2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* Copyright (C) 1994 Linus Torvalds
|
|
|
|
*
|
|
|
|
* Pentium III FXSR, SSE support
|
|
|
|
* General FPU state handling cleanups
|
|
|
|
* Gareth Hughes <gareth@valinux.com>, May 2000
|
|
|
|
*/
|
2012-02-21 21:19:22 +00:00
|
|
|
#include <asm/fpu-internal.h>
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2015-04-22 14:52:03 +00:00
|
|
|
/*
|
|
|
|
* Track whether the kernel is using the FPU state
|
|
|
|
* currently.
|
|
|
|
*
|
|
|
|
* This flag is used:
|
|
|
|
*
|
|
|
|
* - by IRQ context code to potentially use the FPU
|
|
|
|
* if it's unused.
|
|
|
|
*
|
|
|
|
* - to debug kernel_fpu_begin()/end() correctness
|
|
|
|
*/
|
2015-01-15 19:19:43 +00:00
|
|
|
static DEFINE_PER_CPU(bool, in_kernel_fpu);
|
|
|
|
|
2015-04-23 10:13:04 +00:00
|
|
|
/*
|
2015-04-23 10:18:28 +00:00
|
|
|
* Track which context is using the FPU on the CPU:
|
2015-04-23 10:13:04 +00:00
|
|
|
*/
|
2015-04-23 10:18:28 +00:00
|
|
|
DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
|
2015-04-23 10:13:04 +00:00
|
|
|
|
2015-04-22 14:33:08 +00:00
|
|
|
static void kernel_fpu_disable(void)
|
2015-01-15 19:20:28 +00:00
|
|
|
{
|
|
|
|
WARN_ON(this_cpu_read(in_kernel_fpu));
|
|
|
|
this_cpu_write(in_kernel_fpu, true);
|
|
|
|
}
|
|
|
|
|
2015-04-22 14:33:08 +00:00
|
|
|
static void kernel_fpu_enable(void)
|
2015-01-15 19:20:28 +00:00
|
|
|
{
|
2015-04-22 14:40:56 +00:00
|
|
|
WARN_ON_ONCE(!this_cpu_read(in_kernel_fpu));
|
2015-01-15 19:20:28 +00:00
|
|
|
this_cpu_write(in_kernel_fpu, false);
|
|
|
|
}
|
|
|
|
|
2015-04-22 14:52:03 +00:00
|
|
|
static bool kernel_fpu_disabled(void)
|
|
|
|
{
|
|
|
|
return this_cpu_read(in_kernel_fpu);
|
|
|
|
}
|
|
|
|
|
2012-02-21 18:25:45 +00:00
|
|
|
/*
|
|
|
|
* Were we in an interrupt that interrupted kernel mode?
|
|
|
|
*
|
2012-08-24 21:13:02 +00:00
|
|
|
* On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that
|
2012-02-21 18:25:45 +00:00
|
|
|
* pair does nothing at all: the thread must not have fpu (so
|
|
|
|
* that we don't try to save the FPU state), and TS must
|
|
|
|
* be set (so that the clts/stts pair does nothing that is
|
|
|
|
* visible in the interrupted kernel thread).
|
2013-05-13 12:32:07 +00:00
|
|
|
*
|
2015-01-19 18:51:51 +00:00
|
|
|
* Except for the eagerfpu case when we return true; in the likely case
|
|
|
|
* the thread has FPU but we are not going to set/clear TS.
|
2012-02-21 18:25:45 +00:00
|
|
|
*/
|
2015-04-22 14:33:08 +00:00
|
|
|
static bool interrupted_kernel_fpu_idle(void)
|
2012-02-21 18:25:45 +00:00
|
|
|
{
|
2015-04-22 14:52:03 +00:00
|
|
|
if (kernel_fpu_disabled())
|
2015-01-15 19:19:43 +00:00
|
|
|
return false;
|
|
|
|
|
2012-09-06 21:58:52 +00:00
|
|
|
if (use_eager_fpu())
|
2015-01-19 18:51:51 +00:00
|
|
|
return true;
|
2012-08-24 21:13:02 +00:00
|
|
|
|
2015-04-23 09:55:18 +00:00
|
|
|
return !current->thread.fpu.has_fpu && (read_cr0() & X86_CR0_TS);
|
2012-02-21 18:25:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Were we in user mode (or vm86 mode) when we were
|
|
|
|
* interrupted?
|
|
|
|
*
|
|
|
|
* Doing kernel_fpu_begin/end() is ok if we are running
|
|
|
|
* in an interrupt context from user mode - we'll just
|
|
|
|
* save the FPU state as required.
|
|
|
|
*/
|
2015-04-22 14:33:08 +00:00
|
|
|
static bool interrupted_user_mode(void)
|
2012-02-21 18:25:45 +00:00
|
|
|
{
|
|
|
|
struct pt_regs *regs = get_irq_regs();
|
2015-03-19 01:33:33 +00:00
|
|
|
return regs && user_mode(regs);
|
2012-02-21 18:25:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Can we use the FPU in kernel mode with the
|
|
|
|
* whole "kernel_fpu_begin/end()" sequence?
|
|
|
|
*
|
|
|
|
* It's always ok in process context (ie "not interrupt")
|
|
|
|
* but it is sometimes ok even from an irq.
