7_w=scalar(...)
is_state_visited: suppressing checkpoint at 1, 4 jmps processed, cur->jmp_history_cnt is 75
1: (07) r7 += 447767737
is_state_visited: suppressing checkpoint at 2, 4 jmps processed, cur->jmp_history_cnt is 76
2: R7_w=scalar(...)
2: (45) if r7 & 0x702000 goto pc-2
...
BPF program is too large. Processed 257 insn
The log output shows that checkpoint at label (1) is never created,
because it is suppressed by `skip_inf_loop_check` logic:
a. When 'if' at (2) is processed it pushes a state with insn_idx (1)
onto stack and proceeds to (3);
b. At (5) checkpoint is created, and this resets
env->{jmps,insns}_processed.
c. Verification proceeds and reaches `exit`;
d. State saved at step (a) is popped from stack and is_state_visited()
considers if checkpoint needs to be added, but because
env->{jmps,insns}_processed had been just reset at step (b)
the `skip_inf_loop_check` logic forces `add_new_state` to false.
e. Verifier proceeds with current state, which slowly accumulates
more and more entries in the jump history.
The accumulation of entries in the jump history is a problem because
of two factors:
- it eventually exhausts memory available for kmalloc() allocation;
- mark_chain_precision() traverses the jump history of a state,
meaning that if `r7` is marked precise, verifier would iterate
ever growing jump history until parent state boundary is reached.
(note: the log also shows a REG INVARIANTS VIOLATION warning
upon jset processing, but that's another bug to fix).
With this patch applied, the example above is rejected by verifier
under 1s of time, reaching 1M instructions limit.
The program is a simplified reproducer from syzbot report.
Previous discussion could be found at [1].
The patch does not cause any changes in verification performance,
when tested on selftests from veristat.cfg and cilium programs taken
from [2].
[1] https://lore.kernel.org/bpf/20241009021254.2805446-1-eddyz87@gmail.com/
[2] https://github.com/anakryiko/cilium
Changelog:
- v1 -> v2:
- moved patch to bpf tree;
- moved force_new_state variable initialization after declaration and
shortened the comment.
v1: https://lore.kernel.org/bpf/20241018020307.1766906-1-eddyz87@gmail.com/
Fixes: 2589726d12 ("bpf: introduce bounded loops")
Reported-by: syzbot+7e46cdef14bf496a3ab4@syzkaller.appspotmail.com
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20241029172641.1042523-1-eddyz87@gmail.com
Closes: https://lore.kernel.org/bpf/670429f6.050a0220.49194.0517.GAE@google.com/
Commit 98442f0ccd ("sched: Fix delayed_dequeue vs
switched_from_fair()") overlooked that __setscheduler_prio(), now
__setscheduler_class() relies on p->policy for task_should_scx(), and
moved the call before __setscheduler_params() updates it, causing it
to be using the old p->policy value.
Resolve this by changing task_should_scx() to take the policy itself
instead of a task pointer, such that __sched_setscheduler() can pass
in the updated policy.
Fixes: 98442f0ccd ("sched: Fix delayed_dequeue vs switched_from_fair()")
Signed-off-by: Aboorva Devarajan <aboorvad@linux.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Tejun Heo <tj@kernel.org>
The ftrace_lock is taken for most of the ftrace_graph_set_hash() function
throughout the end. Use guard to take the ftrace_lock to simplify the exit
paths.
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/20241028071308.406073025@goodmis.org
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The ftrace_lock is held throughout the entire release_probe() function.
Use guard to simplify any exit paths.
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/20241028071308.250787901@goodmis.org
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The ftrace_lock is held throughout cache_mod(), use guard to simplify the
error paths.
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/20241028071308.088458856@goodmis.org
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The ftrace_lock is held for most of match_records() until the end of the
function. Use guard to make error paths simpler.
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/20241028071307.927146604@goodmis.org
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The ftrace_lock is held throughout unregister_ftrace_graph(), use a guard
to simplify the error paths.
