mirror of
https://github.com/torvalds/linux.git
synced 2024-11-25 05:32:00 +00:00
netfs: New writeback implementation
The current netfslib writeback implementation creates writeback requests of contiguous folio data and then separately tiles subrequests over the space twice, once for the server and once for the cache. This creates a few issues: (1) Every time there's a discontiguity or a change between writing to only one destination or writing to both, it must create a new request. This makes it harder to do vectored writes. (2) The folios don't have the writeback mark removed until the end of the request - and a request could be hundreds of megabytes. (3) In future, I want to support a larger cache granularity, which will require aggregation of some folios that contain unmodified data (which only need to go to the cache) and some which contain modifications (which need to be uploaded and stored to the cache) - but, currently, these are treated as discontiguous. There's also a move to get everyone to use writeback_iter() to extract writable folios from the pagecache. That said, currently writeback_iter() has some issues that make it less than ideal: (1) there's no way to cancel the iteration, even if you find a "temporary" error that means the current folio and all subsequent folios are going to fail; (2) there's no way to filter the folios being written back - something that will impact Ceph with it's ordered snap system; (3) and if you get a folio you can't immediately deal with (say you need to flush the preceding writes), you are left with a folio hanging in the locked state for the duration, when really we should unlock it and relock it later. In this new implementation, I use writeback_iter() to pump folios, progressively creating two parallel, but separate streams and cleaning up the finished folios as the subrequests complete. Either or both streams can contain gaps, and the subrequests in each stream can be of variable size, don't need to align with each other and don't need to align with the folios. Indeed, subrequests can cross folio boundaries, may cover several folios or a folio may be spanned by multiple folios, e.g.: +---+---+-----+-----+---+----------+ Folios: | | | | | | | +---+---+-----+-----+---+----------+ +------+------+ +----+----+ Upload: | | |.....| | | +------+------+ +----+----+ +------+------+------+------+------+ Cache: | | | | | | +------+------+------+------+------+ The progressive subrequest construction permits the algorithm to be preparing both the next upload to the server and the next write to the cache whilst the previous ones are already in progress. Throttling can be applied to control the rate of production of subrequests - and, in any case, we probably want to write them to the server in ascending order, particularly if the file will be extended. Content crypto can also be prepared at the same time as the subrequests and run asynchronously, with the prepped requests being stalled until the crypto catches up with them. This might also be useful for transport crypto, but that happens at a lower layer, so probably would be harder to pull off. The algorithm is split into three parts: (1) The issuer. This walks through the data, packaging it up, encrypting it and creating subrequests. The part of this that generates subrequests only deals with file positions and spans and so is usable for DIO/unbuffered writes as well as buffered writes. (2) The collector. This asynchronously collects completed subrequests, unlocks folios, frees crypto buffers and performs any retries. This runs in a work queue so that the issuer can return to the caller for writeback (so that the VM can have its kswapd thread back) or async writes. (3) The retryer. This pauses the issuer, waits for all outstanding subrequests to complete and then goes through the failed subrequests to reissue them. This may involve reprepping them (with cifs, the credits must be renegotiated, and a subrequest may need splitting), and doing RMW for content crypto if there's a conflicting change on the server. [!] Note that some of the functions are prefixed with "new_" to avoid clashes with existing functions. These will be renamed in a later patch that cuts over to the new algorithm. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> cc: Eric Van Hensbergen <ericvh@kernel.org> cc: Latchesar Ionkov <lucho@ionkov.net> cc: Dominique Martinet <asmadeus@codewreck.org> cc: Christian Schoenebeck <linux_oss@crudebyte.com> cc: Marc Dionne <marc.dionne@auristor.com> cc: v9fs@lists.linux.dev cc: linux-afs@lists.infradead.org cc: netfs@lists.linux.dev cc: linux-fsdevel@vger.kernel.org
This commit is contained in:
parent
7ba167c4c7
commit
288ace2f57
@ -11,7 +11,9 @@ netfs-y := \
|
||||
main.o \
|
||||
misc.o \
|
||||
objects.o \
|
||||
output.o
|
||||
output.o \
|
||||
write_collect.o \
|
||||
write_issue.o
|
||||
|
||||
netfs-$(CONFIG_NETFS_STATS) += stats.o
|
||||
|
||||
|
@ -74,16 +74,12 @@ static enum netfs_how_to_modify netfs_how_to_modify(struct netfs_inode *ctx,
|
||||
|
||||
if (file->f_mode & FMODE_READ)
|
||||
goto no_write_streaming;
|
||||
if (test_bit(NETFS_ICTX_NO_WRITE_STREAMING, &ctx->flags))
|
||||
goto no_write_streaming;
|
||||
|
||||
if (netfs_is_cache_enabled(ctx)) {
|
||||
/* We don't want to get a streaming write on a file that loses
|
||||
* caching service temporarily because the backing store got
|
||||
* culled.
|
||||
*/
|
||||
if (!test_bit(NETFS_ICTX_NO_WRITE_STREAMING, &ctx->flags))
|
||||
set_bit(NETFS_ICTX_NO_WRITE_STREAMING, &ctx->flags);
|
||||
goto no_write_streaming;
|
||||
}
|
||||
|
||||
|
@ -150,6 +150,33 @@ static inline void netfs_stat_d(atomic_t *stat)
|
||||
#define netfs_stat_d(x) do {} while(0)
|
||||
#endif
|
||||
|
||||
/*
|
||||
* write_collect.c
|
||||
*/
|
||||
int netfs_folio_written_back(struct folio *folio);
|
||||
void netfs_write_collection_worker(struct work_struct *work);
|
||||
void netfs_wake_write_collector(struct netfs_io_request *wreq, bool was_async);
|
||||
|
||||
/*
|
||||
* write_issue.c
|
||||
*/
|
||||
struct netfs_io_request *netfs_create_write_req(struct address_space *mapping,
|
||||
struct file *file,
|
||||
loff_t start,
|
||||
enum netfs_io_origin origin);
|
||||
void netfs_reissue_write(struct netfs_io_stream *stream,
|
||||
struct netfs_io_subrequest *subreq);
|
||||
int netfs_advance_write(struct netfs_io_request *wreq,
|
||||
struct netfs_io_stream *stream,
|
||||
loff_t start, size_t len, bool to_eof);
|
||||
struct netfs_io_request *new_netfs_begin_writethrough(struct kiocb *iocb, size_t len);
|
||||
int new_netfs_advance_writethrough(struct netfs_io_request *wreq, struct writeback_control *wbc,
|
||||
struct folio *folio, size_t copied, bool to_page_end,
|
||||
struct folio **writethrough_cache);
|
||||
int new_netfs_end_writethrough(struct netfs_io_request *wreq, struct writeback_control *wbc,
|
||||
struct folio *writethrough_cache);
|
||||
int netfs_unbuffered_write(struct netfs_io_request *wreq, bool may_wait, size_t len);
|
||||
|
||||
/*
|
||||
* Miscellaneous functions.
|
||||
*/
|
||||
|
@ -47,6 +47,10 @@ struct netfs_io_request *netfs_alloc_request(struct address_space *mapping,
|
||||
rreq->inode = inode;
|
||||
rreq->i_size = i_size_read(inode);
|
||||
rreq->debug_id = atomic_inc_return(&debug_ids);
|
||||
rreq->wsize = INT_MAX;
|
||||
spin_lock_init(&rreq->lock);
|
||||
INIT_LIST_HEAD(&rreq->io_streams[0].subrequests);
|
||||
INIT_LIST_HEAD(&rreq->io_streams[1].subrequests);
|
||||
INIT_LIST_HEAD(&rreq->subrequests);
|
||||
INIT_WORK(&rreq->work, NULL);
|
||||
refcount_set(&rreq->ref, 1);
|
||||
@ -85,6 +89,8 @@ void netfs_get_request(struct netfs_io_request *rreq, enum netfs_rreq_ref_trace
|
||||
void netfs_clear_subrequests(struct netfs_io_request *rreq, bool was_async)
|
||||
{
|
||||
struct netfs_io_subrequest *subreq;
|
||||
struct netfs_io_stream *stream;
|
||||
int s;
|
||||
|
||||
while (!list_empty(&rreq->subrequests)) {
|
||||
subreq = list_first_entry(&rreq->subrequests,
|
||||
@ -93,6 +99,17 @@ void netfs_clear_subrequests(struct netfs_io_request *rreq, bool was_async)
|
||||
netfs_put_subrequest(subreq, was_async,
|
||||
netfs_sreq_trace_put_clear);
|
||||
}
|
||||
|
||||
for (s = 0; s < ARRAY_SIZE(rreq->io_streams); s++) {
|
||||
stream = &rreq->io_streams[s];
|
||||
while (!list_empty(&stream->subrequests)) {
|
||||
subreq = list_first_entry(&stream->subrequests,
|
||||
struct netfs_io_subrequest, rreq_link);
|
||||
list_del(&subreq->rreq_link);
|
||||
netfs_put_subrequest(subreq, was_async,
|
||||
netfs_sreq_trace_put_clear);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void netfs_free_request_rcu(struct rcu_head *rcu)
|
||||
|
803
fs/netfs/write_collect.c
Normal file
803
fs/netfs/write_collect.c
Normal file
@ -0,0 +1,803 @@
|
||||
// SPDX-License-Identifier: GPL-2.0-only
|
||||
/* Network filesystem write subrequest result collection, assessment
|
||||
* and retrying.
|
||||
*
|
||||
* Copyright (C) 2024 Red Hat, Inc. All Rights Reserved.
|
||||
* Written by David Howells (dhowells@redhat.com)
|
||||
*/
|
||||
|
||||
#include <linux/export.h>
|
||||
#include <linux/fs.h>
|
||||
#include <linux/mm.h>
|
||||
#include <linux/pagemap.h>
|
||||
#include <linux/slab.h>
|
||||
#include "internal.h"
|
||||
|
||||
/* Notes made in the collector */
|
||||
#define HIT_PENDING 0x01 /* A front op was still pending */
|
||||
#define SOME_EMPTY 0x02 /* One of more streams are empty */
|
||||
#define ALL_EMPTY 0x04 /* All streams are empty */
|
||||
#define MAYBE_DISCONTIG 0x08 /* A front op may be discontiguous (rounded to PAGE_SIZE) */
|
||||
#define NEED_REASSESS 0x10 /* Need to loop round and reassess */
|
||||
#define REASSESS_DISCONTIG 0x20 /* Reassess discontiguity if contiguity advances */
|
||||
#define MADE_PROGRESS 0x40 /* Made progress cleaning up a stream or the folio set */
|
||||
#define BUFFERED 0x80 /* The pagecache needs cleaning up */
|
||||
#define NEED_RETRY 0x100 /* A front op requests retrying */
|
||||
#define SAW_FAILURE 0x200 /* One stream or hit a permanent failure */
|
||||
|
||||
/*
|
||||
* Successful completion of write of a folio to the server and/or cache. Note
|
||||
* that we are not allowed to lock the folio here on pain of deadlocking with
|
||||
* truncate.
|
||||
*/
|
||||
int netfs_folio_written_back(struct folio *folio)
|
||||
{
|
||||
enum netfs_folio_trace why = netfs_folio_trace_clear;
|
||||
struct netfs_folio *finfo;
|
||||
struct netfs_group *group = NULL;
|
||||
int gcount = 0;
|
||||
|
||||
if ((finfo = netfs_folio_info(folio))) {
|
||||
/* Streaming writes cannot be redirtied whilst under writeback,
|
||||
* so discard the streaming record.
|
||||
*/
|
||||
folio_detach_private(folio);
|
||||
group = finfo->netfs_group;
|
||||
gcount++;
|
||||
kfree(finfo);
|
||||
why = netfs_folio_trace_clear_s;
|
||||
goto end_wb;
|
||||
}
|
||||
|
||||
if ((group = netfs_folio_group(folio))) {
|
||||
if (group == NETFS_FOLIO_COPY_TO_CACHE) {
|
||||
why = netfs_folio_trace_clear_cc;
|
||||
folio_detach_private(folio);
|
||||
goto end_wb;
|
||||
}
|
||||
|
||||
/* Need to detach the group pointer if the page didn't get
|
||||
* redirtied. If it has been redirtied, then it must be within
|
||||
* the same group.
|
||||
*/
|
||||
why = netfs_folio_trace_redirtied;
|
||||
if (!folio_test_dirty(folio)) {
|
||||
folio_detach_private(folio);
|
||||
gcount++;
|
||||
why = netfs_folio_trace_clear_g;
|
||||
}
|
||||
}
|
||||
|
||||
end_wb:
|
||||
trace_netfs_folio(folio, why);
|
||||
folio_end_writeback(folio);
|
||||
return gcount;
|
||||
}
|
||||
|
||||
/*
|
||||
* Get hold of a folio we have under writeback. We don't want to get the
|
||||
* refcount on it.