|
|
|
|
*/
|
|
|
|
bool irq_fpu_usable(void)
|
|
|
|
{
|
|
|
|
return !in_interrupt() ||
|
|
|
|
interrupted_user_mode() ||
|
|
|
|
interrupted_kernel_fpu_idle();
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(irq_fpu_usable);
|
|
|
|
|
2012-09-20 18:01:49 +00:00
|
|
|
void __kernel_fpu_begin(void)
|
2012-02-21 18:25:45 +00:00
|
|
|
{
|
2015-04-23 10:18:28 +00:00
|
|
|
struct fpu *fpu = ¤t->thread.fpu;
|
2012-02-21 18:25:45 +00:00
|
|
|
|
2015-04-22 14:40:56 +00:00
|
|
|
kernel_fpu_disable();
|
2015-01-15 19:19:43 +00:00
|
|
|
|
2015-04-23 09:55:18 +00:00
|
|
|
if (fpu->has_fpu) {
|
|
|
|
fpu_save_init(fpu);
|
2015-01-19 18:51:32 +00:00
|
|
|
} else {
|
2015-04-23 10:18:28 +00:00
|
|
|
this_cpu_write(fpu_fpregs_owner_ctx, NULL);
|
2015-01-19 18:51:32 +00:00
|
|
|
if (!use_eager_fpu())
|
|
|
|
clts();
|
2012-02-21 18:25:45 +00:00
|
|
|
}
|
|
|
|
}
|
2012-09-20 18:01:49 +00:00
|
|
|
EXPORT_SYMBOL(__kernel_fpu_begin);
|
2012-02-21 18:25:45 +00:00
|
|
|
|
2012-09-20 18:01:49 +00:00
|
|
|
void __kernel_fpu_end(void)
|
2012-02-21 18:25:45 +00:00
|
|
|
{
|
2015-01-15 19:20:05 +00:00
|
|
|
struct task_struct *me = current;
|
2015-04-23 09:55:18 +00:00
|
|
|
struct fpu *fpu = &me->thread.fpu;
|
2015-01-15 19:20:05 +00:00
|
|
|
|
2015-04-23 09:55:18 +00:00
|
|
|
if (fpu->has_fpu) {
|
2015-01-15 19:20:05 +00:00
|
|
|
if (WARN_ON(restore_fpu_checking(me)))
|
2015-03-16 09:21:55 +00:00
|
|
|
fpu_reset_state(me);
|
2015-01-15 19:20:05 +00:00
|
|
|
} else if (!use_eager_fpu()) {
|
2012-08-24 21:13:02 +00:00
|
|
|
stts();
|
x86, fpu: Check tsk_used_math() in kernel_fpu_end() for eager FPU
For non-eager fpu mode, thread's fpu state is allocated during the first
fpu usage (in the context of device not available exception). This
(math_state_restore()) can be a blocking call and hence we enable
interrupts (which were originally disabled when the exception happened),
allocate memory and disable interrupts etc.
But the eager-fpu mode, call's the same math_state_restore() from
kernel_fpu_end(). The assumption being that tsk_used_math() is always
set for the eager-fpu mode and thus avoid the code path of enabling
interrupts, allocating fpu state using blocking call and disable
interrupts etc.
But the below issue was noticed by Maarten Baert, Nate Eldredge and
few others:
If a user process dumps core on an ecrypt fs while aesni-intel is loaded,
we get a BUG() in __find_get_block() complaining that it was called with
interrupts disabled; then all further accesses to our ecrypt fs hang
and we have to reboot.
The aesni-intel code (encrypting the core file that we are writing) needs
the FPU and quite properly wraps its code in kernel_fpu_{begin,end}(),
the latter of which calls math_state_restore(). So after kernel_fpu_end(),
interrupts may be disabled, which nobody seems to expect, and they stay
that way until we eventually get to __find_get_block() which barfs.
For eager fpu, most the time, tsk_used_math() is true. At few instances
during thread exit, signal return handling etc, tsk_used_math() might
be false.
In kernel_fpu_end(), for eager-fpu, call math_state_restore()
only if tsk_used_math() is set. Otherwise, don't bother. Kernel code
path which cleared tsk_used_math() knows what needs to be done
with the fpu state.
Reported-by: Maarten Baert <maarten-baert@hotmail.com>
Reported-by: Nate Eldredge <nate@thatsmathematics.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Suresh Siddha <sbsiddha@gmail.com>
Link: http://lkml.kernel.org/r/1391410583.3801.6.camel@europa
Cc: George Spelvin <linux@horizon.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2014-02-03 06:56:23 +00:00
|
|
|
}
|
2015-01-15 19:19:43 +00:00
|
|
|
|
2015-04-22 14:40:56 +00:00
|
|
|
kernel_fpu_enable();
|
2012-02-21 18:25:45 +00:00
|
|
|
}
|
2012-09-20 18:01:49 +00:00
|
|
|
EXPORT_SYMBOL(__kernel_fpu_end);
|
2012-02-21 18:25:45 +00:00
|
|
|
|
2015-04-03 09:01:36 +00:00
|
|
|
/*
|
|
|
|
* Save the FPU state (initialize it if necessary):
|
2015-04-03 09:06:43 +00:00
|
|
|
*
|
|
|
|
* This only ever gets called for the current task.