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/20241028071307.770550792@goodmis.org
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The ret_stack (shadow stack used by function graph infrastructure) is
created for every task on the system when function graph is enabled. Give
it its own kmem_cache. This will make it easier to see how much memory is
being used specifically for function graph shadow stacks.
In the future, this size may change and may not be a power of two. Having
its own cache can also keep it from fragmenting memory.
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Link: https://lore.kernel.org/20241026063210.7d4910a7@rorschach.local.home
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The ret_stack (shadow stack used by function graph infrastructure) is
currently defined as PAGE_SIZE. But some architectures which have 64K
PAGE_SIZE, this is way overkill. Also there's an effort to allow the
PAGE_SIZE to be defined at boot up.
Hard code it for now to 4096. In the future, this size may change and even
be dependent on specific architectures.
Link: https://lore.kernel.org/all/e5067bb8-0fcd-4739-9bca-0e872037d5a1@arm.com/
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20241019152951.053f9646@rorschach.local.home
Suggested-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
- Fix missing mutex unlock in error path of register_ftrace_graph()
A previous fix added a return on an error path and forgot to unlock the
mutex. Instead of dealing with error paths, use guard(mutex) as the mutex
is just released at the exit of the function anyway. Other functions
in this file should be updated with this, but that's a cleanup and not
a fix.
- Change cpuhp setup name to be consistent with other cpuhp states
The same fix that the above patch fixes added a cpuhp_setup_state() call
with the name of "fgraph_idle_init". I was informed that it should instead
be something like: "fgraph:online". Update that too.
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZxydTRQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qsE/APoDcsqqaDJvQ0OsMqVaPdHoj2IUkU4M
yueb6U/Kyq1m4wEA259W1PZuQlM0Vo0yJM1w2YIAH18UpO09ZroLnbWoUAc=
=2sS+
-----END PGP SIGNATURE-----
Merge tag 'ftrace-v6.12-rc4' into trace/ftrace/core
In order to modify the code that allocates the shadow stacks, merge the
changes that fixed the CPU hotplug shadow stack allocations and build on
top of that.
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Right now the state tracking is done by two struct members:
- it_active:
A boolean which tracks armed/disarmed state
- it_signal_seq:
A sequence counter which is used to invalidate settings
and prevent rearming
Replace it_active with it_status and keep properly track about the states
in one place.
This allows to reuse it_signal_seq to track reprogramming, disarm and
delete operations in order to drop signals which are related to the state
previous of those operations.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241001083835.670337048@linutronix.de
Prepare for using this struct member to do a proper reprogramming and
deletion accounting so that stale signals can be dropped.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241001083835.611997737@linutronix.de
No point in delivering a signal from the past. POSIX does not specify the
behaviour here:
- "The effect of disarming or resetting a timer with pending expiration
notifications is unspecified."
- "The disposition of pending signals for the deleted timer is unspecified."
In both cases it is reasonable to expect that pending signals are
discarded. Especially in the reprogramming case it does not make sense to
account for previous overruns or to deliver a signal for a timer which has
been disarmed.
Drop the signal as that is conistent and understandable behaviour.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241001083835.553646280@linutronix.de
In case that a timer was reprogrammed or deleted an already pending signal
is obsolete. Right now such signals are kept around and eventually
delivered. While POSIX is blury about this:
- "The effect of disarming or resetting a timer with pending expiration
notifications is unspecified."
- "The disposition of pending signals for the deleted timer is
unspecified."
it is reasonable in both cases to expect that pending signals are discarded
as they have no meaning anymore.
Prepare the signal code to allow dropping posix timer signals.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241001083835.494416923@linutronix.de
The si_sys_private member of the siginfo which is embedded in the
preallocated sigqueue is used by the posix timer code to decide whether a
timer must be reprogrammed on signal delivery.
The handling of this is racy as a long standing comment in that code
documents. It is modified with the timer lock held, but without sighand
lock being held. The actual signal delivery code checks for it under
sighand lock without holding the timer lock.
