netfs: Provide readahead and readpage netfs helpers
Add a pair of helper functions:
(*) netfs_readahead()
(*) netfs_readpage()
to do the work of handling a readahead or a readpage, where the page(s)
that form part of the request may be split between the local cache, the
server or just require clearing, and may be single pages and transparent
huge pages. This is all handled within the helper.
Note that while both will read from the cache if there is data present,
only netfs_readahead() will expand the request beyond what it was asked to
do, and only netfs_readahead() will write back to the cache.
netfs_readpage(), on the other hand, is synchronous and only fetches the
page (which might be a THP) it is asked for.
The netfs gives the helper parameters from the VM, the cache cookie it
wants to use (or NULL) and a table of operations (only one of which is
mandatory):
(*) expand_readahead() [optional]
Called to allow the netfs to request an expansion of a readahead
request to meet its own alignment requirements. This is done by
changing rreq->start and rreq->len.
(*) clamp_length() [optional]
Called to allow the netfs to cut down a subrequest to meet its own
boundary requirements. If it does this, the helper will generate
additional subrequests until the full request is satisfied.
(*) is_still_valid() [optional]
Called to find out if the data just read from the cache has been
invalidated and must be reread from the server.
(*) issue_op() [required]
Called to ask the netfs to issue a read to the server. The subrequest
describes the read. The read request holds information about the file
being accessed.
The netfs can cache information in rreq->netfs_priv.
Upon completion, the netfs should set the error, transferred and can
also set FSCACHE_SREQ_CLEAR_TAIL and then call
fscache_subreq_terminated().
(*) done() [optional]
Called after the pages have been unlocked. The read request is still
pinning the file and mapping and may still be pinning pages with
PG_fscache. rreq->error indicates any error that has been
accumulated.
(*) cleanup() [optional]
Called when the helper is disposing of a finished read request. This
allows the netfs to clear rreq->netfs_priv.
Netfs support is enabled with CONFIG_NETFS_SUPPORT=y. It will be built
even if CONFIG_FSCACHE=n and in this case much of it should be optimised
away, allowing the filesystem to use it even when caching is disabled.
Changes:
v5:
- Comment why netfs_readahead() is putting pages[2].
- Use page_file_mapping() rather than page->mapping[2].
- Use page_index() rather than page->index[2].
- Use set_page_fscache()[3] rather then SetPageFsCache() as this takes an
appropriate ref too[4].
v4:
- Folded in a kerneldoc comment fix.
- Folded in a fix for the error handling in the case that ENOMEM occurs.
- Added flag to netfs_subreq_terminated() to indicate that the caller may
have been running async and stuff that might sleep needs punting to a
workqueue (can't use in_softirq()[1]).
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-and-tested-by: Jeff Layton <jlayton@kernel.org>
Tested-by: Dave Wysochanski <dwysocha@redhat.com>
Tested-By: Marc Dionne <marc.dionne@auristor.com>
cc: Matthew Wilcox <willy@infradead.org>
cc: linux-mm@kvack.org
cc: linux-cachefs@redhat.com
cc: linux-afs@lists.infradead.org
cc: linux-nfs@vger.kernel.org
cc: linux-cifs@vger.kernel.org
cc: ceph-devel@vger.kernel.org
cc: v9fs-developer@lists.sourceforge.net
cc: linux-fsdevel@vger.kernel.org
Link: https://lore.kernel.org/r/20210216084230.GA23669@lst.de/ [1]
Link: https://lore.kernel.org/r/20210321014202.GF3420@casper.infradead.org/ [2]
Link: https://lore.kernel.org/r/2499407.1616505440@warthog.procyon.org.uk/ [3]
Link: https://lore.kernel.org/r/CAHk-=wh+2gbF7XEjYc=HV9w_2uVzVf7vs60BPz0gFA=+pUm3ww@mail.gmail.com/ [4]
Link: https://lore.kernel.org/r/160588497406.3465195.18003475695899726222.stgit@warthog.procyon.org.uk/ # rfc
Link: https://lore.kernel.org/r/161118136849.1232039.8923686136144228724.stgit@warthog.procyon.org.uk/ # rfc
Link: https://lore.kernel.org/r/161161032290.2537118.13400578415247339173.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/161340394873.1303470.6237319335883242536.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/161539537375.286939.16642940088716990995.stgit@warthog.procyon.org.uk/ # v4
