2019-05-19 12:08:55 +00:00
|
|
|
// SPDX-License-Identifier: GPL-2.0-only
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* linux/mm/page_alloc.c
|
|
|
|
*
|
|
|
|
* Manages the free list, the system allocates free pages here.
|
|
|
|
* Note that kmalloc() lives in slab.c
|
|
|
|
*
|
|
|
|
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
|
|
|
|
* Swap reorganised 29.12.95, Stephen Tweedie
|
|
|
|
* Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
|
|
|
|
* Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
|
|
|
|
* Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
|
|
|
|
* Zone balancing, Kanoj Sarcar, SGI, Jan 2000
|
|
|
|
* Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
|
|
|
|
* (lots of bits borrowed from Ingo Molnar & Andrew Morton)
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/stddef.h>
|
|
|
|
#include <linux/mm.h>
|
2018-12-28 08:34:29 +00:00
|
|
|
#include <linux/highmem.h>
|
2005-04-16 22:20:36 +00:00
|
|
|
#include <linux/swap.h>
|
mm/hwpoison: fix unpoison_memory()
After recent soft-offline rework, error pages can be taken off from
buddy allocator, but the existing unpoison_memory() does not properly
undo the operation. Moreover, due to the recent change on
__get_hwpoison_page(), get_page_unless_zero() is hardly called for
hwpoisoned pages. So __get_hwpoison_page() highly likely returns -EBUSY
(meaning to fail to grab page refcount) and unpoison just clears
PG_hwpoison without releasing a refcount. That does not lead to a
critical issue like kernel panic, but unpoisoned pages never get back to
buddy (leaked permanently), which is not good.
To (partially) fix this, we need to identify "taken off" pages from
other types of hwpoisoned pages. We can't use refcount or page flags
for this purpose, so a pseudo flag is defined by hacking ->private
field. Someone might think that put_page() is enough to cancel
taken-off pages, but the normal free path contains some operations not
suitable for the current purpose, and can fire VM_BUG_ON().
Note that unpoison_memory() is now supposed to be cancel hwpoison events
injected only by madvise() or
/sys/devices/system/memory/{hard,soft}_offline_page, not by MCE
injection, so please don't try to use unpoison when testing with MCE
injection.
[lkp@intel.com: report build failure for ARCH=i386]
Link: https://lkml.kernel.org/r/20211115084006.3728254-4-naoya.horiguchi@linux.dev
Signed-off-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Ding Hui <dinghui@sangfor.com.cn>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-14 22:09:09 +00:00
|
|
|
#include <linux/swapops.h>
|
2005-04-16 22:20:36 +00:00
|
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <linux/pagemap.h>
|
2008-03-04 22:28:32 +00:00
|
|
|
#include <linux/jiffies.h>
|
2010-08-25 20:39:16 +00:00
|
|
|
#include <linux/memblock.h>
|
2005-04-16 22:20:36 +00:00
|
|
|
#include <linux/compiler.h>
|
2005-09-13 08:25:16 +00:00
|
|
|
#include <linux/kernel.h>
|
2015-02-13 22:39:28 +00:00
|
|
|
#include <linux/kasan.h>
|
2022-09-15 15:03:48 +00:00
|
|
|
#include <linux/kmsan.h>
|
2005-04-16 22:20:36 +00:00
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/suspend.h>
|
|
|
|
#include <linux/pagevec.h>
|
|
|
|
#include <linux/blkdev.h>
|
|
|
|
#include <linux/slab.h>
|
2011-05-25 00:12:16 +00:00
|
|
|
#include <linux/ratelimit.h>
|
2007-10-17 06:25:53 +00:00
|
|
|
#include <linux/oom.h>
|
2005-04-16 22:20:36 +00:00
|
|
|
#include <linux/topology.h>
|
|
|
|
#include <linux/sysctl.h>
|
|
|
|
#include <linux/cpu.h>
|
|
|
|
#include <linux/cpuset.h>
|
2005-10-30 01:16:53 +00:00
|
|
|
#include <linux/memory_hotplug.h>
|
2005-04-16 22:20:36 +00:00
|
|
|
#include <linux/nodemask.h>
|
|
|
|
#include <linux/vmalloc.h>
|
2011-05-25 00:11:33 +00:00
|
|
|
#include <linux/vmstat.h>
|
2006-01-06 08:11:17 +00:00
|
|
|
#include <linux/mempolicy.h>
|
2016-01-16 00:56:22 +00:00
|
|
|
#include <linux/memremap.h>
|
2006-06-23 09:03:11 +00:00
|
|
|
#include <linux/stop_machine.h>
|
2019-05-14 22:41:35 +00:00
|
|
|
#include <linux/random.h>
|
[PATCH] Introduce mechanism for registering active regions of memory
At a basic level, architectures define structures to record where active
ranges of page frames are located. Once located, the code to calculate zone
sizes and holes in each architecture is very similar. Some of this zone and
hole sizing code is difficult to read for no good reason. This set of patches
eliminates the similar-looking architecture-specific code.
The patches introduce a mechanism where architectures register where the
active ranges of page frames are with add_active_range(). When all areas have
been discovered, free_area_init_nodes() is called to initialise the pgdat and
zones. The zone sizes and holes are then calculated in an architecture
independent manner.
Patch 1 introduces the mechanism for registering and initialising PFN ranges
Patch 2 changes ppc to use the mechanism - 139 arch-specific LOC removed
Patch 3 changes x86 to use the mechanism - 136 arch-specific LOC removed
Patch 4 changes x86_64 to use the mechanism - 74 arch-specific LOC removed
Patch 5 changes ia64 to use the mechanism - 52 arch-specific LOC removed
Patch 6 accounts for mem_map as a memory hole as the pages are not reclaimable.
It adjusts the watermarks slightly
Tony Luck has successfully tested for ia64 on Itanium with tiger_defconfig,
gensparse_defconfig and defconfig. Bob Picco has also tested and debugged on
IA64. Jack Steiner successfully boot tested on a mammoth SGI IA64-based
machine. These were on patches against 2.6.17-rc1 and release 3 of these
patches but there have been no ia64-changes since release 3.
There are differences in the zone sizes for x86_64 as the arch-specific code
for x86_64 accounts the kernel image and the starting mem_maps as memory holes
but the architecture-independent code accounts the memory as present.
The big benefit of this set of patches is a sizable reduction of
architecture-specific code, some of which is very hairy. There should be a
greater reduction when other architectures use the same mechanisms for zone
and hole sizing but I lack the hardware to test on.
Additional credit;
Dave Hansen for the initial suggestion and comments on early patches
Andy Whitcroft for reviewing early versions and catching numerous
errors
Tony Luck for testing and debugging on IA64
Bob Picco for fixing bugs related to pfn registration, reviewing a
number of patch revisions, providing a number of suggestions
on future direction and testing heavily
Jack Steiner and Robin Holt for testing on IA64 and clarifying
issues related to memory holes
Yasunori for testing on IA64
Andi Kleen for reviewing and feeding back about x86_64
Christian Kujau for providing valuable information related to ACPI
problems on x86_64 and testing potential fixes
This patch:
Define the structure to represent an active range of page frames within a node
in an architecture independent manner. Architectures are expected to register
active ranges of PFNs using add_active_range(nid, start_pfn, end_pfn) and call
free_area_init_nodes() passing the PFNs of the end of each zone.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Bob Picco <bob.picco@hp.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Andi Kleen <ak@muc.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: "Keith Mannthey" <kmannth@gmail.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-27 08:49:43 +00:00
|
|
|
#include <linux/sort.h>
|
|
|
|
#include <linux/pfn.h>
|
2006-10-20 06:28:16 +00:00
|
|
|
#include <linux/backing-dev.h>
|
2006-12-08 10:39:45 +00:00
|
|
|
#include <linux/fault-inject.h>
|
2007-10-16 08:26:11 +00:00
|
|
|
#include <linux/page-isolation.h>
|
2008-04-30 07:55:01 +00:00
|
|
|
#include <linux/debugobjects.h>
|
2009-06-11 12:23:19 +00:00
|
|
|
#include <linux/kmemleak.h>
|
2010-05-24 21:32:30 +00:00
|
|
|
#include <linux/compaction.h>
|
2009-09-22 00:02:44 +00:00
|
|
|
#include <trace/events/kmem.h>
|
2017-02-22 23:42:00 +00:00
|
|
|
#include <trace/events/oom.h>
|
2011-05-20 19:50:29 +00:00
|
|
|
#include <linux/prefetch.h>
|
2013-09-11 21:22:36 +00:00
|
|
|
#include <linux/mm_inline.h>
|
2020-12-15 03:08:30 +00:00
|
|
|
#include <linux/mmu_notifier.h>
|
2011-12-29 12:09:50 +00:00
|
|
|
#include <linux/migrate.h>
|
2013-04-29 22:07:48 +00:00
|
|
|
#include <linux/hugetlb.h>
|
2013-02-07 15:47:07 +00:00
|
|
|
#include <linux/sched/rt.h>
|
2017-02-02 19:43:54 +00:00
|
|
|
#include <linux/sched/mm.h>
|
mm/page_owner: keep track of page owners
This is the page owner tracking code which is introduced so far ago. It
is resident on Andrew's tree, though, nobody tried to upstream so it
remain as is. Our company uses this feature actively to debug memory leak
or to find a memory hogger so I decide to upstream this feature.
This functionality help us to know who allocates the page. When
allocating a page, we store some information about allocation in extra
memory. Later, if we need to know status of all pages, we can get and
analyze it from this stored information.
In previous version of this feature, extra memory is statically defined in
struct page, but, in this version, extra memory is allocated outside of
struct page. It enables us to turn on/off this feature at boottime
without considerable memory waste.
Although we already have tracepoint for tracing page allocation/free,
using it to analyze page owner is rather complex. We need to enlarge the
trace buffer for preventing overlapping until userspace program launched.
And, launched program continually dump out the trace buffer for later
analysis and it would change system behaviour with more possibility rather
than just keeping it in memory, so bad for debug.
Moreover, we can use page_owner feature further for various purposes. For
example, we can use it for fragmentation statistics implemented in this
patch. And, I also plan to implement some CMA failure debugging feature
using this interface.
I'd like to give the credit for all developers contributed this feature,
but, it's not easy because I don't know exact history. Sorry about that.
Below is people who has "Signed-off-by" in the patches in Andrew's tree.
Contributor:
Alexander Nyberg <alexn@dsv.su.se>
Mel Gorman <mgorman@suse.de>
Dave Hansen <dave@linux.vnet.ibm.com>
Minchan Kim <minchan@kernel.org>
Michal Nazarewicz <mina86@mina86.com>
Andrew Morton <akpm@linux-foundation.org>
Jungsoo Son <jungsoo.son@lge.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Dave Hansen <dave@sr71.net>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Jungsoo Son <jungsoo.son@lge.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:56:01 +00:00
|
|
|
#include <linux/page_owner.h>
|
2022-01-14 22:06:37 +00:00
|
|
|
#include <linux/page_table_check.h>
|
2015-06-30 21:57:27 +00:00
|
|
|
#include <linux/kthread.h>
|
mm: charge/uncharge kmemcg from generic page allocator paths
Currently, to charge a non-slab allocation to kmemcg one has to use
alloc_kmem_pages helper with __GFP_ACCOUNT flag. A page allocated with
this helper should finally be freed using free_kmem_pages, otherwise it
won't be uncharged.
This API suits its current users fine, but it turns out to be impossible
to use along with page reference counting, i.e. when an allocation is
supposed to be freed with put_page, as it is the case with pipe or unix
socket buffers.
To overcome this limitation, this patch moves charging/uncharging to
generic page allocator paths, i.e. to __alloc_pages_nodemask and
free_pages_prepare, and zaps alloc/free_kmem_pages helpers. This way,
one can use any of the available page allocation functions to get the
allocated page charged to kmemcg - it's enough to pass __GFP_ACCOUNT,
just like in case of kmalloc and friends. A charged page will be
automatically uncharged on free.
To make it possible, we need to mark pages charged to kmemcg somehow.
To avoid introducing a new page flag, we make use of page->_mapcount for
marking such pages. Since pages charged to kmemcg are not supposed to
be mapped to userspace, it should work just fine. There are other
(ab)users of page->_mapcount - buddy and balloon pages - but we don't
conflict with them.
In case kmemcg is compiled out or not used at runtime, this patch
introduces no overhead to generic page allocator paths. If kmemcg is
used, it will be plus one gfp flags check on alloc and plus one
page->_mapcount check on free, which shouldn't hurt performance, because
the data accessed are hot.
Link: http://lkml.kernel.org/r/a9736d856f895bcb465d9f257b54efe32eda6f99.1464079538.git.vdavydov@virtuozzo.com
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 22:24:24 +00:00
|
|
|
#include <linux/memcontrol.h>
|
2017-03-03 21:15:39 +00:00
|
|
|
#include <linux/ftrace.h>
|
2017-03-03 09:13:38 +00:00
|
|
|
#include <linux/lockdep.h>
|
2017-08-25 22:55:30 +00:00
|
|
|
#include <linux/nmi.h>
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
#include <linux/psi.h>
|
2020-10-11 06:16:40 +00:00
|
|
|
#include <linux/khugepaged.h>
|
2022-01-20 02:10:15 +00:00
|
|
|
#include <linux/delayacct.h>
|
2013-07-03 22:03:41 +00:00
|
|
|
#include <asm/sections.h>
|
2005-04-16 22:20:36 +00:00
|
|
|
#include <asm/tlbflush.h>
|
2006-05-15 16:43:59 +00:00
|
|
|
#include <asm/div64.h>
|
2005-04-16 22:20:36 +00:00
|
|
|
#include "internal.h"
|
mm: shuffle initial free memory to improve memory-side-cache utilization
Patch series "mm: Randomize free memory", v10.
This patch (of 3):
Randomization of the page allocator improves the average utilization of
a direct-mapped memory-side-cache. Memory side caching is a platform
capability that Linux has been previously exposed to in HPC
(high-performance computing) environments on specialty platforms. In
that instance it was a smaller pool of high-bandwidth-memory relative to
higher-capacity / lower-bandwidth DRAM. Now, this capability is going
to be found on general purpose server platforms where DRAM is a cache in
front of higher latency persistent memory [1].
Robert offered an explanation of the state of the art of Linux
interactions with memory-side-caches [2], and I copy it here:
It's been a problem in the HPC space:
http://www.nersc.gov/research-and-development/knl-cache-mode-performance-coe/
A kernel module called zonesort is available to try to help:
https://software.intel.com/en-us/articles/xeon-phi-software
and this abandoned patch series proposed that for the kernel:
https://lkml.kernel.org/r/20170823100205.17311-1-lukasz.daniluk@intel.com
Dan's patch series doesn't attempt to ensure buffers won't conflict, but
also reduces the chance that the buffers will. This will make performance
more consistent, albeit slower than "optimal" (which is near impossible
to attain in a general-purpose kernel). That's better than forcing
users to deploy remedies like:
"To eliminate this gradual degradation, we have added a Stream
measurement to the Node Health Check that follows each job;
nodes are rebooted whenever their measured memory bandwidth
falls below 300 GB/s."
A replacement for zonesort was merged upstream in commit cc9aec03e58f
("x86/numa_emulation: Introduce uniform split capability"). With this
numa_emulation capability, memory can be split into cache sized
("near-memory" sized) numa nodes. A bind operation to such a node, and
disabling workloads on other nodes, enables full cache performance.
However, once the workload exceeds the cache size then cache conflicts
are unavoidable. While HPC environments might be able to tolerate
time-scheduling of cache sized workloads, for general purpose server
platforms, the oversubscribed cache case will be the common case.
The worst case scenario is that a server system owner benchmarks a
workload at boot with an un-contended cache only to see that performance
degrade over time, even below the average cache performance due to
excessive conflicts. Randomization clips the peaks and fills in the
valleys of cache utilization to yield steady average performance.
Here are some performance impact details of the patches:
1/ An Intel internal synthetic memory bandwidth measurement tool, saw a
3X speedup in a contrived case that tries to force cache conflicts.
The contrived cased used the numa_emulation capability to force an
instance of the benchmark to be run in two of the near-memory sized
numa nodes. If both instances were placed on the same emulated they
would fit and cause zero conflicts. While on separate emulated nodes
without randomization they underutilized the cache and conflicted
unnecessarily due to the in-order allocation per node.
2/ A well known Java server application benchmark was run with a heap
size that exceeded cache size by 3X. The cache conflict rate was 8%
for the first run and degraded to 21% after page allocator aging. With
randomization enabled the rate levelled out at 11%.
3/ A MongoDB workload did not observe measurable difference in
cache-conflict rates, but the overall throughput dropped by 7% with
randomization in one case.
4/ Mel Gorman ran his suite of performance workloads with randomization
enabled on platforms without a memory-side-cache and saw a mix of some
improvements and some losses [3].
While there is potentially significant improvement for applications that
depend on low latency access across a wide working-set, the performance
may be negligible to negative for other workloads. For this reason the
shuffle capability defaults to off unless a direct-mapped
memory-side-cache is detected. Even then, the page_alloc.shuffle=0
parameter can be specified to disable the randomization on those systems.
Outside of memory-side-cache utilization concerns there is potentially
security benefit from randomization. Some data exfiltration and
return-oriented-programming attacks rely on the ability to infer the
location of sensitive data objects. The kernel page allocator, especially
early in system boot, has predictable first-in-first out behavior for
physical pages. Pages are freed in physical address order when first
onlined.
Quoting Kees:
"While we already have a base-address randomization
(CONFIG_RANDOMIZE_MEMORY), attacks against the same hardware and
memory layouts would certainly be using the predictability of
allocation ordering (i.e. for attacks where the base address isn't
important: only the relative positions between allocated memory).
This is common in lots of heap-style attacks. They try to gain
control over ordering by spraying allocations, etc.
I'd really like to see this because it gives us something similar
to CONFIG_SLAB_FREELIST_RANDOM but for the page allocator."
While SLAB_FREELIST_RANDOM reduces the predictability of some local slab
caches it leaves vast bulk of memory to be predictably in order allocated.
However, it should be noted, the concrete security benefits are hard to
quantify, and no known CVE is mitigated by this randomization.
Introduce shuffle_free_memory(), and its helper shuffle_zone(), to perform
a Fisher-Yates shuffle of the page allocator 'free_area' lists when they
are initially populated with free memory at boot and at hotplug time. Do
this based on either the presence of a page_alloc.shuffle=Y command line
parameter, or autodetection of a memory-side-cache (to be added in a
follow-on patch).
The shuffling is done in terms of CONFIG_SHUFFLE_PAGE_ORDER sized free
pages where the default CONFIG_SHUFFLE_PAGE_ORDER is MAX_ORDER-1 i.e. 10,
4MB this trades off randomization granularity for time spent shuffling.
MAX_ORDER-1 was chosen to be minimally invasive to the page allocator
while still showing memory-side cache behavior improvements, and the
expectation that the security implications of finer granularity
randomization is mitigated by CONFIG_SLAB_FREELIST_RANDOM. The
performance impact of the shuffling appears to be in the noise compared to
other memory initialization work.
This initial randomization can be undone over time so a follow-on patch is
introduced to inject entropy on page free decisions. It is reasonable to
ask if the page free entropy is sufficient, but it is not enough due to
the in-order initial freeing of pages. At the start of that process
putting page1 in front or behind page0 still keeps them close together,
page2 is still near page1 and has a high chance of being adjacent. As
more pages are added ordering diversity improves, but there is still high
page locality for the low address pages and this leads to no significant
impact to the cache conflict rate.
[1]: https://itpeernetwork.intel.com/intel-optane-dc-persistent-memory-operating-modes/
[2]: https://lkml.kernel.org/r/AT5PR8401MB1169D656C8B5E121752FC0F8AB120@AT5PR8401MB1169.NAMPRD84.PROD.OUTLOOK.COM
[3]: https://lkml.org/lkml/2018/10/12/309
[dan.j.williams@intel.com: fix shuffle enable]
Link: http://lkml.kernel.org/r/154943713038.3858443.4125180191382062871.stgit@dwillia2-desk3.amr.corp.intel.com
[cai@lca.pw: fix SHUFFLE_PAGE_ALLOCATOR help texts]
Link: http://lkml.kernel.org/r/20190425201300.75650-1-cai@lca.pw
Link: http://lkml.kernel.org/r/154899811738.3165233.12325692939590944259.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Robert Elliott <elliott@hpe.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 22:41:28 +00:00
|
|
|
#include "shuffle.h"
|
2020-04-07 03:04:56 +00:00
|
|
|
#include "page_reporting.h"
|
2022-05-10 01:20:47 +00:00
|
|
|
#include "swap.h"
|
2005-04-16 22:20:36 +00:00
|
|
|
|
mm/page_alloc: convert "report" flag of __free_one_page() to a proper flag
Patch series "mm: place pages to the freelist tail when onlining and undoing isolation", v2.
When adding separate memory blocks via add_memory*() and onlining them
immediately, the metadata (especially the memmap) of the next block will
be placed onto one of the just added+onlined block. This creates a chain
of unmovable allocations: If the last memory block cannot get
offlined+removed() so will all dependent ones. We directly have unmovable
allocations all over the place.
This can be observed quite easily using virtio-mem, however, it can also
be observed when using DIMMs. The freshly onlined pages will usually be
placed to the head of the freelists, meaning they will be allocated next,
turning the just-added memory usually immediately un-removable. The fresh
pages are cold, prefering to allocate others (that might be hot) also
feels to be the natural thing to do.
It also applies to the hyper-v balloon xen-balloon, and ppc64 dlpar: when
adding separate, successive memory blocks, each memory block will have
unmovable allocations on them - for example gigantic pages will fail to
allocate.
While the ZONE_NORMAL doesn't provide any guarantees that memory can get
offlined+removed again (any kind of fragmentation with unmovable
allocations is possible), there are many scenarios (hotplugging a lot of
memory, running workload, hotunplug some memory/as much as possible) where
we can offline+remove quite a lot with this patchset.
a) To visualize the problem, a very simple example:
Start a VM with 4GB and 8GB of virtio-mem memory:
[root@localhost ~]# lsmem
RANGE SIZE STATE REMOVABLE BLOCK
0x0000000000000000-0x00000000bfffffff 3G online yes 0-23
0x0000000100000000-0x000000033fffffff 9G online yes 32-103
Memory block size: 128M
Total online memory: 12G
Total offline memory: 0B
Then try to unplug as much as possible using virtio-mem. Observe which
memory blocks are still around. Without this patch set:
[root@localhost ~]# lsmem
RANGE SIZE STATE REMOVABLE BLOCK
0x0000000000000000-0x00000000bfffffff 3G online yes 0-23
0x0000000100000000-0x000000013fffffff 1G online yes 32-39
0x0000000148000000-0x000000014fffffff 128M online yes 41
0x0000000158000000-0x000000015fffffff 128M online yes 43
0x0000000168000000-0x000000016fffffff 128M online yes 45
0x0000000178000000-0x000000017fffffff 128M online yes 47
0x0000000188000000-0x0000000197ffffff 256M online yes 49-50
0x00000001a0000000-0x00000001a7ffffff 128M online yes 52
0x00000001b0000000-0x00000001b7ffffff 128M online yes 54
0x00000001c0000000-0x00000001c7ffffff 128M online yes 56
0x00000001d0000000-0x00000001d7ffffff 128M online yes 58
0x00000001e0000000-0x00000001e7ffffff 128M online yes 60
0x00000001f0000000-0x00000001f7ffffff 128M online yes 62
0x0000000200000000-0x0000000207ffffff 128M online yes 64
0x0000000210000000-0x0000000217ffffff 128M online yes 66
0x0000000220000000-0x0000000227ffffff 128M online yes 68
0x0000000230000000-0x0000000237ffffff 128M online yes 70
0x0000000240000000-0x0000000247ffffff 128M online yes 72
0x0000000250000000-0x0000000257ffffff 128M online yes 74
0x0000000260000000-0x0000000267ffffff 128M online yes 76
0x0000000270000000-0x0000000277ffffff 128M online yes 78
0x0000000280000000-0x0000000287ffffff 128M online yes 80
0x0000000290000000-0x0000000297ffffff 128M online yes 82
0x00000002a0000000-0x00000002a7ffffff 128M online yes 84
0x00000002b0000000-0x00000002b7ffffff 128M online yes 86
0x00000002c0000000-0x00000002c7ffffff 128M online yes 88
0x00000002d0000000-0x00000002d7ffffff 128M online yes 90
0x00000002e0000000-0x00000002e7ffffff 128M online yes 92
0x00000002f0000000-0x00000002f7ffffff 128M online yes 94
0x0000000300000000-0x0000000307ffffff 128M online yes 96
0x0000000310000000-0x0000000317ffffff 128M online yes 98
0x0000000320000000-0x0000000327ffffff 128M online yes 100
0x0000000330000000-0x000000033fffffff 256M online yes 102-103
Memory block size: 128M
Total online memory: 8.1G
Total offline memory: 0B
With this patch set:
[root@localhost ~]# lsmem
RANGE SIZE STATE REMOVABLE BLOCK
0x0000000000000000-0x00000000bfffffff 3G online yes 0-23
0x0000000100000000-0x000000013fffffff 1G online yes 32-39
Memory block size: 128M
Total online memory: 4G
Total offline memory: 0B
All memory can get unplugged, all memory block can get removed. Of
course, no workload ran and the system was basically idle, but it
highlights the issue - the fairly deterministic chain of unmovable
allocations. When a huge page for the 2MB memmap is needed, a
just-onlined 4MB page will be split. The remaining 2MB page will be used
for the memmap of the next memory block. So one memory block will hold
the memmap of the two following memory blocks. Finally the pages of the
last-onlined memory block will get used for the next bigger allocations -
if any allocation is unmovable, all dependent memory blocks cannot get
unplugged and removed until that allocation is gone.
Note that with bigger memory blocks (e.g., 256MB), *all* memory
blocks are dependent and none can get unplugged again!
b) Experiment with memory intensive workload
I performed an experiment with an older version of this patch set (before
we used undo_isolate_page_range() in online_pages(): Hotplug 56GB to a VM
with an initial 4GB, onlining all memory to ZONE_NORMAL right from the
kernel when adding it. I then run various memory intensive workloads that
consume most system memory for a total of 45 minutes. Once finished, I
try to unplug as much memory as possible.
With this change, I am able to remove via virtio-mem (adding individual
128MB memory blocks) 413 out of 448 added memory blocks. Via individual
(256MB) DIMMs 380 out of 448 added memory blocks. (I don't have any
numbers without this patchset, but looking at the above example, it's at
most half of the 448 memory blocks for virtio-mem, and most probably none
for DIMMs).
Again, there are workloads that might behave very differently due to the
nature of ZONE_NORMAL.
This change also affects (besides memory onlining):
- Other users of undo_isolate_page_range(): Pages are always placed to the
tail.
-- When memory offlining fails
-- When memory isolation fails after having isolated some pageblocks
-- When alloc_contig_range() either succeeds or fails
- Other users of __putback_isolated_page(): Pages are always placed to the
tail.
-- Free page reporting
- Other users of __free_pages_core()
-- AFAIKs, any memory that is getting exposed to the buddy during boot.
IIUC we will now usually allocate memory from lower addresses within
a zone first (especially during boot).
- Other users of generic_online_page()
-- Hyper-V balloon
This patch (of 5):
Let's prepare for additional flags and avoid long parameter lists of
bools. Follow-up patches will also make use of the flags in
__free_pages_ok().
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Wei Yang <richard.weiyang@linux.alibaba.com>
Reviewed-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Scott Cheloha <cheloha@linux.ibm.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Link: https://lkml.kernel.org/r/20201005121534.15649-1-david@redhat.com
Link: https://lkml.kernel.org/r/20201005121534.15649-2-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16 03:09:20 +00:00
|
|
|
/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
|
|
|
|
typedef int __bitwise fpi_t;
|
|
|
|
|
|
|
|
/* No special request */
|
|
|
|
#define FPI_NONE ((__force fpi_t)0)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Skip free page reporting notification for the (possibly merged) page.
|
|
|
|
* This does not hinder free page reporting from grabbing the page,
|
|
|
|
* reporting it and marking it "reported" - it only skips notifying
|
|
|
|
* the free page reporting infrastructure about a newly freed page. For
|
|
|
|
* example, used when temporarily pulling a page from a freelist and
|
|
|
|
* putting it back unmodified.
|
|
|
|
*/
|
|
|
|
#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
|
|
|
|
|
mm/page_alloc: place pages to tail in __putback_isolated_page()
__putback_isolated_page() already documents that pages will be placed to
the tail of the freelist - this is, however, not the case for "order >=
MAX_ORDER - 2" (see buddy_merge_likely()) - which should be the case for
all existing users.
This change affects two users:
- free page reporting
- page isolation, when undoing the isolation (including memory onlining).
This behavior is desirable for pages that haven't really been touched
lately, so exactly the two users that don't actually read/write page
content, but rather move untouched pages.
The new behavior is especially desirable for memory onlining, where we
allow allocation of newly onlined pages via undo_isolate_page_range() in
online_pages(). Right now, we always place them to the head of the
freelist, resulting in undesireable behavior: Assume we add individual
memory chunks via add_memory() and online them right away to the NORMAL
zone. We create a dependency chain of unmovable allocations e.g., via the
memmap. The memmap of the next chunk will be placed onto previous chunks
- if the last block cannot get offlined+removed, all dependent ones cannot
get offlined+removed. While this can already be observed with individual
DIMMs, it's more of an issue for virtio-mem (and I suspect also ppc
DLPAR).
Document that this should only be used for optimizations, and no code
should rely on this behavior for correction (if the order of the freelists
ever changes).
We won't care about page shuffling: memory onlining already properly
shuffles after onlining. free page reporting doesn't care about
physically contiguous ranges, and there are already cases where page
isolation will simply move (physically close) free pages to (currently)
the head of the freelists via move_freepages_block() instead of shuffling.
If this becomes ever relevant, we should shuffle the whole zone when
undoing isolation of larger ranges, and after free_contig_range().
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Wei Yang <richard.weiyang@linux.alibaba.com>
Reviewed-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Scott Cheloha <cheloha@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Wei Liu <wei.liu@kernel.org>
Link: https://lkml.kernel.org/r/20201005121534.15649-3-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16 03:09:26 +00:00
|
|
|
/*
|
|
|
|
* Place the (possibly merged) page to the tail of the freelist. Will ignore
|
|
|
|
* page shuffling (relevant code - e.g., memory onlining - is expected to
|
|
|
|
* shuffle the whole zone).
|
|
|
|
*
|
|
|
|
* Note: No code should rely on this flag for correctness - it's purely
|
|
|
|
* to allow for optimizations when handing back either fresh pages
|
|
|
|
* (memory onlining) or untouched pages (page isolation, free page
|
|
|
|
* reporting).
|
|
|
|
*/
|
|
|
|
#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
|
|
|
|
|
2013-07-03 22:01:29 +00:00
|
|
|
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
|
|
|
|
static DEFINE_MUTEX(pcp_batch_high_lock);
|
2021-06-29 02:42:24 +00:00
|
|
|
#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
|
2013-07-03 22:01:29 +00:00
|
|
|
|
2022-06-24 12:54:21 +00:00
|
|
|
#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
|
|
|
|
/*
|
|
|
|
* On SMP, spin_trylock is sufficient protection.
|
|
|
|
* On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
|
|
|
|
*/
|
|
|
|
#define pcp_trylock_prepare(flags) do { } while (0)
|
|
|
|
#define pcp_trylock_finish(flag) do { } while (0)
|
|
|
|
#else
|
|
|
|
|
|
|
|
/* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
|
|
|
|
#define pcp_trylock_prepare(flags) local_irq_save(flags)
|
|
|
|
#define pcp_trylock_finish(flags) local_irq_restore(flags)
|
|
|
|
#endif
|
|
|
|
|
2022-06-24 12:54:23 +00:00
|
|
|
/*
|
|
|
|
* Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
|
|
|
|
* a migration causing the wrong PCP to be locked and remote memory being
|
|
|
|
* potentially allocated, pin the task to the CPU for the lookup+lock.
|
|
|
|
* preempt_disable is used on !RT because it is faster than migrate_disable.
|
|
|
|
* migrate_disable is used on RT because otherwise RT spinlock usage is
|
|
|
|
* interfered with and a high priority task cannot preempt the allocator.
|
|
|
|
*/
|
|
|
|
#ifndef CONFIG_PREEMPT_RT
|
|
|
|
#define pcpu_task_pin() preempt_disable()
|
|
|
|
#define pcpu_task_unpin() preempt_enable()
|
|
|
|
#else
|
|
|
|
#define pcpu_task_pin() migrate_disable()
|
|
|
|
#define pcpu_task_unpin() migrate_enable()
|
|
|
|
#endif
|
2013-07-03 22:01:29 +00:00
|
|
|
|
2022-06-24 12:54:23 +00:00
|
|
|
/*
|
|
|
|
* Generic helper to lookup and a per-cpu variable with an embedded spinlock.
|
|
|
|
* Return value should be used with equivalent unlock helper.
|
|
|
|
*/
|
|
|
|
#define pcpu_spin_lock(type, member, ptr) \
|
|
|
|
({ \
|
|
|
|
type *_ret; \
|
|
|
|
pcpu_task_pin(); \
|
|
|
|
_ret = this_cpu_ptr(ptr); \
|
|
|
|
spin_lock(&_ret->member); \
|
|
|
|
_ret; \
|
|
|
|
})
|
|
|
|
|
2022-11-18 10:17:14 +00:00
|
|
|
#define pcpu_spin_trylock(type, member, ptr) \
|
2022-06-24 12:54:23 +00:00
|
|
|
({ \
|
|
|
|
type *_ret; \
|
|
|
|
pcpu_task_pin(); \
|
|
|
|
_ret = this_cpu_ptr(ptr); \
|
2022-11-18 10:17:14 +00:00
|
|
|
if (!spin_trylock(&_ret->member)) { \
|
2022-06-24 12:54:23 +00:00
|
|
|
pcpu_task_unpin(); \
|
|
|
|
_ret = NULL; \
|
|
|
|
} \
|
|
|
|
_ret; \
|
|
|
|
})
|
|
|
|
|
|
|
|
#define pcpu_spin_unlock(member, ptr) \
|
|
|
|
({ \
|
|
|
|
spin_unlock(&ptr->member); \
|
|
|
|
pcpu_task_unpin(); \
|
|
|
|
})
|
|
|
|
|
|
|
|
/* struct per_cpu_pages specific helpers. */
|
|
|
|
#define pcp_spin_lock(ptr) \
|
|
|
|
pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
|
|
|
|
|
2022-11-18 10:17:14 +00:00
|
|
|
#define pcp_spin_trylock(ptr) \
|
|
|
|
pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
|
2022-06-24 12:54:23 +00:00
|
|
|
|
|
|
|
#define pcp_spin_unlock(ptr) \
|
|
|
|
pcpu_spin_unlock(lock, ptr)
|
|
|
|
|
2010-05-26 21:44:56 +00:00
|
|
|
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
|
|
|
|
DEFINE_PER_CPU(int, numa_node);
|
|
|
|
EXPORT_PER_CPU_SYMBOL(numa_node);
|
|
|
|
#endif
|
|
|
|
|
2017-11-16 01:38:22 +00:00
|
|
|
DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
|
|
|
|
|
2010-05-26 21:45:00 +00:00
|
|
|
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
|
|
|
|
/*
|
|
|
|
* N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
|
|
|
|
* It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
|
|
|
|
* Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
|
|
|
|
* defined in <linux/topology.h>.
|
|
|
|
*/
|
|
|
|
DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
|
|
|
|
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
|
|
|
|
#endif
|
|
|
|
|
2020-04-10 21:32:32 +00:00
|
|
|
static DEFINE_MUTEX(pcpu_drain_mutex);
|
2017-02-24 22:56:56 +00:00
|
|
|
|
gcc-plugins: Add latent_entropy plugin
This adds a new gcc plugin named "latent_entropy". It is designed to
extract as much possible uncertainty from a running system at boot time as
possible, hoping to capitalize on any possible variation in CPU operation
(due to runtime data differences, hardware differences, SMP ordering,
thermal timing variation, cache behavior, etc).
At the very least, this plugin is a much more comprehensive example for
how to manipulate kernel code using the gcc plugin internals.
The need for very-early boot entropy tends to be very architecture or
system design specific, so this plugin is more suited for those sorts
of special cases. The existing kernel RNG already attempts to extract
entropy from reliable runtime variation, but this plugin takes the idea to
a logical extreme by permuting a global variable based on any variation
in code execution (e.g. a different value (and permutation function)
is used to permute the global based on loop count, case statement,
if/then/else branching, etc).
To do this, the plugin starts by inserting a local variable in every
marked function. The plugin then adds logic so that the value of this
variable is modified by randomly chosen operations (add, xor and rol) and
random values (gcc generates separate static values for each location at
compile time and also injects the stack pointer at runtime). The resulting
value depends on the control flow path (e.g., loops and branches taken).
Before the function returns, the plugin mixes this local variable into
the latent_entropy global variable. The value of this global variable
is added to the kernel entropy pool in do_one_initcall() and _do_fork(),
though it does not credit any bytes of entropy to the pool; the contents
of the global are just used to mix the pool.
Additionally, the plugin can pre-initialize arrays with build-time
random contents, so that two different kernel builds running on identical
hardware will not have the same starting values.
Signed-off-by: Emese Revfy <re.emese@gmail.com>
[kees: expanded commit message and code comments]
Signed-off-by: Kees Cook <keescook@chromium.org>
2016-06-20 18:41:19 +00:00
|
|
|
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
|
2016-10-18 22:08:04 +00:00
|
|
|
volatile unsigned long latent_entropy __latent_entropy;
|
gcc-plugins: Add latent_entropy plugin
This adds a new gcc plugin named "latent_entropy". It is designed to
extract as much possible uncertainty from a running system at boot time as
possible, hoping to capitalize on any possible variation in CPU operation
(due to runtime data differences, hardware differences, SMP ordering,
thermal timing variation, cache behavior, etc).
At the very least, this plugin is a much more comprehensive example for
how to manipulate kernel code using the gcc plugin internals.
The need for very-early boot entropy tends to be very architecture or
system design specific, so this plugin is more suited for those sorts
of special cases. The existing kernel RNG already attempts to extract
entropy from reliable runtime variation, but this plugin takes the idea to
a logical extreme by permuting a global variable based on any variation
in code execution (e.g. a different value (and permutation function)
is used to permute the global based on loop count, case statement,
if/then/else branching, etc).
To do this, the plugin starts by inserting a local variable in every
marked function. The plugin then adds logic so that the value of this
variable is modified by randomly chosen operations (add, xor and rol) and
random values (gcc generates separate static values for each location at
compile time and also injects the stack pointer at runtime). The resulting
value depends on the control flow path (e.g., loops and branches taken).
Before the function returns, the plugin mixes this local variable into
the latent_entropy global variable. The value of this global variable
is added to the kernel entropy pool in do_one_initcall() and _do_fork(),
though it does not credit any bytes of entropy to the pool; the contents
of the global are just used to mix the pool.
Additionally, the plugin can pre-initialize arrays with build-time
random contents, so that two different kernel builds running on identical
hardware will not have the same starting values.
Signed-off-by: Emese Revfy <re.emese@gmail.com>
[kees: expanded commit message and code comments]
Signed-off-by: Kees Cook <keescook@chromium.org>
2016-06-20 18:41:19 +00:00
|
|
|
EXPORT_SYMBOL(latent_entropy);
|
|
|
|
#endif
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
Memoryless nodes: Generic management of nodemasks for various purposes
Why do we need to support memoryless nodes?
KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> wrote:
> For fujitsu, problem is called "empty" node.
>
> When ACPI's SRAT table includes "possible nodes", ia64 bootstrap(acpi_numa_init)
> creates nodes, which includes no memory, no cpu.
>
> I tried to remove empty-node in past, but that was denied.
> It was because we can hot-add cpu to the empty node.
> (node-hotplug triggered by cpu is not implemented now. and it will be ugly.)
>
>
> For HP, (Lee can comment on this later), they have memory-less-node.
> As far as I hear, HP's machine can have following configration.
>
> (example)
> Node0: CPU0 memory AAA MB
> Node1: CPU1 memory AAA MB
> Node2: CPU2 memory AAA MB
> Node3: CPU3 memory AAA MB
> Node4: Memory XXX GB
>
> AAA is very small value (below 16MB) and will be omitted by ia64 bootstrap.
> After boot, only Node 4 has valid memory (but have no cpu.)
>
> Maybe this is memory-interleave by firmware config.
Christoph Lameter <clameter@sgi.com> wrote:
> Future SGI platforms (actually also current one can have but nothing like
> that is deployed to my knowledge) have nodes with only cpus. Current SGI
> platforms have nodes with just I/O that we so far cannot manage in the
> core. So the arch code maps them to the nearest memory node.
Lee Schermerhorn <Lee.Schermerhorn@hp.com> wrote:
> For the HP platforms, we can configure each cell with from 0% to 100%
> "cell local memory". When we configure with <100% CLM, the "missing
> percentages" are interleaved by hardware on a cache-line granularity to
> improve bandwidth at the expense of latency for numa-challenged
> applications [and OSes, but not our problem ;-)]. When we boot Linux on
> such a config, all of the real nodes have no memory--it all resides in a
> single interleaved pseudo-node.
>
> When we boot Linux on a 100% CLM configuration [== NUMA], we still have
> the interleaved pseudo-node. It contains a few hundred MB stolen from
> the real nodes to contain the DMA zone. [Interleaved memory resides at
> phys addr 0]. The memoryless-nodes patches, along with the zoneorder
> patches, support this config as well.
>
> Also, when we boot a NUMA config with the "mem=" command line,
> specifying less memory than actually exists, Linux takes the excluded
> memory "off the top" rather than distributing it across the nodes. This
> can result in memoryless nodes, as well.
>
This patch:
Preparation for memoryless node patches.
Provide a generic way to keep nodemasks describing various characteristics of
NUMA nodes.
Remove the node_online_map and the node_possible map and realize the same
functionality using two nodes stats: N_POSSIBLE and N_ONLINE.
[Lee.Schermerhorn@hp.com: Initialize N_*_MEMORY and N_CPU masks for non-NUMA config]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Tested-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Bob Picco <bob.picco@hp.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@skynet.ie>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 08:25:27 +00:00
|
|
|
* Array of node states.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
Memoryless nodes: Generic management of nodemasks for various purposes
Why do we need to support memoryless nodes?
KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> wrote:
> For fujitsu, problem is called "empty" node.
>
> When ACPI's SRAT table includes "possible nodes", ia64 bootstrap(acpi_numa_init)
> creates nodes, which includes no memory, no cpu.
>
> I tried to remove empty-node in past, but that was denied.
> It was because we can hot-add cpu to the empty node.
> (node-hotplug triggered by cpu is not implemented now. and it will be ugly.)
>
>
> For HP, (Lee can comment on this later), they have memory-less-node.
> As far as I hear, HP's machine can have following configration.
>
> (example)
> Node0: CPU0 memory AAA MB
> Node1: CPU1 memory AAA MB
> Node2: CPU2 memory AAA MB
> Node3: CPU3 memory AAA MB
> Node4: Memory XXX GB
>
> AAA is very small value (below 16MB) and will be omitted by ia64 bootstrap.
> After boot, only Node 4 has valid memory (but have no cpu.)
>
> Maybe this is memory-interleave by firmware config.
Christoph Lameter <clameter@sgi.com> wrote:
> Future SGI platforms (actually also current one can have but nothing like
> that is deployed to my knowledge) have nodes with only cpus. Current SGI
> platforms have nodes with just I/O that we so far cannot manage in the
> core. So the arch code maps them to the nearest memory node.
Lee Schermerhorn <Lee.Schermerhorn@hp.com> wrote:
> For the HP platforms, we can configure each cell with from 0% to 100%
> "cell local memory". When we configure with <100% CLM, the "missing
> percentages" are interleaved by hardware on a cache-line granularity to
> improve bandwidth at the expense of latency for numa-challenged
> applications [and OSes, but not our problem ;-)]. When we boot Linux on
> such a config, all of the real nodes have no memory--it all resides in a
> single interleaved pseudo-node.
>
> When we boot Linux on a 100% CLM configuration [== NUMA], we still have
> the interleaved pseudo-node. It contains a few hundred MB stolen from
> the real nodes to contain the DMA zone. [Interleaved memory resides at
> phys addr 0]. The memoryless-nodes patches, along with the zoneorder
> patches, support this config as well.
>
> Also, when we boot a NUMA config with the "mem=" command line,
> specifying less memory than actually exists, Linux takes the excluded
> memory "off the top" rather than distributing it across the nodes. This
> can result in memoryless nodes, as well.
>
This patch:
Preparation for memoryless node patches.
Provide a generic way to keep nodemasks describing various characteristics of
NUMA nodes.
Remove the node_online_map and the node_possible map and realize the same
functionality using two nodes stats: N_POSSIBLE and N_ONLINE.
[Lee.Schermerhorn@hp.com: Initialize N_*_MEMORY and N_CPU masks for non-NUMA config]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Tested-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Bob Picco <bob.picco@hp.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@skynet.ie>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 08:25:27 +00:00
|
|
|
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
|
|
|
|
[N_POSSIBLE] = NODE_MASK_ALL,
|
|
|
|
[N_ONLINE] = { { [0] = 1UL } },
|
|
|
|
#ifndef CONFIG_NUMA
|
|
|
|
[N_NORMAL_MEMORY] = { { [0] = 1UL } },
|
|
|
|
#ifdef CONFIG_HIGHMEM
|
|
|
|
[N_HIGH_MEMORY] = { { [0] = 1UL } },
|
2012-12-12 21:52:00 +00:00
|
|
|
#endif
|
|
|
|
[N_MEMORY] = { { [0] = 1UL } },
|
Memoryless nodes: Generic management of nodemasks for various purposes
Why do we need to support memoryless nodes?
KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> wrote:
> For fujitsu, problem is called "empty" node.
>
> When ACPI's SRAT table includes "possible nodes", ia64 bootstrap(acpi_numa_init)
> creates nodes, which includes no memory, no cpu.
>
> I tried to remove empty-node in past, but that was denied.
> It was because we can hot-add cpu to the empty node.
> (node-hotplug triggered by cpu is not implemented now. and it will be ugly.)
>
>
> For HP, (Lee can comment on this later), they have memory-less-node.
> As far as I hear, HP's machine can have following configration.
>
> (example)
> Node0: CPU0 memory AAA MB
> Node1: CPU1 memory AAA MB
> Node2: CPU2 memory AAA MB
> Node3: CPU3 memory AAA MB
> Node4: Memory XXX GB
>
> AAA is very small value (below 16MB) and will be omitted by ia64 bootstrap.
> After boot, only Node 4 has valid memory (but have no cpu.)
>
> Maybe this is memory-interleave by firmware config.
Christoph Lameter <clameter@sgi.com> wrote:
> Future SGI platforms (actually also current one can have but nothing like
> that is deployed to my knowledge) have nodes with only cpus. Current SGI
> platforms have nodes with just I/O that we so far cannot manage in the
> core. So the arch code maps them to the nearest memory node.
Lee Schermerhorn <Lee.Schermerhorn@hp.com> wrote:
> For the HP platforms, we can configure each cell with from 0% to 100%
> "cell local memory". When we configure with <100% CLM, the "missing
> percentages" are interleaved by hardware on a cache-line granularity to
> improve bandwidth at the expense of latency for numa-challenged
> applications [and OSes, but not our problem ;-)]. When we boot Linux on
> such a config, all of the real nodes have no memory--it all resides in a
> single interleaved pseudo-node.
>
> When we boot Linux on a 100% CLM configuration [== NUMA], we still have
> the interleaved pseudo-node. It contains a few hundred MB stolen from
> the real nodes to contain the DMA zone. [Interleaved memory resides at
> phys addr 0]. The memoryless-nodes patches, along with the zoneorder
> patches, support this config as well.
>
> Also, when we boot a NUMA config with the "mem=" command line,
> specifying less memory than actually exists, Linux takes the excluded
> memory "off the top" rather than distributing it across the nodes. This
> can result in memoryless nodes, as well.
>
This patch:
Preparation for memoryless node patches.
Provide a generic way to keep nodemasks describing various characteristics of
NUMA nodes.
Remove the node_online_map and the node_possible map and realize the same
functionality using two nodes stats: N_POSSIBLE and N_ONLINE.
[Lee.Schermerhorn@hp.com: Initialize N_*_MEMORY and N_CPU masks for non-NUMA config]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Tested-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Bob Picco <bob.picco@hp.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@skynet.ie>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 08:25:27 +00:00
|
|
|
[N_CPU] = { { [0] = 1UL } },
|
|
|
|
#endif /* NUMA */
|
|
|
|
};
|
|
|
|
EXPORT_SYMBOL(node_states);
|
|
|
|
|
2018-12-28 08:34:29 +00:00
|
|
|
atomic_long_t _totalram_pages __read_mostly;
|
|
|
|
EXPORT_SYMBOL(_totalram_pages);
|
2006-04-11 05:52:59 +00:00
|
|
|
unsigned long totalreserve_pages __read_mostly;
|
mm: cma: split cma-reserved in dmesg log
When the system boots up, in the dmesg logs we can see the memory
statistics along with total reserved as below. Memory: 458840k/458840k
available, 65448k reserved, 0K highmem
When CMA is enabled, still the total reserved memory remains the same.
However, the CMA memory is not considered as reserved. But, when we see
/proc/meminfo, the CMA memory is part of free memory. This creates
confusion. This patch corrects the problem by properly subtracting the
CMA reserved memory from the total reserved memory in dmesg logs.
Below is the dmesg snapshot from an arm based device with 512MB RAM and
12MB single CMA region.
Before this change:
Memory: 458840k/458840k available, 65448k reserved, 0K highmem
After this change:
Memory: 458840k/458840k available, 53160k reserved, 12288k cma-reserved, 0K highmem
Signed-off-by: Pintu Kumar <pintu.k@samsung.com>
Signed-off-by: Vishnu Pratap Singh <vishnu.ps@samsung.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-19 00:17:15 +00:00
|
|
|
unsigned long totalcma_pages __read_mostly;
|
2012-01-10 23:07:42 +00:00
|
|
|
|
2021-06-29 02:42:24 +00:00
|
|
|
int percpu_pagelist_high_fraction;
|
2009-06-18 03:24:12 +00:00
|
|
|
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
|
2021-04-01 23:23:43 +00:00
|
|
|
DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
|
mm: security: introduce init_on_alloc=1 and init_on_free=1 boot options
Patch series "add init_on_alloc/init_on_free boot options", v10.
Provide init_on_alloc and init_on_free boot options.
These are aimed at preventing possible information leaks and making the
control-flow bugs that depend on uninitialized values more deterministic.
Enabling either of the options guarantees that the memory returned by the
page allocator and SL[AU]B is initialized with zeroes. SLOB allocator
isn't supported at the moment, as its emulation of kmem caches complicates
handling of SLAB_TYPESAFE_BY_RCU caches correctly.
Enabling init_on_free also guarantees that pages and heap objects are
initialized right after they're freed, so it won't be possible to access
stale data by using a dangling pointer.
As suggested by Michal Hocko, right now we don't let the heap users to
disable initialization for certain allocations. There's not enough
evidence that doing so can speed up real-life cases, and introducing ways
to opt-out may result in things going out of control.
This patch (of 2):
The new options are needed to prevent possible information leaks and make
control-flow bugs that depend on uninitialized values more deterministic.
This is expected to be on-by-default on Android and Chrome OS. And it
gives the opportunity for anyone else to use it under distros too via the
boot args. (The init_on_free feature is regularly requested by folks
where memory forensics is included in their threat models.)
init_on_alloc=1 makes the kernel initialize newly allocated pages and heap
objects with zeroes. Initialization is done at allocation time at the
places where checks for __GFP_ZERO are performed.
init_on_free=1 makes the kernel initialize freed pages and heap objects
with zeroes upon their deletion. This helps to ensure sensitive data
doesn't leak via use-after-free accesses.
Both init_on_alloc=1 and init_on_free=1 guarantee that the allocator
returns zeroed memory. The two exceptions are slab caches with
constructors and SLAB_TYPESAFE_BY_RCU flag. Those are never
zero-initialized to preserve their semantics.
Both init_on_alloc and init_on_free default to zero, but those defaults
can be overridden with CONFIG_INIT_ON_ALLOC_DEFAULT_ON and
CONFIG_INIT_ON_FREE_DEFAULT_ON.
If either SLUB poisoning or page poisoning is enabled, those options take
precedence over init_on_alloc and init_on_free: initialization is only
applied to unpoisoned allocations.
Slowdown for the new features compared to init_on_free=0, init_on_alloc=0:
hackbench, init_on_free=1: +7.62% sys time (st.err 0.74%)
hackbench, init_on_alloc=1: +7.75% sys time (st.err 2.14%)
Linux build with -j12, init_on_free=1: +8.38% wall time (st.err 0.39%)
Linux build with -j12, init_on_free=1: +24.42% sys time (st.err 0.52%)
Linux build with -j12, init_on_alloc=1: -0.13% wall time (st.err 0.42%)
Linux build with -j12, init_on_alloc=1: +0.57% sys time (st.err 0.40%)
The slowdown for init_on_free=0, init_on_alloc=0 compared to the baseline
is within the standard error.
The new features are also going to pave the way for hardware memory
tagging (e.g. arm64's MTE), which will require both on_alloc and on_free
hooks to set the tags for heap objects. With MTE, tagging will have the
same cost as memory initialization.
Although init_on_free is rather costly, there are paranoid use-cases where
in-memory data lifetime is desired to be minimized. There are various
arguments for/against the realism of the associated threat models, but
given that we'll need the infrastructure for MTE anyway, and there are
people who want wipe-on-free behavior no matter what the performance cost,
it seems reasonable to include it in this series.
[glider@google.com: v8]
Link: http://lkml.kernel.org/r/20190626121943.131390-2-glider@google.com
[glider@google.com: v9]
Link: http://lkml.kernel.org/r/20190627130316.254309-2-glider@google.com
[glider@google.com: v10]
Link: http://lkml.kernel.org/r/20190628093131.199499-2-glider@google.com
Link: http://lkml.kernel.org/r/20190617151050.92663-2-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Michal Hocko <mhocko@suse.cz> [page and dmapool parts
Acked-by: James Morris <jamorris@linux.microsoft.com>]
Cc: Christoph Lameter <cl@linux.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Sandeep Patil <sspatil@android.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Jann Horn <jannh@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Marco Elver <elver@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 03:59:19 +00:00
|
|
|
EXPORT_SYMBOL(init_on_alloc);
|
|
|
|
|
2021-04-01 23:23:43 +00:00
|
|
|
DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
|
mm: security: introduce init_on_alloc=1 and init_on_free=1 boot options
Patch series "add init_on_alloc/init_on_free boot options", v10.
Provide init_on_alloc and init_on_free boot options.
These are aimed at preventing possible information leaks and making the
control-flow bugs that depend on uninitialized values more deterministic.
Enabling either of the options guarantees that the memory returned by the
page allocator and SL[AU]B is initialized with zeroes. SLOB allocator
isn't supported at the moment, as its emulation of kmem caches complicates
handling of SLAB_TYPESAFE_BY_RCU caches correctly.
Enabling init_on_free also guarantees that pages and heap objects are
initialized right after they're freed, so it won't be possible to access
stale data by using a dangling pointer.
As suggested by Michal Hocko, right now we don't let the heap users to
disable initialization for certain allocations. There's not enough
evidence that doing so can speed up real-life cases, and introducing ways
to opt-out may result in things going out of control.
This patch (of 2):
The new options are needed to prevent possible information leaks and make
control-flow bugs that depend on uninitialized values more deterministic.
This is expected to be on-by-default on Android and Chrome OS. And it
gives the opportunity for anyone else to use it under distros too via the
boot args. (The init_on_free feature is regularly requested by folks
where memory forensics is included in their threat models.)
init_on_alloc=1 makes the kernel initialize newly allocated pages and heap
objects with zeroes. Initialization is done at allocation time at the
places where checks for __GFP_ZERO are performed.
init_on_free=1 makes the kernel initialize freed pages and heap objects
with zeroes upon their deletion. This helps to ensure sensitive data
doesn't leak via use-after-free accesses.
Both init_on_alloc=1 and init_on_free=1 guarantee that the allocator
returns zeroed memory. The two exceptions are slab caches with
constructors and SLAB_TYPESAFE_BY_RCU flag. Those are never
zero-initialized to preserve their semantics.
Both init_on_alloc and init_on_free default to zero, but those defaults
can be overridden with CONFIG_INIT_ON_ALLOC_DEFAULT_ON and
CONFIG_INIT_ON_FREE_DEFAULT_ON.
If either SLUB poisoning or page poisoning is enabled, those options take
precedence over init_on_alloc and init_on_free: initialization is only
applied to unpoisoned allocations.
Slowdown for the new features compared to init_on_free=0, init_on_alloc=0:
hackbench, init_on_free=1: +7.62% sys time (st.err 0.74%)
hackbench, init_on_alloc=1: +7.75% sys time (st.err 2.14%)
Linux build with -j12, init_on_free=1: +8.38% wall time (st.err 0.39%)
Linux build with -j12, init_on_free=1: +24.42% sys time (st.err 0.52%)
Linux build with -j12, init_on_alloc=1: -0.13% wall time (st.err 0.42%)
Linux build with -j12, init_on_alloc=1: +0.57% sys time (st.err 0.40%)
The slowdown for init_on_free=0, init_on_alloc=0 compared to the baseline
is within the standard error.
The new features are also going to pave the way for hardware memory
tagging (e.g. arm64's MTE), which will require both on_alloc and on_free
hooks to set the tags for heap objects. With MTE, tagging will have the
same cost as memory initialization.
Although init_on_free is rather costly, there are paranoid use-cases where
in-memory data lifetime is desired to be minimized. There are various
arguments for/against the realism of the associated threat models, but
given that we'll need the infrastructure for MTE anyway, and there are
people who want wipe-on-free behavior no matter what the performance cost,
it seems reasonable to include it in this series.
[glider@google.com: v8]
Link: http://lkml.kernel.org/r/20190626121943.131390-2-glider@google.com
[glider@google.com: v9]
Link: http://lkml.kernel.org/r/20190627130316.254309-2-glider@google.com
[glider@google.com: v10]
Link: http://lkml.kernel.org/r/20190628093131.199499-2-glider@google.com
Link: http://lkml.kernel.org/r/20190617151050.92663-2-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Michal Hocko <mhocko@suse.cz> [page and dmapool parts
Acked-by: James Morris <jamorris@linux.microsoft.com>]
Cc: Christoph Lameter <cl@linux.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Sandeep Patil <sspatil@android.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Jann Horn <jannh@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Marco Elver <elver@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 03:59:19 +00:00
|
|
|
EXPORT_SYMBOL(init_on_free);
|
|
|
|
|
2015-09-08 22:01:25 +00:00
|
|
|
/*
|
|
|
|
* A cached value of the page's pageblock's migratetype, used when the page is
|
|
|
|
* put on a pcplist. Used to avoid the pageblock migratetype lookup when
|
|
|
|
* freeing from pcplists in most cases, at the cost of possibly becoming stale.
|
|
|
|
* Also the migratetype set in the page does not necessarily match the pcplist
|
|
|
|
* index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
|
|
|
|
* other index - this ensures that it will be put on the correct CMA freelist.
|
|
|
|
*/
|
|
|
|
static inline int get_pcppage_migratetype(struct page *page)
|
|
|
|
{
|
|
|
|
return page->index;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void set_pcppage_migratetype(struct page *page, int migratetype)
|
|
|
|
{
|
|
|
|
page->index = migratetype;
|
|
|
|
}
|
|
|
|
|
2010-03-05 21:42:13 +00:00
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
|
|
/*
|
|
|
|
* The following functions are used by the suspend/hibernate code to temporarily
|
|
|
|
* change gfp_allowed_mask in order to avoid using I/O during memory allocations
|
|
|
|
* while devices are suspended. To avoid races with the suspend/hibernate code,
|
2018-07-31 08:51:32 +00:00
|
|
|
* they should always be called with system_transition_mutex held
|
|
|
|
* (gfp_allowed_mask also should only be modified with system_transition_mutex
|
|
|
|
* held, unless the suspend/hibernate code is guaranteed not to run in parallel
|
|
|
|
* with that modification).
|
2010-03-05 21:42:13 +00:00
|
|
|
*/
|
2010-12-03 21:57:45 +00:00
|
|
|
|
|
|
|
static gfp_t saved_gfp_mask;
|
|
|
|
|
|
|
|
void pm_restore_gfp_mask(void)
|
2010-03-05 21:42:13 +00:00
|
|
|
{
|
2018-07-31 08:51:32 +00:00
|
|
|
WARN_ON(!mutex_is_locked(&system_transition_mutex));
|
2010-12-03 21:57:45 +00:00
|
|
|
if (saved_gfp_mask) {
|
|
|
|
gfp_allowed_mask = saved_gfp_mask;
|
|
|
|
saved_gfp_mask = 0;
|
|
|
|
}
|
2010-03-05 21:42:13 +00:00
|
|
|
}
|
|
|
|
|
2010-12-03 21:57:45 +00:00
|
|
|
void pm_restrict_gfp_mask(void)
|
2010-03-05 21:42:13 +00:00
|
|
|
{
|
2018-07-31 08:51:32 +00:00
|
|
|
WARN_ON(!mutex_is_locked(&system_transition_mutex));
|
2010-12-03 21:57:45 +00:00
|
|
|
WARN_ON(saved_gfp_mask);
|
|
|
|
saved_gfp_mask = gfp_allowed_mask;
|
2015-11-07 00:28:21 +00:00
|
|
|
gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
|
2010-03-05 21:42:13 +00:00
|
|
|
}
|
2012-01-10 23:07:15 +00:00
|
|
|
|
|
|
|
bool pm_suspended_storage(void)
|
|
|
|
{
|
2015-11-07 00:28:21 +00:00
|
|
|
if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
|
2012-01-10 23:07:15 +00:00
|
|
|
return false;
|
|
|
|
return true;
|
|
|
|
}
|
2010-03-05 21:42:13 +00:00
|
|
|
#endif /* CONFIG_PM_SLEEP */
|
|
|
|
|
2007-10-16 08:26:01 +00:00
|
|
|
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
|
2015-11-07 00:29:57 +00:00
|
|
|
unsigned int pageblock_order __read_mostly;
|
2007-10-16 08:26:01 +00:00
|
|
|
#endif
|
|
|
|
|
2020-10-16 03:09:35 +00:00
|
|
|
static void __free_pages_ok(struct page *page, unsigned int order,
|
|
|
|
fpi_t fpi_flags);
|
2006-01-06 08:11:08 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* results with 256, 32 in the lowmem_reserve sysctl:
|
|
|
|
* 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
|
|
|
|
* 1G machine -> (16M dma, 784M normal, 224M high)
|
|
|
|
* NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
|
|
|
|
* HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
|
2015-02-12 23:00:22 +00:00
|
|
|
* HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
|
2005-11-05 16:25:53 +00:00
|
|
|
*
|
|
|
|
* TBD: should special case ZONE_DMA32 machines here - in those we normally
|
|
|
|
* don't need any ZONE_NORMAL reservation
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
2018-04-10 23:30:11 +00:00
|
|
|
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
|
2007-02-10 09:43:10 +00:00
|
|
|
#ifdef CONFIG_ZONE_DMA
|
2018-04-10 23:30:11 +00:00
|
|
|
[ZONE_DMA] = 256,
|
2007-02-10 09:43:10 +00:00
|
|
|
#endif
|
2006-09-26 06:31:13 +00:00
|
|
|
#ifdef CONFIG_ZONE_DMA32
|
2018-04-10 23:30:11 +00:00
|
|
|
[ZONE_DMA32] = 256,
|
2006-09-26 06:31:13 +00:00
|
|
|
#endif
|
2018-04-10 23:30:11 +00:00
|
|
|
[ZONE_NORMAL] = 32,
|
2006-09-26 06:31:14 +00:00
|
|
|
#ifdef CONFIG_HIGHMEM
|
2018-04-10 23:30:11 +00:00
|
|
|
[ZONE_HIGHMEM] = 0,
|
2006-09-26 06:31:14 +00:00
|
|
|
#endif
|
2018-04-10 23:30:11 +00:00
|
|
|
[ZONE_MOVABLE] = 0,
|
2006-09-26 06:31:13 +00:00
|
|
|
};
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2023-03-21 17:05:02 +00:00
|
|
|
char * const zone_names[MAX_NR_ZONES] = {
|
2007-02-10 09:43:10 +00:00
|
|
|
#ifdef CONFIG_ZONE_DMA
|
2006-09-26 06:31:13 +00:00
|
|
|
"DMA",
|
2007-02-10 09:43:10 +00:00
|
|
|
#endif
|
2006-09-26 06:31:13 +00:00
|
|
|
#ifdef CONFIG_ZONE_DMA32
|
2006-09-26 06:31:13 +00:00
|
|
|
"DMA32",
|
2006-09-26 06:31:13 +00:00
|
|
|
#endif
|
2006-09-26 06:31:13 +00:00
|
|
|
"Normal",
|
2006-09-26 06:31:14 +00:00
|
|
|
#ifdef CONFIG_HIGHMEM
|
2007-07-17 11:03:12 +00:00
|
|
|
"HighMem",
|
2006-09-26 06:31:14 +00:00
|
|
|
#endif
|
2007-07-17 11:03:12 +00:00
|
|
|
"Movable",
|
2015-08-09 19:29:06 +00:00
|
|
|
#ifdef CONFIG_ZONE_DEVICE
|
|
|
|
"Device",
|
|
|
|
#endif
|
2006-09-26 06:31:13 +00:00
|
|
|
};
|
|
|
|
|
2018-12-28 08:35:55 +00:00
|
|
|
const char * const migratetype_names[MIGRATE_TYPES] = {
|
mm, page_owner: print migratetype of page and pageblock, symbolic flags
The information in /sys/kernel/debug/page_owner includes the migratetype
of the pageblock the page belongs to. This is also checked against the
page's migratetype (as declared by gfp_flags during its allocation), and
the page is reported as Fallback if its migratetype differs from the
pageblock's one. t This is somewhat misleading because in fact fallback
allocation is not the only reason why these two can differ. It also
doesn't direcly provide the page's migratetype, although it's possible
to derive that from the gfp_flags.
It's arguably better to print both page and pageblock's migratetype and
leave the interpretation to the consumer than to suggest fallback
allocation as the only possible reason. While at it, we can print the
migratetypes as string the same way as /proc/pagetypeinfo does, as some
of the numeric values depend on kernel configuration. For that, this
patch moves the migratetype_names array from #ifdef CONFIG_PROC_FS part
of mm/vmstat.c to mm/page_alloc.c and exports it.
With the new format strings for flags, we can now also provide symbolic
page and gfp flags in the /sys/kernel/debug/page_owner file. This
replaces the positional printing of page flags as single letters, which
might have looked nicer, but was limited to a subset of flags, and
required the user to remember the letters.
Example page_owner entry after the patch:
Page allocated via order 0, mask 0x24213ca(GFP_HIGHUSER_MOVABLE|__GFP_COLD|__GFP_NOWARN|__GFP_NORETRY)
PFN 520 type Movable Block 1 type Movable Flags 0xfffff8001006c(referenced|uptodate|lru|active|mappedtodisk)
[<ffffffff811682c4>] __alloc_pages_nodemask+0x134/0x230
[<ffffffff811b4058>] alloc_pages_current+0x88/0x120
[<ffffffff8115e386>] __page_cache_alloc+0xe6/0x120
[<ffffffff8116ba6c>] __do_page_cache_readahead+0xdc/0x240
[<ffffffff8116bd05>] ondemand_readahead+0x135/0x260
[<ffffffff8116bfb1>] page_cache_sync_readahead+0x31/0x50
[<ffffffff81160523>] generic_file_read_iter+0x453/0x760
[<ffffffff811e0d57>] __vfs_read+0xa7/0xd0
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 21:56:08 +00:00
|
|
|
"Unmovable",
|
|
|
|
"Movable",
|
|
|
|
"Reclaimable",
|
|
|
|
"HighAtomic",
|
|
|
|
#ifdef CONFIG_CMA
|
|
|
|
"CMA",
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_MEMORY_ISOLATION
|
|
|
|
"Isolate",
|
|
|
|
#endif
|
|
|
|
};
|
|
|
|
|
2020-06-03 22:59:17 +00:00
|
|
|
compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
|
|
|
|
[NULL_COMPOUND_DTOR] = NULL,
|
|
|
|
[COMPOUND_PAGE_DTOR] = free_compound_page,
|
2015-11-07 00:29:50 +00:00
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
2020-06-03 22:59:17 +00:00
|
|
|
[HUGETLB_PAGE_DTOR] = free_huge_page,
|
2015-11-07 00:29:50 +00:00
|
|
|
#endif
|
2016-01-16 00:54:17 +00:00
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
2020-06-03 22:59:17 +00:00
|
|
|
[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
|
2016-01-16 00:54:17 +00:00
|
|
|
#endif
|
2015-11-07 00:29:50 +00:00
|
|
|
};
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
int min_free_kbytes = 1024;
|
2014-01-23 23:53:28 +00:00
|
|
|
int user_min_free_kbytes = -1;
|
mm: reclaim small amounts of memory when an external fragmentation event occurs
An external fragmentation event was previously described as
When the page allocator fragments memory, it records the event using
the mm_page_alloc_extfrag event. If the fallback_order is smaller
than a pageblock order (order-9 on 64-bit x86) then it's considered
an event that will cause external fragmentation issues in the future.
The kernel reduces the probability of such events by increasing the
watermark sizes by calling set_recommended_min_free_kbytes early in the
lifetime of the system. This works reasonably well in general but if
there are enough sparsely populated pageblocks then the problem can still
occur as enough memory is free overall and kswapd stays asleep.
This patch introduces a watermark_boost_factor sysctl that allows a zone
watermark to be temporarily boosted when an external fragmentation causing
events occurs. The boosting will stall allocations that would decrease
free memory below the boosted low watermark and kswapd is woken if the
calling context allows to reclaim an amount of memory relative to the size
of the high watermark and the watermark_boost_factor until the boost is
cleared. When kswapd finishes, it wakes kcompactd at the pageblock order
to clean some of the pageblocks that may have been affected by the
fragmentation event. kswapd avoids any writeback, slab shrinkage and swap
from reclaim context during this operation to avoid excessive system
disruption in the name of fragmentation avoidance. Care is taken so that
kswapd will do normal reclaim work if the system is really low on memory.
This was evaluated using the same workloads as "mm, page_alloc: Spread
allocations across zones before introducing fragmentation".
1-socket Skylake machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 1 THP allocating thread
--------------------------------------
4.20-rc3 extfrag events < order 9: 804694
4.20-rc3+patch: 408912 (49% reduction)
4.20-rc3+patch1-4: 18421 (98% reduction)
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Amean fault-base-1 653.58 ( 0.00%) 652.71 ( 0.13%)
Amean fault-huge-1 0.00 ( 0.00%) 178.93 * -99.00%*
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Percentage huge-1 0.00 ( 0.00%) 5.12 ( 100.00%)
Note that external fragmentation causing events are massively reduced by
this path whether in comparison to the previous kernel or the vanilla
kernel. The fault latency for huge pages appears to be increased but that
is only because THP allocations were successful with the patch applied.
1-socket Skylake machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 291392
4.20-rc3+patch: 191187 (34% reduction)
4.20-rc3+patch1-4: 13464 (95% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Min fault-base-1 912.00 ( 0.00%) 905.00 ( 0.77%)
Min fault-huge-1 127.00 ( 0.00%) 135.00 ( -6.30%)
Amean fault-base-1 1467.55 ( 0.00%) 1481.67 ( -0.96%)
Amean fault-huge-1 1127.11 ( 0.00%) 1063.88 * 5.61%*
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Percentage huge-1 77.64 ( 0.00%) 83.46 ( 7.49%)
As before, massive reduction in external fragmentation events, some jitter
on latencies and an increase in THP allocation success rates.
2-socket Haswell machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 5 THP allocating threads
----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 215698
4.20-rc3+patch: 200210 (7% reduction)
4.20-rc3+patch1-4: 14263 (93% reduction)
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Amean fault-base-5 1346.45 ( 0.00%) 1306.87 ( 2.94%)
Amean fault-huge-5 3418.60 ( 0.00%) 1348.94 ( 60.54%)
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Percentage huge-5 0.78 ( 0.00%) 7.91 ( 910.64%)
There is a 93% reduction in fragmentation causing events, there is a big
reduction in the huge page fault latency and allocation success rate is
higher.
2-socket Haswell machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 166352
4.20-rc3+patch: 147463 (11% reduction)
4.20-rc3+patch1-4: 11095 (93% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Amean fault-base-5 6217.43 ( 0.00%) 7419.67 * -19.34%*
Amean fault-huge-5 3163.33 ( 0.00%) 3263.80 ( -3.18%)
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Percentage huge-5 95.14 ( 0.00%) 87.98 ( -7.53%)
There is a large reduction in fragmentation events with some jitter around
the latencies and success rates. As before, the high THP allocation
success rate does mean the system is under a lot of pressure. However, as
the fragmentation events are reduced, it would be expected that the
long-term allocation success rate would be higher.
Link: http://lkml.kernel.org/r/20181123114528.28802-5-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 08:35:52 +00:00
|
|
|
int watermark_boost_factor __read_mostly = 15000;
|
2016-03-17 21:19:14 +00:00
|
|
|
int watermark_scale_factor = 10;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2022-06-14 09:21:56 +00:00
|
|
|
bool mirrored_kernelcore __initdata_memblock;
|
2011-12-08 18:22:09 +00:00
|
|
|
|
|
|
|
/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
|
|
|
|
int movable_zone;
|
|
|
|
EXPORT_SYMBOL(movable_zone);
|
[PATCH] Introduce mechanism for registering active regions of memory
At a basic level, architectures define structures to record where active
ranges of page frames are located. Once located, the code to calculate zone
sizes and holes in each architecture is very similar. Some of this zone and
hole sizing code is difficult to read for no good reason. This set of patches
eliminates the similar-looking architecture-specific code.
The patches introduce a mechanism where architectures register where the
active ranges of page frames are with add_active_range(). When all areas have
been discovered, free_area_init_nodes() is called to initialise the pgdat and
zones. The zone sizes and holes are then calculated in an architecture
independent manner.
Patch 1 introduces the mechanism for registering and initialising PFN ranges
Patch 2 changes ppc to use the mechanism - 139 arch-specific LOC removed
Patch 3 changes x86 to use the mechanism - 136 arch-specific LOC removed
Patch 4 changes x86_64 to use the mechanism - 74 arch-specific LOC removed
Patch 5 changes ia64 to use the mechanism - 52 arch-specific LOC removed
Patch 6 accounts for mem_map as a memory hole as the pages are not reclaimable.
It adjusts the watermarks slightly
Tony Luck has successfully tested for ia64 on Itanium with tiger_defconfig,
gensparse_defconfig and defconfig. Bob Picco has also tested and debugged on
IA64. Jack Steiner successfully boot tested on a mammoth SGI IA64-based
machine. These were on patches against 2.6.17-rc1 and release 3 of these
patches but there have been no ia64-changes since release 3.
There are differences in the zone sizes for x86_64 as the arch-specific code
for x86_64 accounts the kernel image and the starting mem_maps as memory holes
but the architecture-independent code accounts the memory as present.
The big benefit of this set of patches is a sizable reduction of
architecture-specific code, some of which is very hairy. There should be a
greater reduction when other architectures use the same mechanisms for zone
and hole sizing but I lack the hardware to test on.
Additional credit;
Dave Hansen for the initial suggestion and comments on early patches
Andy Whitcroft for reviewing early versions and catching numerous
errors
Tony Luck for testing and debugging on IA64
Bob Picco for fixing bugs related to pfn registration, reviewing a
number of patch revisions, providing a number of suggestions
on future direction and testing heavily
Jack Steiner and Robin Holt for testing on IA64 and clarifying
issues related to memory holes
Yasunori for testing on IA64
Andi Kleen for reviewing and feeding back about x86_64
Christian Kujau for providing valuable information related to ACPI
problems on x86_64 and testing potential fixes
This patch:
Define the structure to represent an active range of page frames within a node
in an architecture independent manner. Architectures are expected to register
active ranges of PFNs using add_active_range(nid, start_pfn, end_pfn) and call
free_area_init_nodes() passing the PFNs of the end of each zone.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Bob Picco <bob.picco@hp.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Andi Kleen <ak@muc.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: "Keith Mannthey" <kmannth@gmail.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-27 08:49:43 +00:00
|
|
|
|
2007-05-23 20:57:55 +00:00
|
|
|
#if MAX_NUMNODES > 1
|
2019-03-05 23:48:26 +00:00
|
|
|
unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
|
2019-03-05 23:48:29 +00:00
|
|
|
unsigned int nr_online_nodes __read_mostly = 1;
|
2007-05-23 20:57:55 +00:00
|
|
|
EXPORT_SYMBOL(nr_node_ids);
|
2009-06-16 22:32:15 +00:00
|
|
|
EXPORT_SYMBOL(nr_online_nodes);
|
2007-05-23 20:57:55 +00:00
|
|
|
#endif
|
|
|
|
|
2007-10-16 08:25:54 +00:00
|
|
|
int page_group_by_mobility_disabled __read_mostly;
|
|
|
|
|
2015-06-30 21:57:02 +00:00
|
|
|
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
|
mm/page_alloc.c: don't call kasan_free_pages() at deferred mem init
When CONFIG_KASAN is enabled on large memory SMP systems, the deferrred
pages initialization can take a long time. Below were the reported init
times on a 8-socket 96-core 4TB IvyBridge system.
1) Non-debug kernel without CONFIG_KASAN
[ 8.764222] node 1 initialised, 132086516 pages in 7027ms
2) Debug kernel with CONFIG_KASAN
[ 146.288115] node 1 initialised, 132075466 pages in 143052ms
So the page init time in a debug kernel was 20X of the non-debug kernel.
The long init time can be problematic as the page initialization is done
with interrupt disabled. In this particular case, it caused the
appearance of following warning messages as well as NMI backtraces of all
the cores that were doing the initialization.
[ 68.240049] rcu: INFO: rcu_sched detected stalls on CPUs/tasks:
[ 68.241000] rcu: 25-...0: (100 ticks this GP) idle=b72/1/0x4000000000000000 softirq=915/915 fqs=16252
[ 68.241000] rcu: 44-...0: (95 ticks this GP) idle=49a/1/0x4000000000000000 softirq=788/788 fqs=16253
[ 68.241000] rcu: 54-...0: (104 ticks this GP) idle=03a/1/0x4000000000000000 softirq=721/825 fqs=16253
[ 68.241000] rcu: 60-...0: (103 ticks this GP) idle=cbe/1/0x4000000000000000 softirq=637/740 fqs=16253
[ 68.241000] rcu: 72-...0: (105 ticks this GP) idle=786/1/0x4000000000000000 softirq=536/641 fqs=16253
[ 68.241000] rcu: 84-...0: (99 ticks this GP) idle=292/1/0x4000000000000000 softirq=537/537 fqs=16253
[ 68.241000] rcu: 111-...0: (104 ticks this GP) idle=bde/1/0x4000000000000000 softirq=474/476 fqs=16253
[ 68.241000] rcu: (detected by 13, t=65018 jiffies, g=249, q=2)
The long init time was mainly caused by the call to kasan_free_pages() to
poison the newly initialized pages. On a 4TB system, we are talking about
almost 500GB of memory probably on the same node.
In reality, we may not need to poison the newly initialized pages before
they are ever allocated. So KASAN poisoning of freed pages before the
completion of deferred memory initialization is now disabled. Those pages
will be properly poisoned when they are allocated or freed after deferred
pages initialization is done.
With this change, the new page initialization time became:
[ 21.948010] node 1 initialised, 132075466 pages in 18702ms
This was still about double the non-debug kernel time, but was much
better than before.
Link: http://lkml.kernel.org/r/1544459388-8736-1-git-send-email-longman@redhat.com
Signed-off-by: Waiman Long <longman@redhat.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 08:38:51 +00:00
|
|
|
/*
|
|
|
|
* During boot we initialize deferred pages on-demand, as needed, but once
|
|
|
|
* page_alloc_init_late() has finished, the deferred pages are all initialized,
|
|
|
|
* and we can permanently disable that path.
|
|
|
|
*/
|
2023-03-21 17:05:02 +00:00
|
|
|
DEFINE_STATIC_KEY_TRUE(deferred_pages);
|
mm/page_alloc.c: don't call kasan_free_pages() at deferred mem init
When CONFIG_KASAN is enabled on large memory SMP systems, the deferrred
pages initialization can take a long time. Below were the reported init
times on a 8-socket 96-core 4TB IvyBridge system.
1) Non-debug kernel without CONFIG_KASAN
[ 8.764222] node 1 initialised, 132086516 pages in 7027ms
2) Debug kernel with CONFIG_KASAN
[ 146.288115] node 1 initialised, 132075466 pages in 143052ms
So the page init time in a debug kernel was 20X of the non-debug kernel.
The long init time can be problematic as the page initialization is done
with interrupt disabled. In this particular case, it caused the
appearance of following warning messages as well as NMI backtraces of all
the cores that were doing the initialization.
[ 68.240049] rcu: INFO: rcu_sched detected stalls on CPUs/tasks:
[ 68.241000] rcu: 25-...0: (100 ticks this GP) idle=b72/1/0x4000000000000000 softirq=915/915 fqs=16252
[ 68.241000] rcu: 44-...0: (95 ticks this GP) idle=49a/1/0x4000000000000000 softirq=788/788 fqs=16253
[ 68.241000] rcu: 54-...0: (104 ticks this GP) idle=03a/1/0x4000000000000000 softirq=721/825 fqs=16253
[ 68.241000] rcu: 60-...0: (103 ticks this GP) idle=cbe/1/0x4000000000000000 softirq=637/740 fqs=16253
[ 68.241000] rcu: 72-...0: (105 ticks this GP) idle=786/1/0x4000000000000000 softirq=536/641 fqs=16253
[ 68.241000] rcu: 84-...0: (99 ticks this GP) idle=292/1/0x4000000000000000 softirq=537/537 fqs=16253
[ 68.241000] rcu: 111-...0: (104 ticks this GP) idle=bde/1/0x4000000000000000 softirq=474/476 fqs=16253
[ 68.241000] rcu: (detected by 13, t=65018 jiffies, g=249, q=2)
The long init time was mainly caused by the call to kasan_free_pages() to
poison the newly initialized pages. On a 4TB system, we are talking about
almost 500GB of memory probably on the same node.
In reality, we may not need to poison the newly initialized pages before
they are ever allocated. So KASAN poisoning of freed pages before the
completion of deferred memory initialization is now disabled. Those pages
will be properly poisoned when they are allocated or freed after deferred
pages initialization is done.
With this change, the new page initialization time became:
[ 21.948010] node 1 initialised, 132075466 pages in 18702ms
This was still about double the non-debug kernel time, but was much
better than before.
Link: http://lkml.kernel.org/r/1544459388-8736-1-git-send-email-longman@redhat.com
Signed-off-by: Waiman Long <longman@redhat.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 08:38:51 +00:00
|
|
|
|
kasan, page_alloc: deduplicate should_skip_kasan_poison
Patch series "kasan, vmalloc, arm64: add vmalloc tagging support for SW/HW_TAGS", v6.
This patchset adds vmalloc tagging support for SW_TAGS and HW_TAGS
KASAN modes.
About half of patches are cleanups I went for along the way. None of them
seem to be important enough to go through stable, so I decided not to
split them out into separate patches/series.
The patchset is partially based on an early version of the HW_TAGS
patchset by Vincenzo that had vmalloc support. Thus, I added a
Co-developed-by tag into a few patches.
SW_TAGS vmalloc tagging support is straightforward. It reuses all of the
generic KASAN machinery, but uses shadow memory to store tags instead of
magic values. Naturally, vmalloc tagging requires adding a few
kasan_reset_tag() annotations to the vmalloc code.
HW_TAGS vmalloc tagging support stands out. HW_TAGS KASAN is based on Arm
MTE, which can only assigns tags to physical memory. As a result, HW_TAGS
KASAN only tags vmalloc() allocations, which are backed by page_alloc
memory. It ignores vmap() and others.
This patch (of 39):
Currently, should_skip_kasan_poison() has two definitions: one for when
CONFIG_DEFERRED_STRUCT_PAGE_INIT is enabled, one for when it's not.
Instead of duplicating the checks, add a deferred_pages_enabled() helper
and use it in a single should_skip_kasan_poison() definition.
Also move should_skip_kasan_poison() closer to its caller and clarify all
conditions in the comment.
Link: https://lkml.kernel.org/r/cover.1643047180.git.andreyknvl@google.com
Link: https://lkml.kernel.org/r/658b79f5fb305edaf7dc16bc52ea870d3220d4a8.1643047180.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Acked-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-25 01:10:04 +00:00
|
|
|
static inline bool deferred_pages_enabled(void)
|
mm/page_alloc.c: don't call kasan_free_pages() at deferred mem init
When CONFIG_KASAN is enabled on large memory SMP systems, the deferrred
pages initialization can take a long time. Below were the reported init
times on a 8-socket 96-core 4TB IvyBridge system.
1) Non-debug kernel without CONFIG_KASAN
[ 8.764222] node 1 initialised, 132086516 pages in 7027ms
2) Debug kernel with CONFIG_KASAN
[ 146.288115] node 1 initialised, 132075466 pages in 143052ms
So the page init time in a debug kernel was 20X of the non-debug kernel.
The long init time can be problematic as the page initialization is done
with interrupt disabled. In this particular case, it caused the
appearance of following warning messages as well as NMI backtraces of all
the cores that were doing the initialization.
[ 68.240049] rcu: INFO: rcu_sched detected stalls on CPUs/tasks:
[ 68.241000] rcu: 25-...0: (100 ticks this GP) idle=b72/1/0x4000000000000000 softirq=915/915 fqs=16252
[ 68.241000] rcu: 44-...0: (95 ticks this GP) idle=49a/1/0x4000000000000000 softirq=788/788 fqs=16253
[ 68.241000] rcu: 54-...0: (104 ticks this GP) idle=03a/1/0x4000000000000000 softirq=721/825 fqs=16253
[ 68.241000] rcu: 60-...0: (103 ticks this GP) idle=cbe/1/0x4000000000000000 softirq=637/740 fqs=16253
[ 68.241000] rcu: 72-...0: (105 ticks this GP) idle=786/1/0x4000000000000000 softirq=536/641 fqs=16253
[ 68.241000] rcu: 84-...0: (99 ticks this GP) idle=292/1/0x4000000000000000 softirq=537/537 fqs=16253
[ 68.241000] rcu: 111-...0: (104 ticks this GP) idle=bde/1/0x4000000000000000 softirq=474/476 fqs=16253
[ 68.241000] rcu: (detected by 13, t=65018 jiffies, g=249, q=2)
The long init time was mainly caused by the call to kasan_free_pages() to
poison the newly initialized pages. On a 4TB system, we are talking about
almost 500GB of memory probably on the same node.
In reality, we may not need to poison the newly initialized pages before
they are ever allocated. So KASAN poisoning of freed pages before the
completion of deferred memory initialization is now disabled. Those pages
will be properly poisoned when they are allocated or freed after deferred
pages initialization is done.
With this change, the new page initialization time became:
[ 21.948010] node 1 initialised, 132075466 pages in 18702ms
This was still about double the non-debug kernel time, but was much
better than before.
Link: http://lkml.kernel.org/r/1544459388-8736-1-git-send-email-longman@redhat.com
Signed-off-by: Waiman Long <longman@redhat.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 08:38:51 +00:00
|
|
|
{
|
kasan, page_alloc: deduplicate should_skip_kasan_poison
Patch series "kasan, vmalloc, arm64: add vmalloc tagging support for SW/HW_TAGS", v6.
This patchset adds vmalloc tagging support for SW_TAGS and HW_TAGS
KASAN modes.
About half of patches are cleanups I went for along the way. None of them
seem to be important enough to go through stable, so I decided not to
split them out into separate patches/series.
The patchset is partially based on an early version of the HW_TAGS
patchset by Vincenzo that had vmalloc support. Thus, I added a
Co-developed-by tag into a few patches.
SW_TAGS vmalloc tagging support is straightforward. It reuses all of the
generic KASAN machinery, but uses shadow memory to store tags instead of
magic values. Naturally, vmalloc tagging requires adding a few
kasan_reset_tag() annotations to the vmalloc code.
HW_TAGS vmalloc tagging support stands out. HW_TAGS KASAN is based on Arm
MTE, which can only assigns tags to physical memory. As a result, HW_TAGS
KASAN only tags vmalloc() allocations, which are backed by page_alloc
memory. It ignores vmap() and others.