|
2015-04-03 09:01:36 +00:00
|
|
|
*/
|
2015-04-03 08:58:52 +00:00
|
|
|
void fpu__save(struct task_struct *tsk)
|
2012-02-21 18:25:45 +00:00
|
|
|
{
|
2015-04-23 09:55:18 +00:00
|
|
|
struct fpu *fpu = &tsk->thread.fpu;
|
|
|
|
|
2015-04-03 09:06:43 +00:00
|
|
|
WARN_ON(tsk != current);
|
|
|
|
|
2012-02-21 18:25:45 +00:00
|
|
|
preempt_disable();
|
2015-04-23 09:55:18 +00:00
|
|
|
if (fpu->has_fpu) {
|
2015-02-06 20:01:59 +00:00
|
|
|
if (use_eager_fpu()) {
|
|
|
|
__save_fpu(tsk);
|
|
|
|
} else {
|
2015-04-23 09:55:18 +00:00
|
|
|
fpu_save_init(fpu);
|
2015-02-06 20:01:59 +00:00
|
|
|
__thread_fpu_end(tsk);
|
|
|
|
}
|
2015-02-06 20:01:58 +00:00
|
|
|
}
|
2012-02-21 18:25:45 +00:00
|
|
|
preempt_enable();
|
|
|
|
}
|
2015-04-03 09:01:36 +00:00
|
|
|
EXPORT_SYMBOL_GPL(fpu__save);
|
2012-02-21 18:25:45 +00:00
|
|
|
|
2015-04-03 11:01:52 +00:00
|
|
|
void fpstate_init(struct fpu *fpu)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2013-04-29 14:04:20 +00:00
|
|
|
if (!cpu_has_fpu) {
|
2010-05-06 08:45:46 +00:00
|
|
|
finit_soft_fpu(&fpu->state->soft);
|
|
|
|
return;
|
2008-05-23 23:26:37 +00:00
|
|
|
}
|
|
|
|
|
2015-03-10 06:06:25 +00:00
|
|
|
memset(fpu->state, 0, xstate_size);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
if (cpu_has_fxsr) {
|
2012-09-06 21:58:52 +00:00
|
|
|
fx_finit(&fpu->state->fxsave);
|
2005-04-16 22:20:36 +00:00
|
|
|
} else {
|
2010-05-06 08:45:46 +00:00
|
|
|
struct i387_fsave_struct *fp = &fpu->state->fsave;
|
2008-03-10 22:28:04 +00:00
|
|
|
fp->cwd = 0xffff037fu;
|
|
|
|
fp->swd = 0xffff0000u;
|
|
|
|
fp->twd = 0xffffffffu;
|
|
|
|
fp->fos = 0xffff0000u;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
2010-05-06 08:45:46 +00:00
|
|
|
}
|
2015-04-03 11:01:52 +00:00
|
|
|
EXPORT_SYMBOL_GPL(fpstate_init);
|
2010-05-06 08:45:46 +00:00
|
|
|
|
2015-04-22 13:41:56 +00:00
|
|
|
/*
|
|
|
|
* FPU state allocation:
|
|
|
|
*/
|
2015-04-22 14:02:33 +00:00
|
|
|
static struct kmem_cache *task_xstate_cachep;
|
2015-04-22 13:41:56 +00:00
|
|
|
|
|
|
|
void fpstate_cache_init(void)
|
|
|
|
{
|
|
|
|
task_xstate_cachep =
|
|
|
|
kmem_cache_create("task_xstate", xstate_size,
|
|
|
|
__alignof__(union thread_xstate),
|
|
|
|
SLAB_PANIC | SLAB_NOTRACK, NULL);
|
|
|
|
setup_xstate_comp();
|
|
|
|
}
|
|
|
|
|
2015-04-03 10:41:14 +00:00
|
|
|
int fpstate_alloc(struct fpu *fpu)
|
2015-04-03 10:37:30 +00:00
|
|
|
{
|
|
|
|
if (fpu->state)
|
|
|
|
return 0;
|
2015-04-03 10:41:14 +00:00
|
|
|
|
2015-04-03 10:37:30 +00:00
|
|
|
fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL);
|
|
|
|
if (!fpu->state)
|
|
|
|
return -ENOMEM;
|
2015-04-03 10:41:14 +00:00
|
|
|
|
|
|
|
/* The CPU requires the FPU state to be aligned to 16 byte boundaries: */
|
2015-04-03 10:37:30 +00:00
|
|
|
WARN_ON((unsigned long)fpu->state & 15);
|
2015-04-03 10:41:14 +00:00
|
|
|
|
2015-04-03 10:37:30 +00:00
|
|
|
return 0;
|
|
|
|
}
|
2015-04-03 10:41:14 +00:00
|
|
|
EXPORT_SYMBOL_GPL(fpstate_alloc);
|
2015-04-03 10:37:30 +00:00
|
|
|
|
2015-04-22 13:58:37 +00:00
|
|
|
void fpstate_free(struct fpu *fpu)
|
|
|
|
{
|
|
|
|
if (fpu->state) {
|
|
|
|
kmem_cache_free(task_xstate_cachep, fpu->state);
|
|
|
|
fpu->state = NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(fpstate_free);
|
|
|
|
|
2015-04-23 06:55:34 +00:00
|
|
|
/*
|
|
|
|
* Copy the current task's FPU state to a new task's FPU context.
|
|
|
|
*
|
|
|
|
* In the 'eager' case we just save to the destination context.
|
|
|
|
*
|
|
|
|
* In the 'lazy' case we save to the source context, mark the FPU lazy
|
|
|
|
* via stts() and copy the source context into the destination context.
|
|
|
|
*/
|
2015-04-22 18:09:29 +00:00
|
|
|
static void fpu_copy(struct task_struct *dst, struct task_struct *src)
|
|
|
|
{
|
2015-04-23 06:55:34 +00:00
|
|
|
WARN_ON(src != current);
|
|
|
|
|
2015-04-22 18:09:29 +00:00
|
|
|
if (use_eager_fpu()) {
|
|
|
|
memset(&dst->thread.fpu.state->xsave, 0, xstate_size);
|
|
|
|
__save_fpu(dst);
|
|
|
|
} else {
|
|
|
|
struct fpu *dfpu = &dst->thread.fpu;
|
|
|
|
struct fpu *sfpu = &src->thread.fpu;
|
|
|
|
|
|
|
|
fpu__save(src);
|
|
|
|
memcpy(dfpu->state, sfpu->state, xstate_size);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-04-22 13:47:05 +00:00
|
|
|
int fpu__copy(struct task_struct *dst, struct task_struct *src)
|
|
|
|
{
|
|
|
|
dst->thread.fpu.counter = 0;
|
|
|
|
dst->thread.fpu.has_fpu = 0;
|
|
|
|
dst->thread.fpu.state = NULL;
|
|
|
|
|
|
|
|
task_disable_lazy_fpu_restore(dst);
|
|
|
|
|
|
|
|
if (tsk_used_math(src)) {
|
|
|
|
int err = fpstate_alloc(&dst->thread.fpu);
|
|
|
|
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
fpu_copy(dst, src);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2015-04-03 10:02:02 +00:00
|
|
|
/*
|
|
|
|
* Allocate the backing store for the current task's FPU registers
|
|
|
|
* and initialize the registers themselves as well.