Link: https://lore.kernel.org/r/161653795430.2770958.4947584573720000554.stgit@warthog.procyon.org.uk/ # v5
Link: https://lore.kernel.org/r/161789076581.6155.6745849361504760209.stgit@warthog.procyon.org.uk/ # v6
2020-05-13 16:41:20 +00:00
|
|
|
# SPDX-License-Identifier: GPL-2.0
|
|
|
|
|
2022-02-17 13:30:38 +00:00
|
|
|
netfs-y := \
|
2022-03-01 14:35:58 +00:00
|
|
|
buffered_read.o \
|
2021-06-17 12:09:21 +00:00
|
|
|
buffered_write.o \
|
netfs: Implement unbuffered/DIO read support
Implement support for unbuffered and DIO reads in the netfs library,
utilising the existing read helper code to do block splitting and
individual queuing. The code also handles extraction of the destination
buffer from the supplied iterator, allowing async unbuffered reads to take
place.
The read will be split up according to the rsize setting and, if supplied,
the ->clamp_length() method. Note that the next subrequest will be issued
as soon as issue_op returns, without waiting for previous ones to finish.
The network filesystem needs to pause or handle queuing them if it doesn't
want to fire them all at the server simultaneously.
Once all the subrequests have finished, the state will be assessed and the
amount of data to be indicated as having being obtained will be
determined. As the subrequests may finish in any order, if an intermediate
subrequest is short, any further subrequests may be copied into the buffer
and then abandoned.
In the future, this will also take care of doing an unbuffered read from
encrypted content, with the decryption being done by the library.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
cc: linux-fsdevel@vger.kernel.org
cc: linux-mm@kvack.org
2022-01-14 17:39:55 +00:00
|
|
|
direct_read.o \
|
2022-02-21 11:38:17 +00:00
|
|
|
direct_write.o \
|
2022-03-07 21:57:24 +00:00
|
|
|
io.o \
|
2022-10-20 15:16:32 +00:00
|
|
|
iterator.o \
|
2023-10-11 14:34:07 +00:00
|
|
|
locking.o \
|
2022-03-01 15:25:00 +00:00
|
|
|
main.o \
|
2023-11-27 13:58:07 +00:00
|
|
|
misc.o \
|
2021-06-29 21:31:48 +00:00
|
|
|
objects.o \
|
netfs: New writeback implementation
The current netfslib writeback implementation creates writeback requests of
contiguous folio data and then separately tiles subrequests over the space
twice, once for the server and once for the cache. This creates a few
issues:
(1) Every time there's a discontiguity or a change between writing to only
one destination or writing to both, it must create a new request.
This makes it harder to do vectored writes.
(2) The folios don't have the writeback mark removed until the end of the
request - and a request could be hundreds of megabytes.
(3) In future, I want to support a larger cache granularity, which will
require aggregation of some folios that contain unmodified data (which
only need to go to the cache) and some which contain modifications
(which need to be uploaded and stored to the cache) - but, currently,
these are treated as discontiguous.
There's also a move to get everyone to use writeback_iter() to extract
writable folios from the pagecache. That said, currently writeback_iter()
has some issues that make it less than ideal:
(1) there's no way to cancel the iteration, even if you find a "temporary"
error that means the current folio and all subsequent folios are going
to fail;
(2) there's no way to filter the folios being written back - something
that will impact Ceph with it's ordered snap system;
(3) and if you get a folio you can't immediately deal with (say you need
to flush the preceding writes), you are left with a folio hanging in
the locked state for the duration, when really we should unlock it and
relock it later.
In this new implementation, I use writeback_iter() to pump folios,
progressively creating two parallel, but separate streams and cleaning up
the finished folios as the subrequests complete. Either or both streams
can contain gaps, and the subrequests in each stream can be of variable
size, don't need to align with each other and don't need to align with the
folios.