This patch (of 39):
Currently, should_skip_kasan_poison() has two definitions: one for when
CONFIG_DEFERRED_STRUCT_PAGE_INIT is enabled, one for when it's not.
Instead of duplicating the checks, add a deferred_pages_enabled() helper
and use it in a single should_skip_kasan_poison() definition.
Also move should_skip_kasan_poison() closer to its caller and clarify all
conditions in the comment.
Link: https://lkml.kernel.org/r/cover.1643047180.git.andreyknvl@google.com
Link: https://lkml.kernel.org/r/658b79f5fb305edaf7dc16bc52ea870d3220d4a8.1643047180.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Acked-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-25 01:10:04 +00:00
|
|
|
return static_branch_unlikely(&deferred_pages);
|
mm/page_alloc.c: don't call kasan_free_pages() at deferred mem init
When CONFIG_KASAN is enabled on large memory SMP systems, the deferrred
pages initialization can take a long time. Below were the reported init
times on a 8-socket 96-core 4TB IvyBridge system.
1) Non-debug kernel without CONFIG_KASAN
[ 8.764222] node 1 initialised, 132086516 pages in 7027ms
2) Debug kernel with CONFIG_KASAN
[ 146.288115] node 1 initialised, 132075466 pages in 143052ms
So the page init time in a debug kernel was 20X of the non-debug kernel.
The long init time can be problematic as the page initialization is done
with interrupt disabled. In this particular case, it caused the
appearance of following warning messages as well as NMI backtraces of all
the cores that were doing the initialization.
[ 68.240049] rcu: INFO: rcu_sched detected stalls on CPUs/tasks:
[ 68.241000] rcu: 25-...0: (100 ticks this GP) idle=b72/1/0x4000000000000000 softirq=915/915 fqs=16252
[ 68.241000] rcu: 44-...0: (95 ticks this GP) idle=49a/1/0x4000000000000000 softirq=788/788 fqs=16253
[ 68.241000] rcu: 54-...0: (104 ticks this GP) idle=03a/1/0x4000000000000000 softirq=721/825 fqs=16253
[ 68.241000] rcu: 60-...0: (103 ticks this GP) idle=cbe/1/0x4000000000000000 softirq=637/740 fqs=16253
[ 68.241000] rcu: 72-...0: (105 ticks this GP) idle=786/1/0x4000000000000000 softirq=536/641 fqs=16253
[ 68.241000] rcu: 84-...0: (99 ticks this GP) idle=292/1/0x4000000000000000 softirq=537/537 fqs=16253
[ 68.241000] rcu: 111-...0: (104 ticks this GP) idle=bde/1/0x4000000000000000 softirq=474/476 fqs=16253
[ 68.241000] rcu: (detected by 13, t=65018 jiffies, g=249, q=2)
The long init time was mainly caused by the call to kasan_free_pages() to
poison the newly initialized pages. On a 4TB system, we are talking about
almost 500GB of memory probably on the same node.
In reality, we may not need to poison the newly initialized pages before
they are ever allocated. So KASAN poisoning of freed pages before the
completion of deferred memory initialization is now disabled. Those pages
will be properly poisoned when they are allocated or freed after deferred
pages initialization is done.
With this change, the new page initialization time became:
[ 21.948010] node 1 initialised, 132075466 pages in 18702ms
This was still about double the non-debug kernel time, but was much
better than before.
Link: http://lkml.kernel.org/r/1544459388-8736-1-git-send-email-longman@redhat.com
Signed-off-by: Waiman Long <longman@redhat.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 08:38:51 +00:00
|
|
|
}
|
|
|
|
|
2015-06-30 21:57:02 +00:00
|
|
|
/*
|
2023-03-21 17:05:02 +00:00
|
|
|
* deferred_grow_zone() is __init, but it is called from
|
|
|
|
* get_page_from_freelist() during early boot until deferred_pages permanently
|
|
|
|
* disables this call. This is why we have refdata wrapper to avoid warning,
|
|
|
|
* and to ensure that the function body gets unloaded.
|
2015-06-30 21:57:02 +00:00
|
|
|
*/
|
2023-03-21 17:05:02 +00:00
|
|
|
static bool __ref
|
|
|
|
_deferred_grow_zone(struct zone *zone, unsigned int order)
|
2015-06-30 21:57:02 +00:00
|
|
|
{
|
2023-03-21 17:05:02 +00:00
|
|
|
return deferred_grow_zone(zone, order);
|
2015-06-30 21:57:02 +00:00
|
|
|
}
|
|
|
|
#else
|
kasan, page_alloc: deduplicate should_skip_kasan_poison
Patch series "kasan, vmalloc, arm64: add vmalloc tagging support for SW/HW_TAGS", v6.
This patchset adds vmalloc tagging support for SW_TAGS and HW_TAGS
KASAN modes.
About half of patches are cleanups I went for along the way. None of them
seem to be important enough to go through stable, so I decided not to
split them out into separate patches/series.
The patchset is partially based on an early version of the HW_TAGS
patchset by Vincenzo that had vmalloc support. Thus, I added a
Co-developed-by tag into a few patches.
SW_TAGS vmalloc tagging support is straightforward. It reuses all of the
generic KASAN machinery, but uses shadow memory to store tags instead of
magic values. Naturally, vmalloc tagging requires adding a few
kasan_reset_tag() annotations to the vmalloc code.
HW_TAGS vmalloc tagging support stands out. HW_TAGS KASAN is based on Arm
MTE, which can only assigns tags to physical memory. As a result, HW_TAGS
KASAN only tags vmalloc() allocations, which are backed by page_alloc
memory. It ignores vmap() and others.
This patch (of 39):
Currently, should_skip_kasan_poison() has two definitions: one for when
CONFIG_DEFERRED_STRUCT_PAGE_INIT is enabled, one for when it's not.
Instead of duplicating the checks, add a deferred_pages_enabled() helper
and use it in a single should_skip_kasan_poison() definition.
Also move should_skip_kasan_poison() closer to its caller and clarify all
conditions in the comment.
Link: https://lkml.kernel.org/r/cover.1643047180.git.andreyknvl@google.com
Link: https://lkml.kernel.org/r/658b79f5fb305edaf7dc16bc52ea870d3220d4a8.1643047180.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Acked-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-25 01:10:04 +00:00
|
|
|
static inline bool deferred_pages_enabled(void)
|
mm, kasan: don't poison boot memory with tag-based modes
During boot, all non-reserved memblock memory is exposed to page_alloc via
memblock_free_pages->__free_pages_core(). This results in
kasan_free_pages() being called, which poisons that memory.
Poisoning all that memory lengthens boot time. The most noticeable effect
is observed with the HW_TAGS mode. A boot-time impact may potentially
also affect systems with large amount of RAM.
This patch changes the tag-based modes to not poison the memory during the
memblock->page_alloc transition.
An exception is made for KASAN_GENERIC. Since it marks all new memory as
accessible, not poisoning the memory released from memblock will lead to
KASAN missing invalid boot-time accesses to that memory.
With KASAN_SW_TAGS, as it uses the invalid 0xFE tag as the default tag for
all memory, it won't miss bad boot-time accesses even if the poisoning of
memblock memory is removed.
With KASAN_HW_TAGS, the default memory tags values are unspecified.
Therefore, if memblock poisoning is removed, this KASAN mode will miss the
mentioned type of boot-time bugs with a 1/16 probability. This is taken
as an acceptable trafe-off.
Internally, the poisoning is removed as follows. __free_pages_core() is
used when exposing fresh memory during system boot and when onlining
memory during hotplug. This patch adds a new FPI_SKIP_KASAN_POISON flag
and passes it to __free_pages_ok() through free_pages_prepare() from
__free_pages_core(). If FPI_SKIP_KASAN_POISON is set, kasan_free_pages()
is not called.
All memory allocated normally when the boot is over keeps getting poisoned
as usual.
Link: https://lkml.kernel.org/r/a0570dc1e3a8f39a55aa343a1fc08cd5c2d4cad6.1613692950.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-04-30 05:59:52 +00:00
|
|
|
{
|
kasan, page_alloc: deduplicate should_skip_kasan_poison
Patch series "kasan, vmalloc, arm64: add vmalloc tagging support for SW/HW_TAGS", v6.
This patchset adds vmalloc tagging support for SW_TAGS and HW_TAGS
KASAN modes.
About half of patches are cleanups I went for along the way. None of them
seem to be important enough to go through stable, so I decided not to
split them out into separate patches/series.
The patchset is partially based on an early version of the HW_TAGS
patchset by Vincenzo that had vmalloc support. Thus, I added a
Co-developed-by tag into a few patches.
SW_TAGS vmalloc tagging support is straightforward. It reuses all of the
generic KASAN machinery, but uses shadow memory to store tags instead of
magic values. Naturally, vmalloc tagging requires adding a few
kasan_reset_tag() annotations to the vmalloc code.
HW_TAGS vmalloc tagging support stands out. HW_TAGS KASAN is based on Arm
MTE, which can only assigns tags to physical memory. As a result, HW_TAGS
KASAN only tags vmalloc() allocations, which are backed by page_alloc
memory. It ignores vmap() and others.
This patch (of 39):
Currently, should_skip_kasan_poison() has two definitions: one for when
CONFIG_DEFERRED_STRUCT_PAGE_INIT is enabled, one for when it's not.
Instead of duplicating the checks, add a deferred_pages_enabled() helper
and use it in a single should_skip_kasan_poison() definition.
Also move should_skip_kasan_poison() closer to its caller and clarify all
conditions in the comment.
Link: https://lkml.kernel.org/r/cover.1643047180.git.andreyknvl@google.com
Link: https://lkml.kernel.org/r/658b79f5fb305edaf7dc16bc52ea870d3220d4a8.1643047180.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Acked-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-25 01:10:04 +00:00
|
|
|
return false;
|
mm, kasan: don't poison boot memory with tag-based modes
During boot, all non-reserved memblock memory is exposed to page_alloc via
memblock_free_pages->__free_pages_core(). This results in
kasan_free_pages() being called, which poisons that memory.
Poisoning all that memory lengthens boot time. The most noticeable effect
is observed with the HW_TAGS mode. A boot-time impact may potentially
also affect systems with large amount of RAM.
This patch changes the tag-based modes to not poison the memory during the
memblock->page_alloc transition.
An exception is made for KASAN_GENERIC. Since it marks all new memory as
accessible, not poisoning the memory released from memblock will lead to
KASAN missing invalid boot-time accesses to that memory.
With KASAN_SW_TAGS, as it uses the invalid 0xFE tag as the default tag for
all memory, it won't miss bad boot-time accesses even if the poisoning of
memblock memory is removed.
With KASAN_HW_TAGS, the default memory tags values are unspecified.
Therefore, if memblock poisoning is removed, this KASAN mode will miss the
mentioned type of boot-time bugs with a 1/16 probability. This is taken
as an acceptable trafe-off.
Internally, the poisoning is removed as follows. __free_pages_core() is
used when exposing fresh memory during system boot and when onlining
memory during hotplug. This patch adds a new FPI_SKIP_KASAN_POISON flag
and passes it to __free_pages_ok() through free_pages_prepare() from
__free_pages_core(). If FPI_SKIP_KASAN_POISON is set, kasan_free_pages()
is not called.
All memory allocated normally when the boot is over keeps getting poisoned
as usual.
Link: https://lkml.kernel.org/r/a0570dc1e3a8f39a55aa343a1fc08cd5c2d4cad6.1613692950.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-04-30 05:59:52 +00:00
|
|
|
}
|
2023-03-21 17:05:02 +00:00
|
|
|
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
|
2015-06-30 21:57:02 +00:00
|
|
|
|
2016-05-20 00:14:27 +00:00
|
|
|
/* Return a pointer to the bitmap storing bits affecting a block of pages */
|
2021-06-29 02:41:22 +00:00
|
|
|
static inline unsigned long *get_pageblock_bitmap(const struct page *page,
|
2016-05-20 00:14:27 +00:00
|
|
|
unsigned long pfn)
|
|
|
|
{
|
|
|
|
#ifdef CONFIG_SPARSEMEM
|
mm/sparsemem: introduce struct mem_section_usage
Patch series "mm: Sub-section memory hotplug support", v10.
The memory hotplug section is an arbitrary / convenient unit for memory
hotplug. 'Section-size' units have bled into the user interface
('memblock' sysfs) and can not be changed without breaking existing
userspace. The section-size constraint, while mostly benign for typical
memory hotplug, has and continues to wreak havoc with 'device-memory'
use cases, persistent memory (pmem) in particular. Recall that pmem
uses devm_memremap_pages(), and subsequently arch_add_memory(), to
allocate a 'struct page' memmap for pmem. However, it does not use the
'bottom half' of memory hotplug, i.e. never marks pmem pages online and
never exposes the userspace memblock interface for pmem. This leaves an
opening to redress the section-size constraint.
To date, the libnvdimm subsystem has attempted to inject padding to
satisfy the internal constraints of arch_add_memory(). Beyond
complicating the code, leading to bugs [2], wasting memory, and limiting
configuration flexibility, the padding hack is broken when the platform
changes this physical memory alignment of pmem from one boot to the
next. Device failure (intermittent or permanent) and physical
reconfiguration are events that can cause the platform firmware to
change the physical placement of pmem on a subsequent boot, and device
failure is an everyday event in a data-center.
It turns out that sections are only a hard requirement of the
user-facing interface for memory hotplug and with a bit more
infrastructure sub-section arch_add_memory() support can be added for
kernel internal usages like devm_memremap_pages(). Here is an analysis
of the current design assumptions in the current code and how they are
addressed in the new implementation:
Current design assumptions:
- Sections that describe boot memory (early sections) are never
unplugged / removed.
- pfn_valid(), in the CONFIG_SPARSEMEM_VMEMMAP=y, case devolves to a
valid_section() check
- __add_pages() and helper routines assume all operations occur in
PAGES_PER_SECTION units.
- The memblock sysfs interface only comprehends full sections
New design assumptions:
- Sections are instrumented with a sub-section bitmask to track (on
x86) individual 2MB sub-divisions of a 128MB section.
- Partially populated early sections can be extended with additional
sub-sections, and those sub-sections can be removed with
arch_remove_memory(). With this in place we no longer lose usable
memory capacity to padding.
- pfn_valid() is updated to look deeper than valid_section() to also
check the active-sub-section mask. This indication is in the same
cacheline as the valid_section() so the performance impact is
expected to be negligible. So far the lkp robot has not reported any
regressions.
- Outside of the core vmemmap population routines which are replaced,
other helper routines like shrink_{zone,pgdat}_span() are updated to
handle the smaller granularity. Core memory hotplug routines that
deal with online memory are not touched.
- The existing memblock sysfs user api guarantees / assumptions are not
touched since this capability is limited to !online
!memblock-sysfs-accessible sections.
Meanwhile the issue reports continue to roll in from users that do not
understand when and how the 128MB constraint will bite them. The current
implementation relied on being able to support at least one misaligned
namespace, but that immediately falls over on any moderately complex
namespace creation attempt. Beyond the initial problem of 'System RAM'
colliding with pmem, and the unsolvable problem of physical alignment
changes, Linux is now being exposed to platforms that collide pmem ranges
with other pmem ranges by default [3]. In short, devm_memremap_pages()
has pushed the venerable section-size constraint past the breaking point,
and the simplicity of section-aligned arch_add_memory() is no longer
tenable.
These patches are exposed to the kbuild robot on a subsection-v10 branch
[4], and a preview of the unit test for this functionality is available
on the 'subsection-pending' branch of ndctl [5].
[2]: https://lore.kernel.org/r/155000671719.348031.2347363160141119237.stgit@dwillia2-desk3.amr.corp.intel.com
[3]: https://github.com/pmem/ndctl/issues/76
[4]: https://git.kernel.org/pub/scm/linux/kernel/git/djbw/nvdimm.git/log/?h=subsection-v10
[5]: https://github.com/pmem/ndctl/commit/7c59b4867e1c
This patch (of 13):
Towards enabling memory hotplug to track partial population of a section,
introduce 'struct mem_section_usage'.
A pointer to a 'struct mem_section_usage' instance replaces the existing
pointer to a 'pageblock_flags' bitmap. Effectively it adds one more
'unsigned long' beyond the 'pageblock_flags' (usemap) allocation to house
a new 'subsection_map' bitmap. The new bitmap enables the memory
hot{plug,remove} implementation to act on incremental sub-divisions of a
section.
SUBSECTION_SHIFT is defined as global constant instead of per-architecture
value like SECTION_SIZE_BITS in order to allow cross-arch compatibility of
subsection users. Specifically a common subsection size allows for the
possibility that persistent memory namespace configurations be made
compatible across architectures.
The primary motivation for this functionality is to support platforms that
mix "System RAM" and "Persistent Memory" within a single section, or
multiple PMEM ranges with different mapping lifetimes within a single
section. The section restriction for hotplug has caused an ongoing saga
of hacks and bugs for devm_memremap_pages() users.
Beyond the fixups to teach existing paths how to retrieve the 'usemap'
from a section, and updates to usemap allocation path, there are no
expected behavior changes.
Link: http://lkml.kernel.org/r/156092349845.979959.73333291612799019.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Wei Yang <richardw.yang@linux.intel.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> [ppc64]
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Jane Chu <jane.chu@oracle.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Qian Cai <cai@lca.pw>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-18 22:57:57 +00:00
|
|
|
return section_to_usemap(__pfn_to_section(pfn));
|
2016-05-20 00:14:27 +00:00
|
|
|
#else
|
|
|
|
return page_zone(page)->pageblock_flags;
|
|
|
|
#endif /* CONFIG_SPARSEMEM */
|
|
|
|
}
|
|
|
|
|
2021-06-29 02:41:22 +00:00
|
|
|
static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
|
2016-05-20 00:14:27 +00:00
|
|
|
{
|
|
|
|
#ifdef CONFIG_SPARSEMEM
|
|
|
|
pfn &= (PAGES_PER_SECTION-1);
|
|
|
|
#else
|
2022-09-07 06:08:42 +00:00
|
|
|
pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
|
2016-05-20 00:14:27 +00:00
|
|
|
#endif /* CONFIG_SPARSEMEM */
|
2020-08-07 06:25:44 +00:00
|
|
|
return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
|
2016-05-20 00:14:27 +00:00
|
|
|
}
|
|
|
|
|
2020-08-07 06:25:51 +00:00
|
|
|
static __always_inline
|
2021-06-29 02:41:22 +00:00
|
|
|
unsigned long __get_pfnblock_flags_mask(const struct page *page,
|
2016-05-20 00:14:27 +00:00
|
|
|
unsigned long pfn,
|
|
|
|
unsigned long mask)
|
|
|
|
{
|
|
|
|
unsigned long *bitmap;
|
|
|
|
unsigned long bitidx, word_bitidx;
|
|
|
|
unsigned long word;
|
|
|
|
|
|
|
|
bitmap = get_pageblock_bitmap(page, pfn);
|
|
|
|
bitidx = pfn_to_bitidx(page, pfn);
|
|
|
|
word_bitidx = bitidx / BITS_PER_LONG;
|
|
|
|
bitidx &= (BITS_PER_LONG-1);
|
2022-05-24 17:15:25 +00:00
|
|
|
/*
|
|
|
|
* This races, without locks, with set_pfnblock_flags_mask(). Ensure
|
|
|
|
* a consistent read of the memory array, so that results, even though
|
|
|
|
* racy, are not corrupted.
|
|
|
|
*/
|
|
|
|
word = READ_ONCE(bitmap[word_bitidx]);
|
2020-08-07 06:25:48 +00:00
|
|
|
return (word >> bitidx) & mask;
|
2016-05-20 00:14:27 +00:00
|
|
|
}
|
|
|
|
|
2020-12-15 03:14:39 +00:00
|
|
|
/**
|
|
|
|
* get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
|
|
|
|
* @page: The page within the block of interest
|
|
|
|
* @pfn: The target page frame number
|
|
|
|
* @mask: mask of bits that the caller is interested in
|
|
|
|
*
|
|
|
|
* Return: pageblock_bits flags
|
|
|
|
*/
|
2021-06-29 02:41:22 +00:00
|
|
|
unsigned long get_pfnblock_flags_mask(const struct page *page,
|
|
|
|
unsigned long pfn, unsigned long mask)
|
2016-05-20 00:14:27 +00:00
|
|
|
{
|
2020-08-07 06:25:51 +00:00
|
|
|
return __get_pfnblock_flags_mask(page, pfn, mask);
|
2016-05-20 00:14:27 +00:00
|
|
|
}
|
|
|
|
|
2021-06-29 02:41:22 +00:00
|
|
|
static __always_inline int get_pfnblock_migratetype(const struct page *page,
|
|
|
|
unsigned long pfn)
|
2016-05-20 00:14:27 +00:00
|
|
|
{
|
2020-08-07 06:25:51 +00:00
|
|
|
return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
|
2016-05-20 00:14:27 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
|
|
|
|
* @page: The page within the block of interest
|
|
|
|
* @flags: The flags to set
|
|
|
|
* @pfn: The target page frame number
|
|
|
|
* @mask: mask of bits that the caller is interested in
|
|
|
|
*/
|
|
|
|
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
|
|
|
|
unsigned long pfn,
|
|
|
|
unsigned long mask)
|
|
|
|
{
|
|
|
|
unsigned long *bitmap;
|
|
|
|
unsigned long bitidx, word_bitidx;
|
mm/page_alloc: use try_cmpxchg in set_pfnblock_flags_mask
Use try_cmpxchg instead of cmpxchg in set_pfnblock_flags_mask. x86
CMPXCHG instruction returns success in ZF flag, so this change saves a
compare after cmpxchg (and related move instruction in front of cmpxchg).
The main loop improves from:
1c5d: 48 89 c2 mov %rax,%rdx
1c60: 48 89 c1 mov %rax,%rcx
1c63: 48 21 fa and %rdi,%rdx
1c66: 4c 09 c2 or %r8,%rdx
1c69: f0 48 0f b1 16 lock cmpxchg %rdx,(%rsi)
1c6e: 48 39 c1 cmp %rax,%rcx
1c71: 75 ea jne 1c5d <...>
to:
1c60: 48 89 ca mov %rcx,%rdx
1c63: 48 21 c2 and %rax,%rdx
1c66: 4c 09 c2 or %r8,%rdx
1c69: f0 48 0f b1 16 lock cmpxchg %rdx,(%rsi)
1c6e: 75 f0 jne 1c60 <...>
Link: https://lkml.kernel.org/r/20220708140736.8737-1-ubizjak@gmail.com
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-08 14:07:36 +00:00
|
|
|
unsigned long word;
|
2016-05-20 00:14:27 +00:00
|
|
|
|
|
|
|
BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
|
2018-12-28 08:38:43 +00:00
|
|
|
BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
|
2016-05-20 00:14:27 +00:00
|
|
|
|
|
|
|
bitmap = get_pageblock_bitmap(page, pfn);
|
|
|
|
bitidx = pfn_to_bitidx(page, pfn);
|
|
|
|
word_bitidx = bitidx / BITS_PER_LONG;
|
|
|
|
bitidx &= (BITS_PER_LONG-1);
|
|
|
|
|
|
|
|
VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
|
|
|
|
|
2020-08-07 06:25:48 +00:00
|
|
|
mask <<= bitidx;
|
|
|
|
flags <<= bitidx;
|
2016-05-20 00:14:27 +00:00
|
|
|
|
|
|
|
word = READ_ONCE(bitmap[word_bitidx]);
|
mm/page_alloc: use try_cmpxchg in set_pfnblock_flags_mask
Use try_cmpxchg instead of cmpxchg in set_pfnblock_flags_mask. x86
CMPXCHG instruction returns success in ZF flag, so this change saves a
compare after cmpxchg (and related move instruction in front of cmpxchg).
The main loop improves from:
1c5d: 48 89 c2 mov %rax,%rdx
1c60: 48 89 c1 mov %rax,%rcx
1c63: 48 21 fa and %rdi,%rdx
1c66: 4c 09 c2 or %r8,%rdx
1c69: f0 48 0f b1 16 lock cmpxchg %rdx,(%rsi)
1c6e: 48 39 c1 cmp %rax,%rcx
1c71: 75 ea jne 1c5d <...>
to:
1c60: 48 89 ca mov %rcx,%rdx
1c63: 48 21 c2 and %rax,%rdx
1c66: 4c 09 c2 or %r8,%rdx
1c69: f0 48 0f b1 16 lock cmpxchg %rdx,(%rsi)
1c6e: 75 f0 jne 1c60 <...>
Link: https://lkml.kernel.org/r/20220708140736.8737-1-ubizjak@gmail.com
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-08 14:07:36 +00:00
|
|
|
do {
|
|
|
|
} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
|
2016-05-20 00:14:27 +00:00
|
|
|
}
|
2015-06-30 21:57:02 +00:00
|
|
|
|
2012-07-31 23:43:50 +00:00
|
|
|
void set_pageblock_migratetype(struct page *page, int migratetype)
|
2007-10-16 08:25:48 +00:00
|
|
|
{
|
2013-11-12 23:08:18 +00:00
|
|
|
if (unlikely(page_group_by_mobility_disabled &&
|
|
|
|
migratetype < MIGRATE_PCPTYPES))
|
2009-06-16 22:31:58 +00:00
|
|
|
migratetype = MIGRATE_UNMOVABLE;
|
|
|
|
|
2020-08-07 06:25:48 +00:00
|
|
|
set_pfnblock_flags_mask(page, (unsigned long)migratetype,
|
2020-08-07 06:25:51 +00:00
|
|
|
page_to_pfn(page), MIGRATETYPE_MASK);
|
2007-10-16 08:25:48 +00:00
|
|
|
}
|
|
|
|
|
2006-01-06 08:10:58 +00:00
|
|
|
#ifdef CONFIG_DEBUG_VM
|
2005-10-30 01:16:52 +00:00
|
|
|
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2005-10-30 01:16:53 +00:00
|
|
|
int ret = 0;
|
|
|
|
unsigned seq;
|
|
|
|
unsigned long pfn = page_to_pfn(page);
|
2013-02-23 00:35:28 +00:00
|
|
|
unsigned long sp, start_pfn;
|
2005-10-30 01:16:52 +00:00
|
|
|
|
2005-10-30 01:16:53 +00:00
|
|
|
do {
|
|
|
|
seq = zone_span_seqbegin(zone);
|
2013-02-23 00:35:28 +00:00
|
|
|
start_pfn = zone->zone_start_pfn;
|
|
|
|
sp = zone->spanned_pages;
|
2013-02-23 00:35:23 +00:00
|
|
|
if (!zone_spans_pfn(zone, pfn))
|
2005-10-30 01:16:53 +00:00
|
|
|
ret = 1;
|
|
|
|
} while (zone_span_seqretry(zone, seq));
|
|
|
|
|
2013-02-23 00:35:28 +00:00
|
|
|
if (ret)
|
2014-06-04 23:07:27 +00:00
|
|
|
pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
|
|
|
|
pfn, zone_to_nid(zone), zone->name,
|
|
|
|
start_pfn, start_pfn + sp);
|
2013-02-23 00:35:28 +00:00
|
|
|
|
2005-10-30 01:16:53 +00:00
|
|
|
return ret;
|
2005-10-30 01:16:52 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int page_is_consistent(struct zone *zone, struct page *page)
|
|
|
|
{
|
2005-04-16 22:20:36 +00:00
|
|
|
if (zone != page_zone(page))
|
2005-10-30 01:16:52 +00:00
|
|
|
return 0;
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Temporary debugging check for pages not lying within a given zone.
|
|
|
|
*/
|
2017-07-06 22:39:23 +00:00
|
|
|
static int __maybe_unused bad_range(struct zone *zone, struct page *page)
|
2005-10-30 01:16:52 +00:00
|
|
|
{
|
|
|
|
if (page_outside_zone_boundaries(zone, page))
|
2005-04-16 22:20:36 +00:00
|
|
|
return 1;
|
2005-10-30 01:16:52 +00:00
|
|
|
if (!page_is_consistent(zone, page))
|
|
|
|
return 1;
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
return 0;
|
|
|
|
}
|
2006-01-06 08:10:58 +00:00
|
|
|
#else
|
2017-07-06 22:39:23 +00:00
|
|
|
static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
|
2006-01-06 08:10:58 +00:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2020-06-03 22:58:29 +00:00
|
|
|
static void bad_page(struct page *page, const char *reason)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2009-01-06 22:40:12 +00:00
|
|
|
static unsigned long resume;
|
|
|
|
static unsigned long nr_shown;
|
|
|
|
static unsigned long nr_unshown;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allow a burst of 60 reports, then keep quiet for that minute;
|
|
|
|
* or allow a steady drip of one report per second.
|
|
|
|
*/
|
|
|
|
if (nr_shown == 60) {
|
|
|
|
if (time_before(jiffies, resume)) {
|
|
|
|
nr_unshown++;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
if (nr_unshown) {
|
2016-03-15 21:56:24 +00:00
|
|
|
pr_alert(
|
2009-01-06 22:40:13 +00:00
|
|
|
"BUG: Bad page state: %lu messages suppressed\n",
|
2009-01-06 22:40:12 +00:00
|
|
|
nr_unshown);
|
|
|
|
nr_unshown = 0;
|
|
|
|
}
|
|
|
|
nr_shown = 0;
|
|
|
|
}
|
|
|
|
if (nr_shown++ == 0)
|
|
|
|
resume = jiffies + 60 * HZ;
|
|
|
|
|
2016-03-15 21:56:24 +00:00
|
|
|
pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
|
badpage: replace page_remove_rmap Eeek and BUG
Now that bad pages are kept out of circulation, there is no need for the
infamous page_remove_rmap() BUG() - once that page is freed, its negative
mapcount will issue a "Bad page state" message and the page won't be
freed. Removing the BUG() allows more info, on subsequent pages, to be
gathered.
We do have more info about the page at this point than bad_page() can know
- notably, what the pmd is, which might pinpoint something like low 64kB
corruption - but page_remove_rmap() isn't given the address to find that.
In practice, there is only one call to page_remove_rmap() which has ever
reported anything, that from zap_pte_range() (usually on exit, sometimes
on munmap). It has all the info, so remove page_remove_rmap()'s "Eeek"
message and leave it all to zap_pte_range().
mm/memory.c already has a hardly used print_bad_pte() function, showing
some of the appropriate info: extend it to show what we want for the rmap
case: pte info, page info (when there is a page) and vma info to compare.
zap_pte_range() already knows the pmd, but print_bad_pte() is easier to
use if it works that out for itself.
Some of this info is also shown in bad_page()'s "Bad page state" message.
Keep them separate, but adjust them to match each other as far as
possible. Say "Bad page map" in print_bad_pte(), and add a TAINT_BAD_PAGE
there too.
print_bad_pte() show current->comm unconditionally (though it should get
repeated in the usually irrelevant stack trace): sorry, I misled Nick
Piggin to make it conditional on vm_mm == current->mm, but current->mm is
already NULL in the exit case. Usually current->comm is good, though
exceptionally it may not be that of the mm (when "swapoff" for example).
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 22:40:08 +00:00
|
|
|
current->comm, page_to_pfn(page));
|
2021-06-29 02:41:07 +00:00
|
|
|
dump_page(page, reason);
|
badpage: replace page_remove_rmap Eeek and BUG
Now that bad pages are kept out of circulation, there is no need for the
infamous page_remove_rmap() BUG() - once that page is freed, its negative
mapcount will issue a "Bad page state" message and the page won't be
freed. Removing the BUG() allows more info, on subsequent pages, to be
gathered.
We do have more info about the page at this point than bad_page() can know
- notably, what the pmd is, which might pinpoint something like low 64kB
corruption - but page_remove_rmap() isn't given the address to find that.
In practice, there is only one call to page_remove_rmap() which has ever
reported anything, that from zap_pte_range() (usually on exit, sometimes
on munmap). It has all the info, so remove page_remove_rmap()'s "Eeek"
message and leave it all to zap_pte_range().
mm/memory.c already has a hardly used print_bad_pte() function, showing
some of the appropriate info: extend it to show what we want for the rmap
case: pte info, page info (when there is a page) and vma info to compare.
zap_pte_range() already knows the pmd, but print_bad_pte() is easier to
use if it works that out for itself.
Some of this info is also shown in bad_page()'s "Bad page state" message.
Keep them separate, but adjust them to match each other as far as
possible. Say "Bad page map" in print_bad_pte(), and add a TAINT_BAD_PAGE
there too.
print_bad_pte() show current->comm unconditionally (though it should get
repeated in the usually irrelevant stack trace): sorry, I misled Nick
Piggin to make it conditional on vm_mm == current->mm, but current->mm is
already NULL in the exit case. Usually current->comm is good, though
exceptionally it may not be that of the mm (when "swapoff" for example).
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 22:40:08 +00:00
|
|
|
|
2011-11-01 00:07:24 +00:00
|
|
|
print_modules();
|
2005-04-16 22:20:36 +00:00
|
|
|
dump_stack();
|
2009-01-06 22:40:12 +00:00
|
|
|
out:
|
2009-01-06 22:40:06 +00:00
|
|
|
/* Leave bad fields for debug, except PageBuddy could make trouble */
|
2013-02-23 00:34:59 +00:00
|
|
|
page_mapcount_reset(page); /* remove PageBuddy */
|
2013-01-21 06:47:39 +00:00
|
|
|
add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2021-06-29 02:43:08 +00:00
|
|
|
static inline unsigned int order_to_pindex(int migratetype, int order)
|
|
|
|
{
|
|
|
|
int base = order;
|
|
|
|
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
|
|
if (order > PAGE_ALLOC_COSTLY_ORDER) {
|
|
|
|
VM_BUG_ON(order != pageblock_order);
|
2022-06-24 12:54:18 +00:00
|
|
|
return NR_LOWORDER_PCP_LISTS;
|
2021-06-29 02:43:08 +00:00
|
|
|
}
|
|
|
|
#else
|
|
|
|
VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
return (MIGRATE_PCPTYPES * base) + migratetype;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int pindex_to_order(unsigned int pindex)
|
|
|
|
{
|
|
|
|
int order = pindex / MIGRATE_PCPTYPES;
|
|
|
|
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
2022-06-24 12:54:18 +00:00
|
|
|
if (pindex == NR_LOWORDER_PCP_LISTS)
|
2021-06-29 02:43:08 +00:00
|
|
|
order = pageblock_order;
|
|
|
|
#else
|
|
|
|
VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
return order;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline bool pcp_allowed_order(unsigned int order)
|
|
|
|
{
|
|
|
|
if (order <= PAGE_ALLOC_COSTLY_ORDER)
|
|
|
|
return true;
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
|
|
if (order == pageblock_order)
|
|
|
|
return true;
|
|
|
|
#endif
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2021-06-29 02:42:36 +00:00
|
|
|
static inline void free_the_page(struct page *page, unsigned int order)
|
|
|
|
{
|
2021-06-29 02:43:08 +00:00
|
|
|
if (pcp_allowed_order(order)) /* Via pcp? */
|
|
|
|
free_unref_page(page, order);
|
2021-06-29 02:42:36 +00:00
|
|
|
else
|
|
|
|
__free_pages_ok(page, order, FPI_NONE);
|
|
|
|
}
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* Higher-order pages are called "compound pages". They are structured thusly:
|
|
|
|
*
|
2015-11-07 00:29:54 +00:00
|
|
|
* The first PAGE_SIZE page is called the "head page" and have PG_head set.
|
2005-04-16 22:20:36 +00:00
|
|
|
*
|
2015-11-07 00:29:54 +00:00
|
|
|
* The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
|
|
|
|
* in bit 0 of page->compound_head. The rest of bits is pointer to head page.
|
2005-04-16 22:20:36 +00:00
|
|
|
*
|
2015-11-07 00:29:54 +00:00
|
|
|
* The first tail page's ->compound_dtor holds the offset in array of compound
|
|
|
|
* page destructors. See compound_page_dtors.
|
2005-04-16 22:20:36 +00:00
|
|
|
*
|
2015-11-07 00:29:54 +00:00
|
|
|
* The first tail page's ->compound_order holds the order of allocation.
|
[PATCH] compound page: use page[1].lru
If a compound page has its own put_page_testzero destructor (the only current
example is free_huge_page), that is noted in page[1].mapping of the compound
page. But that's rather a poor place to keep it: functions which call
set_page_dirty_lock after get_user_pages (e.g. Infiniband's
__ib_umem_release) ought to be checking first, otherwise set_page_dirty is
liable to crash on what's not the address of a struct address_space.
And now I'm about to make that worse: it turns out that every compound page
needs a destructor, so we can no longer rely on hugetlb pages going their own
special way, to avoid further problems of page->mapping reuse. For example,
not many people know that: on 50% of i386 -Os builds, the first tail page of a
compound page purports to be PageAnon (when its destructor has an odd
address), which surprises page_add_file_rmap.
Keep the compound page destructor in page[1].lru.next instead. And to free up
the common pairing of mapping and index, also move compound page order from
index to lru.prev. Slab reuses page->lru too: but if we ever need slab to use
compound pages, it can easily stack its use above this.
(akpm: decoded version of the above: the tail pages of a compound page now
have ->mapping==NULL, so there's no need for the set_page_dirty[_lock]()
caller to check that they're not compund pages before doing the dirty).
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-02-14 21:52:58 +00:00
|
|
|
* This usage means that zero-order pages may not be compound.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
2006-02-14 21:52:59 +00:00
|
|
|
|
2016-01-16 00:54:17 +00:00
|
|
|
void free_compound_page(struct page *page)
|
2006-02-14 21:52:59 +00:00
|
|
|
{
|
2021-05-02 00:42:23 +00:00
|
|
|
mem_cgroup_uncharge(page_folio(page));
|
2021-06-29 02:43:08 +00:00
|
|
|
free_the_page(page, compound_order(page));
|
2006-02-14 21:52:59 +00:00
|
|
|
}
|
|
|
|
|
2015-11-07 00:29:57 +00:00
|
|
|
void prep_compound_page(struct page *page, unsigned int order)
|
2008-11-06 20:53:27 +00:00
|
|
|
{
|
|
|
|
int i;
|
|
|
|
int nr_pages = 1 << order;
|
|
|
|
|
|
|
|
__SetPageHead(page);
|
mm/page_alloc: split prep_compound_page into head and tail subparts
Patch series "mm, device-dax: Introduce compound pages in devmap", v7.
This series converts device-dax to use compound pages, and moves away
from the 'struct page per basepage on PMD/PUD' that is done today.
Doing so
1) unlocks a few noticeable improvements on unpin_user_pages() and
makes device-dax+altmap case 4x times faster in pinning (numbers
below and in last patch)
2) as mentioned in various other threads it's one important step
towards cleaning up ZONE_DEVICE refcounting.
I've split the compound pages on devmap part from the rest based on
recent discussions on devmap pending and future work planned[5][6].
There is consensus that device-dax should be using compound pages to
represent its PMD/PUDs just like HugeTLB and THP, and that leads to less
specialization of the dax parts. I will pursue the rest of the work in
parallel once this part is merged, particular the GUP-{slow,fast}
improvements [7] and the tail struct page deduplication memory savings
part[8].
To summarize what the series does:
Patch 1: Prepare hwpoisoning to work with dax compound pages.
Patches 2-3: Split the current utility function of prep_compound_page()
into head and tail and use those two helpers where appropriate to take
advantage of caches being warm after __init_single_page(). This is used
when initializing zone device when we bring up device-dax namespaces.
Patches 4-10: Add devmap support for compound pages in device-dax.
memmap_init_zone_device() initialize its metadata as compound pages, and
it introduces a new devmap property known as vmemmap_shift which
outlines how the vmemmap is structured (defaults to base pages as done
today). The property describe the page order of the metadata
essentially. While at it do a few cleanups in device-dax in patches
5-9. Finally enable device-dax usage of devmap @vmemmap_shift to a
value based on its own @align property. @vmemmap_shift returns 0 by
default (which is today's case of base pages in devmap, like fsdax or
the others) and the usage of compound devmap is optional. Starting with
device-dax (*not* fsdax) we enable it by default. There are a few
pinning improvements particular on the unpinning case and altmap, as
well as unpin_user_page_range_dirty_lock() being just as effective as
THP/hugetlb[0] pages.
$ gup_test -f /dev/dax1.0 -m 16384 -r 10 -S -a -n 512 -w
(pin_user_pages_fast 2M pages) put:~71 ms -> put:~22 ms
[altmap]
(pin_user_pages_fast 2M pages) get:~524ms put:~525 ms -> get: ~127ms put:~71ms
$ gup_test -f /dev/dax1.0 -m 129022 -r 10 -S -a -n 512 -w
(pin_user_pages_fast 2M pages) put:~513 ms -> put:~188 ms
[altmap with -m 127004]
(pin_user_pages_fast 2M pages) get:~4.1 secs put:~4.12 secs -> get:~1sec put:~563ms
Tested on x86 with 1Tb+ of pmem (alongside registering it with RDMA with
and without altmap), alongside gup_test selftests with dynamic dax
regions and static dax regions. Coupled with ndctl unit tests for
dynamic dax devices that exercise all of this. Note, for dynamic dax
regions I had to revert commit 8aa83e6395 ("x86/setup: Call
early_reserve_memory() earlier"), it is a known issue that this commit
broke efi_fake_mem=.
This patch (of 11):
Split the utility function prep_compound_page() into head and tail
counterparts, and use them accordingly.
This is in preparation for sharing the storage for compound page
metadata.
Link: https://lkml.kernel.org/r/20211202204422.26777-1-joao.m.martins@oracle.com
Link: https://lkml.kernel.org/r/20211202204422.26777-3-joao.m.martins@oracle.com
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Jane Chu <jane.chu@oracle.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-14 22:04:15 +00:00
|
|
|
for (i = 1; i < nr_pages; i++)
|
|
|
|
prep_compound_tail(page, i);
|
2020-08-15 00:30:23 +00:00
|
|
|
|
mm/page_alloc: split prep_compound_page into head and tail subparts
Patch series "mm, device-dax: Introduce compound pages in devmap", v7.
This series converts device-dax to use compound pages, and moves away
from the 'struct page per basepage on PMD/PUD' that is done today.
Doing so
1) unlocks a few noticeable improvements on unpin_user_pages() and
makes device-dax+altmap case 4x times faster in pinning (numbers
below and in last patch)
2) as mentioned in various other threads it's one important step
towards cleaning up ZONE_DEVICE refcounting.
I've split the compound pages on devmap part from the rest based on
recent discussions on devmap pending and future work planned[5][6].
There is consensus that device-dax should be using compound pages to
represent its PMD/PUDs just like HugeTLB and THP, and that leads to less
specialization of the dax parts. I will pursue the rest of the work in
parallel once this part is merged, particular the GUP-{slow,fast}
improvements [7] and the tail struct page deduplication memory savings
part[8].
To summarize what the series does:
Patch 1: Prepare hwpoisoning to work with dax compound pages.
Patches 2-3: Split the current utility function of prep_compound_page()
into head and tail and use those two helpers where appropriate to take
advantage of caches being warm after __init_single_page(). This is used
when initializing zone device when we bring up device-dax namespaces.
Patches 4-10: Add devmap support for compound pages in device-dax.
memmap_init_zone_device() initialize its metadata as compound pages, and
it introduces a new devmap property known as vmemmap_shift which
outlines how the vmemmap is structured (defaults to base pages as done
today). The property describe the page order of the metadata
essentially. While at it do a few cleanups in device-dax in patches
5-9. Finally enable device-dax usage of devmap @vmemmap_shift to a
value based on its own @align property. @vmemmap_shift returns 0 by
default (which is today's case of base pages in devmap, like fsdax or
the others) and the usage of compound devmap is optional. Starting with
device-dax (*not* fsdax) we enable it by default. There are a few
pinning improvements particular on the unpinning case and altmap, as
well as unpin_user_page_range_dirty_lock() being just as effective as
THP/hugetlb[0] pages.
$ gup_test -f /dev/dax1.0 -m 16384 -r 10 -S -a -n 512 -w
(pin_user_pages_fast 2M pages) put:~71 ms -> put:~22 ms
[altmap]
(pin_user_pages_fast 2M pages) get:~524ms put:~525 ms -> get: ~127ms put:~71ms
$ gup_test -f /dev/dax1.0 -m 129022 -r 10 -S -a -n 512 -w
(pin_user_pages_fast 2M pages) put:~513 ms -> put:~188 ms
[altmap with -m 127004]
(pin_user_pages_fast 2M pages) get:~4.1 secs put:~4.12 secs -> get:~1sec put:~563ms
Tested on x86 with 1Tb+ of pmem (alongside registering it with RDMA with
and without altmap), alongside gup_test selftests with dynamic dax
regions and static dax regions. Coupled with ndctl unit tests for
dynamic dax devices that exercise all of this. Note, for dynamic dax
regions I had to revert commit 8aa83e6395 ("x86/setup: Call
early_reserve_memory() earlier"), it is a known issue that this commit
broke efi_fake_mem=.
This patch (of 11):
Split the utility function prep_compound_page() into head and tail
counterparts, and use them accordingly.
This is in preparation for sharing the storage for compound page
metadata.
Link: https://lkml.kernel.org/r/20211202204422.26777-1-joao.m.martins@oracle.com
Link: https://lkml.kernel.org/r/20211202204422.26777-3-joao.m.martins@oracle.com
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Jane Chu <jane.chu@oracle.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-14 22:04:15 +00:00
|
|
|
prep_compound_head(page, order);
|
2008-11-06 20:53:27 +00:00
|
|
|
}
|
|
|
|
|
2022-06-17 17:50:17 +00:00
|
|
|
void destroy_large_folio(struct folio *folio)
|
|
|
|
{
|
2023-01-11 14:29:06 +00:00
|
|
|
enum compound_dtor_id dtor = folio->_folio_dtor;
|
2022-06-17 17:50:17 +00:00
|
|
|
|
|
|
|
VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
|
|
|
|
compound_page_dtors[dtor](&folio->page);
|
|
|
|
}
|
|
|
|
|
2012-01-10 23:07:28 +00:00
|
|
|
#ifdef CONFIG_DEBUG_PAGEALLOC
|
|
|
|
unsigned int _debug_guardpage_minorder;
|
2019-07-12 03:55:06 +00:00
|
|
|
|
mm, debug_pagealloc: don't rely on static keys too early
Commit 96a2b03f281d ("mm, debug_pagelloc: use static keys to enable
debugging") has introduced a static key to reduce overhead when
debug_pagealloc is compiled in but not enabled. It relied on the
assumption that jump_label_init() is called before parse_early_param()
as in start_kernel(), so when the "debug_pagealloc=on" option is parsed,
it is safe to enable the static key.
However, it turns out multiple architectures call parse_early_param()
earlier from their setup_arch(). x86 also calls jump_label_init() even
earlier, so no issue was found while testing the commit, but same is not
true for e.g. ppc64 and s390 where the kernel would not boot with
debug_pagealloc=on as found by our QA.
To fix this without tricky changes to init code of multiple
architectures, this patch partially reverts the static key conversion
from 96a2b03f281d. Init-time and non-fastpath calls (such as in arch
code) of debug_pagealloc_enabled() will again test a simple bool
variable. Fastpath mm code is converted to a new
debug_pagealloc_enabled_static() variant that relies on the static key,
which is enabled in a well-defined point in mm_init() where it's
guaranteed that jump_label_init() has been called, regardless of
architecture.
[sfr@canb.auug.org.au: export _debug_pagealloc_enabled_early]
Link: http://lkml.kernel.org/r/20200106164944.063ac07b@canb.auug.org.au
Link: http://lkml.kernel.org/r/20191219130612.23171-1-vbabka@suse.cz
Fixes: 96a2b03f281d ("mm, debug_pagelloc: use static keys to enable debugging")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Qian Cai <cai@lca.pw>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-01-14 00:29:20 +00:00
|
|
|
bool _debug_pagealloc_enabled_early __read_mostly
|
|
|
|
= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
|
|
|
|
EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
|
2019-07-12 03:55:06 +00:00
|
|
|
DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
|
2016-03-17 21:17:56 +00:00
|
|
|
EXPORT_SYMBOL(_debug_pagealloc_enabled);
|
2019-07-12 03:55:06 +00:00
|
|
|
|
|
|
|
DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
|
mm/debug-pagealloc: prepare boottime configurable on/off
Until now, debug-pagealloc needs extra flags in struct page, so we need to
recompile whole source code when we decide to use it. This is really
painful, because it takes some time to recompile and sometimes rebuild is
not possible due to third party module depending on struct page. So, we
can't use this good feature in many cases.
Now, we have the page extension feature that allows us to insert extra
flags to outside of struct page. This gets rid of third party module
issue mentioned above. And, this allows us to determine if we need extra
memory for this page extension in boottime. With these property, we can
avoid using debug-pagealloc in boottime with low computational overhead in
the kernel built with CONFIG_DEBUG_PAGEALLOC. This will help our
development process greatly.
This patch is the preparation step to achive above goal. debug-pagealloc
originally uses extra field of struct page, but, after this patch, it will
use field of struct page_ext. Because memory for page_ext is allocated
later than initialization of page allocator in CONFIG_SPARSEMEM, we should
disable debug-pagealloc feature temporarily until initialization of
page_ext. This patch implements this.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Dave Hansen <dave@sr71.net>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Jungsoo Son <jungsoo.son@lge.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:55:49 +00:00
|
|
|
|
2014-12-13 00:55:52 +00:00
|
|
|
static int __init early_debug_pagealloc(char *buf)
|
|
|
|
{
|
mm, debug_pagealloc: don't rely on static keys too early
Commit 96a2b03f281d ("mm, debug_pagelloc: use static keys to enable
debugging") has introduced a static key to reduce overhead when
debug_pagealloc is compiled in but not enabled. It relied on the
assumption that jump_label_init() is called before parse_early_param()
as in start_kernel(), so when the "debug_pagealloc=on" option is parsed,
it is safe to enable the static key.
However, it turns out multiple architectures call parse_early_param()
earlier from their setup_arch(). x86 also calls jump_label_init() even
earlier, so no issue was found while testing the commit, but same is not
true for e.g. ppc64 and s390 where the kernel would not boot with
debug_pagealloc=on as found by our QA.
To fix this without tricky changes to init code of multiple
architectures, this patch partially reverts the static key conversion
from 96a2b03f281d. Init-time and non-fastpath calls (such as in arch
code) of debug_pagealloc_enabled() will again test a simple bool
variable. Fastpath mm code is converted to a new
debug_pagealloc_enabled_static() variant that relies on the static key,
which is enabled in a well-defined point in mm_init() where it's
guaranteed that jump_label_init() has been called, regardless of
architecture.
[sfr@canb.auug.org.au: export _debug_pagealloc_enabled_early]
Link: http://lkml.kernel.org/r/20200106164944.063ac07b@canb.auug.org.au
Link: http://lkml.kernel.org/r/20191219130612.23171-1-vbabka@suse.cz
Fixes: 96a2b03f281d ("mm, debug_pagelloc: use static keys to enable debugging")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Qian Cai <cai@lca.pw>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-01-14 00:29:20 +00:00
|
|
|
return kstrtobool(buf, &_debug_pagealloc_enabled_early);
|
2014-12-13 00:55:52 +00:00
|
|
|
}
|
|
|
|
early_param("debug_pagealloc", early_debug_pagealloc);
|
|
|
|
|
2012-01-10 23:07:28 +00:00
|
|
|
static int __init debug_guardpage_minorder_setup(char *buf)
|
|
|
|
{
|
|
|
|
unsigned long res;
|
|
|
|
|
|
|
|
if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
|
2016-03-17 21:19:50 +00:00
|
|
|
pr_err("Bad debug_guardpage_minorder value\n");
|
2012-01-10 23:07:28 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
_debug_guardpage_minorder = res;
|
2016-03-17 21:19:50 +00:00
|
|
|
pr_info("Setting debug_guardpage_minorder to %lu\n", res);
|
2012-01-10 23:07:28 +00:00
|
|
|
return 0;
|
|
|
|
}
|
2016-10-07 23:58:18 +00:00
|
|
|
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
|
2012-01-10 23:07:28 +00:00
|
|
|
|
2016-10-07 23:58:15 +00:00
|
|
|
static inline bool set_page_guard(struct zone *zone, struct page *page,
|
2014-12-13 00:55:01 +00:00
|
|
|
unsigned int order, int migratetype)
|
2012-01-10 23:07:28 +00:00
|
|
|
{
|
mm/debug-pagealloc: prepare boottime configurable on/off
Until now, debug-pagealloc needs extra flags in struct page, so we need to
recompile whole source code when we decide to use it. This is really
painful, because it takes some time to recompile and sometimes rebuild is
not possible due to third party module depending on struct page. So, we
can't use this good feature in many cases.
Now, we have the page extension feature that allows us to insert extra
flags to outside of struct page. This gets rid of third party module
issue mentioned above. And, this allows us to determine if we need extra
memory for this page extension in boottime. With these property, we can
avoid using debug-pagealloc in boottime with low computational overhead in
the kernel built with CONFIG_DEBUG_PAGEALLOC. This will help our
development process greatly.
This patch is the preparation step to achive above goal. debug-pagealloc
originally uses extra field of struct page, but, after this patch, it will
use field of struct page_ext. Because memory for page_ext is allocated
later than initialization of page allocator in CONFIG_SPARSEMEM, we should
disable debug-pagealloc feature temporarily until initialization of
page_ext. This patch implements this.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Dave Hansen <dave@sr71.net>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Jungsoo Son <jungsoo.son@lge.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:55:49 +00:00
|
|
|
if (!debug_guardpage_enabled())
|
2016-10-07 23:58:15 +00:00
|
|
|
return false;
|
|
|
|
|
|
|
|
if (order >= debug_guardpage_minorder())
|
|
|
|
return false;
|
mm/debug-pagealloc: prepare boottime configurable on/off
Until now, debug-pagealloc needs extra flags in struct page, so we need to
recompile whole source code when we decide to use it. This is really
painful, because it takes some time to recompile and sometimes rebuild is
not possible due to third party module depending on struct page. So, we
can't use this good feature in many cases.
Now, we have the page extension feature that allows us to insert extra
flags to outside of struct page. This gets rid of third party module
issue mentioned above. And, this allows us to determine if we need extra
memory for this page extension in boottime. With these property, we can
avoid using debug-pagealloc in boottime with low computational overhead in
the kernel built with CONFIG_DEBUG_PAGEALLOC. This will help our
development process greatly.
This patch is the preparation step to achive above goal. debug-pagealloc
originally uses extra field of struct page, but, after this patch, it will
use field of struct page_ext. Because memory for page_ext is allocated
later than initialization of page allocator in CONFIG_SPARSEMEM, we should
disable debug-pagealloc feature temporarily until initialization of
page_ext. This patch implements this.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Dave Hansen <dave@sr71.net>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Jungsoo Son <jungsoo.son@lge.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:55:49 +00:00
|
|
|
|
2019-07-12 03:55:13 +00:00
|
|
|
__SetPageGuard(page);
|
2022-06-24 12:54:17 +00:00
|
|
|
INIT_LIST_HEAD(&page->buddy_list);
|
2014-12-13 00:55:01 +00:00
|
|
|
set_page_private(page, order);
|
|
|
|
/* Guard pages are not available for any usage */
|
2022-09-16 07:22:49 +00:00
|
|
|
if (!is_migrate_isolate(migratetype))
|
|
|
|
__mod_zone_freepage_state(zone, -(1 << order), migratetype);
|
2016-10-07 23:58:15 +00:00
|
|
|
|
|
|
|
return true;
|
2012-01-10 23:07:28 +00:00
|
|
|
}
|
|
|
|
|
2014-12-13 00:55:01 +00:00
|
|
|
static inline void clear_page_guard(struct zone *zone, struct page *page,
|
|
|
|
unsigned int order, int migratetype)
|
2012-01-10 23:07:28 +00:00
|
|
|
{
|
mm/debug-pagealloc: prepare boottime configurable on/off
Until now, debug-pagealloc needs extra flags in struct page, so we need to
recompile whole source code when we decide to use it. This is really
painful, because it takes some time to recompile and sometimes rebuild is
not possible due to third party module depending on struct page. So, we
can't use this good feature in many cases.
Now, we have the page extension feature that allows us to insert extra
flags to outside of struct page. This gets rid of third party module
issue mentioned above. And, this allows us to determine if we need extra
memory for this page extension in boottime. With these property, we can
avoid using debug-pagealloc in boottime with low computational overhead in
the kernel built with CONFIG_DEBUG_PAGEALLOC. This will help our
development process greatly.
This patch is the preparation step to achive above goal. debug-pagealloc
originally uses extra field of struct page, but, after this patch, it will
use field of struct page_ext. Because memory for page_ext is allocated
later than initialization of page allocator in CONFIG_SPARSEMEM, we should
disable debug-pagealloc feature temporarily until initialization of
page_ext. This patch implements this.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Dave Hansen <dave@sr71.net>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Jungsoo Son <jungsoo.son@lge.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:55:49 +00:00
|
|
|
if (!debug_guardpage_enabled())
|
|
|
|
return;
|
|
|
|
|
2019-07-12 03:55:13 +00:00
|
|
|
__ClearPageGuard(page);
|
mm/debug-pagealloc: prepare boottime configurable on/off
Until now, debug-pagealloc needs extra flags in struct page, so we need to
recompile whole source code when we decide to use it. This is really
painful, because it takes some time to recompile and sometimes rebuild is
not possible due to third party module depending on struct page. So, we
can't use this good feature in many cases.
Now, we have the page extension feature that allows us to insert extra
flags to outside of struct page. This gets rid of third party module
issue mentioned above. And, this allows us to determine if we need extra
memory for this page extension in boottime. With these property, we can
avoid using debug-pagealloc in boottime with low computational overhead in
the kernel built with CONFIG_DEBUG_PAGEALLOC. This will help our
development process greatly.
This patch is the preparation step to achive above goal. debug-pagealloc
originally uses extra field of struct page, but, after this patch, it will
use field of struct page_ext. Because memory for page_ext is allocated
later than initialization of page allocator in CONFIG_SPARSEMEM, we should
disable debug-pagealloc feature temporarily until initialization of
page_ext. This patch implements this.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Dave Hansen <dave@sr71.net>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Jungsoo Son <jungsoo.son@lge.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 00:55:49 +00:00
|
|
|
|
2014-12-13 00:55:01 +00:00
|
|
|
set_page_private(page, 0);
|
|
|
|
if (!is_migrate_isolate(migratetype))
|
|
|
|
__mod_zone_freepage_state(zone, (1 << order), migratetype);
|
2012-01-10 23:07:28 +00:00
|
|
|
}
|
|
|
|
#else
|
2016-10-07 23:58:15 +00:00
|
|
|
static inline bool set_page_guard(struct zone *zone, struct page *page,
|
|
|
|
unsigned int order, int migratetype) { return false; }
|
2014-12-13 00:55:01 +00:00
|
|
|
static inline void clear_page_guard(struct zone *zone, struct page *page,
|
|
|
|
unsigned int order, int migratetype) {}
|
2012-01-10 23:07:28 +00:00
|
|
|
#endif
|
|
|
|
|
2020-10-16 03:10:15 +00:00
|
|
|
static inline void set_buddy_order(struct page *page, unsigned int order)
|
2006-04-19 05:20:52 +00:00
|
|
|
{
|
[PATCH] mm: split page table lock
Christoph Lameter demonstrated very poor scalability on the SGI 512-way, with
a many-threaded application which concurrently initializes different parts of
a large anonymous area.
This patch corrects that, by using a separate spinlock per page table page, to
guard the page table entries in that page, instead of using the mm's single
page_table_lock. (But even then, page_table_lock is still used to guard page
table allocation, and anon_vma allocation.)
In this implementation, the spinlock is tucked inside the struct page of the
page table page: with a BUILD_BUG_ON in case it overflows - which it would in
the case of 32-bit PA-RISC with spinlock debugging enabled.
Splitting the lock is not quite for free: another cacheline access. Ideally,
I suppose we would use split ptlock only for multi-threaded processes on
multi-cpu machines; but deciding that dynamically would have its own costs.
So for now enable it by config, at some number of cpus - since the Kconfig
language doesn't support inequalities, let preprocessor compare that with
NR_CPUS. But I don't think it's worth being user-configurable: for good
testing of both split and unsplit configs, split now at 4 cpus, and perhaps
change that to 8 later.
There is a benefit even for singly threaded processes: kswapd can be attacking
one part of the mm while another part is busy faulting.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 01:16:40 +00:00
|
|
|
set_page_private(page, order);
|
2006-04-10 01:21:48 +00:00
|
|
|
__SetPageBuddy(page);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2019-03-05 23:45:41 +00:00
|
|
|
#ifdef CONFIG_COMPACTION
|
|
|
|
static inline struct capture_control *task_capc(struct zone *zone)
|
|
|
|
{
|
|
|
|
struct capture_control *capc = current->capture_control;
|
|
|
|
|
2020-08-07 06:25:16 +00:00
|
|
|
return unlikely(capc) &&
|
2019-03-05 23:45:41 +00:00
|
|
|
!(current->flags & PF_KTHREAD) &&
|
|
|
|
!capc->page &&
|
2020-08-07 06:25:16 +00:00
|
|
|
capc->cc->zone == zone ? capc : NULL;
|
2019-03-05 23:45:41 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline bool
|
|
|
|
compaction_capture(struct capture_control *capc, struct page *page,
|
|
|
|
int order, int migratetype)
|
|
|
|
{
|
|
|
|
if (!capc || order != capc->cc->order)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
/* Do not accidentally pollute CMA or isolated regions*/
|
|
|
|
if (is_migrate_cma(migratetype) ||
|
|
|
|
is_migrate_isolate(migratetype))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
/*
|
2021-05-07 01:06:47 +00:00
|
|
|
* Do not let lower order allocations pollute a movable pageblock.
|
2019-03-05 23:45:41 +00:00
|
|
|
* This might let an unmovable request use a reclaimable pageblock
|
|
|
|
* and vice-versa but no more than normal fallback logic which can
|
|
|
|
* have trouble finding a high-order free page.
|
|
|
|
*/
|
|
|
|
if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
capc->page = page;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
#else
|
|
|
|
static inline struct capture_control *task_capc(struct zone *zone)
|
|
|
|
{
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline bool
|
|
|
|
compaction_capture(struct capture_control *capc, struct page *page,
|
|
|
|
int order, int migratetype)
|
|
|
|
{
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
#endif /* CONFIG_COMPACTION */
|
|
|
|
|
2020-04-07 03:04:49 +00:00
|
|
|
/* Used for pages not on another list */
|
|
|
|
static inline void add_to_free_list(struct page *page, struct zone *zone,
|
|
|
|
unsigned int order, int migratetype)
|
|
|
|
{
|
|
|
|
struct free_area *area = &zone->free_area[order];
|
|
|
|
|
2022-06-24 12:54:17 +00:00
|
|
|
list_add(&page->buddy_list, &area->free_list[migratetype]);
|
2020-04-07 03:04:49 +00:00
|
|
|
area->nr_free++;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Used for pages not on another list */
|
|
|
|
static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
|
|
|
|
unsigned int order, int migratetype)
|
|
|
|
{
|
|
|
|
struct free_area *area = &zone->free_area[order];
|
|
|
|
|
2022-06-24 12:54:17 +00:00
|
|
|
list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
|
2020-04-07 03:04:49 +00:00
|
|
|
area->nr_free++;
|
|
|
|
}
|
|
|
|
|
mm/page_alloc: move pages to tail in move_to_free_list()
Whenever we move pages between freelists via move_to_free_list()/
move_freepages_block(), we don't actually touch the pages:
1. Page isolation doesn't actually touch the pages, it simply isolates
pageblocks and moves all free pages to the MIGRATE_ISOLATE freelist.
When undoing isolation, we move the pages back to the target list.
2. Page stealing (steal_suitable_fallback()) moves free pages directly
between lists without touching them.
3. reserve_highatomic_pageblock()/unreserve_highatomic_pageblock() moves
free pages directly between freelists without touching them.
We already place pages to the tail of the freelists when undoing isolation
via __putback_isolated_page(), let's do it in any case (e.g., if order <=
pageblock_order) and document the behavior. To simplify, let's move the
pages to the tail for all move_to_free_list()/move_freepages_block() users.
In 2., the target list is empty, so there should be no change. In 3., we
might observe a change, however, highatomic is more concerned about
allocations succeeding than cache hotness - if we ever realize this change
degrades a workload, we can special-case this instance and add a proper
comment.
This change results in all pages getting onlined via online_pages() to be
placed to the tail of the freelist.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Wei Yang <richard.weiyang@linux.alibaba.com>
Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Scott Cheloha <cheloha@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Wei Liu <wei.liu@kernel.org>
Link: https://lkml.kernel.org/r/20201005121534.15649-4-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16 03:09:30 +00:00
|
|
|
/*
|
|
|
|
* Used for pages which are on another list. Move the pages to the tail
|
|
|
|
* of the list - so the moved pages won't immediately be considered for
|
|
|
|
* allocation again (e.g., optimization for memory onlining).
|
|
|
|
*/
|
2020-04-07 03:04:49 +00:00
|
|
|
static inline void move_to_free_list(struct page *page, struct zone *zone,
|
|
|
|
unsigned int order, int migratetype)
|
|
|
|
{
|
|
|
|
struct free_area *area = &zone->free_area[order];
|
|
|
|
|
2022-06-24 12:54:17 +00:00
|
|
|
list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
|
2020-04-07 03:04:49 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline void del_page_from_free_list(struct page *page, struct zone *zone,
|
|
|
|
unsigned int order)
|
|
|
|
{
|
2020-04-07 03:04:56 +00:00
|
|
|
/* clear reported state and update reported page count */
|
|
|
|
if (page_reported(page))
|
|
|
|
__ClearPageReported(page);
|
|
|
|
|
2022-06-24 12:54:17 +00:00
|
|
|
list_del(&page->buddy_list);
|
2020-04-07 03:04:49 +00:00
|
|
|
__ClearPageBuddy(page);
|
|
|
|
set_page_private(page, 0);
|
|
|
|
zone->free_area[order].nr_free--;
|
|
|
|
}
|
|
|
|
|
2023-03-19 11:42:14 +00:00
|
|
|
static inline struct page *get_page_from_free_area(struct free_area *area,
|
|
|
|
int migratetype)
|
|
|
|
{
|
|
|
|
return list_first_entry_or_null(&area->free_list[migratetype],
|
|
|
|
struct page, lru);
|
|
|
|
}
|
|
|
|
|
2020-04-07 03:04:45 +00:00
|
|
|
/*
|
|
|
|
* If this is not the largest possible page, check if the buddy
|
|
|
|
* of the next-highest order is free. If it is, it's possible
|
|
|
|
* that pages are being freed that will coalesce soon. In case,
|
|
|
|
* that is happening, add the free page to the tail of the list
|
|
|
|
* so it's less likely to be used soon and more likely to be merged
|
|
|
|
* as a higher order page
|
|
|
|
*/
|
|
|
|
static inline bool
|
|
|
|
buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
|
|
|
|
struct page *page, unsigned int order)
|
|
|
|
{
|
2022-04-29 06:16:01 +00:00
|
|
|
unsigned long higher_page_pfn;
|
|
|
|
struct page *higher_page;
|
2020-04-07 03:04:45 +00:00
|
|
|
|
2023-03-15 11:31:33 +00:00
|
|
|
if (order >= MAX_ORDER - 1)
|
2020-04-07 03:04:45 +00:00
|
|
|
return false;
|
|
|
|
|
2022-04-29 06:16:01 +00:00
|
|
|
higher_page_pfn = buddy_pfn & pfn;
|
|
|
|
higher_page = page + (higher_page_pfn - pfn);
|
2020-04-07 03:04:45 +00:00
|
|
|
|
2022-04-29 06:16:01 +00:00
|
|
|
return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
|
|
|
|
NULL) != NULL;
|
2020-04-07 03:04:45 +00:00
|
|
|
}
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* Freeing function for a buddy system allocator.
|
|
|
|
*
|
|
|
|
* The concept of a buddy system is to maintain direct-mapped table
|
|
|
|
* (containing bit values) for memory blocks of various "orders".
|
|
|
|
* The bottom level table contains the map for the smallest allocatable
|
|
|
|
* units of memory (here, pages), and each level above it describes
|
|
|
|
* pairs of units from the levels below, hence, "buddies".
|
|
|
|
* At a high level, all that happens here is marking the table entry
|
|
|
|
* at the bottom level available, and propagating the changes upward
|
|
|
|
* as necessary, plus some accounting needed to play nicely with other
|
|
|
|
* parts of the VM system.
|
|
|
|
* At each level, we keep a list of pages, which are heads of continuous
|
2018-06-08 00:08:18 +00:00
|
|
|
* free pages of length of (1 << order) and marked with PageBuddy.
|
|
|
|
* Page's order is recorded in page_private(page) field.
|
2005-04-16 22:20:36 +00:00
|
|
|
* So when we are allocating or freeing one, we can derive the state of the
|
2012-01-11 14:16:11 +00:00
|
|
|
* other. That is, if we allocate a small block, and both were
|
|
|
|
* free, the remainder of the region must be split into blocks.
|
2005-04-16 22:20:36 +00:00
|
|
|
* If a block is freed, and its buddy is also free, then this
|
2012-01-11 14:16:11 +00:00
|
|
|
* triggers coalescing into a block of larger size.
|
2005-04-16 22:20:36 +00:00
|
|
|
*
|
2012-12-06 09:39:54 +00:00
|
|
|
* -- nyc
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
|
|
|
|
2006-01-08 09:00:42 +00:00
|
|
|
static inline void __free_one_page(struct page *page,
|
2014-06-04 23:10:17 +00:00
|
|
|
unsigned long pfn,
|
2009-06-16 22:32:07 +00:00
|
|
|
struct zone *zone, unsigned int order,
|
mm/page_alloc: convert "report" flag of __free_one_page() to a proper flag
Patch series "mm: place pages to the freelist tail when onlining and undoing isolation", v2.
When adding separate memory blocks via add_memory*() and onlining them
immediately, the metadata (especially the memmap) of the next block will
be placed onto one of the just added+onlined block. This creates a chain
of unmovable allocations: If the last memory block cannot get
offlined+removed() so will all dependent ones. We directly have unmovable
allocations all over the place.
This can be observed quite easily using virtio-mem, however, it can also
be observed when using DIMMs. The freshly onlined pages will usually be
placed to the head of the freelists, meaning they will be allocated next,
turning the just-added memory usually immediately un-removable. The fresh
pages are cold, prefering to allocate others (that might be hot) also
feels to be the natural thing to do.
It also applies to the hyper-v balloon xen-balloon, and ppc64 dlpar: when
adding separate, successive memory blocks, each memory block will have
unmovable allocations on them - for example gigantic pages will fail to
allocate.
While the ZONE_NORMAL doesn't provide any guarantees that memory can get
offlined+removed again (any kind of fragmentation with unmovable
allocations is possible), there are many scenarios (hotplugging a lot of
memory, running workload, hotunplug some memory/as much as possible) where
we can offline+remove quite a lot with this patchset.
a) To visualize the problem, a very simple example:
Start a VM with 4GB and 8GB of virtio-mem memory:
[root@localhost ~]# lsmem
RANGE SIZE STATE REMOVABLE BLOCK
0x0000000000000000-0x00000000bfffffff 3G online yes 0-23
0x0000000100000000-0x000000033fffffff 9G online yes 32-103
Memory block size: 128M
Total online memory: 12G
Total offline memory: 0B
Then try to unplug as much as possible using virtio-mem. Observe which
memory blocks are still around. Without this patch set:
[root@localhost ~]# lsmem
RANGE SIZE STATE REMOVABLE BLOCK
0x0000000000000000-0x00000000bfffffff 3G online yes 0-23
0x0000000100000000-0x000000013fffffff 1G online yes 32-39
0x0000000148000000-0x000000014fffffff 128M online yes 41
0x0000000158000000-0x000000015fffffff 128M online yes 43
0x0000000168000000-0x000000016fffffff 128M online yes 45
0x0000000178000000-0x000000017fffffff 128M online yes 47
0x0000000188000000-0x0000000197ffffff 256M online yes 49-50
0x00000001a0000000-0x00000001a7ffffff 128M online yes 52
0x00000001b0000000-0x00000001b7ffffff 128M online yes 54
0x00000001c0000000-0x00000001c7ffffff 128M online yes 56
0x00000001d0000000-0x00000001d7ffffff 128M online yes 58
0x00000001e0000000-0x00000001e7ffffff 128M online yes 60
0x00000001f0000000-0x00000001f7ffffff 128M online yes 62
0x0000000200000000-0x0000000207ffffff 128M online yes 64
0x0000000210000000-0x0000000217ffffff 128M online yes 66
0x0000000220000000-0x0000000227ffffff 128M online yes 68
0x0000000230000000-0x0000000237ffffff 128M online yes 70
0x0000000240000000-0x0000000247ffffff 128M online yes 72
0x0000000250000000-0x0000000257ffffff 128M online yes 74
0x0000000260000000-0x0000000267ffffff 128M online yes 76
0x0000000270000000-0x0000000277ffffff 128M online yes 78
0x0000000280000000-0x0000000287ffffff 128M online yes 80
0x0000000290000000-0x0000000297ffffff 128M online yes 82
0x00000002a0000000-0x00000002a7ffffff 128M online yes 84
0x00000002b0000000-0x00000002b7ffffff 128M online yes 86
0x00000002c0000000-0x00000002c7ffffff 128M online yes 88
0x00000002d0000000-0x00000002d7ffffff 128M online yes 90
0x00000002e0000000-0x00000002e7ffffff 128M online yes 92
0x00000002f0000000-0x00000002f7ffffff 128M online yes 94
0x0000000300000000-0x0000000307ffffff 128M online yes 96
0x0000000310000000-0x0000000317ffffff 128M online yes 98
0x0000000320000000-0x0000000327ffffff 128M online yes 100
0x0000000330000000-0x000000033fffffff 256M online yes 102-103
Memory block size: 128M
Total online memory: 8.1G
Total offline memory: 0B
With this patch set:
[root@localhost ~]# lsmem
RANGE SIZE STATE REMOVABLE BLOCK
0x0000000000000000-0x00000000bfffffff 3G online yes 0-23
0x0000000100000000-0x000000013fffffff 1G online yes 32-39
Memory block size: 128M
Total online memory: 4G
Total offline memory: 0B
All memory can get unplugged, all memory block can get removed. Of
course, no workload ran and the system was basically idle, but it
highlights the issue - the fairly deterministic chain of unmovable
allocations. When a huge page for the 2MB memmap is needed, a
just-onlined 4MB page will be split. The remaining 2MB page will be used
for the memmap of the next memory block. So one memory block will hold
the memmap of the two following memory blocks. Finally the pages of the
last-onlined memory block will get used for the next bigger allocations -
if any allocation is unmovable, all dependent memory blocks cannot get
unplugged and removed until that allocation is gone.
Note that with bigger memory blocks (e.g., 256MB), *all* memory
blocks are dependent and none can get unplugged again!
b) Experiment with memory intensive workload
I performed an experiment with an older version of this patch set (before
we used undo_isolate_page_range() in online_pages(): Hotplug 56GB to a VM
with an initial 4GB, onlining all memory to ZONE_NORMAL right from the
kernel when adding it. I then run various memory intensive workloads that
consume most system memory for a total of 45 minutes. Once finished, I
try to unplug as much memory as possible.
With this change, I am able to remove via virtio-mem (adding individual
128MB memory blocks) 413 out of 448 added memory blocks. Via individual
(256MB) DIMMs 380 out of 448 added memory blocks. (I don't have any
numbers without this patchset, but looking at the above example, it's at
most half of the 448 memory blocks for virtio-mem, and most probably none
for DIMMs).
Again, there are workloads that might behave very differently due to the
nature of ZONE_NORMAL.
This change also affects (besides memory onlining):
- Other users of undo_isolate_page_range(): Pages are always placed to the
tail.
-- When memory offlining fails
-- When memory isolation fails after having isolated some pageblocks
-- When alloc_contig_range() either succeeds or fails
- Other users of __putback_isolated_page(): Pages are always placed to the
tail.
-- Free page reporting
- Other users of __free_pages_core()
-- AFAIKs, any memory that is getting exposed to the buddy during boot.
IIUC we will now usually allocate memory from lower addresses within
a zone first (especially during boot).
- Other users of generic_online_page()
-- Hyper-V balloon
This patch (of 5):
Let's prepare for additional flags and avoid long parameter lists of
bools. Follow-up patches will also make use of the flags in
__free_pages_ok().
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Wei Yang <richard.weiyang@linux.alibaba.com>
Reviewed-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Scott Cheloha <cheloha@linux.ibm.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Link: https://lkml.kernel.org/r/20201005121534.15649-1-david@redhat.com
Link: https://lkml.kernel.org/r/20201005121534.15649-2-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16 03:09:20 +00:00
|
|
|
int migratetype, fpi_t fpi_flags)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2020-04-07 03:04:45 +00:00
|
|
|
struct capture_control *capc = task_capc(zone);
|
2022-09-16 07:22:54 +00:00
|
|
|
unsigned long buddy_pfn = 0;
|
2020-04-07 03:04:45 +00:00
|
|
|
unsigned long combined_pfn;
|
|
|
|
struct page *buddy;
|
|
|
|
bool to_tail;
|
mm/page_alloc: prevent merging between isolated and other pageblocks
Hanjun Guo has reported that a CMA stress test causes broken accounting of
CMA and free pages:
> Before the test, I got:
> -bash-4.3# cat /proc/meminfo | grep Cma
> CmaTotal: 204800 kB
> CmaFree: 195044 kB
>
>
> After running the test:
> -bash-4.3# cat /proc/meminfo | grep Cma
> CmaTotal: 204800 kB
> CmaFree: 6602584 kB
>
> So the freed CMA memory is more than total..
>
> Also the the MemFree is more than mem total:
>
> -bash-4.3# cat /proc/meminfo
> MemTotal: 16342016 kB
> MemFree: 22367268 kB
> MemAvailable: 22370528 kB
Laura Abbott has confirmed the issue and suspected the freepage accounting
rewrite around 3.18/4.0 by Joonsoo Kim. Joonsoo had a theory that this is
caused by unexpected merging between MIGRATE_ISOLATE and MIGRATE_CMA
pageblocks:
> CMA isolates MAX_ORDER aligned blocks, but, during the process,
> partialy isolated block exists. If MAX_ORDER is 11 and
> pageblock_order is 9, two pageblocks make up MAX_ORDER
> aligned block and I can think following scenario because pageblock
> (un)isolation would be done one by one.
>
> (each character means one pageblock. 'C', 'I' means MIGRATE_CMA,
> MIGRATE_ISOLATE, respectively.
>
> CC -> IC -> II (Isolation)
> II -> CI -> CC (Un-isolation)
>
> If some pages are freed at this intermediate state such as IC or CI,
> that page could be merged to the other page that is resident on
> different type of pageblock and it will cause wrong freepage count.
This was supposed to be prevented by CMA operating on MAX_ORDER blocks,
but since it doesn't hold the zone->lock between pageblocks, a race
window does exist.
It's also likely that unexpected merging can occur between
MIGRATE_ISOLATE and non-CMA pageblocks. This should be prevented in
__free_one_page() since commit 3c605096d315 ("mm/page_alloc: restrict
max order of merging on isolated pageblock"). However, we only check
the migratetype of the pageblock where buddy merging has been initiated,
not the migratetype of the buddy pageblock (or group of pageblocks)
which can be MIGRATE_ISOLATE.
Joonsoo has suggested checking for buddy migratetype as part of
page_is_buddy(), but that would add extra checks in allocator hotpath
and bloat-o-meter has shown significant code bloat (the function is
inline).
This patch reduces the bloat at some expense of more complicated code.
The buddy-merging while-loop in __free_one_page() is initially bounded
to pageblock_border and without any migratetype checks. The checks are
placed outside, bumping the max_order if merging is allowed, and
returning to the while-loop with a statement which can't be possibly
considered harmful.
This fixes the accounting bug and also removes the arguably weird state
in the original commit 3c605096d315 where buddies could be left
unmerged.
Fixes: 3c605096d315 ("mm/page_alloc: restrict max order of merging on isolated pageblock")
Link: https://lkml.org/lkml/2016/3/2/280
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Hanjun Guo <guohanjun@huawei.com>
Tested-by: Hanjun Guo <guohanjun@huawei.com>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Debugged-by: Laura Abbott <labbott@redhat.com>
Debugged-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org> [3.18+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-25 21:21:50 +00:00
|
|
|
|
2013-02-23 00:35:25 +00:00
|
|
|
VM_BUG_ON(!zone_is_initialized(zone));
|
2015-02-11 23:25:50 +00:00
|
|
|
VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2009-06-16 22:32:07 +00:00
|
|
|
VM_BUG_ON(migratetype == -1);
|
mm/page_alloc: prevent merging between isolated and other pageblocks
Hanjun Guo has reported that a CMA stress test causes broken accounting of
CMA and free pages:
> Before the test, I got:
> -bash-4.3# cat /proc/meminfo | grep Cma
> CmaTotal: 204800 kB
> CmaFree: 195044 kB
>
>
> After running the test:
> -bash-4.3# cat /proc/meminfo | grep Cma
> CmaTotal: 204800 kB
> CmaFree: 6602584 kB
>
> So the freed CMA memory is more than total..
>
> Also the the MemFree is more than mem total:
>
> -bash-4.3# cat /proc/meminfo
> MemTotal: 16342016 kB
> MemFree: 22367268 kB
> MemAvailable: 22370528 kB
Laura Abbott has confirmed the issue and suspected the freepage accounting
rewrite around 3.18/4.0 by Joonsoo Kim. Joonsoo had a theory that this is
caused by unexpected merging between MIGRATE_ISOLATE and MIGRATE_CMA
pageblocks:
> CMA isolates MAX_ORDER aligned blocks, but, during the process,
> partialy isolated block exists. If MAX_ORDER is 11 and
> pageblock_order is 9, two pageblocks make up MAX_ORDER
> aligned block and I can think following scenario because pageblock
> (un)isolation would be done one by one.
>
> (each character means one pageblock. 'C', 'I' means MIGRATE_CMA,
> MIGRATE_ISOLATE, respectively.
>
> CC -> IC -> II (Isolation)
> II -> CI -> CC (Un-isolation)
>
> If some pages are freed at this intermediate state such as IC or CI,
> that page could be merged to the other page that is resident on
> different type of pageblock and it will cause wrong freepage count.
This was supposed to be prevented by CMA operating on MAX_ORDER blocks,
but since it doesn't hold the zone->lock between pageblocks, a race
window does exist.
It's also likely that unexpected merging can occur between
MIGRATE_ISOLATE and non-CMA pageblocks. This should be prevented in
__free_one_page() since commit 3c605096d315 ("mm/page_alloc: restrict
max order of merging on isolated pageblock"). However, we only check
the migratetype of the pageblock where buddy merging has been initiated,
not the migratetype of the buddy pageblock (or group of pageblocks)
which can be MIGRATE_ISOLATE.
Joonsoo has suggested checking for buddy migratetype as part of
page_is_buddy(), but that would add extra checks in allocator hotpath
and bloat-o-meter has shown significant code bloat (the function is
inline).
This patch reduces the bloat at some expense of more complicated code.
The buddy-merging while-loop in __free_one_page() is initially bounded
to pageblock_border and without any migratetype checks. The checks are
placed outside, bumping the max_order if merging is allowed, and
returning to the while-loop with a statement which can't be possibly
considered harmful.
This fixes the accounting bug and also removes the arguably weird state
in the original commit 3c605096d315 where buddies could be left
unmerged.
Fixes: 3c605096d315 ("mm/page_alloc: restrict max order of merging on isolated pageblock")
Link: https://lkml.org/lkml/2016/3/2/280
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Hanjun Guo <guohanjun@huawei.com>
Tested-by: Hanjun Guo <guohanjun@huawei.com>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Debugged-by: Laura Abbott <labbott@redhat.com>
Debugged-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org> [3.18+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-25 21:21:50 +00:00
|
|
|
if (likely(!is_migrate_isolate(migratetype)))
|
2014-11-13 23:19:18 +00:00
|
|
|
__mod_zone_freepage_state(zone, 1 << order, migratetype);
|
2009-06-16 22:32:07 +00:00
|
|
|
|
2017-02-22 23:41:48 +00:00
|
|
|
VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
|
2014-01-23 23:52:54 +00:00
|
|
|
VM_BUG_ON_PAGE(bad_range(zone, page), page);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2023-03-15 11:31:33 +00:00
|
|
|
while (order < MAX_ORDER) {
|
2019-03-05 23:45:41 +00:00
|
|
|
if (compaction_capture(capc, page, order, migratetype)) {
|
|
|
|
__mod_zone_freepage_state(zone, -(1 << order),
|
|
|
|
migratetype);
|
|
|
|
return;
|
|
|
|
}
|
2017-02-22 23:41:51 +00:00
|
|
|
|
2022-04-29 06:16:01 +00:00
|
|
|
buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
|
|
|
|
if (!buddy)
|
mm/page_alloc: prevent merging between isolated and other pageblocks
Hanjun Guo has reported that a CMA stress test causes broken accounting of
CMA and free pages:
> Before the test, I got:
> -bash-4.3# cat /proc/meminfo | grep Cma
> CmaTotal: 204800 kB
> CmaFree: 195044 kB
>
>
> After running the test:
> -bash-4.3# cat /proc/meminfo | grep Cma
> CmaTotal: 204800 kB
> CmaFree: 6602584 kB
>
> So the freed CMA memory is more than total..
>
> Also the the MemFree is more than mem total:
>
> -bash-4.3# cat /proc/meminfo
> MemTotal: 16342016 kB
> MemFree: 22367268 kB
> MemAvailable: 22370528 kB
Laura Abbott has confirmed the issue and suspected the freepage accounting
rewrite around 3.18/4.0 by Joonsoo Kim. Joonsoo had a theory that this is
caused by unexpected merging between MIGRATE_ISOLATE and MIGRATE_CMA
pageblocks:
> CMA isolates MAX_ORDER aligned blocks, but, during the process,
> partialy isolated block exists. If MAX_ORDER is 11 and
> pageblock_order is 9, two pageblocks make up MAX_ORDER
> aligned block and I can think following scenario because pageblock
> (un)isolation would be done one by one.
>
> (each character means one pageblock. 'C', 'I' means MIGRATE_CMA,
> MIGRATE_ISOLATE, respectively.
>
> CC -> IC -> II (Isolation)
> II -> CI -> CC (Un-isolation)
>
> If some pages are freed at this intermediate state such as IC or CI,
> that page could be merged to the other page that is resident on
> different type of pageblock and it will cause wrong freepage count.
This was supposed to be prevented by CMA operating on MAX_ORDER blocks,
but since it doesn't hold the zone->lock between pageblocks, a race
window does exist.
It's also likely that unexpected merging can occur between
MIGRATE_ISOLATE and non-CMA pageblocks. This should be prevented in
__free_one_page() since commit 3c605096d315 ("mm/page_alloc: restrict
max order of merging on isolated pageblock"). However, we only check
the migratetype of the pageblock where buddy merging has been initiated,
not the migratetype of the buddy pageblock (or group of pageblocks)
which can be MIGRATE_ISOLATE.
Joonsoo has suggested checking for buddy migratetype as part of
page_is_buddy(), but that would add extra checks in allocator hotpath
and bloat-o-meter has shown significant code bloat (the function is
inline).
This patch reduces the bloat at some expense of more complicated code.
The buddy-merging while-loop in __free_one_page() is initially bounded
to pageblock_border and without any migratetype checks. The checks are
placed outside, bumping the max_order if merging is allowed, and
returning to the while-loop with a statement which can't be possibly
considered harmful.
This fixes the accounting bug and also removes the arguably weird state
in the original commit 3c605096d315 where buddies could be left
unmerged.