|
||||
*/
|
||||
static struct folio *netfs_writeback_lookup_folio(struct netfs_io_request *wreq, loff_t pos)
|
||||
{
|
||||
XA_STATE(xas, &wreq->mapping->i_pages, pos / PAGE_SIZE);
|
||||
struct folio *folio;
|
||||
|
||||
rcu_read_lock();
|
||||
|
||||
for (;;) {
|
||||
xas_reset(&xas);
|
||||
folio = xas_load(&xas);
|
||||
if (xas_retry(&xas, folio))
|
||||
continue;
|
||||
|
||||
if (!folio || xa_is_value(folio))
|
||||
kdebug("R=%08x: folio %lx (%llx) not present",
|
||||
wreq->debug_id, xas.xa_index, pos / PAGE_SIZE);
|
||||
BUG_ON(!folio || xa_is_value(folio));
|
||||
|
||||
if (folio == xas_reload(&xas))
|
||||
break;
|
||||
}
|
||||
|
||||
rcu_read_unlock();
|
||||
|
||||
if (WARN_ONCE(!folio_test_writeback(folio),
|
||||
"R=%08x: folio %lx is not under writeback\n",
|
||||
wreq->debug_id, folio->index)) {
|
||||
trace_netfs_folio(folio, netfs_folio_trace_not_under_wback);
|
||||
}
|
||||
return folio;
|
||||
}
|
||||
|
||||
/*
|
||||
* Unlock any folios we've finished with.
|
||||
*/
|
||||
static void netfs_writeback_unlock_folios(struct netfs_io_request *wreq,
|
||||
unsigned long long collected_to,
|
||||
unsigned int *notes)
|
||||
{
|
||||
for (;;) {
|
||||
struct folio *folio;
|
||||
struct netfs_folio *finfo;
|
||||
unsigned long long fpos, fend;
|
||||
size_t fsize, flen;
|
||||
|
||||
folio = netfs_writeback_lookup_folio(wreq, wreq->cleaned_to);
|
||||
|
||||
fpos = folio_pos(folio);
|
||||
fsize = folio_size(folio);
|
||||
finfo = netfs_folio_info(folio);
|
||||
flen = finfo ? finfo->dirty_offset + finfo->dirty_len : fsize;
|
||||
|
||||
fend = min_t(unsigned long long, fpos + flen, wreq->i_size);
|
||||
|
||||
trace_netfs_collect_folio(wreq, folio, fend, collected_to);
|
||||
|
||||
if (fpos + fsize > wreq->contiguity) {
|
||||
trace_netfs_collect_contig(wreq, fpos + fsize,
|
||||
netfs_contig_trace_unlock);
|
||||
wreq->contiguity = fpos + fsize;
|
||||
}
|
||||
|
||||
/* Unlock any folio we've transferred all of. */
|
||||
if (collected_to < fend)
|
||||
break;
|
||||
|
||||
wreq->nr_group_rel += netfs_folio_written_back(folio);
|
||||
wreq->cleaned_to = fpos + fsize;
|
||||
*notes |= MADE_PROGRESS;
|
||||
|
||||
if (fpos + fsize >= collected_to)
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Perform retries on the streams that need it.
|
||||
*/
|
||||
static void netfs_retry_write_stream(struct netfs_io_request *wreq,
|
||||
struct netfs_io_stream *stream)
|
||||
{
|
||||
struct list_head *next;
|
||||
|
||||
_enter("R=%x[%x:]", wreq->debug_id, stream->stream_nr);
|
||||
|
||||
if (unlikely(stream->failed))
|
||||
return;
|
||||
|
||||
/* If there's no renegotiation to do, just resend each failed subreq. */
|
||||
if (!stream->prepare_write) {
|
||||
struct netfs_io_subrequest *subreq;
|
||||
|
||||
list_for_each_entry(subreq, &stream->subrequests, rreq_link) {
|
||||
if (test_bit(NETFS_SREQ_FAILED, &subreq->flags))
|
||||
break;
|
||||
if (__test_and_clear_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags)) {
|
||||
__set_bit(NETFS_SREQ_RETRYING, &subreq->flags);
|
||||
netfs_get_subrequest(subreq, netfs_sreq_trace_get_resubmit);
|
||||
netfs_reissue_write(stream, subreq);
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (list_empty(&stream->subrequests))
|
||||
return;
|
||||
next = stream->subrequests.next;
|
||||
|
||||
do {
|
||||
struct netfs_io_subrequest *subreq = NULL, *from, *to, *tmp;
|
||||
unsigned long long start, len;
|
||||
size_t part;
|
||||
bool boundary = false;
|
||||
|
||||
/* Go through the stream and find the next span of contiguous
|
||||
* data that we then rejig (cifs, for example, needs the wsize
|
||||
* renegotiating) and reissue.
|
||||
*/
|
||||
from = list_entry(next, struct netfs_io_subrequest, rreq_link);
|
||||
to = from;
|
||||
start = from->start + from->transferred;
|
||||
len = from->len - from->transferred;
|
||||
|
||||
if (test_bit(NETFS_SREQ_FAILED, &from->flags) ||
|
||||
!test_bit(NETFS_SREQ_NEED_RETRY, &from->flags))
|
||||
return;
|
||||
|
||||
list_for_each_continue(next, &stream->subrequests) {
|
||||
subreq = list_entry(next, struct netfs_io_subrequest, rreq_link);
|
||||
if (subreq->start + subreq->transferred != start + len ||
|
||||
test_bit(NETFS_SREQ_BOUNDARY, &subreq->flags) ||
|
||||
!test_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags))
|
||||
break;
|
||||
to = subreq;
|
||||
len += to->len;
|
||||
}
|
||||
|
||||
/* Work through the sublist. */
|
||||
subreq = from;
|
||||
list_for_each_entry_from(subreq, &stream->subrequests, rreq_link) {
|
||||
if (!len)
|
||||
break;
|
||||
/* Renegotiate max_len (wsize) */
|
||||
trace_netfs_sreq(subreq, netfs_sreq_trace_retry);
|
||||
__clear_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags);
|
||||
__set_bit(NETFS_SREQ_RETRYING, &subreq->flags);
|
||||
stream->prepare_write(subreq);
|
||||
|
||||
part = min(len, subreq->max_len);
|
||||
subreq->len = part;
|
||||
subreq->start = start;
|
||||
subreq->transferred = 0;
|
||||
len -= part;
|
||||
start += part;
|
||||
if (len && subreq == to &&
|
||||
__test_and_clear_bit(NETFS_SREQ_BOUNDARY, &to->flags))
|
||||
boundary = true;
|
||||
|
||||
netfs_get_subrequest(subreq, netfs_sreq_trace_get_resubmit);
|
||||
netfs_reissue_write(stream, subreq);
|
||||
if (subreq == to)
|
||||
break;
|
||||
}
|
||||
|
||||
/* If we managed to use fewer subreqs, we can discard the
|
||||
* excess; if we used the same number, then we're done.
|
||||
*/
|
||||
if (!len) {
|
||||
if (subreq == to)
|
||||
continue;
|
||||
list_for_each_entry_safe_from(subreq, tmp,
|
||||
&stream->subrequests, rreq_link) {
|
||||
trace_netfs_sreq(subreq, netfs_sreq_trace_discard);
|
||||
list_del(&subreq->rreq_link);
|
||||
netfs_put_subrequest(subreq, false, netfs_sreq_trace_put_done);
|
||||
if (subreq == to)
|
||||
break;
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
/* We ran out of subrequests, so we need to allocate some more
|
||||
* and insert them after.
|
||||
*/
|
||||
do {
|
||||
subreq = netfs_alloc_subrequest(wreq);
|
||||
subreq->source = to->source;
|
||||
subreq->start = start;
|
||||
subreq->max_len = len;
|
||||
subreq->max_nr_segs = INT_MAX;
|
||||
subreq->debug_index = atomic_inc_return(&wreq->subreq_counter);
|
||||
subreq->stream_nr = to->stream_nr;
|
||||
__set_bit(NETFS_SREQ_RETRYING, &subreq->flags);
|
||||
|
||||
trace_netfs_sreq_ref(wreq->debug_id, subreq->debug_index,
|
||||
refcount_read(&subreq->ref),
|
||||
netfs_sreq_trace_new);
|
||||
netfs_get_subrequest(subreq, netfs_sreq_trace_get_resubmit);
|
||||
|
||||
list_add(&subreq->rreq_link, &to->rreq_link);
|
||||
to = list_next_entry(to, rreq_link);
|
||||
trace_netfs_sreq(subreq, netfs_sreq_trace_retry);
|
||||
|
||||
switch (stream->source) {
|
||||
case NETFS_UPLOAD_TO_SERVER:
|
||||
netfs_stat(&netfs_n_wh_upload);
|
||||
subreq->max_len = min(len, wreq->wsize);
|
||||
break;
|
||||
case NETFS_WRITE_TO_CACHE:
|
||||
netfs_stat(&netfs_n_wh_write);
|
||||
break;
|
||||
default:
|
||||
WARN_ON_ONCE(1);
|
||||
}
|
||||
|
||||
stream->prepare_write(subreq);
|
||||
|
||||
part = min(len, subreq->max_len);
|
||||
subreq->len = subreq->transferred + part;
|
||||
len -= part;
|
||||
start += part;
|
||||
if (!len && boundary) {
|
||||
__set_bit(NETFS_SREQ_BOUNDARY, &to->flags);
|
||||
boundary = false;
|
||||
}
|
||||
|
||||
netfs_reissue_write(stream, subreq);
|
||||
if (!len)
|
||||
break;
|
||||
|
||||
} while (len);
|
||||
|
||||
} while (!list_is_head(next, &stream->subrequests));
|
||||
}
|
||||
|
||||
/*
|
||||
* Perform retries on the streams that need it. If we're doing content
|
||||
* encryption and the server copy changed due to a third-party write, we may
|
||||
* need to do an RMW cycle and also rewrite the data to the cache.
|
||||
*/
|
||||
static void netfs_retry_writes(struct netfs_io_request *wreq)
|
||||
{
|
||||
struct netfs_io_subrequest *subreq;
|
||||
struct netfs_io_stream *stream;
|
||||
int s;
|
||||
|
||||
/* Wait for all outstanding I/O to quiesce before performing retries as
|
||||
* we may need to renegotiate the I/O sizes.
|
||||
*/
|
||||
for (s = 0; s < NR_IO_STREAMS; s++) {
|
||||
stream = &wreq->io_streams[s];
|
||||
if (!stream->active)
|
||||
continue;
|
||||
|
||||
list_for_each_entry(subreq, &stream->subrequests, rreq_link) {
|
||||
wait_on_bit(&subreq->flags, NETFS_SREQ_IN_PROGRESS,
|
||||
TASK_UNINTERRUPTIBLE);
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: Enc: Fetch changed partial pages
|
||||
// TODO: Enc: Reencrypt content if needed.
|
||||
// TODO: Enc: Wind back transferred point.
|
||||
// TODO: Enc: Mark cache pages for retry.
|
||||
|
||||
for (s = 0; s < NR_IO_STREAMS; s++) {
|
||||
stream = &wreq->io_streams[s];
|
||||
if (stream->need_retry) {
|
||||
stream->need_retry = false;
|
||||
netfs_retry_write_stream(wreq, stream);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Collect and assess the results of various write subrequests. We may need to
|
||||
* retry some of the results - or even do an RMW cycle for content crypto.
|
||||
*
|
||||
* Note that we have a number of parallel, overlapping lists of subrequests,
|
||||
* one to the server and one to the local cache for example, which may not be
|
||||
* the same size or starting position and may not even correspond in boundary
|
||||
* alignment.
|
||||
*/
|
||||
static void netfs_collect_write_results(struct netfs_io_request *wreq)
|
||||
{
|
||||
struct netfs_io_subrequest *front, *remove;
|
||||
struct netfs_io_stream *stream;
|
||||
unsigned long long collected_to;
|
||||
unsigned int notes;
|
||||
int s;
|
||||
|
||||
_enter("%llx-%llx", wreq->start, wreq->start + wreq->len);
|
||||
trace_netfs_collect(wreq);
|
||||
trace_netfs_rreq(wreq, netfs_rreq_trace_collect);
|
||||
|
||||
reassess_streams:
|
||||
smp_rmb();
|
||||
collected_to = ULLONG_MAX;
|
||||
if (wreq->origin == NETFS_WRITEBACK)
|
||||
notes = ALL_EMPTY | BUFFERED | MAYBE_DISCONTIG;
|
||||
else if (wreq->origin == NETFS_WRITETHROUGH)
|
||||
notes = ALL_EMPTY | BUFFERED;
|
||||
else
|
||||
notes = ALL_EMPTY;
|
||||
|
||||
/* Remove completed subrequests from the front of the streams and
|
||||
* advance the completion point on each stream. We stop when we hit
|
||||
* something that's in progress. The issuer thread may be adding stuff
|
||||
* to the tail whilst we're doing this.
|
||||
*
|
||||
* We must not, however, merge in discontiguities that span whole
|
||||
* folios that aren't under writeback. This is made more complicated
|
||||
* by the folios in the gap being of unpredictable sizes - if they even
|
||||
* exist - but we don't want to look them up.