|
|
|
|
*
|
|
|
|
* Can fail.
|
|
|
|
*/
|
|
|
|
int fpstate_alloc_init(struct task_struct *curr)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (WARN_ON_ONCE(curr != current))
|
|
|
|
return -EINVAL;
|
|
|
|
if (WARN_ON_ONCE(curr->flags & PF_USED_MATH))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Memory allocation at the first usage of the FPU and other state.
|
|
|
|
*/
|
2015-04-03 10:41:14 +00:00
|
|
|
ret = fpstate_alloc(&curr->thread.fpu);
|
2015-04-03 10:02:02 +00:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2015-04-03 11:01:52 +00:00
|
|
|
fpstate_init(&curr->thread.fpu);
|
2015-04-03 10:02:02 +00:00
|
|
|
|
|
|
|
/* Safe to do for the current task: */
|
|
|
|
curr->flags |= PF_USED_MATH;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(fpstate_alloc_init);
|
|
|
|
|
2010-05-06 08:45:46 +00:00
|
|
|
/*
|
|
|
|
* The _current_ task is using the FPU for the first time
|
|
|
|
* so initialize it and set the mxcsr to its default
|
|
|
|
* value at reset if we support XMM instructions and then
|
2011-03-17 19:24:16 +00:00
|
|
|
* remember the current task has used the FPU.
|
2010-05-06 08:45:46 +00:00
|
|
|
*/
|
2015-04-03 10:21:03 +00:00
|
|
|
static int fpu__unlazy_stopped(struct task_struct *child)
|
2010-05-06 08:45:46 +00:00
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
2015-04-03 10:21:03 +00:00
|
|
|
if (WARN_ON_ONCE(child == current))
|
|
|
|
return -EINVAL;
|
|
|
|
|
2015-04-03 10:29:47 +00:00
|
|
|
if (child->flags & PF_USED_MATH) {
|
2015-04-03 10:21:03 +00:00
|
|
|
task_disable_lazy_fpu_restore(child);
|
2010-05-06 08:45:46 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-01-30 12:31:50 +00:00
|
|
|
/*
|
2010-05-06 08:45:46 +00:00
|
|
|
* Memory allocation at the first usage of the FPU and other state.
|
2008-01-30 12:31:50 +00:00
|
|
|
*/
|
2015-04-03 10:41:14 +00:00
|
|
|
ret = fpstate_alloc(&child->thread.fpu);
|
2010-05-06 08:45:46 +00:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2015-04-03 11:01:52 +00:00
|
|
|
fpstate_init(&child->thread.fpu);
|
2010-05-06 08:45:46 +00:00
|
|
|
|
2015-04-03 10:29:47 +00:00
|
|
|
/* Safe to do for stopped child tasks: */
|
|
|
|
child->flags |= PF_USED_MATH;
|
|
|
|
|
2008-03-10 22:28:05 +00:00
|
|
|
return 0;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2015-04-22 10:50:13 +00:00
|
|
|
/*
|
2015-04-22 11:16:47 +00:00
|
|
|
* 'fpu__restore()' saves the current math information in the
|
2015-04-22 10:50:13 +00:00
|
|
|
* old math state array, and gets the new ones from the current task
|
|
|
|
*
|
|
|
|
* Careful.. There are problems with IBM-designed IRQ13 behaviour.
|
|
|
|
* Don't touch unless you *really* know how it works.
|
|
|
|
*
|
|
|
|
* Must be called with kernel preemption disabled (eg with local
|
|
|
|
* local interrupts as in the case of do_device_not_available).
|
|
|
|
*/
|
2015-04-22 11:16:47 +00:00
|
|
|
void fpu__restore(void)
|
2015-04-22 10:50:13 +00:00
|
|
|
{
|
|
|
|
struct task_struct *tsk = current;
|
|
|
|
|
|
|
|
if (!tsk_used_math(tsk)) {
|
|
|
|
local_irq_enable();
|
|
|
|
/*
|
|
|
|
* does a slab alloc which can sleep
|
|
|
|
*/
|
|
|
|
if (fpstate_alloc_init(tsk)) {
|
|
|
|
/*
|
|
|
|
* ran out of memory!
|
|
|
|
*/
|
|
|
|
do_group_exit(SIGKILL);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
local_irq_disable();
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Avoid __kernel_fpu_begin() right after __thread_fpu_begin() */
|
|
|
|
kernel_fpu_disable();
|
|
|
|
__thread_fpu_begin(tsk);
|
|
|
|
if (unlikely(restore_fpu_checking(tsk))) {
|
|
|
|
fpu_reset_state(tsk);
|
|
|
|
force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
|
|
|
|
} else {
|
|
|
|
tsk->thread.fpu.counter++;
|
|
|
|
}
|
|
|
|
kernel_fpu_enable();
|
|
|
|
}
|
2015-04-22 11:16:47 +00:00
|
|
|
EXPORT_SYMBOL_GPL(fpu__restore);
|
2015-04-22 10:50:13 +00:00
|
|
|
|
2015-04-22 09:52:13 +00:00
|
|
|
void fpu__flush_thread(struct task_struct *tsk)
|
|
|
|
{
|
|
|
|
if (!use_eager_fpu()) {
|
|
|
|
/* FPU state will be reallocated lazily at the first use. */
|
|
|
|
drop_fpu(tsk);
|
|
|
|
fpstate_free(&tsk->thread.fpu);
|
|
|
|
} else {
|
|
|
|
if (!tsk_used_math(tsk)) {
|
|
|
|
/* kthread execs. TODO: cleanup this horror. */
|
|
|
|
if (WARN_ON(fpstate_alloc_init(tsk)))
|
|
|
|
force_sig(SIGKILL, tsk);
|
|
|
|
user_fpu_begin();
|
|
|
|
}
|
|
|
|
restore_init_xstate();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-02-11 19:50:59 +00:00
|
|
|
/*
|
|
|
|
* The xstateregs_active() routine is the same as the fpregs_active() routine,
|
|
|
|
* as the "regset->n" for the xstate regset will be updated based on the feature
|
|
|
|
* capabilites supported by the xsave.