Indeed, subrequests can cross folio boundaries, may cover several folios or
a folio may be spanned by multiple folios, e.g.:
+---+---+-----+-----+---+----------+
Folios: | | | | | | |
+---+---+-----+-----+---+----------+
+------+------+ +----+----+
Upload: | | |.....| | |
+------+------+ +----+----+
+------+------+------+------+------+
Cache: | | | | | |
+------+------+------+------+------+
The progressive subrequest construction permits the algorithm to be
preparing both the next upload to the server and the next write to the
cache whilst the previous ones are already in progress. Throttling can be
applied to control the rate of production of subrequests - and, in any
case, we probably want to write them to the server in ascending order,
particularly if the file will be extended.
Content crypto can also be prepared at the same time as the subrequests and
run asynchronously, with the prepped requests being stalled until the
crypto catches up with them. This might also be useful for transport
crypto, but that happens at a lower layer, so probably would be harder to
pull off.
The algorithm is split into three parts:
(1) The issuer. This walks through the data, packaging it up, encrypting
it and creating subrequests. The part of this that generates
subrequests only deals with file positions and spans and so is usable
for DIO/unbuffered writes as well as buffered writes.
(2) The collector. This asynchronously collects completed subrequests,
unlocks folios, frees crypto buffers and performs any retries. This
runs in a work queue so that the issuer can return to the caller for
writeback (so that the VM can have its kswapd thread back) or async
writes.
(3) The retryer. This pauses the issuer, waits for all outstanding
subrequests to complete and then goes through the failed subrequests
to reissue them. This may involve reprepping them (with cifs, the
credits must be renegotiated, and a subrequest may need splitting),
and doing RMW for content crypto if there's a conflicting change on
the server.
[!] Note that some of the functions are prefixed with "new_" to avoid
clashes with existing functions. These will be renamed in a later patch
that cuts over to the new algorithm.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: Eric Van Hensbergen <ericvh@kernel.org>
cc: Latchesar Ionkov <lucho@ionkov.net>
cc: Dominique Martinet <asmadeus@codewreck.org>
cc: Christian Schoenebeck <linux_oss@crudebyte.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: v9fs@lists.linux.dev
cc: linux-afs@lists.infradead.org
cc: netfs@lists.linux.dev
cc: linux-fsdevel@vger.kernel.org
2024-03-18 16:52:05 +00:00
|
|
|
write_collect.o \
|
|
|
|
write_issue.o
|
2022-02-17 13:30:38 +00:00
|
|
|
|
|
|
|
netfs-$(CONFIG_NETFS_STATS) += stats.o
|
netfs: Provide readahead and readpage netfs helpers
Add a pair of helper functions:
(*) netfs_readahead()
(*) netfs_readpage()
to do the work of handling a readahead or a readpage, where the page(s)
that form part of the request may be split between the local cache, the
server or just require clearing, and may be single pages and transparent
huge pages. This is all handled within the helper.
Note that while both will read from the cache if there is data present,
only netfs_readahead() will expand the request beyond what it was asked to
do, and only netfs_readahead() will write back to the cache.
netfs_readpage(), on the other hand, is synchronous and only fetches the
page (which might be a THP) it is asked for.
The netfs gives the helper parameters from the VM, the cache cookie it
wants to use (or NULL) and a table of operations (only one of which is
mandatory):
(*) expand_readahead() [optional]
Called to allow the netfs to request an expansion of a readahead
request to meet its own alignment requirements. This is done by
changing rreq->start and rreq->len.
(*) clamp_length() [optional]
Called to allow the netfs to cut down a subrequest to meet its own
boundary requirements. If it does this, the helper will generate
additional subrequests until the full request is satisfied.
(*) is_still_valid() [optional]
Called to find out if the data just read from the cache has been
invalidated and must be reread from the server.
(*) issue_op() [required]
Called to ask the netfs to issue a read to the server. The subrequest
describes the read. The read request holds information about the file
being accessed.
The netfs can cache information in rreq->netfs_priv.