|
||||
*/
|
||||
for (s = 0; s < NR_IO_STREAMS; s++) {
|
||||
loff_t rstart, rend;
|
||||
|
||||
stream = &wreq->io_streams[s];
|
||||
/* Read active flag before list pointers */
|
||||
if (!smp_load_acquire(&stream->active))
|
||||
continue;
|
||||
|
||||
front = stream->front;
|
||||
while (front) {
|
||||
trace_netfs_collect_sreq(wreq, front);
|
||||
//_debug("sreq [%x] %llx %zx/%zx",
|
||||
// front->debug_index, front->start, front->transferred, front->len);
|
||||
|
||||
/* Stall if there may be a discontinuity. */
|
||||
rstart = round_down(front->start, PAGE_SIZE);
|
||||
if (rstart > wreq->contiguity) {
|
||||
if (wreq->contiguity > stream->collected_to) {
|
||||
trace_netfs_collect_gap(wreq, stream,
|
||||
wreq->contiguity, 'D');
|
||||
stream->collected_to = wreq->contiguity;
|
||||
}
|
||||
notes |= REASSESS_DISCONTIG;
|
||||
break;
|
||||
}
|
||||
rend = round_up(front->start + front->len, PAGE_SIZE);
|
||||
if (rend > wreq->contiguity) {
|
||||
trace_netfs_collect_contig(wreq, rend,
|
||||
netfs_contig_trace_collect);
|
||||
wreq->contiguity = rend;
|
||||
if (notes & REASSESS_DISCONTIG)
|
||||
notes |= NEED_REASSESS;
|
||||
}
|
||||
notes &= ~MAYBE_DISCONTIG;
|
||||
|
||||
/* Stall if the front is still undergoing I/O. */
|
||||
if (test_bit(NETFS_SREQ_IN_PROGRESS, &front->flags)) {
|
||||
notes |= HIT_PENDING;
|
||||
break;
|
||||
}
|
||||
smp_rmb(); /* Read counters after I-P flag. */
|
||||
|
||||
if (stream->failed) {
|
||||
stream->collected_to = front->start + front->len;
|
||||
notes |= MADE_PROGRESS | SAW_FAILURE;
|
||||
goto cancel;
|
||||
}
|
||||
if (front->start + front->transferred > stream->collected_to) {
|
||||
stream->collected_to = front->start + front->transferred;
|
||||
stream->transferred = stream->collected_to - wreq->start;
|
||||
notes |= MADE_PROGRESS;
|
||||
}
|
||||
if (test_bit(NETFS_SREQ_FAILED, &front->flags)) {
|
||||
stream->failed = true;
|
||||
stream->error = front->error;
|
||||
if (stream->source == NETFS_UPLOAD_TO_SERVER)
|
||||
mapping_set_error(wreq->mapping, front->error);
|
||||
notes |= NEED_REASSESS | SAW_FAILURE;
|
||||
break;
|
||||
}
|
||||
if (front->transferred < front->len) {
|
||||
stream->need_retry = true;
|
||||
notes |= NEED_RETRY | MADE_PROGRESS;
|
||||
break;
|
||||
}
|
||||
|
||||
cancel:
|
||||
/* Remove if completely consumed. */
|
||||
spin_lock(&wreq->lock);
|
||||
|
||||
remove = front;
|
||||
list_del_init(&front->rreq_link);
|
||||
front = list_first_entry_or_null(&stream->subrequests,
|
||||
struct netfs_io_subrequest, rreq_link);
|
||||
stream->front = front;
|
||||
if (!front) {
|
||||
unsigned long long jump_to = atomic64_read(&wreq->issued_to);
|
||||
|
||||
if (stream->collected_to < jump_to) {
|
||||
trace_netfs_collect_gap(wreq, stream, jump_to, 'A');
|
||||
stream->collected_to = jump_to;
|
||||
}
|
||||
}
|
||||
|
||||
spin_unlock(&wreq->lock);
|
||||
netfs_put_subrequest(remove, false,
|
||||
notes & SAW_FAILURE ?
|
||||
netfs_sreq_trace_put_cancel :
|
||||
netfs_sreq_trace_put_done);
|
||||
}
|
||||
|
||||
if (front)
|
||||
notes &= ~ALL_EMPTY;
|
||||
else
|
||||
notes |= SOME_EMPTY;
|
||||
|
||||
if (stream->collected_to < collected_to)
|
||||
collected_to = stream->collected_to;
|
||||
}
|
||||
|
||||
if (collected_to != ULLONG_MAX && collected_to > wreq->collected_to)
|
||||
wreq->collected_to = collected_to;
|
||||
|
||||
/* If we have an empty stream, we need to jump it forward over any gap
|
||||
* otherwise the collection point will never advance.
|
||||
*
|
||||
* Note that the issuer always adds to the stream with the lowest
|
||||
* so-far submitted start, so if we see two consecutive subreqs in one
|
||||
* stream with nothing between then in another stream, then the second
|
||||
* stream has a gap that can be jumped.
|
||||
*/
|
||||
if (notes & SOME_EMPTY) {
|
||||
unsigned long long jump_to = wreq->start + wreq->len;
|
||||
|
||||
for (s = 0; s < NR_IO_STREAMS; s++) {
|
||||
stream = &wreq->io_streams[s];
|
||||
if (stream->active &&
|
||||
stream->front &&
|
||||
stream->front->start < jump_to)
|
||||
jump_to = stream->front->start;
|
||||
}
|
||||
|
||||
for (s = 0; s < NR_IO_STREAMS; s++) {
|
||||
stream = &wreq->io_streams[s];
|
||||
if (stream->active &&
|
||||
!stream->front &&
|
||||
stream->collected_to < jump_to) {
|
||||
trace_netfs_collect_gap(wreq, stream, jump_to, 'B');
|
||||
stream->collected_to = jump_to;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (s = 0; s < NR_IO_STREAMS; s++) {
|
||||
stream = &wreq->io_streams[s];
|
||||
if (stream->active)
|
||||
trace_netfs_collect_stream(wreq, stream);
|
||||
}
|
||||
|
||||
trace_netfs_collect_state(wreq, wreq->collected_to, notes);
|
||||
|
||||
/* Unlock any folios that we have now finished with. */
|
||||
if (notes & BUFFERED) {
|
||||
unsigned long long clean_to = min(wreq->collected_to, wreq->contiguity);
|
||||
|
||||
if (wreq->cleaned_to < clean_to)
|
||||
netfs_writeback_unlock_folios(wreq, clean_to, ¬es);
|
||||
} else {
|
||||
wreq->cleaned_to = wreq->collected_to;
|
||||
}
|
||||
|
||||
// TODO: Discard encryption buffers
|
||||
|
||||
/* If all streams are discontiguous with the last folio we cleared, we
|
||||
* may need to skip a set of folios.
|
||||
*/
|
||||
if ((notes & (MAYBE_DISCONTIG | ALL_EMPTY)) == MAYBE_DISCONTIG) {
|
||||
unsigned long long jump_to = ULLONG_MAX;
|
||||
|
||||
for (s = 0; s < NR_IO_STREAMS; s++) {
|
||||
stream = &wreq->io_streams[s];
|
||||
if (stream->active && stream->front &&
|
||||
stream->front->start < jump_to)
|
||||
jump_to = stream->front->start;
|
||||
}
|
||||
|
||||
trace_netfs_collect_contig(wreq, jump_to, netfs_contig_trace_jump);
|
||||
wreq->contiguity = jump_to;
|
||||
wreq->cleaned_to = jump_to;
|
||||
wreq->collected_to = jump_to;
|
||||
for (s = 0; s < NR_IO_STREAMS; s++) {
|
||||
stream = &wreq->io_streams[s];
|
||||
if (stream->collected_to < jump_to)
|
||||
stream->collected_to = jump_to;
|
||||
}
|
||||
//cond_resched();
|
||||
notes |= MADE_PROGRESS;
|
||||
goto reassess_streams;
|
||||
}
|
||||
|
||||
if (notes & NEED_RETRY)
|
||||
goto need_retry;
|
||||
if ((notes & MADE_PROGRESS) && test_bit(NETFS_RREQ_PAUSE, &wreq->flags)) {
|
||||
trace_netfs_rreq(wreq, netfs_rreq_trace_unpause);
|
||||
clear_bit_unlock(NETFS_RREQ_PAUSE, &wreq->flags);
|
||||
wake_up_bit(&wreq->flags, NETFS_RREQ_PAUSE);
|
||||
}
|
||||
|
||||
if (notes & NEED_REASSESS) {
|
||||
//cond_resched();
|
||||
goto reassess_streams;
|
||||
}
|
||||
if (notes & MADE_PROGRESS) {
|
||||
//cond_resched();
|
||||
goto reassess_streams;
|
||||
}
|
||||
|
||||
out:
|
||||
netfs_put_group_many(wreq->group, wreq->nr_group_rel);
|
||||
wreq->nr_group_rel = 0;
|
||||
_leave(" = %x", notes);
|
||||
return;
|
||||
|
||||
need_retry:
|
||||
/* Okay... We're going to have to retry one or both streams. Note
|
||||
* that any partially completed op will have had any wholly transferred
|
||||
* folios removed from it.
|
||||
*/
|
||||
_debug("retry");
|
||||
netfs_retry_writes(wreq);
|
||||
goto out;
|
||||
}
|
||||
|
||||
/*
|
||||
* Perform the collection of subrequests, folios and encryption buffers.
|
||||
*/
|
||||
void netfs_write_collection_worker(struct work_struct *work)
|
||||
{
|
||||
struct netfs_io_request *wreq = container_of(work, struct netfs_io_request, work);
|
||||
struct netfs_inode *ictx = netfs_inode(wreq->inode);
|
||||
size_t transferred;
|
||||
int s;
|
||||
|
||||
_enter("R=%x", wreq->debug_id);
|
||||
|
||||
netfs_see_request(wreq, netfs_rreq_trace_see_work);
|
||||
if (!test_bit(NETFS_RREQ_IN_PROGRESS, &wreq->flags)) {
|
||||
netfs_put_request(wreq, false, netfs_rreq_trace_put_work);
|
||||
return;
|
||||
}
|
||||
|
||||
netfs_collect_write_results(wreq);
|
||||
|
||||
/* We're done when the app thread has finished posting subreqs and all
|
||||
* the queues in all the streams are empty.
|
||||
*/
|
||||
if (!test_bit(NETFS_RREQ_ALL_QUEUED, &wreq->flags)) {
|
||||
netfs_put_request(wreq, false, netfs_rreq_trace_put_work);
|
||||
return;
|
||||
}
|
||||
smp_rmb(); /* Read ALL_QUEUED before lists. */
|
||||
|
||||
transferred = LONG_MAX;
|
||||
for (s = 0; s < NR_IO_STREAMS; s++) {
|
||||
struct netfs_io_stream *stream = &wreq->io_streams[s];
|
||||
if (!stream->active)
|
||||
continue;
|
||||
if (!list_empty(&stream->subrequests)) {
|
||||
netfs_put_request(wreq, false, netfs_rreq_trace_put_work);
|
||||
return;
|
||||
}
|
||||
if (stream->transferred < transferred)
|
||||
transferred = stream->transferred;
|
||||
}
|
||||
|
||||
/* Okay, declare that all I/O is complete. */
|
||||
wreq->transferred = transferred;
|
||||
trace_netfs_rreq(wreq, netfs_rreq_trace_write_done);
|
||||
|
||||
if (wreq->io_streams[1].active &&
|
||||
wreq->io_streams[1].failed) {
|
||||
/* Cache write failure doesn't prevent writeback completion
|
||||
* unless we're in disconnected mode.
|
||||
*/
|
||||
ictx->ops->invalidate_cache(wreq);
|
||||
}
|
||||
|
||||
if (wreq->cleanup)
|
||||
wreq->cleanup(wreq);
|
||||
|
||||
if (wreq->origin == NETFS_DIO_WRITE &&
|
||||
wreq->mapping->nrpages) {
|
||||
/* mmap may have got underfoot and we may now have folios
|
||||
* locally covering the region we just wrote. Attempt to
|
||||
* discard the folios, but leave in place any modified locally.
|
||||
* ->write_iter() is prevented from interfering by the DIO
|
||||
* counter.
|
||||
*/
|
||||
pgoff_t first = wreq->start >> PAGE_SHIFT;
|
||||
pgoff_t last = (wreq->start + wreq->transferred - 1) >> PAGE_SHIFT;
|
||||
invalidate_inode_pages2_range(wreq->mapping, first, last);
|
||||
}
|
||||
|
||||
if (wreq->origin == NETFS_DIO_WRITE)
|
||||
inode_dio_end(wreq->inode);
|
||||
|
||||
_debug("finished");
|
||||
trace_netfs_rreq(wreq, netfs_rreq_trace_wake_ip);
|
||||
clear_bit_unlock(NETFS_RREQ_IN_PROGRESS, &wreq->flags);
|
||||
wake_up_bit(&wreq->flags, NETFS_RREQ_IN_PROGRESS);
|
||||
|
||||
if (wreq->iocb) {
|
||||
wreq->iocb->ki_pos += wreq->transferred;
|
||||
if (wreq->iocb->ki_complete)
|
||||
wreq->iocb->ki_complete(
|
||||
wreq->iocb, wreq->error ? wreq->error : wreq->transferred);
|
||||
wreq->iocb = VFS_PTR_POISON;
|
||||
}
|
||||
|
||||
netfs_clear_subrequests(wreq, false);
|
||||
netfs_put_request(wreq, false, netfs_rreq_trace_put_work_complete);
|
||||
}
|
||||
|
||||
/*
|
||||
* Wake the collection work item.