|
|
|
|
*/
|
2008-01-30 12:31:50 +00:00
|
|
|
int fpregs_active(struct task_struct *target, const struct user_regset *regset)
|
|
|
|
{
|
|
|
|
return tsk_used_math(target) ? regset->n : 0;
|
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2008-01-30 12:31:50 +00:00
|
|
|
int xfpregs_active(struct task_struct *target, const struct user_regset *regset)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2008-01-30 12:31:50 +00:00
|
|
|
return (cpu_has_fxsr && tsk_used_math(target)) ? regset->n : 0;
|
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2008-01-30 12:31:50 +00:00
|
|
|
int xfpregs_get(struct task_struct *target, const struct user_regset *regset,
|
|
|
|
unsigned int pos, unsigned int count,
|
|
|
|
void *kbuf, void __user *ubuf)
|
|
|
|
{
|
2008-03-10 22:28:05 +00:00
|
|
|
int ret;
|
|
|
|
|
2008-01-30 12:31:50 +00:00
|
|
|
if (!cpu_has_fxsr)
|
|
|
|
return -ENODEV;
|
|
|
|
|
2015-04-03 10:21:03 +00:00
|
|
|
ret = fpu__unlazy_stopped(target);
|
2008-03-10 22:28:05 +00:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
2008-01-30 12:31:50 +00:00
|
|
|
|
2010-07-19 23:05:49 +00:00
|
|
|
sanitize_i387_state(target);
|
|
|
|
|
2008-01-30 12:31:50 +00:00
|
|
|
return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
|
2010-05-06 08:45:46 +00:00
|
|
|
&target->thread.fpu.state->fxsave, 0, -1);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
2008-01-30 12:31:50 +00:00
|
|
|
|
|
|
|
int xfpregs_set(struct task_struct *target, const struct user_regset *regset,
|
|
|
|
unsigned int pos, unsigned int count,
|
|
|
|
const void *kbuf, const void __user *ubuf)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (!cpu_has_fxsr)
|
|
|
|
return -ENODEV;
|
|
|
|
|
2015-04-03 10:21:03 +00:00
|
|
|
ret = fpu__unlazy_stopped(target);
|
2008-03-10 22:28:05 +00:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2010-07-19 23:05:49 +00:00
|
|
|
sanitize_i387_state(target);
|
|
|
|
|
2008-01-30 12:31:50 +00:00
|
|
|
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
|
2010-05-06 08:45:46 +00:00
|
|
|
&target->thread.fpu.state->fxsave, 0, -1);
|
2008-01-30 12:31:50 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* mxcsr reserved bits must be masked to zero for security reasons.
|
|
|
|
*/
|
2010-05-06 08:45:46 +00:00
|
|
|
target->thread.fpu.state->fxsave.mxcsr &= mxcsr_feature_mask;
|
2008-01-30 12:31:50 +00:00
|
|
|
|
2008-07-29 17:29:26 +00:00
|
|
|
/*
|
|
|
|
* update the header bits in the xsave header, indicating the
|
|
|
|
* presence of FP and SSE state.
|
|
|
|
*/
|
|
|
|
if (cpu_has_xsave)
|
2010-05-06 08:45:46 +00:00
|
|
|
target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FPSSE;
|
2008-07-29 17:29:26 +00:00
|
|
|
|
2008-01-30 12:31:50 +00:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2010-02-11 19:50:59 +00:00
|
|
|
int xstateregs_get(struct task_struct *target, const struct user_regset *regset,
|
|
|
|
unsigned int pos, unsigned int count,
|
|
|
|
void *kbuf, void __user *ubuf)
|
|
|
|
{
|
2015-04-16 18:41:37 +00:00
|
|
|
struct xsave_struct *xsave;
|
2010-02-11 19:50:59 +00:00
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (!cpu_has_xsave)
|
|
|
|
return -ENODEV;
|
|
|
|
|
2015-04-03 10:21:03 +00:00
|
|
|
ret = fpu__unlazy_stopped(target);
|
2010-02-11 19:50:59 +00:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2015-04-16 18:41:37 +00:00
|
|
|
xsave = &target->thread.fpu.state->xsave;
|
|
|
|
|
2010-02-11 19:50:59 +00:00
|
|
|
/*
|
2010-02-22 22:51:33 +00:00
|
|
|
* Copy the 48bytes defined by the software first into the xstate
|
|
|
|
* memory layout in the thread struct, so that we can copy the entire
|
|
|
|
* xstateregs to the user using one user_regset_copyout().
|
2010-02-11 19:50:59 +00:00
|
|
|
*/
|
2015-03-10 06:06:24 +00:00
|
|
|
memcpy(&xsave->i387.sw_reserved,
|
|
|
|
xstate_fx_sw_bytes, sizeof(xstate_fx_sw_bytes));
|
2010-02-11 19:50:59 +00:00
|
|
|
/*
|
2010-02-22 22:51:33 +00:00
|
|
|
* Copy the xstate memory layout.
|
2010-02-11 19:50:59 +00:00
|
|
|
*/
|
2015-03-10 06:06:24 +00:00
|
|
|
ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, xsave, 0, -1);
|
2010-02-11 19:50:59 +00:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
int xstateregs_set(struct task_struct *target, const struct user_regset *regset,
|
|
|
|
unsigned int pos, unsigned int count,
|
|
|
|
const void *kbuf, const void __user *ubuf)
|
|
|
|
{
|
2015-04-16 18:41:37 +00:00
|
|
|
struct xsave_struct *xsave;
|
2010-02-11 19:50:59 +00:00
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (!cpu_has_xsave)
|
|
|
|
return -ENODEV;
|
|
|
|
|
2015-04-03 10:21:03 +00:00
|
|
|
ret = fpu__unlazy_stopped(target);
|
2010-02-11 19:50:59 +00:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2015-04-16 18:41:37 +00:00
|
|
|
xsave = &target->thread.fpu.state->xsave;
|
|
|
|
|
2015-03-10 06:06:24 +00:00
|
|
|
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, xsave, 0, -1);
|
2010-02-11 19:50:59 +00:00
|
|
|
/*
|
|
|
|
* mxcsr reserved bits must be masked to zero for security reasons.