Fixes: 3c605096d315 ("mm/page_alloc: restrict max order of merging on isolated pageblock")
Link: https://lkml.org/lkml/2016/3/2/280
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Hanjun Guo <guohanjun@huawei.com>
Tested-by: Hanjun Guo <guohanjun@huawei.com>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Debugged-by: Laura Abbott <labbott@redhat.com>
Debugged-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org> [3.18+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-25 21:21:50 +00:00
|
|
|
goto done_merging;
|
2022-04-29 06:16:01 +00:00
|
|
|
|
|
|
|
if (unlikely(order >= pageblock_order)) {
|
|
|
|
/*
|
|
|
|
* We want to prevent merge between freepages on pageblock
|
|
|
|
* without fallbacks and normal pageblock. Without this,
|
|
|
|
* pageblock isolation could cause incorrect freepage or CMA
|
|
|
|
* accounting or HIGHATOMIC accounting.
|
|
|
|
*/
|
|
|
|
int buddy_mt = get_pageblock_migratetype(buddy);
|
|
|
|
|
|
|
|
if (migratetype != buddy_mt
|
|
|
|
&& (!migratetype_is_mergeable(migratetype) ||
|
|
|
|
!migratetype_is_mergeable(buddy_mt)))
|
|
|
|
goto done_merging;
|
|
|
|
}
|
|
|
|
|
2012-01-10 23:07:28 +00:00
|
|
|
/*
|
|
|
|
* Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
|
|
|
|
* merge with it and move up one order.
|
|
|
|
*/
|
2019-05-14 22:41:32 +00:00
|
|
|
if (page_is_guard(buddy))
|
2014-12-13 00:55:01 +00:00
|
|
|
clear_page_guard(zone, buddy, order, migratetype);
|
2019-05-14 22:41:32 +00:00
|
|
|
else
|
2020-04-07 03:04:49 +00:00
|
|
|
del_page_from_free_list(buddy, zone, order);
|
2017-02-22 23:41:48 +00:00
|
|
|
combined_pfn = buddy_pfn & pfn;
|
|
|
|
page = page + (combined_pfn - pfn);
|
|
|
|
pfn = combined_pfn;
|
2005-04-16 22:20:36 +00:00
|
|
|
order++;
|
|
|
|
}
|
mm/page_alloc: prevent merging between isolated and other pageblocks
Hanjun Guo has reported that a CMA stress test causes broken accounting of
CMA and free pages:
> Before the test, I got:
> -bash-4.3# cat /proc/meminfo | grep Cma
> CmaTotal: 204800 kB
> CmaFree: 195044 kB
>
>
> After running the test:
> -bash-4.3# cat /proc/meminfo | grep Cma
> CmaTotal: 204800 kB
> CmaFree: 6602584 kB
>
> So the freed CMA memory is more than total..
>
> Also the the MemFree is more than mem total:
>
> -bash-4.3# cat /proc/meminfo
> MemTotal: 16342016 kB
> MemFree: 22367268 kB
> MemAvailable: 22370528 kB
Laura Abbott has confirmed the issue and suspected the freepage accounting
rewrite around 3.18/4.0 by Joonsoo Kim. Joonsoo had a theory that this is
caused by unexpected merging between MIGRATE_ISOLATE and MIGRATE_CMA
pageblocks:
> CMA isolates MAX_ORDER aligned blocks, but, during the process,
> partialy isolated block exists. If MAX_ORDER is 11 and
> pageblock_order is 9, two pageblocks make up MAX_ORDER
> aligned block and I can think following scenario because pageblock
> (un)isolation would be done one by one.
>
> (each character means one pageblock. 'C', 'I' means MIGRATE_CMA,
> MIGRATE_ISOLATE, respectively.
>
> CC -> IC -> II (Isolation)
> II -> CI -> CC (Un-isolation)
>
> If some pages are freed at this intermediate state such as IC or CI,
> that page could be merged to the other page that is resident on
> different type of pageblock and it will cause wrong freepage count.
This was supposed to be prevented by CMA operating on MAX_ORDER blocks,
but since it doesn't hold the zone->lock between pageblocks, a race
window does exist.
It's also likely that unexpected merging can occur between
MIGRATE_ISOLATE and non-CMA pageblocks. This should be prevented in
__free_one_page() since commit 3c605096d315 ("mm/page_alloc: restrict
max order of merging on isolated pageblock"). However, we only check
the migratetype of the pageblock where buddy merging has been initiated,
not the migratetype of the buddy pageblock (or group of pageblocks)
which can be MIGRATE_ISOLATE.
Joonsoo has suggested checking for buddy migratetype as part of
page_is_buddy(), but that would add extra checks in allocator hotpath
and bloat-o-meter has shown significant code bloat (the function is
inline).
This patch reduces the bloat at some expense of more complicated code.
The buddy-merging while-loop in __free_one_page() is initially bounded
to pageblock_border and without any migratetype checks. The checks are
placed outside, bumping the max_order if merging is allowed, and
returning to the while-loop with a statement which can't be possibly
considered harmful.
This fixes the accounting bug and also removes the arguably weird state
in the original commit 3c605096d315 where buddies could be left
unmerged.
Fixes: 3c605096d315 ("mm/page_alloc: restrict max order of merging on isolated pageblock")
Link: https://lkml.org/lkml/2016/3/2/280
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Hanjun Guo <guohanjun@huawei.com>
Tested-by: Hanjun Guo <guohanjun@huawei.com>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Debugged-by: Laura Abbott <labbott@redhat.com>
Debugged-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org> [3.18+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-25 21:21:50 +00:00
|
|
|
|
|
|
|
done_merging:
|
2020-10-16 03:10:15 +00:00
|
|
|
set_buddy_order(page, order);
|
page allocator: reduce fragmentation in buddy allocator by adding buddies that are merging to the tail of the free lists
In order to reduce fragmentation, this patch classifies freed pages in two
groups according to their probability of being part of a high order merge.
Pages belonging to a compound whose next-highest buddy is free are more
likely to be part of a high order merge in the near future, so they will
be added at the tail of the freelist. The remaining pages are put at the
front of the freelist.
In this way, the pages that are more likely to cause a big merge are kept
free longer. Consequently there is a tendency to aggregate the
long-living allocations on a subset of the compounds, reducing the
fragmentation.
This heuristic was tested on three machines, x86, x86-64 and ppc64 with
3GB of RAM in each machine. The tests were kernbench, netperf, sysbench
and STREAM for performance and a high-order stress test for huge page
allocations.
KernBench X86
Elapsed mean 374.77 ( 0.00%) 375.10 (-0.09%)
User mean 649.53 ( 0.00%) 650.44 (-0.14%)
System mean 54.75 ( 0.00%) 54.18 ( 1.05%)
CPU mean 187.75 ( 0.00%) 187.25 ( 0.27%)
KernBench X86-64
Elapsed mean 94.45 ( 0.00%) 94.01 ( 0.47%)
User mean 323.27 ( 0.00%) 322.66 ( 0.19%)
System mean 36.71 ( 0.00%) 36.50 ( 0.57%)
CPU mean 380.75 ( 0.00%) 381.75 (-0.26%)
KernBench PPC64
Elapsed mean 173.45 ( 0.00%) 173.74 (-0.17%)
User mean 587.99 ( 0.00%) 587.95 ( 0.01%)
System mean 60.60 ( 0.00%) 60.57 ( 0.05%)
CPU mean 373.50 ( 0.00%) 372.75 ( 0.20%)
Nothing notable for kernbench.
NetPerf UDP X86
64 42.68 ( 0.00%) 42.77 ( 0.21%)
128 85.62 ( 0.00%) 85.32 (-0.35%)
256 170.01 ( 0.00%) 168.76 (-0.74%)
1024 655.68 ( 0.00%) 652.33 (-0.51%)
2048 1262.39 ( 0.00%) 1248.61 (-1.10%)
3312 1958.41 ( 0.00%) 1944.61 (-0.71%)
4096 2345.63 ( 0.00%) 2318.83 (-1.16%)
8192 4132.90 ( 0.00%) 4089.50 (-1.06%)
16384 6770.88 ( 0.00%) 6642.05 (-1.94%)*
NetPerf UDP X86-64
64 148.82 ( 0.00%) 154.92 ( 3.94%)
128 298.96 ( 0.00%) 312.95 ( 4.47%)
256 583.67 ( 0.00%) 626.39 ( 6.82%)
1024 2293.18 ( 0.00%) 2371.10 ( 3.29%)
2048 4274.16 ( 0.00%) 4396.83 ( 2.79%)
3312 6356.94 ( 0.00%) 6571.35 ( 3.26%)
4096 7422.68 ( 0.00%) 7635.42 ( 2.79%)*
8192 12114.81 ( 0.00%)* 12346.88 ( 1.88%)
16384 17022.28 ( 0.00%)* 17033.19 ( 0.06%)*
1.64% 2.73%
NetPerf UDP PPC64
64 49.98 ( 0.00%) 50.25 ( 0.54%)
128 98.66 ( 0.00%) 100.95 ( 2.27%)
256 197.33 ( 0.00%) 191.03 (-3.30%)
1024 761.98 ( 0.00%) 785.07 ( 2.94%)
2048 1493.50 ( 0.00%) 1510.85 ( 1.15%)
3312 2303.95 ( 0.00%) 2271.72 (-1.42%)
4096 2774.56 ( 0.00%) 2773.06 (-0.05%)
8192 4918.31 ( 0.00%) 4793.59 (-2.60%)
16384 7497.98 ( 0.00%) 7749.52 ( 3.25%)
The tests are run to have confidence limits within 1%. Results marked
with a * were not confident although in this case, it's only outside by
small amounts. Even with some results that were not confident, the
netperf UDP results were generally positive.
NetPerf TCP X86
64 652.25 ( 0.00%)* 648.12 (-0.64%)*
23.80% 22.82%
128 1229.98 ( 0.00%)* 1220.56 (-0.77%)*
21.03% 18.90%
256 2105.88 ( 0.00%) 1872.03 (-12.49%)*
1.00% 16.46%
1024 3476.46 ( 0.00%)* 3548.28 ( 2.02%)*
13.37% 11.39%
2048 4023.44 ( 0.00%)* 4231.45 ( 4.92%)*
9.76% 12.48%
3312 4348.88 ( 0.00%)* 4396.96 ( 1.09%)*
6.49% 8.75%
4096 4726.56 ( 0.00%)* 4877.71 ( 3.10%)*
9.85% 8.50%
8192 4732.28 ( 0.00%)* 5777.77 (18.10%)*
9.13% 13.04%
16384 5543.05 ( 0.00%)* 5906.24 ( 6.15%)*
7.73% 8.68%
NETPERF TCP X86-64
netperf-tcp-vanilla-netperf netperf-tcp
tcp-vanilla pgalloc-delay
64 1895.87 ( 0.00%)* 1775.07 (-6.81%)*
5.79% 4.78%
128 3571.03 ( 0.00%)* 3342.20 (-6.85%)*
3.68% 6.06%
256 5097.21 ( 0.00%)* 4859.43 (-4.89%)*
3.02% 2.10%
1024 8919.10 ( 0.00%)* 8892.49 (-0.30%)*
5.89% 6.55%
2048 10255.46 ( 0.00%)* 10449.39 ( 1.86%)*
7.08% 7.44%
3312 10839.90 ( 0.00%)* 10740.15 (-0.93%)*
6.87% 7.33%
4096 10814.84 ( 0.00%)* 10766.97 (-0.44%)*
6.86% 8.18%
8192 11606.89 ( 0.00%)* 11189.28 (-3.73%)*
7.49% 5.55%
16384 12554.88 ( 0.00%)* 12361.22 (-1.57%)*
7.36% 6.49%
NETPERF TCP PPC64
netperf-tcp-vanilla-netperf netperf-tcp
tcp-vanilla pgalloc-delay
64 594.17 ( 0.00%) 596.04 ( 0.31%)*
1.00% 2.29%
128 1064.87 ( 0.00%)* 1074.77 ( 0.92%)*
1.30% 1.40%
256 1852.46 ( 0.00%)* 1856.95 ( 0.24%)
1.25% 1.00%
1024 3839.46 ( 0.00%)* 3813.05 (-0.69%)
1.02% 1.00%
2048 4885.04 ( 0.00%)* 4881.97 (-0.06%)*
1.15% 1.04%
3312 5506.90 ( 0.00%) 5459.72 (-0.86%)
4096 6449.19 ( 0.00%) 6345.46 (-1.63%)
8192 7501.17 ( 0.00%) 7508.79 ( 0.10%)
16384 9618.65 ( 0.00%) 9490.10 (-1.35%)
There was a distinct lack of confidence in the X86* figures so I included
what the devation was where the results were not confident. Many of the
results, whether gains or losses were within the standard deviation so no
solid conclusion can be reached on performance impact. Looking at the
figures, only the X86-64 ones look suspicious with a few losses that were
outside the noise. However, the results were so unstable that without
knowing why they vary so much, a solid conclusion cannot be reached.
SYSBENCH X86
sysbench-vanilla pgalloc-delay
1 7722.85 ( 0.00%) 7756.79 ( 0.44%)
2 14901.11 ( 0.00%) 13683.44 (-8.90%)
3 15171.71 ( 0.00%) 14888.25 (-1.90%)
4 14966.98 ( 0.00%) 15029.67 ( 0.42%)
5 14370.47 ( 0.00%) 14865.00 ( 3.33%)
6 14870.33 ( 0.00%) 14845.57 (-0.17%)
7 14429.45 ( 0.00%) 14520.85 ( 0.63%)
8 14354.35 ( 0.00%) 14362.31 ( 0.06%)
SYSBENCH X86-64
1 17448.70 ( 0.00%) 17484.41 ( 0.20%)
2 34276.39 ( 0.00%) 34251.00 (-0.07%)
3 50805.25 ( 0.00%) 50854.80 ( 0.10%)
4 66667.10 ( 0.00%) 66174.69 (-0.74%)
5 66003.91 ( 0.00%) 65685.25 (-0.49%)
6 64981.90 ( 0.00%) 65125.60 ( 0.22%)
7 64933.16 ( 0.00%) 64379.23 (-0.86%)
8 63353.30 ( 0.00%) 63281.22 (-0.11%)
9 63511.84 ( 0.00%) 63570.37 ( 0.09%)
10 62708.27 ( 0.00%) 63166.25 ( 0.73%)
11 62092.81 ( 0.00%) 61787.75 (-0.49%)
12 61330.11 ( 0.00%) 61036.34 (-0.48%)
13 61438.37 ( 0.00%) 61994.47 ( 0.90%)
14 62304.48 ( 0.00%) 62064.90 (-0.39%)
15 63296.48 ( 0.00%) 62875.16 (-0.67%)
16 63951.76 ( 0.00%) 63769.09 (-0.29%)
SYSBENCH PPC64
-sysbench-pgalloc-delay-sysbench
sysbench-vanilla pgalloc-delay
1 7645.08 ( 0.00%) 7467.43 (-2.38%)
2 14856.67 ( 0.00%) 14558.73 (-2.05%)
3 21952.31 ( 0.00%) 21683.64 (-1.24%)
4 27946.09 ( 0.00%) 28623.29 ( 2.37%)
5 28045.11 ( 0.00%) 28143.69 ( 0.35%)
6 27477.10 ( 0.00%) 27337.45 (-0.51%)
7 26489.17 ( 0.00%) 26590.06 ( 0.38%)
8 26642.91 ( 0.00%) 25274.33 (-5.41%)
9 25137.27 ( 0.00%) 24810.06 (-1.32%)
10 24451.99 ( 0.00%) 24275.85 (-0.73%)
11 23262.20 ( 0.00%) 23674.88 ( 1.74%)
12 24234.81 ( 0.00%) 23640.89 (-2.51%)
13 24577.75 ( 0.00%) 24433.50 (-0.59%)
14 25640.19 ( 0.00%) 25116.52 (-2.08%)
15 26188.84 ( 0.00%) 26181.36 (-0.03%)
16 26782.37 ( 0.00%) 26255.99 (-2.00%)
Again, there is little to conclude here. While there are a few losses,
the results vary by +/- 8% in some cases. They are the results of most
concern as there are some large losses but it's also within the variance
typically seen between kernel releases.
The STREAM results varied so little and are so verbose that I didn't
include them here.
The final test stressed how many huge pages can be allocated. The
absolute number of huge pages allocated are the same with or without the
page. However, the "unusability free space index" which is a measure of
external fragmentation was slightly lower (lower is better) throughout the
lifetime of the system. I also measured the latency of how long it took
to successfully allocate a huge page. The latency was slightly lower and
on X86 and PPC64, more huge pages were allocated almost immediately from
the free lists. The improvement is slight but there.
[mel@csn.ul.ie: Tested, reworked for less branches]
[czoccolo@gmail.com: fix oops by checking pfn_valid_within()]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Corrado Zoccolo <czoccolo@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-24 21:31:54 +00:00
|
|
|
|
mm/page_alloc: place pages to tail in __putback_isolated_page()
__putback_isolated_page() already documents that pages will be placed to
the tail of the freelist - this is, however, not the case for "order >=
MAX_ORDER - 2" (see buddy_merge_likely()) - which should be the case for
all existing users.
This change affects two users:
- free page reporting
- page isolation, when undoing the isolation (including memory onlining).
This behavior is desirable for pages that haven't really been touched
lately, so exactly the two users that don't actually read/write page
content, but rather move untouched pages.
The new behavior is especially desirable for memory onlining, where we
allow allocation of newly onlined pages via undo_isolate_page_range() in
online_pages(). Right now, we always place them to the head of the
freelist, resulting in undesireable behavior: Assume we add individual
memory chunks via add_memory() and online them right away to the NORMAL
zone. We create a dependency chain of unmovable allocations e.g., via the
memmap. The memmap of the next chunk will be placed onto previous chunks
- if the last block cannot get offlined+removed, all dependent ones cannot
get offlined+removed. While this can already be observed with individual
DIMMs, it's more of an issue for virtio-mem (and I suspect also ppc
DLPAR).
Document that this should only be used for optimizations, and no code
should rely on this behavior for correction (if the order of the freelists
ever changes).
We won't care about page shuffling: memory onlining already properly
shuffles after onlining. free page reporting doesn't care about
physically contiguous ranges, and there are already cases where page
isolation will simply move (physically close) free pages to (currently)
the head of the freelists via move_freepages_block() instead of shuffling.
If this becomes ever relevant, we should shuffle the whole zone when
undoing isolation of larger ranges, and after free_contig_range().
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Wei Yang <richard.weiyang@linux.alibaba.com>
Reviewed-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Scott Cheloha <cheloha@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Wei Liu <wei.liu@kernel.org>
Link: https://lkml.kernel.org/r/20201005121534.15649-3-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16 03:09:26 +00:00
|
|
|
if (fpi_flags & FPI_TO_TAIL)
|
|
|
|
to_tail = true;
|
|
|
|
else if (is_shuffle_order(order))
|
2020-04-07 03:04:45 +00:00
|
|
|
to_tail = shuffle_pick_tail();
|
2019-05-14 22:41:35 +00:00
|
|
|
else
|
2020-04-07 03:04:45 +00:00
|
|
|
to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
|
2019-05-14 22:41:35 +00:00
|
|
|
|
2020-04-07 03:04:45 +00:00
|
|
|
if (to_tail)
|
2020-04-07 03:04:49 +00:00
|
|
|
add_to_free_list_tail(page, zone, order, migratetype);
|
2020-04-07 03:04:45 +00:00
|
|
|
else
|
2020-04-07 03:04:49 +00:00
|
|
|
add_to_free_list(page, zone, order, migratetype);
|
2020-04-07 03:04:56 +00:00
|
|
|
|
|
|
|
/* Notify page reporting subsystem of freed page */
|
mm/page_alloc: convert "report" flag of __free_one_page() to a proper flag
Patch series "mm: place pages to the freelist tail when onlining and undoing isolation", v2.
When adding separate memory blocks via add_memory*() and onlining them
immediately, the metadata (especially the memmap) of the next block will
be placed onto one of the just added+onlined block. This creates a chain
of unmovable allocations: If the last memory block cannot get
offlined+removed() so will all dependent ones. We directly have unmovable
allocations all over the place.
This can be observed quite easily using virtio-mem, however, it can also
be observed when using DIMMs. The freshly onlined pages will usually be
placed to the head of the freelists, meaning they will be allocated next,
turning the just-added memory usually immediately un-removable. The fresh
pages are cold, prefering to allocate others (that might be hot) also
feels to be the natural thing to do.
It also applies to the hyper-v balloon xen-balloon, and ppc64 dlpar: when
adding separate, successive memory blocks, each memory block will have
unmovable allocations on them - for example gigantic pages will fail to
allocate.
While the ZONE_NORMAL doesn't provide any guarantees that memory can get
offlined+removed again (any kind of fragmentation with unmovable
allocations is possible), there are many scenarios (hotplugging a lot of
memory, running workload, hotunplug some memory/as much as possible) where
we can offline+remove quite a lot with this patchset.
a) To visualize the problem, a very simple example:
Start a VM with 4GB and 8GB of virtio-mem memory:
[root@localhost ~]# lsmem
RANGE SIZE STATE REMOVABLE BLOCK
0x0000000000000000-0x00000000bfffffff 3G online yes 0-23
0x0000000100000000-0x000000033fffffff 9G online yes 32-103
Memory block size: 128M
Total online memory: 12G
Total offline memory: 0B
Then try to unplug as much as possible using virtio-mem. Observe which
memory blocks are still around. Without this patch set:
[root@localhost ~]# lsmem
RANGE SIZE STATE REMOVABLE BLOCK
0x0000000000000000-0x00000000bfffffff 3G online yes 0-23
0x0000000100000000-0x000000013fffffff 1G online yes 32-39
0x0000000148000000-0x000000014fffffff 128M online yes 41
0x0000000158000000-0x000000015fffffff 128M online yes 43
0x0000000168000000-0x000000016fffffff 128M online yes 45
0x0000000178000000-0x000000017fffffff 128M online yes 47
0x0000000188000000-0x0000000197ffffff 256M online yes 49-50
0x00000001a0000000-0x00000001a7ffffff 128M online yes 52
0x00000001b0000000-0x00000001b7ffffff 128M online yes 54
0x00000001c0000000-0x00000001c7ffffff 128M online yes 56
0x00000001d0000000-0x00000001d7ffffff 128M online yes 58
0x00000001e0000000-0x00000001e7ffffff 128M online yes 60
0x00000001f0000000-0x00000001f7ffffff 128M online yes 62
0x0000000200000000-0x0000000207ffffff 128M online yes 64
0x0000000210000000-0x0000000217ffffff 128M online yes 66
0x0000000220000000-0x0000000227ffffff 128M online yes 68
0x0000000230000000-0x0000000237ffffff 128M online yes 70
0x0000000240000000-0x0000000247ffffff 128M online yes 72
0x0000000250000000-0x0000000257ffffff 128M online yes 74
0x0000000260000000-0x0000000267ffffff 128M online yes 76
0x0000000270000000-0x0000000277ffffff 128M online yes 78
0x0000000280000000-0x0000000287ffffff 128M online yes 80
0x0000000290000000-0x0000000297ffffff 128M online yes 82
0x00000002a0000000-0x00000002a7ffffff 128M online yes 84
0x00000002b0000000-0x00000002b7ffffff 128M online yes 86
0x00000002c0000000-0x00000002c7ffffff 128M online yes 88
0x00000002d0000000-0x00000002d7ffffff 128M online yes 90
0x00000002e0000000-0x00000002e7ffffff 128M online yes 92
0x00000002f0000000-0x00000002f7ffffff 128M online yes 94
0x0000000300000000-0x0000000307ffffff 128M online yes 96
0x0000000310000000-0x0000000317ffffff 128M online yes 98
0x0000000320000000-0x0000000327ffffff 128M online yes 100
0x0000000330000000-0x000000033fffffff 256M online yes 102-103
Memory block size: 128M
Total online memory: 8.1G
Total offline memory: 0B
With this patch set:
[root@localhost ~]# lsmem
RANGE SIZE STATE REMOVABLE BLOCK
0x0000000000000000-0x00000000bfffffff 3G online yes 0-23
0x0000000100000000-0x000000013fffffff 1G online yes 32-39
Memory block size: 128M
Total online memory: 4G
Total offline memory: 0B
All memory can get unplugged, all memory block can get removed. Of
course, no workload ran and the system was basically idle, but it
highlights the issue - the fairly deterministic chain of unmovable
allocations. When a huge page for the 2MB memmap is needed, a
just-onlined 4MB page will be split. The remaining 2MB page will be used
for the memmap of the next memory block. So one memory block will hold
the memmap of the two following memory blocks. Finally the pages of the
last-onlined memory block will get used for the next bigger allocations -
if any allocation is unmovable, all dependent memory blocks cannot get
unplugged and removed until that allocation is gone.
Note that with bigger memory blocks (e.g., 256MB), *all* memory
blocks are dependent and none can get unplugged again!
b) Experiment with memory intensive workload
I performed an experiment with an older version of this patch set (before
we used undo_isolate_page_range() in online_pages(): Hotplug 56GB to a VM
with an initial 4GB, onlining all memory to ZONE_NORMAL right from the
kernel when adding it. I then run various memory intensive workloads that
consume most system memory for a total of 45 minutes. Once finished, I
try to unplug as much memory as possible.
With this change, I am able to remove via virtio-mem (adding individual
128MB memory blocks) 413 out of 448 added memory blocks. Via individual
(256MB) DIMMs 380 out of 448 added memory blocks. (I don't have any
numbers without this patchset, but looking at the above example, it's at
most half of the 448 memory blocks for virtio-mem, and most probably none
for DIMMs).
Again, there are workloads that might behave very differently due to the
nature of ZONE_NORMAL.
This change also affects (besides memory onlining):
- Other users of undo_isolate_page_range(): Pages are always placed to the
tail.
-- When memory offlining fails
-- When memory isolation fails after having isolated some pageblocks
-- When alloc_contig_range() either succeeds or fails
- Other users of __putback_isolated_page(): Pages are always placed to the
tail.
-- Free page reporting
- Other users of __free_pages_core()
-- AFAIKs, any memory that is getting exposed to the buddy during boot.
IIUC we will now usually allocate memory from lower addresses within
a zone first (especially during boot).
- Other users of generic_online_page()
-- Hyper-V balloon
This patch (of 5):
Let's prepare for additional flags and avoid long parameter lists of
bools. Follow-up patches will also make use of the flags in
__free_pages_ok().
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Wei Yang <richard.weiyang@linux.alibaba.com>
Reviewed-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Scott Cheloha <cheloha@linux.ibm.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Link: https://lkml.kernel.org/r/20201005121534.15649-1-david@redhat.com
Link: https://lkml.kernel.org/r/20201005121534.15649-2-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16 03:09:20 +00:00
|
|
|
if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
|
2020-04-07 03:04:56 +00:00
|
|
|
page_reporting_notify_free(order);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2022-05-13 03:22:58 +00:00
|
|
|
/**
|
|
|
|
* split_free_page() -- split a free page at split_pfn_offset
|
|
|
|
* @free_page: the original free page
|
|
|
|
* @order: the order of the page
|
|
|
|
* @split_pfn_offset: split offset within the page
|
|
|
|
*
|
2022-05-26 23:15:31 +00:00
|
|
|
* Return -ENOENT if the free page is changed, otherwise 0
|
|
|
|
*
|
2022-05-13 03:22:58 +00:00
|
|
|
* It is used when the free page crosses two pageblocks with different migratetypes
|
|
|
|
* at split_pfn_offset within the page. The split free page will be put into
|
|
|
|
* separate migratetype lists afterwards. Otherwise, the function achieves
|
|
|
|
* nothing.
|
|
|
|
*/
|
2022-05-26 23:15:31 +00:00
|
|
|
int split_free_page(struct page *free_page,
|
|
|
|
unsigned int order, unsigned long split_pfn_offset)
|
2022-05-13 03:22:58 +00:00
|
|
|
{
|
|
|
|
struct zone *zone = page_zone(free_page);
|
|
|
|
unsigned long free_page_pfn = page_to_pfn(free_page);
|
|
|
|
unsigned long pfn;
|
|
|
|
unsigned long flags;
|
|
|
|
int free_page_order;
|
2022-05-26 23:15:31 +00:00
|
|
|
int mt;
|
|
|
|
int ret = 0;
|
2022-05-13 03:22:58 +00:00
|
|
|
|
mm: fix a potential infinite loop in start_isolate_page_range()
In isolate_single_pageblock() called by start_isolate_page_range(), there
are some pageblock isolation issues causing a potential infinite loop when
isolating a page range. This is reported by Qian Cai.
1. the pageblock was isolated by just changing pageblock migratetype
without checking unmovable pages. Calling set_migratetype_isolate() to
isolate pageblock properly.
2. an off-by-one error caused migrating pages unnecessarily, since the page
is not crossing pageblock boundary.
3. migrating a compound page across pageblock boundary then splitting the
free page later has a small race window that the free page might be
allocated again, so that the code will try again, causing an potential
infinite loop. Temporarily set the to-be-migrated page's pageblock to
MIGRATE_ISOLATE to prevent that and bail out early if no free page is
found after page migration.
An additional fix to split_free_page() aims to avoid crashing in
__free_one_page(). When the free page is split at the specified
split_pfn_offset, free_page_order should check both the first bit of
free_page_pfn and the last bit of split_pfn_offset and use the smaller
one. For example, if free_page_pfn=0x10000, split_pfn_offset=0xc000,
free_page_order should first be 0x8000 then 0x4000, instead of 0x4000 then
0x8000, which the original algorithm did.
[akpm@linux-foundation.org: suppress min() warning]
Link: https://lkml.kernel.org/r/20220524194756.1698351-1-zi.yan@sent.com
Fixes: b2c9e2fbba3253 ("mm: make alloc_contig_range work at pageblock granularity")
Signed-off-by: Zi Yan <ziy@nvidia.com>
Reported-by: Qian Cai <quic_qiancai@quicinc.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: David Hildenbrand <david@redhat.com>
Cc: Eric Ren <renzhengeek@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-24 19:47:56 +00:00
|
|
|
if (split_pfn_offset == 0)
|
2022-05-26 23:15:31 +00:00
|
|
|
return ret;
|
mm: fix a potential infinite loop in start_isolate_page_range()
In isolate_single_pageblock() called by start_isolate_page_range(), there
are some pageblock isolation issues causing a potential infinite loop when
isolating a page range. This is reported by Qian Cai.
1. the pageblock was isolated by just changing pageblock migratetype
without checking unmovable pages. Calling set_migratetype_isolate() to
isolate pageblock properly.
2. an off-by-one error caused migrating pages unnecessarily, since the page
is not crossing pageblock boundary.
3. migrating a compound page across pageblock boundary then splitting the
free page later has a small race window that the free page might be
allocated again, so that the code will try again, causing an potential
infinite loop. Temporarily set the to-be-migrated page's pageblock to
MIGRATE_ISOLATE to prevent that and bail out early if no free page is
found after page migration.
An additional fix to split_free_page() aims to avoid crashing in
__free_one_page(). When the free page is split at the specified
split_pfn_offset, free_page_order should check both the first bit of
free_page_pfn and the last bit of split_pfn_offset and use the smaller
one. For example, if free_page_pfn=0x10000, split_pfn_offset=0xc000,
free_page_order should first be 0x8000 then 0x4000, instead of 0x4000 then
0x8000, which the original algorithm did.
[akpm@linux-foundation.org: suppress min() warning]
Link: https://lkml.kernel.org/r/20220524194756.1698351-1-zi.yan@sent.com
Fixes: b2c9e2fbba3253 ("mm: make alloc_contig_range work at pageblock granularity")
Signed-off-by: Zi Yan <ziy@nvidia.com>
Reported-by: Qian Cai <quic_qiancai@quicinc.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: David Hildenbrand <david@redhat.com>
Cc: Eric Ren <renzhengeek@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-24 19:47:56 +00:00
|
|
|
|
2022-05-13 03:22:58 +00:00
|
|
|
spin_lock_irqsave(&zone->lock, flags);
|
2022-05-26 23:15:31 +00:00
|
|
|
|
|
|
|
if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
|
|
|
|
ret = -ENOENT;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
mt = get_pageblock_migratetype(free_page);
|
|
|
|
if (likely(!is_migrate_isolate(mt)))
|
|
|
|
__mod_zone_freepage_state(zone, -(1UL << order), mt);
|
|
|
|
|
2022-05-13 03:22:58 +00:00
|
|
|
del_page_from_free_list(free_page, zone, order);
|
|
|
|
for (pfn = free_page_pfn;
|
|
|
|
pfn < free_page_pfn + (1UL << order);) {
|
|
|
|
int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
|
|
|
|
|
2022-05-26 23:15:31 +00:00
|
|
|
free_page_order = min_t(unsigned int,
|
mm: fix a potential infinite loop in start_isolate_page_range()
In isolate_single_pageblock() called by start_isolate_page_range(), there
are some pageblock isolation issues causing a potential infinite loop when
isolating a page range. This is reported by Qian Cai.
1. the pageblock was isolated by just changing pageblock migratetype
without checking unmovable pages. Calling set_migratetype_isolate() to
isolate pageblock properly.
2. an off-by-one error caused migrating pages unnecessarily, since the page
is not crossing pageblock boundary.
3. migrating a compound page across pageblock boundary then splitting the
free page later has a small race window that the free page might be
allocated again, so that the code will try again, causing an potential
infinite loop. Temporarily set the to-be-migrated page's pageblock to
MIGRATE_ISOLATE to prevent that and bail out early if no free page is
found after page migration.
An additional fix to split_free_page() aims to avoid crashing in
__free_one_page(). When the free page is split at the specified
split_pfn_offset, free_page_order should check both the first bit of
free_page_pfn and the last bit of split_pfn_offset and use the smaller
one. For example, if free_page_pfn=0x10000, split_pfn_offset=0xc000,
free_page_order should first be 0x8000 then 0x4000, instead of 0x4000 then
0x8000, which the original algorithm did.
[akpm@linux-foundation.org: suppress min() warning]
Link: https://lkml.kernel.org/r/20220524194756.1698351-1-zi.yan@sent.com
Fixes: b2c9e2fbba3253 ("mm: make alloc_contig_range work at pageblock granularity")
Signed-off-by: Zi Yan <ziy@nvidia.com>
Reported-by: Qian Cai <quic_qiancai@quicinc.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: David Hildenbrand <david@redhat.com>
Cc: Eric Ren <renzhengeek@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-24 19:47:56 +00:00
|
|
|
pfn ? __ffs(pfn) : order,
|
|
|
|
__fls(split_pfn_offset));
|
2022-05-13 03:22:58 +00:00
|
|
|
__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
|
|
|
|
mt, FPI_NONE);
|
|
|
|
pfn += 1UL << free_page_order;
|
|
|
|
split_pfn_offset -= (1UL << free_page_order);
|
|
|
|
/* we have done the first part, now switch to second part */
|
|
|
|
if (split_pfn_offset == 0)
|
|
|
|
split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
|
|
|
|
}
|
2022-05-26 23:15:31 +00:00
|
|
|
out:
|
2022-05-13 03:22:58 +00:00
|
|
|
spin_unlock_irqrestore(&zone->lock, flags);
|
2022-05-26 23:15:31 +00:00
|
|
|
return ret;
|
2022-05-13 03:22:58 +00:00
|
|
|
}
|
2016-05-20 00:14:15 +00:00
|
|
|
/*
|
|
|
|
* A bad page could be due to a number of fields. Instead of multiple branches,
|
|
|
|
* try and check multiple fields with one check. The caller must do a detailed
|
|
|
|
* check if necessary.
|
|
|
|
*/
|
|
|
|
static inline bool page_expected_state(struct page *page,
|
|
|
|
unsigned long check_flags)
|
|
|
|
{
|
|
|
|
if (unlikely(atomic_read(&page->_mapcount) != -1))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (unlikely((unsigned long)page->mapping |
|
|
|
|
page_ref_count(page) |
|
|
|
|
#ifdef CONFIG_MEMCG
|
2021-04-30 05:56:45 +00:00
|
|
|
page->memcg_data |
|
2016-05-20 00:14:15 +00:00
|
|
|
#endif
|
|
|
|
(page->flags & check_flags)))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2020-06-03 22:58:39 +00:00
|
|
|
static const char *page_bad_reason(struct page *page, unsigned long flags)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2020-06-03 22:58:29 +00:00
|
|
|
const char *bad_reason = NULL;
|
2014-01-23 23:52:49 +00:00
|
|
|
|
2016-01-16 00:53:42 +00:00
|
|
|
if (unlikely(atomic_read(&page->_mapcount) != -1))
|
2014-01-23 23:52:49 +00:00
|
|
|
bad_reason = "nonzero mapcount";
|
|
|
|
if (unlikely(page->mapping != NULL))
|
|
|
|
bad_reason = "non-NULL mapping";
|
2016-03-17 21:19:26 +00:00
|
|
|
if (unlikely(page_ref_count(page) != 0))
|
2016-05-20 00:10:49 +00:00
|
|
|
bad_reason = "nonzero _refcount";
|
2020-06-03 22:58:39 +00:00
|
|
|
if (unlikely(page->flags & flags)) {
|
|
|
|
if (flags == PAGE_FLAGS_CHECK_AT_PREP)
|
|
|
|
bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
|
|
|
|
else
|
|
|
|
bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
|
2014-01-23 23:52:49 +00:00
|
|
|
}
|
2014-12-10 23:44:58 +00:00
|
|
|
#ifdef CONFIG_MEMCG
|
2021-04-30 05:56:45 +00:00
|
|
|
if (unlikely(page->memcg_data))
|
2014-12-10 23:44:58 +00:00
|
|
|
bad_reason = "page still charged to cgroup";
|
|
|
|
#endif
|
2020-06-03 22:58:39 +00:00
|
|
|
return bad_reason;
|
|
|
|
}
|
|
|
|
|
2022-09-13 22:20:48 +00:00
|
|
|
static void free_page_is_bad_report(struct page *page)
|
2020-06-03 22:58:39 +00:00
|
|
|
{
|
|
|
|
bad_page(page,
|
|
|
|
page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
|
2016-05-20 00:14:18 +00:00
|
|
|
}
|
|
|
|
|
2022-09-13 22:20:48 +00:00
|
|
|
static inline bool free_page_is_bad(struct page *page)
|
2016-05-20 00:14:18 +00:00
|
|
|
{
|
2016-05-20 00:14:21 +00:00
|
|
|
if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
|
2022-09-13 22:20:48 +00:00
|
|
|
return false;
|
2016-05-20 00:14:18 +00:00
|
|
|
|
|
|
|
/* Something has gone sideways, find it */
|
2022-09-13 22:20:48 +00:00
|
|
|
free_page_is_bad_report(page);
|
|
|
|
return true;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2023-04-05 14:28:40 +00:00
|
|
|
static int free_tail_page_prepare(struct page *head_page, struct page *page)
|
2016-05-20 00:14:32 +00:00
|
|
|
{
|
2023-01-11 14:28:47 +00:00
|
|
|
struct folio *folio = (struct folio *)head_page;
|
2016-05-20 00:14:32 +00:00
|
|
|
int ret = 1;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We rely page->lru.next never has bit 0 set, unless the page
|
|
|
|
* is PageTail(). Let's make sure that's true even for poisoned ->lru.
|
|
|
|
*/
|
|
|
|
BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
|
|
|
|
|
2023-04-05 14:28:40 +00:00
|
|
|
if (!static_branch_unlikely(&check_pages_enabled)) {
|
2016-05-20 00:14:32 +00:00
|
|
|
ret = 0;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
switch (page - head_page) {
|
|
|
|
case 1:
|
mm,thp,rmap: simplify compound page mapcount handling
Compound page (folio) mapcount calculations have been different for anon
and file (or shmem) THPs, and involved the obscure PageDoubleMap flag.
And each huge mapping and unmapping of a file (or shmem) THP involved
atomically incrementing and decrementing the mapcount of every subpage of
that huge page, dirtying many struct page cachelines.
Add subpages_mapcount field to the struct folio and first tail page, so
that the total of subpage mapcounts is available in one place near the
head: then page_mapcount() and total_mapcount() and page_mapped(), and
their folio equivalents, are so quick that anon and file and hugetlb don't
need to be optimized differently. Delete the unloved PageDoubleMap.
page_add and page_remove rmap functions must now maintain the
subpages_mapcount as well as the subpage _mapcount, when dealing with pte
mappings of huge pages; and correct maintenance of NR_ANON_MAPPED and
NR_FILE_MAPPED statistics still needs reading through the subpages, using
nr_subpages_unmapped() - but only when first or last pmd mapping finds
subpages_mapcount raised (double-map case, not the common case).
But are those counts (used to decide when to split an anon THP, and in
vmscan's pagecache_reclaimable heuristic) correctly maintained? Not
quite: since page_remove_rmap() (and also split_huge_pmd()) is often
called without page lock, there can be races when a subpage pte mapcount
0<->1 while compound pmd mapcount 0<->1 is scanning - races which the
previous implementation had prevented. The statistics might become
inaccurate, and even drift down until they underflow through 0. That is
not good enough, but is better dealt with in a followup patch.
Update a few comments on first and second tail page overlaid fields.
hugepage_add_new_anon_rmap() has to "increment" compound_mapcount, but
subpages_mapcount and compound_pincount are already correctly at 0, so
delete its reinitialization of compound_pincount.
A simple 100 X munmap(mmap(2GB, MAP_SHARED|MAP_POPULATE, tmpfs), 2GB) took
18 seconds on small pages, and used to take 1 second on huge pages, but
now takes 119 milliseconds on huge pages. Mapping by pmds a second time
used to take 860ms and now takes 92ms; mapping by pmds after mapping by
ptes (when the scan is needed) used to take 870ms and now takes 495ms.
But there might be some benchmarks which would show a slowdown, because
tail struct pages now fall out of cache until final freeing checks them.
Link: https://lkml.kernel.org/r/47ad693-717-79c8-e1ba-46c3a6602e48@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: James Houghton <jthoughton@google.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Peter Xu <peterx@redhat.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zach O'Keefe <zokeefe@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-03 01:51:38 +00:00
|
|
|
/* the first tail page: these may be in place of ->mapping */
|
2023-01-11 14:28:55 +00:00
|
|
|
if (unlikely(folio_entire_mapcount(folio))) {
|
|
|
|
bad_page(page, "nonzero entire_mapcount");
|
2016-05-20 00:14:32 +00:00
|
|
|
goto out;
|
|
|
|
}
|
2023-01-11 14:28:55 +00:00
|
|
|
if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
|
|
|
|
bad_page(page, "nonzero nr_pages_mapped");
|
mm,thp,rmap: simplify compound page mapcount handling
Compound page (folio) mapcount calculations have been different for anon
and file (or shmem) THPs, and involved the obscure PageDoubleMap flag.
And each huge mapping and unmapping of a file (or shmem) THP involved
atomically incrementing and decrementing the mapcount of every subpage of
that huge page, dirtying many struct page cachelines.
Add subpages_mapcount field to the struct folio and first tail page, so
that the total of subpage mapcounts is available in one place near the
head: then page_mapcount() and total_mapcount() and page_mapped(), and
their folio equivalents, are so quick that anon and file and hugetlb don't
need to be optimized differently. Delete the unloved PageDoubleMap.
page_add and page_remove rmap functions must now maintain the
subpages_mapcount as well as the subpage _mapcount, when dealing with pte
mappings of huge pages; and correct maintenance of NR_ANON_MAPPED and
NR_FILE_MAPPED statistics still needs reading through the subpages, using
nr_subpages_unmapped() - but only when first or last pmd mapping finds
subpages_mapcount raised (double-map case, not the common case).
But are those counts (used to decide when to split an anon THP, and in
vmscan's pagecache_reclaimable heuristic) correctly maintained? Not
quite: since page_remove_rmap() (and also split_huge_pmd()) is often
called without page lock, there can be races when a subpage pte mapcount
0<->1 while compound pmd mapcount 0<->1 is scanning - races which the
previous implementation had prevented. The statistics might become
inaccurate, and even drift down until they underflow through 0. That is
not good enough, but is better dealt with in a followup patch.
Update a few comments on first and second tail page overlaid fields.
hugepage_add_new_anon_rmap() has to "increment" compound_mapcount, but
subpages_mapcount and compound_pincount are already correctly at 0, so
delete its reinitialization of compound_pincount.
A simple 100 X munmap(mmap(2GB, MAP_SHARED|MAP_POPULATE, tmpfs), 2GB) took
18 seconds on small pages, and used to take 1 second on huge pages, but
now takes 119 milliseconds on huge pages. Mapping by pmds a second time
used to take 860ms and now takes 92ms; mapping by pmds after mapping by
ptes (when the scan is needed) used to take 870ms and now takes 495ms.
But there might be some benchmarks which would show a slowdown, because
tail struct pages now fall out of cache until final freeing checks them.
Link: https://lkml.kernel.org/r/47ad693-717-79c8-e1ba-46c3a6602e48@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: James Houghton <jthoughton@google.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Peter Xu <peterx@redhat.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zach O'Keefe <zokeefe@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-03 01:51:38 +00:00
|
|
|
goto out;
|
|
|
|
}
|
2023-01-11 14:28:47 +00:00
|
|
|
if (unlikely(atomic_read(&folio->_pincount))) {
|
|
|
|
bad_page(page, "nonzero pincount");
|
mm,thp,rmap: simplify compound page mapcount handling
Compound page (folio) mapcount calculations have been different for anon
and file (or shmem) THPs, and involved the obscure PageDoubleMap flag.
And each huge mapping and unmapping of a file (or shmem) THP involved
atomically incrementing and decrementing the mapcount of every subpage of
that huge page, dirtying many struct page cachelines.
Add subpages_mapcount field to the struct folio and first tail page, so
that the total of subpage mapcounts is available in one place near the
head: then page_mapcount() and total_mapcount() and page_mapped(), and
their folio equivalents, are so quick that anon and file and hugetlb don't
need to be optimized differently. Delete the unloved PageDoubleMap.
page_add and page_remove rmap functions must now maintain the
subpages_mapcount as well as the subpage _mapcount, when dealing with pte
mappings of huge pages; and correct maintenance of NR_ANON_MAPPED and
NR_FILE_MAPPED statistics still needs reading through the subpages, using
nr_subpages_unmapped() - but only when first or last pmd mapping finds
subpages_mapcount raised (double-map case, not the common case).
But are those counts (used to decide when to split an anon THP, and in
vmscan's pagecache_reclaimable heuristic) correctly maintained? Not
quite: since page_remove_rmap() (and also split_huge_pmd()) is often
called without page lock, there can be races when a subpage pte mapcount
0<->1 while compound pmd mapcount 0<->1 is scanning - races which the
previous implementation had prevented. The statistics might become
inaccurate, and even drift down until they underflow through 0. That is
not good enough, but is better dealt with in a followup patch.
Update a few comments on first and second tail page overlaid fields.
hugepage_add_new_anon_rmap() has to "increment" compound_mapcount, but
subpages_mapcount and compound_pincount are already correctly at 0, so
delete its reinitialization of compound_pincount.
A simple 100 X munmap(mmap(2GB, MAP_SHARED|MAP_POPULATE, tmpfs), 2GB) took
18 seconds on small pages, and used to take 1 second on huge pages, but
now takes 119 milliseconds on huge pages. Mapping by pmds a second time
used to take 860ms and now takes 92ms; mapping by pmds after mapping by
ptes (when the scan is needed) used to take 870ms and now takes 495ms.
But there might be some benchmarks which would show a slowdown, because
tail struct pages now fall out of cache until final freeing checks them.
Link: https://lkml.kernel.org/r/47ad693-717-79c8-e1ba-46c3a6602e48@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: James Houghton <jthoughton@google.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Peter Xu <peterx@redhat.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zach O'Keefe <zokeefe@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-03 01:51:38 +00:00
|
|
|
goto out;
|
|
|
|
}
|
2016-05-20 00:14:32 +00:00
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
/*
|
|
|
|
* the second tail page: ->mapping is
|
2018-06-08 00:08:42 +00:00
|
|
|
* deferred_list.next -- ignore value.
|
2016-05-20 00:14:32 +00:00
|
|
|
*/
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
if (page->mapping != TAIL_MAPPING) {
|
2020-06-03 22:58:29 +00:00
|
|
|
bad_page(page, "corrupted mapping in tail page");
|
2016-05-20 00:14:32 +00:00
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (unlikely(!PageTail(page))) {
|
2020-06-03 22:58:29 +00:00
|
|
|
bad_page(page, "PageTail not set");
|
2016-05-20 00:14:32 +00:00
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
if (unlikely(compound_head(page) != head_page)) {
|
2020-06-03 22:58:29 +00:00
|
|
|
bad_page(page, "compound_head not consistent");
|
2016-05-20 00:14:32 +00:00
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
ret = 0;
|
|
|
|
out:
|
|
|
|
page->mapping = NULL;
|
|
|
|
clear_compound_head(page);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
kasan, page_alloc: deduplicate should_skip_kasan_poison
Patch series "kasan, vmalloc, arm64: add vmalloc tagging support for SW/HW_TAGS", v6.
This patchset adds vmalloc tagging support for SW_TAGS and HW_TAGS
KASAN modes.
About half of patches are cleanups I went for along the way. None of them
seem to be important enough to go through stable, so I decided not to
split them out into separate patches/series.
The patchset is partially based on an early version of the HW_TAGS
patchset by Vincenzo that had vmalloc support. Thus, I added a
Co-developed-by tag into a few patches.
SW_TAGS vmalloc tagging support is straightforward. It reuses all of the
generic KASAN machinery, but uses shadow memory to store tags instead of
magic values. Naturally, vmalloc tagging requires adding a few
kasan_reset_tag() annotations to the vmalloc code.
HW_TAGS vmalloc tagging support stands out. HW_TAGS KASAN is based on Arm
MTE, which can only assigns tags to physical memory. As a result, HW_TAGS
KASAN only tags vmalloc() allocations, which are backed by page_alloc
memory. It ignores vmap() and others.
This patch (of 39):
Currently, should_skip_kasan_poison() has two definitions: one for when
CONFIG_DEFERRED_STRUCT_PAGE_INIT is enabled, one for when it's not.
Instead of duplicating the checks, add a deferred_pages_enabled() helper
and use it in a single should_skip_kasan_poison() definition.
Also move should_skip_kasan_poison() closer to its caller and clarify all
conditions in the comment.
Link: https://lkml.kernel.org/r/cover.1643047180.git.andreyknvl@google.com
Link: https://lkml.kernel.org/r/658b79f5fb305edaf7dc16bc52ea870d3220d4a8.1643047180.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Acked-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-25 01:10:04 +00:00
|
|
|
/*
|
|
|
|
* Skip KASAN memory poisoning when either:
|
|
|
|
*
|
2023-03-10 04:29:14 +00:00
|
|
|
* 1. For generic KASAN: deferred memory initialization has not yet completed.
|
|
|
|
* Tag-based KASAN modes skip pages freed via deferred memory initialization
|
|
|
|
* using page tags instead (see below).
|
|
|
|
* 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
|
|
|
|
* that error detection is disabled for accesses via the page address.
|
|
|
|
*
|
|
|
|
* Pages will have match-all tags in the following circumstances:
|
|
|
|
*
|
|
|
|
* 1. Pages are being initialized for the first time, including during deferred
|
|
|
|
* memory init; see the call to page_kasan_tag_reset in __init_single_page.
|
|
|
|
* 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
|
|
|
|
* exception of pages unpoisoned by kasan_unpoison_vmalloc.
|
|
|
|
* 3. The allocation was excluded from being checked due to sampling,
|
kasan: allow sampling page_alloc allocations for HW_TAGS
As Hardware Tag-Based KASAN is intended to be used in production, its
performance impact is crucial. As page_alloc allocations tend to be big,
tagging and checking all such allocations can introduce a significant
slowdown.
Add two new boot parameters that allow to alleviate that slowdown:
- kasan.page_alloc.sample, which makes Hardware Tag-Based KASAN tag only
every Nth page_alloc allocation with the order configured by the second
added parameter (default: tag every such allocation).
- kasan.page_alloc.sample.order, which makes sampling enabled by the first
parameter only affect page_alloc allocations with the order equal or
greater than the specified value (default: 3, see below).
The exact performance improvement caused by using the new parameters
depends on their values and the applied workload.
The chosen default value for kasan.page_alloc.sample.order is 3, which
matches both PAGE_ALLOC_COSTLY_ORDER and SKB_FRAG_PAGE_ORDER. This is
done for two reasons:
1. PAGE_ALLOC_COSTLY_ORDER is "the order at which allocations are deemed
costly to service", which corresponds to the idea that only large and
thus costly allocations are supposed to sampled.
2. One of the workloads targeted by this patch is a benchmark that sends
a large amount of data over a local loopback connection. Most multi-page
data allocations in the networking subsystem have the order of
SKB_FRAG_PAGE_ORDER (or PAGE_ALLOC_COSTLY_ORDER).
When running a local loopback test on a testing MTE-enabled device in sync
mode, enabling Hardware Tag-Based KASAN introduces a ~50% slowdown.
Applying this patch and setting kasan.page_alloc.sampling to a value
higher than 1 allows to lower the slowdown. The performance improvement
saturates around the sampling interval value of 10 with the default
sampling page order of 3. This lowers the slowdown to ~20%. The slowdown
in real scenarios involving the network will likely be better.
Enabling page_alloc sampling has a downside: KASAN misses bad accesses to
a page_alloc allocation that has not been tagged. This lowers the value
of KASAN as a security mitigation.
However, based on measuring the number of page_alloc allocations of
different orders during boot in a test build, sampling with the default
kasan.page_alloc.sample.order value affects only ~7% of allocations. The
rest ~93% of allocations are still checked deterministically.
Link: https://lkml.kernel.org/r/129da0614123bb85ed4dd61ae30842b2dd7c903f.1671471846.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Mark Brand <markbrand@google.com>
Cc: Peter Collingbourne <pcc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-19 18:09:18 +00:00
|
|
|
* see the call to kasan_unpoison_pages.
|
kasan, page_alloc: deduplicate should_skip_kasan_poison
Patch series "kasan, vmalloc, arm64: add vmalloc tagging support for SW/HW_TAGS", v6.
This patchset adds vmalloc tagging support for SW_TAGS and HW_TAGS
KASAN modes.
About half of patches are cleanups I went for along the way. None of them
seem to be important enough to go through stable, so I decided not to
split them out into separate patches/series.
The patchset is partially based on an early version of the HW_TAGS
patchset by Vincenzo that had vmalloc support. Thus, I added a
Co-developed-by tag into a few patches.
SW_TAGS vmalloc tagging support is straightforward. It reuses all of the
generic KASAN machinery, but uses shadow memory to store tags instead of
magic values. Naturally, vmalloc tagging requires adding a few
kasan_reset_tag() annotations to the vmalloc code.
HW_TAGS vmalloc tagging support stands out. HW_TAGS KASAN is based on Arm
MTE, which can only assigns tags to physical memory. As a result, HW_TAGS
KASAN only tags vmalloc() allocations, which are backed by page_alloc
memory. It ignores vmap() and others.
This patch (of 39):
Currently, should_skip_kasan_poison() has two definitions: one for when
CONFIG_DEFERRED_STRUCT_PAGE_INIT is enabled, one for when it's not.
Instead of duplicating the checks, add a deferred_pages_enabled() helper
and use it in a single should_skip_kasan_poison() definition.
Also move should_skip_kasan_poison() closer to its caller and clarify all
conditions in the comment.
Link: https://lkml.kernel.org/r/cover.1643047180.git.andreyknvl@google.com
Link: https://lkml.kernel.org/r/658b79f5fb305edaf7dc16bc52ea870d3220d4a8.1643047180.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Acked-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-25 01:10:04 +00:00
|
|
|
*
|
|
|
|
* Poisoning pages during deferred memory init will greatly lengthen the
|
|
|
|
* process and cause problem in large memory systems as the deferred pages
|
|
|
|
* initialization is done with interrupt disabled.
|
|
|
|
*
|
|
|
|
* Assuming that there will be no reference to those newly initialized
|
|
|
|
* pages before they are ever allocated, this should have no effect on
|
|
|
|
* KASAN memory tracking as the poison will be properly inserted at page
|
|
|
|
* allocation time. The only corner case is when pages are allocated by
|
|
|
|
* on-demand allocation and then freed again before the deferred pages
|
|
|
|
* initialization is done, but this is not likely to happen.
|
|
|
|
*/
|
|
|
|
static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
|
|
|
|
{
|
2023-03-10 04:29:14 +00:00
|
|
|
if (IS_ENABLED(CONFIG_KASAN_GENERIC))
|
|
|
|
return deferred_pages_enabled();
|
|
|
|
|
|
|
|
return page_kasan_tag(page) == 0xff;
|
kasan, page_alloc: deduplicate should_skip_kasan_poison
Patch series "kasan, vmalloc, arm64: add vmalloc tagging support for SW/HW_TAGS", v6.
This patchset adds vmalloc tagging support for SW_TAGS and HW_TAGS
KASAN modes.
About half of patches are cleanups I went for along the way. None of them
seem to be important enough to go through stable, so I decided not to
split them out into separate patches/series.
The patchset is partially based on an early version of the HW_TAGS
patchset by Vincenzo that had vmalloc support. Thus, I added a
Co-developed-by tag into a few patches.
SW_TAGS vmalloc tagging support is straightforward. It reuses all of the
generic KASAN machinery, but uses shadow memory to store tags instead of
magic values. Naturally, vmalloc tagging requires adding a few
kasan_reset_tag() annotations to the vmalloc code.
HW_TAGS vmalloc tagging support stands out. HW_TAGS KASAN is based on Arm
MTE, which can only assigns tags to physical memory. As a result, HW_TAGS
KASAN only tags vmalloc() allocations, which are backed by page_alloc
memory. It ignores vmap() and others.
This patch (of 39):
Currently, should_skip_kasan_poison() has two definitions: one for when
CONFIG_DEFERRED_STRUCT_PAGE_INIT is enabled, one for when it's not.
Instead of duplicating the checks, add a deferred_pages_enabled() helper
and use it in a single should_skip_kasan_poison() definition.
Also move should_skip_kasan_poison() closer to its caller and clarify all
conditions in the comment.
Link: https://lkml.kernel.org/r/cover.1643047180.git.andreyknvl@google.com
Link: https://lkml.kernel.org/r/658b79f5fb305edaf7dc16bc52ea870d3220d4a8.1643047180.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Acked-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-25 01:10:04 +00:00
|
|
|
}
|
|
|
|
|
2022-06-09 18:18:45 +00:00
|
|
|
static void kernel_init_pages(struct page *page, int numpages)
|
mm: security: introduce init_on_alloc=1 and init_on_free=1 boot options
Patch series "add init_on_alloc/init_on_free boot options", v10.
Provide init_on_alloc and init_on_free boot options.
These are aimed at preventing possible information leaks and making the
control-flow bugs that depend on uninitialized values more deterministic.
Enabling either of the options guarantees that the memory returned by the
page allocator and SL[AU]B is initialized with zeroes. SLOB allocator
isn't supported at the moment, as its emulation of kmem caches complicates
handling of SLAB_TYPESAFE_BY_RCU caches correctly.
Enabling init_on_free also guarantees that pages and heap objects are
initialized right after they're freed, so it won't be possible to access
stale data by using a dangling pointer.
As suggested by Michal Hocko, right now we don't let the heap users to
disable initialization for certain allocations. There's not enough
evidence that doing so can speed up real-life cases, and introducing ways
to opt-out may result in things going out of control.
This patch (of 2):
The new options are needed to prevent possible information leaks and make
control-flow bugs that depend on uninitialized values more deterministic.
This is expected to be on-by-default on Android and Chrome OS. And it
gives the opportunity for anyone else to use it under distros too via the
boot args. (The init_on_free feature is regularly requested by folks
where memory forensics is included in their threat models.)
init_on_alloc=1 makes the kernel initialize newly allocated pages and heap
objects with zeroes. Initialization is done at allocation time at the
places where checks for __GFP_ZERO are performed.
init_on_free=1 makes the kernel initialize freed pages and heap objects
with zeroes upon their deletion. This helps to ensure sensitive data
doesn't leak via use-after-free accesses.
Both init_on_alloc=1 and init_on_free=1 guarantee that the allocator
returns zeroed memory. The two exceptions are slab caches with
constructors and SLAB_TYPESAFE_BY_RCU flag. Those are never
zero-initialized to preserve their semantics.
Both init_on_alloc and init_on_free default to zero, but those defaults
can be overridden with CONFIG_INIT_ON_ALLOC_DEFAULT_ON and
CONFIG_INIT_ON_FREE_DEFAULT_ON.
If either SLUB poisoning or page poisoning is enabled, those options take
precedence over init_on_alloc and init_on_free: initialization is only
applied to unpoisoned allocations.
Slowdown for the new features compared to init_on_free=0, init_on_alloc=0:
hackbench, init_on_free=1: +7.62% sys time (st.err 0.74%)
hackbench, init_on_alloc=1: +7.75% sys time (st.err 2.14%)
Linux build with -j12, init_on_free=1: +8.38% wall time (st.err 0.39%)
Linux build with -j12, init_on_free=1: +24.42% sys time (st.err 0.52%)
Linux build with -j12, init_on_alloc=1: -0.13% wall time (st.err 0.42%)
Linux build with -j12, init_on_alloc=1: +0.57% sys time (st.err 0.40%)
The slowdown for init_on_free=0, init_on_alloc=0 compared to the baseline
is within the standard error.
The new features are also going to pave the way for hardware memory
tagging (e.g. arm64's MTE), which will require both on_alloc and on_free
hooks to set the tags for heap objects. With MTE, tagging will have the
same cost as memory initialization.
Although init_on_free is rather costly, there are paranoid use-cases where
in-memory data lifetime is desired to be minimized. There are various
arguments for/against the realism of the associated threat models, but
given that we'll need the infrastructure for MTE anyway, and there are
people who want wipe-on-free behavior no matter what the performance cost,
it seems reasonable to include it in this series.
[glider@google.com: v8]
Link: http://lkml.kernel.org/r/20190626121943.131390-2-glider@google.com
[glider@google.com: v9]
Link: http://lkml.kernel.org/r/20190627130316.254309-2-glider@google.com
[glider@google.com: v10]
Link: http://lkml.kernel.org/r/20190628093131.199499-2-glider@google.com
Link: http://lkml.kernel.org/r/20190617151050.92663-2-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Michal Hocko <mhocko@suse.cz> [page and dmapool parts
Acked-by: James Morris <jamorris@linux.microsoft.com>]
Cc: Christoph Lameter <cl@linux.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Sandeep Patil <sspatil@android.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Jann Horn <jannh@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Marco Elver <elver@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 03:59:19 +00:00
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
2020-08-07 06:25:54 +00:00
|
|
|
/* s390's use of memset() could override KASAN redzones. */
|
|
|
|
kasan_disable_current();
|
2022-06-09 18:18:46 +00:00
|
|
|
for (i = 0; i < numpages; i++)
|
|
|
|
clear_highpage_kasan_tagged(page + i);
|
2020-08-07 06:25:54 +00:00
|
|
|
kasan_enable_current();
|
mm: security: introduce init_on_alloc=1 and init_on_free=1 boot options
Patch series "add init_on_alloc/init_on_free boot options", v10.
Provide init_on_alloc and init_on_free boot options.
These are aimed at preventing possible information leaks and making the
control-flow bugs that depend on uninitialized values more deterministic.
Enabling either of the options guarantees that the memory returned by the
page allocator and SL[AU]B is initialized with zeroes. SLOB allocator
isn't supported at the moment, as its emulation of kmem caches complicates
handling of SLAB_TYPESAFE_BY_RCU caches correctly.
Enabling init_on_free also guarantees that pages and heap objects are
initialized right after they're freed, so it won't be possible to access
stale data by using a dangling pointer.
As suggested by Michal Hocko, right now we don't let the heap users to
disable initialization for certain allocations. There's not enough
evidence that doing so can speed up real-life cases, and introducing ways
to opt-out may result in things going out of control.
This patch (of 2):
The new options are needed to prevent possible information leaks and make
control-flow bugs that depend on uninitialized values more deterministic.
This is expected to be on-by-default on Android and Chrome OS. And it
gives the opportunity for anyone else to use it under distros too via the
boot args. (The init_on_free feature is regularly requested by folks
where memory forensics is included in their threat models.)
init_on_alloc=1 makes the kernel initialize newly allocated pages and heap
objects with zeroes. Initialization is done at allocation time at the
places where checks for __GFP_ZERO are performed.
init_on_free=1 makes the kernel initialize freed pages and heap objects
with zeroes upon their deletion. This helps to ensure sensitive data
doesn't leak via use-after-free accesses.
Both init_on_alloc=1 and init_on_free=1 guarantee that the allocator
returns zeroed memory. The two exceptions are slab caches with
constructors and SLAB_TYPESAFE_BY_RCU flag. Those are never
zero-initialized to preserve their semantics.
Both init_on_alloc and init_on_free default to zero, but those defaults
can be overridden with CONFIG_INIT_ON_ALLOC_DEFAULT_ON and
CONFIG_INIT_ON_FREE_DEFAULT_ON.
If either SLUB poisoning or page poisoning is enabled, those options take
precedence over init_on_alloc and init_on_free: initialization is only
applied to unpoisoned allocations.
Slowdown for the new features compared to init_on_free=0, init_on_alloc=0:
hackbench, init_on_free=1: +7.62% sys time (st.err 0.74%)
hackbench, init_on_alloc=1: +7.75% sys time (st.err 2.14%)
Linux build with -j12, init_on_free=1: +8.38% wall time (st.err 0.39%)
Linux build with -j12, init_on_free=1: +24.42% sys time (st.err 0.52%)
Linux build with -j12, init_on_alloc=1: -0.13% wall time (st.err 0.42%)
Linux build with -j12, init_on_alloc=1: +0.57% sys time (st.err 0.40%)
The slowdown for init_on_free=0, init_on_alloc=0 compared to the baseline
is within the standard error.
The new features are also going to pave the way for hardware memory
tagging (e.g. arm64's MTE), which will require both on_alloc and on_free
hooks to set the tags for heap objects. With MTE, tagging will have the
same cost as memory initialization.
Although init_on_free is rather costly, there are paranoid use-cases where
in-memory data lifetime is desired to be minimized. There are various
arguments for/against the realism of the associated threat models, but
given that we'll need the infrastructure for MTE anyway, and there are
people who want wipe-on-free behavior no matter what the performance cost,
it seems reasonable to include it in this series.
[glider@google.com: v8]
Link: http://lkml.kernel.org/r/20190626121943.131390-2-glider@google.com
[glider@google.com: v9]
Link: http://lkml.kernel.org/r/20190627130316.254309-2-glider@google.com
[glider@google.com: v10]
Link: http://lkml.kernel.org/r/20190628093131.199499-2-glider@google.com
Link: http://lkml.kernel.org/r/20190617151050.92663-2-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Michal Hocko <mhocko@suse.cz> [page and dmapool parts
Acked-by: James Morris <jamorris@linux.microsoft.com>]
Cc: Christoph Lameter <cl@linux.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Sandeep Patil <sspatil@android.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Jann Horn <jannh@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Marco Elver <elver@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 03:59:19 +00:00
|
|
|
}
|
|
|
|
|
2016-05-20 00:14:38 +00:00
|
|
|
static __always_inline bool free_pages_prepare(struct page *page,
|
mm, page_alloc: reduce page alloc/free sanity checks
Historically, we have performed sanity checks on all struct pages being
allocated or freed, making sure they have no unexpected page flags or
certain field values. This can detect insufficient cleanup and some cases
of use-after-free, although on its own it can't always identify the
culprit. The result is a warning and the "bad page" being leaked.
The checks do need some cpu cycles, so in 4.7 with commits 479f854a207c
("mm, page_alloc: defer debugging checks of pages allocated from the PCP")
and 4db7548ccbd9 ("mm, page_alloc: defer debugging checks of freed pages
until a PCP drain") they were no longer performed in the hot paths when
allocating and freeing from pcplists, but only when pcplists are bypassed,
refilled or drained. For debugging purposes, with CONFIG_DEBUG_VM enabled
the checks were instead still done in the hot paths and not when refilling
or draining pcplists.
With 4462b32c9285 ("mm, page_alloc: more extensive free page checking with
debug_pagealloc"), enabling debug_pagealloc also moved the sanity checks
back to hot pahs. When both debug_pagealloc and CONFIG_DEBUG_VM are
enabled, the checks are done both in hotpaths and pcplist refill/drain.
Even though the non-debug default today might seem to be a sensible
tradeoff between overhead and ability to detect bad pages, on closer look
it's arguably not. As most allocations go through the pcplists, catching
any bad pages when refilling or draining pcplists has only a small chance,
insufficient for debugging or serious hardening purposes. On the other
hand the cost of the checks is concentrated in the already expensive
drain/refill batching operations, and those are done under the often
contended zone lock. That was recently identified as an issue for page
allocation and the zone lock contention reduced by moving the checks
outside of the locked section with a patch "mm: reduce lock contention of
pcp buffer refill", but the cost of the checks is still visible compared
to their removal [1]. In the pcplist draining path free_pcppages_bulk()
the checks are still done under zone->lock.
Thus, remove the checks from pcplist refill and drain paths completely.
Introduce a static key check_pages_enabled to control checks during page
allocation a freeing (whether pcplist is used or bypassed). The static
key is enabled if either is true:
- kernel is built with CONFIG_DEBUG_VM=y (debugging)
- debug_pagealloc or page poisoning is boot-time enabled (debugging)
- init_on_alloc or init_on_free is boot-time enabled (hardening)
The resulting user visible changes:
- no checks when draining/refilling pcplists - less overhead, with
likely no practical reduction of ability to catch bad pages
- no checks when bypassing pcplists in default config (no
debugging/hardening) - less overhead etc. as above
- on typical hardened kernels [2], checks are now performed on each page
allocation/free (previously only when bypassing/draining/refilling
pcplists) - the init_on_alloc/init_on_free enabled should be sufficient
indication for preferring more costly alloc/free operations for
hardening purposes and we shouldn't need to introduce another toggle
- code (various wrappers) removal and simplification
[1] https://lore.kernel.org/all/68ba44d8-6899-c018-dcb3-36f3a96e6bea@sra.uni-hannover.de/
[2] https://lore.kernel.org/all/63ebc499.a70a0220.9ac51.29ea@mx.google.com/
[akpm@linux-foundation.org: coding-style cleanups]
[akpm@linux-foundation.org: make check_pages_enabled static]
Link: https://lkml.kernel.org/r/20230216095131.17336-1-vbabka@suse.cz
Reported-by: Alexander Halbuer <halbuer@sra.uni-hannover.de>
Reported-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-16 09:51:31 +00:00
|
|
|
unsigned int order, fpi_t fpi_flags)
|
2016-05-20 00:14:32 +00:00
|
|
|
{
|
2016-05-20 00:14:38 +00:00
|
|
|
int bad = 0;
|
Revert "kasan: drop skip_kasan_poison variable in free_pages_prepare"
This reverts commit 487a32ec24be819e747af8c2ab0d5c515508086a.
should_skip_kasan_poison() reads the PG_skip_kasan_poison flag from
page->flags. However, this line of code in free_pages_prepare():
page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
clears most of page->flags, including PG_skip_kasan_poison, before calling
should_skip_kasan_poison(), which meant that it would never return true as
a result of the page flag being set. Therefore, fix the code to call
should_skip_kasan_poison() before clearing the flags, as we were doing
before the reverted patch.
This fixes a measurable performance regression introduced in the reverted
commit, where munmap() takes longer than intended if HW tags KASAN is
supported and enabled at runtime. Without this patch, we see a
single-digit percentage performance regression in a particular
mmap()-heavy benchmark when enabling HW tags KASAN, and with the patch,
there is no statistically significant performance impact when enabling HW
tags KASAN.
Link: https://lkml.kernel.org/r/20230310042914.3805818-2-pcc@google.com
Fixes: 487a32ec24be ("kasan: drop skip_kasan_poison variable in free_pages_prepare")
Link: https://linux-review.googlesource.com/id/Ic4f13affeebd20548758438bb9ed9ca40e312b79
Signed-off-by: Peter Collingbourne <pcc@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com> [arm64]
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: <stable@vger.kernel.org> [6.1]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-03-10 04:29:13 +00:00
|
|
|
bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
|
2022-03-25 01:10:13 +00:00
|
|
|
bool init = want_init_on_free();
|
2016-05-20 00:14:32 +00:00
|
|
|
|
|
|
|
VM_BUG_ON_PAGE(PageTail(page), page);
|
|
|
|
|
2016-05-20 00:14:38 +00:00
|
|
|
trace_mm_page_free(page, order);
|
2022-09-15 15:03:48 +00:00
|
|
|
kmsan_free_page(page, order);
|
2016-05-20 00:14:38 +00:00
|
|
|
|
mm,hwpoison: rework soft offline for in-use pages
This patch changes the way we set and handle in-use poisoned pages. Until
now, poisoned pages were released to the buddy allocator, trusting that
the checks that take place at allocation time would act as a safe net and
would skip that page.
This has proved to be wrong, as we got some pfn walkers out there, like
compaction, that all they care is the page to be in a buddy freelist.
Although this might not be the only user, having poisoned pages in the
buddy allocator seems a bad idea as we should only have free pages that
are ready and meant to be used as such.
Before explaining the taken approach, let us break down the kind of pages
we can soft offline.
- Anonymous THP (after the split, they end up being 4K pages)
- Hugetlb
- Order-0 pages (that can be either migrated or invalited)
* Normal pages (order-0 and anon-THP)
- If they are clean and unmapped page cache pages, we invalidate
then by means of invalidate_inode_page().
- If they are mapped/dirty, we do the isolate-and-migrate dance.
Either way, do not call put_page directly from those paths. Instead, we
keep the page and send it to page_handle_poison to perform the right
handling.
page_handle_poison sets the HWPoison flag and does the last put_page.
Down the chain, we placed a check for HWPoison page in
free_pages_prepare, that just skips any poisoned page, so those pages
do not end up in any pcplist/freelist.
After that, we set the refcount on the page to 1 and we increment
the poisoned pages counter.
If we see that the check in free_pages_prepare creates trouble, we can
always do what we do for free pages:
- wait until the page hits buddy's freelists
- take it off, and flag it
The downside of the above approach is that we could race with an
allocation, so by the time we want to take the page off the buddy, the
page has been already allocated so we cannot soft offline it.
But the user could always retry it.
* Hugetlb pages
- We isolate-and-migrate them
After the migration has been successful, we call dissolve_free_huge_page,
and we set HWPoison on the page if we succeed.
Hugetlb has a slightly different handling though.
While for non-hugetlb pages we cared about closing the race with an
allocation, doing so for hugetlb pages requires quite some additional
and intrusive code (we would need to hook in free_huge_page and some other
places).
So I decided to not make the code overly complicated and just fail
normally if the page we allocated in the meantime.
We can always build on top of this.
As a bonus, because of the way we handle now in-use pages, we no longer
need the put-as-isolation-migratetype dance, that was guarding for poisoned
pages to end up in pcplists.
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Aristeu Rozanski <aris@ruivo.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Dmitry Yakunin <zeil@yandex-team.ru>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20200922135650.1634-10-osalvador@suse.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16 03:07:09 +00:00
|
|
|
if (unlikely(PageHWPoison(page)) && !order) {
|
|
|
|
/*
|
|
|
|
* Do not let hwpoison pages hit pcplists/buddy
|
|
|
|
* Untie memcg state and reset page's owner
|
|
|
|
*/
|
2023-02-13 19:29:22 +00:00
|
|
|
if (memcg_kmem_online() && PageMemcgKmem(page))
|
mm,hwpoison: rework soft offline for in-use pages
This patch changes the way we set and handle in-use poisoned pages. Until
now, poisoned pages were released to the buddy allocator, trusting that
the checks that take place at allocation time would act as a safe net and
would skip that page.
This has proved to be wrong, as we got some pfn walkers out there, like
compaction, that all they care is the page to be in a buddy freelist.
Although this might not be the only user, having poisoned pages in the
buddy allocator seems a bad idea as we should only have free pages that
are ready and meant to be used as such.
Before explaining the taken approach, let us break down the kind of pages
we can soft offline.
- Anonymous THP (after the split, they end up being 4K pages)
- Hugetlb
- Order-0 pages (that can be either migrated or invalited)
* Normal pages (order-0 and anon-THP)
- If they are clean and unmapped page cache pages, we invalidate
then by means of invalidate_inode_page().
- If they are mapped/dirty, we do the isolate-and-migrate dance.
Either way, do not call put_page directly from those paths. Instead, we
keep the page and send it to page_handle_poison to perform the right
handling.
page_handle_poison sets the HWPoison flag and does the last put_page.
Down the chain, we placed a check for HWPoison page in
free_pages_prepare, that just skips any poisoned page, so those pages
do not end up in any pcplist/freelist.
After that, we set the refcount on the page to 1 and we increment
the poisoned pages counter.
If we see that the check in free_pages_prepare creates trouble, we can
always do what we do for free pages:
- wait until the page hits buddy's freelists
- take it off, and flag it
The downside of the above approach is that we could race with an
allocation, so by the time we want to take the page off the buddy, the
page has been already allocated so we cannot soft offline it.
But the user could always retry it.
* Hugetlb pages
- We isolate-and-migrate them
After the migration has been successful, we call dissolve_free_huge_page,
and we set HWPoison on the page if we succeed.
Hugetlb has a slightly different handling though.
While for non-hugetlb pages we cared about closing the race with an
allocation, doing so for hugetlb pages requires quite some additional
and intrusive code (we would need to hook in free_huge_page and some other
places).
So I decided to not make the code overly complicated and just fail
normally if the page we allocated in the meantime.
We can always build on top of this.
As a bonus, because of the way we handle now in-use pages, we no longer
need the put-as-isolation-migratetype dance, that was guarding for poisoned
pages to end up in pcplists.
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Aristeu Rozanski <aris@ruivo.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Dmitry Yakunin <zeil@yandex-team.ru>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20200922135650.1634-10-osalvador@suse.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16 03:07:09 +00:00
|
|
|
__memcg_kmem_uncharge_page(page, order);
|
|
|
|
reset_page_owner(page, order);
|
2022-01-14 22:06:37 +00:00
|
|
|
page_table_check_free(page, order);
|
mm,hwpoison: rework soft offline for in-use pages
This patch changes the way we set and handle in-use poisoned pages. Until
now, poisoned pages were released to the buddy allocator, trusting that
the checks that take place at allocation time would act as a safe net and
would skip that page.
This has proved to be wrong, as we got some pfn walkers out there, like
compaction, that all they care is the page to be in a buddy freelist.
Although this might not be the only user, having poisoned pages in the
buddy allocator seems a bad idea as we should only have free pages that
are ready and meant to be used as such.
Before explaining the taken approach, let us break down the kind of pages
we can soft offline.
- Anonymous THP (after the split, they end up being 4K pages)
- Hugetlb
- Order-0 pages (that can be either migrated or invalited)
* Normal pages (order-0 and anon-THP)
- If they are clean and unmapped page cache pages, we invalidate
then by means of invalidate_inode_page().
- If they are mapped/dirty, we do the isolate-and-migrate dance.
Either way, do not call put_page directly from those paths. Instead, we
keep the page and send it to page_handle_poison to perform the right
handling.
page_handle_poison sets the HWPoison flag and does the last put_page.
Down the chain, we placed a check for HWPoison page in
free_pages_prepare, that just skips any poisoned page, so those pages
do not end up in any pcplist/freelist.
After that, we set the refcount on the page to 1 and we increment
the poisoned pages counter.
If we see that the check in free_pages_prepare creates trouble, we can
always do what we do for free pages:
- wait until the page hits buddy's freelists
- take it off, and flag it
The downside of the above approach is that we could race with an
allocation, so by the time we want to take the page off the buddy, the
page has been already allocated so we cannot soft offline it.
But the user could always retry it.
* Hugetlb pages
- We isolate-and-migrate them
After the migration has been successful, we call dissolve_free_huge_page,
and we set HWPoison on the page if we succeed.
Hugetlb has a slightly different handling though.
While for non-hugetlb pages we cared about closing the race with an
allocation, doing so for hugetlb pages requires quite some additional
and intrusive code (we would need to hook in free_huge_page and some other
places).
So I decided to not make the code overly complicated and just fail
normally if the page we allocated in the meantime.
We can always build on top of this.
As a bonus, because of the way we handle now in-use pages, we no longer
need the put-as-isolation-migratetype dance, that was guarding for poisoned
pages to end up in pcplists.
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Aristeu Rozanski <aris@ruivo.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Dmitry Yakunin <zeil@yandex-team.ru>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20200922135650.1634-10-osalvador@suse.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16 03:07:09 +00:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2016-05-20 00:14:38 +00:00
|
|
|
/*
|
|
|
|
* Check tail pages before head page information is cleared to
|
|
|
|
* avoid checking PageCompound for order-0 pages.
|
|
|
|
*/
|
|
|
|
if (unlikely(order)) {
|
|
|
|
bool compound = PageCompound(page);
|
|
|
|
int i;
|
|
|
|
|
|
|
|
VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
|
2016-05-20 00:14:32 +00:00
|
|
|
|
mm,thp,rmap: simplify compound page mapcount handling
Compound page (folio) mapcount calculations have been different for anon
and file (or shmem) THPs, and involved the obscure PageDoubleMap flag.
And each huge mapping and unmapping of a file (or shmem) THP involved
atomically incrementing and decrementing the mapcount of every subpage of
that huge page, dirtying many struct page cachelines.
Add subpages_mapcount field to the struct folio and first tail page, so
that the total of subpage mapcounts is available in one place near the
head: then page_mapcount() and total_mapcount() and page_mapped(), and
their folio equivalents, are so quick that anon and file and hugetlb don't
need to be optimized differently. Delete the unloved PageDoubleMap.
page_add and page_remove rmap functions must now maintain the
subpages_mapcount as well as the subpage _mapcount, when dealing with pte
mappings of huge pages; and correct maintenance of NR_ANON_MAPPED and
NR_FILE_MAPPED statistics still needs reading through the subpages, using
nr_subpages_unmapped() - but only when first or last pmd mapping finds
subpages_mapcount raised (double-map case, not the common case).
But are those counts (used to decide when to split an anon THP, and in
vmscan's pagecache_reclaimable heuristic) correctly maintained? Not
quite: since page_remove_rmap() (and also split_huge_pmd()) is often
called without page lock, there can be races when a subpage pte mapcount
0<->1 while compound pmd mapcount 0<->1 is scanning - races which the
previous implementation had prevented. The statistics might become
inaccurate, and even drift down until they underflow through 0. That is
not good enough, but is better dealt with in a followup patch.
Update a few comments on first and second tail page overlaid fields.
hugepage_add_new_anon_rmap() has to "increment" compound_mapcount, but
subpages_mapcount and compound_pincount are already correctly at 0, so
delete its reinitialization of compound_pincount.
A simple 100 X munmap(mmap(2GB, MAP_SHARED|MAP_POPULATE, tmpfs), 2GB) took
18 seconds on small pages, and used to take 1 second on huge pages, but
now takes 119 milliseconds on huge pages. Mapping by pmds a second time
used to take 860ms and now takes 92ms; mapping by pmds after mapping by
ptes (when the scan is needed) used to take 870ms and now takes 495ms.
But there might be some benchmarks which would show a slowdown, because
tail struct pages now fall out of cache until final freeing checks them.
Link: https://lkml.kernel.org/r/47ad693-717-79c8-e1ba-46c3a6602e48@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: James Houghton <jthoughton@google.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Peter Xu <peterx@redhat.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zach O'Keefe <zokeefe@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-03 01:51:38 +00:00
|
|
|
if (compound)
|
2021-10-28 21:36:11 +00:00
|
|
|
ClearPageHasHWPoisoned(page);
|
2016-05-20 00:14:38 +00:00
|
|
|
for (i = 1; i < (1 << order); i++) {
|
|
|
|
if (compound)
|
2023-04-05 14:28:40 +00:00
|
|
|
bad += free_tail_page_prepare(page, page + i);
|
2023-03-21 17:05:01 +00:00
|
|
|
if (is_check_pages_enabled()) {
|
2023-04-05 14:28:40 +00:00
|
|
|
if (free_page_is_bad(page + i)) {
|
mm, page_alloc: reduce page alloc/free sanity checks
Historically, we have performed sanity checks on all struct pages being
allocated or freed, making sure they have no unexpected page flags or
certain field values. This can detect insufficient cleanup and some cases
of use-after-free, although on its own it can't always identify the
culprit. The result is a warning and the "bad page" being leaked.
The checks do need some cpu cycles, so in 4.7 with commits 479f854a207c
("mm, page_alloc: defer debugging checks of pages allocated from the PCP")
and 4db7548ccbd9 ("mm, page_alloc: defer debugging checks of freed pages
until a PCP drain") they were no longer performed in the hot paths when
allocating and freeing from pcplists, but only when pcplists are bypassed,
refilled or drained. For debugging purposes, with CONFIG_DEBUG_VM enabled
the checks were instead still done in the hot paths and not when refilling
or draining pcplists.
With 4462b32c9285 ("mm, page_alloc: more extensive free page checking with
debug_pagealloc"), enabling debug_pagealloc also moved the sanity checks
back to hot pahs. When both debug_pagealloc and CONFIG_DEBUG_VM are
enabled, the checks are done both in hotpaths and pcplist refill/drain.
Even though the non-debug default today might seem to be a sensible
tradeoff between overhead and ability to detect bad pages, on closer look
it's arguably not. As most allocations go through the pcplists, catching
any bad pages when refilling or draining pcplists has only a small chance,
insufficient for debugging or serious hardening purposes. On the other
hand the cost of the checks is concentrated in the already expensive
drain/refill batching operations, and those are done under the often
contended zone lock. That was recently identified as an issue for page
allocation and the zone lock contention reduced by moving the checks
outside of the locked section with a patch "mm: reduce lock contention of
pcp buffer refill", but the cost of the checks is still visible compared
to their removal [1]. In the pcplist draining path free_pcppages_bulk()
the checks are still done under zone->lock.
Thus, remove the checks from pcplist refill and drain paths completely.
Introduce a static key check_pages_enabled to control checks during page
allocation a freeing (whether pcplist is used or bypassed). The static
key is enabled if either is true:
- kernel is built with CONFIG_DEBUG_VM=y (debugging)
- debug_pagealloc or page poisoning is boot-time enabled (debugging)
- init_on_alloc or init_on_free is boot-time enabled (hardening)
The resulting user visible changes:
- no checks when draining/refilling pcplists - less overhead, with
likely no practical reduction of ability to catch bad pages
- no checks when bypassing pcplists in default config (no
debugging/hardening) - less overhead etc. as above
- on typical hardened kernels [2], checks are now performed on each page
allocation/free (previously only when bypassing/draining/refilling
pcplists) - the init_on_alloc/init_on_free enabled should be sufficient
indication for preferring more costly alloc/free operations for
hardening purposes and we shouldn't need to introduce another toggle
- code (various wrappers) removal and simplification
[1] https://lore.kernel.org/all/68ba44d8-6899-c018-dcb3-36f3a96e6bea@sra.uni-hannover.de/
[2] https://lore.kernel.org/all/63ebc499.a70a0220.9ac51.29ea@mx.google.com/
[akpm@linux-foundation.org: coding-style cleanups]
[akpm@linux-foundation.org: make check_pages_enabled static]
Link: https://lkml.kernel.org/r/20230216095131.17336-1-vbabka@suse.cz
Reported-by: Alexander Halbuer <halbuer@sra.uni-hannover.de>
Reported-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-16 09:51:31 +00:00
|
|
|
bad++;
|
|
|
|
continue;
|
|
|
|
}
|
2016-05-20 00:14:38 +00:00
|
|
|
}
|
|
|
|
(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
|
|
|
|
}
|
|
|
|
}
|
mm: migrate: support non-lru movable page migration
We have allowed migration for only LRU pages until now and it was enough
to make high-order pages. But recently, embedded system(e.g., webOS,
android) uses lots of non-movable pages(e.g., zram, GPU memory) so we
have seen several reports about troubles of small high-order allocation.
For fixing the problem, there were several efforts (e,g,. enhance
compaction algorithm, SLUB fallback to 0-order page, reserved memory,
vmalloc and so on) but if there are lots of non-movable pages in system,
their solutions are void in the long run.
So, this patch is to support facility to change non-movable pages with
movable. For the feature, this patch introduces functions related to
migration to address_space_operations as well as some page flags.
If a driver want to make own pages movable, it should define three
functions which are function pointers of struct
address_space_operations.
1. bool (*isolate_page) (struct page *page, isolate_mode_t mode);
What VM expects on isolate_page function of driver is to return *true*
if driver isolates page successfully. On returing true, VM marks the
page as PG_isolated so concurrent isolation in several CPUs skip the
page for isolation. If a driver cannot isolate the page, it should
return *false*.
Once page is successfully isolated, VM uses page.lru fields so driver
shouldn't expect to preserve values in that fields.
2. int (*migratepage) (struct address_space *mapping,
struct page *newpage, struct page *oldpage, enum migrate_mode);
After isolation, VM calls migratepage of driver with isolated page. The
function of migratepage is to move content of the old page to new page
and set up fields of struct page newpage. Keep in mind that you should
indicate to the VM the oldpage is no longer movable via
__ClearPageMovable() under page_lock if you migrated the oldpage
successfully and returns 0. If driver cannot migrate the page at the
moment, driver can return -EAGAIN. On -EAGAIN, VM will retry page
migration in a short time because VM interprets -EAGAIN as "temporal
migration failure". On returning any error except -EAGAIN, VM will give
up the page migration without retrying in this time.
Driver shouldn't touch page.lru field VM using in the functions.
3. void (*putback_page)(struct page *);
If migration fails on isolated page, VM should return the isolated page
to the driver so VM calls driver's putback_page with migration failed
page. In this function, driver should put the isolated page back to the
own data structure.
4. non-lru movable page flags
There are two page flags for supporting non-lru movable page.
* PG_movable
Driver should use the below function to make page movable under
page_lock.
void __SetPageMovable(struct page *page, struct address_space *mapping)
It needs argument of address_space for registering migration family
functions which will be called by VM. Exactly speaking, PG_movable is
not a real flag of struct page. Rather than, VM reuses page->mapping's
lower bits to represent it.