|
||||
*/
|
||||
void netfs_wake_write_collector(struct netfs_io_request *wreq, bool was_async)
|
||||
{
|
||||
if (!work_pending(&wreq->work)) {
|
||||
netfs_get_request(wreq, netfs_rreq_trace_get_work);
|
||||
if (!queue_work(system_unbound_wq, &wreq->work))
|
||||
netfs_put_request(wreq, was_async, netfs_rreq_trace_put_work_nq);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* new_netfs_write_subrequest_terminated - Note the termination of a write operation.
|
||||
* @_op: The I/O request that has terminated.
|
||||
* @transferred_or_error: The amount of data transferred or an error code.
|
||||
* @was_async: The termination was asynchronous
|
||||
*
|
||||
* This tells the library that a contributory write I/O operation has
|
||||
* terminated, one way or another, and that it should collect the results.
|
||||
*
|
||||
* The caller indicates in @transferred_or_error the outcome of the operation,
|
||||
* supplying a positive value to indicate the number of bytes transferred or a
|
||||
* negative error code. The library will look after reissuing I/O operations
|
||||
* as appropriate and writing downloaded data to the cache.
|
||||
*
|
||||
* If @was_async is true, the caller might be running in softirq or interrupt
|
||||
* context and we can't sleep.
|
||||
*
|
||||
* When this is called, ownership of the subrequest is transferred back to the
|
||||
* library, along with a ref.
|
||||
*
|
||||
* Note that %_op is a void* so that the function can be passed to
|
||||
* kiocb::term_func without the need for a casting wrapper.
|
||||
*/
|
||||
void new_netfs_write_subrequest_terminated(void *_op, ssize_t transferred_or_error,
|
||||
bool was_async)
|
||||
{
|
||||
struct netfs_io_subrequest *subreq = _op;
|
||||
struct netfs_io_request *wreq = subreq->rreq;
|
||||
struct netfs_io_stream *stream = &wreq->io_streams[subreq->stream_nr];
|
||||
|
||||
_enter("%x[%x] %zd", wreq->debug_id, subreq->debug_index, transferred_or_error);
|
||||
|
||||
switch (subreq->source) {
|
||||
case NETFS_UPLOAD_TO_SERVER:
|
||||
netfs_stat(&netfs_n_wh_upload_done);
|
||||
break;
|
||||
case NETFS_WRITE_TO_CACHE:
|
||||
netfs_stat(&netfs_n_wh_write_done);
|
||||
break;
|
||||
case NETFS_INVALID_WRITE:
|
||||
break;
|
||||
default:
|
||||
BUG();
|
||||
}
|
||||
|
||||
if (IS_ERR_VALUE(transferred_or_error)) {
|
||||
subreq->error = transferred_or_error;
|
||||
if (subreq->error == -EAGAIN)
|
||||
set_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags);
|
||||
else
|
||||
set_bit(NETFS_SREQ_FAILED, &subreq->flags);
|
||||
trace_netfs_failure(wreq, subreq, transferred_or_error, netfs_fail_write);
|
||||
|
||||
switch (subreq->source) {
|
||||
case NETFS_WRITE_TO_CACHE:
|
||||
netfs_stat(&netfs_n_wh_write_failed);
|
||||
break;
|
||||
case NETFS_UPLOAD_TO_SERVER:
|
||||
netfs_stat(&netfs_n_wh_upload_failed);
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
trace_netfs_rreq(wreq, netfs_rreq_trace_set_pause);
|
||||
set_bit(NETFS_RREQ_PAUSE, &wreq->flags);
|
||||
} else {
|
||||
if (WARN(transferred_or_error > subreq->len - subreq->transferred,
|
||||
"Subreq excess write: R=%x[%x] %zd > %zu - %zu",
|
||||
wreq->debug_id, subreq->debug_index,
|
||||
transferred_or_error, subreq->len, subreq->transferred))
|
||||
transferred_or_error = subreq->len - subreq->transferred;
|
||||
|
||||
subreq->error = 0;
|
||||
subreq->transferred += transferred_or_error;
|
||||
|
||||
if (subreq->transferred < subreq->len)
|
||||
set_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags);
|
||||
}
|
||||
|
||||
trace_netfs_sreq(subreq, netfs_sreq_trace_terminated);
|
||||
|
||||
clear_bit_unlock(NETFS_SREQ_IN_PROGRESS, &subreq->flags);
|
||||
wake_up_bit(&subreq->flags, NETFS_SREQ_IN_PROGRESS);
|
||||
|
||||
/* If we are at the head of the queue, wake up the collector,
|
||||
* transferring a ref to it if we were the ones to do so.
|
||||
*/
|
||||
if (list_is_first(&subreq->rreq_link, &stream->subrequests))
|
||||
netfs_wake_write_collector(wreq, was_async);
|
||||
|
||||
netfs_put_subrequest(subreq, was_async, netfs_sreq_trace_put_terminated);
|
||||
}
|
||||
EXPORT_SYMBOL(new_netfs_write_subrequest_terminated);
|
683
fs/netfs/write_issue.c
Normal file
683
fs/netfs/write_issue.c
Normal file
@ -0,0 +1,683 @@
|
||||
// SPDX-License-Identifier: GPL-2.0-only
|
||||
/* Network filesystem high-level (buffered) writeback.
|
||||
*
|
||||
* Copyright (C) 2024 Red Hat, Inc. All Rights Reserved.
|
||||
* Written by David Howells (dhowells@redhat.com)
|
||||
*
|
||||
*
|
||||
* To support network filesystems with local caching, we manage a situation
|
||||
* that can be envisioned like the following:
|
||||
*
|
||||
* +---+---+-----+-----+---+----------+
|
||||
* Folios: | | | | | | |
|
||||
* +---+---+-----+-----+---+----------+
|
||||
*
|
||||
* +------+------+ +----+----+
|
||||
* Upload: | | |.....| | |
|
||||
* (Stream 0) +------+------+ +----+----+
|
||||
*
|
||||
* +------+------+------+------+------+
|
||||
* Cache: | | | | | |
|
||||
* (Stream 1) +------+------+------+------+------+
|
||||
*
|
||||
* Where we have a sequence of folios of varying sizes that we need to overlay
|
||||
* with multiple parallel streams of I/O requests, where the I/O requests in a
|
||||
* stream may also be of various sizes (in cifs, for example, the sizes are
|
||||
* negotiated with the server; in something like ceph, they may represent the
|
||||
* sizes of storage objects).
|
||||
*
|
||||
* The sequence in each stream may contain gaps and noncontiguous subrequests
|
||||
* may be glued together into single vectored write RPCs.
|
||||
*/
|
||||
|
||||
#include <linux/export.h>
|
||||
#include <linux/fs.h>
|
||||
#include <linux/mm.h>
|
||||
#include <linux/pagemap.h>
|
||||
#include "internal.h"
|
||||
|
||||
/*
|
||||
* Kill all dirty folios in the event of an unrecoverable error, starting with
|
||||
* a locked folio we've already obtained from writeback_iter().
|
||||
*/
|
||||
static void netfs_kill_dirty_pages(struct address_space *mapping,
|
||||
struct writeback_control *wbc,
|
||||
struct folio *folio)
|
||||
{
|
||||
int error = 0;
|
||||
|
||||
do {
|
||||
enum netfs_folio_trace why = netfs_folio_trace_kill;
|
||||
struct netfs_group *group = NULL;
|
||||
struct netfs_folio *finfo = NULL;
|
||||
void *priv;
|
||||
|
||||
priv = folio_detach_private(folio);
|
||||
if (priv) {
|
||||
finfo = __netfs_folio_info(priv);
|
||||
if (finfo) {
|
||||
/* Kill folio from streaming write. */
|
||||
group = finfo->netfs_group;
|
||||
why = netfs_folio_trace_kill_s;
|
||||
} else {
|
||||
group = priv;
|
||||
if (group == NETFS_FOLIO_COPY_TO_CACHE) {
|
||||
/* Kill copy-to-cache folio */
|
||||
why = netfs_folio_trace_kill_cc;
|
||||
group = NULL;
|
||||
} else {
|
||||
/* Kill folio with group */
|
||||
why = netfs_folio_trace_kill_g;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
trace_netfs_folio(folio, why);
|
||||
|
||||
folio_start_writeback(folio);
|
||||
folio_unlock(folio);
|
||||
folio_end_writeback(folio);
|
||||
|
||||
netfs_put_group(group);
|
||||
kfree(finfo);
|
||||
|
||||
} while ((folio = writeback_iter(mapping, wbc, folio, &error)));
|
||||
}
|
||||
|
||||
/*
|
||||
* Create a write request and set it up appropriately for the origin type.
|
||||
*/
|
||||
struct netfs_io_request *netfs_create_write_req(struct address_space *mapping,
|
||||
struct file *file,
|
||||
loff_t start,
|
||||
enum netfs_io_origin origin)
|
||||
{
|
||||
struct netfs_io_request *wreq;
|
||||
struct netfs_inode *ictx;
|
||||
|
||||
wreq = netfs_alloc_request(mapping, file, start, 0, origin);
|
||||
if (IS_ERR(wreq))
|
||||
return wreq;
|
||||
|
||||
_enter("R=%x", wreq->debug_id);
|
||||
|
||||
ictx = netfs_inode(wreq->inode);
|
||||
if (test_bit(NETFS_RREQ_WRITE_TO_CACHE, &wreq->flags))
|
||||
fscache_begin_write_operation(&wreq->cache_resources, netfs_i_cookie(ictx));
|
||||
|
||||
wreq->contiguity = wreq->start;
|
||||
wreq->cleaned_to = wreq->start;
|
||||
INIT_WORK(&wreq->work, netfs_write_collection_worker);
|
||||
|
||||
wreq->io_streams[0].stream_nr = 0;
|
||||
wreq->io_streams[0].source = NETFS_UPLOAD_TO_SERVER;
|
||||
wreq->io_streams[0].prepare_write = ictx->ops->prepare_write;
|
||||
wreq->io_streams[0].issue_write = ictx->ops->issue_write;
|
||||
wreq->io_streams[0].collected_to = start;
|
||||
wreq->io_streams[0].transferred = LONG_MAX;
|
||||
|
||||
wreq->io_streams[1].stream_nr = 1;
|
||||
wreq->io_streams[1].source = NETFS_WRITE_TO_CACHE;
|
||||
wreq->io_streams[1].collected_to = start;
|
||||
wreq->io_streams[1].transferred = LONG_MAX;
|
||||
if (fscache_resources_valid(&wreq->cache_resources)) {
|
||||
wreq->io_streams[1].avail = true;
|
||||
wreq->io_streams[1].prepare_write = wreq->cache_resources.ops->prepare_write_subreq;
|
||||
wreq->io_streams[1].issue_write = wreq->cache_resources.ops->issue_write;
|
||||
}
|
||||
|
||||
return wreq;
|
||||
}
|
||||
|
||||
/**
|
||||
* netfs_prepare_write_failed - Note write preparation failed
|
||||
* @subreq: The subrequest to mark
|
||||
*
|
||||
* Mark a subrequest to note that preparation for write failed.
|
||||
*/
|
||||
void netfs_prepare_write_failed(struct netfs_io_subrequest *subreq)
|
||||
{
|
||||
__set_bit(NETFS_SREQ_FAILED, &subreq->flags);
|
||||
trace_netfs_sreq(subreq, netfs_sreq_trace_prep_failed);
|
||||
}
|
||||
EXPORT_SYMBOL(netfs_prepare_write_failed);
|
||||
|
||||
/*
|
||||
* Prepare a write subrequest. We need to allocate a new subrequest
|
||||
* if we don't have one.
|
||||
*/
|
||||
static void netfs_prepare_write(struct netfs_io_request *wreq,
|
||||
struct netfs_io_stream *stream,
|
||||
loff_t start)
|
||||
{
|
||||
struct netfs_io_subrequest *subreq;
|
||||
|
||||
subreq = netfs_alloc_subrequest(wreq);
|
||||
subreq->source = stream->source;
|
||||
subreq->start = start;
|
||||
subreq->max_len = ULONG_MAX;
|
||||
subreq->max_nr_segs = INT_MAX;
|
||||
subreq->stream_nr = stream->stream_nr;
|
||||
|
||||
_enter("R=%x[%x]", wreq->debug_id, subreq->debug_index);
|
||||
|
||||
trace_netfs_sreq_ref(wreq->debug_id, subreq->debug_index,
|
||||
refcount_read(&subreq->ref),
|
||||
netfs_sreq_trace_new);
|
||||
|
||||
trace_netfs_sreq(subreq, netfs_sreq_trace_prepare);
|
||||
|
||||
switch (stream->source) {
|
||||
case NETFS_UPLOAD_TO_SERVER:
|
||||
netfs_stat(&netfs_n_wh_upload);
|
||||
subreq->max_len = wreq->wsize;
|
||||
break;
|
||||
case NETFS_WRITE_TO_CACHE:
|
||||
netfs_stat(&netfs_n_wh_write);
|
||||
break;
|
||||
default:
|
||||
WARN_ON_ONCE(1);
|
||||
break;
|
||||
}
|
||||
|
||||
if (stream->prepare_write)
|
||||
stream->prepare_write(subreq);
|
||||
|
||||
__set_bit(NETFS_SREQ_IN_PROGRESS, &subreq->flags);
|
||||
|
||||
/* We add to the end of the list whilst the collector may be walking
|
||||
* the list. The collector only goes nextwards and uses the lock to
|
||||
* remove entries off of the front.