Hand the new value to send_sigqueue() as argument and store it with sighand
lock held. This is an intermediate change to address this issue.
The arguments to this function will be cleanup in subsequent changes.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241001083835.434338954@linutronix.de
Mop up the stale return value comment and add a lockdep check instead of
commenting on the locking requirement.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/all/20241001083835.374933959@linutronix.de
Move the itimer rearming out of the signal code and consolidate all posix
timer related functions in the signal code under one ifdef.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241001083835.314100569@linutronix.de
It can be surprising to the user if DMA functions are only traced on
success. On failure, it can be unclear what the source of the problem
is. Fix this by tracing all functions even when they fail. Cases where
we BUG/WARN are skipped, since those should be sufficiently noisy
already.
Signed-off-by: Sean Anderson <sean.anderson@linux.dev>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
In some cases, we use trace_dma_map to trace dma_alloc* functions. This
generally follows dma_debug. However, this does not record all of the
relevant information for allocations, such as GFP flags. Create new
dma_alloc tracepoints for these functions. Note that while
dma_alloc_noncontiguous may allocate discontiguous pages (from the CPU's
point of view), the device will only see one contiguous mapping.
Therefore, we just need to trace dma_addr and size.
Signed-off-by: Sean Anderson <sean.anderson@linux.dev>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
In preparation for using these tracepoints in a few more places, trace
the DMA direction as well. For coherent allocations this is always
bidirectional.
Signed-off-by: Sean Anderson <sean.anderson@linux.dev>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
dma-debug goes to great length to split incoming physical addresses into
a PFN and offset to store them in struct dma_debug_entry, just to
recombine those for all meaningful uses. Just store a phys_addr_t
instead.
Signed-off-by: Christoph Hellwig <hch@lst.de>
radix_lock() shouldn't be held while holding dma_hash_entry[idx].lock
otherwise, there's a possible deadlock scenario when
dma debug API is called holding rq_lock():
CPU0 CPU1 CPU2
dma_free_attrs()
check_unmap() add_dma_entry() __schedule() //out
(A) rq_lock()
get_hash_bucket()
(A) dma_entry_hash
check_sync()
(A) radix_lock() (W) dma_entry_hash
dma_entry_free()
(W) radix_lock()
// CPU2's one
(W) rq_lock()
CPU1 situation can happen when it extending radix tree and
it tries to wake up kswapd via wake_all_kswapd().
CPU2 situation can happen while perf_event_task_sched_out()
(i.e. dma sync operation is called while deleting perf_event using
etm and etr tmc which are Arm Coresight hwtracing driver backends).
To remove this possible situation, call dma_entry_free() after
put_hash_bucket() in check_unmap().
Reported-by: Denis Nikitin <denik@chromium.org>
Closes: https://lists.linaro.org/archives/list/coresight@lists.linaro.org/thread/2WMS7BBSF5OZYB63VT44U5YWLFP5HL6U/#RWM6MLQX5ANBTEQ2PRM7OXCBGCE6NPWU
Signed-off-by: Levi Yun <yeoreum.yun@arm.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
There is no reason to invoke these hooks early against an mm that is in an
incomplete state.
The change in commit d240629148 ("fork: use __mt_dup() to duplicate
maple tree in dup_mmap()") makes this more pertinent as we may be in a
state where entries in the maple tree are not yet consistent.
Their placement early in dup_mmap() only appears to have been meaningful
for early error checking, and since functionally it'd require a very small
allocation to fail (in practice 'too small to fail') that'd only occur in
the most dire circumstances, meaning the fork would fail or be OOM'd in
any case.
Since both khugepaged and KSM tracking are there to provide optimisations
to memory performance rather than critical functionality, it doesn't
really matter all that much if, under such dire memory pressure, we fail
to register an mm with these.
As a result, we follow the example of commit d2081b2bf8 ("mm:
khugepaged: make khugepaged_enter() void function") and make ksm_fork() a
void function also.
We only expose the mm to these functions once we are done with them and
only if no error occurred in the fork operation.