|
|
|
|
*/
|
2015-03-10 06:06:24 +00:00
|
|
|
xsave->i387.mxcsr &= mxcsr_feature_mask;
|
|
|
|
xsave->xsave_hdr.xstate_bv &= pcntxt_mask;
|
2010-02-11 19:50:59 +00:00
|
|
|
/*
|
|
|
|
* These bits must be zero.
|
|
|
|
*/
|
2015-03-10 06:06:24 +00:00
|
|
|
memset(&xsave->xsave_hdr.reserved, 0, 48);
|
2010-02-11 19:50:59 +00:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2008-01-30 12:31:50 +00:00
|
|
|
#if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* FPU tag word conversions.
|
|
|
|
*/
|
|
|
|
|
2008-01-30 12:31:26 +00:00
|
|
|
static inline unsigned short twd_i387_to_fxsr(unsigned short twd)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
unsigned int tmp; /* to avoid 16 bit prefixes in the code */
|
2008-01-30 12:31:26 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Transform each pair of bits into 01 (valid) or 00 (empty) */
|
2008-01-30 12:31:26 +00:00
|
|
|
tmp = ~twd;
|
2008-01-30 12:31:50 +00:00
|
|
|
tmp = (tmp | (tmp>>1)) & 0x5555; /* 0V0V0V0V0V0V0V0V */
|
2008-01-30 12:31:26 +00:00
|
|
|
/* and move the valid bits to the lower byte. */
|
|
|
|
tmp = (tmp | (tmp >> 1)) & 0x3333; /* 00VV00VV00VV00VV */
|
|
|
|
tmp = (tmp | (tmp >> 2)) & 0x0f0f; /* 0000VVVV0000VVVV */
|
|
|
|
tmp = (tmp | (tmp >> 4)) & 0x00ff; /* 00000000VVVVVVVV */
|
2008-03-05 14:37:32 +00:00
|
|
|
|
2008-01-30 12:31:26 +00:00
|
|
|
return tmp;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2011-07-14 12:07:13 +00:00
|
|
|
#define FPREG_ADDR(f, n) ((void *)&(f)->st_space + (n) * 16)
|
2008-01-30 12:31:50 +00:00
|
|
|
#define FP_EXP_TAG_VALID 0
|
|
|
|
#define FP_EXP_TAG_ZERO 1
|
|
|
|
#define FP_EXP_TAG_SPECIAL 2
|
|
|
|
#define FP_EXP_TAG_EMPTY 3
|
|
|
|
|
|
|
|
static inline u32 twd_fxsr_to_i387(struct i387_fxsave_struct *fxsave)
|
|
|
|
{
|
|
|
|
struct _fpxreg *st;
|
|
|
|
u32 tos = (fxsave->swd >> 11) & 7;
|
|
|
|
u32 twd = (unsigned long) fxsave->twd;
|
|
|
|
u32 tag;
|
|
|
|
u32 ret = 0xffff0000u;
|
|
|
|
int i;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2008-01-30 12:31:50 +00:00
|
|
|
for (i = 0; i < 8; i++, twd >>= 1) {
|
2008-01-30 12:31:26 +00:00
|
|
|
if (twd & 0x1) {
|
|
|
|
st = FPREG_ADDR(fxsave, (i - tos) & 7);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2008-01-30 12:31:26 +00:00
|
|
|
switch (st->exponent & 0x7fff) {
|
2005-04-16 22:20:36 +00:00
|
|
|
case 0x7fff:
|
2008-01-30 12:31:50 +00:00
|
|
|
tag = FP_EXP_TAG_SPECIAL;
|
2005-04-16 22:20:36 +00:00
|
|
|
break;
|
|
|
|
case 0x0000:
|
2008-01-30 12:31:26 +00:00
|
|
|
if (!st->significand[0] &&
|
|
|
|
!st->significand[1] &&
|
|
|
|
!st->significand[2] &&
|
2008-01-30 12:31:50 +00:00
|
|
|
!st->significand[3])
|
|
|
|
tag = FP_EXP_TAG_ZERO;
|
|
|
|
else
|
|
|
|
tag = FP_EXP_TAG_SPECIAL;
|
2005-04-16 22:20:36 +00:00
|
|
|
break;
|
|
|
|
default:
|
2008-01-30 12:31:50 +00:00
|
|
|
if (st->significand[3] & 0x8000)
|
|
|
|
tag = FP_EXP_TAG_VALID;
|
|
|
|
else
|
|
|
|
tag = FP_EXP_TAG_SPECIAL;
|
2005-04-16 22:20:36 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
} else {
|
2008-01-30 12:31:50 +00:00
|
|
|
tag = FP_EXP_TAG_EMPTY;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
2008-01-30 12:31:50 +00:00
|
|
|
ret |= tag << (2 * i);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2008-01-30 12:31:50 +00:00
|
|
|
* FXSR floating point environment conversions.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
|
|
|
|
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels
Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied
to/from the fpstate in the task struct.
And in the case of signal delivery for x86_64 binaries, if the fpstate is live
in the CPU registers, then the live state is copied directly to the user
sigframe. Otherwise fpstate in the task struct is copied to the user sigframe.
During restore, fpstate in the user sigframe is restored directly to the live
CPU registers.
Historically, different code paths led to different bugs. For example,
x86_64 code path was not preemption safe till recently. Also there is lot
of code duplication for support of new features like xsave etc.
Unify signal handling code paths for x86 and x86_64 kernels.