|
||||
*/
|
||||
spin_lock(&wreq->lock);
|
||||
list_add_tail(&subreq->rreq_link, &stream->subrequests);
|
||||
if (list_is_first(&subreq->rreq_link, &stream->subrequests)) {
|
||||
stream->front = subreq;
|
||||
if (!stream->active) {
|
||||
stream->collected_to = stream->front->start;
|
||||
/* Write list pointers before active flag */
|
||||
smp_store_release(&stream->active, true);
|
||||
}
|
||||
}
|
||||
|
||||
spin_unlock(&wreq->lock);
|
||||
|
||||
stream->construct = subreq;
|
||||
}
|
||||
|
||||
/*
|
||||
* Set the I/O iterator for the filesystem/cache to use and dispatch the I/O
|
||||
* operation. The operation may be asynchronous and should call
|
||||
* netfs_write_subrequest_terminated() when complete.
|
||||
*/
|
||||
static void netfs_do_issue_write(struct netfs_io_stream *stream,
|
||||
struct netfs_io_subrequest *subreq)
|
||||
{
|
||||
struct netfs_io_request *wreq = subreq->rreq;
|
||||
|
||||
_enter("R=%x[%x],%zx", wreq->debug_id, subreq->debug_index, subreq->len);
|
||||
|
||||
if (test_bit(NETFS_SREQ_FAILED, &subreq->flags))
|
||||
return netfs_write_subrequest_terminated(subreq, subreq->error, false);
|
||||
|
||||
// TODO: Use encrypted buffer
|
||||
if (test_bit(NETFS_RREQ_USE_IO_ITER, &wreq->flags)) {
|
||||
subreq->io_iter = wreq->io_iter;
|
||||
iov_iter_advance(&subreq->io_iter,
|
||||
subreq->start + subreq->transferred - wreq->start);
|
||||
iov_iter_truncate(&subreq->io_iter,
|
||||
subreq->len - subreq->transferred);
|
||||
} else {
|
||||
iov_iter_xarray(&subreq->io_iter, ITER_SOURCE, &wreq->mapping->i_pages,
|
||||
subreq->start + subreq->transferred,
|
||||
subreq->len - subreq->transferred);
|
||||
}
|
||||
|
||||
trace_netfs_sreq(subreq, netfs_sreq_trace_submit);
|
||||
stream->issue_write(subreq);
|
||||
}
|
||||
|
||||
void netfs_reissue_write(struct netfs_io_stream *stream,
|
||||
struct netfs_io_subrequest *subreq)
|
||||
{
|
||||
__set_bit(NETFS_SREQ_IN_PROGRESS, &subreq->flags);
|
||||
netfs_do_issue_write(stream, subreq);
|
||||
}
|
||||
|
||||
static void netfs_issue_write(struct netfs_io_request *wreq,
|
||||
struct netfs_io_stream *stream)
|
||||
{
|
||||
struct netfs_io_subrequest *subreq = stream->construct;
|
||||
|
||||
if (!subreq)
|
||||
return;
|
||||
stream->construct = NULL;
|
||||
|
||||
if (subreq->start + subreq->len > wreq->start + wreq->submitted)
|
||||
wreq->len = wreq->submitted = subreq->start + subreq->len - wreq->start;
|
||||
netfs_do_issue_write(stream, subreq);
|
||||
}
|
||||
|
||||
/*
|
||||
* Add data to the write subrequest, dispatching each as we fill it up or if it
|
||||
* is discontiguous with the previous. We only fill one part at a time so that
|
||||
* we can avoid overrunning the credits obtained (cifs) and try to parallelise
|
||||
* content-crypto preparation with network writes.
|
||||
*/
|
||||
int netfs_advance_write(struct netfs_io_request *wreq,
|
||||
struct netfs_io_stream *stream,
|
||||
loff_t start, size_t len, bool to_eof)
|
||||
{
|
||||
struct netfs_io_subrequest *subreq = stream->construct;
|
||||
size_t part;
|
||||
|
||||
if (!stream->avail) {
|
||||
_leave("no write");
|
||||
return len;
|
||||
}
|
||||
|
||||
_enter("R=%x[%x]", wreq->debug_id, subreq ? subreq->debug_index : 0);
|
||||
|
||||
if (subreq && start != subreq->start + subreq->len) {
|
||||
netfs_issue_write(wreq, stream);
|
||||
subreq = NULL;
|
||||
}
|
||||
|
||||
if (!stream->construct)
|
||||
netfs_prepare_write(wreq, stream, start);
|
||||
subreq = stream->construct;
|
||||
|
||||
part = min(subreq->max_len - subreq->len, len);
|
||||
_debug("part %zx/%zx %zx/%zx", subreq->len, subreq->max_len, part, len);
|
||||
subreq->len += part;
|
||||
subreq->nr_segs++;
|
||||
|
||||
if (subreq->len >= subreq->max_len ||
|
||||
subreq->nr_segs >= subreq->max_nr_segs ||
|
||||
to_eof) {
|
||||
netfs_issue_write(wreq, stream);
|
||||
subreq = NULL;
|
||||
}
|
||||
|
||||
return part;
|
||||
}
|
||||
|
||||
/*
|
||||
* Write some of a pending folio data back to the server.
|
||||
*/
|
||||
static int netfs_write_folio(struct netfs_io_request *wreq,
|
||||
struct writeback_control *wbc,
|
||||
struct folio *folio)
|
||||
{
|
||||
struct netfs_io_stream *upload = &wreq->io_streams[0];
|
||||
struct netfs_io_stream *cache = &wreq->io_streams[1];
|
||||
struct netfs_io_stream *stream;
|
||||
struct netfs_group *fgroup; /* TODO: Use this with ceph */
|
||||
struct netfs_folio *finfo;
|
||||
size_t fsize = folio_size(folio), flen = fsize, foff = 0;
|
||||
loff_t fpos = folio_pos(folio), i_size;
|
||||
bool to_eof = false, streamw = false;
|
||||
bool debug = false;
|
||||
|
||||
_enter("");
|
||||
|
||||
/* netfs_perform_write() may shift i_size around the page or from out
|
||||
* of the page to beyond it, but cannot move i_size into or through the
|
||||
* page since we have it locked.
|
||||
*/
|
||||
i_size = i_size_read(wreq->inode);
|
||||
|
||||
if (fpos >= i_size) {
|
||||
/* mmap beyond eof. */
|
||||
_debug("beyond eof");
|
||||
folio_start_writeback(folio);
|
||||
folio_unlock(folio);
|
||||
wreq->nr_group_rel += netfs_folio_written_back(folio);
|
||||
netfs_put_group_many(wreq->group, wreq->nr_group_rel);
|
||||
wreq->nr_group_rel = 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (fpos + fsize > wreq->i_size)
|
||||
wreq->i_size = i_size;
|
||||
|
||||
fgroup = netfs_folio_group(folio);
|
||||
finfo = netfs_folio_info(folio);
|
||||
if (finfo) {
|
||||
foff = finfo->dirty_offset;
|
||||
flen = foff + finfo->dirty_len;
|
||||
streamw = true;
|
||||
}
|
||||
|
||||
if (wreq->origin == NETFS_WRITETHROUGH) {
|
||||
to_eof = false;
|
||||
if (flen > i_size - fpos)
|
||||
flen = i_size - fpos;
|
||||
} else if (flen > i_size - fpos) {
|
||||
flen = i_size - fpos;
|
||||
if (!streamw)
|
||||
folio_zero_segment(folio, flen, fsize);
|
||||
to_eof = true;
|
||||
} else if (flen == i_size - fpos) {
|
||||
to_eof = true;
|
||||
}
|
||||
flen -= foff;
|
||||
|
||||
_debug("folio %zx %zx %zx", foff, flen, fsize);
|
||||
|
||||
/* Deal with discontinuities in the stream of dirty pages. These can
|
||||
* arise from a number of sources:
|
||||
*
|
||||
* (1) Intervening non-dirty pages from random-access writes, multiple
|
||||
* flushers writing back different parts simultaneously and manual
|
||||
* syncing.
|
||||
*
|
||||
* (2) Partially-written pages from write-streaming.
|
||||
*
|
||||
* (3) Pages that belong to a different write-back group (eg. Ceph
|
||||
* snapshots).
|
||||
*
|
||||
* (4) Actually-clean pages that were marked for write to the cache
|
||||
* when they were read. Note that these appear as a special
|
||||
* write-back group.
|
||||
*/
|
||||
if (fgroup == NETFS_FOLIO_COPY_TO_CACHE) {
|
||||
netfs_issue_write(wreq, upload);
|
||||
} else if (fgroup != wreq->group) {
|
||||
/* We can't write this page to the server yet. */
|
||||
kdebug("wrong group");
|
||||
folio_redirty_for_writepage(wbc, folio);
|
||||
folio_unlock(folio);
|
||||
netfs_issue_write(wreq, upload);
|
||||
netfs_issue_write(wreq, cache);
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (foff > 0)
|
||||
netfs_issue_write(wreq, upload);
|
||||
if (streamw)
|
||||
netfs_issue_write(wreq, cache);
|
||||
|
||||
/* Flip the page to the writeback state and unlock. If we're called
|
||||
* from write-through, then the page has already been put into the wb
|
||||
* state.
|
||||
*/
|
||||
if (wreq->origin == NETFS_WRITEBACK)
|
||||
folio_start_writeback(folio);
|
||||
folio_unlock(folio);
|
||||
|
||||
if (fgroup == NETFS_FOLIO_COPY_TO_CACHE) {
|
||||
if (!fscache_resources_valid(&wreq->cache_resources)) {
|
||||
trace_netfs_folio(folio, netfs_folio_trace_cancel_copy);
|
||||
netfs_issue_write(wreq, upload);
|
||||
netfs_folio_written_back(folio);
|
||||
return 0;
|
||||
}
|
||||
trace_netfs_folio(folio, netfs_folio_trace_store_copy);
|
||||
} else if (!upload->construct) {
|
||||
trace_netfs_folio(folio, netfs_folio_trace_store);
|
||||
} else {
|
||||
trace_netfs_folio(folio, netfs_folio_trace_store_plus);
|
||||
}
|
||||
|
||||
/* Move the submission point forward to allow for write-streaming data
|
||||
* not starting at the front of the page. We don't do write-streaming
|
||||
* with the cache as the cache requires DIO alignment.
|
||||
*
|
||||
* Also skip uploading for data that's been read and just needs copying
|
||||
* to the cache.
|
||||
*/
|
||||
for (int s = 0; s < NR_IO_STREAMS; s++) {
|
||||
stream = &wreq->io_streams[s];
|
||||
stream->submit_max_len = fsize;
|
||||
stream->submit_off = foff;
|
||||
stream->submit_len = flen;
|
||||
if ((stream->source == NETFS_WRITE_TO_CACHE && streamw) ||
|
||||
(stream->source == NETFS_UPLOAD_TO_SERVER &&
|
||||
fgroup == NETFS_FOLIO_COPY_TO_CACHE)) {
|
||||
stream->submit_off = UINT_MAX;
|
||||
stream->submit_len = 0;
|
||||
stream->submit_max_len = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* Attach the folio to one or more subrequests. For a big folio, we
|
||||
* could end up with thousands of subrequests if the wsize is small -
|
||||
* but we might need to wait during the creation of subrequests for
|
||||
* network resources (eg. SMB credits).