Link: https://lkml.kernel.org/r/e0cb8b840c9d1d5a6e84d4f8eff5f3f2022aa10c.1729014377.git.lorenzo.stoakes@oracle.com
Fixes: d240629148 ("fork: use __mt_dup() to duplicate maple tree in dup_mmap()")
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Reported-by: Jann Horn <jannh@google.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Jann Horn <jannh@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Linus Torvalds <torvalds@linuxfoundation.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "fork: do not expose incomplete mm on fork".
During fork we may place the virtual memory address space into an
inconsistent state before the fork operation is complete.
In addition, we may encounter an error during the fork operation that
indicates that the virtual memory address space is invalidated.
As a result, we should not be exposing it in any way to external machinery
that might interact with the mm or VMAs, machinery that is not designed to
deal with incomplete state.
We specifically update the fork logic to defer khugepaged and ksm to the
end of the operation and only to be invoked if no error arose, and
disallow uffd from observing fork events should an error have occurred.
This patch (of 2):
Currently on fork we expose the virtual address space of a process to
userland unconditionally if uffd is registered in VMAs, regardless of
whether an error arose in the fork.
This is performed in dup_userfaultfd_complete() which is invoked
unconditionally, and performs two duties - invoking registered handlers
for the UFFD_EVENT_FORK event via dup_fctx(), and clearing down
userfaultfd_fork_ctx objects established in dup_userfaultfd().
This is problematic, because the virtual address space may not yet be
correctly initialised if an error arose.
The change in commit d240629148 ("fork: use __mt_dup() to duplicate
maple tree in dup_mmap()") makes this more pertinent as we may be in a
state where entries in the maple tree are not yet consistent.
We address this by, on fork error, ensuring that we roll back state that
we would otherwise expect to clean up through the event being handled by
userland and perform the memory freeing duty otherwise performed by
dup_userfaultfd_complete().
We do this by implementing a new function, dup_userfaultfd_fail(), which
performs the same loop, only decrementing reference counts.
Note that we perform mmgrab() on the parent and child mm's, however
userfaultfd_ctx_put() will mmdrop() this once the reference count drops to
zero, so we will avoid memory leaks correctly here.
Link: https://lkml.kernel.org/r/cover.1729014377.git.lorenzo.stoakes@oracle.com
Link: https://lkml.kernel.org/r/d3691d58bb58712b6fb3df2be441d175bd3cdf07.1729014377.git.lorenzo.stoakes@oracle.com
Fixes: d240629148 ("fork: use __mt_dup() to duplicate maple tree in dup_mmap()")
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Reported-by: Jann Horn <jannh@google.com>
Reviewed-by: Jann Horn <jannh@google.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Linus Torvalds <torvalds@linuxfoundation.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Commit 0aaa8977ac ("configs: introduce debug.config for CI-like setup")
added CONFIG_PROVE_RCU_LIST=y to the common CI config,
but RCU_EXPERT is not set, and it's a dependency for
CONFIG_PROVE_RCU_LIST=y. Make sure CIs take advantage
of CONFIG_PROVE_RCU_LIST=y, recent fixes in networking
indicate that it does catch bugs.
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Acked-by: Matthieu Baerts (NGI0) <matttbe@kernel.org>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Simon Horman <horms@kernel.org>
Link: https://patch.msgid.link/20241016011144.3058445-1-kuba@kernel.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Even though the open-coded expressions usually fit on one line, this
commit replaces them with a call to a new srcu_gp_is_expedited()
helper function in order to improve readability.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andrii Nakryiko <andrii@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: <bpf@vger.kernel.org>
Reviewed-by: Neeraj Upadhyay <Neeraj.Upadhyay@amd.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
SRCU auto-expedites grace periods that follow a sufficiently long idle
period, and the srcu_might_be_idle() function is used to make this
decision. However, the upcoming light-weight SRCU readers will not do
auto-expediting because doing so would cause the grace-period machinery
to invoke synchronize_rcu_expedited() twice, with IPIs all around.