#define PAGE_MAPPING_MOVABLE 0x2
page->mapping = page->mapping | PAGE_MAPPING_MOVABLE;
so driver shouldn't access page->mapping directly. Instead, driver
should use page_mapping which mask off the low two bits of page->mapping
so it can get right struct address_space.
For testing of non-lru movable page, VM supports __PageMovable function.
However, it doesn't guarantee to identify non-lru movable page because
page->mapping field is unified with other variables in struct page. As
well, if driver releases the page after isolation by VM, page->mapping
doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at
__ClearPageMovable). But __PageMovable is cheap to catch whether page
is LRU or non-lru movable once the page has been isolated. Because LRU
pages never can have PAGE_MAPPING_MOVABLE in page->mapping. It is also
good for just peeking to test non-lru movable pages before more
expensive checking with lock_page in pfn scanning to select victim.
For guaranteeing non-lru movable page, VM provides PageMovable function.
Unlike __PageMovable, PageMovable functions validates page->mapping and
mapping->a_ops->isolate_page under lock_page. The lock_page prevents
sudden destroying of page->mapping.
Driver using __SetPageMovable should clear the flag via
__ClearMovablePage under page_lock before the releasing the page.
* PG_isolated
To prevent concurrent isolation among several CPUs, VM marks isolated
page as PG_isolated under lock_page. So if a CPU encounters PG_isolated
non-lru movable page, it can skip it. Driver doesn't need to manipulate
the flag because VM will set/clear it automatically. Keep in mind that
if driver sees PG_isolated page, it means the page have been isolated by
VM so it shouldn't touch page.lru field. PG_isolated is alias with
PG_reclaim flag so driver shouldn't use the flag for own purpose.
[opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru]
Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test
Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org
Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: John Einar Reitan <john.reitan@foss.arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 22:23:05 +00:00
|
|
|
if (PageMappingFlags(page))
|
2016-05-20 00:14:32 +00:00
|
|
|
page->mapping = NULL;
|
2023-02-13 19:29:22 +00:00
|
|
|
if (memcg_kmem_online() && PageMemcgKmem(page))
|
2020-04-02 04:06:46 +00:00
|
|
|
__memcg_kmem_uncharge_page(page, order);
|
2023-03-21 17:05:01 +00:00
|
|
|
if (is_check_pages_enabled()) {
|
mm, page_alloc: reduce page alloc/free sanity checks
Historically, we have performed sanity checks on all struct pages being
allocated or freed, making sure they have no unexpected page flags or
certain field values. This can detect insufficient cleanup and some cases
of use-after-free, although on its own it can't always identify the
culprit. The result is a warning and the "bad page" being leaked.
The checks do need some cpu cycles, so in 4.7 with commits 479f854a207c
("mm, page_alloc: defer debugging checks of pages allocated from the PCP")
and 4db7548ccbd9 ("mm, page_alloc: defer debugging checks of freed pages
until a PCP drain") they were no longer performed in the hot paths when
allocating and freeing from pcplists, but only when pcplists are bypassed,
refilled or drained. For debugging purposes, with CONFIG_DEBUG_VM enabled
the checks were instead still done in the hot paths and not when refilling
or draining pcplists.
With 4462b32c9285 ("mm, page_alloc: more extensive free page checking with
debug_pagealloc"), enabling debug_pagealloc also moved the sanity checks
back to hot pahs. When both debug_pagealloc and CONFIG_DEBUG_VM are
enabled, the checks are done both in hotpaths and pcplist refill/drain.
Even though the non-debug default today might seem to be a sensible
tradeoff between overhead and ability to detect bad pages, on closer look
it's arguably not. As most allocations go through the pcplists, catching
any bad pages when refilling or draining pcplists has only a small chance,
insufficient for debugging or serious hardening purposes. On the other
hand the cost of the checks is concentrated in the already expensive
drain/refill batching operations, and those are done under the often
contended zone lock. That was recently identified as an issue for page
allocation and the zone lock contention reduced by moving the checks
outside of the locked section with a patch "mm: reduce lock contention of
pcp buffer refill", but the cost of the checks is still visible compared
to their removal [1]. In the pcplist draining path free_pcppages_bulk()
the checks are still done under zone->lock.
Thus, remove the checks from pcplist refill and drain paths completely.
Introduce a static key check_pages_enabled to control checks during page
allocation a freeing (whether pcplist is used or bypassed). The static
key is enabled if either is true:
- kernel is built with CONFIG_DEBUG_VM=y (debugging)
- debug_pagealloc or page poisoning is boot-time enabled (debugging)
- init_on_alloc or init_on_free is boot-time enabled (hardening)
The resulting user visible changes:
- no checks when draining/refilling pcplists - less overhead, with
likely no practical reduction of ability to catch bad pages
- no checks when bypassing pcplists in default config (no
debugging/hardening) - less overhead etc. as above
- on typical hardened kernels [2], checks are now performed on each page
allocation/free (previously only when bypassing/draining/refilling
pcplists) - the init_on_alloc/init_on_free enabled should be sufficient
indication for preferring more costly alloc/free operations for
hardening purposes and we shouldn't need to introduce another toggle
- code (various wrappers) removal and simplification
[1] https://lore.kernel.org/all/68ba44d8-6899-c018-dcb3-36f3a96e6bea@sra.uni-hannover.de/
[2] https://lore.kernel.org/all/63ebc499.a70a0220.9ac51.29ea@mx.google.com/
[akpm@linux-foundation.org: coding-style cleanups]
[akpm@linux-foundation.org: make check_pages_enabled static]
Link: https://lkml.kernel.org/r/20230216095131.17336-1-vbabka@suse.cz
Reported-by: Alexander Halbuer <halbuer@sra.uni-hannover.de>
Reported-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-16 09:51:31 +00:00
|
|
|
if (free_page_is_bad(page))
|
|
|
|
bad++;
|
|
|
|
if (bad)
|
|
|
|
return false;
|
|
|
|
}
|
2016-05-20 00:14:32 +00:00
|
|
|
|
2016-05-20 00:14:38 +00:00
|
|
|
page_cpupid_reset_last(page);
|
|
|
|
page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
|
|
|
|
reset_page_owner(page, order);
|
2022-01-14 22:06:37 +00:00
|
|
|
page_table_check_free(page, order);
|
2016-05-20 00:14:32 +00:00
|
|
|
|
|
|
|
if (!PageHighMem(page)) {
|
|
|
|
debug_check_no_locks_freed(page_address(page),
|
2016-05-20 00:14:38 +00:00
|
|
|
PAGE_SIZE << order);
|
2016-05-20 00:14:32 +00:00
|
|
|
debug_check_no_obj_freed(page_address(page),
|
2016-05-20 00:14:38 +00:00
|
|
|
PAGE_SIZE << order);
|
2016-05-20 00:14:32 +00:00
|
|
|
}
|
mm: security: introduce init_on_alloc=1 and init_on_free=1 boot options
Patch series "add init_on_alloc/init_on_free boot options", v10.
Provide init_on_alloc and init_on_free boot options.
These are aimed at preventing possible information leaks and making the
control-flow bugs that depend on uninitialized values more deterministic.
Enabling either of the options guarantees that the memory returned by the
page allocator and SL[AU]B is initialized with zeroes. SLOB allocator
isn't supported at the moment, as its emulation of kmem caches complicates
handling of SLAB_TYPESAFE_BY_RCU caches correctly.
Enabling init_on_free also guarantees that pages and heap objects are
initialized right after they're freed, so it won't be possible to access
stale data by using a dangling pointer.
As suggested by Michal Hocko, right now we don't let the heap users to
disable initialization for certain allocations. There's not enough
evidence that doing so can speed up real-life cases, and introducing ways
to opt-out may result in things going out of control.
This patch (of 2):
The new options are needed to prevent possible information leaks and make
control-flow bugs that depend on uninitialized values more deterministic.
This is expected to be on-by-default on Android and Chrome OS. And it
gives the opportunity for anyone else to use it under distros too via the
boot args. (The init_on_free feature is regularly requested by folks
where memory forensics is included in their threat models.)
init_on_alloc=1 makes the kernel initialize newly allocated pages and heap
objects with zeroes. Initialization is done at allocation time at the
places where checks for __GFP_ZERO are performed.
init_on_free=1 makes the kernel initialize freed pages and heap objects
with zeroes upon their deletion. This helps to ensure sensitive data
doesn't leak via use-after-free accesses.
Both init_on_alloc=1 and init_on_free=1 guarantee that the allocator
returns zeroed memory. The two exceptions are slab caches with
constructors and SLAB_TYPESAFE_BY_RCU flag. Those are never
zero-initialized to preserve their semantics.
Both init_on_alloc and init_on_free default to zero, but those defaults
can be overridden with CONFIG_INIT_ON_ALLOC_DEFAULT_ON and
CONFIG_INIT_ON_FREE_DEFAULT_ON.
If either SLUB poisoning or page poisoning is enabled, those options take
precedence over init_on_alloc and init_on_free: initialization is only
applied to unpoisoned allocations.
Slowdown for the new features compared to init_on_free=0, init_on_alloc=0:
hackbench, init_on_free=1: +7.62% sys time (st.err 0.74%)
hackbench, init_on_alloc=1: +7.75% sys time (st.err 2.14%)
Linux build with -j12, init_on_free=1: +8.38% wall time (st.err 0.39%)
Linux build with -j12, init_on_free=1: +24.42% sys time (st.err 0.52%)
Linux build with -j12, init_on_alloc=1: -0.13% wall time (st.err 0.42%)
Linux build with -j12, init_on_alloc=1: +0.57% sys time (st.err 0.40%)
The slowdown for init_on_free=0, init_on_alloc=0 compared to the baseline
is within the standard error.
The new features are also going to pave the way for hardware memory
tagging (e.g. arm64's MTE), which will require both on_alloc and on_free
hooks to set the tags for heap objects. With MTE, tagging will have the
same cost as memory initialization.
Although init_on_free is rather costly, there are paranoid use-cases where
in-memory data lifetime is desired to be minimized. There are various
arguments for/against the realism of the associated threat models, but
given that we'll need the infrastructure for MTE anyway, and there are
people who want wipe-on-free behavior no matter what the performance cost,
it seems reasonable to include it in this series.
[glider@google.com: v8]
Link: http://lkml.kernel.org/r/20190626121943.131390-2-glider@google.com
[glider@google.com: v9]
Link: http://lkml.kernel.org/r/20190627130316.254309-2-glider@google.com
[glider@google.com: v10]
Link: http://lkml.kernel.org/r/20190628093131.199499-2-glider@google.com
Link: http://lkml.kernel.org/r/20190617151050.92663-2-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Michal Hocko <mhocko@suse.cz> [page and dmapool parts
Acked-by: James Morris <jamorris@linux.microsoft.com>]
Cc: Christoph Lameter <cl@linux.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Sandeep Patil <sspatil@android.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Jann Horn <jannh@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Marco Elver <elver@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 03:59:19 +00:00
|
|
|
|
2020-12-15 03:13:34 +00:00
|
|
|
kernel_poison_pages(page, 1 << order);
|
|
|
|
|
2021-03-13 05:08:10 +00:00
|
|
|
/*
|
2021-04-30 06:00:02 +00:00
|
|
|
* As memory initialization might be integrated into KASAN,
|
2022-03-25 01:10:10 +00:00
|
|
|
* KASAN poisoning and memory initialization code must be
|
2021-04-30 06:00:02 +00:00
|
|
|
* kept together to avoid discrepancies in behavior.
|
|
|
|
*
|
2021-03-13 05:08:10 +00:00
|
|
|
* With hardware tag-based KASAN, memory tags must be set before the
|
|
|
|
* page becomes unavailable via debug_pagealloc or arch_free_page.
|
|
|
|
*/
|
Revert "kasan: drop skip_kasan_poison variable in free_pages_prepare"
This reverts commit 487a32ec24be819e747af8c2ab0d5c515508086a.
should_skip_kasan_poison() reads the PG_skip_kasan_poison flag from
page->flags. However, this line of code in free_pages_prepare():
page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
clears most of page->flags, including PG_skip_kasan_poison, before calling
should_skip_kasan_poison(), which meant that it would never return true as
a result of the page flag being set. Therefore, fix the code to call
should_skip_kasan_poison() before clearing the flags, as we were doing
before the reverted patch.
This fixes a measurable performance regression introduced in the reverted
commit, where munmap() takes longer than intended if HW tags KASAN is
supported and enabled at runtime. Without this patch, we see a
single-digit percentage performance regression in a particular
mmap()-heavy benchmark when enabling HW tags KASAN, and with the patch,
there is no statistically significant performance impact when enabling HW
tags KASAN.
Link: https://lkml.kernel.org/r/20230310042914.3805818-2-pcc@google.com
Fixes: 487a32ec24be ("kasan: drop skip_kasan_poison variable in free_pages_prepare")
Link: https://linux-review.googlesource.com/id/Ic4f13affeebd20548758438bb9ed9ca40e312b79
Signed-off-by: Peter Collingbourne <pcc@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com> [arm64]
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: <stable@vger.kernel.org> [6.1]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-03-10 04:29:13 +00:00
|
|
|
if (!skip_kasan_poison) {
|
2022-03-25 01:10:13 +00:00
|
|
|
kasan_poison_pages(page, order, init);
|
2021-03-13 05:08:10 +00:00
|
|
|
|
2022-03-25 01:10:16 +00:00
|
|
|
/* Memory is already initialized if KASAN did it internally. */
|
|
|
|
if (kasan_has_integrated_init())
|
|
|
|
init = false;
|
|
|
|
}
|
|
|
|
if (init)
|
2022-06-09 18:18:45 +00:00
|
|
|
kernel_init_pages(page, 1 << order);
|
2022-03-25 01:10:16 +00:00
|
|
|
|
mm/page_alloc.c: fix a crash in free_pages_prepare()
On architectures like s390, arch_free_page() could mark the page unused
(set_page_unused()) and any access later would trigger a kernel panic.
Fix it by moving arch_free_page() after all possible accessing calls.
Hardware name: IBM 2964 N96 400 (z/VM 6.4.0)
Krnl PSW : 0404e00180000000 0000000026c2b96e (__free_pages_ok+0x34e/0x5d8)
R:0 T:1 IO:0 EX:0 Key:0 M:1 W:0 P:0 AS:3 CC:2 PM:0 RI:0 EA:3
Krnl GPRS: 0000000088d43af7 0000000000484000 000000000000007c 000000000000000f
000003d080012100 000003d080013fc0 0000000000000000 0000000000100000
00000000275cca48 0000000000000100 0000000000000008 000003d080010000
00000000000001d0 000003d000000000 0000000026c2b78a 000000002717fdb0
Krnl Code: 0000000026c2b95c: ec1100b30659 risbgn %r1,%r1,0,179,6
0000000026c2b962: e32014000036 pfd 2,1024(%r1)
#0000000026c2b968: d7ff10001000 xc 0(256,%r1),0(%r1)
>0000000026c2b96e: 41101100 la %r1,256(%r1)
0000000026c2b972: a737fff8 brctg %r3,26c2b962
0000000026c2b976: d7ff10001000 xc 0(256,%r1),0(%r1)
0000000026c2b97c: e31003400004 lg %r1,832
0000000026c2b982: ebff1430016a asi 5168(%r1),-1
Call Trace:
__free_pages_ok+0x16a/0x5d8)
memblock_free_all+0x206/0x290
mem_init+0x58/0x120
start_kernel+0x2b0/0x570
startup_continue+0x6a/0xc0
INFO: lockdep is turned off.
Last Breaking-Event-Address:
__free_pages_ok+0x372/0x5d8
Kernel panic - not syncing: Fatal exception: panic_on_oops
00: HCPGIR450W CP entered; disabled wait PSW 00020001 80000000 00000000 26A2379C
In the past, only kernel_poison_pages() would trigger this but it needs
"page_poison=on" kernel cmdline, and I suspect nobody tested that on
s390. Recently, kernel_init_free_pages() (commit 6471384af2a6 ("mm:
security: introduce init_on_alloc=1 and init_on_free=1 boot options"))
was added and could trigger this as well.
[akpm@linux-foundation.org: add comment]
Link: http://lkml.kernel.org/r/1569613623-16820-1-git-send-email-cai@lca.pw
Fixes: 8823b1dbc05f ("mm/page_poison.c: enable PAGE_POISONING as a separate option")
Fixes: 6471384af2a6 ("mm: security: introduce init_on_alloc=1 and init_on_free=1 boot options")
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Alexander Duyck <alexander.duyck@gmail.com>
Cc: <stable@vger.kernel.org> [5.3+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-07 00:58:25 +00:00
|
|
|
/*
|
|
|
|
* arch_free_page() can make the page's contents inaccessible. s390
|
|
|
|
* does this. So nothing which can access the page's contents should
|
|
|
|
* happen after this.
|
|
|
|
*/
|
|
|
|
arch_free_page(page, order);
|
|
|
|
|
mm: introduce debug_pagealloc_{map,unmap}_pages() helpers
Patch series "arch, mm: improve robustness of direct map manipulation", v7.
During recent discussion about KVM protected memory, David raised a
concern about usage of __kernel_map_pages() outside of DEBUG_PAGEALLOC
scope [1].
Indeed, for architectures that define CONFIG_ARCH_HAS_SET_DIRECT_MAP it is
possible that __kernel_map_pages() would fail, but since this function is
void, the failure will go unnoticed.
Moreover, there's lack of consistency of __kernel_map_pages() semantics
across architectures as some guard this function with #ifdef
DEBUG_PAGEALLOC, some refuse to update the direct map if page allocation
debugging is disabled at run time and some allow modifying the direct map
regardless of DEBUG_PAGEALLOC settings.
This set straightens this out by restoring dependency of
__kernel_map_pages() on DEBUG_PAGEALLOC and updating the call sites
accordingly.
Since currently the only user of __kernel_map_pages() outside
DEBUG_PAGEALLOC is hibernation, it is updated to make direct map accesses
there more explicit.
[1] https://lore.kernel.org/lkml/2759b4bf-e1e3-d006-7d86-78a40348269d@redhat.com
This patch (of 4):
When CONFIG_DEBUG_PAGEALLOC is enabled, it unmaps pages from the kernel
direct mapping after free_pages(). The pages than need to be mapped back
before they could be used. Theese mapping operations use
__kernel_map_pages() guarded with with debug_pagealloc_enabled().
The only place that calls __kernel_map_pages() without checking whether
DEBUG_PAGEALLOC is enabled is the hibernation code that presumes
availability of this function when ARCH_HAS_SET_DIRECT_MAP is set. Still,
on arm64, __kernel_map_pages() will bail out when DEBUG_PAGEALLOC is not
enabled but set_direct_map_invalid_noflush() may render some pages not
present in the direct map and hibernation code won't be able to save such
pages.
To make page allocation debugging and hibernation interaction more robust,
the dependency on DEBUG_PAGEALLOC or ARCH_HAS_SET_DIRECT_MAP has to be
made more explicit.
Start with combining the guard condition and the call to
__kernel_map_pages() into debug_pagealloc_map_pages() and
debug_pagealloc_unmap_pages() functions to emphasize that
__kernel_map_pages() should not be called without DEBUG_PAGEALLOC and use
these new functions to map/unmap pages when page allocation debugging is
enabled.
Link: https://lkml.kernel.org/r/20201109192128.960-1-rppt@kernel.org
Link: https://lkml.kernel.org/r/20201109192128.960-2-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "Edgecombe, Rick P" <rick.p.edgecombe@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 03:10:20 +00:00
|
|
|
debug_pagealloc_unmap_pages(page, 1 << order);
|
2019-04-26 00:11:35 +00:00
|
|
|
|
2016-05-20 00:14:32 +00:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
page-allocator: split per-cpu list into one-list-per-migrate-type
The following two patches remove searching in the page allocator fast-path
by maintaining multiple free-lists in the per-cpu structure. At the time
the search was introduced, increasing the per-cpu structures would waste a
lot of memory as per-cpu structures were statically allocated at
compile-time. This is no longer the case.
The patches are as follows. They are based on mmotm-2009-08-27.
Patch 1 adds multiple lists to struct per_cpu_pages, one per
migratetype that can be stored on the PCP lists.
Patch 2 notes that the pcpu drain path check empty lists multiple times. The
patch reduces the number of checks by maintaining a count of free
lists encountered. Lists containing pages will then free multiple
pages in batch
The patches were tested with kernbench, netperf udp/tcp, hackbench and
sysbench. The netperf tests were not bound to any CPU in particular and
were run such that the results should be 99% confidence that the reported
results are within 1% of the estimated mean. sysbench was run with a
postgres background and read-only tests. Similar to netperf, it was run
multiple times so that it's 99% confidence results are within 1%. The
patches were tested on x86, x86-64 and ppc64 as
x86: Intel Pentium D 3GHz with 8G RAM (no-brand machine)
kernbench - No significant difference, variance well within noise
netperf-udp - 1.34% to 2.28% gain
netperf-tcp - 0.45% to 1.22% gain
hackbench - Small variances, very close to noise
sysbench - Very small gains
x86-64: AMD Phenom 9950 1.3GHz with 8G RAM (no-brand machine)
kernbench - No significant difference, variance well within noise
netperf-udp - 1.83% to 10.42% gains
netperf-tcp - No conclusive until buffer >= PAGE_SIZE
4096 +15.83%
8192 + 0.34% (not significant)
16384 + 1%
hackbench - Small gains, very close to noise
sysbench - 0.79% to 1.6% gain
ppc64: PPC970MP 2.5GHz with 10GB RAM (it's a terrasoft powerstation)
kernbench - No significant difference, variance well within noise
netperf-udp - 2-3% gain for almost all buffer sizes tested
netperf-tcp - losses on small buffers, gains on larger buffers
possibly indicates some bad caching effect.
hackbench - No significant difference
sysbench - 2-4% gain
This patch:
Currently the per-cpu page allocator searches the PCP list for pages of
the correct migrate-type to reduce the possibility of pages being
inappropriate placed from a fragmentation perspective. This search is
potentially expensive in a fast-path and undesirable. Splitting the
per-cpu list into multiple lists increases the size of a per-cpu structure
and this was potentially a major problem at the time the search was
introduced. These problem has been mitigated as now only the necessary
number of structures is allocated for the running system.
This patch replaces a list search in the per-cpu allocator with one list
per migrate type. The potential snag with this approach is when bulk
freeing pages. We round-robin free pages based on migrate type which has
little bearing on the cache hotness of the page and potentially checks
empty lists repeatedly in the event the majority of PCP pages are of one
type.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Nick Piggin <npiggin@suse.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 00:03:19 +00:00
|
|
|
* Frees a number of pages from the PCP lists
|
2021-11-05 20:40:08 +00:00
|
|
|
* Assumes all pages on list are in same zone.
|
2005-09-10 07:26:59 +00:00
|
|
|
* count is the number of pages to free.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
page-allocator: split per-cpu list into one-list-per-migrate-type
The following two patches remove searching in the page allocator fast-path
by maintaining multiple free-lists in the per-cpu structure. At the time
the search was introduced, increasing the per-cpu structures would waste a
lot of memory as per-cpu structures were statically allocated at
compile-time. This is no longer the case.
The patches are as follows. They are based on mmotm-2009-08-27.
Patch 1 adds multiple lists to struct per_cpu_pages, one per
migratetype that can be stored on the PCP lists.
Patch 2 notes that the pcpu drain path check empty lists multiple times. The
patch reduces the number of checks by maintaining a count of free
lists encountered. Lists containing pages will then free multiple
pages in batch
The patches were tested with kernbench, netperf udp/tcp, hackbench and
sysbench. The netperf tests were not bound to any CPU in particular and
were run such that the results should be 99% confidence that the reported
results are within 1% of the estimated mean. sysbench was run with a
postgres background and read-only tests. Similar to netperf, it was run
multiple times so that it's 99% confidence results are within 1%. The
patches were tested on x86, x86-64 and ppc64 as
x86: Intel Pentium D 3GHz with 8G RAM (no-brand machine)
kernbench - No significant difference, variance well within noise
netperf-udp - 1.34% to 2.28% gain
netperf-tcp - 0.45% to 1.22% gain
hackbench - Small variances, very close to noise
sysbench - Very small gains
x86-64: AMD Phenom 9950 1.3GHz with 8G RAM (no-brand machine)
kernbench - No significant difference, variance well within noise
netperf-udp - 1.83% to 10.42% gains
netperf-tcp - No conclusive until buffer >= PAGE_SIZE
4096 +15.83%
8192 + 0.34% (not significant)
16384 + 1%
hackbench - Small gains, very close to noise
sysbench - 0.79% to 1.6% gain
ppc64: PPC970MP 2.5GHz with 10GB RAM (it's a terrasoft powerstation)
kernbench - No significant difference, variance well within noise
netperf-udp - 2-3% gain for almost all buffer sizes tested
netperf-tcp - losses on small buffers, gains on larger buffers
possibly indicates some bad caching effect.
hackbench - No significant difference
sysbench - 2-4% gain
This patch:
Currently the per-cpu page allocator searches the PCP list for pages of
the correct migrate-type to reduce the possibility of pages being
inappropriate placed from a fragmentation perspective. This search is
potentially expensive in a fast-path and undesirable. Splitting the
per-cpu list into multiple lists increases the size of a per-cpu structure
and this was potentially a major problem at the time the search was
introduced. These problem has been mitigated as now only the necessary
number of structures is allocated for the running system.
This patch replaces a list search in the per-cpu allocator with one list
per migrate type. The potential snag with this approach is when bulk
freeing pages. We round-robin free pages based on migrate type which has
little bearing on the cache hotness of the page and potentially checks
empty lists repeatedly in the event the majority of PCP pages are of one
type.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Nick Piggin <npiggin@suse.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 00:03:19 +00:00
|
|
|
static void free_pcppages_bulk(struct zone *zone, int count,
|
2022-03-22 21:43:36 +00:00
|
|
|
struct per_cpu_pages *pcp,
|
|
|
|
int pindex)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2022-11-18 10:17:14 +00:00
|
|
|
unsigned long flags;
|
2022-03-22 21:43:33 +00:00
|
|
|
int min_pindex = 0;
|
|
|
|
int max_pindex = NR_PCP_LISTS - 1;
|
2021-06-29 02:43:08 +00:00
|
|
|
unsigned int order;
|
2016-05-20 00:13:58 +00:00
|
|
|
bool isolated_pageblocks;
|
2022-03-22 21:43:42 +00:00
|
|
|
struct page *page;
|
2009-06-16 22:32:13 +00:00
|
|
|
|
mm, page_alloc: fix core hung in free_pcppages_bulk()
The following race is observed with the repeated online, offline and a
delay between two successive online of memory blocks of movable zone.
P1 P2
Online the first memory block in
the movable zone. The pcp struct
values are initialized to default
values,i.e., pcp->high = 0 &
pcp->batch = 1.
Allocate the pages from the
movable zone.
Try to Online the second memory
block in the movable zone thus it
entered the online_pages() but yet
to call zone_pcp_update().
This process is entered into
the exit path thus it tries
to release the order-0 pages
to pcp lists through
free_unref_page_commit().
As pcp->high = 0, pcp->count = 1
proceed to call the function
free_pcppages_bulk().
Update the pcp values thus the
new pcp values are like, say,
pcp->high = 378, pcp->batch = 63.
Read the pcp's batch value using
READ_ONCE() and pass the same to
free_pcppages_bulk(), pcp values
passed here are, batch = 63,
count = 1.
Since num of pages in the pcp
lists are less than ->batch,
then it will stuck in
while(list_empty(list)) loop
with interrupts disabled thus
a core hung.
Avoid this by ensuring free_pcppages_bulk() is called with proper count of
pcp list pages.
The mentioned race is some what easily reproducible without [1] because
pcp's are not updated for the first memory block online and thus there is
a enough race window for P2 between alloc+free and pcp struct values
update through onlining of second memory block.
With [1], the race still exists but it is very narrow as we update the pcp
struct values for the first memory block online itself.
This is not limited to the movable zone, it could also happen in cases
with the normal zone (e.g., hotplug to a node that only has DMA memory, or
no other memory yet).
[1]: https://patchwork.kernel.org/patch/11696389/
Fixes: 5f8dcc21211a ("page-allocator: split per-cpu list into one-list-per-migrate-type")
Signed-off-by: Charan Teja Reddy <charante@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: <stable@vger.kernel.org> [2.6+]
Link: http://lkml.kernel.org/r/1597150703-19003-1-git-send-email-charante@codeaurora.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-21 00:42:27 +00:00
|
|
|
/*
|
|
|
|
* Ensure proper count is passed which otherwise would stuck in the
|
|
|
|
* below while (list_empty(list)) loop.
|
|
|
|
*/
|
|
|
|
count = min(pcp->count, count);
|
2022-03-22 21:43:38 +00:00
|
|
|
|
|
|
|
/* Ensure requested pindex is drained first. */
|
|
|
|
pindex = pindex - 1;
|
|
|
|
|
2022-11-18 10:17:14 +00:00
|
|
|
spin_lock_irqsave(&zone->lock, flags);
|
2022-03-22 21:43:42 +00:00
|
|
|
isolated_pageblocks = has_isolate_pageblock(zone);
|
|
|
|
|
2021-06-29 02:43:08 +00:00
|
|
|
while (count > 0) {
|
page-allocator: split per-cpu list into one-list-per-migrate-type
The following two patches remove searching in the page allocator fast-path
by maintaining multiple free-lists in the per-cpu structure. At the time
the search was introduced, increasing the per-cpu structures would waste a
lot of memory as per-cpu structures were statically allocated at
compile-time. This is no longer the case.
The patches are as follows. They are based on mmotm-2009-08-27.
Patch 1 adds multiple lists to struct per_cpu_pages, one per
migratetype that can be stored on the PCP lists.
Patch 2 notes that the pcpu drain path check empty lists multiple times. The
patch reduces the number of checks by maintaining a count of free
lists encountered. Lists containing pages will then free multiple
pages in batch
The patches were tested with kernbench, netperf udp/tcp, hackbench and
sysbench. The netperf tests were not bound to any CPU in particular and
were run such that the results should be 99% confidence that the reported
results are within 1% of the estimated mean. sysbench was run with a
postgres background and read-only tests. Similar to netperf, it was run
multiple times so that it's 99% confidence results are within 1%. The
patches were tested on x86, x86-64 and ppc64 as
x86: Intel Pentium D 3GHz with 8G RAM (no-brand machine)
kernbench - No significant difference, variance well within noise
netperf-udp - 1.34% to 2.28% gain
netperf-tcp - 0.45% to 1.22% gain
hackbench - Small variances, very close to noise
sysbench - Very small gains
x86-64: AMD Phenom 9950 1.3GHz with 8G RAM (no-brand machine)
kernbench - No significant difference, variance well within noise
netperf-udp - 1.83% to 10.42% gains
netperf-tcp - No conclusive until buffer >= PAGE_SIZE
4096 +15.83%
8192 + 0.34% (not significant)
16384 + 1%
hackbench - Small gains, very close to noise
sysbench - 0.79% to 1.6% gain
ppc64: PPC970MP 2.5GHz with 10GB RAM (it's a terrasoft powerstation)
kernbench - No significant difference, variance well within noise
netperf-udp - 2-3% gain for almost all buffer sizes tested
netperf-tcp - losses on small buffers, gains on larger buffers
possibly indicates some bad caching effect.
hackbench - No significant difference
sysbench - 2-4% gain
This patch:
Currently the per-cpu page allocator searches the PCP list for pages of
the correct migrate-type to reduce the possibility of pages being
inappropriate placed from a fragmentation perspective. This search is
potentially expensive in a fast-path and undesirable. Splitting the
per-cpu list into multiple lists increases the size of a per-cpu structure
and this was potentially a major problem at the time the search was
introduced. These problem has been mitigated as now only the necessary
number of structures is allocated for the running system.
This patch replaces a list search in the per-cpu allocator with one list
per migrate type. The potential snag with this approach is when bulk
freeing pages. We round-robin free pages based on migrate type which has
little bearing on the cache hotness of the page and potentially checks
empty lists repeatedly in the event the majority of PCP pages are of one
type.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Nick Piggin <npiggin@suse.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 00:03:19 +00:00
|
|
|
struct list_head *list;
|
2022-03-22 21:43:36 +00:00
|
|
|
int nr_pages;
|
page-allocator: split per-cpu list into one-list-per-migrate-type
The following two patches remove searching in the page allocator fast-path
by maintaining multiple free-lists in the per-cpu structure. At the time
the search was introduced, increasing the per-cpu structures would waste a
lot of memory as per-cpu structures were statically allocated at
compile-time. This is no longer the case.
The patches are as follows. They are based on mmotm-2009-08-27.
Patch 1 adds multiple lists to struct per_cpu_pages, one per
migratetype that can be stored on the PCP lists.
Patch 2 notes that the pcpu drain path check empty lists multiple times. The
patch reduces the number of checks by maintaining a count of free
lists encountered. Lists containing pages will then free multiple
pages in batch
The patches were tested with kernbench, netperf udp/tcp, hackbench and
sysbench. The netperf tests were not bound to any CPU in particular and
were run such that the results should be 99% confidence that the reported
results are within 1% of the estimated mean. sysbench was run with a
postgres background and read-only tests. Similar to netperf, it was run
multiple times so that it's 99% confidence results are within 1%. The
patches were tested on x86, x86-64 and ppc64 as
x86: Intel Pentium D 3GHz with 8G RAM (no-brand machine)
kernbench - No significant difference, variance well within noise
netperf-udp - 1.34% to 2.28% gain
netperf-tcp - 0.45% to 1.22% gain
hackbench - Small variances, very close to noise
sysbench - Very small gains
x86-64: AMD Phenom 9950 1.3GHz with 8G RAM (no-brand machine)
kernbench - No significant difference, variance well within noise
netperf-udp - 1.83% to 10.42% gains
netperf-tcp - No conclusive until buffer >= PAGE_SIZE
4096 +15.83%
8192 + 0.34% (not significant)
16384 + 1%
hackbench - Small gains, very close to noise
sysbench - 0.79% to 1.6% gain
ppc64: PPC970MP 2.5GHz with 10GB RAM (it's a terrasoft powerstation)
kernbench - No significant difference, variance well within noise
netperf-udp - 2-3% gain for almost all buffer sizes tested
netperf-tcp - losses on small buffers, gains on larger buffers
possibly indicates some bad caching effect.
hackbench - No significant difference
sysbench - 2-4% gain
This patch:
Currently the per-cpu page allocator searches the PCP list for pages of
the correct migrate-type to reduce the possibility of pages being
inappropriate placed from a fragmentation perspective. This search is
potentially expensive in a fast-path and undesirable. Splitting the
per-cpu list into multiple lists increases the size of a per-cpu structure
and this was potentially a major problem at the time the search was
introduced. These problem has been mitigated as now only the necessary
number of structures is allocated for the running system.
This patch replaces a list search in the per-cpu allocator with one list
per migrate type. The potential snag with this approach is when bulk
freeing pages. We round-robin free pages based on migrate type which has
little bearing on the cache hotness of the page and potentially checks
empty lists repeatedly in the event the majority of PCP pages are of one
type.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Nick Piggin <npiggin@suse.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 00:03:19 +00:00
|
|
|
|
2022-03-22 21:43:36 +00:00
|
|
|
/* Remove pages from lists in a round-robin fashion. */
|
page-allocator: split per-cpu list into one-list-per-migrate-type
The following two patches remove searching in the page allocator fast-path
by maintaining multiple free-lists in the per-cpu structure. At the time
the search was introduced, increasing the per-cpu structures would waste a
lot of memory as per-cpu structures were statically allocated at
compile-time. This is no longer the case.
The patches are as follows. They are based on mmotm-2009-08-27.
Patch 1 adds multiple lists to struct per_cpu_pages, one per
migratetype that can be stored on the PCP lists.
Patch 2 notes that the pcpu drain path check empty lists multiple times. The
patch reduces the number of checks by maintaining a count of free
lists encountered. Lists containing pages will then free multiple
pages in batch
The patches were tested with kernbench, netperf udp/tcp, hackbench and
sysbench. The netperf tests were not bound to any CPU in particular and
were run such that the results should be 99% confidence that the reported
results are within 1% of the estimated mean. sysbench was run with a
postgres background and read-only tests. Similar to netperf, it was run
multiple times so that it's 99% confidence results are within 1%. The
patches were tested on x86, x86-64 and ppc64 as
x86: Intel Pentium D 3GHz with 8G RAM (no-brand machine)
kernbench - No significant difference, variance well within noise
netperf-udp - 1.34% to 2.28% gain
netperf-tcp - 0.45% to 1.22% gain
hackbench - Small variances, very close to noise
sysbench - Very small gains
x86-64: AMD Phenom 9950 1.3GHz with 8G RAM (no-brand machine)
kernbench - No significant difference, variance well within noise
netperf-udp - 1.83% to 10.42% gains
netperf-tcp - No conclusive until buffer >= PAGE_SIZE
4096 +15.83%
8192 + 0.34% (not significant)
16384 + 1%
hackbench - Small gains, very close to noise
sysbench - 0.79% to 1.6% gain
ppc64: PPC970MP 2.5GHz with 10GB RAM (it's a terrasoft powerstation)
kernbench - No significant difference, variance well within noise
netperf-udp - 2-3% gain for almost all buffer sizes tested
netperf-tcp - losses on small buffers, gains on larger buffers
possibly indicates some bad caching effect.
hackbench - No significant difference
sysbench - 2-4% gain
This patch:
Currently the per-cpu page allocator searches the PCP list for pages of
the correct migrate-type to reduce the possibility of pages being
inappropriate placed from a fragmentation perspective. This search is
potentially expensive in a fast-path and undesirable. Splitting the
per-cpu list into multiple lists increases the size of a per-cpu structure
and this was potentially a major problem at the time the search was
introduced. These problem has been mitigated as now only the necessary
number of structures is allocated for the running system.
This patch replaces a list search in the per-cpu allocator with one list
per migrate type. The potential snag with this approach is when bulk
freeing pages. We round-robin free pages based on migrate type which has
little bearing on the cache hotness of the page and potentially checks
empty lists repeatedly in the event the majority of PCP pages are of one
type.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Nick Piggin <npiggin@suse.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 00:03:19 +00:00
|
|
|
do {
|
2022-03-22 21:43:33 +00:00
|
|
|
if (++pindex > max_pindex)
|
|
|
|
pindex = min_pindex;
|
2021-06-29 02:43:08 +00:00
|
|
|
list = &pcp->lists[pindex];
|
2022-03-22 21:43:33 +00:00
|
|
|
if (!list_empty(list))
|
|
|
|
break;
|
|
|
|
|
|
|
|
if (pindex == max_pindex)
|
|
|
|
max_pindex--;
|
|
|
|
if (pindex == min_pindex)
|
|
|
|
min_pindex++;
|
|
|
|
} while (1);
|
2006-01-08 09:00:42 +00:00
|
|
|
|
2021-06-29 02:43:08 +00:00
|
|
|
order = pindex_to_order(pindex);
|
2022-03-22 21:43:36 +00:00
|
|
|
nr_pages = 1 << order;
|
2009-09-22 00:03:20 +00:00
|
|
|
do {
|
2022-03-22 21:43:42 +00:00
|
|
|
int mt;
|
|
|
|
|
2022-06-24 12:54:17 +00:00
|
|
|
page = list_last_entry(list, struct page, pcp_list);
|
2022-03-22 21:43:42 +00:00
|
|
|
mt = get_pcppage_migratetype(page);
|
|
|
|
|
2018-04-05 23:24:10 +00:00
|
|
|
/* must delete to avoid corrupting pcp list */
|
2022-06-24 12:54:17 +00:00
|
|
|
list_del(&page->pcp_list);
|
2022-03-22 21:43:36 +00:00
|
|
|
count -= nr_pages;
|
|
|
|
pcp->count -= nr_pages;
|
mm, page_isolation: remove bogus tests for isolated pages
The __test_page_isolated_in_pageblock() is used to verify whether all
pages in pageblock were either successfully isolated, or are hwpoisoned.
Two of the possible state of pages, that are tested, are however bogus
and misleading.
Both tests rely on get_freepage_migratetype(page), which however has no
guarantees about pages on freelists. Specifically, it doesn't guarantee
that the migratetype returned by the function actually matches the
migratetype of the freelist that the page is on. Such guarantee is not
its purpose and would have negative impact on allocator performance.
The first test checks whether the freepage_migratetype equals
MIGRATE_ISOLATE, supposedly to catch races between page isolation and
allocator activity. These races should be fixed nowadays with
51bb1a4093 ("mm/page_alloc: add freepage on isolate pageblock to correct
buddy list") and related patches. As explained above, the check
wouldn't be able to catch them reliably anyway. For the same reason
false positives can happen, although they are harmless, as the
move_freepages() call would just move the page to the same freelist it's
already on. So removing the test is not a bug fix, just cleanup. After
this patch, we assume that all PageBuddy pages are on the correct
freelist and that the races were really fixed. A truly reliable
verification in the form of e.g. VM_BUG_ON() would be complicated and
is arguably not needed.
The second test (page_count(page) == 0 && get_freepage_migratetype(page)
== MIGRATE_ISOLATE) is probably supposed (the code comes from a big
memory isolation patch from 2007) to catch pages on MIGRATE_ISOLATE
pcplists. However, pcplists don't contain MIGRATE_ISOLATE freepages
nowadays, those are freed directly to free lists, so the check is
obsolete. Remove it as well.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: Laura Abbott <lauraa@codeaurora.org>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Seungho Park <seungho1.park@lge.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 22:01:22 +00:00
|
|
|
|
2022-03-22 21:43:42 +00:00
|
|
|
/* MIGRATE_ISOLATE page should not go to pcplists */
|
|
|
|
VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
|
|
|
|
/* Pageblock could have been isolated meanwhile */
|
|
|
|
if (unlikely(isolated_pageblocks))
|
|
|
|
mt = get_pageblock_migratetype(page);
|
2018-04-05 23:24:10 +00:00
|
|
|
|
2022-03-22 21:43:42 +00:00
|
|
|
__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
|
|
|
|
trace_mm_page_pcpu_drain(page, order, mt);
|
|
|
|
} while (count > 0 && !list_empty(list));
|
2018-04-05 23:24:10 +00:00
|
|
|
}
|
2022-03-22 21:43:42 +00:00
|
|
|
|
2022-11-18 10:17:14 +00:00
|
|
|
spin_unlock_irqrestore(&zone->lock, flags);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2014-06-04 23:10:17 +00:00
|
|
|
static void free_one_page(struct zone *zone,
|
|
|
|
struct page *page, unsigned long pfn,
|
2014-06-04 23:10:21 +00:00
|
|
|
unsigned int order,
|
2020-10-16 03:09:35 +00:00
|
|
|
int migratetype, fpi_t fpi_flags)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2021-06-29 02:42:00 +00:00
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&zone->lock, flags);
|
mm/page_alloc: fix incorrect isolation behavior by rechecking migratetype
Before describing bugs itself, I first explain definition of freepage.
1. pages on buddy list are counted as freepage.
2. pages on isolate migratetype buddy list are *not* counted as freepage.
3. pages on cma buddy list are counted as CMA freepage, too.
Now, I describe problems and related patch.
Patch 1: There is race conditions on getting pageblock migratetype that
it results in misplacement of freepages on buddy list, incorrect
freepage count and un-availability of freepage.
Patch 2: Freepages on pcp list could have stale cached information to
determine migratetype of buddy list to go. This causes misplacement of
freepages on buddy list and incorrect freepage count.
Patch 4: Merging between freepages on different migratetype of
pageblocks will cause freepages accouting problem. This patch fixes it.
Without patchset [3], above problem doesn't happens on my CMA allocation
test, because CMA reserved pages aren't used at all. So there is no
chance for above race.
With patchset [3], I did simple CMA allocation test and get below
result:
- Virtual machine, 4 cpus, 1024 MB memory, 256 MB CMA reservation
- run kernel build (make -j16) on background
- 30 times CMA allocation(8MB * 30 = 240MB) attempts in 5 sec interval
- Result: more than 5000 freepage count are missed
With patchset [3] and this patchset, I found that no freepage count are
missed so that I conclude that problems are solved.
On my simple memory offlining test, these problems also occur on that
environment, too.
This patch (of 4):
There are two paths to reach core free function of buddy allocator,
__free_one_page(), one is free_one_page()->__free_one_page() and the
other is free_hot_cold_page()->free_pcppages_bulk()->__free_one_page().
Each paths has race condition causing serious problems. At first, this
patch is focused on first type of freepath. And then, following patch
will solve the problem in second type of freepath.
In the first type of freepath, we got migratetype of freeing page
without holding the zone lock, so it could be racy. There are two cases
of this race.
1. pages are added to isolate buddy list after restoring orignal
migratetype
CPU1 CPU2
get migratetype => return MIGRATE_ISOLATE
call free_one_page() with MIGRATE_ISOLATE
grab the zone lock
unisolate pageblock
release the zone lock
grab the zone lock
call __free_one_page() with MIGRATE_ISOLATE
freepage go into isolate buddy list,
although pageblock is already unisolated
This may cause two problems. One is that we can't use this page anymore
until next isolation attempt of this pageblock, because freepage is on
isolate buddy list. The other is that freepage accouting could be wrong
due to merging between different buddy list. Freepages on isolate buddy
list aren't counted as freepage, but ones on normal buddy list are
counted as freepage. If merge happens, buddy freepage on normal buddy
list is inevitably moved to isolate buddy list without any consideration
of freepage accouting so it could be incorrect.
2. pages are added to normal buddy list while pageblock is isolated.
It is similar with above case.
This also may cause two problems. One is that we can't keep these
freepages from being allocated. Although this pageblock is isolated,
freepage would be added to normal buddy list so that it could be
allocated without any restriction. And the other problem is same as
case 1, that it, incorrect freepage accouting.
This race condition would be prevented by checking migratetype again
with holding the zone lock. Because it is somewhat heavy operation and
it isn't needed in common case, we want to avoid rechecking as much as
possible. So this patch introduce new variable, nr_isolate_pageblock in
struct zone to check if there is isolated pageblock. With this, we can
avoid to re-check migratetype in common case and do it only if there is
isolated pageblock or migratetype is MIGRATE_ISOLATE. This solve above
mentioned problems.
Changes from v3:
Add one more check in free_one_page() that checks whether migratetype is
MIGRATE_ISOLATE or not. Without this, abovementioned case 1 could happens.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Heesub Shin <heesub.shin@samsung.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Ritesh Harjani <ritesh.list@gmail.com>
Cc: Gioh Kim <gioh.kim@lge.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-11-13 23:19:11 +00:00
|
|
|
if (unlikely(has_isolate_pageblock(zone) ||
|
|
|
|
is_migrate_isolate(migratetype))) {
|
|
|
|
migratetype = get_pfnblock_migratetype(page, pfn);
|
|
|
|
}
|
2020-10-16 03:09:35 +00:00
|
|
|
__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
|
2021-06-29 02:42:00 +00:00
|
|
|
spin_unlock_irqrestore(&zone->lock, flags);
|
2006-01-08 09:00:42 +00:00
|
|
|
}
|
|
|
|
|
2020-10-16 03:09:35 +00:00
|
|
|
static void __free_pages_ok(struct page *page, unsigned int order,
|
|
|
|
fpi_t fpi_flags)
|
2010-05-24 21:32:38 +00:00
|
|
|
{
|
2017-04-20 21:37:43 +00:00
|
|
|
unsigned long flags;
|
2012-10-08 23:32:11 +00:00
|
|
|
int migratetype;
|
2014-06-04 23:10:17 +00:00
|
|
|
unsigned long pfn = page_to_pfn(page);
|
2021-06-29 02:41:57 +00:00
|
|
|
struct zone *zone = page_zone(page);
|
2010-05-24 21:32:38 +00:00
|
|
|
|
mm, page_alloc: reduce page alloc/free sanity checks
Historically, we have performed sanity checks on all struct pages being
allocated or freed, making sure they have no unexpected page flags or
certain field values. This can detect insufficient cleanup and some cases
of use-after-free, although on its own it can't always identify the
culprit. The result is a warning and the "bad page" being leaked.
The checks do need some cpu cycles, so in 4.7 with commits 479f854a207c
("mm, page_alloc: defer debugging checks of pages allocated from the PCP")
and 4db7548ccbd9 ("mm, page_alloc: defer debugging checks of freed pages
until a PCP drain") they were no longer performed in the hot paths when
allocating and freeing from pcplists, but only when pcplists are bypassed,
refilled or drained. For debugging purposes, with CONFIG_DEBUG_VM enabled
the checks were instead still done in the hot paths and not when refilling
or draining pcplists.
With 4462b32c9285 ("mm, page_alloc: more extensive free page checking with
debug_pagealloc"), enabling debug_pagealloc also moved the sanity checks
back to hot pahs. When both debug_pagealloc and CONFIG_DEBUG_VM are
enabled, the checks are done both in hotpaths and pcplist refill/drain.
Even though the non-debug default today might seem to be a sensible
tradeoff between overhead and ability to detect bad pages, on closer look
it's arguably not. As most allocations go through the pcplists, catching
any bad pages when refilling or draining pcplists has only a small chance,
insufficient for debugging or serious hardening purposes. On the other
hand the cost of the checks is concentrated in the already expensive
drain/refill batching operations, and those are done under the often
contended zone lock. That was recently identified as an issue for page
allocation and the zone lock contention reduced by moving the checks
outside of the locked section with a patch "mm: reduce lock contention of
pcp buffer refill", but the cost of the checks is still visible compared
to their removal [1]. In the pcplist draining path free_pcppages_bulk()
the checks are still done under zone->lock.
Thus, remove the checks from pcplist refill and drain paths completely.
Introduce a static key check_pages_enabled to control checks during page
allocation a freeing (whether pcplist is used or bypassed). The static
key is enabled if either is true:
- kernel is built with CONFIG_DEBUG_VM=y (debugging)
- debug_pagealloc or page poisoning is boot-time enabled (debugging)
- init_on_alloc or init_on_free is boot-time enabled (hardening)
The resulting user visible changes:
- no checks when draining/refilling pcplists - less overhead, with
likely no practical reduction of ability to catch bad pages
- no checks when bypassing pcplists in default config (no
debugging/hardening) - less overhead etc. as above
- on typical hardened kernels [2], checks are now performed on each page
allocation/free (previously only when bypassing/draining/refilling
pcplists) - the init_on_alloc/init_on_free enabled should be sufficient
indication for preferring more costly alloc/free operations for
hardening purposes and we shouldn't need to introduce another toggle
- code (various wrappers) removal and simplification
[1] https://lore.kernel.org/all/68ba44d8-6899-c018-dcb3-36f3a96e6bea@sra.uni-hannover.de/
[2] https://lore.kernel.org/all/63ebc499.a70a0220.9ac51.29ea@mx.google.com/
[akpm@linux-foundation.org: coding-style cleanups]
[akpm@linux-foundation.org: make check_pages_enabled static]
Link: https://lkml.kernel.org/r/20230216095131.17336-1-vbabka@suse.cz
Reported-by: Alexander Halbuer <halbuer@sra.uni-hannover.de>
Reported-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-16 09:51:31 +00:00
|
|
|
if (!free_pages_prepare(page, order, fpi_flags))
|
2010-05-24 21:32:38 +00:00
|
|
|
return;
|
|
|
|
|
2022-12-01 13:50:45 +00:00
|
|
|
/*
|
|
|
|
* Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
|
|
|
|
* is used to avoid calling get_pfnblock_migratetype() under the lock.
|
|
|
|
* This will reduce the lock holding time.
|
|
|
|
*/
|
2014-06-04 23:10:19 +00:00
|
|
|
migratetype = get_pfnblock_migratetype(page, pfn);
|
2021-06-29 02:41:41 +00:00
|
|
|
|
2021-06-29 02:41:57 +00:00
|
|
|
spin_lock_irqsave(&zone->lock, flags);
|
|
|
|
if (unlikely(has_isolate_pageblock(zone) ||
|
|
|
|
is_migrate_isolate(migratetype))) {
|
|
|
|
migratetype = get_pfnblock_migratetype(page, pfn);
|
|
|
|
}
|
|
|
|
__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
|
|
|
|
spin_unlock_irqrestore(&zone->lock, flags);
|
2021-06-29 02:42:03 +00:00
|
|
|
|
2017-04-20 21:37:43 +00:00
|
|
|
__count_vm_events(PGFREE, 1 << order);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2019-03-05 23:42:14 +00:00
|
|
|
void __free_pages_core(struct page *page, unsigned int order)
|
2006-01-06 08:11:08 +00:00
|
|
|
{
|
2012-01-10 23:08:10 +00:00
|
|
|
unsigned int nr_pages = 1 << order;
|
2013-09-11 21:20:37 +00:00
|
|
|
struct page *p = page;
|
2012-01-10 23:08:10 +00:00
|
|
|
unsigned int loop;
|
2006-01-06 08:11:08 +00:00
|
|
|
|
2020-10-16 03:09:35 +00:00
|
|
|
/*
|
|
|
|
* When initializing the memmap, __init_single_page() sets the refcount
|
|
|
|
* of all pages to 1 ("allocated"/"not free"). We have to set the
|
|
|
|
* refcount of all involved pages to 0.
|
|
|
|
*/
|
2013-09-11 21:20:37 +00:00
|
|
|
prefetchw(p);
|
|
|
|
for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
|
|
|
|
prefetchw(p + 1);
|
2012-01-10 23:08:10 +00:00
|
|
|
__ClearPageReserved(p);
|
|
|
|
set_page_count(p, 0);
|
2006-01-06 08:11:08 +00:00
|
|
|
}
|
2013-09-11 21:20:37 +00:00
|
|
|
__ClearPageReserved(p);
|
|
|
|
set_page_count(p, 0);
|
2012-01-10 23:08:10 +00:00
|
|
|
|
2018-12-28 08:34:24 +00:00
|
|
|
atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
|
2020-10-16 03:09:35 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Bypass PCP and place fresh pages right to the tail, primarily
|
|
|
|
* relevant for memory onlining.
|
|
|
|
*/
|
2023-03-10 04:29:14 +00:00
|
|
|
__free_pages_ok(page, order, FPI_TO_TAIL);
|
2006-01-06 08:11:08 +00:00
|
|
|
}
|
|
|
|
|
2016-03-15 21:57:51 +00:00
|
|
|
/*
|
|
|
|
* Check that the whole (or subset of) a pageblock given by the interval of
|
|
|
|
* [start_pfn, end_pfn) is valid and within the same zone, before scanning it
|
2021-09-08 02:54:52 +00:00
|
|
|
* with the migration of free compaction scanner.
|
2016-03-15 21:57:51 +00:00
|
|
|
*
|
|
|
|
* Return struct page pointer of start_pfn, or NULL if checks were not passed.
|
|
|
|
*
|
|
|
|
* It's possible on some configurations to have a setup like node0 node1 node0
|
|
|
|
* i.e. it's possible that all pages within a zones range of pages do not
|
|
|
|
* belong to a single zone. We assume that a border between node0 and node1
|
|
|
|
* can occur within a single pageblock, but not a node0 node1 node0
|
|
|
|
* interleaving within a single pageblock. It is therefore sufficient to check
|
|
|
|
* the first and last page of a pageblock and avoid checking each individual
|
|
|
|
* page in a pageblock.
|
mm/page_alloc: add some comments to explain the possible hole in __pageblock_pfn_to_page()
Now the __pageblock_pfn_to_page() is used by set_zone_contiguous(), which
checks whether the given zone contains holes, and uses
pfn_to_online_page() to validate if the start pfn is online and valid, as
well as using pfn_valid() to validate the end pfn.
However, the __pageblock_pfn_to_page() function may return non-NULL even
if the end pfn of a pageblock is in a memory hole in some situations. For
example, if the pageblock order is MAX_ORDER, which will fall into 2
sub-sections, and the end pfn of the pageblock may be hole even though the
start pfn is online and valid.
See below memory layout as an example and suppose the pageblock order is
MAX_ORDER.
[ 0.000000] Zone ranges:
[ 0.000000] DMA [mem 0x0000000040000000-0x00000000ffffffff]
[ 0.000000] DMA32 empty
[ 0.000000] Normal [mem 0x0000000100000000-0x0000001fa7ffffff]
[ 0.000000] Movable zone start for each node
[ 0.000000] Early memory node ranges
[ 0.000000] node 0: [mem 0x0000000040000000-0x0000001fa3c7ffff]
[ 0.000000] node 0: [mem 0x0000001fa3c80000-0x0000001fa3ffffff]
[ 0.000000] node 0: [mem 0x0000001fa4000000-0x0000001fa402ffff]
[ 0.000000] node 0: [mem 0x0000001fa4030000-0x0000001fa40effff]
[ 0.000000] node 0: [mem 0x0000001fa40f0000-0x0000001fa73cffff]
[ 0.000000] node 0: [mem 0x0000001fa73d0000-0x0000001fa745ffff]
[ 0.000000] node 0: [mem 0x0000001fa7460000-0x0000001fa746ffff]
[ 0.000000] node 0: [mem 0x0000001fa7470000-0x0000001fa758ffff]
[ 0.000000] node 0: [mem 0x0000001fa7590000-0x0000001fa7dfffff]
Focus on the last memory range, and there is a hole for the range [mem
0x0000001fa7590000-0x0000001fa7dfffff]. That means the last pageblock
will contain the range from 0x1fa7c00000 to 0x1fa7ffffff, since the
pageblock must be 4M aligned. And in this pageblock, these pfns will fall
into 2 sub-section (the sub-section size is 2M aligned).
So, the 1st sub-section (indicates pfn range: 0x1fa7c00000 - 0x1fa7dfffff
) in this pageblock is valid by calling subsection_map_init() in
free_area_init(), but the 2nd sub-section (indicates pfn range:
0x1fa7e00000 - 0x1fa7ffffff ) in this pageblock is not valid.
This did not break anything until now, but the zone continuous is fragile
in this possible scenario. So as previous discussion[1], it is better to
add some comments to explain this possible issue in case there are some
future pfn walkers that rely on this.
[1] https://lore.kernel.org/all/87r0sdsmr6.fsf@yhuang6-desk2.ccr.corp.intel.com/
Link: https://lkml.kernel.org/r/5c26368865e79c743a453dea48d30670b19d2e4f.1682425534.git.baolin.wang@linux.alibaba.com
Link: https://lkml.kernel.org/r/5c26368865e79c743a453dea48d30670b19d2e4f.1682425534.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-25 12:44:53 +00:00
|
|
|
*
|
|
|
|
* Note: the function may return non-NULL struct page even for a page block
|
|
|
|
* which contains a memory hole (i.e. there is no physical memory for a subset
|
|
|
|
* of the pfn range). For example, if the pageblock order is MAX_ORDER, which
|
|
|
|
* will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
|
|
|
|
* even though the start pfn is online and valid. This should be safe most of
|
|
|
|
* the time because struct pages are still initialized via init_unavailable_range()
|
|
|
|
* and pfn walkers shouldn't touch any physical memory range for which they do
|
|
|
|
* not recognize any specific metadata in struct pages.
|
2016-03-15 21:57:51 +00:00
|
|
|
*/
|
|
|
|
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
|
|
|
|
unsigned long end_pfn, struct zone *zone)
|
|
|
|
{
|
|
|
|
struct page *start_page;
|
|
|
|
struct page *end_page;
|
|
|
|
|
|
|
|
/* end_pfn is one past the range we are checking */
|
|
|
|
end_pfn--;
|
|
|
|
|
|
|
|
if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
|
|
|
|
return NULL;
|
|
|
|
|
2017-07-06 22:37:56 +00:00
|
|
|
start_page = pfn_to_online_page(start_pfn);
|
|
|
|
if (!start_page)
|
|
|
|
return NULL;
|
2016-03-15 21:57:51 +00:00
|
|
|
|
|
|
|
if (page_zone(start_page) != zone)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
end_page = pfn_to_page(end_pfn);
|
|
|
|
|
|
|
|
/* This gives a shorter code than deriving page_zone(end_page) */
|
|
|
|
if (page_zone_id(start_page) != page_zone_id(end_page))
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
return start_page;
|
|
|
|
}
|
|
|
|
|
|
|
|
void set_zone_contiguous(struct zone *zone)
|
|
|
|
{
|
|
|
|
unsigned long block_start_pfn = zone->zone_start_pfn;
|
|
|
|
unsigned long block_end_pfn;
|
|
|
|
|
2022-09-07 06:08:42 +00:00
|
|
|
block_end_pfn = pageblock_end_pfn(block_start_pfn);
|
2016-03-15 21:57:51 +00:00
|
|
|
for (; block_start_pfn < zone_end_pfn(zone);
|
|
|
|
block_start_pfn = block_end_pfn,
|
|
|
|
block_end_pfn += pageblock_nr_pages) {
|
|
|
|
|
|
|
|
block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
|
|
|
|
|
|
|
|
if (!__pageblock_pfn_to_page(block_start_pfn,
|
|
|
|
block_end_pfn, zone))
|
|
|
|
return;
|
2020-05-08 01:35:46 +00:00
|
|
|
cond_resched();
|
2016-03-15 21:57:51 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* We confirm that there is no hole */
|
|
|
|
zone->contiguous = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
void clear_zone_contiguous(struct zone *zone)
|
|
|
|
{
|
|
|
|
zone->contiguous = false;
|
|
|
|
}
|
|
|
|
|
mm: deferred_init_memmap improvements
Patch series "complete deferred page initialization", v12.
SMP machines can benefit from the DEFERRED_STRUCT_PAGE_INIT config
option, which defers initializing struct pages until all cpus have been
started so it can be done in parallel.
However, this feature is sub-optimal, because the deferred page
initialization code expects that the struct pages have already been
zeroed, and the zeroing is done early in boot with a single thread only.
Also, we access that memory and set flags before struct pages are
initialized. All of this is fixed in this patchset.
In this work we do the following:
- Never read access struct page until it was initialized
- Never set any fields in struct pages before they are initialized
- Zero struct page at the beginning of struct page initialization
==========================================================================
Performance improvements on x86 machine with 8 nodes:
Intel(R) Xeon(R) CPU E7-8895 v3 @ 2.60GHz and 1T of memory:
TIME SPEED UP
base no deferred: 95.796233s
fix no deferred: 79.978956s 19.77%
base deferred: 77.254713s
fix deferred: 55.050509s 40.34%
==========================================================================
SPARC M6 3600 MHz with 15T of memory
TIME SPEED UP
base no deferred: 358.335727s
fix no deferred: 302.320936s 18.52%
base deferred: 237.534603s
fix deferred: 182.103003s 30.44%
==========================================================================
Raw dmesg output with timestamps:
x86 base no deferred: https://hastebin.com/ofunepurit.scala
x86 base deferred: https://hastebin.com/ifazegeyas.scala
x86 fix no deferred: https://hastebin.com/pegocohevo.scala
x86 fix deferred: https://hastebin.com/ofupevikuk.scala
sparc base no deferred: https://hastebin.com/ibobeteken.go
sparc base deferred: https://hastebin.com/fariqimiyu.go
sparc fix no deferred: https://hastebin.com/muhegoheyi.go
sparc fix deferred: https://hastebin.com/xadinobutu.go
This patch (of 11):
deferred_init_memmap() is called when struct pages are initialized later
in boot by slave CPUs. This patch simplifies and optimizes this
function, and also fixes a couple issues (described below).
The main change is that now we are iterating through free memblock areas
instead of all configured memory. Thus, we do not have to check if the
struct page has already been initialized.
=====
In deferred_init_memmap() where all deferred struct pages are
initialized we have a check like this:
if (page->flags) {
VM_BUG_ON(page_zone(page) != zone);
goto free_range;
}
This way we are checking if the current deferred page has already been
initialized. It works, because memory for struct pages has been zeroed,
and the only way flags are not zero if it went through
__init_single_page() before. But, once we change the current behavior
and won't zero the memory in memblock allocator, we cannot trust
anything inside "struct page"es until they are initialized. This patch
fixes this.
The deferred_init_memmap() is re-written to loop through only free
memory ranges provided by memblock.
Note, this first issue is relevant only when the following change is
merged:
=====
This patch fixes another existing issue on systems that have holes in
zones i.e CONFIG_HOLES_IN_ZONE is defined.
In for_each_mem_pfn_range() we have code like this:
if (!pfn_valid_within(pfn)
goto free_range;
Note: 'page' is not set to NULL and is not incremented but 'pfn'
advances. Thus means if deferred struct pages are enabled on systems
with these kind of holes, linux would get memory corruptions. I have
fixed this issue by defining a new macro that performs all the necessary
operations when we free the current set of pages.
[pasha.tatashin@oracle.com: buddy page accessed before initialized]
Link: http://lkml.kernel.org/r/20171102170221.7401-2-pasha.tatashin@oracle.com
Link: http://lkml.kernel.org/r/20171013173214.27300-2-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Steven Sistare <steven.sistare@oracle.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reviewed-by: Bob Picco <bob.picco@oracle.com>
Tested-by: Bob Picco <bob.picco@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Sam Ravnborg <sam@ravnborg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 01:36:09 +00:00
|
|
|
/*
|
2023-03-21 17:05:02 +00:00
|
|
|
* The order of subdivision here is critical for the IO subsystem.
|
|
|
|
* Please do not alter this order without good reasons and regression
|
|
|
|
* testing. Specifically, as large blocks of memory are subdivided,
|
|
|
|
* the order in which smaller blocks are delivered depends on the order
|
|
|
|
* they're subdivided in this function. This is the primary factor
|
|
|
|
* influencing the order in which pages are delivered to the IO
|
|
|
|
* subsystem according to empirical testing, and this is also justified
|
|
|
|
* by considering the behavior of a buddy system containing a single
|
|
|
|
* large block of memory acted on by a series of small allocations.
|
|
|
|
* This behavior is a critical factor in sglist merging's success.
|
mm: split deferred_init_range into initializing and freeing parts
In deferred_init_range() we initialize struct pages, and also free them
to buddy allocator. We do it in separate loops, because buddy page is
computed ahead, so we do not want to access a struct page that has not
been initialized yet.
There is still, however, a corner case where it is potentially possible
to access uninitialized struct page: this is when buddy page is from the
next memblock range.
This patch fixes this problem by splitting deferred_init_range() into
two functions: one to initialize struct pages, and another to free them.
In addition, this patch brings the following improvements:
- Get rid of __def_free() helper function. And simplifies loop logic by
adding a new pfn validity check function: deferred_pfn_valid().
- Reduces number of variables that we track. So, there is a higher
chance that we will avoid using stack to store/load variables inside
hot loops.
- Enables future multi-threading of these functions: do initialization
in multiple threads, wait for all threads to finish, do freeing part
in multithreading.
Tested on x86 with 1T of memory to make sure no regressions are
introduced.
[akpm@linux-foundation.org: fix spello in comment]
Link: http://lkml.kernel.org/r/20171107150446.32055-2-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-01 00:16:30 +00:00
|
|
|
*
|
2023-03-21 17:05:02 +00:00
|
|
|
* -- nyc
|
mm: deferred_init_memmap improvements
Patch series "complete deferred page initialization", v12.
SMP machines can benefit from the DEFERRED_STRUCT_PAGE_INIT config
option, which defers initializing struct pages until all cpus have been
started so it can be done in parallel.
However, this feature is sub-optimal, because the deferred page
initialization code expects that the struct pages have already been
zeroed, and the zeroing is done early in boot with a single thread only.
Also, we access that memory and set flags before struct pages are
initialized. All of this is fixed in this patchset.
In this work we do the following:
- Never read access struct page until it was initialized
- Never set any fields in struct pages before they are initialized
- Zero struct page at the beginning of struct page initialization
==========================================================================
Performance improvements on x86 machine with 8 nodes:
Intel(R) Xeon(R) CPU E7-8895 v3 @ 2.60GHz and 1T of memory:
TIME SPEED UP
base no deferred: 95.796233s
fix no deferred: 79.978956s 19.77%
base deferred: 77.254713s
fix deferred: 55.050509s 40.34%
==========================================================================
SPARC M6 3600 MHz with 15T of memory
TIME SPEED UP
base no deferred: 358.335727s
fix no deferred: 302.320936s 18.52%
base deferred: 237.534603s
fix deferred: 182.103003s 30.44%
==========================================================================
Raw dmesg output with timestamps:
x86 base no deferred: https://hastebin.com/ofunepurit.scala
x86 base deferred: https://hastebin.com/ifazegeyas.scala
x86 fix no deferred: https://hastebin.com/pegocohevo.scala
x86 fix deferred: https://hastebin.com/ofupevikuk.scala
sparc base no deferred: https://hastebin.com/ibobeteken.go
sparc base deferred: https://hastebin.com/fariqimiyu.go
sparc fix no deferred: https://hastebin.com/muhegoheyi.go
sparc fix deferred: https://hastebin.com/xadinobutu.go
This patch (of 11):
deferred_init_memmap() is called when struct pages are initialized later
in boot by slave CPUs. This patch simplifies and optimizes this
function, and also fixes a couple issues (described below).
The main change is that now we are iterating through free memblock areas
instead of all configured memory. Thus, we do not have to check if the
struct page has already been initialized.
=====
In deferred_init_memmap() where all deferred struct pages are
initialized we have a check like this:
if (page->flags) {
VM_BUG_ON(page_zone(page) != zone);
goto free_range;
}
This way we are checking if the current deferred page has already been
initialized. It works, because memory for struct pages has been zeroed,
and the only way flags are not zero if it went through
__init_single_page() before. But, once we change the current behavior
and won't zero the memory in memblock allocator, we cannot trust
anything inside "struct page"es until they are initialized. This patch
fixes this.
The deferred_init_memmap() is re-written to loop through only free
memory ranges provided by memblock.
Note, this first issue is relevant only when the following change is
merged:
=====
This patch fixes another existing issue on systems that have holes in
zones i.e CONFIG_HOLES_IN_ZONE is defined.
In for_each_mem_pfn_range() we have code like this:
if (!pfn_valid_within(pfn)
goto free_range;
Note: 'page' is not set to NULL and is not incremented but 'pfn'
advances. Thus means if deferred struct pages are enabled on systems
with these kind of holes, linux would get memory corruptions. I have
fixed this issue by defining a new macro that performs all the necessary
operations when we free the current set of pages.
[pasha.tatashin@oracle.com: buddy page accessed before initialized]
Link: http://lkml.kernel.org/r/20171102170221.7401-2-pasha.tatashin@oracle.com
Link: http://lkml.kernel.org/r/20171013173214.27300-2-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Steven Sistare <steven.sistare@oracle.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reviewed-by: Bob Picco <bob.picco@oracle.com>
Tested-by: Bob Picco <bob.picco@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Sam Ravnborg <sam@ravnborg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 01:36:09 +00:00
|
|
|
*/
|
2023-03-21 17:05:02 +00:00
|
|
|
static inline void expand(struct zone *zone, struct page *page,
|
|
|
|
int low, int high, int migratetype)
|
mm: deferred_init_memmap improvements
Patch series "complete deferred page initialization", v12.
SMP machines can benefit from the DEFERRED_STRUCT_PAGE_INIT config
option, which defers initializing struct pages until all cpus have been
started so it can be done in parallel.
However, this feature is sub-optimal, because the deferred page
initialization code expects that the struct pages have already been
zeroed, and the zeroing is done early in boot with a single thread only.
Also, we access that memory and set flags before struct pages are
initialized. All of this is fixed in this patchset.
In this work we do the following:
- Never read access struct page until it was initialized
- Never set any fields in struct pages before they are initialized
- Zero struct page at the beginning of struct page initialization
==========================================================================
Performance improvements on x86 machine with 8 nodes:
Intel(R) Xeon(R) CPU E7-8895 v3 @ 2.60GHz and 1T of memory:
TIME SPEED UP
base no deferred: 95.796233s
fix no deferred: 79.978956s 19.77%
base deferred: 77.254713s
fix deferred: 55.050509s 40.34%
==========================================================================
SPARC M6 3600 MHz with 15T of memory
TIME SPEED UP
base no deferred: 358.335727s
fix no deferred: 302.320936s 18.52%
base deferred: 237.534603s
fix deferred: 182.103003s 30.44%
==========================================================================
Raw dmesg output with timestamps:
x86 base no deferred: https://hastebin.com/ofunepurit.scala
x86 base deferred: https://hastebin.com/ifazegeyas.scala
x86 fix no deferred: https://hastebin.com/pegocohevo.scala
x86 fix deferred: https://hastebin.com/ofupevikuk.scala
sparc base no deferred: https://hastebin.com/ibobeteken.go
sparc base deferred: https://hastebin.com/fariqimiyu.go
sparc fix no deferred: https://hastebin.com/muhegoheyi.go
sparc fix deferred: https://hastebin.com/xadinobutu.go
This patch (of 11):
deferred_init_memmap() is called when struct pages are initialized later
in boot by slave CPUs. This patch simplifies and optimizes this
function, and also fixes a couple issues (described below).
The main change is that now we are iterating through free memblock areas
instead of all configured memory. Thus, we do not have to check if the
struct page has already been initialized.
=====
In deferred_init_memmap() where all deferred struct pages are
initialized we have a check like this:
if (page->flags) {
VM_BUG_ON(page_zone(page) != zone);
goto free_range;
}
This way we are checking if the current deferred page has already been
initialized. It works, because memory for struct pages has been zeroed,
and the only way flags are not zero if it went through
__init_single_page() before. But, once we change the current behavior
and won't zero the memory in memblock allocator, we cannot trust
anything inside "struct page"es until they are initialized. This patch
fixes this.
The deferred_init_memmap() is re-written to loop through only free
memory ranges provided by memblock.
Note, this first issue is relevant only when the following change is
merged:
=====
This patch fixes another existing issue on systems that have holes in
zones i.e CONFIG_HOLES_IN_ZONE is defined.
In for_each_mem_pfn_range() we have code like this:
if (!pfn_valid_within(pfn)
goto free_range;
Note: 'page' is not set to NULL and is not incremented but 'pfn'
advances. Thus means if deferred struct pages are enabled on systems
with these kind of holes, linux would get memory corruptions. I have
fixed this issue by defining a new macro that performs all the necessary
operations when we free the current set of pages.
[pasha.tatashin@oracle.com: buddy page accessed before initialized]
Link: http://lkml.kernel.org/r/20171102170221.7401-2-pasha.tatashin@oracle.com
Link: http://lkml.kernel.org/r/20171013173214.27300-2-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Steven Sistare <steven.sistare@oracle.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reviewed-by: Bob Picco <bob.picco@oracle.com>
Tested-by: Bob Picco <bob.picco@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Sam Ravnborg <sam@ravnborg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 01:36:09 +00:00
|
|
|
{
|
2023-03-21 17:05:02 +00:00
|
|
|
unsigned long size = 1 << high;
|
mm: deferred_init_memmap improvements
Patch series "complete deferred page initialization", v12.
SMP machines can benefit from the DEFERRED_STRUCT_PAGE_INIT config
option, which defers initializing struct pages until all cpus have been
started so it can be done in parallel.
However, this feature is sub-optimal, because the deferred page
initialization code expects that the struct pages have already been
zeroed, and the zeroing is done early in boot with a single thread only.
Also, we access that memory and set flags before struct pages are
initialized. All of this is fixed in this patchset.
In this work we do the following:
- Never read access struct page until it was initialized
- Never set any fields in struct pages before they are initialized
- Zero struct page at the beginning of struct page initialization
==========================================================================
Performance improvements on x86 machine with 8 nodes:
Intel(R) Xeon(R) CPU E7-8895 v3 @ 2.60GHz and 1T of memory:
TIME SPEED UP
base no deferred: 95.796233s
fix no deferred: 79.978956s 19.77%
base deferred: 77.254713s
fix deferred: 55.050509s 40.34%
==========================================================================
SPARC M6 3600 MHz with 15T of memory
TIME SPEED UP
base no deferred: 358.335727s
fix no deferred: 302.320936s 18.52%
base deferred: 237.534603s
fix deferred: 182.103003s 30.44%
==========================================================================
Raw dmesg output with timestamps:
x86 base no deferred: https://hastebin.com/ofunepurit.scala
x86 base deferred: https://hastebin.com/ifazegeyas.scala
x86 fix no deferred: https://hastebin.com/pegocohevo.scala
x86 fix deferred: https://hastebin.com/ofupevikuk.scala
sparc base no deferred: https://hastebin.com/ibobeteken.go
sparc base deferred: https://hastebin.com/fariqimiyu.go
sparc fix no deferred: https://hastebin.com/muhegoheyi.go
sparc fix deferred: https://hastebin.com/xadinobutu.go
This patch (of 11):
deferred_init_memmap() is called when struct pages are initialized later
in boot by slave CPUs. This patch simplifies and optimizes this
function, and also fixes a couple issues (described below).
The main change is that now we are iterating through free memblock areas
instead of all configured memory. Thus, we do not have to check if the
struct page has already been initialized.
=====
In deferred_init_memmap() where all deferred struct pages are
initialized we have a check like this:
if (page->flags) {
VM_BUG_ON(page_zone(page) != zone);
goto free_range;
}
This way we are checking if the current deferred page has already been
initialized. It works, because memory for struct pages has been zeroed,
and the only way flags are not zero if it went through
__init_single_page() before. But, once we change the current behavior
and won't zero the memory in memblock allocator, we cannot trust
anything inside "struct page"es until they are initialized. This patch
fixes this.
The deferred_init_memmap() is re-written to loop through only free
memory ranges provided by memblock.
Note, this first issue is relevant only when the following change is
merged:
=====
This patch fixes another existing issue on systems that have holes in
zones i.e CONFIG_HOLES_IN_ZONE is defined.
In for_each_mem_pfn_range() we have code like this:
if (!pfn_valid_within(pfn)
goto free_range;
Note: 'page' is not set to NULL and is not incremented but 'pfn'
advances. Thus means if deferred struct pages are enabled on systems
with these kind of holes, linux would get memory corruptions. I have
fixed this issue by defining a new macro that performs all the necessary
operations when we free the current set of pages.
[pasha.tatashin@oracle.com: buddy page accessed before initialized]
Link: http://lkml.kernel.org/r/20171102170221.7401-2-pasha.tatashin@oracle.com
Link: http://lkml.kernel.org/r/20171013173214.27300-2-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Steven Sistare <steven.sistare@oracle.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reviewed-by: Bob Picco <bob.picco@oracle.com>
Tested-by: Bob Picco <bob.picco@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Sam Ravnborg <sam@ravnborg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 01:36:09 +00:00
|
|
|
|
2023-03-21 17:05:02 +00:00
|
|
|
while (high > low) {
|
|
|
|
high--;
|
|
|
|
size >>= 1;
|
|
|
|
VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
|
mm: deferred_init_memmap improvements
Patch series "complete deferred page initialization", v12.
SMP machines can benefit from the DEFERRED_STRUCT_PAGE_INIT config
option, which defers initializing struct pages until all cpus have been
started so it can be done in parallel.
However, this feature is sub-optimal, because the deferred page
initialization code expects that the struct pages have already been
zeroed, and the zeroing is done early in boot with a single thread only.
Also, we access that memory and set flags before struct pages are
initialized. All of this is fixed in this patchset.
In this work we do the following:
- Never read access struct page until it was initialized
- Never set any fields in struct pages before they are initialized
- Zero struct page at the beginning of struct page initialization
==========================================================================
Performance improvements on x86 machine with 8 nodes:
Intel(R) Xeon(R) CPU E7-8895 v3 @ 2.60GHz and 1T of memory:
TIME SPEED UP
base no deferred: 95.796233s
fix no deferred: 79.978956s 19.77%
base deferred: 77.254713s
fix deferred: 55.050509s 40.34%
==========================================================================
SPARC M6 3600 MHz with 15T of memory
TIME SPEED UP
base no deferred: 358.335727s
fix no deferred: 302.320936s 18.52%
base deferred: 237.534603s
fix deferred: 182.103003s 30.44%
==========================================================================
Raw dmesg output with timestamps:
x86 base no deferred: https://hastebin.com/ofunepurit.scala
x86 base deferred: https://hastebin.com/ifazegeyas.scala
x86 fix no deferred: https://hastebin.com/pegocohevo.scala
x86 fix deferred: https://hastebin.com/ofupevikuk.scala
sparc base no deferred: https://hastebin.com/ibobeteken.go
sparc base deferred: https://hastebin.com/fariqimiyu.go
sparc fix no deferred: https://hastebin.com/muhegoheyi.go
sparc fix deferred: https://hastebin.com/xadinobutu.go
This patch (of 11):
deferred_init_memmap() is called when struct pages are initialized later
in boot by slave CPUs. This patch simplifies and optimizes this
function, and also fixes a couple issues (described below).
The main change is that now we are iterating through free memblock areas
instead of all configured memory. Thus, we do not have to check if the
struct page has already been initialized.
=====
In deferred_init_memmap() where all deferred struct pages are
initialized we have a check like this:
if (page->flags) {
VM_BUG_ON(page_zone(page) != zone);
goto free_range;
}
This way we are checking if the current deferred page has already been
initialized. It works, because memory for struct pages has been zeroed,
and the only way flags are not zero if it went through
__init_single_page() before. But, once we change the current behavior
and won't zero the memory in memblock allocator, we cannot trust
anything inside "struct page"es until they are initialized. This patch
fixes this.
The deferred_init_memmap() is re-written to loop through only free
memory ranges provided by memblock.
Note, this first issue is relevant only when the following change is
merged:
=====
This patch fixes another existing issue on systems that have holes in
zones i.e CONFIG_HOLES_IN_ZONE is defined.
In for_each_mem_pfn_range() we have code like this:
if (!pfn_valid_within(pfn)
goto free_range;
Note: 'page' is not set to NULL and is not incremented but 'pfn'
advances. Thus means if deferred struct pages are enabled on systems
with these kind of holes, linux would get memory corruptions. I have
fixed this issue by defining a new macro that performs all the necessary
operations when we free the current set of pages.
[pasha.tatashin@oracle.com: buddy page accessed before initialized]
Link: http://lkml.kernel.org/r/20171102170221.7401-2-pasha.tatashin@oracle.com
Link: http://lkml.kernel.org/r/20171013173214.27300-2-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Steven Sistare <steven.sistare@oracle.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reviewed-by: Bob Picco <bob.picco@oracle.com>
Tested-by: Bob Picco <bob.picco@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Sam Ravnborg <sam@ravnborg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 01:36:09 +00:00
|
|
|
|
2023-03-21 17:05:02 +00:00
|
|
|
/*
|
|
|
|
* Mark as guard pages (or page), that will allow to
|
|
|
|
* merge back to allocator when buddy will be freed.
|
|
|
|
* Corresponding page table entries will not be touched,
|
|
|
|
* pages will stay not present in virtual address space
|
|
|
|
*/
|
|
|
|
if (set_page_guard(zone, &page[size], high, migratetype))
|
mm: deferred_init_memmap improvements
Patch series "complete deferred page initialization", v12.
SMP machines can benefit from the DEFERRED_STRUCT_PAGE_INIT config
option, which defers initializing struct pages until all cpus have been
started so it can be done in parallel.
However, this feature is sub-optimal, because the deferred page
initialization code expects that the struct pages have already been
zeroed, and the zeroing is done early in boot with a single thread only.
Also, we access that memory and set flags before struct pages are
initialized. All of this is fixed in this patchset.
In this work we do the following:
- Never read access struct page until it was initialized
- Never set any fields in struct pages before they are initialized
- Zero struct page at the beginning of struct page initialization
==========================================================================
Performance improvements on x86 machine with 8 nodes:
Intel(R) Xeon(R) CPU E7-8895 v3 @ 2.60GHz and 1T of memory:
TIME SPEED UP
base no deferred: 95.796233s
fix no deferred: 79.978956s 19.77%
base deferred: 77.254713s
fix deferred: 55.050509s 40.34%
==========================================================================
SPARC M6 3600 MHz with 15T of memory
TIME SPEED UP
base no deferred: 358.335727s
fix no deferred: 302.320936s 18.52%
base deferred: 237.534603s
fix deferred: 182.103003s 30.44%
==========================================================================
Raw dmesg output with timestamps:
x86 base no deferred: https://hastebin.com/ofunepurit.scala
x86 base deferred: https://hastebin.com/ifazegeyas.scala
x86 fix no deferred: https://hastebin.com/pegocohevo.scala
x86 fix deferred: https://hastebin.com/ofupevikuk.scala
sparc base no deferred: https://hastebin.com/ibobeteken.go
sparc base deferred: https://hastebin.com/fariqimiyu.go
sparc fix no deferred: https://hastebin.com/muhegoheyi.go
sparc fix deferred: https://hastebin.com/xadinobutu.go
This patch (of 11):
deferred_init_memmap() is called when struct pages are initialized later
in boot by slave CPUs. This patch simplifies and optimizes this
function, and also fixes a couple issues (described below).
The main change is that now we are iterating through free memblock areas
instead of all configured memory. Thus, we do not have to check if the
struct page has already been initialized.
=====
In deferred_init_memmap() where all deferred struct pages are
initialized we have a check like this:
if (page->flags) {
VM_BUG_ON(page_zone(page) != zone);
goto free_range;
}
This way we are checking if the current deferred page has already been
initialized. It works, because memory for struct pages has been zeroed,
and the only way flags are not zero if it went through
__init_single_page() before. But, once we change the current behavior
and won't zero the memory in memblock allocator, we cannot trust
anything inside "struct page"es until they are initialized. This patch
fixes this.
The deferred_init_memmap() is re-written to loop through only free
memory ranges provided by memblock.
Note, this first issue is relevant only when the following change is
merged:
=====
This patch fixes another existing issue on systems that have holes in
zones i.e CONFIG_HOLES_IN_ZONE is defined.
In for_each_mem_pfn_range() we have code like this:
if (!pfn_valid_within(pfn)
goto free_range;
Note: 'page' is not set to NULL and is not incremented but 'pfn'
advances. Thus means if deferred struct pages are enabled on systems
with these kind of holes, linux would get memory corruptions. I have
fixed this issue by defining a new macro that performs all the necessary
operations when we free the current set of pages.
[pasha.tatashin@oracle.com: buddy page accessed before initialized]
Link: http://lkml.kernel.org/r/20171102170221.7401-2-pasha.tatashin@oracle.com
Link: http://lkml.kernel.org/r/20171013173214.27300-2-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Steven Sistare <steven.sistare@oracle.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reviewed-by: Bob Picco <bob.picco@oracle.com>
Tested-by: Bob Picco <bob.picco@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Sam Ravnborg <sam@ravnborg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 01:36:09 +00:00
|
|
|
continue;
|
2023-03-21 17:05:02 +00:00
|
|
|
|
|
|
|
add_to_free_list(&page[size], zone, high, migratetype);
|
|
|
|
set_buddy_order(&page[size], high);
|
mm: deferred_init_memmap improvements
Patch series "complete deferred page initialization", v12.
SMP machines can benefit from the DEFERRED_STRUCT_PAGE_INIT config
option, which defers initializing struct pages until all cpus have been
started so it can be done in parallel.
However, this feature is sub-optimal, because the deferred page
initialization code expects that the struct pages have already been
zeroed, and the zeroing is done early in boot with a single thread only.
Also, we access that memory and set flags before struct pages are
initialized. All of this is fixed in this patchset.
In this work we do the following:
- Never read access struct page until it was initialized
- Never set any fields in struct pages before they are initialized
- Zero struct page at the beginning of struct page initialization
==========================================================================
Performance improvements on x86 machine with 8 nodes:
Intel(R) Xeon(R) CPU E7-8895 v3 @ 2.60GHz and 1T of memory:
TIME SPEED UP
base no deferred: 95.796233s
fix no deferred: 79.978956s 19.77%
base deferred: 77.254713s
fix deferred: 55.050509s 40.34%
==========================================================================
SPARC M6 3600 MHz with 15T of memory
TIME SPEED UP
base no deferred: 358.335727s
fix no deferred: 302.320936s 18.52%
base deferred: 237.534603s
fix deferred: 182.103003s 30.44%
==========================================================================
Raw dmesg output with timestamps:
x86 base no deferred: https://hastebin.com/ofunepurit.scala
x86 base deferred: https://hastebin.com/ifazegeyas.scala
x86 fix no deferred: https://hastebin.com/pegocohevo.scala
x86 fix deferred: https://hastebin.com/ofupevikuk.scala
sparc base no deferred: https://hastebin.com/ibobeteken.go
sparc base deferred: https://hastebin.com/fariqimiyu.go
sparc fix no deferred: https://hastebin.com/muhegoheyi.go
sparc fix deferred: https://hastebin.com/xadinobutu.go
This patch (of 11):
deferred_init_memmap() is called when struct pages are initialized later
in boot by slave CPUs. This patch simplifies and optimizes this
function, and also fixes a couple issues (described below).
The main change is that now we are iterating through free memblock areas
instead of all configured memory. Thus, we do not have to check if the
struct page has already been initialized.