|
||||
*/
|
||||
for (;;) {
|
||||
ssize_t part;
|
||||
size_t lowest_off = ULONG_MAX;
|
||||
int choose_s = -1;
|
||||
|
||||
/* Always add to the lowest-submitted stream first. */
|
||||
for (int s = 0; s < NR_IO_STREAMS; s++) {
|
||||
stream = &wreq->io_streams[s];
|
||||
if (stream->submit_len > 0 &&
|
||||
stream->submit_off < lowest_off) {
|
||||
lowest_off = stream->submit_off;
|
||||
choose_s = s;
|
||||
}
|
||||
}
|
||||
|
||||
if (choose_s < 0)
|
||||
break;
|
||||
stream = &wreq->io_streams[choose_s];
|
||||
|
||||
part = netfs_advance_write(wreq, stream, fpos + stream->submit_off,
|
||||
stream->submit_len, to_eof);
|
||||
atomic64_set(&wreq->issued_to, fpos + stream->submit_off);
|
||||
stream->submit_off += part;
|
||||
stream->submit_max_len -= part;
|
||||
if (part > stream->submit_len)
|
||||
stream->submit_len = 0;
|
||||
else
|
||||
stream->submit_len -= part;
|
||||
if (part > 0)
|
||||
debug = true;
|
||||
}
|
||||
|
||||
atomic64_set(&wreq->issued_to, fpos + fsize);
|
||||
|
||||
if (!debug)
|
||||
kdebug("R=%x: No submit", wreq->debug_id);
|
||||
|
||||
if (flen < fsize)
|
||||
for (int s = 0; s < NR_IO_STREAMS; s++)
|
||||
netfs_issue_write(wreq, &wreq->io_streams[s]);
|
||||
|
||||
_leave(" = 0");
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Write some of the pending data back to the server
|
||||
*/
|
||||
int new_netfs_writepages(struct address_space *mapping,
|
||||
struct writeback_control *wbc)
|
||||
{
|
||||
struct netfs_inode *ictx = netfs_inode(mapping->host);
|
||||
struct netfs_io_request *wreq = NULL;
|
||||
struct folio *folio;
|
||||
int error = 0;
|
||||
|
||||
if (wbc->sync_mode == WB_SYNC_ALL)
|
||||
mutex_lock(&ictx->wb_lock);
|
||||
else if (!mutex_trylock(&ictx->wb_lock))
|
||||
return 0;
|
||||
|
||||
/* Need the first folio to be able to set up the op. */
|
||||
folio = writeback_iter(mapping, wbc, NULL, &error);
|
||||
if (!folio)
|
||||
goto out;
|
||||
|
||||
wreq = netfs_create_write_req(mapping, NULL, folio_pos(folio), NETFS_WRITEBACK);
|
||||
if (IS_ERR(wreq)) {
|
||||
error = PTR_ERR(wreq);
|
||||
goto couldnt_start;
|
||||
}
|
||||
|
||||
trace_netfs_write(wreq, netfs_write_trace_writeback);
|
||||
|
||||
do {
|
||||
_debug("wbiter %lx %llx", folio->index, wreq->start + wreq->submitted);
|
||||
|
||||
/* It appears we don't have to handle cyclic writeback wrapping. */
|
||||
WARN_ON_ONCE(wreq && folio_pos(folio) < wreq->start + wreq->submitted);
|
||||
|
||||
if (netfs_folio_group(folio) != NETFS_FOLIO_COPY_TO_CACHE &&
|
||||
unlikely(!test_bit(NETFS_RREQ_UPLOAD_TO_SERVER, &wreq->flags))) {
|
||||
set_bit(NETFS_RREQ_UPLOAD_TO_SERVER, &wreq->flags);
|
||||
wreq->netfs_ops->begin_writeback(wreq);
|
||||
}
|
||||
|
||||
error = netfs_write_folio(wreq, wbc, folio);
|
||||
if (error < 0)
|
||||
break;
|
||||
} while ((folio = writeback_iter(mapping, wbc, folio, &error)));
|
||||
|
||||
for (int s = 0; s < NR_IO_STREAMS; s++)
|
||||
netfs_issue_write(wreq, &wreq->io_streams[s]);
|
||||
smp_wmb(); /* Write lists before ALL_QUEUED. */
|
||||
set_bit(NETFS_RREQ_ALL_QUEUED, &wreq->flags);
|
||||
|
||||
mutex_unlock(&ictx->wb_lock);
|
||||
|
||||
netfs_put_request(wreq, false, netfs_rreq_trace_put_return);
|
||||
_leave(" = %d", error);
|
||||
return error;
|
||||
|
||||
couldnt_start:
|
||||
netfs_kill_dirty_pages(mapping, wbc, folio);
|
||||
out:
|
||||
mutex_unlock(&ictx->wb_lock);
|
||||
_leave(" = %d", error);
|
||||
return error;
|
||||
}
|
||||
EXPORT_SYMBOL(new_netfs_writepages);
|
||||
|
||||
/*
|
||||
* Begin a write operation for writing through the pagecache.
|
||||
*/
|
||||
struct netfs_io_request *new_netfs_begin_writethrough(struct kiocb *iocb, size_t len)
|
||||
{
|
||||
struct netfs_io_request *wreq = NULL;
|
||||
struct netfs_inode *ictx = netfs_inode(file_inode(iocb->ki_filp));
|
||||
|
||||
mutex_lock(&ictx->wb_lock);
|
||||
|
||||
wreq = netfs_create_write_req(iocb->ki_filp->f_mapping, iocb->ki_filp,
|
||||
iocb->ki_pos, NETFS_WRITETHROUGH);
|
||||
if (IS_ERR(wreq)) {
|
||||
mutex_unlock(&ictx->wb_lock);
|
||||
return wreq;
|
||||
}
|
||||
|
||||
wreq->io_streams[0].avail = true;
|
||||
trace_netfs_write(wreq, netfs_write_trace_writethrough);
|
||||
return wreq;
|
||||
}
|
||||
|
||||
/*
|
||||
* Advance the state of the write operation used when writing through the
|
||||
* pagecache. Data has been copied into the pagecache that we need to append
|
||||
* to the request. If we've added more than wsize then we need to create a new
|
||||
* subrequest.
|
||||
*/
|
||||
int new_netfs_advance_writethrough(struct netfs_io_request *wreq, struct writeback_control *wbc,
|
||||
struct folio *folio, size_t copied, bool to_page_end,
|
||||
struct folio **writethrough_cache)
|
||||
{
|
||||
_enter("R=%x ic=%zu ws=%u cp=%zu tp=%u",
|
||||
wreq->debug_id, wreq->iter.count, wreq->wsize, copied, to_page_end);
|
||||
|
||||
if (!*writethrough_cache) {
|
||||
if (folio_test_dirty(folio))
|
||||
/* Sigh. mmap. */
|
||||
folio_clear_dirty_for_io(folio);
|
||||
|
||||
/* We can make multiple writes to the folio... */
|
||||
folio_start_writeback(folio);
|
||||
if (wreq->len == 0)
|
||||
trace_netfs_folio(folio, netfs_folio_trace_wthru);
|
||||
else
|
||||
trace_netfs_folio(folio, netfs_folio_trace_wthru_plus);
|
||||
*writethrough_cache = folio;
|
||||
}
|
||||
|
||||
wreq->len += copied;
|
||||
if (!to_page_end)
|
||||
return 0;
|
||||
|
||||
*writethrough_cache = NULL;
|
||||
return netfs_write_folio(wreq, wbc, folio);
|
||||
}
|
||||
|
||||
/*
|
||||
* End a write operation used when writing through the pagecache.
|
||||
*/
|
||||
int new_netfs_end_writethrough(struct netfs_io_request *wreq, struct writeback_control *wbc,
|
||||
struct folio *writethrough_cache)
|
||||
{
|
||||
struct netfs_inode *ictx = netfs_inode(wreq->inode);
|
||||
int ret;
|
||||
|
||||
_enter("R=%x", wreq->debug_id);
|
||||
|
||||
if (writethrough_cache)
|
||||
netfs_write_folio(wreq, wbc, writethrough_cache);
|
||||
|
||||
netfs_issue_write(wreq, &wreq->io_streams[0]);
|
||||
netfs_issue_write(wreq, &wreq->io_streams[1]);
|
||||
smp_wmb(); /* Write lists before ALL_QUEUED. */
|
||||
set_bit(NETFS_RREQ_ALL_QUEUED, &wreq->flags);
|
||||
|
||||
mutex_unlock(&ictx->wb_lock);
|
||||
|
||||
ret = wreq->error;
|
||||
netfs_put_request(wreq, false, netfs_rreq_trace_put_return);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Write data to the server without going through the pagecache and without
|
||||
* writing it to the local cache.
|
||||
*/
|
||||
int netfs_unbuffered_write(struct netfs_io_request *wreq, bool may_wait, size_t len)
|
||||
{
|
||||
struct netfs_io_stream *upload = &wreq->io_streams[0];
|
||||
ssize_t part;
|
||||
loff_t start = wreq->start;
|
||||
int error = 0;
|
||||
|
||||
_enter("%zx", len);
|
||||
|
||||
if (wreq->origin == NETFS_DIO_WRITE)
|
||||
inode_dio_begin(wreq->inode);
|
||||
|
||||
while (len) {
|
||||
// TODO: Prepare content encryption
|
||||
|
||||
_debug("unbuffered %zx", len);
|
||||
part = netfs_advance_write(wreq, upload, start, len, false);
|
||||
start += part;
|
||||
len -= part;
|
||||
if (test_bit(NETFS_RREQ_PAUSE, &wreq->flags)) {
|
||||
trace_netfs_rreq(wreq, netfs_rreq_trace_wait_pause);
|
||||
wait_on_bit(&wreq->flags, NETFS_RREQ_PAUSE, TASK_UNINTERRUPTIBLE);
|
||||
}
|
||||
if (test_bit(NETFS_RREQ_FAILED, &wreq->flags))
|
||||
break;
|
||||
}
|
||||
|
||||
netfs_issue_write(wreq, upload);
|
||||
|
||||
smp_wmb(); /* Write lists before ALL_QUEUED. */
|
||||
set_bit(NETFS_RREQ_ALL_QUEUED, &wreq->flags);
|
||||
if (list_empty(&upload->subrequests))
|
||||
netfs_wake_write_collector(wreq, false);
|
||||
|
||||
_leave(" = %d", error);
|
||||
return error;
|
||||
}
|
@ -64,6 +64,7 @@ struct netfs_inode {
|
||||
#if IS_ENABLED(CONFIG_FSCACHE)
|
||||
struct fscache_cookie *cache;
|
||||
#endif
|
||||
struct mutex wb_lock; /* Writeback serialisation */
|
||||
loff_t remote_i_size; /* Size of the remote file */
|
||||
loff_t zero_point; /* Size after which we assume there's no data
|
||||
* on the server */
|
||||
@ -71,7 +72,6 @@ struct netfs_inode {
|
||||
#define NETFS_ICTX_ODIRECT 0 /* The file has DIO in progress */
|
||||
#define NETFS_ICTX_UNBUFFERED 1 /* I/O should not use the pagecache */
|
||||
#define NETFS_ICTX_WRITETHROUGH 2 /* Write-through caching */
|
||||
#define NETFS_ICTX_NO_WRITE_STREAMING 3 /* Don't engage in write-streaming */
|
||||
#define NETFS_ICTX_USE_PGPRIV2 31 /* [DEPRECATED] Use PG_private_2 to mark
|
||||
* write to cache on read */
|
||||
};
|
||||
@ -126,6 +126,33 @@ static inline struct netfs_group *netfs_folio_group(struct folio *folio)
|
||||
return priv;
|
||||
}
|
||||
|
||||
/*
|
||||
* Stream of I/O subrequests going to a particular destination, such as the
|
||||
* server or the local cache. This is mainly intended for writing where we may
|
||||
* have to write to multiple destinations concurrently.
|
||||
*/
|
||||
struct netfs_io_stream {
|
||||
/* Submission tracking */
|
||||
struct netfs_io_subrequest *construct; /* Op being constructed */
|
||||
unsigned int submit_off; /* Folio offset we're submitting from */
|
||||
unsigned int submit_len; /* Amount of data left to submit */
|
||||
unsigned int submit_max_len; /* Amount I/O can be rounded up to */
|
||||
void (*prepare_write)(struct netfs_io_subrequest *subreq);
|
||||
void (*issue_write)(struct netfs_io_subrequest *subreq);
|
||||
/* Collection tracking */
|
||||
struct list_head subrequests; /* Contributory I/O operations */
|
||||
struct netfs_io_subrequest *front; /* Op being collected */
|
||||
unsigned long long collected_to; /* Position we've collected results to */
|
||||
size_t transferred; /* The amount transferred from this stream */
|
||||
enum netfs_io_source source; /* Where to read from/write to */
|
||||
unsigned short error; /* Aggregate error for the stream */
|
||||
unsigned char stream_nr; /* Index of stream in parent table */
|
||||
bool avail; /* T if stream is available */
|
||||
bool active; /* T if stream is active */
|
||||
bool need_retry; /* T if this stream needs retrying */
|
||||
bool failed; /* T if this stream failed */
|
||||
};
|
||||
|
||||
/*
|
||||
* Resources required to do operations on a cache.