Upon completion, the netfs should set the error, transferred and can
also set FSCACHE_SREQ_CLEAR_TAIL and then call
fscache_subreq_terminated().
(*) done() [optional]
Called after the pages have been unlocked. The read request is still
pinning the file and mapping and may still be pinning pages with
PG_fscache. rreq->error indicates any error that has been
accumulated.
(*) cleanup() [optional]
Called when the helper is disposing of a finished read request. This
allows the netfs to clear rreq->netfs_priv.
Netfs support is enabled with CONFIG_NETFS_SUPPORT=y. It will be built
even if CONFIG_FSCACHE=n and in this case much of it should be optimised
away, allowing the filesystem to use it even when caching is disabled.
Changes:
v5:
- Comment why netfs_readahead() is putting pages[2].
- Use page_file_mapping() rather than page->mapping[2].
- Use page_index() rather than page->index[2].
- Use set_page_fscache()[3] rather then SetPageFsCache() as this takes an
appropriate ref too[4].
v4:
- Folded in a kerneldoc comment fix.
- Folded in a fix for the error handling in the case that ENOMEM occurs.
- Added flag to netfs_subreq_terminated() to indicate that the caller may
have been running async and stuff that might sleep needs punting to a
workqueue (can't use in_softirq()[1]).
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-and-tested-by: Jeff Layton <jlayton@kernel.org>
Tested-by: Dave Wysochanski <dwysocha@redhat.com>
Tested-By: Marc Dionne <marc.dionne@auristor.com>
cc: Matthew Wilcox <willy@infradead.org>
cc: linux-mm@kvack.org
cc: linux-cachefs@redhat.com
cc: linux-afs@lists.infradead.org
cc: linux-nfs@vger.kernel.org
cc: linux-cifs@vger.kernel.org
cc: ceph-devel@vger.kernel.org
cc: v9fs-developer@lists.sourceforge.net
cc: linux-fsdevel@vger.kernel.org
Link: https://lore.kernel.org/r/20210216084230.GA23669@lst.de/ [1]
Link: https://lore.kernel.org/r/20210321014202.GF3420@casper.infradead.org/ [2]
Link: https://lore.kernel.org/r/2499407.1616505440@warthog.procyon.org.uk/ [3]
Link: https://lore.kernel.org/r/CAHk-=wh+2gbF7XEjYc=HV9w_2uVzVf7vs60BPz0gFA=+pUm3ww@mail.gmail.com/ [4]
Link: https://lore.kernel.org/r/160588497406.3465195.18003475695899726222.stgit@warthog.procyon.org.uk/ # rfc
Link: https://lore.kernel.org/r/161118136849.1232039.8923686136144228724.stgit@warthog.procyon.org.uk/ # rfc
Link: https://lore.kernel.org/r/161161032290.2537118.13400578415247339173.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/161340394873.1303470.6237319335883242536.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/161539537375.286939.16642940088716990995.stgit@warthog.procyon.org.uk/ # v4
Link: https://lore.kernel.org/r/161653795430.2770958.4947584573720000554.stgit@warthog.procyon.org.uk/ # v5
Link: https://lore.kernel.org/r/161789076581.6155.6745849361504760209.stgit@warthog.procyon.org.uk/ # v6
2020-05-13 16:41:20 +00:00
|
|
|
|
2023-11-20 15:55:18 +00:00
|
|
|
netfs-$(CONFIG_FSCACHE) += \
|
|
|
|
fscache_cache.o \
|
|
|
|
fscache_cookie.o \
|
|
|
|
fscache_io.o \
|
|
|
|
fscache_main.o \
|
|
|
|
fscache_volume.o
|
|
|
|
|
|
|
|
ifeq ($(CONFIG_PROC_FS),y)
|
|
|
|
netfs-$(CONFIG_FSCACHE) += fscache_proc.o
|
|
|
|
endif
|
|
|
|
netfs-$(CONFIG_FSCACHE_STATS) += fscache_stats.o
|
|
|
|
|
2023-11-20 15:29:09 +00:00
|
|
|
obj-$(CONFIG_NETFS_SUPPORT) += netfs.o
|