New strategy is as follows:
Signal delivery: Both for 32/64-bit frames, align the core math frame area to
64bytes as needed by xsave (this where the main fpu/extended state gets copied
to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave
frames). If the state is live, copy the register state directly to the user
frame. If not live, copy the state in the thread struct to the user frame. And
for 32-bit [f]xsave frames, construct the fsave header separately before
the actual [f]xsave area.
Signal return: As the 32-bit frames with [f]xstate has an additional
'fsave' header, copy everything back from the user sigframe to the
fpstate in the task structure and reconstruct the fxstate from the 'fsave'
header (Also user passed pointers may not be correctly aligned for
any attempt to directly restore any partial state). At the next fpstate usage,
everything will be restored to the live CPU registers.
For all the 64-bit frames and the 32-bit fsave frame, restore the state from
the user sigframe directly to the live CPU registers. 64-bit signals always
restored the math frame directly, so we can expect the math frame pointer
to be correctly aligned. For 32-bit fsave frames, there are no alignment
requirements, so we can restore the state directly.
"lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are
with in the noise range with this change.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com
[ Merged in compilation fix ]
Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
|
|
|
void
|
2008-03-05 14:37:32 +00:00
|
|
|
convert_from_fxsr(struct user_i387_ia32_struct *env, struct task_struct *tsk)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2010-05-06 08:45:46 +00:00
|
|
|
struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
|
2008-01-30 12:31:50 +00:00
|
|
|
struct _fpreg *to = (struct _fpreg *) &env->st_space[0];
|
|
|
|
struct _fpxreg *from = (struct _fpxreg *) &fxsave->st_space[0];
|
|
|
|
int i;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2008-01-30 12:31:50 +00:00
|
|
|
env->cwd = fxsave->cwd | 0xffff0000u;
|
|
|
|
env->swd = fxsave->swd | 0xffff0000u;
|
|
|
|
env->twd = twd_fxsr_to_i387(fxsave);
|
|
|
|
|
|
|
|
#ifdef CONFIG_X86_64
|
|
|
|
env->fip = fxsave->rip;
|
|
|
|
env->foo = fxsave->rdp;
|
2010-09-04 01:17:13 +00:00
|
|
|
/*
|
|
|
|
* should be actually ds/cs at fpu exception time, but
|
|
|
|
* that information is not available in 64bit mode.
|
|
|
|
*/
|
|
|
|
env->fcs = task_pt_regs(tsk)->cs;
|
2008-01-30 12:31:50 +00:00
|
|
|
if (tsk == current) {
|
2010-09-04 01:17:13 +00:00
|
|
|
savesegment(ds, env->fos);
|
2005-04-16 22:20:36 +00:00
|
|
|
} else {
|
2010-09-04 01:17:13 +00:00
|
|
|
env->fos = tsk->thread.ds;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
2010-09-04 01:17:13 +00:00
|
|
|
env->fos |= 0xffff0000;
|
2008-01-30 12:31:50 +00:00
|
|
|
#else
|
|
|
|
env->fip = fxsave->fip;
|
2008-03-05 08:35:14 +00:00
|
|
|
env->fcs = (u16) fxsave->fcs | ((u32) fxsave->fop << 16);
|
2008-01-30 12:31:50 +00:00
|
|
|
env->foo = fxsave->foo;
|
|
|
|
env->fos = fxsave->fos;
|
|
|
|
#endif
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2008-01-30 12:31:50 +00:00
|
|
|
for (i = 0; i < 8; ++i)
|
|
|
|
memcpy(&to[i], &from[i], sizeof(to[0]));
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels
Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied
to/from the fpstate in the task struct.
And in the case of signal delivery for x86_64 binaries, if the fpstate is live
in the CPU registers, then the live state is copied directly to the user
sigframe. Otherwise fpstate in the task struct is copied to the user sigframe.
During restore, fpstate in the user sigframe is restored directly to the live
CPU registers.
Historically, different code paths led to different bugs. For example,
x86_64 code path was not preemption safe till recently. Also there is lot
of code duplication for support of new features like xsave etc.
Unify signal handling code paths for x86 and x86_64 kernels.
New strategy is as follows:
Signal delivery: Both for 32/64-bit frames, align the core math frame area to
64bytes as needed by xsave (this where the main fpu/extended state gets copied
to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave
frames). If the state is live, copy the register state directly to the user
frame. If not live, copy the state in the thread struct to the user frame. And
for 32-bit [f]xsave frames, construct the fsave header separately before
the actual [f]xsave area.
Signal return: As the 32-bit frames with [f]xstate has an additional
'fsave' header, copy everything back from the user sigframe to the
fpstate in the task structure and reconstruct the fxstate from the 'fsave'
header (Also user passed pointers may not be correctly aligned for
any attempt to directly restore any partial state). At the next fpstate usage,
everything will be restored to the live CPU registers.
For all the 64-bit frames and the 32-bit fsave frame, restore the state from
the user sigframe directly to the live CPU registers. 64-bit signals always
restored the math frame directly, so we can expect the math frame pointer
to be correctly aligned. For 32-bit fsave frames, there are no alignment
requirements, so we can restore the state directly.
"lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are
with in the noise range with this change.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com
[ Merged in compilation fix ]
Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
|
|
|
void convert_to_fxsr(struct task_struct *tsk,
|
|
|
|
const struct user_i387_ia32_struct *env)
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
{
|
2010-05-06 08:45:46 +00:00
|
|
|
struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
|
2008-01-30 12:31:50 +00:00
|
|
|
struct _fpreg *from = (struct _fpreg *) &env->st_space[0];
|
|
|
|
struct _fpxreg *to = (struct _fpxreg *) &fxsave->st_space[0];
|
|
|
|
int i;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2008-01-30 12:31:50 +00:00
|
|
|
fxsave->cwd = env->cwd;
|
|
|
|
fxsave->swd = env->swd;
|
|
|
|
fxsave->twd = twd_i387_to_fxsr(env->twd);
|
|
|
|
fxsave->fop = (u16) ((u32) env->fcs >> 16);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
|
|
fxsave->rip = env->fip;
|
|
|
|
fxsave->rdp = env->foo;
|
|
|
|
/* cs and ds ignored */
|
|
|
|
#else
|
|
|
|
fxsave->fip = env->fip;
|
|
|
|
fxsave->fcs = (env->fcs & 0xffff);
|
|
|
|
fxsave->foo = env->foo;
|
|
|
|
fxsave->fos = env->fos;
|
|
|
|
#endif
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2008-01-30 12:31:50 +00:00
|
|
|
for (i = 0; i < 8; ++i)
|
|
|
|
memcpy(&to[i], &from[i], sizeof(from[0]));
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2008-01-30 12:31:50 +00:00
|
|
|
int fpregs_get(struct task_struct *target, const struct user_regset *regset,
|
|
|
|
unsigned int pos, unsigned int count,
|
|
|
|
void *kbuf, void __user *ubuf)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2008-01-30 12:31:50 +00:00
|
|
|
struct user_i387_ia32_struct env;
|
2008-03-10 22:28:05 +00:00
|
|
|
int ret;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2015-04-03 10:21:03 +00:00
|
|
|
ret = fpu__unlazy_stopped(target);
|
2008-03-10 22:28:05 +00:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2013-04-29 14:04:20 +00:00
|
|
|
if (!static_cpu_has(X86_FEATURE_FPU))
|
2008-05-23 23:26:37 +00:00
|
|
|
return fpregs_soft_get(target, regset, pos, count, kbuf, ubuf);
|
|
|
|
|
2013-04-29 14:04:20 +00:00
|
|
|
if (!cpu_has_fxsr)
|
2008-01-30 12:31:50 +00:00
|
|
|
return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
|
2010-05-06 08:45:46 +00:00
|
|
|
&target->thread.fpu.state->fsave, 0,
|
2008-03-10 22:28:04 +00:00
|
|
|
-1);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2010-07-19 23:05:49 +00:00
|
|
|
sanitize_i387_state(target);
|
|
|
|
|
2008-01-30 12:31:50 +00:00
|
|
|
if (kbuf && pos == 0 && count == sizeof(env)) {
|
|
|
|
convert_from_fxsr(kbuf, target);
|
|
|
|
return 0;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
2008-01-30 12:31:50 +00:00
|
|
|
|
|
|
|
convert_from_fxsr(&env, target);
|
2008-03-05 14:37:32 +00:00
|
|
|
|
2008-01-30 12:31:50 +00:00
|
|
|
return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2008-01-30 12:31:50 +00:00
|
|
|
int fpregs_set(struct task_struct *target, const struct user_regset *regset,
|
|
|
|
unsigned int pos, unsigned int count,
|
|
|
|
const void *kbuf, const void __user *ubuf)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2008-01-30 12:31:50 +00:00
|
|
|
struct user_i387_ia32_struct env;
|
|
|
|
int ret;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2015-04-03 10:21:03 +00:00
|
|
|
ret = fpu__unlazy_stopped(target);
|
2008-03-10 22:28:05 +00:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2010-07-19 23:05:49 +00:00
|
|
|
sanitize_i387_state(target);
|
|
|
|
|
2013-04-29 14:04:20 +00:00
|
|
|
if (!static_cpu_has(X86_FEATURE_FPU))
|
2008-05-23 23:26:37 +00:00
|
|
|
return fpregs_soft_set(target, regset, pos, count, kbuf, ubuf);
|
|
|
|
|
2013-04-29 14:04:20 +00:00
|
|
|
if (!cpu_has_fxsr)
|
2008-01-30 12:31:50 +00:00
|
|
|
return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
|
2013-04-29 14:04:20 +00:00
|
|
|
&target->thread.fpu.state->fsave, 0,
|
|
|
|
-1);
|
2008-01-30 12:31:50 +00:00
|
|
|
|
|
|
|
if (pos > 0 || count < sizeof(env))
|
|
|
|
convert_from_fxsr(&env, target);
|
|
|
|
|
|
|
|
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
|
|
|
|
if (!ret)
|
|
|
|
convert_to_fxsr(target, &env);
|
|
|
|
|
2008-07-29 17:29:26 +00:00
|
|
|
/*
|
|
|
|
* update the header bit in the xsave header, indicating the
|
|
|
|
* presence of FP.
|
|
|
|
*/
|
|
|
|
if (cpu_has_xsave)
|
2010-05-06 08:45:46 +00:00
|
|
|
target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FP;
|
2008-01-30 12:31:50 +00:00
|
|
|
return ret;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* FPU state for core dumps.
|
2008-01-30 12:31:55 +00:00
|
|
|
* This is only used for a.out dumps now.
|
|
|
|
* It is declared generically using elf_fpregset_t (which is
|
|
|
|
* struct user_i387_struct) but is in fact only used for 32-bit
|
|
|
|
* dumps, so on 64-bit it is really struct user_i387_ia32_struct.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
2008-01-30 12:31:26 +00:00
|
|
|
int dump_fpu(struct pt_regs *regs, struct user_i387_struct *fpu)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
struct task_struct *tsk = current;
|
2008-03-05 14:37:32 +00:00
|
|
|
int fpvalid;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
fpvalid = !!used_math();
|
2008-01-30 12:31:55 +00:00
|
|
|
if (fpvalid)
|
|
|
|
fpvalid = !fpregs_get(tsk, NULL,
|
|
|
|
0, sizeof(struct user_i387_ia32_struct),
|
|
|
|
fpu, NULL);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
return fpvalid;
|
|
|
|
}
|
2005-06-23 07:08:33 +00:00
|
|
|
EXPORT_SYMBOL(dump_fpu);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2008-01-30 12:31:55 +00:00
|
|
|
#endif /* CONFIG_X86_32 || CONFIG_IA32_EMULATION */
|