|
||||
*/
|
||||
@ -150,13 +177,16 @@ struct netfs_io_subrequest {
|
||||
struct list_head rreq_link; /* Link in rreq->subrequests */
|
||||
struct iov_iter io_iter; /* Iterator for this subrequest */
|
||||
unsigned long long start; /* Where to start the I/O */
|
||||
size_t max_len; /* Maximum size of the I/O */
|
||||
size_t len; /* Size of the I/O */
|
||||
size_t transferred; /* Amount of data transferred */
|
||||
refcount_t ref;
|
||||
short error; /* 0 or error that occurred */
|
||||
unsigned short debug_index; /* Index in list (for debugging output) */
|
||||
unsigned int nr_segs; /* Number of segs in io_iter */
|
||||
unsigned int max_nr_segs; /* 0 or max number of segments in an iterator */
|
||||
enum netfs_io_source source; /* Where to read from/write to */
|
||||
unsigned char stream_nr; /* I/O stream this belongs to */
|
||||
unsigned long flags;
|
||||
#define NETFS_SREQ_COPY_TO_CACHE 0 /* Set if should copy the data to the cache */
|
||||
#define NETFS_SREQ_CLEAR_TAIL 1 /* Set if the rest of the read should be cleared */
|
||||
@ -164,6 +194,11 @@ struct netfs_io_subrequest {
|
||||
#define NETFS_SREQ_SEEK_DATA_READ 3 /* Set if ->read() should SEEK_DATA first */
|
||||
#define NETFS_SREQ_NO_PROGRESS 4 /* Set if we didn't manage to read any data */
|
||||
#define NETFS_SREQ_ONDEMAND 5 /* Set if it's from on-demand read mode */
|
||||
#define NETFS_SREQ_BOUNDARY 6 /* Set if ends on hard boundary (eg. ceph object) */
|
||||
#define NETFS_SREQ_IN_PROGRESS 8 /* Unlocked when the subrequest completes */
|
||||
#define NETFS_SREQ_NEED_RETRY 9 /* Set if the filesystem requests a retry */
|
||||
#define NETFS_SREQ_RETRYING 10 /* Set if we're retrying */
|
||||
#define NETFS_SREQ_FAILED 11 /* Set if the subreq failed unretryably */
|
||||
};
|
||||
|
||||
enum netfs_io_origin {
|
||||
@ -194,6 +229,9 @@ struct netfs_io_request {
|
||||
struct netfs_cache_resources cache_resources;
|
||||
struct list_head proc_link; /* Link in netfs_iorequests */
|
||||
struct list_head subrequests; /* Contributory I/O operations */
|
||||
struct netfs_io_stream io_streams[2]; /* Streams of parallel I/O operations */
|
||||
#define NR_IO_STREAMS 2 //wreq->nr_io_streams
|
||||
struct netfs_group *group; /* Writeback group being written back */
|
||||
struct iov_iter iter; /* Unencrypted-side iterator */
|
||||
struct iov_iter io_iter; /* I/O (Encrypted-side) iterator */
|
||||
void *netfs_priv; /* Private data for the netfs */
|
||||
@ -203,6 +241,8 @@ struct netfs_io_request {
|
||||
unsigned int rsize; /* Maximum read size (0 for none) */
|
||||
unsigned int wsize; /* Maximum write size (0 for none) */
|
||||
atomic_t subreq_counter; /* Next subreq->debug_index */
|
||||
unsigned int nr_group_rel; /* Number of refs to release on ->group */
|
||||
spinlock_t lock; /* Lock for queuing subreqs */
|
||||
atomic_t nr_outstanding; /* Number of ops in progress */
|
||||
atomic_t nr_copy_ops; /* Number of copy-to-cache ops in progress */
|
||||
size_t upper_len; /* Length can be extended to here */
|
||||
@ -214,6 +254,10 @@ struct netfs_io_request {
|
||||
bool direct_bv_unpin; /* T if direct_bv[] must be unpinned */
|
||||
unsigned long long i_size; /* Size of the file */
|
||||
unsigned long long start; /* Start position */
|
||||
atomic64_t issued_to; /* Write issuer folio cursor */
|
||||
unsigned long long contiguity; /* Tracking for gaps in the writeback sequence */
|
||||
unsigned long long collected_to; /* Point we've collected to */
|
||||
unsigned long long cleaned_to; /* Position we've cleaned folios to */
|
||||
pgoff_t no_unlock_folio; /* Don't unlock this folio after read */
|
||||
refcount_t ref;
|
||||
unsigned long flags;
|
||||
@ -227,6 +271,9 @@ struct netfs_io_request {
|
||||
#define NETFS_RREQ_UPLOAD_TO_SERVER 8 /* Need to write to the server */
|
||||
#define NETFS_RREQ_NONBLOCK 9 /* Don't block if possible (O_NONBLOCK) */
|
||||
#define NETFS_RREQ_BLOCKED 10 /* We blocked */
|
||||
#define NETFS_RREQ_PAUSE 11 /* Pause subrequest generation */
|
||||
#define NETFS_RREQ_USE_IO_ITER 12 /* Use ->io_iter rather than ->i_pages */
|
||||
#define NETFS_RREQ_ALL_QUEUED 13 /* All subreqs are now queued */
|
||||
#define NETFS_RREQ_USE_PGPRIV2 31 /* [DEPRECATED] Use PG_private_2 to mark
|
||||
* write to cache on read */
|
||||
const struct netfs_request_ops *netfs_ops;
|
||||
@ -258,6 +305,9 @@ struct netfs_request_ops {
|
||||
/* Write request handling */
|
||||
void (*create_write_requests)(struct netfs_io_request *wreq,
|
||||
loff_t start, size_t len);
|
||||
void (*begin_writeback)(struct netfs_io_request *wreq);
|
||||
void (*prepare_write)(struct netfs_io_subrequest *subreq);
|
||||
void (*issue_write)(struct netfs_io_subrequest *subreq);
|
||||
void (*invalidate_cache)(struct netfs_io_request *wreq);
|
||||
};
|
||||
|
||||
@ -292,6 +342,9 @@ struct netfs_cache_ops {
|
||||
netfs_io_terminated_t term_func,
|
||||
void *term_func_priv);
|
||||
|
||||
/* Write data to the cache from a netfs subrequest. */
|
||||
void (*issue_write)(struct netfs_io_subrequest *subreq);
|
||||
|
||||
/* Expand readahead request */
|
||||
void (*expand_readahead)(struct netfs_cache_resources *cres,
|
||||
unsigned long long *_start,
|
||||
@ -304,6 +357,13 @@ struct netfs_cache_ops {
|
||||
enum netfs_io_source (*prepare_read)(struct netfs_io_subrequest *subreq,
|
||||
unsigned long long i_size);
|
||||
|
||||
/* Prepare a write subrequest, working out if we're allowed to do it
|
||||
* and finding out the maximum amount of data to gather before
|
||||
* attempting to submit. If we're not permitted to do it, the
|
||||
* subrequest should be marked failed.
|
||||
*/
|
||||
void (*prepare_write_subreq)(struct netfs_io_subrequest *subreq);
|
||||
|
||||
/* Prepare a write operation, working out what part of the write we can
|
||||
* actually do.
|
||||
*/
|
||||
@ -349,6 +409,8 @@ int netfs_write_begin(struct netfs_inode *, struct file *,
|
||||
struct folio **, void **fsdata);
|
||||
int netfs_writepages(struct address_space *mapping,
|
||||
struct writeback_control *wbc);
|
||||
int new_netfs_writepages(struct address_space *mapping,
|
||||
struct writeback_control *wbc);
|
||||
bool netfs_dirty_folio(struct address_space *mapping, struct folio *folio);
|
||||
int netfs_unpin_writeback(struct inode *inode, struct writeback_control *wbc);
|
||||
void netfs_clear_inode_writeback(struct inode *inode, const void *aux);
|
||||
@ -372,8 +434,11 @@ size_t netfs_limit_iter(const struct iov_iter *iter, size_t start_offset,
|
||||
struct netfs_io_subrequest *netfs_create_write_request(
|
||||
struct netfs_io_request *wreq, enum netfs_io_source dest,
|
||||
loff_t start, size_t len, work_func_t worker);
|
||||
void netfs_prepare_write_failed(struct netfs_io_subrequest *subreq);
|
||||
void netfs_write_subrequest_terminated(void *_op, ssize_t transferred_or_error,
|
||||
bool was_async);
|
||||
void new_netfs_write_subrequest_terminated(void *_op, ssize_t transferred_or_error,
|
||||
bool was_async);
|
||||
void netfs_queue_write_request(struct netfs_io_subrequest *subreq);
|
||||
|
||||
int netfs_start_io_read(struct inode *inode);
|
||||
@ -415,6 +480,7 @@ static inline void netfs_inode_init(struct netfs_inode *ctx,
|
||||
#if IS_ENABLED(CONFIG_FSCACHE)
|
||||
ctx->cache = NULL;
|
||||
#endif
|
||||
mutex_init(&ctx->wb_lock);
|
||||
/* ->releasepage() drives zero_point */
|
||||
if (use_zero_point) {
|
||||
ctx->zero_point = ctx->remote_i_size;
|
||||
|
@ -44,14 +44,18 @@
|
||||
#define netfs_rreq_traces \
|
||||
EM(netfs_rreq_trace_assess, "ASSESS ") \
|
||||
EM(netfs_rreq_trace_copy, "COPY ") \
|
||||
EM(netfs_rreq_trace_collect, "COLLECT") \
|
||||
EM(netfs_rreq_trace_done, "DONE ") \
|
||||
EM(netfs_rreq_trace_free, "FREE ") \
|
||||
EM(netfs_rreq_trace_redirty, "REDIRTY") \
|
||||
EM(netfs_rreq_trace_resubmit, "RESUBMT") \
|
||||
EM(netfs_rreq_trace_set_pause, "PAUSE ") \
|
||||
EM(netfs_rreq_trace_unlock, "UNLOCK ") \
|
||||
EM(netfs_rreq_trace_unmark, "UNMARK ") \
|
||||
EM(netfs_rreq_trace_wait_ip, "WAIT-IP") \
|
||||
EM(netfs_rreq_trace_wait_pause, "WT-PAUS") \
|
||||
EM(netfs_rreq_trace_wake_ip, "WAKE-IP") \
|
||||
EM(netfs_rreq_trace_unpause, "UNPAUSE") \
|
||||
E_(netfs_rreq_trace_write_done, "WR-DONE")
|
||||
|
||||
#define netfs_sreq_sources \
|
||||
@ -64,11 +68,15 @@
|
||||
E_(NETFS_INVALID_WRITE, "INVL")
|
||||
|
||||
#define netfs_sreq_traces \
|
||||
EM(netfs_sreq_trace_discard, "DSCRD") \
|
||||
EM(netfs_sreq_trace_download_instead, "RDOWN") \
|
||||
EM(netfs_sreq_trace_fail, "FAIL ") \
|
||||
EM(netfs_sreq_trace_free, "FREE ") \
|
||||
EM(netfs_sreq_trace_limited, "LIMIT") \
|
||||
EM(netfs_sreq_trace_prepare, "PREP ") \
|
||||
EM(netfs_sreq_trace_prep_failed, "PRPFL") \
|
||||
EM(netfs_sreq_trace_resubmit_short, "SHORT") \
|
||||
EM(netfs_sreq_trace_retry, "RETRY") \
|
||||
EM(netfs_sreq_trace_submit, "SUBMT") \
|
||||
EM(netfs_sreq_trace_terminated, "TERM ") \
|
||||
EM(netfs_sreq_trace_write, "WRITE") \
|
||||
@ -88,6 +96,7 @@
|
||||
#define netfs_rreq_ref_traces \
|
||||
EM(netfs_rreq_trace_get_for_outstanding,"GET OUTSTND") \
|
||||
EM(netfs_rreq_trace_get_subreq, "GET SUBREQ ") \
|
||||
EM(netfs_rreq_trace_get_work, "GET WORK ") \
|
||||
EM(netfs_rreq_trace_put_complete, "PUT COMPLT ") \
|
||||
EM(netfs_rreq_trace_put_discard, "PUT DISCARD") \
|
||||
EM(netfs_rreq_trace_put_failed, "PUT FAILED ") \
|
||||
@ -95,6 +104,8 @@
|
||||
EM(netfs_rreq_trace_put_return, "PUT RETURN ") \
|
||||
EM(netfs_rreq_trace_put_subreq, "PUT SUBREQ ") \
|
||||
EM(netfs_rreq_trace_put_work, "PUT WORK ") \
|
||||
EM(netfs_rreq_trace_put_work_complete, "PUT WORK CP") \
|
||||
EM(netfs_rreq_trace_put_work_nq, "PUT WORK NQ") \
|
||||
EM(netfs_rreq_trace_see_work, "SEE WORK ") \
|
||||
E_(netfs_rreq_trace_new, "NEW ")
|
||||
|
||||
@ -103,11 +114,14 @@
|
||||
EM(netfs_sreq_trace_get_resubmit, "GET RESUBMIT") \
|
||||
EM(netfs_sreq_trace_get_short_read, "GET SHORTRD") \
|
||||
EM(netfs_sreq_trace_new, "NEW ") \
|
||||
EM(netfs_sreq_trace_put_cancel, "PUT CANCEL ") \
|
||||
EM(netfs_sreq_trace_put_clear, "PUT CLEAR ") \
|
||||
EM(netfs_sreq_trace_put_discard, "PUT DISCARD") \
|
||||
EM(netfs_sreq_trace_put_done, "PUT DONE ") \
|
||||
EM(netfs_sreq_trace_put_failed, "PUT FAILED ") \
|
||||
EM(netfs_sreq_trace_put_merged, "PUT MERGED ") \
|
||||
EM(netfs_sreq_trace_put_no_copy, "PUT NO COPY") \
|
||||