=====
In deferred_init_memmap() where all deferred struct pages are
initialized we have a check like this:
if (page->flags) {
VM_BUG_ON(page_zone(page) != zone);
goto free_range;
}
This way we are checking if the current deferred page has already been
initialized. It works, because memory for struct pages has been zeroed,
and the only way flags are not zero if it went through
__init_single_page() before. But, once we change the current behavior
and won't zero the memory in memblock allocator, we cannot trust
anything inside "struct page"es until they are initialized. This patch
fixes this.
The deferred_init_memmap() is re-written to loop through only free
memory ranges provided by memblock.
Note, this first issue is relevant only when the following change is
merged:
=====
This patch fixes another existing issue on systems that have holes in
zones i.e CONFIG_HOLES_IN_ZONE is defined.
In for_each_mem_pfn_range() we have code like this:
if (!pfn_valid_within(pfn)
goto free_range;
Note: 'page' is not set to NULL and is not incremented but 'pfn'
advances. Thus means if deferred struct pages are enabled on systems
with these kind of holes, linux would get memory corruptions. I have
fixed this issue by defining a new macro that performs all the necessary
operations when we free the current set of pages.
[pasha.tatashin@oracle.com: buddy page accessed before initialized]
Link: http://lkml.kernel.org/r/20171102170221.7401-2-pasha.tatashin@oracle.com
Link: http://lkml.kernel.org/r/20171013173214.27300-2-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Steven Sistare <steven.sistare@oracle.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reviewed-by: Bob Picco <bob.picco@oracle.com>
Tested-by: Bob Picco <bob.picco@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Sam Ravnborg <sam@ravnborg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 01:36:09 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-03-21 17:05:02 +00:00
|
|
|
static void check_new_page_bad(struct page *page)
|
2019-05-14 00:21:20 +00:00
|
|
|
{
|
2023-03-21 17:05:02 +00:00
|
|
|
if (unlikely(page->flags & __PG_HWPOISON)) {
|
|
|
|
/* Don't complain about hwpoisoned pages */
|
|
|
|
page_mapcount_reset(page); /* remove PageBuddy */
|
|
|
|
return;
|
2019-05-14 00:21:20 +00:00
|
|
|
}
|
|
|
|
|
2023-03-21 17:05:02 +00:00
|
|
|
bad_page(page,
|
|
|
|
page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
|
2019-05-14 00:21:20 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2023-03-21 17:05:02 +00:00
|
|
|
* This page is about to be returned from the page allocator
|
2019-05-14 00:21:20 +00:00
|
|
|
*/
|
2023-03-21 17:05:02 +00:00
|
|
|
static int check_new_page(struct page *page)
|
2019-05-14 00:21:20 +00:00
|
|
|
{
|
2023-03-21 17:05:02 +00:00
|
|
|
if (likely(page_expected_state(page,
|
|
|
|
PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
|
|
|
|
return 0;
|
2019-05-14 00:21:20 +00:00
|
|
|
|
2023-03-21 17:05:02 +00:00
|
|
|
check_new_page_bad(page);
|
|
|
|
return 1;
|
|
|
|
}
|
2019-05-14 00:21:20 +00:00
|
|
|
|
2023-03-21 17:05:02 +00:00
|
|
|
static inline bool check_new_pages(struct page *page, unsigned int order)
|
|
|
|
{
|
|
|
|
if (is_check_pages_enabled()) {
|
|
|
|
for (int i = 0; i < (1 << order); i++) {
|
|
|
|
struct page *p = page + i;
|
2019-05-14 00:21:20 +00:00
|
|
|
|
2023-04-05 14:28:40 +00:00
|
|
|
if (check_new_page(p))
|
2023-03-21 17:05:02 +00:00
|
|
|
return true;
|
2019-05-14 00:21:20 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-03-21 17:05:02 +00:00
|
|
|
return false;
|
2019-05-14 00:21:20 +00:00
|
|
|
}
|
|
|
|
|
2023-03-21 17:05:02 +00:00
|
|
|
static inline bool should_skip_kasan_unpoison(gfp_t flags)
|
mm: parallelize deferred_init_memmap()
Deferred struct page init is a significant bottleneck in kernel boot.
Optimizing it maximizes availability for large-memory systems and allows
spinning up short-lived VMs as needed without having to leave them
running. It also benefits bare metal machines hosting VMs that are
sensitive to downtime. In projects such as VMM Fast Restart[1], where
guest state is preserved across kexec reboot, it helps prevent application
and network timeouts in the guests.
Multithread to take full advantage of system memory bandwidth.
The maximum number of threads is capped at the number of CPUs on the node
because speedups always improve with additional threads on every system
tested, and at this phase of boot, the system is otherwise idle and
waiting on page init to finish.
Helper threads operate on section-aligned ranges to both avoid false
sharing when setting the pageblock's migrate type and to avoid accessing
uninitialized buddy pages, though max order alignment is enough for the
latter.
The minimum chunk size is also a section. There was benefit to using
multiple threads even on relatively small memory (1G) systems, and this is
the smallest size that the alignment allows.
The time (milliseconds) is the slowest node to initialize since boot
blocks until all nodes finish. intel_pstate is loaded in active mode
without hwp and with turbo enabled, and intel_idle is active as well.
Intel(R) Xeon(R) Platinum 8167M CPU @ 2.00GHz (Skylake, bare metal)
2 nodes * 26 cores * 2 threads = 104 CPUs
384G/node = 768G memory
kernel boot deferred init
------------------------ ------------------------
node% (thr) speedup time_ms (stdev) speedup time_ms (stdev)
( 0) -- 4089.7 ( 8.1) -- 1785.7 ( 7.6)
2% ( 1) 1.7% 4019.3 ( 1.5) 3.8% 1717.7 ( 11.8)
12% ( 6) 34.9% 2662.7 ( 2.9) 79.9% 359.3 ( 0.6)
25% ( 13) 39.9% 2459.0 ( 3.6) 91.2% 157.0 ( 0.0)
37% ( 19) 39.2% 2485.0 ( 29.7) 90.4% 172.0 ( 28.6)
50% ( 26) 39.3% 2482.7 ( 25.7) 90.3% 173.7 ( 30.0)
75% ( 39) 39.0% 2495.7 ( 5.5) 89.4% 190.0 ( 1.0)
100% ( 52) 40.2% 2443.7 ( 3.8) 92.3% 138.0 ( 1.0)
Intel(R) Xeon(R) CPU E5-2699C v4 @ 2.20GHz (Broadwell, kvm guest)
1 node * 16 cores * 2 threads = 32 CPUs
192G/node = 192G memory
kernel boot deferred init
------------------------ ------------------------
node% (thr) speedup time_ms (stdev) speedup time_ms (stdev)
( 0) -- 1988.7 ( 9.6) -- 1096.0 ( 11.5)
3% ( 1) 1.1% 1967.0 ( 17.6) 0.3% 1092.7 ( 11.0)
12% ( 4) 41.1% 1170.3 ( 14.2) 73.8% 287.0 ( 3.6)
25% ( 8) 47.1% 1052.7 ( 21.9) 83.9% 177.0 ( 13.5)
38% ( 12) 48.9% 1016.3 ( 12.1) 86.8% 144.7 ( 1.5)
50% ( 16) 48.9% 1015.7 ( 8.1) 87.8% 134.0 ( 4.4)
75% ( 24) 49.1% 1012.3 ( 3.1) 88.1% 130.3 ( 2.3)
100% ( 32) 49.5% 1004.0 ( 5.3) 88.5% 125.7 ( 2.1)
Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz (Haswell, bare metal)
2 nodes * 18 cores * 2 threads = 72 CPUs
128G/node = 256G memory
kernel boot deferred init
------------------------ ------------------------
node% (thr) speedup time_ms (stdev) speedup time_ms (stdev)
( 0) -- 1680.0 ( 4.6) -- 627.0 ( 4.0)
3% ( 1) 0.3% 1675.7 ( 4.5) -0.2% 628.0 ( 3.6)
11% ( 4) 25.6% 1250.7 ( 2.1) 67.9% 201.0 ( 0.0)
25% ( 9) 30.7% 1164.0 ( 17.3) 81.8% 114.3 ( 17.7)
36% ( 13) 31.4% 1152.7 ( 10.8) 84.0% 100.3 ( 17.9)
50% ( 18) 31.5% 1150.7 ( 9.3) 83.9% 101.0 ( 14.1)
75% ( 27) 31.7% 1148.0 ( 5.6) 84.5% 97.3 ( 6.4)
100% ( 36) 32.0% 1142.3 ( 4.0) 85.6% 90.0 ( 1.0)
AMD EPYC 7551 32-Core Processor (Zen, kvm guest)
1 node * 8 cores * 2 threads = 16 CPUs
64G/node = 64G memory
kernel boot deferred init
------------------------ ------------------------
node% (thr) speedup time_ms (stdev) speedup time_ms (stdev)
( 0) -- 1029.3 ( 25.1) -- 240.7 ( 1.5)
6% ( 1) -0.6% 1036.0 ( 7.8) -2.2% 246.0 ( 0.0)
12% ( 2) 11.8% 907.7 ( 8.6) 44.7% 133.0 ( 1.0)
25% ( 4) 13.9% 886.0 ( 10.6) 62.6% 90.0 ( 6.0)
38% ( 6) 17.8% 845.7 ( 14.2) 69.1% 74.3 ( 3.8)
50% ( 8) 16.8% 856.0 ( 22.1) 72.9% 65.3 ( 5.7)
75% ( 12) 15.4% 871.0 ( 29.2) 79.8% 48.7 ( 7.4)
100% ( 16) 21.0% 813.7 ( 21.0) 80.5% 47.0 ( 5.2)
Server-oriented distros that enable deferred page init sometimes run in
small VMs, and they still benefit even though the fraction of boot time
saved is smaller:
AMD EPYC 7551 32-Core Processor (Zen, kvm guest)
1 node * 2 cores * 2 threads = 4 CPUs
16G/node = 16G memory
kernel boot deferred init
------------------------ ------------------------
node% (thr) speedup time_ms (stdev) speedup time_ms (stdev)
( 0) -- 716.0 ( 14.0) -- 49.7 ( 0.6)
25% ( 1) 1.8% 703.0 ( 5.3) -4.0% 51.7 ( 0.6)
50% ( 2) 1.6% 704.7 ( 1.2) 43.0% 28.3 ( 0.6)
75% ( 3) 2.7% 696.7 ( 13.1) 49.7% 25.0 ( 0.0)
100% ( 4) 4.1% 687.0 ( 10.4) 55.7% 22.0 ( 0.0)
Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz (Haswell, kvm guest)
1 node * 2 cores * 2 threads = 4 CPUs
14G/node = 14G memory
kernel boot deferred init
------------------------ ------------------------
node% (thr) speedup time_ms (stdev) speedup time_ms (stdev)
( 0) -- 787.7 ( 6.4) -- 122.3 ( 0.6)
25% ( 1) 0.2% 786.3 ( 10.8) -2.5% 125.3 ( 2.1)
50% ( 2) 5.9% 741.0 ( 13.9) 37.6% 76.3 ( 19.7)
75% ( 3) 8.3% 722.0 ( 19.0) 49.9% 61.3 ( 3.2)
100% ( 4) 9.3% 714.7 ( 9.5) 56.4% 53.3 ( 1.5)
On Josh's 96-CPU and 192G memory system:
Without this patch series:
[ 0.487132] node 0 initialised, 23398907 pages in 292ms
[ 0.499132] node 1 initialised, 24189223 pages in 304ms
...
[ 0.629376] Run /sbin/init as init process
With this patch series:
[ 0.231435] node 1 initialised, 24189223 pages in 32ms
[ 0.236718] node 0 initialised, 23398907 pages in 36ms
[1] https://static.sched.com/hosted_files/kvmforum2019/66/VMM-fast-restart_kvmforum2019.pdf
Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Josh Triplett <josh@joshtriplett.org>
Reviewed-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Robert Elliott <elliott@hpe.com>
Cc: Shile Zhang <shile.zhang@linux.alibaba.com>
Cc: Steffen Klassert <steffen.klassert@secunet.com>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Zi Yan <ziy@nvidia.com>
Link: http://lkml.kernel.org/r/20200527173608.2885243-7-daniel.m.jordan@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 22:59:51 +00:00
|
|
|
{
|
2023-03-21 17:05:02 +00:00
|
|
|
/* Don't skip if a software KASAN mode is enabled. */
|
|
|
|
if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
|
|
|
|
IS_ENABLED(CONFIG_KASAN_SW_TAGS))
|
|
|
|
return false;
|
mm: parallelize deferred_init_memmap()
Deferred struct page init is a significant bottleneck in kernel boot.
Optimizing it maximizes availability for large-memory systems and allows
spinning up short-lived VMs as needed without having to leave them
running. It also benefits bare metal machines hosting VMs that are
sensitive to downtime. In projects such as VMM Fast Restart[1], where
guest state is preserved across kexec reboot, it helps prevent application
and network timeouts in the guests.
Multithread to take full advantage of system memory bandwidth.
The maximum number of threads is capped at the number of CPUs on the node
because speedups always improve with additional threads on every system
tested, and at this phase of boot, the system is otherwise idle and
waiting on page init to finish.
Helper threads operate on section-aligned ranges to both avoid false
sharing when setting the pageblock's migrate type and to avoid accessing
uninitialized buddy pages, though max order alignment is enough for the
latter.
The minimum chunk size is also a section. There was benefit to using
multiple threads even on relatively small memory (1G) systems, and this is
the smallest size that the alignment allows.
The time (milliseconds) is the slowest node to initialize since boot
blocks until all nodes finish. intel_pstate is loaded in active mode
without hwp and with turbo enabled, and intel_idle is active as well.
Intel(R) Xeon(R) Platinum 8167M CPU @ 2.00GHz (Skylake, bare metal)
2 nodes * 26 cores * 2 threads = 104 CPUs
384G/node = 768G memory
kernel boot deferred init
------------------------ ------------------------
node% (thr) speedup time_ms (stdev) speedup time_ms (stdev)
( 0) -- 4089.7 ( 8.1) -- 1785.7 ( 7.6)
2% ( 1) 1.7% 4019.3 ( 1.5) 3.8% 1717.7 ( 11.8)
12% ( 6) 34.9% 2662.7 ( 2.9) 79.9% 359.3 ( 0.6)
25% ( 13) 39.9% 2459.0 ( 3.6) 91.2% 157.0 ( 0.0)
37% ( 19) 39.2% 2485.0 ( 29.7) 90.4% 172.0 ( 28.6)
50% ( 26) 39.3% 2482.7 ( 25.7) 90.3% 173.7 ( 30.0)
75% ( 39) 39.0% 2495.7 ( 5.5) 89.4% 190.0 ( 1.0)
100% ( 52) 40.2% 2443.7 ( 3.8) 92.3% 138.0 ( 1.0)
Intel(R) Xeon(R) CPU E5-2699C v4 @ 2.20GHz (Broadwell, kvm guest)
1 node * 16 cores * 2 threads = 32 CPUs
192G/node = 192G memory
kernel boot deferred init
------------------------ ------------------------
node% (thr) speedup time_ms (stdev) speedup time_ms (stdev)
( 0) -- 1988.7 ( 9.6) -- 1096.0 ( 11.5)
3% ( 1) 1.1% 1967.0 ( 17.6) 0.3% 1092.7 ( 11.0)
12% ( 4) 41.1% 1170.3 ( 14.2) 73.8% 287.0 ( 3.6)
25% ( 8) 47.1% 1052.7 ( 21.9) 83.9% 177.0 ( 13.5)
38% ( 12) 48.9% 1016.3 ( 12.1) 86.8% 144.7 ( 1.5)
50% ( 16) 48.9% 1015.7 ( 8.1) 87.8% 134.0 ( 4.4)
75% ( 24) 49.1% 1012.3 ( 3.1) 88.1% 130.3 ( 2.3)
100% ( 32) 49.5% 1004.0 ( 5.3) 88.5% 125.7 ( 2.1)
Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz (Haswell, bare metal)
2 nodes * 18 cores * 2 threads = 72 CPUs
128G/node = 256G memory
kernel boot deferred init
------------------------ ------------------------
node% (thr) speedup time_ms (stdev) speedup time_ms (stdev)
( 0) -- 1680.0 ( 4.6) -- 627.0 ( 4.0)
3% ( 1) 0.3% 1675.7 ( 4.5) -0.2% 628.0 ( 3.6)
11% ( 4) 25.6% 1250.7 ( 2.1) 67.9% 201.0 ( 0.0)
25% ( 9) 30.7% 1164.0 ( 17.3) 81.8% 114.3 ( 17.7)
36% ( 13) 31.4% 1152.7 ( 10.8) 84.0% 100.3 ( 17.9)
50% ( 18) 31.5% 1150.7 ( 9.3) 83.9% 101.0 ( 14.1)
75% ( 27) 31.7% 1148.0 ( 5.6) 84.5% 97.3 ( 6.4)
100% ( 36) 32.0% 1142.3 ( 4.0) 85.6% 90.0 ( 1.0)
AMD EPYC 7551 32-Core Processor (Zen, kvm guest)
1 node * 8 cores * 2 threads = 16 CPUs
64G/node = 64G memory
kernel boot deferred init
------------------------ ------------------------
node% (thr) speedup time_ms (stdev) speedup time_ms (stdev)
( 0) -- 1029.3 ( 25.1) -- 240.7 ( 1.5)
6% ( 1) -0.6% 1036.0 ( 7.8) -2.2% 246.0 ( 0.0)
12% ( 2) 11.8% 907.7 ( 8.6) 44.7% 133.0 ( 1.0)
25% ( 4) 13.9% 886.0 ( 10.6) 62.6% 90.0 ( 6.0)
38% ( 6) 17.8% 845.7 ( 14.2) 69.1% 74.3 ( 3.8)
50% ( 8) 16.8% 856.0 ( 22.1) 72.9% 65.3 ( 5.7)
75% ( 12) 15.4% 871.0 ( 29.2) 79.8% 48.7 ( 7.4)
100% ( 16) 21.0% 813.7 ( 21.0) 80.5% 47.0 ( 5.2)
Server-oriented distros that enable deferred page init sometimes run in
small VMs, and they still benefit even though the fraction of boot time
saved is smaller:
AMD EPYC 7551 32-Core Processor (Zen, kvm guest)
1 node * 2 cores * 2 threads = 4 CPUs
16G/node = 16G memory
kernel boot deferred init
------------------------ ------------------------
node% (thr) speedup time_ms (stdev) speedup time_ms (stdev)
( 0) -- 716.0 ( 14.0) -- 49.7 ( 0.6)
25% ( 1) 1.8% 703.0 ( 5.3) -4.0% 51.7 ( 0.6)
50% ( 2) 1.6% 704.7 ( 1.2) 43.0% 28.3 ( 0.6)
75% ( 3) 2.7% 696.7 ( 13.1) 49.7% 25.0 ( 0.0)
100% ( 4) 4.1% 687.0 ( 10.4) 55.7% 22.0 ( 0.0)
Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz (Haswell, kvm guest)
1 node * 2 cores * 2 threads = 4 CPUs
14G/node = 14G memory
kernel boot deferred init
------------------------ ------------------------
node% (thr) speedup time_ms (stdev) speedup time_ms (stdev)
( 0) -- 787.7 ( 6.4) -- 122.3 ( 0.6)
25% ( 1) 0.2% 786.3 ( 10.8) -2.5% 125.3 ( 2.1)
50% ( 2) 5.9% 741.0 ( 13.9) 37.6% 76.3 ( 19.7)
75% ( 3) 8.3% 722.0 ( 19.0) 49.9% 61.3 ( 3.2)
100% ( 4) 9.3% 714.7 ( 9.5) 56.4% 53.3 ( 1.5)
On Josh's 96-CPU and 192G memory system:
Without this patch series:
[ 0.487132] node 0 initialised, 23398907 pages in 292ms
[ 0.499132] node 1 initialised, 24189223 pages in 304ms
...
[ 0.629376] Run /sbin/init as init process
With this patch series:
[ 0.231435] node 1 initialised, 24189223 pages in 32ms
[ 0.236718] node 0 initialised, 23398907 pages in 36ms
[1] https://static.sched.com/hosted_files/kvmforum2019/66/VMM-fast-restart_kvmforum2019.pdf
Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Josh Triplett <josh@joshtriplett.org>
Reviewed-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Robert Elliott <elliott@hpe.com>
Cc: Shile Zhang <shile.zhang@linux.alibaba.com>
Cc: Steffen Klassert <steffen.klassert@secunet.com>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Zi Yan <ziy@nvidia.com>
Link: http://lkml.kernel.org/r/20200527173608.2885243-7-daniel.m.jordan@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 22:59:51 +00:00
|
|
|
|
2023-03-21 17:05:02 +00:00
|
|
|
/* Skip, if hardware tag-based KASAN is not enabled. */
|
|
|
|
if (!kasan_hw_tags_enabled())
|
|
|
|
return true;
|
mm: parallelize deferred_init_memmap()
Deferred struct page init is a significant bottleneck in kernel boot.
Optimizing it maximizes availability for large-memory systems and allows
spinning up short-lived VMs as needed without having to leave them
running. It also benefits bare metal machines hosting VMs that are
sensitive to downtime. In projects such as VMM Fast Restart[1], where
guest state is preserved across kexec reboot, it helps prevent application
and network timeouts in the guests.
Multithread to take full advantage of system memory bandwidth.
The maximum number of threads is capped at the number of CPUs on the node
because speedups always improve with additional threads on every system
tested, and at this phase of boot, the system is otherwise idle and
waiting on page init to finish.
Helper threads operate on section-aligned ranges to both avoid false
sharing when setting the pageblock's migrate type and to avoid accessing
uninitialized buddy pages, though max order alignment is enough for the
latter.
The minimum chunk size is also a section. There was benefit to using
multiple threads even on relatively small memory (1G) systems, and this is
the smallest size that the alignment allows.
The time (milliseconds) is the slowest node to initialize since boot
blocks until all nodes finish. intel_pstate is loaded in active mode
without hwp and with turbo enabled, and intel_idle is active as well.
Intel(R) Xeon(R) Platinum 8167M CPU @ 2.00GHz (Skylake, bare metal)
2 nodes * 26 cores * 2 threads = 104 CPUs
384G/node = 768G memory
kernel boot deferred init
------------------------ ------------------------
node% (thr) speedup time_ms (stdev) speedup time_ms (stdev)
( 0) -- 4089.7 ( 8.1) -- 1785.7 ( 7.6)
2% ( 1) 1.7% 4019.3 ( 1.5) 3.8% 1717.7 ( 11.8)
12% ( 6) 34.9% 2662.7 ( 2.9) 79.9% 359.3 ( 0.6)
25% ( 13) 39.9% 2459.0 ( 3.6) 91.2% 157.0 ( 0.0)
37% ( 19) 39.2% 2485.0 ( 29.7) 90.4% 172.0 ( 28.6)
50% ( 26) 39.3% 2482.7 ( 25.7) 90.3% 173.7 ( 30.0)
75% ( 39) 39.0% 2495.7 ( 5.5) 89.4% 190.0 ( 1.0)
100% ( 52) 40.2% 2443.7 ( 3.8) 92.3% 138.0 ( 1.0)
Intel(R) Xeon(R) CPU E5-2699C v4 @ 2.20GHz (Broadwell, kvm guest)
1 node * 16 cores * 2 threads = 32 CPUs
192G/node = 192G memory
kernel boot deferred init
------------------------ ------------------------
node% (thr) speedup time_ms (stdev) speedup time_ms (stdev)
( 0) -- 1988.7 ( 9.6) -- 1096.0 ( 11.5)
3% ( 1) 1.1% 1967.0 ( 17.6) 0.3% 1092.7 ( 11.0)
12% ( 4) 41.1% 1170.3 ( 14.2) 73.8% 287.0 ( 3.6)
25% ( 8) 47.1% 1052.7 ( 21.9) 83.9% 177.0 ( 13.5)
38% ( 12) 48.9% 1016.3 ( 12.1) 86.8% 144.7 ( 1.5)
50% ( 16) 48.9% 1015.7 ( 8.1) 87.8% 134.0 ( 4.4)
75% ( 24) 49.1% 1012.3 ( 3.1) 88.1% 130.3 ( 2.3)
100% ( 32) 49.5% 1004.0 ( 5.3) 88.5% 125.7 ( 2.1)
Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz (Haswell, bare metal)
2 nodes * 18 cores * 2 threads = 72 CPUs
128G/node = 256G memory
kernel boot deferred init
------------------------ ------------------------
node% (thr) speedup time_ms (stdev) speedup time_ms (stdev)
( 0) -- 1680.0 ( 4.6) -- 627.0 ( 4.0)
3% ( 1) 0.3% 1675.7 ( 4.5) -0.2% 628.0 ( 3.6)
11% ( 4) 25.6% 1250.7 ( 2.1) 67.9% 201.0 ( 0.0)
25% ( 9) 30.7% 1164.0 ( 17.3) 81.8% 114.3 ( 17.7)
36% ( 13) 31.4% 1152.7 ( 10.8) 84.0% 100.3 ( 17.9)
50% ( 18) 31.5% 1150.7 ( 9.3) 83.9% 101.0 ( 14.1)
75% ( 27) 31.7% 1148.0 ( 5.6) 84.5% 97.3 ( 6.4)
100% ( 36) 32.0% 1142.3 ( 4.0) 85.6% 90.0 ( 1.0)
AMD EPYC 7551 32-Core Processor (Zen, kvm guest)
1 node * 8 cores * 2 threads = 16 CPUs
64G/node = 64G memory
kernel boot deferred init
------------------------ ------------------------
node% (thr) speedup time_ms (stdev) speedup time_ms (stdev)
( 0) -- 1029.3 ( 25.1) -- 240.7 ( 1.5)
6% ( 1) -0.6% 1036.0 ( 7.8) -2.2% 246.0 ( 0.0)
12% ( 2) 11.8% 907.7 ( 8.6) 44.7% 133.0 ( 1.0)
25% ( 4) 13.9% 886.0 ( 10.6) 62.6% 90.0 ( 6.0)
38% ( 6) 17.8% 845.7 ( 14.2) 69.1% 74.3 ( 3.8)
50% ( 8) 16.8% 856.0 ( 22.1) 72.9% 65.3 ( 5.7)
75% ( 12) 15.4% 871.0 ( 29.2) 79.8% 48.7 ( 7.4)
100% ( 16) 21.0% 813.7 ( 21.0) 80.5% 47.0 ( 5.2)
Server-oriented distros that enable deferred page init sometimes run in
small VMs, and they still benefit even though the fraction of boot time
saved is smaller:
AMD EPYC 7551 32-Core Processor (Zen, kvm guest)
1 node * 2 cores * 2 threads = 4 CPUs
16G/node = 16G memory
kernel boot deferred init
------------------------ ------------------------
node% (thr) speedup time_ms (stdev) speedup time_ms (stdev)
( 0) -- 716.0 ( 14.0) -- 49.7 ( 0.6)
25% ( 1) 1.8% 703.0 ( 5.3) -4.0% 51.7 ( 0.6)
50% ( 2) 1.6% 704.7 ( 1.2) 43.0% 28.3 ( 0.6)
75% ( 3) 2.7% 696.7 ( 13.1) 49.7% 25.0 ( 0.0)
100% ( 4) 4.1% 687.0 ( 10.4) 55.7% 22.0 ( 0.0)
Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz (Haswell, kvm guest)
1 node * 2 cores * 2 threads = 4 CPUs
14G/node = 14G memory
kernel boot deferred init
------------------------ ------------------------
node% (thr) speedup time_ms (stdev) speedup time_ms (stdev)
( 0) -- 787.7 ( 6.4) -- 122.3 ( 0.6)
25% ( 1) 0.2% 786.3 ( 10.8) -2.5% 125.3 ( 2.1)
50% ( 2) 5.9% 741.0 ( 13.9) 37.6% 76.3 ( 19.7)
75% ( 3) 8.3% 722.0 ( 19.0) 49.9% 61.3 ( 3.2)
100% ( 4) 9.3% 714.7 ( 9.5) 56.4% 53.3 ( 1.5)
On Josh's 96-CPU and 192G memory system:
Without this patch series:
[ 0.487132] node 0 initialised, 23398907 pages in 292ms
[ 0.499132] node 1 initialised, 24189223 pages in 304ms
...
[ 0.629376] Run /sbin/init as init process
With this patch series:
[ 0.231435] node 1 initialised, 24189223 pages in 32ms
[ 0.236718] node 0 initialised, 23398907 pages in 36ms
[1] https://static.sched.com/hosted_files/kvmforum2019/66/VMM-fast-restart_kvmforum2019.pdf
Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Josh Triplett <josh@joshtriplett.org>
Reviewed-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Robert Elliott <elliott@hpe.com>
Cc: Shile Zhang <shile.zhang@linux.alibaba.com>
Cc: Steffen Klassert <steffen.klassert@secunet.com>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Zi Yan <ziy@nvidia.com>
Link: http://lkml.kernel.org/r/20200527173608.2885243-7-daniel.m.jordan@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 22:59:51 +00:00
|
|
|
|
|
|
|
/*
|
2023-03-21 17:05:02 +00:00
|
|
|
* With hardware tag-based KASAN enabled, skip if this has been
|
|
|
|
* requested via __GFP_SKIP_KASAN.
|
mm: parallelize deferred_init_memmap()
Deferred struct page init is a significant bottleneck in kernel boot.
Optimizing it maximizes availability for large-memory systems and allows
spinning up short-lived VMs as needed without having to leave them
running. It also benefits bare metal machines hosting VMs that are
sensitive to downtime. In projects such as VMM Fast Restart[1], where
guest state is preserved across kexec reboot, it helps prevent application
and network timeouts in the guests.
Multithread to take full advantage of system memory bandwidth.
The maximum number of threads is capped at the number of CPUs on the node
because speedups always improve with additional threads on every system
tested, and at this phase of boot, the system is otherwise idle and
waiting on page init to finish.
Helper threads operate on section-aligned ranges to both avoid false
sharing when setting the pageblock's migrate type and to avoid accessing
uninitialized buddy pages, though max order alignment is enough for the
latter.
The minimum chunk size is also a section. There was benefit to using
multiple threads even on relatively small memory (1G) systems, and this is
the smallest size that the alignment allows.
The time (milliseconds) is the slowest node to initialize since boot
blocks until all nodes finish. intel_pstate is loaded in active mode
without hwp and with turbo enabled, and intel_idle is active as well.
Intel(R) Xeon(R) Platinum 8167M CPU @ 2.00GHz (Skylake, bare metal)
2 nodes * 26 cores * 2 threads = 104 CPUs
384G/node = 768G memory
kernel boot deferred init
------------------------ ------------------------
node% (thr) speedup time_ms (stdev) speedup time_ms (stdev)
( 0) -- 4089.7 ( 8.1) -- 1785.7 ( 7.6)
2% ( 1) 1.7% 4019.3 ( 1.5) 3.8% 1717.7 ( 11.8)
12% ( 6) 34.9% 2662.7 ( 2.9) 79.9% 359.3 ( 0.6)
25% ( 13) 39.9% 2459.0 ( 3.6) 91.2% 157.0 ( 0.0)
37% ( 19) 39.2% 2485.0 ( 29.7) 90.4% 172.0 ( 28.6)
50% ( 26) 39.3% 2482.7 ( 25.7) 90.3% 173.7 ( 30.0)
75% ( 39) 39.0% 2495.7 ( 5.5) 89.4% 190.0 ( 1.0)
100% ( 52) 40.2% 2443.7 ( 3.8) 92.3% 138.0 ( 1.0)
Intel(R) Xeon(R) CPU E5-2699C v4 @ 2.20GHz (Broadwell, kvm guest)
1 node * 16 cores * 2 threads = 32 CPUs
192G/node = 192G memory
kernel boot deferred init
------------------------ ------------------------
node% (thr) speedup time_ms (stdev) speedup time_ms (stdev)
( 0) -- 1988.7 ( 9.6) -- 1096.0 ( 11.5)
3% ( 1) 1.1% 1967.0 ( 17.6) 0.3% 1092.7 ( 11.0)
12% ( 4) 41.1% 1170.3 ( 14.2) 73.8% 287.0 ( 3.6)
25% ( 8) 47.1% 1052.7 ( 21.9) 83.9% 177.0 ( 13.5)
38% ( 12) 48.9% 1016.3 ( 12.1) 86.8% 144.7 ( 1.5)
50% ( 16) 48.9% 1015.7 ( 8.1) 87.8% 134.0 ( 4.4)
75% ( 24) 49.1% 1012.3 ( 3.1) 88.1% 130.3 ( 2.3)
100% ( 32) 49.5% 1004.0 ( 5.3) 88.5% 125.7 ( 2.1)
Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz (Haswell, bare metal)
2 nodes * 18 cores * 2 threads = 72 CPUs
128G/node = 256G memory
kernel boot deferred init
------------------------ ------------------------
node% (thr) speedup time_ms (stdev) speedup time_ms (stdev)
( 0) -- 1680.0 ( 4.6) -- 627.0 ( 4.0)
3% ( 1) 0.3% 1675.7 ( 4.5) -0.2% 628.0 ( 3.6)
11% ( 4) 25.6% 1250.7 ( 2.1) 67.9% 201.0 ( 0.0)
25% ( 9) 30.7% 1164.0 ( 17.3) 81.8% 114.3 ( 17.7)
36% ( 13) 31.4% 1152.7 ( 10.8) 84.0% 100.3 ( 17.9)
50% ( 18) 31.5% 1150.7 ( 9.3) 83.9% 101.0 ( 14.1)
75% ( 27) 31.7% 1148.0 ( 5.6) 84.5% 97.3 ( 6.4)
100% ( 36) 32.0% 1142.3 ( 4.0) 85.6% 90.0 ( 1.0)
AMD EPYC 7551 32-Core Processor (Zen, kvm guest)
1 node * 8 cores * 2 threads = 16 CPUs
64G/node = 64G memory
kernel boot deferred init
------------------------ ------------------------
node% (thr) speedup time_ms (stdev) speedup time_ms (stdev)
( 0) -- 1029.3 ( 25.1) -- 240.7 ( 1.5)
6% ( 1) -0.6% 1036.0 ( 7.8) -2.2% 246.0 ( 0.0)
12% ( 2) 11.8% 907.7 ( 8.6) 44.7% 133.0 ( 1.0)
25% ( 4) 13.9% 886.0 ( 10.6) 62.6% 90.0 ( 6.0)
38% ( 6) 17.8% 845.7 ( 14.2) 69.1% 74.3 ( 3.8)
50% ( 8) 16.8% 856.0 ( 22.1) 72.9% 65.3 ( 5.7)
75% ( 12) 15.4% 871.0 ( 29.2) 79.8% 48.7 ( 7.4)
100% ( 16) 21.0% 813.7 ( 21.0) 80.5% 47.0 ( 5.2)
Server-oriented distros that enable deferred page init sometimes run in
small VMs, and they still benefit even though the fraction of boot time
saved is smaller:
AMD EPYC 7551 32-Core Processor (Zen, kvm guest)
1 node * 2 cores * 2 threads = 4 CPUs
16G/node = 16G memory
kernel boot deferred init
------------------------ ------------------------
node% (thr) speedup time_ms (stdev) speedup time_ms (stdev)
( 0) -- 716.0 ( 14.0) -- 49.7 ( 0.6)
25% ( 1) 1.8% 703.0 ( 5.3) -4.0% 51.7 ( 0.6)
50% ( 2) 1.6% 704.7 ( 1.2) 43.0% 28.3 ( 0.6)
75% ( 3) 2.7% 696.7 ( 13.1) 49.7% 25.0 ( 0.0)
100% ( 4) 4.1% 687.0 ( 10.4) 55.7% 22.0 ( 0.0)
Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz (Haswell, kvm guest)
1 node * 2 cores * 2 threads = 4 CPUs
14G/node = 14G memory
kernel boot deferred init
------------------------ ------------------------
node% (thr) speedup time_ms (stdev) speedup time_ms (stdev)
( 0) -- 787.7 ( 6.4) -- 122.3 ( 0.6)
25% ( 1) 0.2% 786.3 ( 10.8) -2.5% 125.3 ( 2.1)
50% ( 2) 5.9% 741.0 ( 13.9) 37.6% 76.3 ( 19.7)
75% ( 3) 8.3% 722.0 ( 19.0) 49.9% 61.3 ( 3.2)
100% ( 4) 9.3% 714.7 ( 9.5) 56.4% 53.3 ( 1.5)
On Josh's 96-CPU and 192G memory system:
Without this patch series:
[ 0.487132] node 0 initialised, 23398907 pages in 292ms
[ 0.499132] node 1 initialised, 24189223 pages in 304ms
...
[ 0.629376] Run /sbin/init as init process
With this patch series:
[ 0.231435] node 1 initialised, 24189223 pages in 32ms
[ 0.236718] node 0 initialised, 23398907 pages in 36ms
[1] https://static.sched.com/hosted_files/kvmforum2019/66/VMM-fast-restart_kvmforum2019.pdf
Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Josh Triplett <josh@joshtriplett.org>
Reviewed-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Robert Elliott <elliott@hpe.com>
Cc: Shile Zhang <shile.zhang@linux.alibaba.com>
Cc: Steffen Klassert <steffen.klassert@secunet.com>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Zi Yan <ziy@nvidia.com>
Link: http://lkml.kernel.org/r/20200527173608.2885243-7-daniel.m.jordan@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 22:59:51 +00:00
|
|
|
*/
|
2023-03-21 17:05:02 +00:00
|
|
|
return flags & __GFP_SKIP_KASAN;
|
mm: parallelize deferred_init_memmap()
Deferred struct page init is a significant bottleneck in kernel boot.
Optimizing it maximizes availability for large-memory systems and allows
spinning up short-lived VMs as needed without having to leave them
running. It also benefits bare metal machines hosting VMs that are
sensitive to downtime. In projects such as VMM Fast Restart[1], where
guest state is preserved across kexec reboot, it helps prevent application
and network timeouts in the guests.
Multithread to take full advantage of system memory bandwidth.
The maximum number of threads is capped at the number of CPUs on the node
because speedups always improve with additional threads on every system
tested, and at this phase of boot, the system is otherwise idle and
waiting on page init to finish.
Helper threads operate on section-aligned ranges to both avoid false
sharing when setting the pageblock's migrate type and to avoid accessing
uninitialized buddy pages, though max order alignment is enough for the
latter.
The minimum chunk size is also a section. There was benefit to using
multiple threads even on relatively small memory (1G) systems, and this is
the smallest size that the alignment allows.
The time (milliseconds) is the slowest node to initialize since boot
blocks until all nodes finish. intel_pstate is loaded in active mode
without hwp and with turbo enabled, and intel_idle is active as well.
Intel(R) Xeon(R) Platinum 8167M CPU @ 2.00GHz (Skylake, bare metal)
2 nodes * 26 cores * 2 threads = 104 CPUs
384G/node = 768G memory
kernel boot deferred init
------------------------ ------------------------
node% (thr) speedup time_ms (stdev) speedup time_ms (stdev)
( 0) -- 4089.7 ( 8.1) -- 1785.7 ( 7.6)
2% ( 1) 1.7% 4019.3 ( 1.5) 3.8% 1717.7 ( 11.8)
12% ( 6) 34.9% 2662.7 ( 2.9) 79.9% 359.3 ( 0.6)
25% ( 13) 39.9% 2459.0 ( 3.6) 91.2% 157.0 ( 0.0)
37% ( 19) 39.2% 2485.0 ( 29.7) 90.4% 172.0 ( 28.6)
50% ( 26) 39.3% 2482.7 ( 25.7) 90.3% 173.7 ( 30.0)
75% ( 39) 39.0% 2495.7 ( 5.5) 89.4% 190.0 ( 1.0)
100% ( 52) 40.2% 2443.7 ( 3.8) 92.3% 138.0 ( 1.0)
Intel(R) Xeon(R) CPU E5-2699C v4 @ 2.20GHz (Broadwell, kvm guest)
1 node * 16 cores * 2 threads = 32 CPUs
192G/node = 192G memory
kernel boot deferred init
------------------------ ------------------------
node% (thr) speedup time_ms (stdev) speedup time_ms (stdev)
( 0) -- 1988.7 ( 9.6) -- 1096.0 ( 11.5)
3% ( 1) 1.1% 1967.0 ( 17.6) 0.3% 1092.7 ( 11.0)
12% ( 4) 41.1% 1170.3 ( 14.2) 73.8% 287.0 ( 3.6)
25% ( 8) 47.1% 1052.7 ( 21.9) 83.9% 177.0 ( 13.5)
38% ( 12) 48.9% 1016.3 ( 12.1) 86.8% 144.7 ( 1.5)
50% ( 16) 48.9% 1015.7 ( 8.1) 87.8% 134.0 ( 4.4)
75% ( 24) 49.1% 1012.3 ( 3.1) 88.1% 130.3 ( 2.3)
100% ( 32) 49.5% 1004.0 ( 5.3) 88.5% 125.7 ( 2.1)
Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz (Haswell, bare metal)
2 nodes * 18 cores * 2 threads = 72 CPUs
128G/node = 256G memory
kernel boot deferred init
------------------------ ------------------------
node% (thr) speedup time_ms (stdev) speedup time_ms (stdev)
( 0) -- 1680.0 ( 4.6) -- 627.0 ( 4.0)
3% ( 1) 0.3% 1675.7 ( 4.5) -0.2% 628.0 ( 3.6)
11% ( 4) 25.6% 1250.7 ( 2.1) 67.9% 201.0 ( 0.0)
25% ( 9) 30.7% 1164.0 ( 17.3) 81.8% 114.3 ( 17.7)
36% ( 13) 31.4% 1152.7 ( 10.8) 84.0% 100.3 ( 17.9)
50% ( 18) 31.5% 1150.7 ( 9.3) 83.9% 101.0 ( 14.1)
75% ( 27) 31.7% 1148.0 ( 5.6) 84.5% 97.3 ( 6.4)
100% ( 36) 32.0% 1142.3 ( 4.0) 85.6% 90.0 ( 1.0)
AMD EPYC 7551 32-Core Processor (Zen, kvm guest)
1 node * 8 cores * 2 threads = 16 CPUs
64G/node = 64G memory
kernel boot deferred init
------------------------ ------------------------
node% (thr) speedup time_ms (stdev) speedup time_ms (stdev)
( 0) -- 1029.3 ( 25.1) -- 240.7 ( 1.5)
6% ( 1) -0.6% 1036.0 ( 7.8) -2.2% 246.0 ( 0.0)
12% ( 2) 11.8% 907.7 ( 8.6) 44.7% 133.0 ( 1.0)
25% ( 4) 13.9% 886.0 ( 10.6) 62.6% 90.0 ( 6.0)
38% ( 6) 17.8% 845.7 ( 14.2) 69.1% 74.3 ( 3.8)
50% ( 8) 16.8% 856.0 ( 22.1) 72.9% 65.3 ( 5.7)
75% ( 12) 15.4% 871.0 ( 29.2) 79.8% 48.7 ( 7.4)
100% ( 16) 21.0% 813.7 ( 21.0) 80.5% 47.0 ( 5.2)
Server-oriented distros that enable deferred page init sometimes run in
small VMs, and they still benefit even though the fraction of boot time
saved is smaller:
AMD EPYC 7551 32-Core Processor (Zen, kvm guest)
1 node * 2 cores * 2 threads = 4 CPUs
16G/node = 16G memory
kernel boot deferred init
------------------------ ------------------------
node% (thr) speedup time_ms (stdev) speedup time_ms (stdev)
( 0) -- 716.0 ( 14.0) -- 49.7 ( 0.6)
25% ( 1) 1.8% 703.0 ( 5.3) -4.0% 51.7 ( 0.6)
50% ( 2) 1.6% 704.7 ( 1.2) 43.0% 28.3 ( 0.6)
75% ( 3) 2.7% 696.7 ( 13.1) 49.7% 25.0 ( 0.0)
100% ( 4) 4.1% 687.0 ( 10.4) 55.7% 22.0 ( 0.0)
Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz (Haswell, kvm guest)
1 node * 2 cores * 2 threads = 4 CPUs
14G/node = 14G memory
kernel boot deferred init
------------------------ ------------------------
node% (thr) speedup time_ms (stdev) speedup time_ms (stdev)
( 0) -- 787.7 ( 6.4) -- 122.3 ( 0.6)
25% ( 1) 0.2% 786.3 ( 10.8) -2.5% 125.3 ( 2.1)
50% ( 2) 5.9% 741.0 ( 13.9) 37.6% 76.3 ( 19.7)
75% ( 3) 8.3% 722.0 ( 19.0) 49.9% 61.3 ( 3.2)
100% ( 4) 9.3% 714.7 ( 9.5) 56.4% 53.3 ( 1.5)
On Josh's 96-CPU and 192G memory system:
Without this patch series:
[ 0.487132] node 0 initialised, 23398907 pages in 292ms
[ 0.499132] node 1 initialised, 24189223 pages in 304ms
...
[ 0.629376] Run /sbin/init as init process
With this patch series:
[ 0.231435] node 1 initialised, 24189223 pages in 32ms
[ 0.236718] node 0 initialised, 23398907 pages in 36ms
[1] https://static.sched.com/hosted_files/kvmforum2019/66/VMM-fast-restart_kvmforum2019.pdf
Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Josh Triplett <josh@joshtriplett.org>
Reviewed-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Robert Elliott <elliott@hpe.com>
Cc: Shile Zhang <shile.zhang@linux.alibaba.com>
Cc: Steffen Klassert <steffen.klassert@secunet.com>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Zi Yan <ziy@nvidia.com>
Link: http://lkml.kernel.org/r/20200527173608.2885243-7-daniel.m.jordan@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 22:59:51 +00:00
|
|
|
}
|
|
|
|
|
2023-03-21 17:05:02 +00:00
|
|
|
static inline bool should_skip_init(gfp_t flags)
|
2020-06-03 22:59:55 +00:00
|
|
|
{
|
2023-03-21 17:05:02 +00:00
|
|
|
/* Don't skip, if hardware tag-based KASAN is not enabled. */
|
|
|
|
if (!kasan_hw_tags_enabled())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
/* For hardware tag-based KASAN, skip if requested. */
|
|
|
|
return (flags & __GFP_SKIP_ZERO);
|
2020-06-03 22:59:55 +00:00
|
|
|
}
|
|
|
|
|
2023-03-21 17:05:02 +00:00
|
|
|
inline void post_alloc_hook(struct page *page, unsigned int order,
|
|
|
|
gfp_t gfp_flags)
|
2015-06-30 21:57:05 +00:00
|
|
|
{
|
2023-03-21 17:05:02 +00:00
|
|
|
bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
|
|
|
|
!should_skip_init(gfp_flags);
|
|
|
|
bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
|
|
|
|
int i;
|
|
|
|
|
|
|
|
set_page_private(page, 0);
|
|
|
|
set_page_refcounted(page);
|
2015-06-30 21:57:27 +00:00
|
|
|
|
2023-03-21 17:05:02 +00:00
|
|
|
arch_alloc_page(page, order);
|
|
|
|
debug_pagealloc_map_pages(page, 1 << order);
|
2015-06-30 21:57:05 +00:00
|
|
|
|
2020-06-03 22:59:24 +00:00
|
|
|
/*
|
2023-03-21 17:05:02 +00:00
|
|
|
* Page unpoisoning must happen before memory initialization.
|
|
|
|
* Otherwise, the poison pattern will be overwritten for __GFP_ZERO
|
|
|
|
* allocations and the page unpoisoning code will complain.
|
2020-06-03 22:59:24 +00:00
|
|
|
*/
|
2023-03-21 17:05:02 +00:00
|
|
|
kernel_unpoison_pages(page, 1 << order);
|
2020-12-15 03:11:15 +00:00
|
|
|
|
2021-04-30 06:00:02 +00:00
|
|
|
/*
|
|
|
|
* As memory initialization might be integrated into KASAN,
|
2022-03-25 01:10:31 +00:00
|
|
|
* KASAN unpoisoning and memory initializion code must be
|
2021-04-30 06:00:02 +00:00
|
|
|
* kept together to avoid discrepancies in behavior.
|
|
|
|
*/
|
2022-03-25 01:10:34 +00:00
|
|
|
|
|
|
|
/*
|
kasan: allow sampling page_alloc allocations for HW_TAGS
As Hardware Tag-Based KASAN is intended to be used in production, its
performance impact is crucial. As page_alloc allocations tend to be big,
tagging and checking all such allocations can introduce a significant
slowdown.
Add two new boot parameters that allow to alleviate that slowdown:
- kasan.page_alloc.sample, which makes Hardware Tag-Based KASAN tag only
every Nth page_alloc allocation with the order configured by the second
added parameter (default: tag every such allocation).
- kasan.page_alloc.sample.order, which makes sampling enabled by the first
parameter only affect page_alloc allocations with the order equal or
greater than the specified value (default: 3, see below).
The exact performance improvement caused by using the new parameters
depends on their values and the applied workload.
The chosen default value for kasan.page_alloc.sample.order is 3, which
matches both PAGE_ALLOC_COSTLY_ORDER and SKB_FRAG_PAGE_ORDER. This is
done for two reasons:
1. PAGE_ALLOC_COSTLY_ORDER is "the order at which allocations are deemed
costly to service", which corresponds to the idea that only large and
thus costly allocations are supposed to sampled.
2. One of the workloads targeted by this patch is a benchmark that sends
a large amount of data over a local loopback connection. Most multi-page
data allocations in the networking subsystem have the order of
SKB_FRAG_PAGE_ORDER (or PAGE_ALLOC_COSTLY_ORDER).
When running a local loopback test on a testing MTE-enabled device in sync
mode, enabling Hardware Tag-Based KASAN introduces a ~50% slowdown.
Applying this patch and setting kasan.page_alloc.sampling to a value
higher than 1 allows to lower the slowdown. The performance improvement
saturates around the sampling interval value of 10 with the default
sampling page order of 3. This lowers the slowdown to ~20%. The slowdown
in real scenarios involving the network will likely be better.
Enabling page_alloc sampling has a downside: KASAN misses bad accesses to
a page_alloc allocation that has not been tagged. This lowers the value
of KASAN as a security mitigation.
However, based on measuring the number of page_alloc allocations of
different orders during boot in a test build, sampling with the default
kasan.page_alloc.sample.order value affects only ~7% of allocations. The
rest ~93% of allocations are still checked deterministically.
Link: https://lkml.kernel.org/r/129da0614123bb85ed4dd61ae30842b2dd7c903f.1671471846.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Mark Brand <markbrand@google.com>
Cc: Peter Collingbourne <pcc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-19 18:09:18 +00:00
|
|
|
* If memory tags should be zeroed
|
|
|
|
* (which happens only when memory should be initialized as well).
|
2022-03-25 01:10:34 +00:00
|
|
|
*/
|
kasan: allow sampling page_alloc allocations for HW_TAGS
As Hardware Tag-Based KASAN is intended to be used in production, its
performance impact is crucial. As page_alloc allocations tend to be big,
tagging and checking all such allocations can introduce a significant
slowdown.
Add two new boot parameters that allow to alleviate that slowdown:
- kasan.page_alloc.sample, which makes Hardware Tag-Based KASAN tag only
every Nth page_alloc allocation with the order configured by the second
added parameter (default: tag every such allocation).
- kasan.page_alloc.sample.order, which makes sampling enabled by the first
parameter only affect page_alloc allocations with the order equal or
greater than the specified value (default: 3, see below).
The exact performance improvement caused by using the new parameters
depends on their values and the applied workload.
The chosen default value for kasan.page_alloc.sample.order is 3, which
matches both PAGE_ALLOC_COSTLY_ORDER and SKB_FRAG_PAGE_ORDER. This is
done for two reasons:
1. PAGE_ALLOC_COSTLY_ORDER is "the order at which allocations are deemed
costly to service", which corresponds to the idea that only large and
thus costly allocations are supposed to sampled.
2. One of the workloads targeted by this patch is a benchmark that sends
a large amount of data over a local loopback connection. Most multi-page
data allocations in the networking subsystem have the order of
SKB_FRAG_PAGE_ORDER (or PAGE_ALLOC_COSTLY_ORDER).
When running a local loopback test on a testing MTE-enabled device in sync
mode, enabling Hardware Tag-Based KASAN introduces a ~50% slowdown.
Applying this patch and setting kasan.page_alloc.sampling to a value
higher than 1 allows to lower the slowdown. The performance improvement
saturates around the sampling interval value of 10 with the default
sampling page order of 3. This lowers the slowdown to ~20%. The slowdown
in real scenarios involving the network will likely be better.
Enabling page_alloc sampling has a downside: KASAN misses bad accesses to
a page_alloc allocation that has not been tagged. This lowers the value
of KASAN as a security mitigation.
However, based on measuring the number of page_alloc allocations of
different orders during boot in a test build, sampling with the default
kasan.page_alloc.sample.order value affects only ~7% of allocations. The
rest ~93% of allocations are still checked deterministically.
Link: https://lkml.kernel.org/r/129da0614123bb85ed4dd61ae30842b2dd7c903f.1671471846.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Mark Brand <markbrand@google.com>
Cc: Peter Collingbourne <pcc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-19 18:09:18 +00:00
|
|
|
if (zero_tags) {
|
2023-01-24 20:35:26 +00:00
|
|
|
/* Initialize both memory and memory tags. */
|
2022-03-25 01:10:34 +00:00
|
|
|
for (i = 0; i != 1 << order; ++i)
|
|
|
|
tag_clear_highpage(page + i);
|
|
|
|
|
kasan: allow sampling page_alloc allocations for HW_TAGS
As Hardware Tag-Based KASAN is intended to be used in production, its
performance impact is crucial. As page_alloc allocations tend to be big,
tagging and checking all such allocations can introduce a significant
slowdown.
Add two new boot parameters that allow to alleviate that slowdown:
- kasan.page_alloc.sample, which makes Hardware Tag-Based KASAN tag only
every Nth page_alloc allocation with the order configured by the second
added parameter (default: tag every such allocation).
- kasan.page_alloc.sample.order, which makes sampling enabled by the first
parameter only affect page_alloc allocations with the order equal or
greater than the specified value (default: 3, see below).
The exact performance improvement caused by using the new parameters
depends on their values and the applied workload.
The chosen default value for kasan.page_alloc.sample.order is 3, which
matches both PAGE_ALLOC_COSTLY_ORDER and SKB_FRAG_PAGE_ORDER. This is
done for two reasons:
1. PAGE_ALLOC_COSTLY_ORDER is "the order at which allocations are deemed
costly to service", which corresponds to the idea that only large and
thus costly allocations are supposed to sampled.
2. One of the workloads targeted by this patch is a benchmark that sends
a large amount of data over a local loopback connection. Most multi-page
data allocations in the networking subsystem have the order of
SKB_FRAG_PAGE_ORDER (or PAGE_ALLOC_COSTLY_ORDER).
When running a local loopback test on a testing MTE-enabled device in sync
mode, enabling Hardware Tag-Based KASAN introduces a ~50% slowdown.
Applying this patch and setting kasan.page_alloc.sampling to a value
higher than 1 allows to lower the slowdown. The performance improvement
saturates around the sampling interval value of 10 with the default
sampling page order of 3. This lowers the slowdown to ~20%. The slowdown
in real scenarios involving the network will likely be better.
Enabling page_alloc sampling has a downside: KASAN misses bad accesses to
a page_alloc allocation that has not been tagged. This lowers the value
of KASAN as a security mitigation.
However, based on measuring the number of page_alloc allocations of
different orders during boot in a test build, sampling with the default
kasan.page_alloc.sample.order value affects only ~7% of allocations. The
rest ~93% of allocations are still checked deterministically.
Link: https://lkml.kernel.org/r/129da0614123bb85ed4dd61ae30842b2dd7c903f.1671471846.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Mark Brand <markbrand@google.com>
Cc: Peter Collingbourne <pcc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-19 18:09:18 +00:00
|
|
|
/* Take note that memory was initialized by the loop above. */
|
2022-03-25 01:10:34 +00:00
|
|
|
init = false;
|
|
|
|
}
|
2023-03-10 04:29:14 +00:00
|
|
|
if (!should_skip_kasan_unpoison(gfp_flags) &&
|
|
|
|
kasan_unpoison_pages(page, order, init)) {
|
|
|
|
/* Take note that memory was initialized by KASAN. */
|
|
|
|
if (kasan_has_integrated_init())
|
|
|
|
init = false;
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* If memory tags have not been set by KASAN, reset the page
|
|
|
|
* tags to ensure page_address() dereferencing does not fault.
|
|
|
|
*/
|
2022-06-10 15:21:39 +00:00
|
|
|
for (i = 0; i != 1 << order; ++i)
|
|
|
|
page_kasan_tag_reset(page + i);
|
2021-06-02 23:52:28 +00:00
|
|
|
}
|
kasan: allow sampling page_alloc allocations for HW_TAGS
As Hardware Tag-Based KASAN is intended to be used in production, its
performance impact is crucial. As page_alloc allocations tend to be big,
tagging and checking all such allocations can introduce a significant
slowdown.
Add two new boot parameters that allow to alleviate that slowdown:
- kasan.page_alloc.sample, which makes Hardware Tag-Based KASAN tag only
every Nth page_alloc allocation with the order configured by the second
added parameter (default: tag every such allocation).
- kasan.page_alloc.sample.order, which makes sampling enabled by the first
parameter only affect page_alloc allocations with the order equal or
greater than the specified value (default: 3, see below).
The exact performance improvement caused by using the new parameters
depends on their values and the applied workload.
The chosen default value for kasan.page_alloc.sample.order is 3, which
matches both PAGE_ALLOC_COSTLY_ORDER and SKB_FRAG_PAGE_ORDER. This is
done for two reasons:
1. PAGE_ALLOC_COSTLY_ORDER is "the order at which allocations are deemed
costly to service", which corresponds to the idea that only large and
thus costly allocations are supposed to sampled.
2. One of the workloads targeted by this patch is a benchmark that sends
a large amount of data over a local loopback connection. Most multi-page
data allocations in the networking subsystem have the order of
SKB_FRAG_PAGE_ORDER (or PAGE_ALLOC_COSTLY_ORDER).
When running a local loopback test on a testing MTE-enabled device in sync
mode, enabling Hardware Tag-Based KASAN introduces a ~50% slowdown.
Applying this patch and setting kasan.page_alloc.sampling to a value
higher than 1 allows to lower the slowdown. The performance improvement
saturates around the sampling interval value of 10 with the default
sampling page order of 3. This lowers the slowdown to ~20%. The slowdown
in real scenarios involving the network will likely be better.
Enabling page_alloc sampling has a downside: KASAN misses bad accesses to
a page_alloc allocation that has not been tagged. This lowers the value
of KASAN as a security mitigation.
However, based on measuring the number of page_alloc allocations of
different orders during boot in a test build, sampling with the default
kasan.page_alloc.sample.order value affects only ~7% of allocations. The
rest ~93% of allocations are still checked deterministically.
Link: https://lkml.kernel.org/r/129da0614123bb85ed4dd61ae30842b2dd7c903f.1671471846.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Mark Brand <markbrand@google.com>
Cc: Peter Collingbourne <pcc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-19 18:09:18 +00:00
|
|
|
/* If memory is still not initialized, initialize it now. */
|
2022-03-25 01:10:40 +00:00
|
|
|
if (init)
|
2022-06-09 18:18:45 +00:00
|
|
|
kernel_init_pages(page, 1 << order);
|
2021-04-30 06:00:02 +00:00
|
|
|
|
|
|
|
set_page_owner(page, order, gfp_flags);
|
2022-01-14 22:06:37 +00:00
|
|
|
page_table_check_alloc(page, order);
|
2016-07-26 22:23:58 +00:00
|
|
|
}
|
|
|
|
|
2016-05-20 00:14:35 +00:00
|
|
|
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
|
2016-05-20 00:13:38 +00:00
|
|
|
unsigned int alloc_flags)
|
2009-09-16 09:50:12 +00:00
|
|
|
{
|
2016-07-26 22:23:58 +00:00
|
|
|
post_alloc_hook(page, order, gfp_flags);
|
2006-03-22 08:08:41 +00:00
|
|
|
|
|
|
|
if (order && (gfp_flags & __GFP_COMP))
|
|
|
|
prep_compound_page(page, order);
|
|
|
|
|
mm: set page->pfmemalloc in prep_new_page()
The possibility of replacing the numerous parameters of alloc_pages*
functions with a single structure has been discussed when Minchan proposed
to expand the x86 kernel stack [1]. This series implements the change,
along with few more cleanups/microoptimizations.
The series is based on next-20150108 and I used gcc 4.8.3 20140627 on
openSUSE 13.2 for compiling. Config includess NUMA and COMPACTION.
The core change is the introduction of a new struct alloc_context, which looks
like this:
struct alloc_context {
struct zonelist *zonelist;
nodemask_t *nodemask;
struct zone *preferred_zone;
int classzone_idx;
int migratetype;
enum zone_type high_zoneidx;
};
All the contents is mostly constant, except that __alloc_pages_slowpath()
changes preferred_zone, classzone_idx and potentially zonelist. But
that's not a problem in case control returns to retry_cpuset: in
__alloc_pages_nodemask(), those will be reset to initial values again
(although it's a bit subtle). On the other hand, gfp_flags and alloc_info
mutate so much that it doesn't make sense to put them into alloc_context.
Still, the result is one parameter instead of up to 7. This is all in
Patch 2.
Patch 3 is a step to expand alloc_context usage out of page_alloc.c
itself. The function try_to_compact_pages() can also much benefit from
the parameter reduction, but it means the struct definition has to be
moved to a shared header.
Patch 1 should IMHO be included even if the rest is deemed not useful
enough. It improves maintainability and also has some code/stack
reduction. Patch 4 is OTOH a tiny optimization.
Overall bloat-o-meter results:
add/remove: 0/0 grow/shrink: 0/4 up/down: 0/-460 (-460)
function old new delta
nr_free_zone_pages 129 115 -14
__alloc_pages_direct_compact 329 256 -73
get_page_from_freelist 2670 2576 -94
__alloc_pages_nodemask 2564 2285 -279
try_to_compact_pages 582 579 -3
Overall stack sizes per ./scripts/checkstack.pl:
old new delta
get_page_from_freelist: 184 184 0
__alloc_pages_nodemask 248 200 -48
__alloc_pages_direct_c 40 - -40
try_to_compact_pages 72 72 0
-88
[1] http://marc.info/?l=linux-mm&m=140142462528257&w=2
This patch (of 4):
prep_new_page() sets almost everything in the struct page of the page
being allocated, except page->pfmemalloc. This is not obvious and has at
least once led to a bug where page->pfmemalloc was forgotten to be set
correctly, see commit 8fb74b9fb2b1 ("mm: compaction: partially revert
capture of suitable high-order page").
This patch moves the pfmemalloc setting to prep_new_page(), which means it
needs to gain alloc_flags parameter. The call to prep_new_page is moved
from buffered_rmqueue() to get_page_from_freelist(), which also leads to
simpler code. An obsolete comment for buffered_rmqueue() is replaced.
In addition to better maintainability there is a small reduction of code
and stack usage for get_page_from_freelist(), which inlines the other
functions involved.
add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-145 (-145)
function old new delta
get_page_from_freelist 2670 2525 -145
Stack usage is reduced from 184 to 168 bytes.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 23:25:38 +00:00
|
|
|
/*
|
2015-08-21 21:11:51 +00:00
|
|
|
* page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
|
mm: set page->pfmemalloc in prep_new_page()
The possibility of replacing the numerous parameters of alloc_pages*
functions with a single structure has been discussed when Minchan proposed
to expand the x86 kernel stack [1]. This series implements the change,
along with few more cleanups/microoptimizations.
The series is based on next-20150108 and I used gcc 4.8.3 20140627 on
openSUSE 13.2 for compiling. Config includess NUMA and COMPACTION.
The core change is the introduction of a new struct alloc_context, which looks
like this:
struct alloc_context {
struct zonelist *zonelist;
nodemask_t *nodemask;
struct zone *preferred_zone;
int classzone_idx;
int migratetype;
enum zone_type high_zoneidx;
};
All the contents is mostly constant, except that __alloc_pages_slowpath()
changes preferred_zone, classzone_idx and potentially zonelist. But
that's not a problem in case control returns to retry_cpuset: in
__alloc_pages_nodemask(), those will be reset to initial values again
(although it's a bit subtle). On the other hand, gfp_flags and alloc_info
mutate so much that it doesn't make sense to put them into alloc_context.
Still, the result is one parameter instead of up to 7. This is all in
Patch 2.
Patch 3 is a step to expand alloc_context usage out of page_alloc.c
itself. The function try_to_compact_pages() can also much benefit from
the parameter reduction, but it means the struct definition has to be
moved to a shared header.
Patch 1 should IMHO be included even if the rest is deemed not useful
enough. It improves maintainability and also has some code/stack
reduction. Patch 4 is OTOH a tiny optimization.
Overall bloat-o-meter results:
add/remove: 0/0 grow/shrink: 0/4 up/down: 0/-460 (-460)
function old new delta
nr_free_zone_pages 129 115 -14
__alloc_pages_direct_compact 329 256 -73
get_page_from_freelist 2670 2576 -94
__alloc_pages_nodemask 2564 2285 -279
try_to_compact_pages 582 579 -3
Overall stack sizes per ./scripts/checkstack.pl:
old new delta
get_page_from_freelist: 184 184 0
__alloc_pages_nodemask 248 200 -48
__alloc_pages_direct_c 40 - -40
try_to_compact_pages 72 72 0
-88
[1] http://marc.info/?l=linux-mm&m=140142462528257&w=2
This patch (of 4):
prep_new_page() sets almost everything in the struct page of the page
being allocated, except page->pfmemalloc. This is not obvious and has at
least once led to a bug where page->pfmemalloc was forgotten to be set
correctly, see commit 8fb74b9fb2b1 ("mm: compaction: partially revert
capture of suitable high-order page").
This patch moves the pfmemalloc setting to prep_new_page(), which means it
needs to gain alloc_flags parameter. The call to prep_new_page is moved
from buffered_rmqueue() to get_page_from_freelist(), which also leads to
simpler code. An obsolete comment for buffered_rmqueue() is replaced.
In addition to better maintainability there is a small reduction of code
and stack usage for get_page_from_freelist(), which inlines the other
functions involved.
add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-145 (-145)
function old new delta
get_page_from_freelist 2670 2525 -145
Stack usage is reduced from 184 to 168 bytes.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 23:25:38 +00:00
|
|
|
* allocate the page. The expectation is that the caller is taking
|
|
|
|
* steps that will free more memory. The caller should avoid the page
|
|
|
|
* being used for !PFMEMALLOC purposes.
|
|
|
|
*/
|
2015-08-21 21:11:51 +00:00
|
|
|
if (alloc_flags & ALLOC_NO_WATERMARKS)
|
|
|
|
set_page_pfmemalloc(page);
|
|
|
|
else
|
|
|
|
clear_page_pfmemalloc(page);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
Bias the location of pages freed for min_free_kbytes in the same MAX_ORDER_NR_PAGES blocks
The standard buddy allocator always favours the smallest block of pages.
The effect of this is that the pages free to satisfy min_free_kbytes tends
to be preserved since boot time at the same location of memory ffor a very
long time and as a contiguous block. When an administrator sets the
reserve at 16384 at boot time, it tends to be the same MAX_ORDER blocks
that remain free. This allows the occasional high atomic allocation to
succeed up until the point the blocks are split. In practice, it is
difficult to split these blocks but when they do split, the benefit of
having min_free_kbytes for contiguous blocks disappears. Additionally,
increasing min_free_kbytes once the system has been running for some time
has no guarantee of creating contiguous blocks.
On the other hand, CONFIG_PAGE_GROUP_BY_MOBILITY favours splitting large
blocks when there are no free pages of the appropriate type available. A
side-effect of this is that all blocks in memory tends to be used up and
the contiguous free blocks from boot time are not preserved like in the
vanilla allocator. This can cause a problem if a new caller is unwilling
to reclaim or does not reclaim for long enough.
A failure scenario was found for a wireless network device allocating
order-1 atomic allocations but the allocations were not intense or frequent
enough for a whole block of pages to be preserved for MIGRATE_HIGHALLOC.
This was reproduced on a desktop by booting with mem=256mb, forcing the
driver to allocate at order-1, running a bittorrent client (downloading a
debian ISO) and building a kernel with -j2.
This patch addresses the problem on the desktop machine booted with
mem=256mb. It works by setting aside a reserve of MAX_ORDER_NR_PAGES
blocks, the number of which depends on the value of min_free_kbytes. These
blocks are only fallen back to when there is no other free pages. Then the
smallest possible page is used just like the normal buddy allocator instead
of the largest possible page to preserve contiguous pages The pages in free
lists in the reserve blocks are never taken for another migrate type. The
results is that even if min_free_kbytes is set to a low value, contiguous
blocks will be preserved in the MIGRATE_RESERVE blocks.
This works better than the vanilla allocator because if min_free_kbytes is
increased, a new reserve block will be chosen based on the location of
reclaimable pages and the block will free up as contiguous pages. In the
vanilla allocator, no effort is made to target a block of pages to free as
contiguous pages and min_free_kbytes pages are scattered randomly.
This effect has been observed on the test machine. min_free_kbytes was set
initially low but it was kept as a contiguous free block within
MIGRATE_RESERVE. min_free_kbytes was then set to a higher value and over a
period of time, the free blocks were within the reserve and coalescing.
How long it takes to free up depends on how quickly LRU is rotating.
Amusingly, this means that more activity will free the blocks faster.
This mechanism potentially replaces MIGRATE_HIGHALLOC as it may be more
effective than grouping contiguous free pages together. It all depends on
whether the number of active atomic high allocations exceeds
min_free_kbytes or not. If the number of active allocations exceeds
min_free_kbytes, it's worth it but maybe in that situation, min_free_kbytes
should be set higher. Once there are no more reports of allocation
failures, a patch will be submitted that backs out MIGRATE_HIGHALLOC and
see if the reports stay missing.
Credit to Mariusz Kozlowski for discovering the problem, describing the
failure scenario and testing patches and scenarios.
[akpm@linux-foundation.org: cleanups]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 08:25:58 +00:00
|
|
|
/*
|
|
|
|
* Go through the free lists for the given migratetype and remove
|
|
|
|
* the smallest available page from the freelists
|
|
|
|
*/
|
2017-11-16 01:36:53 +00:00
|
|
|
static __always_inline
|
2009-06-16 22:32:04 +00:00
|
|
|
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
|
Bias the location of pages freed for min_free_kbytes in the same MAX_ORDER_NR_PAGES blocks
The standard buddy allocator always favours the smallest block of pages.
The effect of this is that the pages free to satisfy min_free_kbytes tends
to be preserved since boot time at the same location of memory ffor a very
long time and as a contiguous block. When an administrator sets the
reserve at 16384 at boot time, it tends to be the same MAX_ORDER blocks
that remain free. This allows the occasional high atomic allocation to
succeed up until the point the blocks are split. In practice, it is
difficult to split these blocks but when they do split, the benefit of
having min_free_kbytes for contiguous blocks disappears. Additionally,
increasing min_free_kbytes once the system has been running for some time
has no guarantee of creating contiguous blocks.
On the other hand, CONFIG_PAGE_GROUP_BY_MOBILITY favours splitting large
blocks when there are no free pages of the appropriate type available. A
side-effect of this is that all blocks in memory tends to be used up and
the contiguous free blocks from boot time are not preserved like in the
vanilla allocator. This can cause a problem if a new caller is unwilling
to reclaim or does not reclaim for long enough.
A failure scenario was found for a wireless network device allocating
order-1 atomic allocations but the allocations were not intense or frequent
enough for a whole block of pages to be preserved for MIGRATE_HIGHALLOC.
This was reproduced on a desktop by booting with mem=256mb, forcing the
driver to allocate at order-1, running a bittorrent client (downloading a
debian ISO) and building a kernel with -j2.
This patch addresses the problem on the desktop machine booted with
mem=256mb. It works by setting aside a reserve of MAX_ORDER_NR_PAGES
blocks, the number of which depends on the value of min_free_kbytes. These
blocks are only fallen back to when there is no other free pages. Then the
smallest possible page is used just like the normal buddy allocator instead
of the largest possible page to preserve contiguous pages The pages in free
lists in the reserve blocks are never taken for another migrate type. The
results is that even if min_free_kbytes is set to a low value, contiguous
blocks will be preserved in the MIGRATE_RESERVE blocks.
This works better than the vanilla allocator because if min_free_kbytes is
increased, a new reserve block will be chosen based on the location of
reclaimable pages and the block will free up as contiguous pages. In the
vanilla allocator, no effort is made to target a block of pages to free as
contiguous pages and min_free_kbytes pages are scattered randomly.
This effect has been observed on the test machine. min_free_kbytes was set
initially low but it was kept as a contiguous free block within
MIGRATE_RESERVE. min_free_kbytes was then set to a higher value and over a
period of time, the free blocks were within the reserve and coalescing.
How long it takes to free up depends on how quickly LRU is rotating.
Amusingly, this means that more activity will free the blocks faster.
This mechanism potentially replaces MIGRATE_HIGHALLOC as it may be more
effective than grouping contiguous free pages together. It all depends on
whether the number of active atomic high allocations exceeds
min_free_kbytes or not. If the number of active allocations exceeds
min_free_kbytes, it's worth it but maybe in that situation, min_free_kbytes
should be set higher. Once there are no more reports of allocation
failures, a patch will be submitted that backs out MIGRATE_HIGHALLOC and
see if the reports stay missing.
Credit to Mariusz Kozlowski for discovering the problem, describing the
failure scenario and testing patches and scenarios.
[akpm@linux-foundation.org: cleanups]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 08:25:58 +00:00
|
|
|
int migratetype)
|
|
|
|
{
|
|
|
|
unsigned int current_order;
|
2013-09-11 21:20:34 +00:00
|
|
|
struct free_area *area;
|
Bias the location of pages freed for min_free_kbytes in the same MAX_ORDER_NR_PAGES blocks
The standard buddy allocator always favours the smallest block of pages.
The effect of this is that the pages free to satisfy min_free_kbytes tends
to be preserved since boot time at the same location of memory ffor a very
long time and as a contiguous block. When an administrator sets the
reserve at 16384 at boot time, it tends to be the same MAX_ORDER blocks
that remain free. This allows the occasional high atomic allocation to
succeed up until the point the blocks are split. In practice, it is
difficult to split these blocks but when they do split, the benefit of
having min_free_kbytes for contiguous blocks disappears. Additionally,
increasing min_free_kbytes once the system has been running for some time
has no guarantee of creating contiguous blocks.
On the other hand, CONFIG_PAGE_GROUP_BY_MOBILITY favours splitting large
blocks when there are no free pages of the appropriate type available. A
side-effect of this is that all blocks in memory tends to be used up and
the contiguous free blocks from boot time are not preserved like in the
vanilla allocator. This can cause a problem if a new caller is unwilling
to reclaim or does not reclaim for long enough.
A failure scenario was found for a wireless network device allocating
order-1 atomic allocations but the allocations were not intense or frequent
enough for a whole block of pages to be preserved for MIGRATE_HIGHALLOC.
This was reproduced on a desktop by booting with mem=256mb, forcing the
driver to allocate at order-1, running a bittorrent client (downloading a
debian ISO) and building a kernel with -j2.
This patch addresses the problem on the desktop machine booted with
mem=256mb. It works by setting aside a reserve of MAX_ORDER_NR_PAGES
blocks, the number of which depends on the value of min_free_kbytes. These
blocks are only fallen back to when there is no other free pages. Then the
smallest possible page is used just like the normal buddy allocator instead
of the largest possible page to preserve contiguous pages The pages in free
lists in the reserve blocks are never taken for another migrate type. The
results is that even if min_free_kbytes is set to a low value, contiguous
blocks will be preserved in the MIGRATE_RESERVE blocks.
This works better than the vanilla allocator because if min_free_kbytes is
increased, a new reserve block will be chosen based on the location of
reclaimable pages and the block will free up as contiguous pages. In the
vanilla allocator, no effort is made to target a block of pages to free as
contiguous pages and min_free_kbytes pages are scattered randomly.
This effect has been observed on the test machine. min_free_kbytes was set
initially low but it was kept as a contiguous free block within
MIGRATE_RESERVE. min_free_kbytes was then set to a higher value and over a
period of time, the free blocks were within the reserve and coalescing.
How long it takes to free up depends on how quickly LRU is rotating.
Amusingly, this means that more activity will free the blocks faster.
This mechanism potentially replaces MIGRATE_HIGHALLOC as it may be more
effective than grouping contiguous free pages together. It all depends on
whether the number of active atomic high allocations exceeds
min_free_kbytes or not. If the number of active allocations exceeds
min_free_kbytes, it's worth it but maybe in that situation, min_free_kbytes
should be set higher. Once there are no more reports of allocation
failures, a patch will be submitted that backs out MIGRATE_HIGHALLOC and
see if the reports stay missing.
Credit to Mariusz Kozlowski for discovering the problem, describing the
failure scenario and testing patches and scenarios.
[akpm@linux-foundation.org: cleanups]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 08:25:58 +00:00
|
|
|
struct page *page;
|
|
|
|
|
|
|
|
/* Find a page of the appropriate size in the preferred list */
|
2023-03-15 11:31:33 +00:00
|
|
|
for (current_order = order; current_order <= MAX_ORDER; ++current_order) {
|
Bias the location of pages freed for min_free_kbytes in the same MAX_ORDER_NR_PAGES blocks
The standard buddy allocator always favours the smallest block of pages.
The effect of this is that the pages free to satisfy min_free_kbytes tends
to be preserved since boot time at the same location of memory ffor a very
long time and as a contiguous block. When an administrator sets the
reserve at 16384 at boot time, it tends to be the same MAX_ORDER blocks
that remain free. This allows the occasional high atomic allocation to
succeed up until the point the blocks are split. In practice, it is
difficult to split these blocks but when they do split, the benefit of
having min_free_kbytes for contiguous blocks disappears. Additionally,
increasing min_free_kbytes once the system has been running for some time
has no guarantee of creating contiguous blocks.
On the other hand, CONFIG_PAGE_GROUP_BY_MOBILITY favours splitting large
blocks when there are no free pages of the appropriate type available. A
side-effect of this is that all blocks in memory tends to be used up and
the contiguous free blocks from boot time are not preserved like in the
vanilla allocator. This can cause a problem if a new caller is unwilling
to reclaim or does not reclaim for long enough.
A failure scenario was found for a wireless network device allocating
order-1 atomic allocations but the allocations were not intense or frequent
enough for a whole block of pages to be preserved for MIGRATE_HIGHALLOC.
This was reproduced on a desktop by booting with mem=256mb, forcing the
driver to allocate at order-1, running a bittorrent client (downloading a
debian ISO) and building a kernel with -j2.
This patch addresses the problem on the desktop machine booted with
mem=256mb. It works by setting aside a reserve of MAX_ORDER_NR_PAGES
blocks, the number of which depends on the value of min_free_kbytes. These
blocks are only fallen back to when there is no other free pages. Then the
smallest possible page is used just like the normal buddy allocator instead
of the largest possible page to preserve contiguous pages The pages in free
lists in the reserve blocks are never taken for another migrate type. The
results is that even if min_free_kbytes is set to a low value, contiguous
blocks will be preserved in the MIGRATE_RESERVE blocks.
This works better than the vanilla allocator because if min_free_kbytes is
increased, a new reserve block will be chosen based on the location of
reclaimable pages and the block will free up as contiguous pages. In the
vanilla allocator, no effort is made to target a block of pages to free as
contiguous pages and min_free_kbytes pages are scattered randomly.
This effect has been observed on the test machine. min_free_kbytes was set
initially low but it was kept as a contiguous free block within
MIGRATE_RESERVE. min_free_kbytes was then set to a higher value and over a
period of time, the free blocks were within the reserve and coalescing.
How long it takes to free up depends on how quickly LRU is rotating.
Amusingly, this means that more activity will free the blocks faster.
This mechanism potentially replaces MIGRATE_HIGHALLOC as it may be more
effective than grouping contiguous free pages together. It all depends on
whether the number of active atomic high allocations exceeds
min_free_kbytes or not. If the number of active allocations exceeds
min_free_kbytes, it's worth it but maybe in that situation, min_free_kbytes
should be set higher. Once there are no more reports of allocation
failures, a patch will be submitted that backs out MIGRATE_HIGHALLOC and
see if the reports stay missing.
Credit to Mariusz Kozlowski for discovering the problem, describing the
failure scenario and testing patches and scenarios.
[akpm@linux-foundation.org: cleanups]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 08:25:58 +00:00
|
|
|
area = &(zone->free_area[current_order]);
|
2019-05-14 22:41:32 +00:00
|
|
|
page = get_page_from_free_area(area, migratetype);
|
2016-01-14 23:20:30 +00:00
|
|
|
if (!page)
|
|
|
|
continue;
|
2020-04-07 03:04:49 +00:00
|
|
|
del_page_from_free_list(page, zone, current_order);
|
|
|
|
expand(zone, page, order, current_order, migratetype);
|
2015-09-08 22:01:25 +00:00
|
|
|
set_pcppage_migratetype(page, migratetype);
|
2022-05-19 21:08:54 +00:00
|
|
|
trace_mm_page_alloc_zone_locked(page, order, migratetype,
|
|
|
|
pcp_allowed_order(order) &&
|
|
|
|
migratetype < MIGRATE_PCPTYPES);
|
Bias the location of pages freed for min_free_kbytes in the same MAX_ORDER_NR_PAGES blocks
The standard buddy allocator always favours the smallest block of pages.
The effect of this is that the pages free to satisfy min_free_kbytes tends
to be preserved since boot time at the same location of memory ffor a very
long time and as a contiguous block. When an administrator sets the
reserve at 16384 at boot time, it tends to be the same MAX_ORDER blocks
that remain free. This allows the occasional high atomic allocation to
succeed up until the point the blocks are split. In practice, it is
difficult to split these blocks but when they do split, the benefit of
having min_free_kbytes for contiguous blocks disappears. Additionally,
increasing min_free_kbytes once the system has been running for some time
has no guarantee of creating contiguous blocks.
On the other hand, CONFIG_PAGE_GROUP_BY_MOBILITY favours splitting large
blocks when there are no free pages of the appropriate type available. A
side-effect of this is that all blocks in memory tends to be used up and
the contiguous free blocks from boot time are not preserved like in the
vanilla allocator. This can cause a problem if a new caller is unwilling
to reclaim or does not reclaim for long enough.
A failure scenario was found for a wireless network device allocating
order-1 atomic allocations but the allocations were not intense or frequent
enough for a whole block of pages to be preserved for MIGRATE_HIGHALLOC.
This was reproduced on a desktop by booting with mem=256mb, forcing the
driver to allocate at order-1, running a bittorrent client (downloading a
debian ISO) and building a kernel with -j2.
This patch addresses the problem on the desktop machine booted with
mem=256mb. It works by setting aside a reserve of MAX_ORDER_NR_PAGES
blocks, the number of which depends on the value of min_free_kbytes. These
blocks are only fallen back to when there is no other free pages. Then the
smallest possible page is used just like the normal buddy allocator instead
of the largest possible page to preserve contiguous pages The pages in free
lists in the reserve blocks are never taken for another migrate type. The
results is that even if min_free_kbytes is set to a low value, contiguous
blocks will be preserved in the MIGRATE_RESERVE blocks.
This works better than the vanilla allocator because if min_free_kbytes is
increased, a new reserve block will be chosen based on the location of
reclaimable pages and the block will free up as contiguous pages. In the
vanilla allocator, no effort is made to target a block of pages to free as
contiguous pages and min_free_kbytes pages are scattered randomly.
This effect has been observed on the test machine. min_free_kbytes was set
initially low but it was kept as a contiguous free block within
MIGRATE_RESERVE. min_free_kbytes was then set to a higher value and over a
period of time, the free blocks were within the reserve and coalescing.
How long it takes to free up depends on how quickly LRU is rotating.
Amusingly, this means that more activity will free the blocks faster.
This mechanism potentially replaces MIGRATE_HIGHALLOC as it may be more
effective than grouping contiguous free pages together. It all depends on
whether the number of active atomic high allocations exceeds
min_free_kbytes or not. If the number of active allocations exceeds
min_free_kbytes, it's worth it but maybe in that situation, min_free_kbytes
should be set higher. Once there are no more reports of allocation
failures, a patch will be submitted that backs out MIGRATE_HIGHALLOC and
see if the reports stay missing.
Credit to Mariusz Kozlowski for discovering the problem, describing the
failure scenario and testing patches and scenarios.
[akpm@linux-foundation.org: cleanups]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 08:25:58 +00:00
|
|
|
return page;
|
|
|
|
}
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2007-10-16 08:25:48 +00:00
|
|
|
/*
|
|
|
|
* This array describes the order lists are fallen back to when
|
|
|
|
* the free lists for the desirable migrate type are depleted
|
2022-03-22 21:43:05 +00:00
|
|
|
*
|
|
|
|
* The other migratetypes do not have fallbacks.
|
2007-10-16 08:25:48 +00:00
|
|
|
*/
|
2023-02-03 10:01:32 +00:00
|
|
|
static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
|
|
|
|
[MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE },
|
|
|
|
[MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
|
|
|
|
[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE },
|
2007-10-16 08:25:48 +00:00
|
|
|
};
|
|
|
|
|
2015-04-14 22:45:15 +00:00
|
|
|
#ifdef CONFIG_CMA
|
2017-11-16 01:36:53 +00:00
|
|
|
static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
|
2015-04-14 22:45:15 +00:00
|
|
|
unsigned int order)
|
|
|
|
{
|
|
|
|
return __rmqueue_smallest(zone, order, MIGRATE_CMA);
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
|
|
|
|
unsigned int order) { return NULL; }
|
|
|
|
#endif
|
|
|
|
|
2007-10-16 08:25:51 +00:00
|
|
|
/*
|
mm/page_alloc: move pages to tail in move_to_free_list()
Whenever we move pages between freelists via move_to_free_list()/
move_freepages_block(), we don't actually touch the pages:
1. Page isolation doesn't actually touch the pages, it simply isolates
pageblocks and moves all free pages to the MIGRATE_ISOLATE freelist.
When undoing isolation, we move the pages back to the target list.
2. Page stealing (steal_suitable_fallback()) moves free pages directly
between lists without touching them.
3. reserve_highatomic_pageblock()/unreserve_highatomic_pageblock() moves
free pages directly between freelists without touching them.
We already place pages to the tail of the freelists when undoing isolation
via __putback_isolated_page(), let's do it in any case (e.g., if order <=
pageblock_order) and document the behavior. To simplify, let's move the
pages to the tail for all move_to_free_list()/move_freepages_block() users.
In 2., the target list is empty, so there should be no change. In 3., we
might observe a change, however, highatomic is more concerned about
allocations succeeding than cache hotness - if we ever realize this change
degrades a workload, we can special-case this instance and add a proper
comment.
This change results in all pages getting onlined via online_pages() to be
placed to the tail of the freelist.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Wei Yang <richard.weiyang@linux.alibaba.com>
Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Scott Cheloha <cheloha@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Wei Liu <wei.liu@kernel.org>
Link: https://lkml.kernel.org/r/20201005121534.15649-4-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16 03:09:30 +00:00
|
|
|
* Move the free pages in a range to the freelist tail of the requested type.
|
2007-10-16 08:26:01 +00:00
|
|
|
* Note that start_page and end_pages are not aligned on a pageblock
|
2007-10-16 08:25:51 +00:00
|
|
|
* boundary. If alignment is required, use move_freepages_block()
|
|
|
|
*/
|
mm, page_alloc: count movable pages when stealing from pageblock
When stealing pages from pageblock of a different migratetype, we count
how many free pages were stolen, and change the pageblock's migratetype
if more than half of the pageblock was free. This might be too
conservative, as there might be other pages that are not free, but were
allocated with the same migratetype as our allocation requested.
While we cannot determine the migratetype of allocated pages precisely
(at least without the page_owner functionality enabled), we can count
pages that compaction would try to isolate for migration - those are
either on LRU or __PageMovable(). The rest can be assumed to be
MIGRATE_RECLAIMABLE or MIGRATE_UNMOVABLE, which we cannot easily
distinguish. This counting can be done as part of free page stealing
with little additional overhead.
The page stealing code is changed so that it considers free pages plus
pages of the "good" migratetype for the decision whether to change
pageblock's migratetype.
The result should be more accurate migratetype of pageblocks wrt the
actual pages in the pageblocks, when stealing from semi-occupied
pageblocks. This should help the efficiency of page grouping by
mobility.
In testing based on 4.9 kernel with stress-highalloc from mmtests
configured for order-4 GFP_KERNEL allocations, this patch has reduced
the number of unmovable allocations falling back to movable pageblocks
by 47%. The number of movable allocations falling back to other
pageblocks are increased by 55%, but these events don't cause permanent
fragmentation, so the tradeoff should be positive. Later patches also
offset the movable fallback increase to some extent.