However, software-engineering considerations force this determination
to remain in srcu_might_be_idle().
This commit therefore changes the name of srcu_might_be_idle() to
srcu_should_expedite(), thus moving from what it currently does to why
it does it, this latter being more future-proof.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andrii Nakryiko <andrii@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: <bpf@vger.kernel.org>
Reviewed-by: Neeraj Upadhyay <Neeraj.Upadhyay@amd.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
- Fix missing mutex unlock in error path of register_ftrace_graph()
A previous fix added a return on an error path and forgot to unlock the
mutex. Instead of dealing with error paths, use guard(mutex) as the mutex
is just released at the exit of the function anyway. Other functions
in this file should be updated with this, but that's a cleanup and not
a fix.
- Change cpuhp setup name to be consistent with other cpuhp states
The same fix that the above patch fixes added a cpuhp_setup_state() call
with the name of "fgraph_idle_init". I was informed that it should instead
be something like: "fgraph:online". Update that too.
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZxydTRQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qsE/APoDcsqqaDJvQ0OsMqVaPdHoj2IUkU4M
yueb6U/Kyq1m4wEA259W1PZuQlM0Vo0yJM1w2YIAH18UpO09ZroLnbWoUAc=
=2sS+
-----END PGP SIGNATURE-----
Merge tag 'ftrace-v6.12-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull ftrace fixes from Steven Rostedt:
- Fix missing mutex unlock in error path of register_ftrace_graph()
A previous fix added a return on an error path and forgot to unlock
the mutex. Instead of dealing with error paths, use guard(mutex) as
the mutex is just released at the exit of the function anyway. Other
functions in this file should be updated with this, but that's a
cleanup and not a fix.
- Change cpuhp setup name to be consistent with other cpuhp states
The same fix that the above patch fixes added a cpuhp_setup_state()
call with the name of "fgraph_idle_init". I was informed that it
should instead be something like: "fgraph:online". Update that too.
* tag 'ftrace-v6.12-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
fgraph: Change the name of cpuhp state to "fgraph:online"
fgraph: Fix missing unlock in register_ftrace_graph()
The error path in msi_domain_alloc(), frees the already allocated MSI
interrupts in a loop, but the loop condition terminates when the index
reaches zero, which fails to free the first allocated MSI interrupt at
index zero.
Check for >= 0 so that msi[0] is freed as well.
Fixes: f3cf8bb0d6 ("genirq: Add generic msi irq domain support")
Signed-off-by: Jinjie Ruan <ruanjinjie@huawei.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20241026063639.10711-1-ruanjinjie@huawei.com
When cloning a new thread, its posix_cputimers are not inherited, and
are cleared by posix_cputimers_init(). However, this does not clear the
tick dependency it creates in tsk->tick_dep_mask, and the handler does
not reach the code to clear the dependency if there were no timers to
begin with.
Thus if a thread has a cputimer running before clone/fork, all
descendants will prevent nohz_full unless they create a cputimer of
their own.
Fix this by entirely clearing the tick_dep_mask in copy_process().
(There is currently no inherited state that needs a tick dependency)
Process-wide timers do not have this problem because fork does not copy
signal_struct as a baseline, it creates one from scratch.
Fixes: b78783000d ("posix-cpu-timers: Migrate to use new tick dependency mask model")
Signed-off-by: Ben Segall <bsegall@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/all/xm26o737bq8o.fsf@google.com
What psi needs to do on each enqueue and dequeue has gotten more
subtle, and the generic sched code trying to distill this into a bool
for the callbacks is awkward.
Pass the flags directly and let psi parse them. For that to work, the
#include "stats.h" (which has the psi callback implementations) needs
to be below the flag definitions in "sched.h". Move that section
further down, next to some of the other accounting stuff.
This also puts the ENQUEUE_SAVE/RESTORE branch behind the psi jump
label, slightly reducing overhead when PSI=y but runtime disabled.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20241014144358.GB1021@cmpxchg.org