EM(netfs_sreq_trace_put_oom, "PUT OOM ") \
|
||||
EM(netfs_sreq_trace_put_wip, "PUT WIP ") \
|
||||
EM(netfs_sreq_trace_put_work, "PUT WORK ") \
|
||||
E_(netfs_sreq_trace_put_terminated, "PUT TERM ")
|
||||
@ -124,7 +138,9 @@
|
||||
EM(netfs_streaming_filled_page, "mod-streamw-f") \
|
||||
EM(netfs_streaming_cont_filled_page, "mod-streamw-f+") \
|
||||
/* The rest are for writeback */ \
|
||||
EM(netfs_folio_trace_cancel_copy, "cancel-copy") \
|
||||
EM(netfs_folio_trace_clear, "clear") \
|
||||
EM(netfs_folio_trace_clear_cc, "clear-cc") \
|
||||
EM(netfs_folio_trace_clear_s, "clear-s") \
|
||||
EM(netfs_folio_trace_clear_g, "clear-g") \
|
||||
EM(netfs_folio_trace_copy, "copy") \
|
||||
@ -133,16 +149,26 @@
|
||||
EM(netfs_folio_trace_end_copy, "end-copy") \
|
||||
EM(netfs_folio_trace_filled_gaps, "filled-gaps") \
|
||||
EM(netfs_folio_trace_kill, "kill") \
|
||||
EM(netfs_folio_trace_kill_cc, "kill-cc") \
|
||||
EM(netfs_folio_trace_kill_g, "kill-g") \
|
||||
EM(netfs_folio_trace_kill_s, "kill-s") \
|
||||
EM(netfs_folio_trace_mkwrite, "mkwrite") \
|
||||
EM(netfs_folio_trace_mkwrite_plus, "mkwrite+") \
|
||||
EM(netfs_folio_trace_not_under_wback, "!wback") \
|
||||
EM(netfs_folio_trace_read_gaps, "read-gaps") \
|
||||
EM(netfs_folio_trace_redirty, "redirty") \
|
||||
EM(netfs_folio_trace_redirtied, "redirtied") \
|
||||
EM(netfs_folio_trace_store, "store") \
|
||||
EM(netfs_folio_trace_store_copy, "store-copy") \
|
||||
EM(netfs_folio_trace_store_plus, "store+") \
|
||||
EM(netfs_folio_trace_wthru, "wthru") \
|
||||
E_(netfs_folio_trace_wthru_plus, "wthru+")
|
||||
|
||||
#define netfs_collect_contig_traces \
|
||||
EM(netfs_contig_trace_collect, "Collect") \
|
||||
EM(netfs_contig_trace_jump, "-->JUMP-->") \
|
||||
E_(netfs_contig_trace_unlock, "Unlock")
|
||||
|
||||
#ifndef __NETFS_DECLARE_TRACE_ENUMS_ONCE_ONLY
|
||||
#define __NETFS_DECLARE_TRACE_ENUMS_ONCE_ONLY
|
||||
|
||||
@ -159,6 +185,7 @@ enum netfs_failure { netfs_failures } __mode(byte);
|
||||
enum netfs_rreq_ref_trace { netfs_rreq_ref_traces } __mode(byte);
|
||||
enum netfs_sreq_ref_trace { netfs_sreq_ref_traces } __mode(byte);
|
||||
enum netfs_folio_trace { netfs_folio_traces } __mode(byte);
|
||||
enum netfs_collect_contig_trace { netfs_collect_contig_traces } __mode(byte);
|
||||
|
||||
#endif
|
||||
|
||||
@ -180,6 +207,7 @@ netfs_failures;
|
||||
netfs_rreq_ref_traces;
|
||||
netfs_sreq_ref_traces;
|
||||
netfs_folio_traces;
|
||||
netfs_collect_contig_traces;
|
||||
|
||||
/*
|
||||
* Now redefine the EM() and E_() macros to map the enums to the strings that
|
||||
@ -413,16 +441,18 @@ TRACE_EVENT(netfs_write_iter,
|
||||
__field(unsigned long long, start )
|
||||
__field(size_t, len )
|
||||
__field(unsigned int, flags )
|
||||
__field(unsigned int, ino )
|
||||
),
|
||||
|
||||
TP_fast_assign(
|
||||
__entry->start = iocb->ki_pos;
|
||||
__entry->len = iov_iter_count(from);
|
||||
__entry->ino = iocb->ki_filp->f_inode->i_ino;
|
||||
__entry->flags = iocb->ki_flags;
|
||||
),
|
||||
|
||||
TP_printk("WRITE-ITER s=%llx l=%zx f=%x",
|
||||
__entry->start, __entry->len, __entry->flags)
|
||||
TP_printk("WRITE-ITER i=%x s=%llx l=%zx f=%x",
|
||||
__entry->ino, __entry->start, __entry->len, __entry->flags)
|
||||
);
|
||||
|
||||
TRACE_EVENT(netfs_write,
|
||||
@ -434,6 +464,7 @@ TRACE_EVENT(netfs_write,
|
||||
TP_STRUCT__entry(
|
||||
__field(unsigned int, wreq )
|
||||
__field(unsigned int, cookie )
|
||||
__field(unsigned int, ino )
|
||||
__field(enum netfs_write_trace, what )
|
||||
__field(unsigned long long, start )
|
||||
__field(unsigned long long, len )
|
||||
@ -444,18 +475,213 @@ TRACE_EVENT(netfs_write,
|
||||
struct fscache_cookie *__cookie = netfs_i_cookie(__ctx);
|
||||
__entry->wreq = wreq->debug_id;
|
||||
__entry->cookie = __cookie ? __cookie->debug_id : 0;
|
||||
__entry->ino = wreq->inode->i_ino;
|
||||
__entry->what = what;
|
||||
__entry->start = wreq->start;
|
||||
__entry->len = wreq->len;
|
||||
),
|
||||
|
||||
TP_printk("R=%08x %s c=%08x by=%llx-%llx",
|
||||
TP_printk("R=%08x %s c=%08x i=%x by=%llx-%llx",
|
||||
__entry->wreq,
|
||||
__print_symbolic(__entry->what, netfs_write_traces),
|
||||
__entry->cookie,
|
||||
__entry->ino,
|
||||
__entry->start, __entry->start + __entry->len - 1)
|
||||
);
|
||||
|
||||
TRACE_EVENT(netfs_collect,
|
||||
TP_PROTO(const struct netfs_io_request *wreq),
|
||||
|
||||
TP_ARGS(wreq),
|
||||
|
||||
TP_STRUCT__entry(
|
||||
__field(unsigned int, wreq )
|
||||
__field(unsigned int, len )
|
||||
__field(unsigned long long, transferred )
|
||||
__field(unsigned long long, start )
|
||||
),
|
||||
|
||||
TP_fast_assign(
|
||||
__entry->wreq = wreq->debug_id;
|
||||
__entry->start = wreq->start;
|
||||
__entry->len = wreq->len;
|
||||
__entry->transferred = wreq->transferred;
|
||||
),
|
||||
|
||||
TP_printk("R=%08x s=%llx-%llx",
|
||||
__entry->wreq,
|
||||
__entry->start + __entry->transferred,
|
||||
__entry->start + __entry->len)
|
||||
);
|
||||
|
||||
TRACE_EVENT(netfs_collect_contig,
|
||||
TP_PROTO(const struct netfs_io_request *wreq, unsigned long long to,
|
||||
enum netfs_collect_contig_trace type),
|
||||
|
||||
TP_ARGS(wreq, to, type),
|
||||
|
||||
TP_STRUCT__entry(
|
||||
__field(unsigned int, wreq)
|
||||
__field(enum netfs_collect_contig_trace, type)
|
||||
__field(unsigned long long, contiguity)
|
||||
__field(unsigned long long, to)
|
||||
),
|
||||
|
||||
TP_fast_assign(
|
||||
__entry->wreq = wreq->debug_id;
|
||||
__entry->type = type;
|
||||
__entry->contiguity = wreq->contiguity;
|
||||
__entry->to = to;
|
||||
),
|
||||
|
||||
TP_printk("R=%08x %llx -> %llx %s",
|
||||
__entry->wreq,
|
||||
__entry->contiguity,
|
||||
__entry->to,
|
||||
__print_symbolic(__entry->type, netfs_collect_contig_traces))
|
||||
);
|
||||
|
||||
TRACE_EVENT(netfs_collect_sreq,
|
||||
TP_PROTO(const struct netfs_io_request *wreq,
|
||||
const struct netfs_io_subrequest *subreq),
|
||||
|
||||
TP_ARGS(wreq, subreq),
|
||||
|
||||
TP_STRUCT__entry(
|
||||
__field(unsigned int, wreq )
|
||||
__field(unsigned int, subreq )
|
||||
__field(unsigned int, stream )
|
||||
__field(unsigned int, len )
|
||||
__field(unsigned int, transferred )
|
||||
__field(unsigned long long, start )
|
||||
),
|
||||
|
||||
TP_fast_assign(
|
||||
__entry->wreq = wreq->debug_id;
|
||||
__entry->subreq = subreq->debug_index;
|
||||
__entry->stream = subreq->stream_nr;
|
||||
__entry->start = subreq->start;
|
||||
__entry->len = subreq->len;
|
||||
__entry->transferred = subreq->transferred;
|
||||
),
|
||||
|
||||
TP_printk("R=%08x[%u:%02x] s=%llx t=%x/%x",
|
||||
__entry->wreq, __entry->stream, __entry->subreq,
|
||||
__entry->start, __entry->transferred, __entry->len)
|
||||
);
|
||||
|
||||
TRACE_EVENT(netfs_collect_folio,
|
||||
TP_PROTO(const struct netfs_io_request *wreq,
|
||||
const struct folio *folio,
|
||||
unsigned long long fend,
|
||||
unsigned long long collected_to),
|
||||
|
||||
TP_ARGS(wreq, folio, fend, collected_to),
|
||||
|
||||
TP_STRUCT__entry(
|
||||
__field(unsigned int, wreq )
|
||||
__field(unsigned long, index )
|
||||
__field(unsigned long long, fend )
|
||||
__field(unsigned long long, cleaned_to )
|
||||
__field(unsigned long long, collected_to )
|
||||
),
|
||||
|
||||
TP_fast_assign(
|
||||
__entry->wreq = wreq->debug_id;
|
||||
__entry->index = folio->index;
|
||||
__entry->fend = fend;
|
||||
__entry->cleaned_to = wreq->cleaned_to;
|
||||
__entry->collected_to = collected_to;
|
||||
),
|
||||
|
||||
TP_printk("R=%08x ix=%05lx r=%llx-%llx t=%llx/%llx",
|
||||
__entry->wreq, __entry->index,
|
||||
(unsigned long long)__entry->index * PAGE_SIZE, __entry->fend,
|
||||
__entry->cleaned_to, __entry->collected_to)
|
||||
);
|
||||
|
||||
TRACE_EVENT(netfs_collect_state,
|
||||
TP_PROTO(const struct netfs_io_request *wreq,
|
||||
unsigned long long collected_to,
|
||||
unsigned int notes),
|
||||
|
||||
TP_ARGS(wreq, collected_to, notes),
|
||||
|
||||
TP_STRUCT__entry(
|
||||
__field(unsigned int, wreq )
|
||||
__field(unsigned int, notes )
|
||||
__field(unsigned long long, collected_to )
|
||||
__field(unsigned long long, cleaned_to )
|
||||
__field(unsigned long long, contiguity )
|
||||
),
|
||||
|
||||
TP_fast_assign(
|
||||
__entry->wreq = wreq->debug_id;
|
||||
__entry->notes = notes;
|
||||
__entry->collected_to = collected_to;
|
||||
__entry->cleaned_to = wreq->cleaned_to;
|
||||
__entry->contiguity = wreq->contiguity;
|
||||
),
|
||||
|
||||
TP_printk("R=%08x cto=%llx fto=%llx ctg=%llx n=%x",
|
||||
__entry->wreq, __entry->collected_to,
|
||||
__entry->cleaned_to, __entry->contiguity,
|
||||
__entry->notes)
|
||||
);
|
||||
|
||||
TRACE_EVENT(netfs_collect_gap,
|
||||
TP_PROTO(const struct netfs_io_request *wreq,
|
||||
const struct netfs_io_stream *stream,
|
||||
unsigned long long jump_to, char type),
|
||||
|
||||
TP_ARGS(wreq, stream, jump_to, type),
|
||||
|
||||
TP_STRUCT__entry(
|
||||
__field(unsigned int, wreq)
|
||||
__field(unsigned char, stream)
|
||||
__field(unsigned char, type)
|
||||
__field(unsigned long long, from)
|
||||
__field(unsigned long long, to)
|
||||
),
|
||||
|
||||
TP_fast_assign(
|
||||
__entry->wreq = wreq->debug_id;
|
||||
__entry->stream = stream->stream_nr;
|
||||
__entry->from = stream->collected_to;
|
||||
__entry->to = jump_to;
|
||||
__entry->type = type;
|
||||
),
|
||||
|
||||
TP_printk("R=%08x[%x:] %llx->%llx %c",
|
||||
__entry->wreq, __entry->stream,
|
||||
__entry->from, __entry->to, __entry->type)
|
||||
);
|
||||
|
||||
TRACE_EVENT(netfs_collect_stream,
|
||||
TP_PROTO(const struct netfs_io_request *wreq,
|
||||
const struct netfs_io_stream *stream),
|
||||
|
||||
TP_ARGS(wreq, stream),
|
||||
|
||||
TP_STRUCT__entry(
|
||||
__field(unsigned int, wreq)
|
||||
__field(unsigned char, stream)
|
||||
__field(unsigned long long, collected_to)
|
||||
__field(unsigned long long, front)
|
||||
),
|
||||
|
||||
TP_fast_assign(
|
||||
__entry->wreq = wreq->debug_id;
|
||||
__entry->stream = stream->stream_nr;
|
||||
__entry->collected_to = stream->collected_to;
|
||||
__entry->front = stream->front ? stream->front->start : UINT_MAX;
|
||||
),
|
||||
|
||||
TP_printk("R=%08x[%x:] cto=%llx frn=%llx",
|
||||
__entry->wreq, __entry->stream,
|
||||
__entry->collected_to, __entry->front)
|
||||
);
|
||||
|
||||
#undef EM
|
||||
#undef E_
|
||||
#endif /* _TRACE_NETFS_H */
|
||||
|
Loading…
Reference in New Issue
Block a user