[akpm@linux-foundation.org: merge fix]
Link: http://lkml.kernel.org/r/20170307131545.28577-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 22:54:40 +00:00
|
|
|
static int move_freepages(struct zone *zone,
|
2021-04-30 06:01:36 +00:00
|
|
|
unsigned long start_pfn, unsigned long end_pfn,
|
mm, page_alloc: count movable pages when stealing from pageblock
When stealing pages from pageblock of a different migratetype, we count
how many free pages were stolen, and change the pageblock's migratetype
if more than half of the pageblock was free. This might be too
conservative, as there might be other pages that are not free, but were
allocated with the same migratetype as our allocation requested.
While we cannot determine the migratetype of allocated pages precisely
(at least without the page_owner functionality enabled), we can count
pages that compaction would try to isolate for migration - those are
either on LRU or __PageMovable(). The rest can be assumed to be
MIGRATE_RECLAIMABLE or MIGRATE_UNMOVABLE, which we cannot easily
distinguish. This counting can be done as part of free page stealing
with little additional overhead.
The page stealing code is changed so that it considers free pages plus
pages of the "good" migratetype for the decision whether to change
pageblock's migratetype.
The result should be more accurate migratetype of pageblocks wrt the
actual pages in the pageblocks, when stealing from semi-occupied
pageblocks. This should help the efficiency of page grouping by
mobility.
In testing based on 4.9 kernel with stress-highalloc from mmtests
configured for order-4 GFP_KERNEL allocations, this patch has reduced
the number of unmovable allocations falling back to movable pageblocks
by 47%. The number of movable allocations falling back to other
pageblocks are increased by 55%, but these events don't cause permanent
fragmentation, so the tradeoff should be positive. Later patches also
offset the movable fallback increase to some extent.
[akpm@linux-foundation.org: merge fix]
Link: http://lkml.kernel.org/r/20170307131545.28577-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 22:54:40 +00:00
|
|
|
int migratetype, int *num_movable)
|
2007-10-16 08:25:51 +00:00
|
|
|
{
|
|
|
|
struct page *page;
|
2021-04-30 06:01:36 +00:00
|
|
|
unsigned long pfn;
|
2015-11-07 00:29:57 +00:00
|
|
|
unsigned int order;
|
2007-10-16 08:26:00 +00:00
|
|
|
int pages_moved = 0;
|
2007-10-16 08:25:51 +00:00
|
|
|
|
2021-04-30 06:01:36 +00:00
|
|
|
for (pfn = start_pfn; pfn <= end_pfn;) {
|
|
|
|
page = pfn_to_page(pfn);
|
2007-10-16 08:25:51 +00:00
|
|
|
if (!PageBuddy(page)) {
|
mm, page_alloc: count movable pages when stealing from pageblock
When stealing pages from pageblock of a different migratetype, we count
how many free pages were stolen, and change the pageblock's migratetype
if more than half of the pageblock was free. This might be too
conservative, as there might be other pages that are not free, but were
allocated with the same migratetype as our allocation requested.
While we cannot determine the migratetype of allocated pages precisely
(at least without the page_owner functionality enabled), we can count
pages that compaction would try to isolate for migration - those are
either on LRU or __PageMovable(). The rest can be assumed to be
MIGRATE_RECLAIMABLE or MIGRATE_UNMOVABLE, which we cannot easily
distinguish. This counting can be done as part of free page stealing
with little additional overhead.
The page stealing code is changed so that it considers free pages plus
pages of the "good" migratetype for the decision whether to change
pageblock's migratetype.
The result should be more accurate migratetype of pageblocks wrt the
actual pages in the pageblocks, when stealing from semi-occupied
pageblocks. This should help the efficiency of page grouping by
mobility.
In testing based on 4.9 kernel with stress-highalloc from mmtests
configured for order-4 GFP_KERNEL allocations, this patch has reduced
the number of unmovable allocations falling back to movable pageblocks
by 47%. The number of movable allocations falling back to other
pageblocks are increased by 55%, but these events don't cause permanent
fragmentation, so the tradeoff should be positive. Later patches also
offset the movable fallback increase to some extent.
[akpm@linux-foundation.org: merge fix]
Link: http://lkml.kernel.org/r/20170307131545.28577-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 22:54:40 +00:00
|
|
|
/*
|
|
|
|
* We assume that pages that could be isolated for
|
|
|
|
* migration are movable. But we don't actually try
|
|
|
|
* isolating, as that would be expensive.
|
|
|
|
*/
|
|
|
|
if (num_movable &&
|
|
|
|
(PageLRU(page) || __PageMovable(page)))
|
|
|
|
(*num_movable)++;
|
2021-04-30 06:01:36 +00:00
|
|
|
pfn++;
|
2007-10-16 08:25:51 +00:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
mm, page_alloc: move_freepages should not examine struct page of reserved memory
After commit 907ec5fca3dc ("mm: zero remaining unavailable struct
pages"), struct page of reserved memory is zeroed. This causes
page->flags to be 0 and fixes issues related to reading
/proc/kpageflags, for example, of reserved memory.
The VM_BUG_ON() in move_freepages_block(), however, assumes that
page_zone() is meaningful even for reserved memory. That assumption is
no longer true after the aforementioned commit.
There's no reason why move_freepages_block() should be testing the
legitimacy of page_zone() for reserved memory; its scope is limited only
to pages on the zone's freelist.
Note that pfn_valid() can be true for reserved memory: there is a
backing struct page. The check for page_to_nid(page) is also buggy but
reserved memory normally only appears on node 0 so the zeroing doesn't
affect this.
Move the debug checks to after verifying PageBuddy is true. This
isolates the scope of the checks to only be for buddy pages which are on
the zone's freelist which move_freepages_block() is operating on. In
this case, an incorrect node or zone is a bug worthy of being warned
about (and the examination of struct page is acceptable bcause this
memory is not reserved).
Why does move_freepages_block() gets called on reserved memory? It's
simply math after finding a valid free page from the per-zone free area
to use as fallback. We find the beginning and end of the pageblock of
the valid page and that can bring us into memory that was reserved per
the e820. pfn_valid() is still true (it's backed by a struct page), but
since it's zero'd we shouldn't make any inferences here about comparing
its node or zone. The current node check just happens to succeed most
of the time by luck because reserved memory typically appears on node 0.
The fix here is to validate that we actually have buddy pages before
testing if there's any type of zone or node strangeness going on.
We noticed it almost immediately after bringing 907ec5fca3dc in on
CONFIG_DEBUG_VM builds. It depends on finding specific free pages in
the per-zone free area where the math in move_freepages() will bring the
start or end pfn into reserved memory and wanting to claim that entire
pageblock as a new migratetype. So the path will be rare, require
CONFIG_DEBUG_VM, and require fallback to a different migratetype.
Some struct pages were already zeroed from reserve pages before
907ec5fca3c so it theoretically could trigger before this commit. I
think it's rare enough under a config option that most people don't run
that others may not have noticed. I wouldn't argue against a stable tag
and the backport should be easy enough, but probably wouldn't single out
a commit that this is fixing.
Mel said:
: The overhead of the debugging check is higher with this patch although
: it'll only affect debug builds and the path is not particularly hot.
: If this was a concern, I think it would be reasonable to simply remove
: the debugging check as the zone boundaries are checked in
: move_freepages_block and we never expect a zone/node to be smaller than
: a pageblock and stuck in the middle of another zone.
Link: http://lkml.kernel.org/r/alpine.DEB.2.21.1908122036560.10779@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-25 00:54:40 +00:00
|
|
|
/* Make sure we are not inadvertently changing nodes */
|
|
|
|
VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
|
|
|
|
VM_BUG_ON_PAGE(page_zone(page) != zone, page);
|
|
|
|
|
2020-10-16 03:10:15 +00:00
|
|
|
order = buddy_order(page);
|
2020-04-07 03:04:49 +00:00
|
|
|
move_to_free_list(page, zone, order, migratetype);
|
2021-04-30 06:01:36 +00:00
|
|
|
pfn += 1 << order;
|
2007-10-16 08:26:00 +00:00
|
|
|
pages_moved += 1 << order;
|
2007-10-16 08:25:51 +00:00
|
|
|
}
|
|
|
|
|
2007-10-16 08:26:00 +00:00
|
|
|
return pages_moved;
|
2007-10-16 08:25:51 +00:00
|
|
|
}
|
|
|
|
|
2012-07-31 23:43:50 +00:00
|
|
|
int move_freepages_block(struct zone *zone, struct page *page,
|
mm, page_alloc: count movable pages when stealing from pageblock
When stealing pages from pageblock of a different migratetype, we count
how many free pages were stolen, and change the pageblock's migratetype
if more than half of the pageblock was free. This might be too
conservative, as there might be other pages that are not free, but were
allocated with the same migratetype as our allocation requested.
While we cannot determine the migratetype of allocated pages precisely
(at least without the page_owner functionality enabled), we can count
pages that compaction would try to isolate for migration - those are
either on LRU or __PageMovable(). The rest can be assumed to be
MIGRATE_RECLAIMABLE or MIGRATE_UNMOVABLE, which we cannot easily
distinguish. This counting can be done as part of free page stealing
with little additional overhead.
The page stealing code is changed so that it considers free pages plus
pages of the "good" migratetype for the decision whether to change
pageblock's migratetype.
The result should be more accurate migratetype of pageblocks wrt the
actual pages in the pageblocks, when stealing from semi-occupied
pageblocks. This should help the efficiency of page grouping by
mobility.
In testing based on 4.9 kernel with stress-highalloc from mmtests
configured for order-4 GFP_KERNEL allocations, this patch has reduced
the number of unmovable allocations falling back to movable pageblocks
by 47%. The number of movable allocations falling back to other
pageblocks are increased by 55%, but these events don't cause permanent
fragmentation, so the tradeoff should be positive. Later patches also
offset the movable fallback increase to some extent.
[akpm@linux-foundation.org: merge fix]
Link: http://lkml.kernel.org/r/20170307131545.28577-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 22:54:40 +00:00
|
|
|
int migratetype, int *num_movable)
|
2007-10-16 08:25:51 +00:00
|
|
|
{
|
2021-04-30 06:01:36 +00:00
|
|
|
unsigned long start_pfn, end_pfn, pfn;
|
2007-10-16 08:25:51 +00:00
|
|
|
|
2018-10-26 22:09:24 +00:00
|
|
|
if (num_movable)
|
|
|
|
*num_movable = 0;
|
|
|
|
|
2021-04-30 06:01:36 +00:00
|
|
|
pfn = page_to_pfn(page);
|
2022-09-07 06:08:42 +00:00
|
|
|
start_pfn = pageblock_start_pfn(pfn);
|
|
|
|
end_pfn = pageblock_end_pfn(pfn) - 1;
|
2007-10-16 08:25:51 +00:00
|
|
|
|
|
|
|
/* Do not cross zone boundaries */
|
2013-02-23 00:35:23 +00:00
|
|
|
if (!zone_spans_pfn(zone, start_pfn))
|
2021-04-30 06:01:36 +00:00
|
|
|
start_pfn = pfn;
|
2013-02-23 00:35:23 +00:00
|
|
|
if (!zone_spans_pfn(zone, end_pfn))
|
2007-10-16 08:25:51 +00:00
|
|
|
return 0;
|
|
|
|
|
2021-04-30 06:01:36 +00:00
|
|
|
return move_freepages(zone, start_pfn, end_pfn, migratetype,
|
mm, page_alloc: count movable pages when stealing from pageblock
When stealing pages from pageblock of a different migratetype, we count
how many free pages were stolen, and change the pageblock's migratetype
if more than half of the pageblock was free. This might be too
conservative, as there might be other pages that are not free, but were
allocated with the same migratetype as our allocation requested.
While we cannot determine the migratetype of allocated pages precisely
(at least without the page_owner functionality enabled), we can count
pages that compaction would try to isolate for migration - those are
either on LRU or __PageMovable(). The rest can be assumed to be
MIGRATE_RECLAIMABLE or MIGRATE_UNMOVABLE, which we cannot easily
distinguish. This counting can be done as part of free page stealing
with little additional overhead.
The page stealing code is changed so that it considers free pages plus
pages of the "good" migratetype for the decision whether to change
pageblock's migratetype.
The result should be more accurate migratetype of pageblocks wrt the
actual pages in the pageblocks, when stealing from semi-occupied
pageblocks. This should help the efficiency of page grouping by
mobility.
In testing based on 4.9 kernel with stress-highalloc from mmtests
configured for order-4 GFP_KERNEL allocations, this patch has reduced
the number of unmovable allocations falling back to movable pageblocks
by 47%. The number of movable allocations falling back to other
pageblocks are increased by 55%, but these events don't cause permanent
fragmentation, so the tradeoff should be positive. Later patches also
offset the movable fallback increase to some extent.
[akpm@linux-foundation.org: merge fix]
Link: http://lkml.kernel.org/r/20170307131545.28577-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 22:54:40 +00:00
|
|
|
num_movable);
|
2007-10-16 08:25:51 +00:00
|
|
|
}
|
|
|
|
|
2009-09-22 00:02:31 +00:00
|
|
|
static void change_pageblock_range(struct page *pageblock_page,
|
|
|
|
int start_order, int migratetype)
|
|
|
|
{
|
|
|
|
int nr_pageblocks = 1 << (start_order - pageblock_order);
|
|
|
|
|
|
|
|
while (nr_pageblocks--) {
|
|
|
|
set_pageblock_migratetype(pageblock_page, migratetype);
|
|
|
|
pageblock_page += pageblock_nr_pages;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
mm/page_allo.c: restructure free-page stealing code and fix a bug
The free-page stealing code in __rmqueue_fallback() is somewhat hard to
follow, and has an incredible amount of subtlety hidden inside!
First off, there is a minor bug in the reporting of change-of-ownership of
pageblocks. Under some conditions, we try to move upto
'pageblock_nr_pages' no. of pages to the preferred allocation list. But
we change the ownership of that pageblock to the preferred type only if we
manage to successfully move atleast half of that pageblock (or if
page_group_by_mobility_disabled is set).
However, the current code ignores the latter part and sets the
'migratetype' variable to the preferred type, irrespective of whether we
actually changed the pageblock migratetype of that block or not. So, the
page_alloc_extfrag tracepoint can end up printing incorrect info (i.e.,
'change_ownership' might be shown as 1 when it must have been 0).
So fixing this involves moving the update of the 'migratetype' variable to
the right place. But looking closer, we observe that the 'migratetype'
variable is used subsequently for checks such as "is_migrate_cma()".
Obviously the intent there is to check if the *fallback* type is
MIGRATE_CMA, but since we already set the 'migratetype' variable to
start_migratetype, we end up checking if the *preferred* type is
MIGRATE_CMA!!
To make things more interesting, this actually doesn't cause a bug in
practice, because we never change *anything* if the fallback type is CMA.
So, restructure the code in such a way that it is trivial to understand
what is going on, and also fix the above mentioned bug. And while at it,
also add a comment explaining the subtlety behind the migratetype used in
the call to expand().
[akpm@linux-foundation.org: remove unneeded `inline', small coding-style fix]
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Cody P Schafer <cody@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:35 +00:00
|
|
|
/*
|
mm: more aggressive page stealing for UNMOVABLE allocations
When allocation falls back to stealing free pages of another migratetype,
it can decide to steal extra pages, or even the whole pageblock in order
to reduce fragmentation, which could happen if further allocation
fallbacks pick a different pageblock. In try_to_steal_freepages(), one of
the situations where extra pages are stolen happens when we are trying to
allocate a MIGRATE_RECLAIMABLE page.
However, MIGRATE_UNMOVABLE allocations are not treated the same way,
although spreading such allocation over multiple fallback pageblocks is
arguably even worse than it is for RECLAIMABLE allocations. To minimize
fragmentation, we should minimize the number of such fallbacks, and thus
steal as much as is possible from each fallback pageblock.
Note that in theory this might put more pressure on movable pageblocks and
cause movable allocations to steal back from unmovable pageblocks.
However, movable allocations are not as aggressive with stealing, and do
not cause permanent fragmentation, so the tradeoff is reasonable, and
evaluation seems to support the change.
This patch thus adds a check for MIGRATE_UNMOVABLE to the decision to
steal extra free pages. When evaluating with stress-highalloc from
mmtests, this has reduced the number of MIGRATE_UNMOVABLE fallbacks to
roughly 1/6. The number of these fallbacks stealing from MIGRATE_MOVABLE
block is reduced to 1/3. There was no observation of growing number of
unmovable pageblocks over time, and also not of increased movable
allocation fallbacks.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 23:28:21 +00:00
|
|
|
* When we are falling back to another migratetype during allocation, try to
|
|
|
|
* steal extra free pages from the same pageblocks to satisfy further
|
|
|
|
* allocations, instead of polluting multiple pageblocks.
|
|
|
|
*
|
|
|
|
* If we are stealing a relatively large buddy page, it is likely there will
|
|
|
|
* be more free pages in the pageblock, so try to steal them all. For
|
|
|
|
* reclaimable and unmovable allocations, we steal regardless of page size,
|
|
|
|
* as fragmentation caused by those allocations polluting movable pageblocks
|
|
|
|
* is worse than movable allocations stealing from unmovable and reclaimable
|
|
|
|
* pageblocks.
|
mm/page_allo.c: restructure free-page stealing code and fix a bug
The free-page stealing code in __rmqueue_fallback() is somewhat hard to
follow, and has an incredible amount of subtlety hidden inside!
First off, there is a minor bug in the reporting of change-of-ownership of
pageblocks. Under some conditions, we try to move upto
'pageblock_nr_pages' no. of pages to the preferred allocation list. But
we change the ownership of that pageblock to the preferred type only if we
manage to successfully move atleast half of that pageblock (or if
page_group_by_mobility_disabled is set).
However, the current code ignores the latter part and sets the
'migratetype' variable to the preferred type, irrespective of whether we
actually changed the pageblock migratetype of that block or not. So, the
page_alloc_extfrag tracepoint can end up printing incorrect info (i.e.,
'change_ownership' might be shown as 1 when it must have been 0).
So fixing this involves moving the update of the 'migratetype' variable to
the right place. But looking closer, we observe that the 'migratetype'
variable is used subsequently for checks such as "is_migrate_cma()".
Obviously the intent there is to check if the *fallback* type is
MIGRATE_CMA, but since we already set the 'migratetype' variable to
start_migratetype, we end up checking if the *preferred* type is
MIGRATE_CMA!!
To make things more interesting, this actually doesn't cause a bug in
practice, because we never change *anything* if the fallback type is CMA.
So, restructure the code in such a way that it is trivial to understand
what is going on, and also fix the above mentioned bug. And while at it,
also add a comment explaining the subtlety behind the migratetype used in
the call to expand().
[akpm@linux-foundation.org: remove unneeded `inline', small coding-style fix]
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Cody P Schafer <cody@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:35 +00:00
|
|
|
*/
|
2015-04-14 22:45:18 +00:00
|
|
|
static bool can_steal_fallback(unsigned int order, int start_mt)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* Leaving this order check is intended, although there is
|
|
|
|
* relaxed order check in next check. The reason is that
|
|
|
|
* we can actually steal whole pageblock if this condition met,
|
|
|
|
* but, below check doesn't guarantee it and that is just heuristic
|
|
|
|
* so could be changed anytime.
|
|
|
|
*/
|
|
|
|
if (order >= pageblock_order)
|
|
|
|
return true;
|
|
|
|
|
|
|
|
if (order >= pageblock_order / 2 ||
|
|
|
|
start_mt == MIGRATE_RECLAIMABLE ||
|
|
|
|
start_mt == MIGRATE_UNMOVABLE ||
|
|
|
|
page_group_by_mobility_disabled)
|
|
|
|
return true;
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2020-12-15 03:12:15 +00:00
|
|
|
static inline bool boost_watermark(struct zone *zone)
|
mm: reclaim small amounts of memory when an external fragmentation event occurs
An external fragmentation event was previously described as
When the page allocator fragments memory, it records the event using
the mm_page_alloc_extfrag event. If the fallback_order is smaller
than a pageblock order (order-9 on 64-bit x86) then it's considered
an event that will cause external fragmentation issues in the future.
The kernel reduces the probability of such events by increasing the
watermark sizes by calling set_recommended_min_free_kbytes early in the
lifetime of the system. This works reasonably well in general but if
there are enough sparsely populated pageblocks then the problem can still
occur as enough memory is free overall and kswapd stays asleep.
This patch introduces a watermark_boost_factor sysctl that allows a zone
watermark to be temporarily boosted when an external fragmentation causing
events occurs. The boosting will stall allocations that would decrease
free memory below the boosted low watermark and kswapd is woken if the
calling context allows to reclaim an amount of memory relative to the size
of the high watermark and the watermark_boost_factor until the boost is
cleared. When kswapd finishes, it wakes kcompactd at the pageblock order
to clean some of the pageblocks that may have been affected by the
fragmentation event. kswapd avoids any writeback, slab shrinkage and swap
from reclaim context during this operation to avoid excessive system
disruption in the name of fragmentation avoidance. Care is taken so that
kswapd will do normal reclaim work if the system is really low on memory.
This was evaluated using the same workloads as "mm, page_alloc: Spread
allocations across zones before introducing fragmentation".
1-socket Skylake machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 1 THP allocating thread
--------------------------------------
4.20-rc3 extfrag events < order 9: 804694
4.20-rc3+patch: 408912 (49% reduction)
4.20-rc3+patch1-4: 18421 (98% reduction)
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Amean fault-base-1 653.58 ( 0.00%) 652.71 ( 0.13%)
Amean fault-huge-1 0.00 ( 0.00%) 178.93 * -99.00%*
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Percentage huge-1 0.00 ( 0.00%) 5.12 ( 100.00%)
Note that external fragmentation causing events are massively reduced by
this path whether in comparison to the previous kernel or the vanilla
kernel. The fault latency for huge pages appears to be increased but that
is only because THP allocations were successful with the patch applied.
1-socket Skylake machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 291392
4.20-rc3+patch: 191187 (34% reduction)
4.20-rc3+patch1-4: 13464 (95% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Min fault-base-1 912.00 ( 0.00%) 905.00 ( 0.77%)
Min fault-huge-1 127.00 ( 0.00%) 135.00 ( -6.30%)
Amean fault-base-1 1467.55 ( 0.00%) 1481.67 ( -0.96%)
Amean fault-huge-1 1127.11 ( 0.00%) 1063.88 * 5.61%*
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Percentage huge-1 77.64 ( 0.00%) 83.46 ( 7.49%)
As before, massive reduction in external fragmentation events, some jitter
on latencies and an increase in THP allocation success rates.
2-socket Haswell machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 5 THP allocating threads
----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 215698
4.20-rc3+patch: 200210 (7% reduction)
4.20-rc3+patch1-4: 14263 (93% reduction)
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Amean fault-base-5 1346.45 ( 0.00%) 1306.87 ( 2.94%)
Amean fault-huge-5 3418.60 ( 0.00%) 1348.94 ( 60.54%)
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Percentage huge-5 0.78 ( 0.00%) 7.91 ( 910.64%)
There is a 93% reduction in fragmentation causing events, there is a big
reduction in the huge page fault latency and allocation success rate is
higher.
2-socket Haswell machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 166352
4.20-rc3+patch: 147463 (11% reduction)
4.20-rc3+patch1-4: 11095 (93% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Amean fault-base-5 6217.43 ( 0.00%) 7419.67 * -19.34%*
Amean fault-huge-5 3163.33 ( 0.00%) 3263.80 ( -3.18%)
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Percentage huge-5 95.14 ( 0.00%) 87.98 ( -7.53%)
There is a large reduction in fragmentation events with some jitter around
the latencies and success rates. As before, the high THP allocation
success rate does mean the system is under a lot of pressure. However, as
the fragmentation events are reduced, it would be expected that the
long-term allocation success rate would be higher.
Link: http://lkml.kernel.org/r/20181123114528.28802-5-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 08:35:52 +00:00
|
|
|
{
|
|
|
|
unsigned long max_boost;
|
|
|
|
|
|
|
|
if (!watermark_boost_factor)
|
2020-12-15 03:12:15 +00:00
|
|
|
return false;
|
mm: limit boost_watermark on small zones
Commit 1c30844d2dfe ("mm: reclaim small amounts of memory when an
external fragmentation event occurs") adds a boost_watermark() function
which increases the min watermark in a zone by at least
pageblock_nr_pages or the number of pages in a page block.
On Arm64, with 64K pages and 512M huge pages, this is 8192 pages or
512M. It does this regardless of the number of managed pages managed in
the zone or the likelihood of success.
This can put the zone immediately under water in terms of allocating
pages from the zone, and can cause a small machine to fail immediately
due to OoM. Unlike set_recommended_min_free_kbytes(), which
substantially increases min_free_kbytes and is tied to THP,
boost_watermark() can be called even if THP is not active.
The problem is most likely to appear on architectures such as Arm64
where pageblock_nr_pages is very large.
It is desirable to run the kdump capture kernel in as small a space as
possible to avoid wasting memory. In some architectures, such as Arm64,
there are restrictions on where the capture kernel can run, and
therefore, the space available. A capture kernel running in 768M can
fail due to OoM immediately after boost_watermark() sets the min in zone
DMA32, where most of the memory is, to 512M. It fails even though there
is over 500M of free memory. With boost_watermark() suppressed, the
capture kernel can run successfully in 448M.
This patch limits boost_watermark() to boosting a zone's min watermark
only when there are enough pages that the boost will produce positive
results. In this case that is estimated to be four times as many pages
as pageblock_nr_pages.
Mel said:
: There is no harm in marking it stable. Clearly it does not happen very
: often but it's not impossible. 32-bit x86 is a lot less common now
: which would previously have been vulnerable to triggering this easily.
: ppc64 has a larger base page size but typically only has one zone.
: arm64 is likely the most vulnerable, particularly when CMA is
: configured with a small movable zone.
Fixes: 1c30844d2dfe ("mm: reclaim small amounts of memory when an external fragmentation event occurs")
Signed-off-by: Henry Willard <henry.willard@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/1588294148-6586-1-git-send-email-henry.willard@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-05-08 01:36:27 +00:00
|
|
|
/*
|
|
|
|
* Don't bother in zones that are unlikely to produce results.
|
|
|
|
* On small machines, including kdump capture kernels running
|
|
|
|
* in a small area, boosting the watermark can cause an out of
|
|
|
|
* memory situation immediately.
|
|
|
|
*/
|
|
|
|
if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
|
2020-12-15 03:12:15 +00:00
|
|
|
return false;
|
mm: reclaim small amounts of memory when an external fragmentation event occurs
An external fragmentation event was previously described as
When the page allocator fragments memory, it records the event using
the mm_page_alloc_extfrag event. If the fallback_order is smaller
than a pageblock order (order-9 on 64-bit x86) then it's considered
an event that will cause external fragmentation issues in the future.
The kernel reduces the probability of such events by increasing the
watermark sizes by calling set_recommended_min_free_kbytes early in the
lifetime of the system. This works reasonably well in general but if
there are enough sparsely populated pageblocks then the problem can still
occur as enough memory is free overall and kswapd stays asleep.
This patch introduces a watermark_boost_factor sysctl that allows a zone
watermark to be temporarily boosted when an external fragmentation causing
events occurs. The boosting will stall allocations that would decrease
free memory below the boosted low watermark and kswapd is woken if the
calling context allows to reclaim an amount of memory relative to the size
of the high watermark and the watermark_boost_factor until the boost is
cleared. When kswapd finishes, it wakes kcompactd at the pageblock order
to clean some of the pageblocks that may have been affected by the
fragmentation event. kswapd avoids any writeback, slab shrinkage and swap
from reclaim context during this operation to avoid excessive system
disruption in the name of fragmentation avoidance. Care is taken so that
kswapd will do normal reclaim work if the system is really low on memory.
This was evaluated using the same workloads as "mm, page_alloc: Spread
allocations across zones before introducing fragmentation".
1-socket Skylake machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 1 THP allocating thread
--------------------------------------
4.20-rc3 extfrag events < order 9: 804694
4.20-rc3+patch: 408912 (49% reduction)
4.20-rc3+patch1-4: 18421 (98% reduction)
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Amean fault-base-1 653.58 ( 0.00%) 652.71 ( 0.13%)
Amean fault-huge-1 0.00 ( 0.00%) 178.93 * -99.00%*
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Percentage huge-1 0.00 ( 0.00%) 5.12 ( 100.00%)
Note that external fragmentation causing events are massively reduced by
this path whether in comparison to the previous kernel or the vanilla
kernel. The fault latency for huge pages appears to be increased but that
is only because THP allocations were successful with the patch applied.
1-socket Skylake machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 291392
4.20-rc3+patch: 191187 (34% reduction)
4.20-rc3+patch1-4: 13464 (95% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Min fault-base-1 912.00 ( 0.00%) 905.00 ( 0.77%)
Min fault-huge-1 127.00 ( 0.00%) 135.00 ( -6.30%)
Amean fault-base-1 1467.55 ( 0.00%) 1481.67 ( -0.96%)
Amean fault-huge-1 1127.11 ( 0.00%) 1063.88 * 5.61%*
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Percentage huge-1 77.64 ( 0.00%) 83.46 ( 7.49%)
As before, massive reduction in external fragmentation events, some jitter
on latencies and an increase in THP allocation success rates.
2-socket Haswell machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 5 THP allocating threads
----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 215698
4.20-rc3+patch: 200210 (7% reduction)
4.20-rc3+patch1-4: 14263 (93% reduction)
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Amean fault-base-5 1346.45 ( 0.00%) 1306.87 ( 2.94%)
Amean fault-huge-5 3418.60 ( 0.00%) 1348.94 ( 60.54%)
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Percentage huge-5 0.78 ( 0.00%) 7.91 ( 910.64%)
There is a 93% reduction in fragmentation causing events, there is a big
reduction in the huge page fault latency and allocation success rate is
higher.
2-socket Haswell machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 166352
4.20-rc3+patch: 147463 (11% reduction)
4.20-rc3+patch1-4: 11095 (93% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Amean fault-base-5 6217.43 ( 0.00%) 7419.67 * -19.34%*
Amean fault-huge-5 3163.33 ( 0.00%) 3263.80 ( -3.18%)
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Percentage huge-5 95.14 ( 0.00%) 87.98 ( -7.53%)
There is a large reduction in fragmentation events with some jitter around
the latencies and success rates. As before, the high THP allocation
success rate does mean the system is under a lot of pressure. However, as
the fragmentation events are reduced, it would be expected that the
long-term allocation success rate would be higher.
Link: http://lkml.kernel.org/r/20181123114528.28802-5-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 08:35:52 +00:00
|
|
|
|
|
|
|
max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
|
|
|
|
watermark_boost_factor, 10000);
|
2019-02-21 06:19:49 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* high watermark may be uninitialised if fragmentation occurs
|
|
|
|
* very early in boot so do not boost. We do not fall
|
|
|
|
* through and boost by pageblock_nr_pages as failing
|
|
|
|
* allocations that early means that reclaim is not going
|
|
|
|
* to help and it may even be impossible to reclaim the
|
|
|
|
* boosted watermark resulting in a hang.
|
|
|
|
*/
|
|
|
|
if (!max_boost)
|
2020-12-15 03:12:15 +00:00
|
|
|
return false;
|
2019-02-21 06:19:49 +00:00
|
|
|
|
mm: reclaim small amounts of memory when an external fragmentation event occurs
An external fragmentation event was previously described as
When the page allocator fragments memory, it records the event using
the mm_page_alloc_extfrag event. If the fallback_order is smaller
than a pageblock order (order-9 on 64-bit x86) then it's considered
an event that will cause external fragmentation issues in the future.
The kernel reduces the probability of such events by increasing the
watermark sizes by calling set_recommended_min_free_kbytes early in the
lifetime of the system. This works reasonably well in general but if
there are enough sparsely populated pageblocks then the problem can still
occur as enough memory is free overall and kswapd stays asleep.
This patch introduces a watermark_boost_factor sysctl that allows a zone
watermark to be temporarily boosted when an external fragmentation causing
events occurs. The boosting will stall allocations that would decrease
free memory below the boosted low watermark and kswapd is woken if the
calling context allows to reclaim an amount of memory relative to the size
of the high watermark and the watermark_boost_factor until the boost is
cleared. When kswapd finishes, it wakes kcompactd at the pageblock order
to clean some of the pageblocks that may have been affected by the
fragmentation event. kswapd avoids any writeback, slab shrinkage and swap
from reclaim context during this operation to avoid excessive system
disruption in the name of fragmentation avoidance. Care is taken so that
kswapd will do normal reclaim work if the system is really low on memory.
This was evaluated using the same workloads as "mm, page_alloc: Spread
allocations across zones before introducing fragmentation".
1-socket Skylake machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 1 THP allocating thread
--------------------------------------
4.20-rc3 extfrag events < order 9: 804694
4.20-rc3+patch: 408912 (49% reduction)
4.20-rc3+patch1-4: 18421 (98% reduction)
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Amean fault-base-1 653.58 ( 0.00%) 652.71 ( 0.13%)
Amean fault-huge-1 0.00 ( 0.00%) 178.93 * -99.00%*
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Percentage huge-1 0.00 ( 0.00%) 5.12 ( 100.00%)
Note that external fragmentation causing events are massively reduced by
this path whether in comparison to the previous kernel or the vanilla
kernel. The fault latency for huge pages appears to be increased but that
is only because THP allocations were successful with the patch applied.
1-socket Skylake machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 291392
4.20-rc3+patch: 191187 (34% reduction)
4.20-rc3+patch1-4: 13464 (95% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Min fault-base-1 912.00 ( 0.00%) 905.00 ( 0.77%)
Min fault-huge-1 127.00 ( 0.00%) 135.00 ( -6.30%)
Amean fault-base-1 1467.55 ( 0.00%) 1481.67 ( -0.96%)
Amean fault-huge-1 1127.11 ( 0.00%) 1063.88 * 5.61%*
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Percentage huge-1 77.64 ( 0.00%) 83.46 ( 7.49%)
As before, massive reduction in external fragmentation events, some jitter
on latencies and an increase in THP allocation success rates.
2-socket Haswell machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 5 THP allocating threads
----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 215698
4.20-rc3+patch: 200210 (7% reduction)
4.20-rc3+patch1-4: 14263 (93% reduction)
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Amean fault-base-5 1346.45 ( 0.00%) 1306.87 ( 2.94%)
Amean fault-huge-5 3418.60 ( 0.00%) 1348.94 ( 60.54%)
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Percentage huge-5 0.78 ( 0.00%) 7.91 ( 910.64%)
There is a 93% reduction in fragmentation causing events, there is a big
reduction in the huge page fault latency and allocation success rate is
higher.
2-socket Haswell machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 166352
4.20-rc3+patch: 147463 (11% reduction)
4.20-rc3+patch1-4: 11095 (93% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Amean fault-base-5 6217.43 ( 0.00%) 7419.67 * -19.34%*
Amean fault-huge-5 3163.33 ( 0.00%) 3263.80 ( -3.18%)
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Percentage huge-5 95.14 ( 0.00%) 87.98 ( -7.53%)
There is a large reduction in fragmentation events with some jitter around
the latencies and success rates. As before, the high THP allocation
success rate does mean the system is under a lot of pressure. However, as
the fragmentation events are reduced, it would be expected that the
long-term allocation success rate would be higher.
Link: http://lkml.kernel.org/r/20181123114528.28802-5-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 08:35:52 +00:00
|
|
|
max_boost = max(pageblock_nr_pages, max_boost);
|
|
|
|
|
|
|
|
zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
|
|
|
|
max_boost);
|
2020-12-15 03:12:15 +00:00
|
|
|
|
|
|
|
return true;
|
mm: reclaim small amounts of memory when an external fragmentation event occurs
An external fragmentation event was previously described as
When the page allocator fragments memory, it records the event using
the mm_page_alloc_extfrag event. If the fallback_order is smaller
than a pageblock order (order-9 on 64-bit x86) then it's considered
an event that will cause external fragmentation issues in the future.
The kernel reduces the probability of such events by increasing the
watermark sizes by calling set_recommended_min_free_kbytes early in the
lifetime of the system. This works reasonably well in general but if
there are enough sparsely populated pageblocks then the problem can still
occur as enough memory is free overall and kswapd stays asleep.
This patch introduces a watermark_boost_factor sysctl that allows a zone
watermark to be temporarily boosted when an external fragmentation causing
events occurs. The boosting will stall allocations that would decrease
free memory below the boosted low watermark and kswapd is woken if the
calling context allows to reclaim an amount of memory relative to the size
of the high watermark and the watermark_boost_factor until the boost is
cleared. When kswapd finishes, it wakes kcompactd at the pageblock order
to clean some of the pageblocks that may have been affected by the
fragmentation event. kswapd avoids any writeback, slab shrinkage and swap
from reclaim context during this operation to avoid excessive system
disruption in the name of fragmentation avoidance. Care is taken so that
kswapd will do normal reclaim work if the system is really low on memory.
This was evaluated using the same workloads as "mm, page_alloc: Spread
allocations across zones before introducing fragmentation".
1-socket Skylake machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 1 THP allocating thread
--------------------------------------
4.20-rc3 extfrag events < order 9: 804694
4.20-rc3+patch: 408912 (49% reduction)
4.20-rc3+patch1-4: 18421 (98% reduction)
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Amean fault-base-1 653.58 ( 0.00%) 652.71 ( 0.13%)
Amean fault-huge-1 0.00 ( 0.00%) 178.93 * -99.00%*
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Percentage huge-1 0.00 ( 0.00%) 5.12 ( 100.00%)
Note that external fragmentation causing events are massively reduced by
this path whether in comparison to the previous kernel or the vanilla
kernel. The fault latency for huge pages appears to be increased but that
is only because THP allocations were successful with the patch applied.
1-socket Skylake machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 291392
4.20-rc3+patch: 191187 (34% reduction)
4.20-rc3+patch1-4: 13464 (95% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Min fault-base-1 912.00 ( 0.00%) 905.00 ( 0.77%)
Min fault-huge-1 127.00 ( 0.00%) 135.00 ( -6.30%)
Amean fault-base-1 1467.55 ( 0.00%) 1481.67 ( -0.96%)
Amean fault-huge-1 1127.11 ( 0.00%) 1063.88 * 5.61%*
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Percentage huge-1 77.64 ( 0.00%) 83.46 ( 7.49%)
As before, massive reduction in external fragmentation events, some jitter
on latencies and an increase in THP allocation success rates.
2-socket Haswell machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 5 THP allocating threads
----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 215698
4.20-rc3+patch: 200210 (7% reduction)
4.20-rc3+patch1-4: 14263 (93% reduction)
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Amean fault-base-5 1346.45 ( 0.00%) 1306.87 ( 2.94%)
Amean fault-huge-5 3418.60 ( 0.00%) 1348.94 ( 60.54%)
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Percentage huge-5 0.78 ( 0.00%) 7.91 ( 910.64%)
There is a 93% reduction in fragmentation causing events, there is a big
reduction in the huge page fault latency and allocation success rate is
higher.
2-socket Haswell machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 166352
4.20-rc3+patch: 147463 (11% reduction)
4.20-rc3+patch1-4: 11095 (93% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Amean fault-base-5 6217.43 ( 0.00%) 7419.67 * -19.34%*
Amean fault-huge-5 3163.33 ( 0.00%) 3263.80 ( -3.18%)
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Percentage huge-5 95.14 ( 0.00%) 87.98 ( -7.53%)
There is a large reduction in fragmentation events with some jitter around
the latencies and success rates. As before, the high THP allocation
success rate does mean the system is under a lot of pressure. However, as
the fragmentation events are reduced, it would be expected that the
long-term allocation success rate would be higher.
Link: http://lkml.kernel.org/r/20181123114528.28802-5-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 08:35:52 +00:00
|
|
|
}
|
|
|
|
|
2015-04-14 22:45:18 +00:00
|
|
|
/*
|
|
|
|
* This function implements actual steal behaviour. If order is large enough,
|
|
|
|
* we can steal whole pageblock. If not, we first move freepages in this
|
mm, page_alloc: count movable pages when stealing from pageblock
When stealing pages from pageblock of a different migratetype, we count
how many free pages were stolen, and change the pageblock's migratetype
if more than half of the pageblock was free. This might be too
conservative, as there might be other pages that are not free, but were
allocated with the same migratetype as our allocation requested.
While we cannot determine the migratetype of allocated pages precisely
(at least without the page_owner functionality enabled), we can count
pages that compaction would try to isolate for migration - those are
either on LRU or __PageMovable(). The rest can be assumed to be
MIGRATE_RECLAIMABLE or MIGRATE_UNMOVABLE, which we cannot easily
distinguish. This counting can be done as part of free page stealing
with little additional overhead.
The page stealing code is changed so that it considers free pages plus
pages of the "good" migratetype for the decision whether to change
pageblock's migratetype.
The result should be more accurate migratetype of pageblocks wrt the
actual pages in the pageblocks, when stealing from semi-occupied
pageblocks. This should help the efficiency of page grouping by
mobility.
In testing based on 4.9 kernel with stress-highalloc from mmtests
configured for order-4 GFP_KERNEL allocations, this patch has reduced
the number of unmovable allocations falling back to movable pageblocks
by 47%. The number of movable allocations falling back to other
pageblocks are increased by 55%, but these events don't cause permanent
fragmentation, so the tradeoff should be positive. Later patches also
offset the movable fallback increase to some extent.
[akpm@linux-foundation.org: merge fix]
Link: http://lkml.kernel.org/r/20170307131545.28577-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 22:54:40 +00:00
|
|
|
* pageblock to our migratetype and determine how many already-allocated pages
|
|
|
|
* are there in the pageblock with a compatible migratetype. If at least half
|
|
|
|
* of pages are free or compatible, we can change migratetype of the pageblock
|
|
|
|
* itself, so pages freed in the future will be put on the correct free list.
|
2015-04-14 22:45:18 +00:00
|
|
|
*/
|
|
|
|
static void steal_suitable_fallback(struct zone *zone, struct page *page,
|
mm: reclaim small amounts of memory when an external fragmentation event occurs
An external fragmentation event was previously described as
When the page allocator fragments memory, it records the event using
the mm_page_alloc_extfrag event. If the fallback_order is smaller
than a pageblock order (order-9 on 64-bit x86) then it's considered
an event that will cause external fragmentation issues in the future.
The kernel reduces the probability of such events by increasing the
watermark sizes by calling set_recommended_min_free_kbytes early in the
lifetime of the system. This works reasonably well in general but if
there are enough sparsely populated pageblocks then the problem can still
occur as enough memory is free overall and kswapd stays asleep.
This patch introduces a watermark_boost_factor sysctl that allows a zone
watermark to be temporarily boosted when an external fragmentation causing
events occurs. The boosting will stall allocations that would decrease
free memory below the boosted low watermark and kswapd is woken if the
calling context allows to reclaim an amount of memory relative to the size
of the high watermark and the watermark_boost_factor until the boost is
cleared. When kswapd finishes, it wakes kcompactd at the pageblock order
to clean some of the pageblocks that may have been affected by the
fragmentation event. kswapd avoids any writeback, slab shrinkage and swap
from reclaim context during this operation to avoid excessive system
disruption in the name of fragmentation avoidance. Care is taken so that
kswapd will do normal reclaim work if the system is really low on memory.
This was evaluated using the same workloads as "mm, page_alloc: Spread
allocations across zones before introducing fragmentation".
1-socket Skylake machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 1 THP allocating thread
--------------------------------------
4.20-rc3 extfrag events < order 9: 804694
4.20-rc3+patch: 408912 (49% reduction)
4.20-rc3+patch1-4: 18421 (98% reduction)
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Amean fault-base-1 653.58 ( 0.00%) 652.71 ( 0.13%)
Amean fault-huge-1 0.00 ( 0.00%) 178.93 * -99.00%*
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Percentage huge-1 0.00 ( 0.00%) 5.12 ( 100.00%)
Note that external fragmentation causing events are massively reduced by
this path whether in comparison to the previous kernel or the vanilla
kernel. The fault latency for huge pages appears to be increased but that
is only because THP allocations were successful with the patch applied.
1-socket Skylake machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 291392
4.20-rc3+patch: 191187 (34% reduction)
4.20-rc3+patch1-4: 13464 (95% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Min fault-base-1 912.00 ( 0.00%) 905.00 ( 0.77%)
Min fault-huge-1 127.00 ( 0.00%) 135.00 ( -6.30%)
Amean fault-base-1 1467.55 ( 0.00%) 1481.67 ( -0.96%)
Amean fault-huge-1 1127.11 ( 0.00%) 1063.88 * 5.61%*
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Percentage huge-1 77.64 ( 0.00%) 83.46 ( 7.49%)
As before, massive reduction in external fragmentation events, some jitter
on latencies and an increase in THP allocation success rates.
2-socket Haswell machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 5 THP allocating threads
----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 215698
4.20-rc3+patch: 200210 (7% reduction)
4.20-rc3+patch1-4: 14263 (93% reduction)
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Amean fault-base-5 1346.45 ( 0.00%) 1306.87 ( 2.94%)
Amean fault-huge-5 3418.60 ( 0.00%) 1348.94 ( 60.54%)
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Percentage huge-5 0.78 ( 0.00%) 7.91 ( 910.64%)
There is a 93% reduction in fragmentation causing events, there is a big
reduction in the huge page fault latency and allocation success rate is
higher.
2-socket Haswell machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 166352
4.20-rc3+patch: 147463 (11% reduction)
4.20-rc3+patch1-4: 11095 (93% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Amean fault-base-5 6217.43 ( 0.00%) 7419.67 * -19.34%*
Amean fault-huge-5 3163.33 ( 0.00%) 3263.80 ( -3.18%)
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Percentage huge-5 95.14 ( 0.00%) 87.98 ( -7.53%)
There is a large reduction in fragmentation events with some jitter around
the latencies and success rates. As before, the high THP allocation
success rate does mean the system is under a lot of pressure. However, as
the fragmentation events are reduced, it would be expected that the
long-term allocation success rate would be higher.
Link: http://lkml.kernel.org/r/20181123114528.28802-5-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 08:35:52 +00:00
|
|
|
unsigned int alloc_flags, int start_type, bool whole_block)
|
mm/page_allo.c: restructure free-page stealing code and fix a bug
The free-page stealing code in __rmqueue_fallback() is somewhat hard to
follow, and has an incredible amount of subtlety hidden inside!
First off, there is a minor bug in the reporting of change-of-ownership of
pageblocks. Under some conditions, we try to move upto
'pageblock_nr_pages' no. of pages to the preferred allocation list. But
we change the ownership of that pageblock to the preferred type only if we
manage to successfully move atleast half of that pageblock (or if
page_group_by_mobility_disabled is set).
However, the current code ignores the latter part and sets the
'migratetype' variable to the preferred type, irrespective of whether we
actually changed the pageblock migratetype of that block or not. So, the
page_alloc_extfrag tracepoint can end up printing incorrect info (i.e.,
'change_ownership' might be shown as 1 when it must have been 0).
So fixing this involves moving the update of the 'migratetype' variable to
the right place. But looking closer, we observe that the 'migratetype'
variable is used subsequently for checks such as "is_migrate_cma()".
Obviously the intent there is to check if the *fallback* type is
MIGRATE_CMA, but since we already set the 'migratetype' variable to
start_migratetype, we end up checking if the *preferred* type is
MIGRATE_CMA!!
To make things more interesting, this actually doesn't cause a bug in
practice, because we never change *anything* if the fallback type is CMA.
So, restructure the code in such a way that it is trivial to understand
what is going on, and also fix the above mentioned bug. And while at it,
also add a comment explaining the subtlety behind the migratetype used in
the call to expand().
[akpm@linux-foundation.org: remove unneeded `inline', small coding-style fix]
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Cody P Schafer <cody@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:35 +00:00
|
|
|
{
|
2020-10-16 03:10:15 +00:00
|
|
|
unsigned int current_order = buddy_order(page);
|
mm, page_alloc: count movable pages when stealing from pageblock
When stealing pages from pageblock of a different migratetype, we count
how many free pages were stolen, and change the pageblock's migratetype
if more than half of the pageblock was free. This might be too
conservative, as there might be other pages that are not free, but were
allocated with the same migratetype as our allocation requested.
While we cannot determine the migratetype of allocated pages precisely
(at least without the page_owner functionality enabled), we can count
pages that compaction would try to isolate for migration - those are
either on LRU or __PageMovable(). The rest can be assumed to be
MIGRATE_RECLAIMABLE or MIGRATE_UNMOVABLE, which we cannot easily
distinguish. This counting can be done as part of free page stealing
with little additional overhead.
The page stealing code is changed so that it considers free pages plus
pages of the "good" migratetype for the decision whether to change
pageblock's migratetype.
The result should be more accurate migratetype of pageblocks wrt the
actual pages in the pageblocks, when stealing from semi-occupied
pageblocks. This should help the efficiency of page grouping by
mobility.
In testing based on 4.9 kernel with stress-highalloc from mmtests
configured for order-4 GFP_KERNEL allocations, this patch has reduced
the number of unmovable allocations falling back to movable pageblocks
by 47%. The number of movable allocations falling back to other
pageblocks are increased by 55%, but these events don't cause permanent
fragmentation, so the tradeoff should be positive. Later patches also
offset the movable fallback increase to some extent.
[akpm@linux-foundation.org: merge fix]
Link: http://lkml.kernel.org/r/20170307131545.28577-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 22:54:40 +00:00
|
|
|
int free_pages, movable_pages, alike_pages;
|
|
|
|
int old_block_type;
|
|
|
|
|
|
|
|
old_block_type = get_pageblock_migratetype(page);
|
mm/page_allo.c: restructure free-page stealing code and fix a bug
The free-page stealing code in __rmqueue_fallback() is somewhat hard to
follow, and has an incredible amount of subtlety hidden inside!
First off, there is a minor bug in the reporting of change-of-ownership of
pageblocks. Under some conditions, we try to move upto
'pageblock_nr_pages' no. of pages to the preferred allocation list. But
we change the ownership of that pageblock to the preferred type only if we
manage to successfully move atleast half of that pageblock (or if
page_group_by_mobility_disabled is set).
However, the current code ignores the latter part and sets the
'migratetype' variable to the preferred type, irrespective of whether we
actually changed the pageblock migratetype of that block or not. So, the
page_alloc_extfrag tracepoint can end up printing incorrect info (i.e.,
'change_ownership' might be shown as 1 when it must have been 0).
So fixing this involves moving the update of the 'migratetype' variable to
the right place. But looking closer, we observe that the 'migratetype'
variable is used subsequently for checks such as "is_migrate_cma()".
Obviously the intent there is to check if the *fallback* type is
MIGRATE_CMA, but since we already set the 'migratetype' variable to
start_migratetype, we end up checking if the *preferred* type is
MIGRATE_CMA!!
To make things more interesting, this actually doesn't cause a bug in
practice, because we never change *anything* if the fallback type is CMA.
So, restructure the code in such a way that it is trivial to understand
what is going on, and also fix the above mentioned bug. And while at it,
also add a comment explaining the subtlety behind the migratetype used in
the call to expand().
[akpm@linux-foundation.org: remove unneeded `inline', small coding-style fix]
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Cody P Schafer <cody@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:35 +00:00
|
|
|
|
2017-05-08 22:54:37 +00:00
|
|
|
/*
|
|
|
|
* This can happen due to races and we want to prevent broken
|
|
|
|
* highatomic accounting.
|
|
|
|
*/
|
mm, page_alloc: count movable pages when stealing from pageblock
When stealing pages from pageblock of a different migratetype, we count
how many free pages were stolen, and change the pageblock's migratetype
if more than half of the pageblock was free. This might be too
conservative, as there might be other pages that are not free, but were
allocated with the same migratetype as our allocation requested.
While we cannot determine the migratetype of allocated pages precisely
(at least without the page_owner functionality enabled), we can count
pages that compaction would try to isolate for migration - those are
either on LRU or __PageMovable(). The rest can be assumed to be
MIGRATE_RECLAIMABLE or MIGRATE_UNMOVABLE, which we cannot easily
distinguish. This counting can be done as part of free page stealing
with little additional overhead.
The page stealing code is changed so that it considers free pages plus
pages of the "good" migratetype for the decision whether to change
pageblock's migratetype.
The result should be more accurate migratetype of pageblocks wrt the
actual pages in the pageblocks, when stealing from semi-occupied
pageblocks. This should help the efficiency of page grouping by
mobility.
In testing based on 4.9 kernel with stress-highalloc from mmtests
configured for order-4 GFP_KERNEL allocations, this patch has reduced
the number of unmovable allocations falling back to movable pageblocks
by 47%. The number of movable allocations falling back to other
pageblocks are increased by 55%, but these events don't cause permanent
fragmentation, so the tradeoff should be positive. Later patches also
offset the movable fallback increase to some extent.
[akpm@linux-foundation.org: merge fix]
Link: http://lkml.kernel.org/r/20170307131545.28577-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 22:54:40 +00:00
|
|
|
if (is_migrate_highatomic(old_block_type))
|
2017-05-08 22:54:37 +00:00
|
|
|
goto single_page;
|
|
|
|
|
mm/page_allo.c: restructure free-page stealing code and fix a bug
The free-page stealing code in __rmqueue_fallback() is somewhat hard to
follow, and has an incredible amount of subtlety hidden inside!
First off, there is a minor bug in the reporting of change-of-ownership of
pageblocks. Under some conditions, we try to move upto
'pageblock_nr_pages' no. of pages to the preferred allocation list. But
we change the ownership of that pageblock to the preferred type only if we
manage to successfully move atleast half of that pageblock (or if
page_group_by_mobility_disabled is set).
However, the current code ignores the latter part and sets the
'migratetype' variable to the preferred type, irrespective of whether we
actually changed the pageblock migratetype of that block or not. So, the
page_alloc_extfrag tracepoint can end up printing incorrect info (i.e.,
'change_ownership' might be shown as 1 when it must have been 0).
So fixing this involves moving the update of the 'migratetype' variable to
the right place. But looking closer, we observe that the 'migratetype'
variable is used subsequently for checks such as "is_migrate_cma()".
Obviously the intent there is to check if the *fallback* type is
MIGRATE_CMA, but since we already set the 'migratetype' variable to
start_migratetype, we end up checking if the *preferred* type is
MIGRATE_CMA!!
To make things more interesting, this actually doesn't cause a bug in
practice, because we never change *anything* if the fallback type is CMA.
So, restructure the code in such a way that it is trivial to understand
what is going on, and also fix the above mentioned bug. And while at it,
also add a comment explaining the subtlety behind the migratetype used in
the call to expand().
[akpm@linux-foundation.org: remove unneeded `inline', small coding-style fix]
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Cody P Schafer <cody@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:35 +00:00
|
|
|
/* Take ownership for orders >= pageblock_order */
|
|
|
|
if (current_order >= pageblock_order) {
|
|
|
|
change_pageblock_range(page, current_order, start_type);
|
2017-05-08 22:54:37 +00:00
|
|
|
goto single_page;
|
mm/page_allo.c: restructure free-page stealing code and fix a bug
The free-page stealing code in __rmqueue_fallback() is somewhat hard to
follow, and has an incredible amount of subtlety hidden inside!
First off, there is a minor bug in the reporting of change-of-ownership of
pageblocks. Under some conditions, we try to move upto
'pageblock_nr_pages' no. of pages to the preferred allocation list. But
we change the ownership of that pageblock to the preferred type only if we
manage to successfully move atleast half of that pageblock (or if
page_group_by_mobility_disabled is set).
However, the current code ignores the latter part and sets the
'migratetype' variable to the preferred type, irrespective of whether we
actually changed the pageblock migratetype of that block or not. So, the
page_alloc_extfrag tracepoint can end up printing incorrect info (i.e.,
'change_ownership' might be shown as 1 when it must have been 0).
So fixing this involves moving the update of the 'migratetype' variable to
the right place. But looking closer, we observe that the 'migratetype'
variable is used subsequently for checks such as "is_migrate_cma()".
Obviously the intent there is to check if the *fallback* type is
MIGRATE_CMA, but since we already set the 'migratetype' variable to
start_migratetype, we end up checking if the *preferred* type is
MIGRATE_CMA!!
To make things more interesting, this actually doesn't cause a bug in
practice, because we never change *anything* if the fallback type is CMA.
So, restructure the code in such a way that it is trivial to understand
what is going on, and also fix the above mentioned bug. And while at it,
also add a comment explaining the subtlety behind the migratetype used in
the call to expand().
[akpm@linux-foundation.org: remove unneeded `inline', small coding-style fix]
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Cody P Schafer <cody@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:35 +00:00
|
|
|
}
|
|
|
|
|
mm: reclaim small amounts of memory when an external fragmentation event occurs
An external fragmentation event was previously described as
When the page allocator fragments memory, it records the event using
the mm_page_alloc_extfrag event. If the fallback_order is smaller
than a pageblock order (order-9 on 64-bit x86) then it's considered
an event that will cause external fragmentation issues in the future.
The kernel reduces the probability of such events by increasing the
watermark sizes by calling set_recommended_min_free_kbytes early in the
lifetime of the system. This works reasonably well in general but if
there are enough sparsely populated pageblocks then the problem can still
occur as enough memory is free overall and kswapd stays asleep.
This patch introduces a watermark_boost_factor sysctl that allows a zone
watermark to be temporarily boosted when an external fragmentation causing
events occurs. The boosting will stall allocations that would decrease
free memory below the boosted low watermark and kswapd is woken if the
calling context allows to reclaim an amount of memory relative to the size
of the high watermark and the watermark_boost_factor until the boost is
cleared. When kswapd finishes, it wakes kcompactd at the pageblock order
to clean some of the pageblocks that may have been affected by the
fragmentation event. kswapd avoids any writeback, slab shrinkage and swap
from reclaim context during this operation to avoid excessive system
disruption in the name of fragmentation avoidance. Care is taken so that
kswapd will do normal reclaim work if the system is really low on memory.
This was evaluated using the same workloads as "mm, page_alloc: Spread
allocations across zones before introducing fragmentation".
1-socket Skylake machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 1 THP allocating thread
--------------------------------------
4.20-rc3 extfrag events < order 9: 804694
4.20-rc3+patch: 408912 (49% reduction)
4.20-rc3+patch1-4: 18421 (98% reduction)
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Amean fault-base-1 653.58 ( 0.00%) 652.71 ( 0.13%)
Amean fault-huge-1 0.00 ( 0.00%) 178.93 * -99.00%*
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Percentage huge-1 0.00 ( 0.00%) 5.12 ( 100.00%)
Note that external fragmentation causing events are massively reduced by
this path whether in comparison to the previous kernel or the vanilla
kernel. The fault latency for huge pages appears to be increased but that
is only because THP allocations were successful with the patch applied.
1-socket Skylake machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 291392
4.20-rc3+patch: 191187 (34% reduction)
4.20-rc3+patch1-4: 13464 (95% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Min fault-base-1 912.00 ( 0.00%) 905.00 ( 0.77%)
Min fault-huge-1 127.00 ( 0.00%) 135.00 ( -6.30%)
Amean fault-base-1 1467.55 ( 0.00%) 1481.67 ( -0.96%)
Amean fault-huge-1 1127.11 ( 0.00%) 1063.88 * 5.61%*
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Percentage huge-1 77.64 ( 0.00%) 83.46 ( 7.49%)
As before, massive reduction in external fragmentation events, some jitter
on latencies and an increase in THP allocation success rates.
2-socket Haswell machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 5 THP allocating threads
----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 215698
4.20-rc3+patch: 200210 (7% reduction)
4.20-rc3+patch1-4: 14263 (93% reduction)
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Amean fault-base-5 1346.45 ( 0.00%) 1306.87 ( 2.94%)
Amean fault-huge-5 3418.60 ( 0.00%) 1348.94 ( 60.54%)
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Percentage huge-5 0.78 ( 0.00%) 7.91 ( 910.64%)
There is a 93% reduction in fragmentation causing events, there is a big
reduction in the huge page fault latency and allocation success rate is
higher.
2-socket Haswell machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 166352
4.20-rc3+patch: 147463 (11% reduction)
4.20-rc3+patch1-4: 11095 (93% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Amean fault-base-5 6217.43 ( 0.00%) 7419.67 * -19.34%*
Amean fault-huge-5 3163.33 ( 0.00%) 3263.80 ( -3.18%)
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Percentage huge-5 95.14 ( 0.00%) 87.98 ( -7.53%)
There is a large reduction in fragmentation events with some jitter around
the latencies and success rates. As before, the high THP allocation
success rate does mean the system is under a lot of pressure. However, as
the fragmentation events are reduced, it would be expected that the
long-term allocation success rate would be higher.
Link: http://lkml.kernel.org/r/20181123114528.28802-5-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 08:35:52 +00:00
|
|
|
/*
|
|
|
|
* Boost watermarks to increase reclaim pressure to reduce the
|
|
|
|
* likelihood of future fallbacks. Wake kswapd now as the node
|
|
|
|
* may be balanced overall and kswapd will not wake naturally.
|
|
|
|
*/
|
2020-12-15 03:12:15 +00:00
|
|
|
if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
|
mm, page_alloc: do not wake kswapd with zone lock held
syzbot reported the following regression in the latest merge window and
it was confirmed by Qian Cai that a similar bug was visible from a
different context.
======================================================
WARNING: possible circular locking dependency detected
4.20.0+ #297 Not tainted
------------------------------------------------------
syz-executor0/8529 is trying to acquire lock:
000000005e7fb829 (&pgdat->kswapd_wait){....}, at:
__wake_up_common_lock+0x19e/0x330 kernel/sched/wait.c:120
but task is already holding lock:
000000009bb7bae0 (&(&zone->lock)->rlock){-.-.}, at: spin_lock
include/linux/spinlock.h:329 [inline]
000000009bb7bae0 (&(&zone->lock)->rlock){-.-.}, at: rmqueue_bulk
mm/page_alloc.c:2548 [inline]
000000009bb7bae0 (&(&zone->lock)->rlock){-.-.}, at: __rmqueue_pcplist
mm/page_alloc.c:3021 [inline]
000000009bb7bae0 (&(&zone->lock)->rlock){-.-.}, at: rmqueue_pcplist
mm/page_alloc.c:3050 [inline]
000000009bb7bae0 (&(&zone->lock)->rlock){-.-.}, at: rmqueue
mm/page_alloc.c:3072 [inline]
000000009bb7bae0 (&(&zone->lock)->rlock){-.-.}, at:
get_page_from_freelist+0x1bae/0x52a0 mm/page_alloc.c:3491
It appears to be a false positive in that the only way the lock ordering
should be inverted is if kswapd is waking itself and the wakeup
allocates debugging objects which should already be allocated if it's
kswapd doing the waking. Nevertheless, the possibility exists and so
it's best to avoid the problem.
This patch flags a zone as needing a kswapd using the, surprisingly,
unused zone flag field. The flag is read without the lock held to do
the wakeup. It's possible that the flag setting context is not the same
as the flag clearing context or for small races to occur. However, each
race possibility is harmless and there is no visible degredation in
fragmentation treatment.
While zone->flag could have continued to be unused, there is potential
for moving some existing fields into the flags field instead.
Particularly read-mostly ones like zone->initialized and
zone->contiguous.
Link: http://lkml.kernel.org/r/20190103225712.GJ31517@techsingularity.net
Fixes: 1c30844d2dfe ("mm: reclaim small amounts of memory when an external fragmentation event occurs")
Reported-by: syzbot+93d94a001cfbce9e60e1@syzkaller.appspotmail.com
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Qian Cai <cai@lca.pw>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-08 23:23:39 +00:00
|
|
|
set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
|
mm: reclaim small amounts of memory when an external fragmentation event occurs
An external fragmentation event was previously described as
When the page allocator fragments memory, it records the event using
the mm_page_alloc_extfrag event. If the fallback_order is smaller
than a pageblock order (order-9 on 64-bit x86) then it's considered
an event that will cause external fragmentation issues in the future.
The kernel reduces the probability of such events by increasing the
watermark sizes by calling set_recommended_min_free_kbytes early in the
lifetime of the system. This works reasonably well in general but if
there are enough sparsely populated pageblocks then the problem can still
occur as enough memory is free overall and kswapd stays asleep.
This patch introduces a watermark_boost_factor sysctl that allows a zone
watermark to be temporarily boosted when an external fragmentation causing
events occurs. The boosting will stall allocations that would decrease
free memory below the boosted low watermark and kswapd is woken if the
calling context allows to reclaim an amount of memory relative to the size
of the high watermark and the watermark_boost_factor until the boost is
cleared. When kswapd finishes, it wakes kcompactd at the pageblock order
to clean some of the pageblocks that may have been affected by the
fragmentation event. kswapd avoids any writeback, slab shrinkage and swap
from reclaim context during this operation to avoid excessive system
disruption in the name of fragmentation avoidance. Care is taken so that
kswapd will do normal reclaim work if the system is really low on memory.
This was evaluated using the same workloads as "mm, page_alloc: Spread
allocations across zones before introducing fragmentation".
1-socket Skylake machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 1 THP allocating thread
--------------------------------------
4.20-rc3 extfrag events < order 9: 804694
4.20-rc3+patch: 408912 (49% reduction)
4.20-rc3+patch1-4: 18421 (98% reduction)
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Amean fault-base-1 653.58 ( 0.00%) 652.71 ( 0.13%)
Amean fault-huge-1 0.00 ( 0.00%) 178.93 * -99.00%*
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Percentage huge-1 0.00 ( 0.00%) 5.12 ( 100.00%)
Note that external fragmentation causing events are massively reduced by
this path whether in comparison to the previous kernel or the vanilla
kernel. The fault latency for huge pages appears to be increased but that
is only because THP allocations were successful with the patch applied.
1-socket Skylake machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 291392
4.20-rc3+patch: 191187 (34% reduction)
4.20-rc3+patch1-4: 13464 (95% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Min fault-base-1 912.00 ( 0.00%) 905.00 ( 0.77%)
Min fault-huge-1 127.00 ( 0.00%) 135.00 ( -6.30%)
Amean fault-base-1 1467.55 ( 0.00%) 1481.67 ( -0.96%)
Amean fault-huge-1 1127.11 ( 0.00%) 1063.88 * 5.61%*
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Percentage huge-1 77.64 ( 0.00%) 83.46 ( 7.49%)
As before, massive reduction in external fragmentation events, some jitter
on latencies and an increase in THP allocation success rates.
2-socket Haswell machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 5 THP allocating threads
----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 215698
4.20-rc3+patch: 200210 (7% reduction)
4.20-rc3+patch1-4: 14263 (93% reduction)
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Amean fault-base-5 1346.45 ( 0.00%) 1306.87 ( 2.94%)
Amean fault-huge-5 3418.60 ( 0.00%) 1348.94 ( 60.54%)
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Percentage huge-5 0.78 ( 0.00%) 7.91 ( 910.64%)
There is a 93% reduction in fragmentation causing events, there is a big
reduction in the huge page fault latency and allocation success rate is
higher.
2-socket Haswell machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 166352
4.20-rc3+patch: 147463 (11% reduction)
4.20-rc3+patch1-4: 11095 (93% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Amean fault-base-5 6217.43 ( 0.00%) 7419.67 * -19.34%*
Amean fault-huge-5 3163.33 ( 0.00%) 3263.80 ( -3.18%)
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Percentage huge-5 95.14 ( 0.00%) 87.98 ( -7.53%)
There is a large reduction in fragmentation events with some jitter around
the latencies and success rates. As before, the high THP allocation
success rate does mean the system is under a lot of pressure. However, as
the fragmentation events are reduced, it would be expected that the
long-term allocation success rate would be higher.
Link: http://lkml.kernel.org/r/20181123114528.28802-5-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 08:35:52 +00:00
|
|
|
|
2017-05-08 22:54:37 +00:00
|
|
|
/* We are not allowed to try stealing from the whole block */
|
|
|
|
if (!whole_block)
|
|
|
|
goto single_page;
|
|
|
|
|
mm, page_alloc: count movable pages when stealing from pageblock
When stealing pages from pageblock of a different migratetype, we count
how many free pages were stolen, and change the pageblock's migratetype
if more than half of the pageblock was free. This might be too
conservative, as there might be other pages that are not free, but were
allocated with the same migratetype as our allocation requested.
While we cannot determine the migratetype of allocated pages precisely
(at least without the page_owner functionality enabled), we can count
pages that compaction would try to isolate for migration - those are
either on LRU or __PageMovable(). The rest can be assumed to be
MIGRATE_RECLAIMABLE or MIGRATE_UNMOVABLE, which we cannot easily
distinguish. This counting can be done as part of free page stealing
with little additional overhead.
The page stealing code is changed so that it considers free pages plus
pages of the "good" migratetype for the decision whether to change
pageblock's migratetype.
The result should be more accurate migratetype of pageblocks wrt the
actual pages in the pageblocks, when stealing from semi-occupied
pageblocks. This should help the efficiency of page grouping by
mobility.
In testing based on 4.9 kernel with stress-highalloc from mmtests
configured for order-4 GFP_KERNEL allocations, this patch has reduced
the number of unmovable allocations falling back to movable pageblocks
by 47%. The number of movable allocations falling back to other
pageblocks are increased by 55%, but these events don't cause permanent
fragmentation, so the tradeoff should be positive. Later patches also
offset the movable fallback increase to some extent.
[akpm@linux-foundation.org: merge fix]
Link: http://lkml.kernel.org/r/20170307131545.28577-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 22:54:40 +00:00
|
|
|
free_pages = move_freepages_block(zone, page, start_type,
|
|
|
|
&movable_pages);
|
|
|
|
/*
|
|
|
|
* Determine how many pages are compatible with our allocation.
|
|
|
|
* For movable allocation, it's the number of movable pages which
|
|
|
|
* we just obtained. For other types it's a bit more tricky.
|
|
|
|
*/
|
|
|
|
if (start_type == MIGRATE_MOVABLE) {
|
|
|
|
alike_pages = movable_pages;
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* If we are falling back a RECLAIMABLE or UNMOVABLE allocation
|
|
|
|
* to MOVABLE pageblock, consider all non-movable pages as
|
|
|
|
* compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
|
|
|
|
* vice versa, be conservative since we can't distinguish the
|
|
|
|
* exact migratetype of non-movable pages.
|
|
|
|
*/
|
|
|
|
if (old_block_type == MIGRATE_MOVABLE)
|
|
|
|
alike_pages = pageblock_nr_pages
|
|
|
|
- (free_pages + movable_pages);
|
|
|
|
else
|
|
|
|
alike_pages = 0;
|
|
|
|
}
|
|
|
|
|
2017-05-08 22:54:37 +00:00
|
|
|
/* moving whole block can fail due to zone boundary conditions */
|
mm, page_alloc: count movable pages when stealing from pageblock
When stealing pages from pageblock of a different migratetype, we count
how many free pages were stolen, and change the pageblock's migratetype
if more than half of the pageblock was free. This might be too
conservative, as there might be other pages that are not free, but were
allocated with the same migratetype as our allocation requested.
While we cannot determine the migratetype of allocated pages precisely
(at least without the page_owner functionality enabled), we can count
pages that compaction would try to isolate for migration - those are
either on LRU or __PageMovable(). The rest can be assumed to be
MIGRATE_RECLAIMABLE or MIGRATE_UNMOVABLE, which we cannot easily
distinguish. This counting can be done as part of free page stealing
with little additional overhead.
The page stealing code is changed so that it considers free pages plus
pages of the "good" migratetype for the decision whether to change
pageblock's migratetype.
The result should be more accurate migratetype of pageblocks wrt the
actual pages in the pageblocks, when stealing from semi-occupied
pageblocks. This should help the efficiency of page grouping by
mobility.
In testing based on 4.9 kernel with stress-highalloc from mmtests
configured for order-4 GFP_KERNEL allocations, this patch has reduced
the number of unmovable allocations falling back to movable pageblocks
by 47%. The number of movable allocations falling back to other
pageblocks are increased by 55%, but these events don't cause permanent
fragmentation, so the tradeoff should be positive. Later patches also
offset the movable fallback increase to some extent.
[akpm@linux-foundation.org: merge fix]
Link: http://lkml.kernel.org/r/20170307131545.28577-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 22:54:40 +00:00
|
|
|
if (!free_pages)
|
2017-05-08 22:54:37 +00:00
|
|
|
goto single_page;
|
mm/page_allo.c: restructure free-page stealing code and fix a bug
The free-page stealing code in __rmqueue_fallback() is somewhat hard to
follow, and has an incredible amount of subtlety hidden inside!
First off, there is a minor bug in the reporting of change-of-ownership of
pageblocks. Under some conditions, we try to move upto
'pageblock_nr_pages' no. of pages to the preferred allocation list. But
we change the ownership of that pageblock to the preferred type only if we
manage to successfully move atleast half of that pageblock (or if
page_group_by_mobility_disabled is set).
However, the current code ignores the latter part and sets the
'migratetype' variable to the preferred type, irrespective of whether we
actually changed the pageblock migratetype of that block or not. So, the
page_alloc_extfrag tracepoint can end up printing incorrect info (i.e.,
'change_ownership' might be shown as 1 when it must have been 0).
So fixing this involves moving the update of the 'migratetype' variable to
the right place. But looking closer, we observe that the 'migratetype'
variable is used subsequently for checks such as "is_migrate_cma()".
Obviously the intent there is to check if the *fallback* type is
MIGRATE_CMA, but since we already set the 'migratetype' variable to
start_migratetype, we end up checking if the *preferred* type is
MIGRATE_CMA!!
To make things more interesting, this actually doesn't cause a bug in
practice, because we never change *anything* if the fallback type is CMA.
So, restructure the code in such a way that it is trivial to understand
what is going on, and also fix the above mentioned bug. And while at it,
also add a comment explaining the subtlety behind the migratetype used in
the call to expand().
[akpm@linux-foundation.org: remove unneeded `inline', small coding-style fix]
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Cody P Schafer <cody@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:35 +00:00
|
|
|
|
mm, page_alloc: count movable pages when stealing from pageblock
When stealing pages from pageblock of a different migratetype, we count
how many free pages were stolen, and change the pageblock's migratetype
if more than half of the pageblock was free. This might be too
conservative, as there might be other pages that are not free, but were
allocated with the same migratetype as our allocation requested.
While we cannot determine the migratetype of allocated pages precisely
(at least without the page_owner functionality enabled), we can count
pages that compaction would try to isolate for migration - those are
either on LRU or __PageMovable(). The rest can be assumed to be
MIGRATE_RECLAIMABLE or MIGRATE_UNMOVABLE, which we cannot easily
distinguish. This counting can be done as part of free page stealing
with little additional overhead.
The page stealing code is changed so that it considers free pages plus
pages of the "good" migratetype for the decision whether to change
pageblock's migratetype.
The result should be more accurate migratetype of pageblocks wrt the
actual pages in the pageblocks, when stealing from semi-occupied
pageblocks. This should help the efficiency of page grouping by
mobility.
In testing based on 4.9 kernel with stress-highalloc from mmtests
configured for order-4 GFP_KERNEL allocations, this patch has reduced
the number of unmovable allocations falling back to movable pageblocks
by 47%. The number of movable allocations falling back to other
pageblocks are increased by 55%, but these events don't cause permanent
fragmentation, so the tradeoff should be positive. Later patches also
offset the movable fallback increase to some extent.
[akpm@linux-foundation.org: merge fix]
Link: http://lkml.kernel.org/r/20170307131545.28577-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 22:54:40 +00:00
|
|
|
/*
|
|
|
|
* If a sufficient number of pages in the block are either free or of
|
|
|
|
* comparable migratability as our allocation, claim the whole block.
|
|
|
|
*/
|
|
|
|
if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
|
2015-04-14 22:45:18 +00:00
|
|
|
page_group_by_mobility_disabled)
|
|
|
|
set_pageblock_migratetype(page, start_type);
|
2017-05-08 22:54:37 +00:00
|
|
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
single_page:
|
2020-04-07 03:04:49 +00:00
|
|
|
move_to_free_list(page, zone, current_order, start_type);
|
2015-04-14 22:45:18 +00:00
|
|
|
}
|
|
|
|
|
mm/compaction: enhance compaction finish condition
Compaction has anti fragmentation algorithm. It is that freepage should
be more than pageblock order to finish the compaction if we don't find any
freepage in requested migratetype buddy list. This is for mitigating
fragmentation, but, there is a lack of migratetype consideration and it is
too excessive compared to page allocator's anti fragmentation algorithm.
Not considering migratetype would cause premature finish of compaction.
For example, if allocation request is for unmovable migratetype, freepage
with CMA migratetype doesn't help that allocation and compaction should
not be stopped. But, current logic regards this situation as compaction
is no longer needed, so finish the compaction.
Secondly, condition is too excessive compared to page allocator's logic.
We can steal freepage from other migratetype and change pageblock
migratetype on more relaxed conditions in page allocator. This is
designed to prevent fragmentation and we can use it here. Imposing hard
constraint only to the compaction doesn't help much in this case since
page allocator would cause fragmentation again.
To solve these problems, this patch borrows anti fragmentation logic from
page allocator. It will reduce premature compaction finish in some cases
and reduce excessive compaction work.
stress-highalloc test in mmtests with non movable order 7 allocation shows
considerable increase of compaction success rate.
Compaction success rate (Compaction success * 100 / Compaction stalls, %)
31.82 : 42.20
I tested it on non-reboot 5 runs stress-highalloc benchmark and found that
there is no more degradation on allocation success rate than before. That
roughly means that this patch doesn't result in more fragmentations.
Vlastimil suggests additional idea that we only test for fallbacks when
migration scanner has scanned a whole pageblock. It looked good for
fragmentation because chance of stealing increase due to making more free
pages in certain pageblock. So, I tested it, but, it results in decreased
compaction success rate, roughly 38.00. I guess the reason that if system
is low memory condition, watermark check could be failed due to not enough
order 0 free page and so, sometimes, we can't reach a fallback check
although migrate_pfn is aligned to pageblock_nr_pages. I can insert code
to cope with this situation but it makes code more complicated so I don't
include his idea at this patch.
[akpm@linux-foundation.org: fix CONFIG_CMA=n build]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-14 22:45:21 +00:00
|
|
|
/*
|
|
|
|
* Check whether there is a suitable fallback freepage with requested order.
|
|
|
|
* If only_stealable is true, this function returns fallback_mt only if
|
|
|
|
* we can steal other freepages all together. This would help to reduce
|
|
|
|
* fragmentation due to mixed migratetype pages in one pageblock.
|
|
|
|
*/
|
|
|
|
int find_suitable_fallback(struct free_area *area, unsigned int order,
|
|
|
|
int migratetype, bool only_stealable, bool *can_steal)
|
2015-04-14 22:45:18 +00:00
|
|
|
{
|
|
|
|
int i;
|
|
|
|
int fallback_mt;
|
|
|
|
|
|
|
|
if (area->nr_free == 0)
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
*can_steal = false;
|
2023-02-03 10:01:32 +00:00
|
|
|
for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
|
2015-04-14 22:45:18 +00:00
|
|
|
fallback_mt = fallbacks[migratetype][i];
|
2019-05-14 22:41:32 +00:00
|
|
|
if (free_area_empty(area, fallback_mt))
|
2015-04-14 22:45:18 +00:00
|
|
|
continue;
|
mm/page_allo.c: restructure free-page stealing code and fix a bug
The free-page stealing code in __rmqueue_fallback() is somewhat hard to
follow, and has an incredible amount of subtlety hidden inside!
First off, there is a minor bug in the reporting of change-of-ownership of
pageblocks. Under some conditions, we try to move upto
'pageblock_nr_pages' no. of pages to the preferred allocation list. But
we change the ownership of that pageblock to the preferred type only if we
manage to successfully move atleast half of that pageblock (or if
page_group_by_mobility_disabled is set).
However, the current code ignores the latter part and sets the
'migratetype' variable to the preferred type, irrespective of whether we
actually changed the pageblock migratetype of that block or not. So, the
page_alloc_extfrag tracepoint can end up printing incorrect info (i.e.,
'change_ownership' might be shown as 1 when it must have been 0).
So fixing this involves moving the update of the 'migratetype' variable to
the right place. But looking closer, we observe that the 'migratetype'
variable is used subsequently for checks such as "is_migrate_cma()".
Obviously the intent there is to check if the *fallback* type is
MIGRATE_CMA, but since we already set the 'migratetype' variable to
start_migratetype, we end up checking if the *preferred* type is
MIGRATE_CMA!!
To make things more interesting, this actually doesn't cause a bug in
practice, because we never change *anything* if the fallback type is CMA.
So, restructure the code in such a way that it is trivial to understand
what is going on, and also fix the above mentioned bug. And while at it,
also add a comment explaining the subtlety behind the migratetype used in
the call to expand().
[akpm@linux-foundation.org: remove unneeded `inline', small coding-style fix]
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Cody P Schafer <cody@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:35 +00:00
|
|
|
|
2015-04-14 22:45:18 +00:00
|
|
|
if (can_steal_fallback(order, migratetype))
|
|
|
|
*can_steal = true;
|
|
|
|
|
mm/compaction: enhance compaction finish condition
Compaction has anti fragmentation algorithm. It is that freepage should
be more than pageblock order to finish the compaction if we don't find any
freepage in requested migratetype buddy list. This is for mitigating
fragmentation, but, there is a lack of migratetype consideration and it is
too excessive compared to page allocator's anti fragmentation algorithm.
Not considering migratetype would cause premature finish of compaction.
For example, if allocation request is for unmovable migratetype, freepage
with CMA migratetype doesn't help that allocation and compaction should
not be stopped. But, current logic regards this situation as compaction
is no longer needed, so finish the compaction.
Secondly, condition is too excessive compared to page allocator's logic.
We can steal freepage from other migratetype and change pageblock
migratetype on more relaxed conditions in page allocator. This is
designed to prevent fragmentation and we can use it here. Imposing hard
constraint only to the compaction doesn't help much in this case since
page allocator would cause fragmentation again.
To solve these problems, this patch borrows anti fragmentation logic from
page allocator. It will reduce premature compaction finish in some cases
and reduce excessive compaction work.
stress-highalloc test in mmtests with non movable order 7 allocation shows
considerable increase of compaction success rate.
Compaction success rate (Compaction success * 100 / Compaction stalls, %)
31.82 : 42.20
I tested it on non-reboot 5 runs stress-highalloc benchmark and found that
there is no more degradation on allocation success rate than before. That
roughly means that this patch doesn't result in more fragmentations.
Vlastimil suggests additional idea that we only test for fallbacks when
migration scanner has scanned a whole pageblock. It looked good for
fragmentation because chance of stealing increase due to making more free
pages in certain pageblock. So, I tested it, but, it results in decreased
compaction success rate, roughly 38.00. I guess the reason that if system
is low memory condition, watermark check could be failed due to not enough
order 0 free page and so, sometimes, we can't reach a fallback check
although migrate_pfn is aligned to pageblock_nr_pages. I can insert code
to cope with this situation but it makes code more complicated so I don't
include his idea at this patch.
[akpm@linux-foundation.org: fix CONFIG_CMA=n build]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-14 22:45:21 +00:00
|
|
|
if (!only_stealable)
|
|
|
|
return fallback_mt;
|
|
|
|
|
|
|
|
if (*can_steal)
|
|
|
|
return fallback_mt;
|
mm/page_allo.c: restructure free-page stealing code and fix a bug
The free-page stealing code in __rmqueue_fallback() is somewhat hard to
follow, and has an incredible amount of subtlety hidden inside!
First off, there is a minor bug in the reporting of change-of-ownership of
pageblocks. Under some conditions, we try to move upto
'pageblock_nr_pages' no. of pages to the preferred allocation list. But
we change the ownership of that pageblock to the preferred type only if we
manage to successfully move atleast half of that pageblock (or if
page_group_by_mobility_disabled is set).
However, the current code ignores the latter part and sets the
'migratetype' variable to the preferred type, irrespective of whether we
actually changed the pageblock migratetype of that block or not. So, the
page_alloc_extfrag tracepoint can end up printing incorrect info (i.e.,
'change_ownership' might be shown as 1 when it must have been 0).
So fixing this involves moving the update of the 'migratetype' variable to
the right place. But looking closer, we observe that the 'migratetype'
variable is used subsequently for checks such as "is_migrate_cma()".
Obviously the intent there is to check if the *fallback* type is
MIGRATE_CMA, but since we already set the 'migratetype' variable to
start_migratetype, we end up checking if the *preferred* type is
MIGRATE_CMA!!
To make things more interesting, this actually doesn't cause a bug in
practice, because we never change *anything* if the fallback type is CMA.
So, restructure the code in such a way that it is trivial to understand
what is going on, and also fix the above mentioned bug. And while at it,
also add a comment explaining the subtlety behind the migratetype used in
the call to expand().
[akpm@linux-foundation.org: remove unneeded `inline', small coding-style fix]
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Cody P Schafer <cody@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:35 +00:00
|
|
|
}
|
2015-04-14 22:45:18 +00:00
|
|
|
|
|
|
|
return -1;
|
mm/page_allo.c: restructure free-page stealing code and fix a bug
The free-page stealing code in __rmqueue_fallback() is somewhat hard to
follow, and has an incredible amount of subtlety hidden inside!
First off, there is a minor bug in the reporting of change-of-ownership of
pageblocks. Under some conditions, we try to move upto
'pageblock_nr_pages' no. of pages to the preferred allocation list. But
we change the ownership of that pageblock to the preferred type only if we
manage to successfully move atleast half of that pageblock (or if
page_group_by_mobility_disabled is set).
However, the current code ignores the latter part and sets the
'migratetype' variable to the preferred type, irrespective of whether we
actually changed the pageblock migratetype of that block or not. So, the
page_alloc_extfrag tracepoint can end up printing incorrect info (i.e.,
'change_ownership' might be shown as 1 when it must have been 0).
So fixing this involves moving the update of the 'migratetype' variable to
the right place. But looking closer, we observe that the 'migratetype'
variable is used subsequently for checks such as "is_migrate_cma()".
Obviously the intent there is to check if the *fallback* type is
MIGRATE_CMA, but since we already set the 'migratetype' variable to
start_migratetype, we end up checking if the *preferred* type is
MIGRATE_CMA!!
To make things more interesting, this actually doesn't cause a bug in
practice, because we never change *anything* if the fallback type is CMA.
So, restructure the code in such a way that it is trivial to understand
what is going on, and also fix the above mentioned bug. And while at it,
also add a comment explaining the subtlety behind the migratetype used in
the call to expand().
[akpm@linux-foundation.org: remove unneeded `inline', small coding-style fix]
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Cody P Schafer <cody@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:35 +00:00
|
|
|
}
|
|
|
|
|
2015-11-07 00:28:37 +00:00
|
|
|
/*
|
|
|
|
* Reserve a pageblock for exclusive use of high-order atomic allocations if
|
|
|
|
* there are no empty page blocks that contain a page with a suitable order
|
|
|
|
*/
|
|
|
|
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
|
|
|
|
unsigned int alloc_order)
|
|
|
|
{
|
|
|
|
int mt;
|
|
|
|
unsigned long max_managed, flags;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Limit the number reserved to 1 pageblock or roughly 1% of a zone.
|
|
|
|
* Check is race-prone but harmless.
|
|
|
|
*/
|
2018-12-28 08:34:24 +00:00
|
|
|
max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
|
2015-11-07 00:28:37 +00:00
|
|
|
if (zone->nr_reserved_highatomic >= max_managed)
|
|
|
|
return;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&zone->lock, flags);
|
|
|
|
|
|
|
|
/* Recheck the nr_reserved_highatomic limit under the lock */
|
|
|
|
if (zone->nr_reserved_highatomic >= max_managed)
|
|
|
|
goto out_unlock;
|
|
|
|
|
|
|
|
/* Yoink! */
|
|
|
|
mt = get_pageblock_migratetype(page);
|
2022-03-22 21:43:05 +00:00
|
|
|
/* Only reserve normal pageblocks (i.e., they can merge with others) */
|
|
|
|
if (migratetype_is_mergeable(mt)) {
|
2015-11-07 00:28:37 +00:00
|
|
|
zone->nr_reserved_highatomic += pageblock_nr_pages;
|
|
|
|
set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
|
mm, page_alloc: count movable pages when stealing from pageblock
When stealing pages from pageblock of a different migratetype, we count
how many free pages were stolen, and change the pageblock's migratetype
if more than half of the pageblock was free. This might be too
conservative, as there might be other pages that are not free, but were
allocated with the same migratetype as our allocation requested.
While we cannot determine the migratetype of allocated pages precisely
(at least without the page_owner functionality enabled), we can count
pages that compaction would try to isolate for migration - those are
either on LRU or __PageMovable(). The rest can be assumed to be
MIGRATE_RECLAIMABLE or MIGRATE_UNMOVABLE, which we cannot easily
distinguish. This counting can be done as part of free page stealing
with little additional overhead.
The page stealing code is changed so that it considers free pages plus
pages of the "good" migratetype for the decision whether to change
pageblock's migratetype.
The result should be more accurate migratetype of pageblocks wrt the
actual pages in the pageblocks, when stealing from semi-occupied
pageblocks. This should help the efficiency of page grouping by
mobility.
In testing based on 4.9 kernel with stress-highalloc from mmtests
configured for order-4 GFP_KERNEL allocations, this patch has reduced
the number of unmovable allocations falling back to movable pageblocks
by 47%. The number of movable allocations falling back to other
pageblocks are increased by 55%, but these events don't cause permanent
fragmentation, so the tradeoff should be positive. Later patches also
offset the movable fallback increase to some extent.
[akpm@linux-foundation.org: merge fix]
Link: http://lkml.kernel.org/r/20170307131545.28577-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 22:54:40 +00:00
|
|
|
move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
|
2015-11-07 00:28:37 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
out_unlock:
|
|
|
|
spin_unlock_irqrestore(&zone->lock, flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Used when an allocation is about to fail under memory pressure. This
|
|
|
|
* potentially hurts the reliability of high-order allocations when under
|
|
|
|
* intense memory pressure but failed atomic allocations should be easier
|
|
|
|
* to recover from than an OOM.
|
2016-12-13 00:42:14 +00:00
|
|
|
*
|
|
|
|
* If @force is true, try to unreserve a pageblock even though highatomic
|
|
|
|
* pageblock is exhausted.
|
2015-11-07 00:28:37 +00:00
|
|
|
*/
|
2016-12-13 00:42:14 +00:00
|
|
|
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
|
|
|
|
bool force)
|
2015-11-07 00:28:37 +00:00
|
|
|
{
|
|
|
|
struct zonelist *zonelist = ac->zonelist;
|
|
|
|
unsigned long flags;
|
|
|
|
struct zoneref *z;
|
|
|
|
struct zone *zone;
|
|
|
|
struct page *page;
|
|
|
|
int order;
|
mm: try to exhaust highatomic reserve before the OOM
I got OOM report from production team with v4.4 kernel. It had enough
free memory but failed to allocate GFP_KERNEL order-0 page and finally
encountered OOM kill. It occured during QA process which launches
several apps, switching and so on. It happned rarely. IOW, In normal
situation, it was not a problem but if we are unluck so that several
apps uses peak memory at the same time, it can happen. If we manage to
pass the phase, the system can go working well.
I could reproduce it with my test(memory spike easily. Look at below.
The reason is free pages(19M) of DMA32 zone are reserved for
HIGHORDERATOMIC and doesn't unreserved before the OOM.
balloon invoked oom-killer: gfp_mask=0x24280ca(GFP_HIGHUSER_MOVABLE|__GFP_ZERO), order=0, oom_score_adj=0
balloon cpuset=/ mems_allowed=0
CPU: 1 PID: 8473 Comm: balloon Tainted: G W OE 4.8.0-rc7-00219-g3f74c9559583-dirty #3161
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
Call Trace:
dump_stack+0x63/0x90
dump_header+0x5c/0x1ce
oom_kill_process+0x22e/0x400
out_of_memory+0x1ac/0x210
__alloc_pages_nodemask+0x101e/0x1040
handle_mm_fault+0xa0a/0xbf0
__do_page_fault+0x1dd/0x4d0
trace_do_page_fault+0x43/0x130
do_async_page_fault+0x1a/0xa0
async_page_fault+0x28/0x30
Mem-Info:
active_anon:383949 inactive_anon:106724 isolated_anon:0
active_file:15 inactive_file:44 isolated_file:0
unevictable:0 dirty:0 writeback:24 unstable:0
slab_reclaimable:2483 slab_unreclaimable:3326
mapped:0 shmem:0 pagetables:1906 bounce:0
free:6898 free_pcp:291 free_cma:0
Node 0 active_anon:1535796kB inactive_anon:426896kB active_file:60kB inactive_file:176kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:0kB dirty:0kB writeback:96kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:1418 all_unreclaimable? no
DMA free:8188kB min:44kB low:56kB high:68kB active_anon:7648kB inactive_anon:0kB active_file:0kB inactive_file:4kB unevictable:0kB writepending:0kB present:15992kB managed:15908kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:20kB kernel_stack:0kB pagetables:0kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
lowmem_reserve[]: 0 1952 1952 1952
DMA32 free:19404kB min:5628kB low:7624kB high:9620kB active_anon:1528148kB inactive_anon:426896kB active_file:60kB inactive_file:420kB unevictable:0kB writepending:96kB present:2080640kB managed:2030092kB mlocked:0kB slab_reclaimable:9932kB slab_unreclaimable:13284kB kernel_stack:2496kB pagetables:7624kB bounce:0kB free_pcp:900kB local_pcp:112kB free_cma:0kB
lowmem_reserve[]: 0 0 0 0
DMA: 0*4kB 0*8kB 0*16kB 0*32kB 0*64kB 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 2*4096kB (H) = 8192kB
DMA32: 7*4kB (H) 8*8kB (H) 30*16kB (H) 31*32kB (H) 14*64kB (H) 9*128kB (H) 2*256kB (H) 2*512kB (H) 4*1024kB (H) 5*2048kB (H) 0*4096kB = 19484kB
51131 total pagecache pages
50795 pages in swap cache
Swap cache stats: add 3532405601, delete 3532354806, find 124289150/1822712228
Free swap = 8kB
Total swap = 255996kB
524158 pages RAM
0 pages HighMem/MovableOnly
12658 pages reserved
0 pages cma reserved
0 pages hwpoisoned
Another example exceeded the limit by the race is
in:imklog: page allocation failure: order:0, mode:0x2280020(GFP_ATOMIC|__GFP_NOTRACK)
CPU: 0 PID: 476 Comm: in:imklog Tainted: G E 4.8.0-rc7-00217-g266ef83c51e5-dirty #3135
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
Call Trace:
dump_stack+0x63/0x90
warn_alloc_failed+0xdb/0x130
__alloc_pages_nodemask+0x4d6/0xdb0
new_slab+0x339/0x490
___slab_alloc.constprop.74+0x367/0x480
__slab_alloc.constprop.73+0x20/0x40
__kmalloc+0x1a4/0x1e0
alloc_indirect.isra.14+0x1d/0x50
virtqueue_add_sgs+0x1c4/0x470
__virtblk_add_req+0xae/0x1f0
virtio_queue_rq+0x12d/0x290
__blk_mq_run_hw_queue+0x239/0x370
blk_mq_run_hw_queue+0x8f/0xb0
blk_mq_insert_requests+0x18c/0x1a0
blk_mq_flush_plug_list+0x125/0x140
blk_flush_plug_list+0xc7/0x220
blk_finish_plug+0x2c/0x40
__do_page_cache_readahead+0x196/0x230
filemap_fault+0x448/0x4f0
ext4_filemap_fault+0x36/0x50
__do_fault+0x75/0x140
handle_mm_fault+0x84d/0xbe0
__do_page_fault+0x1dd/0x4d0
trace_do_page_fault+0x43/0x130
do_async_page_fault+0x1a/0xa0
async_page_fault+0x28/0x30
Mem-Info:
active_anon:363826 inactive_anon:121283 isolated_anon:32
active_file:65 inactive_file:152 isolated_file:0
unevictable:0 dirty:0 writeback:46 unstable:0
slab_reclaimable:2778 slab_unreclaimable:3070
mapped:112 shmem:0 pagetables:1822 bounce:0
free:9469 free_pcp:231 free_cma:0
Node 0 active_anon:1455304kB inactive_anon:485132kB active_file:260kB inactive_file:608kB unevictable:0kB isolated(anon):128kB isolated(file):0kB mapped:448kB dirty:0kB writeback:184kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:13641 all_unreclaimable? no
DMA free:7748kB min:44kB low:56kB high:68kB active_anon:7944kB inactive_anon:104kB active_file:0kB inactive_file:0kB unevictable:0kB writepending:0kB present:15992kB managed:15908kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:108kB kernel_stack:0kB pagetables:4kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
lowmem_reserve[]: 0 1952 1952 1952
DMA32 free:30128kB min:5628kB low:7624kB high:9620kB active_anon:1447360kB inactive_anon:485028kB active_file:260kB inactive_file:608kB unevictable:0kB writepending:184kB present:2080640kB managed:2030132kB mlocked:0kB slab_reclaimable:11112kB slab_unreclaimable:12172kB kernel_stack:2400kB pagetables:7284kB bounce:0kB free_pcp:924kB local_pcp:72kB free_cma:0kB
lowmem_reserve[]: 0 0 0 0
DMA: 7*4kB (UE) 3*8kB (UH) 1*16kB (M) 0*32kB 2*64kB (U) 1*128kB (M) 1*256kB (U) 0*512kB 1*1024kB (U) 1*2048kB (U) 1*4096kB (H) = 7748kB
DMA32: 10*4kB (H) 3*8kB (H) 47*16kB (H) 38*32kB (H) 5*64kB (H) 1*128kB (H) 2*256kB (H) 3*512kB (H) 3*1024kB (H) 3*2048kB (H) 4*4096kB (H) = 30128kB
2775 total pagecache pages
2536 pages in swap cache
Swap cache stats: add 206786828, delete 206784292, find 7323106/106686077
Free swap = 108744kB
Total swap = 255996kB
524158 pages RAM
0 pages HighMem/MovableOnly
12648 pages reserved
0 pages cma reserved
0 pages hwpoisoned
It's weird to show that zone has enough free memory above min watermark
but OOMed with 4K GFP_KERNEL allocation due to reserved highatomic
pages. As last resort, try to unreserve highatomic pages again and if
it has moved pages to non-highatmoc free list, retry reclaim once more.
Link: http://lkml.kernel.org/r/1476259429-18279-4-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sangseok Lee <sangseok.lee@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-13 00:42:11 +00:00
|
|
|
bool ret;
|
2015-11-07 00:28:37 +00:00
|
|
|
|
2020-06-03 22:59:01 +00:00
|
|
|
for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
|
2015-11-07 00:28:37 +00:00
|
|
|
ac->nodemask) {
|
2016-12-13 00:42:14 +00:00
|
|
|
/*
|
|
|
|
* Preserve at least one pageblock unless memory pressure
|
|
|
|
* is really high.
|
|
|
|
*/
|
|
|
|
if (!force && zone->nr_reserved_highatomic <=
|
|
|
|
pageblock_nr_pages)
|
2015-11-07 00:28:37 +00:00
|
|
|
continue;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&zone->lock, flags);
|
2023-03-15 11:31:33 +00:00
|
|
|
for (order = 0; order <= MAX_ORDER; order++) {
|
2015-11-07 00:28:37 +00:00
|
|
|
struct free_area *area = &(zone->free_area[order]);
|
|
|
|
|
2019-05-14 22:41:32 +00:00
|
|
|
page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
|
2016-01-14 23:20:30 +00:00
|
|
|
if (!page)
|
2015-11-07 00:28:37 +00:00
|
|
|
continue;
|
|
|
|
|
|
|
|
/*
|
2016-12-13 00:42:08 +00:00
|
|
|
* In page freeing path, migratetype change is racy so
|
|
|
|
* we can counter several free pages in a pageblock
|
2021-05-07 01:06:47 +00:00
|
|
|
* in this loop although we changed the pageblock type
|
2016-12-13 00:42:08 +00:00
|
|
|
* from highatomic to ac->migratetype. So we should
|
|
|
|
* adjust the count once.
|
2015-11-07 00:28:37 +00:00
|
|
|
*/
|
2017-05-03 21:52:52 +00:00
|
|
|
if (is_migrate_highatomic_page(page)) {
|
2016-12-13 00:42:08 +00:00
|
|
|
/*
|
|
|
|
* It should never happen but changes to
|
|
|
|
* locking could inadvertently allow a per-cpu
|
|
|
|
* drain to add pages to MIGRATE_HIGHATOMIC
|
|
|
|
* while unreserving so be safe and watch for
|
|
|
|
* underflows.
|
|
|
|
*/
|
|
|
|
zone->nr_reserved_highatomic -= min(
|
|
|
|
pageblock_nr_pages,
|
|
|
|
zone->nr_reserved_highatomic);
|
|
|
|
}
|
2015-11-07 00:28:37 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Convert to ac->migratetype and avoid the normal
|
|
|
|
* pageblock stealing heuristics. Minimally, the caller
|
|
|
|
* is doing the work and needs the pages. More
|
|
|
|
* importantly, if the block was always converted to
|
|
|
|
* MIGRATE_UNMOVABLE or another type then the number
|
|
|
|
* of pageblocks that cannot be completely freed
|
|
|
|
* may increase.
|
|
|
|
*/
|
|
|
|
set_pageblock_migratetype(page, ac->migratetype);
|
mm, page_alloc: count movable pages when stealing from pageblock
When stealing pages from pageblock of a different migratetype, we count
how many free pages were stolen, and change the pageblock's migratetype
if more than half of the pageblock was free. This might be too
conservative, as there might be other pages that are not free, but were
allocated with the same migratetype as our allocation requested.
While we cannot determine the migratetype of allocated pages precisely
(at least without the page_owner functionality enabled), we can count
pages that compaction would try to isolate for migration - those are
either on LRU or __PageMovable(). The rest can be assumed to be
MIGRATE_RECLAIMABLE or MIGRATE_UNMOVABLE, which we cannot easily
distinguish. This counting can be done as part of free page stealing
with little additional overhead.
The page stealing code is changed so that it considers free pages plus
pages of the "good" migratetype for the decision whether to change
pageblock's migratetype.
The result should be more accurate migratetype of pageblocks wrt the
actual pages in the pageblocks, when stealing from semi-occupied
pageblocks. This should help the efficiency of page grouping by
mobility.
In testing based on 4.9 kernel with stress-highalloc from mmtests
configured for order-4 GFP_KERNEL allocations, this patch has reduced
the number of unmovable allocations falling back to movable pageblocks
by 47%. The number of movable allocations falling back to other
pageblocks are increased by 55%, but these events don't cause permanent
fragmentation, so the tradeoff should be positive. Later patches also
offset the movable fallback increase to some extent.
[akpm@linux-foundation.org: merge fix]
Link: http://lkml.kernel.org/r/20170307131545.28577-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 22:54:40 +00:00
|
|
|
ret = move_freepages_block(zone, page, ac->migratetype,
|
|
|
|
NULL);
|
2016-12-13 00:42:14 +00:00
|
|
|
if (ret) {
|
|
|
|
spin_unlock_irqrestore(&zone->lock, flags);
|
|
|
|
return ret;
|
|
|
|
}
|
2015-11-07 00:28:37 +00:00
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(&zone->lock, flags);
|
|
|
|
}
|
mm: try to exhaust highatomic reserve before the OOM
I got OOM report from production team with v4.4 kernel. It had enough
free memory but failed to allocate GFP_KERNEL order-0 page and finally
encountered OOM kill. It occured during QA process which launches
several apps, switching and so on. It happned rarely. IOW, In normal
situation, it was not a problem but if we are unluck so that several
apps uses peak memory at the same time, it can happen. If we manage to
pass the phase, the system can go working well.
I could reproduce it with my test(memory spike easily. Look at below.
The reason is free pages(19M) of DMA32 zone are reserved for
HIGHORDERATOMIC and doesn't unreserved before the OOM.
balloon invoked oom-killer: gfp_mask=0x24280ca(GFP_HIGHUSER_MOVABLE|__GFP_ZERO), order=0, oom_score_adj=0
balloon cpuset=/ mems_allowed=0
CPU: 1 PID: 8473 Comm: balloon Tainted: G W OE 4.8.0-rc7-00219-g3f74c9559583-dirty #3161
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
Call Trace:
dump_stack+0x63/0x90
dump_header+0x5c/0x1ce
oom_kill_process+0x22e/0x400
out_of_memory+0x1ac/0x210
__alloc_pages_nodemask+0x101e/0x1040
handle_mm_fault+0xa0a/0xbf0
__do_page_fault+0x1dd/0x4d0
trace_do_page_fault+0x43/0x130
do_async_page_fault+0x1a/0xa0
async_page_fault+0x28/0x30
Mem-Info:
active_anon:383949 inactive_anon:106724 isolated_anon:0
active_file:15 inactive_file:44 isolated_file:0
unevictable:0 dirty:0 writeback:24 unstable:0
slab_reclaimable:2483 slab_unreclaimable:3326
mapped:0 shmem:0 pagetables:1906 bounce:0
free:6898 free_pcp:291 free_cma:0
Node 0 active_anon:1535796kB inactive_anon:426896kB active_file:60kB inactive_file:176kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:0kB dirty:0kB writeback:96kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:1418 all_unreclaimable? no
DMA free:8188kB min:44kB low:56kB high:68kB active_anon:7648kB inactive_anon:0kB active_file:0kB inactive_file:4kB unevictable:0kB writepending:0kB present:15992kB managed:15908kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:20kB kernel_stack:0kB pagetables:0kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
lowmem_reserve[]: 0 1952 1952 1952
DMA32 free:19404kB min:5628kB low:7624kB high:9620kB active_anon:1528148kB inactive_anon:426896kB active_file:60kB inactive_file:420kB unevictable:0kB writepending:96kB present:2080640kB managed:2030092kB mlocked:0kB slab_reclaimable:9932kB slab_unreclaimable:13284kB kernel_stack:2496kB pagetables:7624kB bounce:0kB free_pcp:900kB local_pcp:112kB free_cma:0kB
lowmem_reserve[]: 0 0 0 0
DMA: 0*4kB 0*8kB 0*16kB 0*32kB 0*64kB 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 2*4096kB (H) = 8192kB
DMA32: 7*4kB (H) 8*8kB (H) 30*16kB (H) 31*32kB (H) 14*64kB (H) 9*128kB (H) 2*256kB (H) 2*512kB (H) 4*1024kB (H) 5*2048kB (H) 0*4096kB = 19484kB
51131 total pagecache pages
50795 pages in swap cache
Swap cache stats: add 3532405601, delete 3532354806, find 124289150/1822712228
Free swap = 8kB
Total swap = 255996kB
524158 pages RAM
0 pages HighMem/MovableOnly
12658 pages reserved
0 pages cma reserved
0 pages hwpoisoned
Another example exceeded the limit by the race is
in:imklog: page allocation failure: order:0, mode:0x2280020(GFP_ATOMIC|__GFP_NOTRACK)
CPU: 0 PID: 476 Comm: in:imklog Tainted: G E 4.8.0-rc7-00217-g266ef83c51e5-dirty #3135
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
Call Trace:
dump_stack+0x63/0x90
warn_alloc_failed+0xdb/0x130
__alloc_pages_nodemask+0x4d6/0xdb0
new_slab+0x339/0x490
___slab_alloc.constprop.74+0x367/0x480
__slab_alloc.constprop.73+0x20/0x40
__kmalloc+0x1a4/0x1e0
alloc_indirect.isra.14+0x1d/0x50
virtqueue_add_sgs+0x1c4/0x470
__virtblk_add_req+0xae/0x1f0
virtio_queue_rq+0x12d/0x290
__blk_mq_run_hw_queue+0x239/0x370
blk_mq_run_hw_queue+0x8f/0xb0
blk_mq_insert_requests+0x18c/0x1a0
blk_mq_flush_plug_list+0x125/0x140
blk_flush_plug_list+0xc7/0x220
blk_finish_plug+0x2c/0x40
__do_page_cache_readahead+0x196/0x230
filemap_fault+0x448/0x4f0
ext4_filemap_fault+0x36/0x50
__do_fault+0x75/0x140
handle_mm_fault+0x84d/0xbe0
__do_page_fault+0x1dd/0x4d0
trace_do_page_fault+0x43/0x130
do_async_page_fault+0x1a/0xa0
async_page_fault+0x28/0x30
Mem-Info:
active_anon:363826 inactive_anon:121283 isolated_anon:32
active_file:65 inactive_file:152 isolated_file:0
unevictable:0 dirty:0 writeback:46 unstable:0
slab_reclaimable:2778 slab_unreclaimable:3070
mapped:112 shmem:0 pagetables:1822 bounce:0
free:9469 free_pcp:231 free_cma:0
Node 0 active_anon:1455304kB inactive_anon:485132kB active_file:260kB inactive_file:608kB unevictable:0kB isolated(anon):128kB isolated(file):0kB mapped:448kB dirty:0kB writeback:184kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:13641 all_unreclaimable? no
DMA free:7748kB min:44kB low:56kB high:68kB active_anon:7944kB inactive_anon:104kB active_file:0kB inactive_file:0kB unevictable:0kB writepending:0kB present:15992kB managed:15908kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:108kB kernel_stack:0kB pagetables:4kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
lowmem_reserve[]: 0 1952 1952 1952
DMA32 free:30128kB min:5628kB low:7624kB high:9620kB active_anon:1447360kB inactive_anon:485028kB active_file:260kB inactive_file:608kB unevictable:0kB writepending:184kB present:2080640kB managed:2030132kB mlocked:0kB slab_reclaimable:11112kB slab_unreclaimable:12172kB kernel_stack:2400kB pagetables:7284kB bounce:0kB free_pcp:924kB local_pcp:72kB free_cma:0kB
lowmem_reserve[]: 0 0 0 0
DMA: 7*4kB (UE) 3*8kB (UH) 1*16kB (M) 0*32kB 2*64kB (U) 1*128kB (M) 1*256kB (U) 0*512kB 1*1024kB (U) 1*2048kB (U) 1*4096kB (H) = 7748kB
DMA32: 10*4kB (H) 3*8kB (H) 47*16kB (H) 38*32kB (H) 5*64kB (H) 1*128kB (H) 2*256kB (H) 3*512kB (H) 3*1024kB (H) 3*2048kB (H) 4*4096kB (H) = 30128kB
2775 total pagecache pages
2536 pages in swap cache
Swap cache stats: add 206786828, delete 206784292, find 7323106/106686077
Free swap = 108744kB
Total swap = 255996kB
524158 pages RAM
0 pages HighMem/MovableOnly
12648 pages reserved
0 pages cma reserved
0 pages hwpoisoned
It's weird to show that zone has enough free memory above min watermark
but OOMed with 4K GFP_KERNEL allocation due to reserved highatomic
pages. As last resort, try to unreserve highatomic pages again and if
it has moved pages to non-highatmoc free list, retry reclaim once more.
Link: http://lkml.kernel.org/r/1476259429-18279-4-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sangseok Lee <sangseok.lee@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-13 00:42:11 +00:00
|
|
|
|
|
|
|
return false;
|
2015-11-07 00:28:37 +00:00
|
|
|
}
|
|
|
|
|
2017-05-08 22:54:37 +00:00
|
|
|
/*
|
|
|
|
* Try finding a free buddy page on the fallback list and put it on the free
|
|
|
|
* list of requested migratetype, possibly along with other pages from the same
|
|
|
|
* block, depending on fragmentation avoidance heuristics. Returns true if
|
|
|
|
* fallback was found so that __rmqueue_smallest() can grab it.
|
2017-07-10 22:49:26 +00:00
|
|
|
*
|
|
|
|
* The use of signed ints for order and current_order is a deliberate
|
|
|
|
* deviation from the rest of this file, to make the for loop
|
|
|
|
* condition simpler.
|
2017-05-08 22:54:37 +00:00
|
|
|
*/
|
2017-11-16 01:36:53 +00:00
|
|
|
static __always_inline bool
|
mm, page_alloc: spread allocations across zones before introducing fragmentation
Patch series "Fragmentation avoidance improvements", v5.
It has been noted before that fragmentation avoidance (aka
anti-fragmentation) is not perfect. Given sufficient time or an adverse
workload, memory gets fragmented and the long-term success of high-order
allocations degrades. This series defines an adverse workload, a definition
of external fragmentation events (including serious) ones and a series
that reduces the level of those fragmentation events.
The details of the workload and the consequences are described in more
detail in the changelogs. However, from patch 1, this is a high-level
summary of the adverse workload. The exact details are found in the
mmtests implementation.
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch)
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameterr create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed
3. Warm up a number of fio read-only threads accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll fault back in old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup
Overall the series reduces external fragmentation causing events by over 94%
on 1 and 2 socket machines, which in turn impacts high-order allocation
success rates over the long term. There are differences in latencies and
high-order allocation success rates. Latencies are a mixed bag as they
are vulnerable to exact system state and whether allocations succeeded
so they are treated as a secondary metric.
Patch 1 uses lower zones if they are populated and have free memory
instead of fragmenting a higher zone. It's special cased to
handle a Normal->DMA32 fallback with the reasons explained
in the changelog.
Patch 2-4 boosts watermarks temporarily when an external fragmentation
event occurs. kswapd wakes to reclaim a small amount of old memory
and then wakes kcompactd on completion to recover the system
slightly. This introduces some overhead in the slowpath. The level
of boosting can be tuned or disabled depending on the tolerance
for fragmentation vs allocation latency.
Patch 5 stalls some movable allocation requests to let kswapd from patch 4
make some progress. The duration of the stalls is very low but it
is possible to tune the system to avoid fragmentation events if
larger stalls can be tolerated.
The bulk of the improvement in fragmentation avoidance is from patches
1-4 but patch 5 can deal with a rare corner case and provides the option
of tuning a system for THP allocation success rates in exchange for
some stalls to control fragmentation.
This patch (of 5):
The page allocator zone lists are iterated based on the watermarks of each
zone which does not take anti-fragmentation into account. On x86, node 0
may have multiple zones while other nodes have one zone. A consequence is
that tasks running on node 0 may fragment ZONE_NORMAL even though
ZONE_DMA32 has plenty of free memory. This patch special cases the
allocator fast path such that it'll try an allocation from a lower local
zone before fragmenting a higher zone. In this case, stealing of
pageblocks or orders larger than a pageblock are still allowed in the fast
path as they are uninteresting from a fragmentation point of view.
This was evaluated using a benchmark designed to fragment memory before
attempting THP allocations. It's implemented in mmtests as the following
configurations
configs/config-global-dhp__workload_thpfioscale
configs/config-global-dhp__workload_thpfioscale-defrag
configs/config-global-dhp__workload_thpfioscale-madvhugepage
e.g. from mmtests
./run-mmtests.sh --run-monitor --config configs/config-global-dhp__workload_thpfioscale test-run-1
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch).
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameter create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed.
3. Warm up a number of fio read-only processes accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll refault old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds.
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup the test files.
Note that due to the use of IO and page cache that this benchmark is not
suitable for running on large machines where the time to fragment memory
may be excessive. Also note that while this is one mix that generates
fragmentation that it's not the only mix that generates fragmentation.
Differences in workload that are more slab-intensive or whether SLUB is
used with high-order pages may yield different results.
When the page allocator fragments memory, it records the event using the
mm_page_alloc_extfrag ftrace event. If the fallback_order is smaller than
a pageblock order (order-9 on 64-bit x86) then it's considered to be an
"external fragmentation event" that may cause issues in the future.
Hence, the primary metric here is the number of external fragmentation
events that occur with order < 9. The secondary metric is allocation
latency and huge page allocation success rates but note that differences
in latencies and what the success rate also can affect the number of
external fragmentation event which is why it's a secondary metric.
1-socket Skylake machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 1 THP allocating thread
--------------------------------------
4.20-rc3 extfrag events < order 9: 804694
4.20-rc3+patch: 408912 (49% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 662.92 ( 0.00%) 653.58 * 1.41%*
Amean fault-huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
Fault latencies are slightly reduced while allocation success rates remain
at zero as this configuration does not make any special effort to allocate
THP and fio is heavily active at the time and either filling memory or
keeping pages resident. However, a 49% reduction of serious fragmentation
events reduces the changes of external fragmentation being a problem in
the future.
Vlastimil asked during review for a breakdown of the allocation types
that are falling back.
vanilla
3816 MIGRATE_UNMOVABLE
800845 MIGRATE_MOVABLE
33 MIGRATE_UNRECLAIMABLE
patch
735 MIGRATE_UNMOVABLE
408135 MIGRATE_MOVABLE
42 MIGRATE_UNRECLAIMABLE
The majority of the fallbacks are due to movable allocations and this is
consistent for the workload throughout the series so will not be presented
again as the primary source of fallbacks are movable allocations.
Movable fallbacks are sometimes considered "ok" to fallback because they
can be migrated. The problem is that they can fill an
unmovable/reclaimable pageblock causing those allocations to fallback
later and polluting pageblocks with pages that cannot move. If there is a
movable fallback, it is pretty much guaranteed to affect an
unmovable/reclaimable pageblock and while it might not be enough to
actually cause a unmovable/reclaimable fallback in the future, we cannot
know that in advance so the patch takes the only option available to it.
Hence, it's important to control them. This point is also consistent
throughout the series and will not be repeated.
1-socket Skylake machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 291392
4.20-rc3+patch: 191187 (34% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 1495.14 ( 0.00%) 1467.55 ( 1.85%)
Amean fault-huge-1 1098.48 ( 0.00%) 1127.11 ( -2.61%)
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 78.57 ( 0.00%) 77.64 ( -1.18%)
Fragmentation events were reduced quite a bit although this is known
to be a little variable. The latencies and allocation success rates
are similar but they were already quite high.
2-socket Haswell machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 5 THP allocating threads
----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 215698
4.20-rc3+patch: 200210 (7% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 1350.05 ( 0.00%) 1346.45 ( 0.27%)
Amean fault-huge-5 4181.01 ( 0.00%) 3418.60 ( 18.24%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 1.15 ( 0.00%) 0.78 ( -31.88%)
The reduction of external fragmentation events is slight and this is
partially due to the removal of __GFP_THISNODE in commit ac5b2c18911f
("mm: thp: relax __GFP_THISNODE for MADV_HUGEPAGE mappings") as THP
allocations can now spill over to remote nodes instead of fragmenting
local memory.
2-socket Haswell machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 166352
4.20-rc3+patch: 147463 (11% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 6138.97 ( 0.00%) 6217.43 ( -1.28%)
Amean fault-huge-5 2294.28 ( 0.00%) 3163.33 * -37.88%*
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 96.82 ( 0.00%) 95.14 ( -1.74%)
There was a slight reduction in external fragmentation events although the
latencies were higher. The allocation success rate is high enough that
the system is struggling and there is quite a lot of parallel reclaim and
compaction activity. There is also a certain degree of luck on whether
processes start on node 0 or not for this patch but the relevance is
reduced later in the series.
Overall, the patch reduces the number of external fragmentation causing
events so the success of THP over long periods of time would be improved
for this adverse workload.
Link: http://lkml.kernel.org/r/20181123114528.28802-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 08:35:41 +00:00
|
|
|
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
|
|
|
|
unsigned int alloc_flags)
|
2007-10-16 08:25:48 +00:00
|
|
|
{
|
2013-09-11 21:20:34 +00:00
|
|
|
struct free_area *area;
|
2017-07-10 22:49:26 +00:00
|
|
|
int current_order;
|
mm, page_alloc: spread allocations across zones before introducing fragmentation
Patch series "Fragmentation avoidance improvements", v5.
It has been noted before that fragmentation avoidance (aka
anti-fragmentation) is not perfect. Given sufficient time or an adverse
workload, memory gets fragmented and the long-term success of high-order
allocations degrades. This series defines an adverse workload, a definition
of external fragmentation events (including serious) ones and a series
that reduces the level of those fragmentation events.
The details of the workload and the consequences are described in more
detail in the changelogs. However, from patch 1, this is a high-level
summary of the adverse workload. The exact details are found in the
mmtests implementation.
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch)
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameterr create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed
3. Warm up a number of fio read-only threads accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll fault back in old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup
Overall the series reduces external fragmentation causing events by over 94%
on 1 and 2 socket machines, which in turn impacts high-order allocation
success rates over the long term. There are differences in latencies and
high-order allocation success rates. Latencies are a mixed bag as they
are vulnerable to exact system state and whether allocations succeeded
so they are treated as a secondary metric.
Patch 1 uses lower zones if they are populated and have free memory
instead of fragmenting a higher zone. It's special cased to
handle a Normal->DMA32 fallback with the reasons explained
in the changelog.
Patch 2-4 boosts watermarks temporarily when an external fragmentation
event occurs. kswapd wakes to reclaim a small amount of old memory
and then wakes kcompactd on completion to recover the system
slightly. This introduces some overhead in the slowpath. The level
of boosting can be tuned or disabled depending on the tolerance
for fragmentation vs allocation latency.
Patch 5 stalls some movable allocation requests to let kswapd from patch 4
make some progress. The duration of the stalls is very low but it
is possible to tune the system to avoid fragmentation events if
larger stalls can be tolerated.
The bulk of the improvement in fragmentation avoidance is from patches
1-4 but patch 5 can deal with a rare corner case and provides the option
of tuning a system for THP allocation success rates in exchange for
some stalls to control fragmentation.
This patch (of 5):
The page allocator zone lists are iterated based on the watermarks of each
zone which does not take anti-fragmentation into account. On x86, node 0
may have multiple zones while other nodes have one zone. A consequence is
that tasks running on node 0 may fragment ZONE_NORMAL even though
ZONE_DMA32 has plenty of free memory. This patch special cases the
allocator fast path such that it'll try an allocation from a lower local
zone before fragmenting a higher zone. In this case, stealing of
pageblocks or orders larger than a pageblock are still allowed in the fast
path as they are uninteresting from a fragmentation point of view.
This was evaluated using a benchmark designed to fragment memory before
attempting THP allocations. It's implemented in mmtests as the following
configurations
configs/config-global-dhp__workload_thpfioscale
configs/config-global-dhp__workload_thpfioscale-defrag
configs/config-global-dhp__workload_thpfioscale-madvhugepage
e.g. from mmtests
./run-mmtests.sh --run-monitor --config configs/config-global-dhp__workload_thpfioscale test-run-1
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch).
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameter create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed.
3. Warm up a number of fio read-only processes accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll refault old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds.
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup the test files.
Note that due to the use of IO and page cache that this benchmark is not
suitable for running on large machines where the time to fragment memory
may be excessive. Also note that while this is one mix that generates
fragmentation that it's not the only mix that generates fragmentation.
Differences in workload that are more slab-intensive or whether SLUB is
used with high-order pages may yield different results.
When the page allocator fragments memory, it records the event using the
mm_page_alloc_extfrag ftrace event. If the fallback_order is smaller than
a pageblock order (order-9 on 64-bit x86) then it's considered to be an
"external fragmentation event" that may cause issues in the future.
Hence, the primary metric here is the number of external fragmentation
events that occur with order < 9. The secondary metric is allocation
latency and huge page allocation success rates but note that differences
in latencies and what the success rate also can affect the number of
external fragmentation event which is why it's a secondary metric.
1-socket Skylake machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 1 THP allocating thread
--------------------------------------
4.20-rc3 extfrag events < order 9: 804694
4.20-rc3+patch: 408912 (49% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 662.92 ( 0.00%) 653.58 * 1.41%*
Amean fault-huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
Fault latencies are slightly reduced while allocation success rates remain
at zero as this configuration does not make any special effort to allocate
THP and fio is heavily active at the time and either filling memory or
keeping pages resident. However, a 49% reduction of serious fragmentation
events reduces the changes of external fragmentation being a problem in
the future.
Vlastimil asked during review for a breakdown of the allocation types
that are falling back.
vanilla
3816 MIGRATE_UNMOVABLE
800845 MIGRATE_MOVABLE
33 MIGRATE_UNRECLAIMABLE
patch
735 MIGRATE_UNMOVABLE
408135 MIGRATE_MOVABLE
42 MIGRATE_UNRECLAIMABLE
The majority of the fallbacks are due to movable allocations and this is
consistent for the workload throughout the series so will not be presented
again as the primary source of fallbacks are movable allocations.
Movable fallbacks are sometimes considered "ok" to fallback because they
can be migrated. The problem is that they can fill an
unmovable/reclaimable pageblock causing those allocations to fallback
later and polluting pageblocks with pages that cannot move. If there is a
movable fallback, it is pretty much guaranteed to affect an
unmovable/reclaimable pageblock and while it might not be enough to
actually cause a unmovable/reclaimable fallback in the future, we cannot
know that in advance so the patch takes the only option available to it.
Hence, it's important to control them. This point is also consistent
throughout the series and will not be repeated.
1-socket Skylake machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 291392
4.20-rc3+patch: 191187 (34% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 1495.14 ( 0.00%) 1467.55 ( 1.85%)
Amean fault-huge-1 1098.48 ( 0.00%) 1127.11 ( -2.61%)
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 78.57 ( 0.00%) 77.64 ( -1.18%)
Fragmentation events were reduced quite a bit although this is known
to be a little variable. The latencies and allocation success rates
are similar but they were already quite high.
2-socket Haswell machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 5 THP allocating threads
----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 215698
4.20-rc3+patch: 200210 (7% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 1350.05 ( 0.00%) 1346.45 ( 0.27%)
Amean fault-huge-5 4181.01 ( 0.00%) 3418.60 ( 18.24%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 1.15 ( 0.00%) 0.78 ( -31.88%)
The reduction of external fragmentation events is slight and this is
partially due to the removal of __GFP_THISNODE in commit ac5b2c18911f
("mm: thp: relax __GFP_THISNODE for MADV_HUGEPAGE mappings") as THP
allocations can now spill over to remote nodes instead of fragmenting
local memory.
2-socket Haswell machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 166352
4.20-rc3+patch: 147463 (11% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 6138.97 ( 0.00%) 6217.43 ( -1.28%)
Amean fault-huge-5 2294.28 ( 0.00%) 3163.33 * -37.88%*
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 96.82 ( 0.00%) 95.14 ( -1.74%)
There was a slight reduction in external fragmentation events although the
latencies were higher. The allocation success rate is high enough that
the system is struggling and there is quite a lot of parallel reclaim and
compaction activity. There is also a certain degree of luck on whether
processes start on node 0 or not for this patch but the relevance is
reduced later in the series.
Overall, the patch reduces the number of external fragmentation causing
events so the success of THP over long periods of time would be improved
for this adverse workload.
Link: http://lkml.kernel.org/r/20181123114528.28802-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 08:35:41 +00:00
|
|
|
int min_order = order;
|
2007-10-16 08:25:48 +00:00
|
|
|
struct page *page;
|
2015-04-14 22:45:18 +00:00
|
|
|
int fallback_mt;
|
|
|
|
bool can_steal;
|
2007-10-16 08:25:48 +00:00
|
|
|
|
mm, page_alloc: spread allocations across zones before introducing fragmentation
Patch series "Fragmentation avoidance improvements", v5.
It has been noted before that fragmentation avoidance (aka
anti-fragmentation) is not perfect. Given sufficient time or an adverse
workload, memory gets fragmented and the long-term success of high-order
allocations degrades. This series defines an adverse workload, a definition
of external fragmentation events (including serious) ones and a series
that reduces the level of those fragmentation events.
The details of the workload and the consequences are described in more
detail in the changelogs. However, from patch 1, this is a high-level
summary of the adverse workload. The exact details are found in the
mmtests implementation.
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch)
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameterr create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed
3. Warm up a number of fio read-only threads accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll fault back in old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup
Overall the series reduces external fragmentation causing events by over 94%
on 1 and 2 socket machines, which in turn impacts high-order allocation
success rates over the long term. There are differences in latencies and
high-order allocation success rates. Latencies are a mixed bag as they
are vulnerable to exact system state and whether allocations succeeded
so they are treated as a secondary metric.
Patch 1 uses lower zones if they are populated and have free memory
instead of fragmenting a higher zone. It's special cased to
handle a Normal->DMA32 fallback with the reasons explained
in the changelog.
Patch 2-4 boosts watermarks temporarily when an external fragmentation
event occurs. kswapd wakes to reclaim a small amount of old memory
and then wakes kcompactd on completion to recover the system
slightly. This introduces some overhead in the slowpath. The level
of boosting can be tuned or disabled depending on the tolerance
for fragmentation vs allocation latency.
Patch 5 stalls some movable allocation requests to let kswapd from patch 4
make some progress. The duration of the stalls is very low but it
is possible to tune the system to avoid fragmentation events if
larger stalls can be tolerated.
The bulk of the improvement in fragmentation avoidance is from patches
1-4 but patch 5 can deal with a rare corner case and provides the option
of tuning a system for THP allocation success rates in exchange for
some stalls to control fragmentation.
This patch (of 5):
The page allocator zone lists are iterated based on the watermarks of each
zone which does not take anti-fragmentation into account. On x86, node 0
may have multiple zones while other nodes have one zone. A consequence is
that tasks running on node 0 may fragment ZONE_NORMAL even though
ZONE_DMA32 has plenty of free memory. This patch special cases the
allocator fast path such that it'll try an allocation from a lower local
zone before fragmenting a higher zone. In this case, stealing of
pageblocks or orders larger than a pageblock are still allowed in the fast
path as they are uninteresting from a fragmentation point of view.
This was evaluated using a benchmark designed to fragment memory before
attempting THP allocations. It's implemented in mmtests as the following
configurations
configs/config-global-dhp__workload_thpfioscale
configs/config-global-dhp__workload_thpfioscale-defrag
configs/config-global-dhp__workload_thpfioscale-madvhugepage
e.g. from mmtests
./run-mmtests.sh --run-monitor --config configs/config-global-dhp__workload_thpfioscale test-run-1
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch).
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameter create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed.
3. Warm up a number of fio read-only processes accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll refault old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds.
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup the test files.
Note that due to the use of IO and page cache that this benchmark is not
suitable for running on large machines where the time to fragment memory
may be excessive. Also note that while this is one mix that generates
fragmentation that it's not the only mix that generates fragmentation.
Differences in workload that are more slab-intensive or whether SLUB is
used with high-order pages may yield different results.
When the page allocator fragments memory, it records the event using the
mm_page_alloc_extfrag ftrace event. If the fallback_order is smaller than
a pageblock order (order-9 on 64-bit x86) then it's considered to be an
"external fragmentation event" that may cause issues in the future.
Hence, the primary metric here is the number of external fragmentation
events that occur with order < 9. The secondary metric is allocation
latency and huge page allocation success rates but note that differences
in latencies and what the success rate also can affect the number of
external fragmentation event which is why it's a secondary metric.
1-socket Skylake machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 1 THP allocating thread
--------------------------------------
4.20-rc3 extfrag events < order 9: 804694
4.20-rc3+patch: 408912 (49% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 662.92 ( 0.00%) 653.58 * 1.41%*
Amean fault-huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
Fault latencies are slightly reduced while allocation success rates remain
at zero as this configuration does not make any special effort to allocate
THP and fio is heavily active at the time and either filling memory or
keeping pages resident. However, a 49% reduction of serious fragmentation
events reduces the changes of external fragmentation being a problem in
the future.
Vlastimil asked during review for a breakdown of the allocation types
that are falling back.
vanilla
3816 MIGRATE_UNMOVABLE
800845 MIGRATE_MOVABLE
33 MIGRATE_UNRECLAIMABLE
patch
735 MIGRATE_UNMOVABLE
408135 MIGRATE_MOVABLE
42 MIGRATE_UNRECLAIMABLE
The majority of the fallbacks are due to movable allocations and this is
consistent for the workload throughout the series so will not be presented
again as the primary source of fallbacks are movable allocations.
Movable fallbacks are sometimes considered "ok" to fallback because they
can be migrated. The problem is that they can fill an
unmovable/reclaimable pageblock causing those allocations to fallback
later and polluting pageblocks with pages that cannot move. If there is a
movable fallback, it is pretty much guaranteed to affect an
unmovable/reclaimable pageblock and while it might not be enough to
actually cause a unmovable/reclaimable fallback in the future, we cannot
know that in advance so the patch takes the only option available to it.
Hence, it's important to control them. This point is also consistent
throughout the series and will not be repeated.
1-socket Skylake machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 291392
4.20-rc3+patch: 191187 (34% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 1495.14 ( 0.00%) 1467.55 ( 1.85%)
Amean fault-huge-1 1098.48 ( 0.00%) 1127.11 ( -2.61%)
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 78.57 ( 0.00%) 77.64 ( -1.18%)
Fragmentation events were reduced quite a bit although this is known
to be a little variable. The latencies and allocation success rates
are similar but they were already quite high.
2-socket Haswell machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 5 THP allocating threads
----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 215698
4.20-rc3+patch: 200210 (7% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 1350.05 ( 0.00%) 1346.45 ( 0.27%)
Amean fault-huge-5 4181.01 ( 0.00%) 3418.60 ( 18.24%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 1.15 ( 0.00%) 0.78 ( -31.88%)
The reduction of external fragmentation events is slight and this is
partially due to the removal of __GFP_THISNODE in commit ac5b2c18911f
("mm: thp: relax __GFP_THISNODE for MADV_HUGEPAGE mappings") as THP
allocations can now spill over to remote nodes instead of fragmenting
local memory.
2-socket Haswell machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 166352
4.20-rc3+patch: 147463 (11% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 6138.97 ( 0.00%) 6217.43 ( -1.28%)
Amean fault-huge-5 2294.28 ( 0.00%) 3163.33 * -37.88%*
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 96.82 ( 0.00%) 95.14 ( -1.74%)
There was a slight reduction in external fragmentation events although the
latencies were higher. The allocation success rate is high enough that
the system is struggling and there is quite a lot of parallel reclaim and
compaction activity. There is also a certain degree of luck on whether
processes start on node 0 or not for this patch but the relevance is
reduced later in the series.
Overall, the patch reduces the number of external fragmentation causing
events so the success of THP over long periods of time would be improved
for this adverse workload.
Link: http://lkml.kernel.org/r/20181123114528.28802-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 08:35:41 +00:00
|
|
|
/*
|
|
|
|
* Do not steal pages from freelists belonging to other pageblocks
|
|
|
|
* i.e. orders < pageblock_order. If there are no local zones free,
|
|
|
|
* the zonelists will be reiterated without ALLOC_NOFRAGMENT.
|
|
|
|
*/
|
2022-08-03 02:51:21 +00:00
|
|
|
if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
|
mm, page_alloc: spread allocations across zones before introducing fragmentation
Patch series "Fragmentation avoidance improvements", v5.
It has been noted before that fragmentation avoidance (aka
anti-fragmentation) is not perfect. Given sufficient time or an adverse
workload, memory gets fragmented and the long-term success of high-order
allocations degrades. This series defines an adverse workload, a definition
of external fragmentation events (including serious) ones and a series
that reduces the level of those fragmentation events.
The details of the workload and the consequences are described in more
detail in the changelogs. However, from patch 1, this is a high-level
summary of the adverse workload. The exact details are found in the
mmtests implementation.
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch)
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameterr create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed
3. Warm up a number of fio read-only threads accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll fault back in old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup
Overall the series reduces external fragmentation causing events by over 94%
on 1 and 2 socket machines, which in turn impacts high-order allocation
success rates over the long term. There are differences in latencies and
high-order allocation success rates. Latencies are a mixed bag as they
are vulnerable to exact system state and whether allocations succeeded
so they are treated as a secondary metric.
Patch 1 uses lower zones if they are populated and have free memory
instead of fragmenting a higher zone. It's special cased to
handle a Normal->DMA32 fallback with the reasons explained
in the changelog.
Patch 2-4 boosts watermarks temporarily when an external fragmentation
event occurs. kswapd wakes to reclaim a small amount of old memory
and then wakes kcompactd on completion to recover the system
slightly. This introduces some overhead in the slowpath. The level
of boosting can be tuned or disabled depending on the tolerance
for fragmentation vs allocation latency.
Patch 5 stalls some movable allocation requests to let kswapd from patch 4
make some progress. The duration of the stalls is very low but it
is possible to tune the system to avoid fragmentation events if
larger stalls can be tolerated.
The bulk of the improvement in fragmentation avoidance is from patches
1-4 but patch 5 can deal with a rare corner case and provides the option
of tuning a system for THP allocation success rates in exchange for
some stalls to control fragmentation.
This patch (of 5):
The page allocator zone lists are iterated based on the watermarks of each
zone which does not take anti-fragmentation into account. On x86, node 0
may have multiple zones while other nodes have one zone. A consequence is
that tasks running on node 0 may fragment ZONE_NORMAL even though
ZONE_DMA32 has plenty of free memory. This patch special cases the
allocator fast path such that it'll try an allocation from a lower local
zone before fragmenting a higher zone. In this case, stealing of
pageblocks or orders larger than a pageblock are still allowed in the fast
path as they are uninteresting from a fragmentation point of view.
This was evaluated using a benchmark designed to fragment memory before
attempting THP allocations. It's implemented in mmtests as the following
configurations
configs/config-global-dhp__workload_thpfioscale
configs/config-global-dhp__workload_thpfioscale-defrag
configs/config-global-dhp__workload_thpfioscale-madvhugepage
e.g. from mmtests
./run-mmtests.sh --run-monitor --config configs/config-global-dhp__workload_thpfioscale test-run-1
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch).
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameter create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed.
3. Warm up a number of fio read-only processes accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll refault old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds.
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup the test files.
Note that due to the use of IO and page cache that this benchmark is not
suitable for running on large machines where the time to fragment memory
may be excessive. Also note that while this is one mix that generates
fragmentation that it's not the only mix that generates fragmentation.
Differences in workload that are more slab-intensive or whether SLUB is
used with high-order pages may yield different results.
When the page allocator fragments memory, it records the event using the
mm_page_alloc_extfrag ftrace event. If the fallback_order is smaller than
a pageblock order (order-9 on 64-bit x86) then it's considered to be an
"external fragmentation event" that may cause issues in the future.
Hence, the primary metric here is the number of external fragmentation
events that occur with order < 9. The secondary metric is allocation
latency and huge page allocation success rates but note that differences
in latencies and what the success rate also can affect the number of
external fragmentation event which is why it's a secondary metric.
1-socket Skylake machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 1 THP allocating thread
--------------------------------------
4.20-rc3 extfrag events < order 9: 804694
4.20-rc3+patch: 408912 (49% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 662.92 ( 0.00%) 653.58 * 1.41%*
Amean fault-huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
Fault latencies are slightly reduced while allocation success rates remain
at zero as this configuration does not make any special effort to allocate
THP and fio is heavily active at the time and either filling memory or
keeping pages resident. However, a 49% reduction of serious fragmentation
events reduces the changes of external fragmentation being a problem in
the future.
Vlastimil asked during review for a breakdown of the allocation types
that are falling back.
vanilla
3816 MIGRATE_UNMOVABLE
800845 MIGRATE_MOVABLE
33 MIGRATE_UNRECLAIMABLE
patch
735 MIGRATE_UNMOVABLE
408135 MIGRATE_MOVABLE
42 MIGRATE_UNRECLAIMABLE
The majority of the fallbacks are due to movable allocations and this is
consistent for the workload throughout the series so will not be presented
again as the primary source of fallbacks are movable allocations.
Movable fallbacks are sometimes considered "ok" to fallback because they
can be migrated. The problem is that they can fill an
unmovable/reclaimable pageblock causing those allocations to fallback
later and polluting pageblocks with pages that cannot move. If there is a
movable fallback, it is pretty much guaranteed to affect an
unmovable/reclaimable pageblock and while it might not be enough to
actually cause a unmovable/reclaimable fallback in the future, we cannot
know that in advance so the patch takes the only option available to it.
Hence, it's important to control them. This point is also consistent
throughout the series and will not be repeated.
1-socket Skylake machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 291392
4.20-rc3+patch: 191187 (34% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 1495.14 ( 0.00%) 1467.55 ( 1.85%)
Amean fault-huge-1 1098.48 ( 0.00%) 1127.11 ( -2.61%)
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 78.57 ( 0.00%) 77.64 ( -1.18%)
Fragmentation events were reduced quite a bit although this is known
to be a little variable. The latencies and allocation success rates
are similar but they were already quite high.
2-socket Haswell machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 5 THP allocating threads
----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 215698
4.20-rc3+patch: 200210 (7% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 1350.05 ( 0.00%) 1346.45 ( 0.27%)
Amean fault-huge-5 4181.01 ( 0.00%) 3418.60 ( 18.24%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 1.15 ( 0.00%) 0.78 ( -31.88%)
The reduction of external fragmentation events is slight and this is
partially due to the removal of __GFP_THISNODE in commit ac5b2c18911f
("mm: thp: relax __GFP_THISNODE for MADV_HUGEPAGE mappings") as THP
allocations can now spill over to remote nodes instead of fragmenting
local memory.
2-socket Haswell machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 166352
4.20-rc3+patch: 147463 (11% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 6138.97 ( 0.00%) 6217.43 ( -1.28%)
Amean fault-huge-5 2294.28 ( 0.00%) 3163.33 * -37.88%*
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 96.82 ( 0.00%) 95.14 ( -1.74%)
There was a slight reduction in external fragmentation events although the
latencies were higher. The allocation success rate is high enough that
the system is struggling and there is quite a lot of parallel reclaim and
compaction activity. There is also a certain degree of luck on whether
processes start on node 0 or not for this patch but the relevance is
reduced later in the series.
Overall, the patch reduces the number of external fragmentation causing
events so the success of THP over long periods of time would be improved
for this adverse workload.
Link: http://lkml.kernel.org/r/20181123114528.28802-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 08:35:41 +00:00
|
|
|
min_order = pageblock_order;
|
|
|
|
|
mm, page_alloc: fallback to smallest page when not stealing whole pageblock
Since commit 3bc48f96cf11 ("mm, page_alloc: split smallest stolen page
in fallback") we pick the smallest (but sufficient) page of all that
have been stolen from a pageblock of different migratetype. However,
there are cases when we decide not to steal the whole pageblock.
Practically in the current implementation it means that we are trying to
fallback for a MIGRATE_MOVABLE allocation of order X, go through the
freelists from MAX_ORDER-1 down to X, and find free page of order Y. If
Y is less than pageblock_order / 2, we decide not to steal all pages
from the pageblock. When Y > X, it means we are potentially splitting a
larger page than we need, as there might be other pages of order Z,
where X <= Z < Y. Since Y is already too small to steal whole
pageblock, picking smallest available Z will result in the same decision
and we avoid splitting a higher-order page in a MIGRATE_UNMOVABLE or
MIGRATE_RECLAIMABLE pageblock.
This patch therefore changes the fallback algorithm so that in the
situation described above, we switch the fallback search strategy to go
from order X upwards to find the smallest suitable fallback. In theory
there shouldn't be a downside of this change wrt fragmentation.
This has been tested with mmtests' stress-highalloc performing
GFP_KERNEL order-4 allocations, here is the relevant extfrag tracepoint
statistics:
4.12.0-rc2 4.12.0-rc2
1-kernel4 2-kernel4
Page alloc extfrag event 25640976 69680977
Extfrag fragmenting 25621086 69661364
Extfrag fragmenting for unmovable 74409 73204
Extfrag fragmenting unmovable placed with movable 69003 67684
Extfrag fragmenting unmovable placed with reclaim. 5406 5520
Extfrag fragmenting for reclaimable 6398 8467
Extfrag fragmenting reclaimable placed with movable 869 884
Extfrag fragmenting reclaimable placed with unmov. 5529 7583
Extfrag fragmenting for movable 25540279 69579693
Since we force movable allocations to steal the smallest available page
(which we then practially always split), we steal less per fallback, so
the number of fallbacks increases and steals potentially happen from
different pageblocks. This is however not an issue for movable pages
that can be compacted.
Importantly, the "unmovable placed with movable" statistics is lower,
which is the result of less fragmentation in the unmovable pageblocks.
The effect on reclaimable allocation is a bit unclear.
Link: http://lkml.kernel.org/r/20170529093947.22618-1-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 22:47:14 +00:00
|
|
|
/*
|
|
|
|
* Find the largest available free page in the other list. This roughly
|
|
|
|
* approximates finding the pageblock with the most free pages, which
|
|
|
|
* would be too costly to do exactly.
|
|
|
|
*/
|
2023-03-15 11:31:33 +00:00
|
|
|
for (current_order = MAX_ORDER; current_order >= min_order;
|
2014-06-04 23:10:21 +00:00
|
|
|
--current_order) {
|
2015-04-14 22:45:18 +00:00
|
|
|
area = &(zone->free_area[current_order]);
|
|
|
|
fallback_mt = find_suitable_fallback(area, current_order,
|
mm/compaction: enhance compaction finish condition
Compaction has anti fragmentation algorithm. It is that freepage should
be more than pageblock order to finish the compaction if we don't find any
freepage in requested migratetype buddy list. This is for mitigating
fragmentation, but, there is a lack of migratetype consideration and it is
too excessive compared to page allocator's anti fragmentation algorithm.
Not considering migratetype would cause premature finish of compaction.
For example, if allocation request is for unmovable migratetype, freepage
with CMA migratetype doesn't help that allocation and compaction should
not be stopped. But, current logic regards this situation as compaction
is no longer needed, so finish the compaction.
Secondly, condition is too excessive compared to page allocator's logic.
We can steal freepage from other migratetype and change pageblock
migratetype on more relaxed conditions in page allocator. This is
designed to prevent fragmentation and we can use it here. Imposing hard
constraint only to the compaction doesn't help much in this case since
page allocator would cause fragmentation again.
To solve these problems, this patch borrows anti fragmentation logic from
page allocator. It will reduce premature compaction finish in some cases
and reduce excessive compaction work.
stress-highalloc test in mmtests with non movable order 7 allocation shows
considerable increase of compaction success rate.
Compaction success rate (Compaction success * 100 / Compaction stalls, %)
31.82 : 42.20
I tested it on non-reboot 5 runs stress-highalloc benchmark and found that
there is no more degradation on allocation success rate than before. That
roughly means that this patch doesn't result in more fragmentations.
Vlastimil suggests additional idea that we only test for fallbacks when
migration scanner has scanned a whole pageblock. It looked good for
fragmentation because chance of stealing increase due to making more free
pages in certain pageblock. So, I tested it, but, it results in decreased
compaction success rate, roughly 38.00. I guess the reason that if system
is low memory condition, watermark check could be failed due to not enough
order 0 free page and so, sometimes, we can't reach a fallback check
although migrate_pfn is aligned to pageblock_nr_pages. I can insert code
to cope with this situation but it makes code more complicated so I don't
include his idea at this patch.
[akpm@linux-foundation.org: fix CONFIG_CMA=n build]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-14 22:45:21 +00:00
|
|
|
start_migratetype, false, &can_steal);
|
2015-04-14 22:45:18 +00:00
|
|
|
if (fallback_mt == -1)
|
|
|
|
continue;
|
2007-10-16 08:25:48 +00:00
|
|
|
|
mm, page_alloc: fallback to smallest page when not stealing whole pageblock
Since commit 3bc48f96cf11 ("mm, page_alloc: split smallest stolen page
in fallback") we pick the smallest (but sufficient) page of all that
have been stolen from a pageblock of different migratetype. However,
there are cases when we decide not to steal the whole pageblock.
Practically in the current implementation it means that we are trying to
fallback for a MIGRATE_MOVABLE allocation of order X, go through the
freelists from MAX_ORDER-1 down to X, and find free page of order Y. If
Y is less than pageblock_order / 2, we decide not to steal all pages
from the pageblock. When Y > X, it means we are potentially splitting a
larger page than we need, as there might be other pages of order Z,
where X <= Z < Y. Since Y is already too small to steal whole
pageblock, picking smallest available Z will result in the same decision
and we avoid splitting a higher-order page in a MIGRATE_UNMOVABLE or
MIGRATE_RECLAIMABLE pageblock.
This patch therefore changes the fallback algorithm so that in the
situation described above, we switch the fallback search strategy to go
from order X upwards to find the smallest suitable fallback. In theory
there shouldn't be a downside of this change wrt fragmentation.
This has been tested with mmtests' stress-highalloc performing
GFP_KERNEL order-4 allocations, here is the relevant extfrag tracepoint
statistics:
4.12.0-rc2 4.12.0-rc2
1-kernel4 2-kernel4
Page alloc extfrag event 25640976 69680977
Extfrag fragmenting 25621086 69661364
Extfrag fragmenting for unmovable 74409 73204
Extfrag fragmenting unmovable placed with movable 69003 67684
Extfrag fragmenting unmovable placed with reclaim. 5406 5520
Extfrag fragmenting for reclaimable 6398 8467
Extfrag fragmenting reclaimable placed with movable 869 884
Extfrag fragmenting reclaimable placed with unmov. 5529 7583
Extfrag fragmenting for movable 25540279 69579693
Since we force movable allocations to steal the smallest available page
(which we then practially always split), we steal less per fallback, so
the number of fallbacks increases and steals potentially happen from
different pageblocks. This is however not an issue for movable pages
that can be compacted.
Importantly, the "unmovable placed with movable" statistics is lower,
which is the result of less fragmentation in the unmovable pageblocks.
The effect on reclaimable allocation is a bit unclear.
Link: http://lkml.kernel.org/r/20170529093947.22618-1-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 22:47:14 +00:00
|
|
|
/*
|
|
|
|
* We cannot steal all free pages from the pageblock and the
|
|
|
|
* requested migratetype is movable. In that case it's better to
|
|
|
|
* steal and split the smallest available page instead of the
|
|
|
|
* largest available page, because even if the next movable
|
|
|
|
* allocation falls back into a different pageblock than this
|
|
|
|
* one, it won't cause permanent fragmentation.
|
|
|
|
*/
|
|
|
|
if (!can_steal && start_migratetype == MIGRATE_MOVABLE
|
|
|
|
&& current_order > order)
|
|
|
|
goto find_smallest;
|
2007-10-16 08:25:48 +00:00
|
|
|
|
mm, page_alloc: fallback to smallest page when not stealing whole pageblock
Since commit 3bc48f96cf11 ("mm, page_alloc: split smallest stolen page
in fallback") we pick the smallest (but sufficient) page of all that
have been stolen from a pageblock of different migratetype. However,
there are cases when we decide not to steal the whole pageblock.
Practically in the current implementation it means that we are trying to
fallback for a MIGRATE_MOVABLE allocation of order X, go through the
freelists from MAX_ORDER-1 down to X, and find free page of order Y. If
Y is less than pageblock_order / 2, we decide not to steal all pages
from the pageblock. When Y > X, it means we are potentially splitting a
larger page than we need, as there might be other pages of order Z,
where X <= Z < Y. Since Y is already too small to steal whole
pageblock, picking smallest available Z will result in the same decision
and we avoid splitting a higher-order page in a MIGRATE_UNMOVABLE or
MIGRATE_RECLAIMABLE pageblock.
This patch therefore changes the fallback algorithm so that in the
situation described above, we switch the fallback search strategy to go
from order X upwards to find the smallest suitable fallback. In theory
there shouldn't be a downside of this change wrt fragmentation.
This has been tested with mmtests' stress-highalloc performing
GFP_KERNEL order-4 allocations, here is the relevant extfrag tracepoint
statistics:
4.12.0-rc2 4.12.0-rc2
1-kernel4 2-kernel4
Page alloc extfrag event 25640976 69680977
Extfrag fragmenting 25621086 69661364
Extfrag fragmenting for unmovable 74409 73204
Extfrag fragmenting unmovable placed with movable 69003 67684
Extfrag fragmenting unmovable placed with reclaim. 5406 5520
Extfrag fragmenting for reclaimable 6398 8467
Extfrag fragmenting reclaimable placed with movable 869 884
Extfrag fragmenting reclaimable placed with unmov. 5529 7583
Extfrag fragmenting for movable 25540279 69579693
Since we force movable allocations to steal the smallest available page
(which we then practially always split), we steal less per fallback, so
the number of fallbacks increases and steals potentially happen from
different pageblocks. This is however not an issue for movable pages
that can be compacted.
Importantly, the "unmovable placed with movable" statistics is lower,
which is the result of less fragmentation in the unmovable pageblocks.
The effect on reclaimable allocation is a bit unclear.
Link: http://lkml.kernel.org/r/20170529093947.22618-1-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 22:47:14 +00:00
|
|
|
goto do_steal;
|
|
|
|
}
|
2009-09-22 00:02:42 +00:00
|
|
|
|
mm, page_alloc: fallback to smallest page when not stealing whole pageblock
Since commit 3bc48f96cf11 ("mm, page_alloc: split smallest stolen page
in fallback") we pick the smallest (but sufficient) page of all that
have been stolen from a pageblock of different migratetype. However,
there are cases when we decide not to steal the whole pageblock.
Practically in the current implementation it means that we are trying to
fallback for a MIGRATE_MOVABLE allocation of order X, go through the
freelists from MAX_ORDER-1 down to X, and find free page of order Y. If
Y is less than pageblock_order / 2, we decide not to steal all pages
from the pageblock. When Y > X, it means we are potentially splitting a
larger page than we need, as there might be other pages of order Z,
where X <= Z < Y. Since Y is already too small to steal whole
pageblock, picking smallest available Z will result in the same decision
and we avoid splitting a higher-order page in a MIGRATE_UNMOVABLE or
MIGRATE_RECLAIMABLE pageblock.
This patch therefore changes the fallback algorithm so that in the
situation described above, we switch the fallback search strategy to go
from order X upwards to find the smallest suitable fallback. In theory
there shouldn't be a downside of this change wrt fragmentation.
This has been tested with mmtests' stress-highalloc performing
GFP_KERNEL order-4 allocations, here is the relevant extfrag tracepoint
statistics:
4.12.0-rc2 4.12.0-rc2
1-kernel4 2-kernel4
Page alloc extfrag event 25640976 69680977
Extfrag fragmenting 25621086 69661364
Extfrag fragmenting for unmovable 74409 73204
Extfrag fragmenting unmovable placed with movable 69003 67684
Extfrag fragmenting unmovable placed with reclaim. 5406 5520
Extfrag fragmenting for reclaimable 6398 8467
Extfrag fragmenting reclaimable placed with movable 869 884
Extfrag fragmenting reclaimable placed with unmov. 5529 7583
Extfrag fragmenting for movable 25540279 69579693
Since we force movable allocations to steal the smallest available page
(which we then practially always split), we steal less per fallback, so
the number of fallbacks increases and steals potentially happen from
different pageblocks. This is however not an issue for movable pages
that can be compacted.
Importantly, the "unmovable placed with movable" statistics is lower,
which is the result of less fragmentation in the unmovable pageblocks.
The effect on reclaimable allocation is a bit unclear.
Link: http://lkml.kernel.org/r/20170529093947.22618-1-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 22:47:14 +00:00
|
|
|
return false;
|
2009-09-22 00:02:42 +00:00
|
|
|
|
mm, page_alloc: fallback to smallest page when not stealing whole pageblock
Since commit 3bc48f96cf11 ("mm, page_alloc: split smallest stolen page
in fallback") we pick the smallest (but sufficient) page of all that
have been stolen from a pageblock of different migratetype. However,
there are cases when we decide not to steal the whole pageblock.
Practically in the current implementation it means that we are trying to
fallback for a MIGRATE_MOVABLE allocation of order X, go through the
freelists from MAX_ORDER-1 down to X, and find free page of order Y. If
Y is less than pageblock_order / 2, we decide not to steal all pages
from the pageblock. When Y > X, it means we are potentially splitting a
larger page than we need, as there might be other pages of order Z,
where X <= Z < Y. Since Y is already too small to steal whole
pageblock, picking smallest available Z will result in the same decision
and we avoid splitting a higher-order page in a MIGRATE_UNMOVABLE or
MIGRATE_RECLAIMABLE pageblock.
This patch therefore changes the fallback algorithm so that in the
situation described above, we switch the fallback search strategy to go
from order X upwards to find the smallest suitable fallback. In theory
there shouldn't be a downside of this change wrt fragmentation.
This has been tested with mmtests' stress-highalloc performing
GFP_KERNEL order-4 allocations, here is the relevant extfrag tracepoint
statistics:
4.12.0-rc2 4.12.0-rc2
1-kernel4 2-kernel4
Page alloc extfrag event 25640976 69680977
Extfrag fragmenting 25621086 69661364
Extfrag fragmenting for unmovable 74409 73204
Extfrag fragmenting unmovable placed with movable 69003 67684
Extfrag fragmenting unmovable placed with reclaim. 5406 5520
Extfrag fragmenting for reclaimable 6398 8467
Extfrag fragmenting reclaimable placed with movable 869 884
Extfrag fragmenting reclaimable placed with unmov. 5529 7583
Extfrag fragmenting for movable 25540279 69579693
Since we force movable allocations to steal the smallest available page
(which we then practially always split), we steal less per fallback, so
the number of fallbacks increases and steals potentially happen from
different pageblocks. This is however not an issue for movable pages
that can be compacted.
Importantly, the "unmovable placed with movable" statistics is lower,
which is the result of less fragmentation in the unmovable pageblocks.
The effect on reclaimable allocation is a bit unclear.
Link: http://lkml.kernel.org/r/20170529093947.22618-1-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 22:47:14 +00:00
|
|
|
find_smallest:
|
2023-03-15 11:31:33 +00:00
|
|
|
for (current_order = order; current_order <= MAX_ORDER;
|
mm, page_alloc: fallback to smallest page when not stealing whole pageblock
Since commit 3bc48f96cf11 ("mm, page_alloc: split smallest stolen page
in fallback") we pick the smallest (but sufficient) page of all that
have been stolen from a pageblock of different migratetype. However,
there are cases when we decide not to steal the whole pageblock.
Practically in the current implementation it means that we are trying to
fallback for a MIGRATE_MOVABLE allocation of order X, go through the
freelists from MAX_ORDER-1 down to X, and find free page of order Y. If
Y is less than pageblock_order / 2, we decide not to steal all pages
from the pageblock. When Y > X, it means we are potentially splitting a
larger page than we need, as there might be other pages of order Z,
where X <= Z < Y. Since Y is already too small to steal whole
pageblock, picking smallest available Z will result in the same decision
and we avoid splitting a higher-order page in a MIGRATE_UNMOVABLE or
MIGRATE_RECLAIMABLE pageblock.
This patch therefore changes the fallback algorithm so that in the
situation described above, we switch the fallback search strategy to go
from order X upwards to find the smallest suitable fallback. In theory
there shouldn't be a downside of this change wrt fragmentation.
This has been tested with mmtests' stress-highalloc performing
GFP_KERNEL order-4 allocations, here is the relevant extfrag tracepoint
statistics:
4.12.0-rc2 4.12.0-rc2
1-kernel4 2-kernel4
Page alloc extfrag event 25640976 69680977
Extfrag fragmenting 25621086 69661364
Extfrag fragmenting for unmovable 74409 73204
Extfrag fragmenting unmovable placed with movable 69003 67684
Extfrag fragmenting unmovable placed with reclaim. 5406 5520
Extfrag fragmenting for reclaimable 6398 8467
Extfrag fragmenting reclaimable placed with movable 869 884
Extfrag fragmenting reclaimable placed with unmov. 5529 7583
Extfrag fragmenting for movable 25540279 69579693
Since we force movable allocations to steal the smallest available page
(which we then practially always split), we steal less per fallback, so
the number of fallbacks increases and steals potentially happen from
different pageblocks. This is however not an issue for movable pages
that can be compacted.
Importantly, the "unmovable placed with movable" statistics is lower,
which is the result of less fragmentation in the unmovable pageblocks.
The effect on reclaimable allocation is a bit unclear.
Link: http://lkml.kernel.org/r/20170529093947.22618-1-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 22:47:14 +00:00
|
|
|
current_order++) {
|
|
|
|
area = &(zone->free_area[current_order]);
|
|
|
|
fallback_mt = find_suitable_fallback(area, current_order,
|
|
|
|
start_migratetype, false, &can_steal);
|
|
|
|
if (fallback_mt != -1)
|
|
|
|
break;
|
2007-10-16 08:25:48 +00:00
|
|
|
}
|
|
|
|
|
mm, page_alloc: fallback to smallest page when not stealing whole pageblock
Since commit 3bc48f96cf11 ("mm, page_alloc: split smallest stolen page
in fallback") we pick the smallest (but sufficient) page of all that
have been stolen from a pageblock of different migratetype. However,
there are cases when we decide not to steal the whole pageblock.
Practically in the current implementation it means that we are trying to
fallback for a MIGRATE_MOVABLE allocation of order X, go through the
freelists from MAX_ORDER-1 down to X, and find free page of order Y. If
Y is less than pageblock_order / 2, we decide not to steal all pages
from the pageblock. When Y > X, it means we are potentially splitting a
larger page than we need, as there might be other pages of order Z,
where X <= Z < Y. Since Y is already too small to steal whole
pageblock, picking smallest available Z will result in the same decision
and we avoid splitting a higher-order page in a MIGRATE_UNMOVABLE or
MIGRATE_RECLAIMABLE pageblock.
This patch therefore changes the fallback algorithm so that in the
situation described above, we switch the fallback search strategy to go
from order X upwards to find the smallest suitable fallback. In theory
there shouldn't be a downside of this change wrt fragmentation.
This has been tested with mmtests' stress-highalloc performing
GFP_KERNEL order-4 allocations, here is the relevant extfrag tracepoint
statistics:
4.12.0-rc2 4.12.0-rc2
1-kernel4 2-kernel4
Page alloc extfrag event 25640976 69680977
Extfrag fragmenting 25621086 69661364
Extfrag fragmenting for unmovable 74409 73204
Extfrag fragmenting unmovable placed with movable 69003 67684
Extfrag fragmenting unmovable placed with reclaim. 5406 5520
Extfrag fragmenting for reclaimable 6398 8467
Extfrag fragmenting reclaimable placed with movable 869 884
Extfrag fragmenting reclaimable placed with unmov. 5529 7583
Extfrag fragmenting for movable 25540279 69579693
Since we force movable allocations to steal the smallest available page
(which we then practially always split), we steal less per fallback, so
the number of fallbacks increases and steals potentially happen from
different pageblocks. This is however not an issue for movable pages
that can be compacted.
Importantly, the "unmovable placed with movable" statistics is lower,
which is the result of less fragmentation in the unmovable pageblocks.
The effect on reclaimable allocation is a bit unclear.
Link: http://lkml.kernel.org/r/20170529093947.22618-1-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 22:47:14 +00:00
|
|
|
/*
|
|
|
|
* This should not happen - we already found a suitable fallback
|
|
|
|
* when looking for the largest page.
|
|
|
|
*/
|
2023-03-15 11:31:33 +00:00
|
|
|
VM_BUG_ON(current_order > MAX_ORDER);
|
mm, page_alloc: fallback to smallest page when not stealing whole pageblock
Since commit 3bc48f96cf11 ("mm, page_alloc: split smallest stolen page
in fallback") we pick the smallest (but sufficient) page of all that
have been stolen from a pageblock of different migratetype. However,
there are cases when we decide not to steal the whole pageblock.
Practically in the current implementation it means that we are trying to
fallback for a MIGRATE_MOVABLE allocation of order X, go through the
freelists from MAX_ORDER-1 down to X, and find free page of order Y. If
Y is less than pageblock_order / 2, we decide not to steal all pages
from the pageblock. When Y > X, it means we are potentially splitting a
larger page than we need, as there might be other pages of order Z,
where X <= Z < Y. Since Y is already too small to steal whole
pageblock, picking smallest available Z will result in the same decision
and we avoid splitting a higher-order page in a MIGRATE_UNMOVABLE or
MIGRATE_RECLAIMABLE pageblock.
This patch therefore changes the fallback algorithm so that in the
situation described above, we switch the fallback search strategy to go
from order X upwards to find the smallest suitable fallback. In theory
there shouldn't be a downside of this change wrt fragmentation.
This has been tested with mmtests' stress-highalloc performing
GFP_KERNEL order-4 allocations, here is the relevant extfrag tracepoint
statistics:
4.12.0-rc2 4.12.0-rc2
1-kernel4 2-kernel4
Page alloc extfrag event 25640976 69680977
Extfrag fragmenting 25621086 69661364
Extfrag fragmenting for unmovable 74409 73204
Extfrag fragmenting unmovable placed with movable 69003 67684
Extfrag fragmenting unmovable placed with reclaim. 5406 5520
Extfrag fragmenting for reclaimable 6398 8467
Extfrag fragmenting reclaimable placed with movable 869 884
Extfrag fragmenting reclaimable placed with unmov. 5529 7583
Extfrag fragmenting for movable 25540279 69579693
Since we force movable allocations to steal the smallest available page
(which we then practially always split), we steal less per fallback, so
the number of fallbacks increases and steals potentially happen from
different pageblocks. This is however not an issue for movable pages
that can be compacted.
Importantly, the "unmovable placed with movable" statistics is lower,
which is the result of less fragmentation in the unmovable pageblocks.
The effect on reclaimable allocation is a bit unclear.
Link: http://lkml.kernel.org/r/20170529093947.22618-1-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 22:47:14 +00:00
|
|
|
|
|
|
|
do_steal:
|
2019-05-14 22:41:32 +00:00
|
|
|
page = get_page_from_free_area(area, fallback_mt);
|
mm, page_alloc: fallback to smallest page when not stealing whole pageblock
Since commit 3bc48f96cf11 ("mm, page_alloc: split smallest stolen page
in fallback") we pick the smallest (but sufficient) page of all that
have been stolen from a pageblock of different migratetype. However,
there are cases when we decide not to steal the whole pageblock.
Practically in the current implementation it means that we are trying to
fallback for a MIGRATE_MOVABLE allocation of order X, go through the
freelists from MAX_ORDER-1 down to X, and find free page of order Y. If
Y is less than pageblock_order / 2, we decide not to steal all pages
from the pageblock. When Y > X, it means we are potentially splitting a
larger page than we need, as there might be other pages of order Z,
where X <= Z < Y. Since Y is already too small to steal whole
pageblock, picking smallest available Z will result in the same decision
and we avoid splitting a higher-order page in a MIGRATE_UNMOVABLE or
MIGRATE_RECLAIMABLE pageblock.
This patch therefore changes the fallback algorithm so that in the
situation described above, we switch the fallback search strategy to go
from order X upwards to find the smallest suitable fallback. In theory
there shouldn't be a downside of this change wrt fragmentation.
This has been tested with mmtests' stress-highalloc performing
GFP_KERNEL order-4 allocations, here is the relevant extfrag tracepoint
statistics:
4.12.0-rc2 4.12.0-rc2
1-kernel4 2-kernel4
Page alloc extfrag event 25640976 69680977
Extfrag fragmenting 25621086 69661364
Extfrag fragmenting for unmovable 74409 73204
Extfrag fragmenting unmovable placed with movable 69003 67684
Extfrag fragmenting unmovable placed with reclaim. 5406 5520
Extfrag fragmenting for reclaimable 6398 8467
Extfrag fragmenting reclaimable placed with movable 869 884
Extfrag fragmenting reclaimable placed with unmov. 5529 7583
Extfrag fragmenting for movable 25540279 69579693
Since we force movable allocations to steal the smallest available page
(which we then practially always split), we steal less per fallback, so
the number of fallbacks increases and steals potentially happen from
different pageblocks. This is however not an issue for movable pages
that can be compacted.
Importantly, the "unmovable placed with movable" statistics is lower,
which is the result of less fragmentation in the unmovable pageblocks.
The effect on reclaimable allocation is a bit unclear.
Link: http://lkml.kernel.org/r/20170529093947.22618-1-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 22:47:14 +00:00
|
|
|
|
mm: reclaim small amounts of memory when an external fragmentation event occurs
An external fragmentation event was previously described as
When the page allocator fragments memory, it records the event using
the mm_page_alloc_extfrag event. If the fallback_order is smaller
than a pageblock order (order-9 on 64-bit x86) then it's considered
an event that will cause external fragmentation issues in the future.
The kernel reduces the probability of such events by increasing the
watermark sizes by calling set_recommended_min_free_kbytes early in the
lifetime of the system. This works reasonably well in general but if
there are enough sparsely populated pageblocks then the problem can still
occur as enough memory is free overall and kswapd stays asleep.
This patch introduces a watermark_boost_factor sysctl that allows a zone
watermark to be temporarily boosted when an external fragmentation causing
events occurs. The boosting will stall allocations that would decrease
free memory below the boosted low watermark and kswapd is woken if the
calling context allows to reclaim an amount of memory relative to the size
of the high watermark and the watermark_boost_factor until the boost is
cleared. When kswapd finishes, it wakes kcompactd at the pageblock order
to clean some of the pageblocks that may have been affected by the
fragmentation event. kswapd avoids any writeback, slab shrinkage and swap
from reclaim context during this operation to avoid excessive system
disruption in the name of fragmentation avoidance. Care is taken so that
kswapd will do normal reclaim work if the system is really low on memory.
This was evaluated using the same workloads as "mm, page_alloc: Spread
allocations across zones before introducing fragmentation".
1-socket Skylake machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 1 THP allocating thread
--------------------------------------
4.20-rc3 extfrag events < order 9: 804694
4.20-rc3+patch: 408912 (49% reduction)
4.20-rc3+patch1-4: 18421 (98% reduction)
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Amean fault-base-1 653.58 ( 0.00%) 652.71 ( 0.13%)
Amean fault-huge-1 0.00 ( 0.00%) 178.93 * -99.00%*
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Percentage huge-1 0.00 ( 0.00%) 5.12 ( 100.00%)
Note that external fragmentation causing events are massively reduced by
this path whether in comparison to the previous kernel or the vanilla
kernel. The fault latency for huge pages appears to be increased but that
is only because THP allocations were successful with the patch applied.
1-socket Skylake machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 291392
4.20-rc3+patch: 191187 (34% reduction)
4.20-rc3+patch1-4: 13464 (95% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Min fault-base-1 912.00 ( 0.00%) 905.00 ( 0.77%)
Min fault-huge-1 127.00 ( 0.00%) 135.00 ( -6.30%)
Amean fault-base-1 1467.55 ( 0.00%) 1481.67 ( -0.96%)
Amean fault-huge-1 1127.11 ( 0.00%) 1063.88 * 5.61%*
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Percentage huge-1 77.64 ( 0.00%) 83.46 ( 7.49%)
As before, massive reduction in external fragmentation events, some jitter
on latencies and an increase in THP allocation success rates.
2-socket Haswell machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 5 THP allocating threads
----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 215698
4.20-rc3+patch: 200210 (7% reduction)
4.20-rc3+patch1-4: 14263 (93% reduction)
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Amean fault-base-5 1346.45 ( 0.00%) 1306.87 ( 2.94%)
Amean fault-huge-5 3418.60 ( 0.00%) 1348.94 ( 60.54%)
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Percentage huge-5 0.78 ( 0.00%) 7.91 ( 910.64%)
There is a 93% reduction in fragmentation causing events, there is a big
reduction in the huge page fault latency and allocation success rate is
higher.
2-socket Haswell machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 166352
4.20-rc3+patch: 147463 (11% reduction)
4.20-rc3+patch1-4: 11095 (93% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Amean fault-base-5 6217.43 ( 0.00%) 7419.67 * -19.34%*
Amean fault-huge-5 3163.33 ( 0.00%) 3263.80 ( -3.18%)
4.20.0-rc3 4.20.0-rc3
lowzone-v5r8 boost-v5r8
Percentage huge-5 95.14 ( 0.00%) 87.98 ( -7.53%)
There is a large reduction in fragmentation events with some jitter around
the latencies and success rates. As before, the high THP allocation
success rate does mean the system is under a lot of pressure. However, as
the fragmentation events are reduced, it would be expected that the
long-term allocation success rate would be higher.
Link: http://lkml.kernel.org/r/20181123114528.28802-5-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 08:35:52 +00:00
|
|
|
steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
|
|
|
|
can_steal);
|
mm, page_alloc: fallback to smallest page when not stealing whole pageblock
Since commit 3bc48f96cf11 ("mm, page_alloc: split smallest stolen page
in fallback") we pick the smallest (but sufficient) page of all that
have been stolen from a pageblock of different migratetype. However,
there are cases when we decide not to steal the whole pageblock.
Practically in the current implementation it means that we are trying to
fallback for a MIGRATE_MOVABLE allocation of order X, go through the
freelists from MAX_ORDER-1 down to X, and find free page of order Y. If
Y is less than pageblock_order / 2, we decide not to steal all pages
from the pageblock. When Y > X, it means we are potentially splitting a
larger page than we need, as there might be other pages of order Z,
where X <= Z < Y. Since Y is already too small to steal whole
pageblock, picking smallest available Z will result in the same decision
and we avoid splitting a higher-order page in a MIGRATE_UNMOVABLE or
MIGRATE_RECLAIMABLE pageblock.
This patch therefore changes the fallback algorithm so that in the
situation described above, we switch the fallback search strategy to go
from order X upwards to find the smallest suitable fallback. In theory
there shouldn't be a downside of this change wrt fragmentation.
This has been tested with mmtests' stress-highalloc performing
GFP_KERNEL order-4 allocations, here is the relevant extfrag tracepoint
statistics:
4.12.0-rc2 4.12.0-rc2
1-kernel4 2-kernel4
Page alloc extfrag event 25640976 69680977
Extfrag fragmenting 25621086 69661364
Extfrag fragmenting for unmovable 74409 73204
Extfrag fragmenting unmovable placed with movable 69003 67684
Extfrag fragmenting unmovable placed with reclaim. 5406 5520
Extfrag fragmenting for reclaimable 6398 8467
Extfrag fragmenting reclaimable placed with movable 869 884
Extfrag fragmenting reclaimable placed with unmov. 5529 7583
Extfrag fragmenting for movable 25540279 69579693
Since we force movable allocations to steal the smallest available page
(which we then practially always split), we steal less per fallback, so
the number of fallbacks increases and steals potentially happen from
different pageblocks. This is however not an issue for movable pages
that can be compacted.
Importantly, the "unmovable placed with movable" statistics is lower,
which is the result of less fragmentation in the unmovable pageblocks.
The effect on reclaimable allocation is a bit unclear.
Link: http://lkml.kernel.org/r/20170529093947.22618-1-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 22:47:14 +00:00
|
|
|
|
|
|
|
trace_mm_page_alloc_extfrag(page, order, current_order,
|
|
|
|
start_migratetype, fallback_mt);
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
2007-10-16 08:25:48 +00:00
|
|
|
}
|
|
|
|
|
Bias the location of pages freed for min_free_kbytes in the same MAX_ORDER_NR_PAGES blocks
The standard buddy allocator always favours the smallest block of pages.
The effect of this is that the pages free to satisfy min_free_kbytes tends
to be preserved since boot time at the same location of memory ffor a very
long time and as a contiguous block. When an administrator sets the
reserve at 16384 at boot time, it tends to be the same MAX_ORDER blocks
that remain free. This allows the occasional high atomic allocation to
succeed up until the point the blocks are split. In practice, it is
difficult to split these blocks but when they do split, the benefit of
having min_free_kbytes for contiguous blocks disappears. Additionally,
increasing min_free_kbytes once the system has been running for some time
has no guarantee of creating contiguous blocks.
On the other hand, CONFIG_PAGE_GROUP_BY_MOBILITY favours splitting large
blocks when there are no free pages of the appropriate type available. A
side-effect of this is that all blocks in memory tends to be used up and
the contiguous free blocks from boot time are not preserved like in the
vanilla allocator. This can cause a problem if a new caller is unwilling
to reclaim or does not reclaim for long enough.
A failure scenario was found for a wireless network device allocating
order-1 atomic allocations but the allocations were not intense or frequent
enough for a whole block of pages to be preserved for MIGRATE_HIGHALLOC.
This was reproduced on a desktop by booting with mem=256mb, forcing the
driver to allocate at order-1, running a bittorrent client (downloading a
debian ISO) and building a kernel with -j2.
This patch addresses the problem on the desktop machine booted with
mem=256mb. It works by setting aside a reserve of MAX_ORDER_NR_PAGES
blocks, the number of which depends on the value of min_free_kbytes. These
blocks are only fallen back to when there is no other free pages. Then the
smallest possible page is used just like the normal buddy allocator instead
of the largest possible page to preserve contiguous pages The pages in free
lists in the reserve blocks are never taken for another migrate type. The
results is that even if min_free_kbytes is set to a low value, contiguous
blocks will be preserved in the MIGRATE_RESERVE blocks.
This works better than the vanilla allocator because if min_free_kbytes is
increased, a new reserve block will be chosen based on the location of
reclaimable pages and the block will free up as contiguous pages. In the
vanilla allocator, no effort is made to target a block of pages to free as
contiguous pages and min_free_kbytes pages are scattered randomly.
This effect has been observed on the test machine. min_free_kbytes was set
initially low but it was kept as a contiguous free block within
MIGRATE_RESERVE. min_free_kbytes was then set to a higher value and over a
period of time, the free blocks were within the reserve and coalescing.
How long it takes to free up depends on how quickly LRU is rotating.
Amusingly, this means that more activity will free the blocks faster.
This mechanism potentially replaces MIGRATE_HIGHALLOC as it may be more
effective than grouping contiguous free pages together. It all depends on
whether the number of active atomic high allocations exceeds
min_free_kbytes or not. If the number of active allocations exceeds
min_free_kbytes, it's worth it but maybe in that situation, min_free_kbytes
should be set higher. Once there are no more reports of allocation
failures, a patch will be submitted that backs out MIGRATE_HIGHALLOC and
see if the reports stay missing.
Credit to Mariusz Kozlowski for discovering the problem, describing the
failure scenario and testing patches and scenarios.
[akpm@linux-foundation.org: cleanups]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 08:25:58 +00:00
|
|
|
/*
|
2005-04-16 22:20:36 +00:00
|
|
|
* Do the hard work of removing an element from the buddy allocator.
|
|
|
|
* Call me with the zone->lock already held.
|
|
|
|
*/
|
2017-11-16 01:36:53 +00:00
|
|
|
static __always_inline struct page *
|
mm, page_alloc: spread allocations across zones before introducing fragmentation
Patch series "Fragmentation avoidance improvements", v5.
It has been noted before that fragmentation avoidance (aka
anti-fragmentation) is not perfect. Given sufficient time or an adverse
workload, memory gets fragmented and the long-term success of high-order
allocations degrades. This series defines an adverse workload, a definition
of external fragmentation events (including serious) ones and a series
that reduces the level of those fragmentation events.
The details of the workload and the consequences are described in more
detail in the changelogs. However, from patch 1, this is a high-level
summary of the adverse workload. The exact details are found in the
mmtests implementation.
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch)
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameterr create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed
3. Warm up a number of fio read-only threads accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll fault back in old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup
Overall the series reduces external fragmentation causing events by over 94%
on 1 and 2 socket machines, which in turn impacts high-order allocation
success rates over the long term. There are differences in latencies and
high-order allocation success rates. Latencies are a mixed bag as they
are vulnerable to exact system state and whether allocations succeeded
so they are treated as a secondary metric.
Patch 1 uses lower zones if they are populated and have free memory
instead of fragmenting a higher zone. It's special cased to
handle a Normal->DMA32 fallback with the reasons explained
in the changelog.
Patch 2-4 boosts watermarks temporarily when an external fragmentation
event occurs. kswapd wakes to reclaim a small amount of old memory
and then wakes kcompactd on completion to recover the system
slightly. This introduces some overhead in the slowpath. The level
of boosting can be tuned or disabled depending on the tolerance
for fragmentation vs allocation latency.
Patch 5 stalls some movable allocation requests to let kswapd from patch 4
make some progress. The duration of the stalls is very low but it
is possible to tune the system to avoid fragmentation events if
larger stalls can be tolerated.
The bulk of the improvement in fragmentation avoidance is from patches
1-4 but patch 5 can deal with a rare corner case and provides the option
of tuning a system for THP allocation success rates in exchange for
some stalls to control fragmentation.
This patch (of 5):
The page allocator zone lists are iterated based on the watermarks of each
zone which does not take anti-fragmentation into account. On x86, node 0
may have multiple zones while other nodes have one zone. A consequence is
that tasks running on node 0 may fragment ZONE_NORMAL even though
ZONE_DMA32 has plenty of free memory. This patch special cases the
allocator fast path such that it'll try an allocation from a lower local
zone before fragmenting a higher zone. In this case, stealing of
pageblocks or orders larger than a pageblock are still allowed in the fast
path as they are uninteresting from a fragmentation point of view.
This was evaluated using a benchmark designed to fragment memory before
attempting THP allocations. It's implemented in mmtests as the following
configurations
configs/config-global-dhp__workload_thpfioscale
configs/config-global-dhp__workload_thpfioscale-defrag
configs/config-global-dhp__workload_thpfioscale-madvhugepage
e.g. from mmtests
./run-mmtests.sh --run-monitor --config configs/config-global-dhp__workload_thpfioscale test-run-1
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch).
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameter create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed.
3. Warm up a number of fio read-only processes accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll refault old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds.
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup the test files.
Note that due to the use of IO and page cache that this benchmark is not
suitable for running on large machines where the time to fragment memory
may be excessive. Also note that while this is one mix that generates
fragmentation that it's not the only mix that generates fragmentation.
Differences in workload that are more slab-intensive or whether SLUB is
used with high-order pages may yield different results.
When the page allocator fragments memory, it records the event using the
mm_page_alloc_extfrag ftrace event. If the fallback_order is smaller than
a pageblock order (order-9 on 64-bit x86) then it's considered to be an
"external fragmentation event" that may cause issues in the future.
Hence, the primary metric here is the number of external fragmentation
events that occur with order < 9. The secondary metric is allocation
latency and huge page allocation success rates but note that differences
in latencies and what the success rate also can affect the number of
external fragmentation event which is why it's a secondary metric.
1-socket Skylake machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 1 THP allocating thread
--------------------------------------
4.20-rc3 extfrag events < order 9: 804694
4.20-rc3+patch: 408912 (49% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 662.92 ( 0.00%) 653.58 * 1.41%*
Amean fault-huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
Fault latencies are slightly reduced while allocation success rates remain
at zero as this configuration does not make any special effort to allocate
THP and fio is heavily active at the time and either filling memory or
keeping pages resident. However, a 49% reduction of serious fragmentation
events reduces the changes of external fragmentation being a problem in
the future.
Vlastimil asked during review for a breakdown of the allocation types
that are falling back.
vanilla
3816 MIGRATE_UNMOVABLE
800845 MIGRATE_MOVABLE
33 MIGRATE_UNRECLAIMABLE
patch
735 MIGRATE_UNMOVABLE
408135 MIGRATE_MOVABLE
42 MIGRATE_UNRECLAIMABLE
The majority of the fallbacks are due to movable allocations and this is
consistent for the workload throughout the series so will not be presented
again as the primary source of fallbacks are movable allocations.
Movable fallbacks are sometimes considered "ok" to fallback because they
can be migrated. The problem is that they can fill an
unmovable/reclaimable pageblock causing those allocations to fallback
later and polluting pageblocks with pages that cannot move. If there is a
movable fallback, it is pretty much guaranteed to affect an
unmovable/reclaimable pageblock and while it might not be enough to
actually cause a unmovable/reclaimable fallback in the future, we cannot
know that in advance so the patch takes the only option available to it.
Hence, it's important to control them. This point is also consistent
throughout the series and will not be repeated.
1-socket Skylake machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 291392
4.20-rc3+patch: 191187 (34% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 1495.14 ( 0.00%) 1467.55 ( 1.85%)
Amean fault-huge-1 1098.48 ( 0.00%) 1127.11 ( -2.61%)
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 78.57 ( 0.00%) 77.64 ( -1.18%)
Fragmentation events were reduced quite a bit although this is known
to be a little variable. The latencies and allocation success rates
are similar but they were already quite high.
2-socket Haswell machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 5 THP allocating threads
----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 215698
4.20-rc3+patch: 200210 (7% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 1350.05 ( 0.00%) 1346.45 ( 0.27%)
Amean fault-huge-5 4181.01 ( 0.00%) 3418.60 ( 18.24%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 1.15 ( 0.00%) 0.78 ( -31.88%)
The reduction of external fragmentation events is slight and this is
partially due to the removal of __GFP_THISNODE in commit ac5b2c18911f
("mm: thp: relax __GFP_THISNODE for MADV_HUGEPAGE mappings") as THP
allocations can now spill over to remote nodes instead of fragmenting
local memory.
2-socket Haswell machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 166352
4.20-rc3+patch: 147463 (11% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 6138.97 ( 0.00%) 6217.43 ( -1.28%)
Amean fault-huge-5 2294.28 ( 0.00%) 3163.33 * -37.88%*
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 96.82 ( 0.00%) 95.14 ( -1.74%)
There was a slight reduction in external fragmentation events although the
latencies were higher. The allocation success rate is high enough that
the system is struggling and there is quite a lot of parallel reclaim and
compaction activity. There is also a certain degree of luck on whether
processes start on node 0 or not for this patch but the relevance is
reduced later in the series.
Overall, the patch reduces the number of external fragmentation causing
events so the success of THP over long periods of time would be improved
for this adverse workload.
Link: http://lkml.kernel.org/r/20181123114528.28802-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 08:35:41 +00:00
|
|
|
__rmqueue(struct zone *zone, unsigned int order, int migratetype,
|
|
|
|
unsigned int alloc_flags)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
struct page *page;
|
|
|
|
|
2021-01-12 23:49:08 +00:00
|
|
|
if (IS_ENABLED(CONFIG_CMA)) {
|
|
|
|
/*
|
|
|
|
* Balance movable allocations between regular and CMA areas by
|
|
|
|
* allocating from CMA when over half of the zone's free memory
|
|
|
|
* is in the CMA area.
|
|
|
|
*/
|
|
|
|
if (alloc_flags & ALLOC_CMA &&
|
|
|
|
zone_page_state(zone, NR_FREE_CMA_PAGES) >
|
|
|
|
zone_page_state(zone, NR_FREE_PAGES) / 2) {
|
|
|
|
page = __rmqueue_cma_fallback(zone, order);
|
|
|
|
if (page)
|
2022-05-19 21:08:54 +00:00
|
|
|
return page;
|
2021-01-12 23:49:08 +00:00
|
|
|
}
|
2020-06-03 22:58:42 +00:00
|
|
|
}
|
2017-05-08 22:54:37 +00:00
|
|
|
retry:
|
Bias the location of pages freed for min_free_kbytes in the same MAX_ORDER_NR_PAGES blocks
The standard buddy allocator always favours the smallest block of pages.
The effect of this is that the pages free to satisfy min_free_kbytes tends
to be preserved since boot time at the same location of memory ffor a very
long time and as a contiguous block. When an administrator sets the
reserve at 16384 at boot time, it tends to be the same MAX_ORDER blocks
that remain free. This allows the occasional high atomic allocation to
succeed up until the point the blocks are split. In practice, it is
difficult to split these blocks but when they do split, the benefit of
having min_free_kbytes for contiguous blocks disappears. Additionally,
increasing min_free_kbytes once the system has been running for some time
has no guarantee of creating contiguous blocks.
On the other hand, CONFIG_PAGE_GROUP_BY_MOBILITY favours splitting large
blocks when there are no free pages of the appropriate type available. A
side-effect of this is that all blocks in memory tends to be used up and
the contiguous free blocks from boot time are not preserved like in the
vanilla allocator. This can cause a problem if a new caller is unwilling
to reclaim or does not reclaim for long enough.
A failure scenario was found for a wireless network device allocating
order-1 atomic allocations but the allocations were not intense or frequent
enough for a whole block of pages to be preserved for MIGRATE_HIGHALLOC.
This was reproduced on a desktop by booting with mem=256mb, forcing the
driver to allocate at order-1, running a bittorrent client (downloading a
debian ISO) and building a kernel with -j2.
This patch addresses the problem on the desktop machine booted with
mem=256mb. It works by setting aside a reserve of MAX_ORDER_NR_PAGES
blocks, the number of which depends on the value of min_free_kbytes. These
blocks are only fallen back to when there is no other free pages. Then the
smallest possible page is used just like the normal buddy allocator instead
of the largest possible page to preserve contiguous pages The pages in free
lists in the reserve blocks are never taken for another migrate type. The
results is that even if min_free_kbytes is set to a low value, contiguous
blocks will be preserved in the MIGRATE_RESERVE blocks.
This works better than the vanilla allocator because if min_free_kbytes is
increased, a new reserve block will be chosen based on the location of
reclaimable pages and the block will free up as contiguous pages. In the
vanilla allocator, no effort is made to target a block of pages to free as
contiguous pages and min_free_kbytes pages are scattered randomly.
This effect has been observed on the test machine. min_free_kbytes was set
initially low but it was kept as a contiguous free block within
MIGRATE_RESERVE. min_free_kbytes was then set to a higher value and over a
period of time, the free blocks were within the reserve and coalescing.
How long it takes to free up depends on how quickly LRU is rotating.
Amusingly, this means that more activity will free the blocks faster.
This mechanism potentially replaces MIGRATE_HIGHALLOC as it may be more
effective than grouping contiguous free pages together. It all depends on
whether the number of active atomic high allocations exceeds
min_free_kbytes or not. If the number of active allocations exceeds
min_free_kbytes, it's worth it but maybe in that situation, min_free_kbytes
should be set higher. Once there are no more reports of allocation
failures, a patch will be submitted that backs out MIGRATE_HIGHALLOC and
see if the reports stay missing.
Credit to Mariusz Kozlowski for discovering the problem, describing the
failure scenario and testing patches and scenarios.
[akpm@linux-foundation.org: cleanups]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 08:25:58 +00:00
|
|
|
page = __rmqueue_smallest(zone, order, migratetype);
|
2015-11-07 00:28:34 +00:00
|
|
|
if (unlikely(!page)) {
|
2020-08-07 06:26:04 +00:00
|
|
|
if (alloc_flags & ALLOC_CMA)
|
2015-04-14 22:45:15 +00:00
|
|
|
page = __rmqueue_cma_fallback(zone, order);
|
|
|
|
|
mm, page_alloc: spread allocations across zones before introducing fragmentation
Patch series "Fragmentation avoidance improvements", v5.
It has been noted before that fragmentation avoidance (aka
anti-fragmentation) is not perfect. Given sufficient time or an adverse
workload, memory gets fragmented and the long-term success of high-order
allocations degrades. This series defines an adverse workload, a definition
of external fragmentation events (including serious) ones and a series
that reduces the level of those fragmentation events.
The details of the workload and the consequences are described in more
detail in the changelogs. However, from patch 1, this is a high-level
summary of the adverse workload. The exact details are found in the
mmtests implementation.
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch)
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameterr create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed
3. Warm up a number of fio read-only threads accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll fault back in old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup
Overall the series reduces external fragmentation causing events by over 94%
on 1 and 2 socket machines, which in turn impacts high-order allocation
success rates over the long term. There are differences in latencies and
high-order allocation success rates. Latencies are a mixed bag as they
are vulnerable to exact system state and whether allocations succeeded
so they are treated as a secondary metric.
Patch 1 uses lower zones if they are populated and have free memory
instead of fragmenting a higher zone. It's special cased to
handle a Normal->DMA32 fallback with the reasons explained
in the changelog.
Patch 2-4 boosts watermarks temporarily when an external fragmentation
event occurs. kswapd wakes to reclaim a small amount of old memory
and then wakes kcompactd on completion to recover the system
slightly. This introduces some overhead in the slowpath. The level
of boosting can be tuned or disabled depending on the tolerance
for fragmentation vs allocation latency.
Patch 5 stalls some movable allocation requests to let kswapd from patch 4
make some progress. The duration of the stalls is very low but it
is possible to tune the system to avoid fragmentation events if
larger stalls can be tolerated.
The bulk of the improvement in fragmentation avoidance is from patches
1-4 but patch 5 can deal with a rare corner case and provides the option
of tuning a system for THP allocation success rates in exchange for
some stalls to control fragmentation.
This patch (of 5):
The page allocator zone lists are iterated based on the watermarks of each
zone which does not take anti-fragmentation into account. On x86, node 0
may have multiple zones while other nodes have one zone. A consequence is
that tasks running on node 0 may fragment ZONE_NORMAL even though
ZONE_DMA32 has plenty of free memory. This patch special cases the
allocator fast path such that it'll try an allocation from a lower local
zone before fragmenting a higher zone. In this case, stealing of
pageblocks or orders larger than a pageblock are still allowed in the fast
path as they are uninteresting from a fragmentation point of view.
This was evaluated using a benchmark designed to fragment memory before
attempting THP allocations. It's implemented in mmtests as the following
configurations
configs/config-global-dhp__workload_thpfioscale
configs/config-global-dhp__workload_thpfioscale-defrag
configs/config-global-dhp__workload_thpfioscale-madvhugepage
e.g. from mmtests
./run-mmtests.sh --run-monitor --config configs/config-global-dhp__workload_thpfioscale test-run-1
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch).
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameter create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed.
3. Warm up a number of fio read-only processes accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll refault old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds.
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup the test files.
Note that due to the use of IO and page cache that this benchmark is not
suitable for running on large machines where the time to fragment memory
may be excessive. Also note that while this is one mix that generates
fragmentation that it's not the only mix that generates fragmentation.
Differences in workload that are more slab-intensive or whether SLUB is
used with high-order pages may yield different results.
When the page allocator fragments memory, it records the event using the
mm_page_alloc_extfrag ftrace event. If the fallback_order is smaller than
a pageblock order (order-9 on 64-bit x86) then it's considered to be an
"external fragmentation event" that may cause issues in the future.
Hence, the primary metric here is the number of external fragmentation
events that occur with order < 9. The secondary metric is allocation
latency and huge page allocation success rates but note that differences
in latencies and what the success rate also can affect the number of
external fragmentation event which is why it's a secondary metric.
1-socket Skylake machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 1 THP allocating thread
--------------------------------------
4.20-rc3 extfrag events < order 9: 804694
4.20-rc3+patch: 408912 (49% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 662.92 ( 0.00%) 653.58 * 1.41%*
Amean fault-huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
Fault latencies are slightly reduced while allocation success rates remain
at zero as this configuration does not make any special effort to allocate
THP and fio is heavily active at the time and either filling memory or
keeping pages resident. However, a 49% reduction of serious fragmentation
events reduces the changes of external fragmentation being a problem in
the future.
Vlastimil asked during review for a breakdown of the allocation types
that are falling back.
vanilla
3816 MIGRATE_UNMOVABLE
800845 MIGRATE_MOVABLE
33 MIGRATE_UNRECLAIMABLE
patch
735 MIGRATE_UNMOVABLE
408135 MIGRATE_MOVABLE
42 MIGRATE_UNRECLAIMABLE
The majority of the fallbacks are due to movable allocations and this is
consistent for the workload throughout the series so will not be presented
again as the primary source of fallbacks are movable allocations.
Movable fallbacks are sometimes considered "ok" to fallback because they
can be migrated. The problem is that they can fill an
unmovable/reclaimable pageblock causing those allocations to fallback
later and polluting pageblocks with pages that cannot move. If there is a
movable fallback, it is pretty much guaranteed to affect an
unmovable/reclaimable pageblock and while it might not be enough to
actually cause a unmovable/reclaimable fallback in the future, we cannot
know that in advance so the patch takes the only option available to it.
Hence, it's important to control them. This point is also consistent
throughout the series and will not be repeated.
1-socket Skylake machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 291392
4.20-rc3+patch: 191187 (34% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 1495.14 ( 0.00%) 1467.55 ( 1.85%)
Amean fault-huge-1 1098.48 ( 0.00%) 1127.11 ( -2.61%)
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 78.57 ( 0.00%) 77.64 ( -1.18%)
Fragmentation events were reduced quite a bit although this is known
to be a little variable. The latencies and allocation success rates
are similar but they were already quite high.
2-socket Haswell machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 5 THP allocating threads
----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 215698
4.20-rc3+patch: 200210 (7% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 1350.05 ( 0.00%) 1346.45 ( 0.27%)
Amean fault-huge-5 4181.01 ( 0.00%) 3418.60 ( 18.24%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 1.15 ( 0.00%) 0.78 ( -31.88%)
The reduction of external fragmentation events is slight and this is
partially due to the removal of __GFP_THISNODE in commit ac5b2c18911f
("mm: thp: relax __GFP_THISNODE for MADV_HUGEPAGE mappings") as THP
allocations can now spill over to remote nodes instead of fragmenting
local memory.
2-socket Haswell machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 166352
4.20-rc3+patch: 147463 (11% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 6138.97 ( 0.00%) 6217.43 ( -1.28%)
Amean fault-huge-5 2294.28 ( 0.00%) 3163.33 * -37.88%*
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 96.82 ( 0.00%) 95.14 ( -1.74%)
There was a slight reduction in external fragmentation events although the
latencies were higher. The allocation success rate is high enough that
the system is struggling and there is quite a lot of parallel reclaim and
compaction activity. There is also a certain degree of luck on whether
processes start on node 0 or not for this patch but the relevance is
reduced later in the series.
Overall, the patch reduces the number of external fragmentation causing
events so the success of THP over long periods of time would be improved
for this adverse workload.
Link: http://lkml.kernel.org/r/20181123114528.28802-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 08:35:41 +00:00
|
|
|
if (!page && __rmqueue_fallback(zone, order, migratetype,
|
|
|
|
alloc_flags))
|
2017-05-08 22:54:37 +00:00
|
|
|
goto retry;
|
2009-06-16 22:32:04 +00:00
|
|
|
}
|
2007-10-16 08:25:48 +00:00
|
|
|
return page;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2012-01-11 14:16:11 +00:00
|
|
|
/*
|
2005-04-16 22:20:36 +00:00
|
|
|
* Obtain a specified number of elements from the buddy allocator, all under
|
|
|
|
* a single hold of the lock, for efficiency. Add them to the supplied list.
|
|
|
|
* Returns the number of new pages which were placed at *list.
|
|
|
|
*/
|
2012-01-11 14:16:11 +00:00
|
|
|
static int rmqueue_bulk(struct zone *zone, unsigned int order,
|
2007-10-16 08:25:48 +00:00
|
|
|
unsigned long count, struct list_head *list,
|
mm, page_alloc: spread allocations across zones before introducing fragmentation
Patch series "Fragmentation avoidance improvements", v5.
It has been noted before that fragmentation avoidance (aka
anti-fragmentation) is not perfect. Given sufficient time or an adverse
workload, memory gets fragmented and the long-term success of high-order
allocations degrades. This series defines an adverse workload, a definition
of external fragmentation events (including serious) ones and a series
that reduces the level of those fragmentation events.
The details of the workload and the consequences are described in more
detail in the changelogs. However, from patch 1, this is a high-level
summary of the adverse workload. The exact details are found in the
mmtests implementation.
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch)
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameterr create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed
3. Warm up a number of fio read-only threads accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll fault back in old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup
Overall the series reduces external fragmentation causing events by over 94%
on 1 and 2 socket machines, which in turn impacts high-order allocation
success rates over the long term. There are differences in latencies and
high-order allocation success rates. Latencies are a mixed bag as they
are vulnerable to exact system state and whether allocations succeeded
so they are treated as a secondary metric.
Patch 1 uses lower zones if they are populated and have free memory
instead of fragmenting a higher zone. It's special cased to
handle a Normal->DMA32 fallback with the reasons explained
in the changelog.
Patch 2-4 boosts watermarks temporarily when an external fragmentation
event occurs. kswapd wakes to reclaim a small amount of old memory
and then wakes kcompactd on completion to recover the system
slightly. This introduces some overhead in the slowpath. The level
of boosting can be tuned or disabled depending on the tolerance
for fragmentation vs allocation latency.
Patch 5 stalls some movable allocation requests to let kswapd from patch 4
make some progress. The duration of the stalls is very low but it
is possible to tune the system to avoid fragmentation events if
larger stalls can be tolerated.
The bulk of the improvement in fragmentation avoidance is from patches
1-4 but patch 5 can deal with a rare corner case and provides the option
of tuning a system for THP allocation success rates in exchange for
some stalls to control fragmentation.
This patch (of 5):
The page allocator zone lists are iterated based on the watermarks of each
zone which does not take anti-fragmentation into account. On x86, node 0
may have multiple zones while other nodes have one zone. A consequence is
that tasks running on node 0 may fragment ZONE_NORMAL even though
ZONE_DMA32 has plenty of free memory. This patch special cases the
allocator fast path such that it'll try an allocation from a lower local
zone before fragmenting a higher zone. In this case, stealing of
pageblocks or orders larger than a pageblock are still allowed in the fast
path as they are uninteresting from a fragmentation point of view.
This was evaluated using a benchmark designed to fragment memory before
attempting THP allocations. It's implemented in mmtests as the following
configurations
configs/config-global-dhp__workload_thpfioscale
configs/config-global-dhp__workload_thpfioscale-defrag
configs/config-global-dhp__workload_thpfioscale-madvhugepage
e.g. from mmtests
./run-mmtests.sh --run-monitor --config configs/config-global-dhp__workload_thpfioscale test-run-1
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch).
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameter create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed.
3. Warm up a number of fio read-only processes accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll refault old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds.
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup the test files.
Note that due to the use of IO and page cache that this benchmark is not
suitable for running on large machines where the time to fragment memory
may be excessive. Also note that while this is one mix that generates
fragmentation that it's not the only mix that generates fragmentation.
Differences in workload that are more slab-intensive or whether SLUB is
used with high-order pages may yield different results.
When the page allocator fragments memory, it records the event using the
mm_page_alloc_extfrag ftrace event. If the fallback_order is smaller than
a pageblock order (order-9 on 64-bit x86) then it's considered to be an
"external fragmentation event" that may cause issues in the future.
Hence, the primary metric here is the number of external fragmentation
events that occur with order < 9. The secondary metric is allocation
latency and huge page allocation success rates but note that differences
in latencies and what the success rate also can affect the number of
external fragmentation event which is why it's a secondary metric.
1-socket Skylake machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 1 THP allocating thread
--------------------------------------
4.20-rc3 extfrag events < order 9: 804694
4.20-rc3+patch: 408912 (49% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 662.92 ( 0.00%) 653.58 * 1.41%*
Amean fault-huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
Fault latencies are slightly reduced while allocation success rates remain
at zero as this configuration does not make any special effort to allocate
THP and fio is heavily active at the time and either filling memory or
keeping pages resident. However, a 49% reduction of serious fragmentation
events reduces the changes of external fragmentation being a problem in
the future.
Vlastimil asked during review for a breakdown of the allocation types
that are falling back.
vanilla
3816 MIGRATE_UNMOVABLE
800845 MIGRATE_MOVABLE
33 MIGRATE_UNRECLAIMABLE
patch
735 MIGRATE_UNMOVABLE
408135 MIGRATE_MOVABLE
42 MIGRATE_UNRECLAIMABLE
The majority of the fallbacks are due to movable allocations and this is
consistent for the workload throughout the series so will not be presented
again as the primary source of fallbacks are movable allocations.
Movable fallbacks are sometimes considered "ok" to fallback because they
can be migrated. The problem is that they can fill an
unmovable/reclaimable pageblock causing those allocations to fallback
later and polluting pageblocks with pages that cannot move. If there is a
movable fallback, it is pretty much guaranteed to affect an
unmovable/reclaimable pageblock and while it might not be enough to
actually cause a unmovable/reclaimable fallback in the future, we cannot
know that in advance so the patch takes the only option available to it.
Hence, it's important to control them. This point is also consistent
throughout the series and will not be repeated.
1-socket Skylake machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 291392
4.20-rc3+patch: 191187 (34% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 1495.14 ( 0.00%) 1467.55 ( 1.85%)
Amean fault-huge-1 1098.48 ( 0.00%) 1127.11 ( -2.61%)
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 78.57 ( 0.00%) 77.64 ( -1.18%)
Fragmentation events were reduced quite a bit although this is known
to be a little variable. The latencies and allocation success rates
are similar but they were already quite high.
2-socket Haswell machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 5 THP allocating threads
----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 215698
4.20-rc3+patch: 200210 (7% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 1350.05 ( 0.00%) 1346.45 ( 0.27%)
Amean fault-huge-5 4181.01 ( 0.00%) 3418.60 ( 18.24%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 1.15 ( 0.00%) 0.78 ( -31.88%)
The reduction of external fragmentation events is slight and this is
partially due to the removal of __GFP_THISNODE in commit ac5b2c18911f
("mm: thp: relax __GFP_THISNODE for MADV_HUGEPAGE mappings") as THP
allocations can now spill over to remote nodes instead of fragmenting
local memory.
2-socket Haswell machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 166352
4.20-rc3+patch: 147463 (11% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 6138.97 ( 0.00%) 6217.43 ( -1.28%)
Amean fault-huge-5 2294.28 ( 0.00%) 3163.33 * -37.88%*
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 96.82 ( 0.00%) 95.14 ( -1.74%)
There was a slight reduction in external fragmentation events although the
latencies were higher. The allocation success rate is high enough that
the system is struggling and there is quite a lot of parallel reclaim and
compaction activity. There is also a certain degree of luck on whether
processes start on node 0 or not for this patch but the relevance is
reduced later in the series.
Overall, the patch reduces the number of external fragmentation causing
events so the success of THP over long periods of time would be improved
for this adverse workload.
Link: http://lkml.kernel.org/r/20181123114528.28802-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 08:35:41 +00:00
|
|
|
int migratetype, unsigned int alloc_flags)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2022-11-18 10:17:14 +00:00
|
|
|
unsigned long flags;
|
mm, page_alloc: reduce page alloc/free sanity checks
Historically, we have performed sanity checks on all struct pages being
allocated or freed, making sure they have no unexpected page flags or
certain field values. This can detect insufficient cleanup and some cases
of use-after-free, although on its own it can't always identify the
culprit. The result is a warning and the "bad page" being leaked.
The checks do need some cpu cycles, so in 4.7 with commits 479f854a207c
("mm, page_alloc: defer debugging checks of pages allocated from the PCP")
and 4db7548ccbd9 ("mm, page_alloc: defer debugging checks of freed pages
until a PCP drain") they were no longer performed in the hot paths when
allocating and freeing from pcplists, but only when pcplists are bypassed,
refilled or drained. For debugging purposes, with CONFIG_DEBUG_VM enabled
the checks were instead still done in the hot paths and not when refilling
or draining pcplists.
With 4462b32c9285 ("mm, page_alloc: more extensive free page checking with
debug_pagealloc"), enabling debug_pagealloc also moved the sanity checks
back to hot pahs. When both debug_pagealloc and CONFIG_DEBUG_VM are
enabled, the checks are done both in hotpaths and pcplist refill/drain.
Even though the non-debug default today might seem to be a sensible
tradeoff between overhead and ability to detect bad pages, on closer look
it's arguably not. As most allocations go through the pcplists, catching
any bad pages when refilling or draining pcplists has only a small chance,
insufficient for debugging or serious hardening purposes. On the other
hand the cost of the checks is concentrated in the already expensive
drain/refill batching operations, and those are done under the often
contended zone lock. That was recently identified as an issue for page
allocation and the zone lock contention reduced by moving the checks
outside of the locked section with a patch "mm: reduce lock contention of
pcp buffer refill", but the cost of the checks is still visible compared
to their removal [1]. In the pcplist draining path free_pcppages_bulk()
the checks are still done under zone->lock.
Thus, remove the checks from pcplist refill and drain paths completely.
Introduce a static key check_pages_enabled to control checks during page
allocation a freeing (whether pcplist is used or bypassed). The static
key is enabled if either is true:
- kernel is built with CONFIG_DEBUG_VM=y (debugging)
- debug_pagealloc or page poisoning is boot-time enabled (debugging)
- init_on_alloc or init_on_free is boot-time enabled (hardening)
The resulting user visible changes:
- no checks when draining/refilling pcplists - less overhead, with
likely no practical reduction of ability to catch bad pages
- no checks when bypassing pcplists in default config (no
debugging/hardening) - less overhead etc. as above
- on typical hardened kernels [2], checks are now performed on each page
allocation/free (previously only when bypassing/draining/refilling
pcplists) - the init_on_alloc/init_on_free enabled should be sufficient
indication for preferring more costly alloc/free operations for
hardening purposes and we shouldn't need to introduce another toggle
- code (various wrappers) removal and simplification
[1] https://lore.kernel.org/all/68ba44d8-6899-c018-dcb3-36f3a96e6bea@sra.uni-hannover.de/
[2] https://lore.kernel.org/all/63ebc499.a70a0220.9ac51.29ea@mx.google.com/
[akpm@linux-foundation.org: coding-style cleanups]
[akpm@linux-foundation.org: make check_pages_enabled static]
Link: https://lkml.kernel.org/r/20230216095131.17336-1-vbabka@suse.cz
Reported-by: Alexander Halbuer <halbuer@sra.uni-hannover.de>
Reported-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-16 09:51:31 +00:00
|
|
|
int i;
|
2012-01-11 14:16:11 +00:00
|
|
|
|
2022-11-18 10:17:14 +00:00
|
|
|
spin_lock_irqsave(&zone->lock, flags);
|
2005-04-16 22:20:36 +00:00
|
|
|
for (i = 0; i < count; ++i) {
|
mm, page_alloc: spread allocations across zones before introducing fragmentation
Patch series "Fragmentation avoidance improvements", v5.
It has been noted before that fragmentation avoidance (aka
anti-fragmentation) is not perfect. Given sufficient time or an adverse
workload, memory gets fragmented and the long-term success of high-order
allocations degrades. This series defines an adverse workload, a definition
of external fragmentation events (including serious) ones and a series
that reduces the level of those fragmentation events.
The details of the workload and the consequences are described in more
detail in the changelogs. However, from patch 1, this is a high-level
summary of the adverse workload. The exact details are found in the
mmtests implementation.
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch)
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameterr create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed
3. Warm up a number of fio read-only threads accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll fault back in old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup
Overall the series reduces external fragmentation causing events by over 94%
on 1 and 2 socket machines, which in turn impacts high-order allocation
success rates over the long term. There are differences in latencies and
high-order allocation success rates. Latencies are a mixed bag as they
are vulnerable to exact system state and whether allocations succeeded
so they are treated as a secondary metric.
Patch 1 uses lower zones if they are populated and have free memory
instead of fragmenting a higher zone. It's special cased to
handle a Normal->DMA32 fallback with the reasons explained
in the changelog.
Patch 2-4 boosts watermarks temporarily when an external fragmentation
event occurs. kswapd wakes to reclaim a small amount of old memory
and then wakes kcompactd on completion to recover the system
slightly. This introduces some overhead in the slowpath. The level
of boosting can be tuned or disabled depending on the tolerance
for fragmentation vs allocation latency.
Patch 5 stalls some movable allocation requests to let kswapd from patch 4
make some progress. The duration of the stalls is very low but it
is possible to tune the system to avoid fragmentation events if
larger stalls can be tolerated.
The bulk of the improvement in fragmentation avoidance is from patches
1-4 but patch 5 can deal with a rare corner case and provides the option
of tuning a system for THP allocation success rates in exchange for
some stalls to control fragmentation.
This patch (of 5):
The page allocator zone lists are iterated based on the watermarks of each
zone which does not take anti-fragmentation into account. On x86, node 0
may have multiple zones while other nodes have one zone. A consequence is
that tasks running on node 0 may fragment ZONE_NORMAL even though
ZONE_DMA32 has plenty of free memory. This patch special cases the
allocator fast path such that it'll try an allocation from a lower local
zone before fragmenting a higher zone. In this case, stealing of
pageblocks or orders larger than a pageblock are still allowed in the fast
path as they are uninteresting from a fragmentation point of view.
This was evaluated using a benchmark designed to fragment memory before
attempting THP allocations. It's implemented in mmtests as the following
configurations
configs/config-global-dhp__workload_thpfioscale
configs/config-global-dhp__workload_thpfioscale-defrag
configs/config-global-dhp__workload_thpfioscale-madvhugepage
e.g. from mmtests
./run-mmtests.sh --run-monitor --config configs/config-global-dhp__workload_thpfioscale test-run-1
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch).
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameter create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed.
3. Warm up a number of fio read-only processes accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll refault old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds.
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup the test files.
Note that due to the use of IO and page cache that this benchmark is not
suitable for running on large machines where the time to fragment memory
may be excessive. Also note that while this is one mix that generates
fragmentation that it's not the only mix that generates fragmentation.
Differences in workload that are more slab-intensive or whether SLUB is
used with high-order pages may yield different results.
When the page allocator fragments memory, it records the event using the
mm_page_alloc_extfrag ftrace event. If the fallback_order is smaller than
a pageblock order (order-9 on 64-bit x86) then it's considered to be an
"external fragmentation event" that may cause issues in the future.
Hence, the primary metric here is the number of external fragmentation
events that occur with order < 9. The secondary metric is allocation
latency and huge page allocation success rates but note that differences
in latencies and what the success rate also can affect the number of
external fragmentation event which is why it's a secondary metric.
1-socket Skylake machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 1 THP allocating thread
--------------------------------------
4.20-rc3 extfrag events < order 9: 804694
4.20-rc3+patch: 408912 (49% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 662.92 ( 0.00%) 653.58 * 1.41%*
Amean fault-huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
Fault latencies are slightly reduced while allocation success rates remain
at zero as this configuration does not make any special effort to allocate
THP and fio is heavily active at the time and either filling memory or
keeping pages resident. However, a 49% reduction of serious fragmentation
events reduces the changes of external fragmentation being a problem in
the future.
Vlastimil asked during review for a breakdown of the allocation types
that are falling back.
vanilla
3816 MIGRATE_UNMOVABLE
800845 MIGRATE_MOVABLE
33 MIGRATE_UNRECLAIMABLE
patch
735 MIGRATE_UNMOVABLE
408135 MIGRATE_MOVABLE
42 MIGRATE_UNRECLAIMABLE
The majority of the fallbacks are due to movable allocations and this is
consistent for the workload throughout the series so will not be presented
again as the primary source of fallbacks are movable allocations.
Movable fallbacks are sometimes considered "ok" to fallback because they
can be migrated. The problem is that they can fill an
unmovable/reclaimable pageblock causing those allocations to fallback
later and polluting pageblocks with pages that cannot move. If there is a
movable fallback, it is pretty much guaranteed to affect an
unmovable/reclaimable pageblock and while it might not be enough to
actually cause a unmovable/reclaimable fallback in the future, we cannot
know that in advance so the patch takes the only option available to it.
Hence, it's important to control them. This point is also consistent
throughout the series and will not be repeated.
1-socket Skylake machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 291392
4.20-rc3+patch: 191187 (34% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 1495.14 ( 0.00%) 1467.55 ( 1.85%)
Amean fault-huge-1 1098.48 ( 0.00%) 1127.11 ( -2.61%)
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 78.57 ( 0.00%) 77.64 ( -1.18%)
Fragmentation events were reduced quite a bit although this is known
to be a little variable. The latencies and allocation success rates
are similar but they were already quite high.
2-socket Haswell machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 5 THP allocating threads
----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 215698
4.20-rc3+patch: 200210 (7% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 1350.05 ( 0.00%) 1346.45 ( 0.27%)
Amean fault-huge-5 4181.01 ( 0.00%) 3418.60 ( 18.24%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 1.15 ( 0.00%) 0.78 ( -31.88%)
The reduction of external fragmentation events is slight and this is
partially due to the removal of __GFP_THISNODE in commit ac5b2c18911f
("mm: thp: relax __GFP_THISNODE for MADV_HUGEPAGE mappings") as THP
allocations can now spill over to remote nodes instead of fragmenting
local memory.
2-socket Haswell machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 166352
4.20-rc3+patch: 147463 (11% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 6138.97 ( 0.00%) 6217.43 ( -1.28%)
Amean fault-huge-5 2294.28 ( 0.00%) 3163.33 * -37.88%*
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 96.82 ( 0.00%) 95.14 ( -1.74%)
There was a slight reduction in external fragmentation events although the
latencies were higher. The allocation success rate is high enough that
the system is struggling and there is quite a lot of parallel reclaim and
compaction activity. There is also a certain degree of luck on whether
processes start on node 0 or not for this patch but the relevance is
reduced later in the series.
Overall, the patch reduces the number of external fragmentation causing
events so the success of THP over long periods of time would be improved
for this adverse workload.
Link: http://lkml.kernel.org/r/20181123114528.28802-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 08:35:41 +00:00
|
|
|
struct page *page = __rmqueue(zone, order, migratetype,
|
|
|
|
alloc_flags);
|
2006-01-06 08:11:01 +00:00
|
|
|
if (unlikely(page == NULL))
|
2005-04-16 22:20:36 +00:00
|
|
|
break;
|
2007-12-18 00:20:05 +00:00
|
|
|
|
|
|
|
/*
|
2017-11-16 01:38:07 +00:00
|
|
|
* Split buddy pages returned by expand() are received here in
|
|
|
|
* physical page order. The page is added to the tail of
|
|
|
|
* caller's list. From the callers perspective, the linked list
|
|
|
|
* is ordered by page number under some conditions. This is
|
|
|
|
* useful for IO devices that can forward direction from the
|
|
|
|
* head, thus also in the physical page order. This is useful
|
|
|
|
* for IO devices that can merge IO requests if the physical
|
|
|
|
* pages are ordered properly.
|
2007-12-18 00:20:05 +00:00
|
|
|
*/
|
2022-06-24 12:54:17 +00:00
|
|
|
list_add_tail(&page->pcp_list, list);
|
2015-09-08 22:01:25 +00:00
|
|
|
if (is_migrate_cma(get_pcppage_migratetype(page)))
|
2012-10-08 23:32:02 +00:00
|
|
|
__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
|
|
|
|
-(1 << order));
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
2016-12-13 00:44:41 +00:00
|
|
|
|
2009-06-16 22:32:13 +00:00
|
|
|
__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
|
2022-11-18 10:17:14 +00:00
|
|
|
spin_unlock_irqrestore(&zone->lock, flags);
|
2023-02-01 16:25:49 +00:00
|
|
|
|
mm, page_alloc: reduce page alloc/free sanity checks
Historically, we have performed sanity checks on all struct pages being
allocated or freed, making sure they have no unexpected page flags or
certain field values. This can detect insufficient cleanup and some cases
of use-after-free, although on its own it can't always identify the
culprit. The result is a warning and the "bad page" being leaked.
The checks do need some cpu cycles, so in 4.7 with commits 479f854a207c
("mm, page_alloc: defer debugging checks of pages allocated from the PCP")
and 4db7548ccbd9 ("mm, page_alloc: defer debugging checks of freed pages
until a PCP drain") they were no longer performed in the hot paths when
allocating and freeing from pcplists, but only when pcplists are bypassed,
refilled or drained. For debugging purposes, with CONFIG_DEBUG_VM enabled
the checks were instead still done in the hot paths and not when refilling
or draining pcplists.
With 4462b32c9285 ("mm, page_alloc: more extensive free page checking with
debug_pagealloc"), enabling debug_pagealloc also moved the sanity checks
back to hot pahs. When both debug_pagealloc and CONFIG_DEBUG_VM are
enabled, the checks are done both in hotpaths and pcplist refill/drain.
Even though the non-debug default today might seem to be a sensible
tradeoff between overhead and ability to detect bad pages, on closer look
it's arguably not. As most allocations go through the pcplists, catching
any bad pages when refilling or draining pcplists has only a small chance,
insufficient for debugging or serious hardening purposes. On the other
hand the cost of the checks is concentrated in the already expensive
drain/refill batching operations, and those are done under the often
contended zone lock. That was recently identified as an issue for page
allocation and the zone lock contention reduced by moving the checks
outside of the locked section with a patch "mm: reduce lock contention of
pcp buffer refill", but the cost of the checks is still visible compared
to their removal [1]. In the pcplist draining path free_pcppages_bulk()
the checks are still done under zone->lock.
Thus, remove the checks from pcplist refill and drain paths completely.
Introduce a static key check_pages_enabled to control checks during page
allocation a freeing (whether pcplist is used or bypassed). The static
key is enabled if either is true:
- kernel is built with CONFIG_DEBUG_VM=y (debugging)
- debug_pagealloc or page poisoning is boot-time enabled (debugging)
- init_on_alloc or init_on_free is boot-time enabled (hardening)
The resulting user visible changes:
- no checks when draining/refilling pcplists - less overhead, with
likely no practical reduction of ability to catch bad pages
- no checks when bypassing pcplists in default config (no
debugging/hardening) - less overhead etc. as above
- on typical hardened kernels [2], checks are now performed on each page
allocation/free (previously only when bypassing/draining/refilling
pcplists) - the init_on_alloc/init_on_free enabled should be sufficient
indication for preferring more costly alloc/free operations for
hardening purposes and we shouldn't need to introduce another toggle
- code (various wrappers) removal and simplification
[1] https://lore.kernel.org/all/68ba44d8-6899-c018-dcb3-36f3a96e6bea@sra.uni-hannover.de/
[2] https://lore.kernel.org/all/63ebc499.a70a0220.9ac51.29ea@mx.google.com/
[akpm@linux-foundation.org: coding-style cleanups]
[akpm@linux-foundation.org: make check_pages_enabled static]
Link: https://lkml.kernel.org/r/20230216095131.17336-1-vbabka@suse.cz
Reported-by: Alexander Halbuer <halbuer@sra.uni-hannover.de>
Reported-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-16 09:51:31 +00:00
|
|
|
return i;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2005-06-22 00:14:57 +00:00
|
|
|
#ifdef CONFIG_NUMA
|
2006-03-10 01:33:54 +00:00
|
|
|
/*
|
2007-05-09 09:35:14 +00:00
|
|
|
* Called from the vmstat counter updater to drain pagesets of this
|
|
|
|
* currently executing processor on remote nodes after they have
|
|
|
|
* expired.
|
2006-03-10 01:33:54 +00:00
|
|
|
*/
|
2007-05-09 09:35:14 +00:00
|
|
|
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
|
2005-06-22 00:14:57 +00:00
|
|
|
{
|
2014-08-06 23:05:15 +00:00
|
|
|
int to_drain, batch;
|
2005-06-22 00:14:57 +00:00
|
|
|
|
2015-04-15 23:14:08 +00:00
|
|
|
batch = READ_ONCE(pcp->batch);
|
2014-08-06 23:05:15 +00:00
|
|
|
to_drain = min(pcp->count, batch);
|
2022-06-24 12:54:21 +00:00
|
|
|
if (to_drain > 0) {
|
2022-11-18 10:17:14 +00:00
|
|
|
spin_lock(&pcp->lock);
|
2022-03-22 21:43:36 +00:00
|
|
|
free_pcppages_bulk(zone, to_drain, pcp, 0);
|
2022-11-18 10:17:14 +00:00
|
|
|
spin_unlock(&pcp->lock);
|
2022-06-24 12:54:21 +00:00
|
|
|
}
|
2005-06-22 00:14:57 +00:00
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2008-02-05 06:29:11 +00:00
|
|
|
/*
|
2014-12-10 23:43:01 +00:00
|
|
|
* Drain pcplists of the indicated processor and zone.
|
2008-02-05 06:29:11 +00:00
|
|
|
*/
|
2014-12-10 23:43:01 +00:00
|
|
|
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2014-12-10 23:43:01 +00:00
|
|
|
struct per_cpu_pages *pcp;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
mm/page_alloc: split per cpu page lists and zone stats
The PCP (per-cpu page allocator in page_alloc.c) shares locking
requirements with vmstat and the zone lock which is inconvenient and
causes some issues. For example, the PCP list and vmstat share the same
per-cpu space meaning that it's possible that vmstat updates dirty cache
lines holding per-cpu lists across CPUs unless padding is used. Second,
PREEMPT_RT does not want to disable IRQs for too long in the page
allocator.
This series splits the locking requirements and uses locks types more
suitable for PREEMPT_RT, reduces the time when special locking is required
for stats and reduces the time when IRQs need to be disabled on
!PREEMPT_RT kernels.
Why local_lock? PREEMPT_RT considers the following sequence to be unsafe
as documented in Documentation/locking/locktypes.rst
local_irq_disable();
spin_lock(&lock);
The pcp allocator has this sequence for rmqueue_pcplist (local_irq_save)
-> __rmqueue_pcplist -> rmqueue_bulk (spin_lock). While it's possible to
separate this out, it generally means there are points where we enable
IRQs and reenable them again immediately. To prevent a migration and the
per-cpu pointer going stale, migrate_disable is also needed. That is a
custom lock that is similar, but worse, than local_lock. Furthermore, on
PREEMPT_RT, it's undesirable to leave IRQs disabled for too long. By
converting to local_lock which disables migration on PREEMPT_RT, the
locking requirements can be separated and start moving the protections for
PCP, stats and the zone lock to PREEMPT_RT-safe equivalent locking. As a
bonus, local_lock also means that PROVE_LOCKING does something useful.
After that, it's obvious that zone_statistics incurs too much overhead and
leaves IRQs disabled for longer than necessary on !PREEMPT_RT kernels.
zone_statistics uses perfectly accurate counters requiring IRQs be
disabled for parallel RMW sequences when inaccurate ones like vm_events
would do. The series makes the NUMA statistics (NUMA_HIT and friends)
inaccurate counters that then require no special protection on
!PREEMPT_RT.
The bulk page allocator can then do stat updates in bulk with IRQs enabled
which should improve the efficiency. Technically, this could have been
done without the local_lock and vmstat conversion work and the order
simply reflects the timing of when different series were implemented.
Finally, there are places where we conflate IRQs being disabled for the
PCP with the IRQ-safe zone spinlock. The remainder of the series reduces
the scope of what is protected by disabled IRQs on !PREEMPT_RT kernels.
By the end of the series, page_alloc.c does not call local_irq_save so the
locking scope is a bit clearer. The one exception is that modifying
NR_FREE_PAGES still happens in places where it's known the IRQs are
disabled as it's harmless for PREEMPT_RT and would be expensive to split
the locking there.
No performance data is included because despite the overhead of the stats,
it's within the noise for most workloads on !PREEMPT_RT. However, Jesper
Dangaard Brouer ran a page allocation microbenchmark on a E5-1650 v4 @
3.60GHz CPU on the first version of this series. Focusing on the array
variant of the bulk page allocator reveals the following.
(CPU: Intel(R) Xeon(R) CPU E5-1650 v4 @ 3.60GHz)
ARRAY variant: time_bulk_page_alloc_free_array: step=bulk size
Baseline Patched
1 56.383 54.225 (+3.83%)
2 40.047 35.492 (+11.38%)
3 37.339 32.643 (+12.58%)
4 35.578 30.992 (+12.89%)
8 33.592 29.606 (+11.87%)
16 32.362 28.532 (+11.85%)
32 31.476 27.728 (+11.91%)
64 30.633 27.252 (+11.04%)
128 30.596 27.090 (+11.46%)
While this is a positive outcome, the series is more likely to be
interesting to the RT people in terms of getting parts of the PREEMPT_RT
tree into mainline.
This patch (of 9):
The per-cpu page allocator lists and the per-cpu vmstat deltas are stored
in the same struct per_cpu_pages even though vmstats have no direct impact
on the per-cpu page lists. This is inconsistent because the vmstats for a
node are stored on a dedicated structure. The bigger issue is that the
per_cpu_pages structure is not cache-aligned and stat updates either cache
conflict with adjacent per-cpu lists incurring a runtime cost or padding
is required incurring a memory cost.
This patch splits the per-cpu pagelists and the vmstat deltas into
separate structures. It's mostly a mechanical conversion but some
variable renaming is done to clearly distinguish the per-cpu pages
structure (pcp) from the vmstats (pzstats).
Superficially, this appears to increase the size of the per_cpu_pages
structure but the movement of expire fills a structure hole so there is no
impact overall.
[mgorman@techsingularity.net: make it W=1 cleaner]
Link: https://lkml.kernel.org/r/20210514144622.GA3735@techsingularity.net
[mgorman@techsingularity.net: make it W=1 even cleaner]
Link: https://lkml.kernel.org/r/20210516140705.GB3735@techsingularity.net
[lkp@intel.com: check struct per_cpu_zonestat has a non-zero size]
[vbabka@suse.cz: Init zone->per_cpu_zonestats properly]
Link: https://lkml.kernel.org/r/20210512095458.30632-1-mgorman@techsingularity.net
Link: https://lkml.kernel.org/r/20210512095458.30632-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 02:41:38 +00:00
|
|
|
pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
|
2022-06-24 12:54:21 +00:00
|
|
|
if (pcp->count) {
|
2022-11-18 10:17:14 +00:00
|
|
|
spin_lock(&pcp->lock);
|
2022-06-24 12:54:21 +00:00
|
|
|
free_pcppages_bulk(zone, pcp->count, pcp, 0);
|
2022-11-18 10:17:14 +00:00
|
|
|
spin_unlock(&pcp->lock);
|
2022-06-24 12:54:21 +00:00
|
|
|
}
|
2014-12-10 23:43:01 +00:00
|
|
|
}
|
2008-02-05 06:29:19 +00:00
|
|
|
|
2014-12-10 23:43:01 +00:00
|
|
|
/*
|
|
|
|
* Drain pcplists of all zones on the indicated processor.
|
|
|
|
*/
|
|
|
|
static void drain_pages(unsigned int cpu)
|
|
|
|
{
|
|
|
|
struct zone *zone;
|
|
|
|
|
|
|
|
for_each_populated_zone(zone) {
|
|
|
|
drain_pages_zone(cpu, zone);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2008-02-05 06:29:11 +00:00
|
|
|
/*
|
|
|
|
* Spill all of this CPU's per-cpu pages back into the buddy allocator.
|
|
|
|
*/
|
2014-12-10 23:43:01 +00:00
|
|
|
void drain_local_pages(struct zone *zone)
|
2008-02-05 06:29:11 +00:00
|
|
|
{
|
2014-12-10 23:43:01 +00:00
|
|
|
int cpu = smp_processor_id();
|
|
|
|
|
|
|
|
if (zone)
|
|
|
|
drain_pages_zone(cpu, zone);
|
|
|
|
else
|
|
|
|
drain_pages(cpu);
|
2008-02-05 06:29:11 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
mm, page_alloc: disable pcplists during memory offline
Memory offlining relies on page isolation to guarantee a forward progress
because pages cannot be reused while they are isolated. But the page
isolation itself doesn't prevent from races while freed pages are stored
on pcp lists and thus can be reused. This can be worked around by
repeated draining of pcplists, as done by commit 968318261221
("mm/memory_hotplug: drain per-cpu pages again during memory offline").
David and Michal would prefer that this race was closed in a way that
callers of page isolation who need stronger guarantees don't need to
repeatedly drain. David suggested disabling pcplists usage completely
during page isolation, instead of repeatedly draining them.
To achieve this without adding special cases in alloc/free fastpath, we
can use the same approach as boot pagesets - when pcp->high is 0, any
pcplist addition will be immediately flushed.
The race can thus be closed by setting pcp->high to 0 and draining
pcplists once, before calling start_isolate_page_range(). The draining
will serialize after processes that already disabled interrupts and read
the old value of pcp->high in free_unref_page_commit(), and processes that
have not yet disabled interrupts, will observe pcp->high == 0 when they
are rescheduled, and skip pcplists. This guarantees no stray pages on
pcplists in zones where isolation happens.
This patch thus adds zone_pcp_disable() and zone_pcp_enable() functions
that page isolation users can call before start_isolate_page_range() and
after unisolating (or offlining) the isolated pages.
Also, drain_all_pages() is optimized to only execute on cpus where
pcplists are not empty. The check can however race with a free to pcplist
that has not yet increased the pcp->count from 0 to 1. Thus make the
drain optionally skip the racy check and drain on all cpus, and use this
option in zone_pcp_disable().
As we have to avoid external updates to high and batch while pcplists are
disabled, we take pcp_batch_high_lock in zone_pcp_disable() and release it
in zone_pcp_enable(). This also synchronizes multiple users of
zone_pcp_disable()/enable().
Currently the only user of this functionality is offline_pages().
[vbabka@suse.cz: add comment, per David]
Link: https://lkml.kernel.org/r/527480ef-ed72-e1c1-52a0-1c5b0113df45@suse.cz
Link: https://lkml.kernel.org/r/20201111092812.11329-8-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Suggested-by: David Hildenbrand <david@redhat.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 03:10:59 +00:00
|
|
|
* The implementation of drain_all_pages(), exposing an extra parameter to
|
|
|
|
* drain on all cpus.
|
2014-12-10 23:43:01 +00:00
|
|
|
*
|
mm, page_alloc: disable pcplists during memory offline
Memory offlining relies on page isolation to guarantee a forward progress
because pages cannot be reused while they are isolated. But the page
isolation itself doesn't prevent from races while freed pages are stored
on pcp lists and thus can be reused. This can be worked around by
repeated draining of pcplists, as done by commit 968318261221
("mm/memory_hotplug: drain per-cpu pages again during memory offline").
David and Michal would prefer that this race was closed in a way that
callers of page isolation who need stronger guarantees don't need to
repeatedly drain. David suggested disabling pcplists usage completely
during page isolation, instead of repeatedly draining them.
To achieve this without adding special cases in alloc/free fastpath, we
can use the same approach as boot pagesets - when pcp->high is 0, any
pcplist addition will be immediately flushed.
The race can thus be closed by setting pcp->high to 0 and draining
pcplists once, before calling start_isolate_page_range(). The draining
will serialize after processes that already disabled interrupts and read
the old value of pcp->high in free_unref_page_commit(), and processes that
have not yet disabled interrupts, will observe pcp->high == 0 when they
are rescheduled, and skip pcplists. This guarantees no stray pages on
pcplists in zones where isolation happens.
This patch thus adds zone_pcp_disable() and zone_pcp_enable() functions
that page isolation users can call before start_isolate_page_range() and
after unisolating (or offlining) the isolated pages.
Also, drain_all_pages() is optimized to only execute on cpus where
pcplists are not empty. The check can however race with a free to pcplist
that has not yet increased the pcp->count from 0 to 1. Thus make the
drain optionally skip the racy check and drain on all cpus, and use this
option in zone_pcp_disable().
As we have to avoid external updates to high and batch while pcplists are
disabled, we take pcp_batch_high_lock in zone_pcp_disable() and release it
in zone_pcp_enable(). This also synchronizes multiple users of
zone_pcp_disable()/enable().
Currently the only user of this functionality is offline_pages().
[vbabka@suse.cz: add comment, per David]
Link: https://lkml.kernel.org/r/527480ef-ed72-e1c1-52a0-1c5b0113df45@suse.cz
Link: https://lkml.kernel.org/r/20201111092812.11329-8-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Suggested-by: David Hildenbrand <david@redhat.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 03:10:59 +00:00
|
|
|
* drain_all_pages() is optimized to only execute on cpus where pcplists are
|
|
|
|
* not empty. The check for non-emptiness can however race with a free to
|
|
|
|
* pcplist that has not yet increased the pcp->count from 0 to 1. Callers
|
|
|
|
* that need the guarantee that every CPU has drained can disable the
|
|
|
|
* optimizing racy check.
|
2008-02-05 06:29:11 +00:00
|
|
|
*/
|
2020-12-15 03:11:12 +00:00
|
|
|
static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
|
2008-02-05 06:29:11 +00:00
|
|
|
{
|
2012-03-28 21:42:45 +00:00
|
|
|
int cpu;
|
|
|
|
|
|
|
|
/*
|
2021-07-01 01:53:17 +00:00
|
|
|
* Allocate in the BSS so we won't require allocation in
|
2012-03-28 21:42:45 +00:00
|
|
|
* direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
|
|
|
|
*/
|
|
|
|
static cpumask_t cpus_with_pcps;
|
|
|
|
|
2017-02-24 22:56:56 +00:00
|
|
|
/*
|
|
|
|
* Do not drain if one is already in progress unless it's specific to
|
|
|
|
* a zone. Such callers are primarily CMA and memory hotplug and need
|
|
|
|
* the drain to be complete when the call returns.
|
|
|
|
*/
|
|
|
|
if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
|
|
|
|
if (!zone)
|
|
|
|
return;
|
|
|
|
mutex_lock(&pcpu_drain_mutex);
|
|
|
|
}
|
2017-02-24 22:56:32 +00:00
|
|
|
|
2012-03-28 21:42:45 +00:00
|
|
|
/*
|
|
|
|
* We don't care about racing with CPU hotplug event
|
|
|
|
* as offline notification will cause the notified
|
|
|
|
* cpu to drain that CPU pcps and on_each_cpu_mask
|
|
|
|
* disables preemption as part of its processing
|
|
|
|
*/
|
|
|
|
for_each_online_cpu(cpu) {
|
mm/page_alloc: split per cpu page lists and zone stats
The PCP (per-cpu page allocator in page_alloc.c) shares locking
requirements with vmstat and the zone lock which is inconvenient and
causes some issues. For example, the PCP list and vmstat share the same
per-cpu space meaning that it's possible that vmstat updates dirty cache
lines holding per-cpu lists across CPUs unless padding is used. Second,
PREEMPT_RT does not want to disable IRQs for too long in the page
allocator.
This series splits the locking requirements and uses locks types more
suitable for PREEMPT_RT, reduces the time when special locking is required
for stats and reduces the time when IRQs need to be disabled on
!PREEMPT_RT kernels.
Why local_lock? PREEMPT_RT considers the following sequence to be unsafe
as documented in Documentation/locking/locktypes.rst
local_irq_disable();
spin_lock(&lock);
The pcp allocator has this sequence for rmqueue_pcplist (local_irq_save)
-> __rmqueue_pcplist -> rmqueue_bulk (spin_lock). While it's possible to
separate this out, it generally means there are points where we enable
IRQs and reenable them again immediately. To prevent a migration and the
per-cpu pointer going stale, migrate_disable is also needed. That is a
custom lock that is similar, but worse, than local_lock. Furthermore, on
PREEMPT_RT, it's undesirable to leave IRQs disabled for too long. By
converting to local_lock which disables migration on PREEMPT_RT, the
locking requirements can be separated and start moving the protections for
PCP, stats and the zone lock to PREEMPT_RT-safe equivalent locking. As a
bonus, local_lock also means that PROVE_LOCKING does something useful.
After that, it's obvious that zone_statistics incurs too much overhead and
leaves IRQs disabled for longer than necessary on !PREEMPT_RT kernels.
zone_statistics uses perfectly accurate counters requiring IRQs be
disabled for parallel RMW sequences when inaccurate ones like vm_events
would do. The series makes the NUMA statistics (NUMA_HIT and friends)
inaccurate counters that then require no special protection on
!PREEMPT_RT.
The bulk page allocator can then do stat updates in bulk with IRQs enabled
which should improve the efficiency. Technically, this could have been
done without the local_lock and vmstat conversion work and the order
simply reflects the timing of when different series were implemented.
Finally, there are places where we conflate IRQs being disabled for the
PCP with the IRQ-safe zone spinlock. The remainder of the series reduces
the scope of what is protected by disabled IRQs on !PREEMPT_RT kernels.
By the end of the series, page_alloc.c does not call local_irq_save so the
locking scope is a bit clearer. The one exception is that modifying
NR_FREE_PAGES still happens in places where it's known the IRQs are
disabled as it's harmless for PREEMPT_RT and would be expensive to split
the locking there.
No performance data is included because despite the overhead of the stats,
it's within the noise for most workloads on !PREEMPT_RT. However, Jesper
Dangaard Brouer ran a page allocation microbenchmark on a E5-1650 v4 @
3.60GHz CPU on the first version of this series. Focusing on the array
variant of the bulk page allocator reveals the following.
(CPU: Intel(R) Xeon(R) CPU E5-1650 v4 @ 3.60GHz)
ARRAY variant: time_bulk_page_alloc_free_array: step=bulk size
Baseline Patched
1 56.383 54.225 (+3.83%)
2 40.047 35.492 (+11.38%)
3 37.339 32.643 (+12.58%)
4 35.578 30.992 (+12.89%)
8 33.592 29.606 (+11.87%)
16 32.362 28.532 (+11.85%)
32 31.476 27.728 (+11.91%)
64 30.633 27.252 (+11.04%)
128 30.596 27.090 (+11.46%)
While this is a positive outcome, the series is more likely to be
interesting to the RT people in terms of getting parts of the PREEMPT_RT
tree into mainline.
This patch (of 9):
The per-cpu page allocator lists and the per-cpu vmstat deltas are stored
in the same struct per_cpu_pages even though vmstats have no direct impact
on the per-cpu page lists. This is inconsistent because the vmstats for a
node are stored on a dedicated structure. The bigger issue is that the
per_cpu_pages structure is not cache-aligned and stat updates either cache
conflict with adjacent per-cpu lists incurring a runtime cost or padding
is required incurring a memory cost.
This patch splits the per-cpu pagelists and the vmstat deltas into
separate structures. It's mostly a mechanical conversion but some
variable renaming is done to clearly distinguish the per-cpu pages
structure (pcp) from the vmstats (pzstats).
Superficially, this appears to increase the size of the per_cpu_pages
structure but the movement of expire fills a structure hole so there is no
impact overall.
[mgorman@techsingularity.net: make it W=1 cleaner]
Link: https://lkml.kernel.org/r/20210514144622.GA3735@techsingularity.net
[mgorman@techsingularity.net: make it W=1 even cleaner]
Link: https://lkml.kernel.org/r/20210516140705.GB3735@techsingularity.net
[lkp@intel.com: check struct per_cpu_zonestat has a non-zero size]
[vbabka@suse.cz: Init zone->per_cpu_zonestats properly]
Link: https://lkml.kernel.org/r/20210512095458.30632-1-mgorman@techsingularity.net
Link: https://lkml.kernel.org/r/20210512095458.30632-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 02:41:38 +00:00
|
|
|
struct per_cpu_pages *pcp;
|
2014-12-10 23:43:01 +00:00
|
|
|
struct zone *z;
|
2012-03-28 21:42:45 +00:00
|
|
|
bool has_pcps = false;
|
2014-12-10 23:43:01 +00:00
|
|
|
|
mm, page_alloc: disable pcplists during memory offline
Memory offlining relies on page isolation to guarantee a forward progress
because pages cannot be reused while they are isolated. But the page
isolation itself doesn't prevent from races while freed pages are stored
on pcp lists and thus can be reused. This can be worked around by
repeated draining of pcplists, as done by commit 968318261221
("mm/memory_hotplug: drain per-cpu pages again during memory offline").
David and Michal would prefer that this race was closed in a way that
callers of page isolation who need stronger guarantees don't need to
repeatedly drain. David suggested disabling pcplists usage completely
during page isolation, instead of repeatedly draining them.
To achieve this without adding special cases in alloc/free fastpath, we
can use the same approach as boot pagesets - when pcp->high is 0, any
pcplist addition will be immediately flushed.
The race can thus be closed by setting pcp->high to 0 and draining
pcplists once, before calling start_isolate_page_range(). The draining
will serialize after processes that already disabled interrupts and read
the old value of pcp->high in free_unref_page_commit(), and processes that
have not yet disabled interrupts, will observe pcp->high == 0 when they
are rescheduled, and skip pcplists. This guarantees no stray pages on
pcplists in zones where isolation happens.
This patch thus adds zone_pcp_disable() and zone_pcp_enable() functions
that page isolation users can call before start_isolate_page_range() and
after unisolating (or offlining) the isolated pages.
Also, drain_all_pages() is optimized to only execute on cpus where
pcplists are not empty. The check can however race with a free to pcplist
that has not yet increased the pcp->count from 0 to 1. Thus make the
drain optionally skip the racy check and drain on all cpus, and use this
option in zone_pcp_disable().
As we have to avoid external updates to high and batch while pcplists are
disabled, we take pcp_batch_high_lock in zone_pcp_disable() and release it
in zone_pcp_enable(). This also synchronizes multiple users of
zone_pcp_disable()/enable().
Currently the only user of this functionality is offline_pages().
[vbabka@suse.cz: add comment, per David]
Link: https://lkml.kernel.org/r/527480ef-ed72-e1c1-52a0-1c5b0113df45@suse.cz
Link: https://lkml.kernel.org/r/20201111092812.11329-8-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Suggested-by: David Hildenbrand <david@redhat.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 03:10:59 +00:00
|
|
|
if (force_all_cpus) {
|
|
|
|
/*
|
|
|
|
* The pcp.count check is racy, some callers need a
|
|
|
|
* guarantee that no cpu is missed.
|
|
|
|
*/
|
|
|
|
has_pcps = true;
|
|
|
|
} else if (zone) {
|
mm/page_alloc: split per cpu page lists and zone stats
The PCP (per-cpu page allocator in page_alloc.c) shares locking
requirements with vmstat and the zone lock which is inconvenient and
causes some issues. For example, the PCP list and vmstat share the same
per-cpu space meaning that it's possible that vmstat updates dirty cache
lines holding per-cpu lists across CPUs unless padding is used. Second,
PREEMPT_RT does not want to disable IRQs for too long in the page
allocator.
This series splits the locking requirements and uses locks types more
suitable for PREEMPT_RT, reduces the time when special locking is required
for stats and reduces the time when IRQs need to be disabled on
!PREEMPT_RT kernels.
Why local_lock? PREEMPT_RT considers the following sequence to be unsafe
as documented in Documentation/locking/locktypes.rst
local_irq_disable();
spin_lock(&lock);
The pcp allocator has this sequence for rmqueue_pcplist (local_irq_save)
-> __rmqueue_pcplist -> rmqueue_bulk (spin_lock). While it's possible to
separate this out, it generally means there are points where we enable
IRQs and reenable them again immediately. To prevent a migration and the
per-cpu pointer going stale, migrate_disable is also needed. That is a
custom lock that is similar, but worse, than local_lock. Furthermore, on
PREEMPT_RT, it's undesirable to leave IRQs disabled for too long. By
converting to local_lock which disables migration on PREEMPT_RT, the
locking requirements can be separated and start moving the protections for
PCP, stats and the zone lock to PREEMPT_RT-safe equivalent locking. As a
bonus, local_lock also means that PROVE_LOCKING does something useful.
After that, it's obvious that zone_statistics incurs too much overhead and
leaves IRQs disabled for longer than necessary on !PREEMPT_RT kernels.
zone_statistics uses perfectly accurate counters requiring IRQs be
disabled for parallel RMW sequences when inaccurate ones like vm_events
would do. The series makes the NUMA statistics (NUMA_HIT and friends)
inaccurate counters that then require no special protection on
!PREEMPT_RT.
The bulk page allocator can then do stat updates in bulk with IRQs enabled
which should improve the efficiency. Technically, this could have been
done without the local_lock and vmstat conversion work and the order
simply reflects the timing of when different series were implemented.
Finally, there are places where we conflate IRQs being disabled for the
PCP with the IRQ-safe zone spinlock. The remainder of the series reduces
the scope of what is protected by disabled IRQs on !PREEMPT_RT kernels.
By the end of the series, page_alloc.c does not call local_irq_save so the
locking scope is a bit clearer. The one exception is that modifying
NR_FREE_PAGES still happens in places where it's known the IRQs are
disabled as it's harmless for PREEMPT_RT and would be expensive to split
the locking there.
No performance data is included because despite the overhead of the stats,
it's within the noise for most workloads on !PREEMPT_RT. However, Jesper
Dangaard Brouer ran a page allocation microbenchmark on a E5-1650 v4 @
3.60GHz CPU on the first version of this series. Focusing on the array
variant of the bulk page allocator reveals the following.
(CPU: Intel(R) Xeon(R) CPU E5-1650 v4 @ 3.60GHz)
ARRAY variant: time_bulk_page_alloc_free_array: step=bulk size
Baseline Patched
1 56.383 54.225 (+3.83%)
2 40.047 35.492 (+11.38%)
3 37.339 32.643 (+12.58%)
4 35.578 30.992 (+12.89%)
8 33.592 29.606 (+11.87%)
16 32.362 28.532 (+11.85%)
32 31.476 27.728 (+11.91%)
64 30.633 27.252 (+11.04%)
128 30.596 27.090 (+11.46%)
While this is a positive outcome, the series is more likely to be
interesting to the RT people in terms of getting parts of the PREEMPT_RT
tree into mainline.
This patch (of 9):
The per-cpu page allocator lists and the per-cpu vmstat deltas are stored
in the same struct per_cpu_pages even though vmstats have no direct impact
on the per-cpu page lists. This is inconsistent because the vmstats for a
node are stored on a dedicated structure. The bigger issue is that the
per_cpu_pages structure is not cache-aligned and stat updates either cache
conflict with adjacent per-cpu lists incurring a runtime cost or padding
is required incurring a memory cost.
This patch splits the per-cpu pagelists and the vmstat deltas into
separate structures. It's mostly a mechanical conversion but some
variable renaming is done to clearly distinguish the per-cpu pages
structure (pcp) from the vmstats (pzstats).
Superficially, this appears to increase the size of the per_cpu_pages
structure but the movement of expire fills a structure hole so there is no
impact overall.
[mgorman@techsingularity.net: make it W=1 cleaner]
Link: https://lkml.kernel.org/r/20210514144622.GA3735@techsingularity.net
[mgorman@techsingularity.net: make it W=1 even cleaner]
Link: https://lkml.kernel.org/r/20210516140705.GB3735@techsingularity.net
[lkp@intel.com: check struct per_cpu_zonestat has a non-zero size]
[vbabka@suse.cz: Init zone->per_cpu_zonestats properly]
Link: https://lkml.kernel.org/r/20210512095458.30632-1-mgorman@techsingularity.net
Link: https://lkml.kernel.org/r/20210512095458.30632-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 02:41:38 +00:00
|
|
|
pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
|
|
|
|
if (pcp->count)
|
2012-03-28 21:42:45 +00:00
|
|
|
has_pcps = true;
|
2014-12-10 23:43:01 +00:00
|
|
|
} else {
|
|
|
|
for_each_populated_zone(z) {
|
mm/page_alloc: split per cpu page lists and zone stats
The PCP (per-cpu page allocator in page_alloc.c) shares locking
requirements with vmstat and the zone lock which is inconvenient and
causes some issues. For example, the PCP list and vmstat share the same
per-cpu space meaning that it's possible that vmstat updates dirty cache
lines holding per-cpu lists across CPUs unless padding is used. Second,
PREEMPT_RT does not want to disable IRQs for too long in the page
allocator.
This series splits the locking requirements and uses locks types more
suitable for PREEMPT_RT, reduces the time when special locking is required
for stats and reduces the time when IRQs need to be disabled on
!PREEMPT_RT kernels.
Why local_lock? PREEMPT_RT considers the following sequence to be unsafe
as documented in Documentation/locking/locktypes.rst
local_irq_disable();
spin_lock(&lock);
The pcp allocator has this sequence for rmqueue_pcplist (local_irq_save)
-> __rmqueue_pcplist -> rmqueue_bulk (spin_lock). While it's possible to
separate this out, it generally means there are points where we enable
IRQs and reenable them again immediately. To prevent a migration and the
per-cpu pointer going stale, migrate_disable is also needed. That is a
custom lock that is similar, but worse, than local_lock. Furthermore, on
PREEMPT_RT, it's undesirable to leave IRQs disabled for too long. By
converting to local_lock which disables migration on PREEMPT_RT, the
locking requirements can be separated and start moving the protections for
PCP, stats and the zone lock to PREEMPT_RT-safe equivalent locking. As a
bonus, local_lock also means that PROVE_LOCKING does something useful.
After that, it's obvious that zone_statistics incurs too much overhead and
leaves IRQs disabled for longer than necessary on !PREEMPT_RT kernels.
zone_statistics uses perfectly accurate counters requiring IRQs be
disabled for parallel RMW sequences when inaccurate ones like vm_events
would do. The series makes the NUMA statistics (NUMA_HIT and friends)
inaccurate counters that then require no special protection on
!PREEMPT_RT.
The bulk page allocator can then do stat updates in bulk with IRQs enabled
which should improve the efficiency. Technically, this could have been
done without the local_lock and vmstat conversion work and the order
simply reflects the timing of when different series were implemented.
Finally, there are places where we conflate IRQs being disabled for the
PCP with the IRQ-safe zone spinlock. The remainder of the series reduces
the scope of what is protected by disabled IRQs on !PREEMPT_RT kernels.
By the end of the series, page_alloc.c does not call local_irq_save so the
locking scope is a bit clearer. The one exception is that modifying
NR_FREE_PAGES still happens in places where it's known the IRQs are
disabled as it's harmless for PREEMPT_RT and would be expensive to split
the locking there.
No performance data is included because despite the overhead of the stats,
it's within the noise for most workloads on !PREEMPT_RT. However, Jesper
Dangaard Brouer ran a page allocation microbenchmark on a E5-1650 v4 @
3.60GHz CPU on the first version of this series. Focusing on the array
variant of the bulk page allocator reveals the following.
(CPU: Intel(R) Xeon(R) CPU E5-1650 v4 @ 3.60GHz)
ARRAY variant: time_bulk_page_alloc_free_array: step=bulk size
Baseline Patched
1 56.383 54.225 (+3.83%)
2 40.047 35.492 (+11.38%)
3 37.339 32.643 (+12.58%)
4 35.578 30.992 (+12.89%)
8 33.592 29.606 (+11.87%)
16 32.362 28.532 (+11.85%)
32 31.476 27.728 (+11.91%)
64 30.633 27.252 (+11.04%)
128 30.596 27.090 (+11.46%)
While this is a positive outcome, the series is more likely to be
interesting to the RT people in terms of getting parts of the PREEMPT_RT
tree into mainline.
This patch (of 9):
The per-cpu page allocator lists and the per-cpu vmstat deltas are stored
in the same struct per_cpu_pages even though vmstats have no direct impact
on the per-cpu page lists. This is inconsistent because the vmstats for a
node are stored on a dedicated structure. The bigger issue is that the
per_cpu_pages structure is not cache-aligned and stat updates either cache
conflict with adjacent per-cpu lists incurring a runtime cost or padding
is required incurring a memory cost.
This patch splits the per-cpu pagelists and the vmstat deltas into
separate structures. It's mostly a mechanical conversion but some
variable renaming is done to clearly distinguish the per-cpu pages
structure (pcp) from the vmstats (pzstats).
Superficially, this appears to increase the size of the per_cpu_pages
structure but the movement of expire fills a structure hole so there is no
impact overall.
[mgorman@techsingularity.net: make it W=1 cleaner]
Link: https://lkml.kernel.org/r/20210514144622.GA3735@techsingularity.net
[mgorman@techsingularity.net: make it W=1 even cleaner]
Link: https://lkml.kernel.org/r/20210516140705.GB3735@techsingularity.net
[lkp@intel.com: check struct per_cpu_zonestat has a non-zero size]
[vbabka@suse.cz: Init zone->per_cpu_zonestats properly]
Link: https://lkml.kernel.org/r/20210512095458.30632-1-mgorman@techsingularity.net
Link: https://lkml.kernel.org/r/20210512095458.30632-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 02:41:38 +00:00
|
|
|
pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
|
|
|
|
if (pcp->count) {
|
2014-12-10 23:43:01 +00:00
|
|
|
has_pcps = true;
|
|
|
|
break;
|
|
|
|
}
|
2012-03-28 21:42:45 +00:00
|
|
|
}
|
|
|
|
}
|
2014-12-10 23:43:01 +00:00
|
|
|
|
2012-03-28 21:42:45 +00:00
|
|
|
if (has_pcps)
|
|
|
|
cpumask_set_cpu(cpu, &cpus_with_pcps);
|
|
|
|
else
|
|
|
|
cpumask_clear_cpu(cpu, &cpus_with_pcps);
|
|
|
|
}
|
2017-02-24 22:56:32 +00:00
|
|
|
|
2017-02-24 22:56:56 +00:00
|
|
|
for_each_cpu(cpu, &cpus_with_pcps) {
|
2022-06-24 12:54:22 +00:00
|
|
|
if (zone)
|
|
|
|
drain_pages_zone(cpu, zone);
|
|
|
|
else
|
|
|
|
drain_pages(cpu);
|
2017-02-24 22:56:32 +00:00
|
|
|
}
|
2017-02-24 22:56:56 +00:00
|
|
|
|
|
|
|
mutex_unlock(&pcpu_drain_mutex);
|
2008-02-05 06:29:11 +00:00
|
|
|
}
|
|
|
|
|
mm, page_alloc: disable pcplists during memory offline
Memory offlining relies on page isolation to guarantee a forward progress
because pages cannot be reused while they are isolated. But the page
isolation itself doesn't prevent from races while freed pages are stored
on pcp lists and thus can be reused. This can be worked around by
repeated draining of pcplists, as done by commit 968318261221
("mm/memory_hotplug: drain per-cpu pages again during memory offline").
David and Michal would prefer that this race was closed in a way that
callers of page isolation who need stronger guarantees don't need to
repeatedly drain. David suggested disabling pcplists usage completely
during page isolation, instead of repeatedly draining them.
To achieve this without adding special cases in alloc/free fastpath, we
can use the same approach as boot pagesets - when pcp->high is 0, any
pcplist addition will be immediately flushed.
The race can thus be closed by setting pcp->high to 0 and draining
pcplists once, before calling start_isolate_page_range(). The draining
will serialize after processes that already disabled interrupts and read
the old value of pcp->high in free_unref_page_commit(), and processes that
have not yet disabled interrupts, will observe pcp->high == 0 when they
are rescheduled, and skip pcplists. This guarantees no stray pages on
pcplists in zones where isolation happens.
This patch thus adds zone_pcp_disable() and zone_pcp_enable() functions
that page isolation users can call before start_isolate_page_range() and
after unisolating (or offlining) the isolated pages.
Also, drain_all_pages() is optimized to only execute on cpus where
pcplists are not empty. The check can however race with a free to pcplist
that has not yet increased the pcp->count from 0 to 1. Thus make the
drain optionally skip the racy check and drain on all cpus, and use this
option in zone_pcp_disable().
As we have to avoid external updates to high and batch while pcplists are
disabled, we take pcp_batch_high_lock in zone_pcp_disable() and release it
in zone_pcp_enable(). This also synchronizes multiple users of
zone_pcp_disable()/enable().
Currently the only user of this functionality is offline_pages().
[vbabka@suse.cz: add comment, per David]
Link: https://lkml.kernel.org/r/527480ef-ed72-e1c1-52a0-1c5b0113df45@suse.cz
Link: https://lkml.kernel.org/r/20201111092812.11329-8-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Suggested-by: David Hildenbrand <david@redhat.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 03:10:59 +00:00
|
|
|
/*
|
|
|
|
* Spill all the per-cpu pages from all CPUs back into the buddy allocator.
|
|
|
|
*
|
|
|
|
* When zone parameter is non-NULL, spill just the single zone's pages.
|
|
|
|
*/
|
|
|
|
void drain_all_pages(struct zone *zone)
|
|
|
|
{
|
|
|
|
__drain_all_pages(zone, false);
|
|
|
|
}
|
|
|
|
|
2007-07-29 21:27:18 +00:00
|
|
|
#ifdef CONFIG_HIBERNATION
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2017-08-25 22:55:30 +00:00
|
|
|
/*
|
|
|
|
* Touch the watchdog for every WD_PAGE_COUNT pages.
|
|
|
|
*/
|
|
|
|
#define WD_PAGE_COUNT (128*1024)
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
void mark_free_pages(struct zone *zone)
|
|
|
|
{
|
2017-08-25 22:55:30 +00:00
|
|
|
unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
|
2006-09-26 06:32:49 +00:00
|
|
|
unsigned long flags;
|
2014-06-04 23:10:21 +00:00
|
|
|
unsigned int order, t;
|
2016-01-14 23:20:33 +00:00
|
|
|
struct page *page;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2013-09-11 21:21:45 +00:00
|
|
|
if (zone_is_empty(zone))
|
2005-04-16 22:20:36 +00:00
|
|
|
return;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&zone->lock, flags);
|
2006-09-26 06:32:49 +00:00
|
|
|
|
2013-02-23 00:35:23 +00:00
|
|
|
max_zone_pfn = zone_end_pfn(zone);
|
2006-09-26 06:32:49 +00:00
|
|
|
for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
|
|
|
|
if (pfn_valid(pfn)) {
|
2016-01-14 23:20:33 +00:00
|
|
|
page = pfn_to_page(pfn);
|
2016-05-20 00:12:16 +00:00
|
|
|
|
2017-08-25 22:55:30 +00:00
|
|
|
if (!--page_count) {
|
|
|
|
touch_nmi_watchdog();
|
|
|
|
page_count = WD_PAGE_COUNT;
|
|
|
|
}
|
|
|
|
|
2016-05-20 00:12:16 +00:00
|
|
|
if (page_zone(page) != zone)
|
|
|
|
continue;
|
|
|
|
|
2007-05-06 21:50:42 +00:00
|
|
|
if (!swsusp_page_is_forbidden(page))
|
|
|
|
swsusp_unset_page_free(page);
|
2006-09-26 06:32:49 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2007-10-16 08:25:48 +00:00
|
|
|
for_each_migratetype_order(order, t) {
|
2016-01-14 23:20:33 +00:00
|
|
|
list_for_each_entry(page,
|
2022-06-24 12:54:17 +00:00
|
|
|
&zone->free_area[order].free_list[t], buddy_list) {
|
2006-09-26 06:32:49 +00:00
|
|
|
unsigned long i;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2016-01-14 23:20:33 +00:00
|
|
|
pfn = page_to_pfn(page);
|
2017-08-25 22:55:30 +00:00
|
|
|
for (i = 0; i < (1UL << order); i++) {
|
|
|
|
if (!--page_count) {
|
|
|
|
touch_nmi_watchdog();
|
|
|
|
page_count = WD_PAGE_COUNT;
|
|
|
|
}
|
2007-05-06 21:50:42 +00:00
|
|
|
swsusp_set_page_free(pfn_to_page(pfn + i));
|
2017-08-25 22:55:30 +00:00
|
|
|
}
|
2006-09-26 06:32:49 +00:00
|
|
|
}
|
2007-10-16 08:25:48 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
spin_unlock_irqrestore(&zone->lock, flags);
|
|
|
|
}
|
2007-10-16 08:25:50 +00:00
|
|
|
#endif /* CONFIG_PM */
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2021-06-29 02:43:08 +00:00
|
|
|
static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
|
|
|
|
unsigned int order)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
page-allocator: split per-cpu list into one-list-per-migrate-type
The following two patches remove searching in the page allocator fast-path
by maintaining multiple free-lists in the per-cpu structure. At the time
the search was introduced, increasing the per-cpu structures would waste a
lot of memory as per-cpu structures were statically allocated at
compile-time. This is no longer the case.
The patches are as follows. They are based on mmotm-2009-08-27.
Patch 1 adds multiple lists to struct per_cpu_pages, one per
migratetype that can be stored on the PCP lists.
Patch 2 notes that the pcpu drain path check empty lists multiple times. The
patch reduces the number of checks by maintaining a count of free
lists encountered. Lists containing pages will then free multiple
pages in batch
The patches were tested with kernbench, netperf udp/tcp, hackbench and
sysbench. The netperf tests were not bound to any CPU in particular and
were run such that the results should be 99% confidence that the reported
results are within 1% of the estimated mean. sysbench was run with a
postgres background and read-only tests. Similar to netperf, it was run
multiple times so that it's 99% confidence results are within 1%. The
patches were tested on x86, x86-64 and ppc64 as
x86: Intel Pentium D 3GHz with 8G RAM (no-brand machine)
kernbench - No significant difference, variance well within noise
netperf-udp - 1.34% to 2.28% gain
netperf-tcp - 0.45% to 1.22% gain
hackbench - Small variances, very close to noise
sysbench - Very small gains
x86-64: AMD Phenom 9950 1.3GHz with 8G RAM (no-brand machine)
kernbench - No significant difference, variance well within noise
netperf-udp - 1.83% to 10.42% gains
netperf-tcp - No conclusive until buffer >= PAGE_SIZE
4096 +15.83%
8192 + 0.34% (not significant)
16384 + 1%
hackbench - Small gains, very close to noise
sysbench - 0.79% to 1.6% gain
ppc64: PPC970MP 2.5GHz with 10GB RAM (it's a terrasoft powerstation)
kernbench - No significant difference, variance well within noise
netperf-udp - 2-3% gain for almost all buffer sizes tested
netperf-tcp - losses on small buffers, gains on larger buffers
possibly indicates some bad caching effect.
hackbench - No significant difference
sysbench - 2-4% gain
This patch:
Currently the per-cpu page allocator searches the PCP list for pages of
the correct migrate-type to reduce the possibility of pages being
inappropriate placed from a fragmentation perspective. This search is
potentially expensive in a fast-path and undesirable. Splitting the
per-cpu list into multiple lists increases the size of a per-cpu structure
and this was potentially a major problem at the time the search was
introduced. These problem has been mitigated as now only the necessary
number of structures is allocated for the running system.
This patch replaces a list search in the per-cpu allocator with one list
per migrate type. The potential snag with this approach is when bulk
freeing pages. We round-robin free pages based on migrate type which has
little bearing on the cache hotness of the page and potentially checks
empty lists repeatedly in the event the majority of PCP pages are of one
type.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Nick Piggin <npiggin@suse.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 00:03:19 +00:00
|
|
|
int migratetype;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
mm, page_alloc: reduce page alloc/free sanity checks
Historically, we have performed sanity checks on all struct pages being
allocated or freed, making sure they have no unexpected page flags or
certain field values. This can detect insufficient cleanup and some cases
of use-after-free, although on its own it can't always identify the
culprit. The result is a warning and the "bad page" being leaked.
The checks do need some cpu cycles, so in 4.7 with commits 479f854a207c
("mm, page_alloc: defer debugging checks of pages allocated from the PCP")
and 4db7548ccbd9 ("mm, page_alloc: defer debugging checks of freed pages
until a PCP drain") they were no longer performed in the hot paths when
allocating and freeing from pcplists, but only when pcplists are bypassed,
refilled or drained. For debugging purposes, with CONFIG_DEBUG_VM enabled
the checks were instead still done in the hot paths and not when refilling
or draining pcplists.
With 4462b32c9285 ("mm, page_alloc: more extensive free page checking with
debug_pagealloc"), enabling debug_pagealloc also moved the sanity checks
back to hot pahs. When both debug_pagealloc and CONFIG_DEBUG_VM are
enabled, the checks are done both in hotpaths and pcplist refill/drain.
Even though the non-debug default today might seem to be a sensible
tradeoff between overhead and ability to detect bad pages, on closer look
it's arguably not. As most allocations go through the pcplists, catching
any bad pages when refilling or draining pcplists has only a small chance,
insufficient for debugging or serious hardening purposes. On the other
hand the cost of the checks is concentrated in the already expensive
drain/refill batching operations, and those are done under the often
contended zone lock. That was recently identified as an issue for page
allocation and the zone lock contention reduced by moving the checks
outside of the locked section with a patch "mm: reduce lock contention of
pcp buffer refill", but the cost of the checks is still visible compared
to their removal [1]. In the pcplist draining path free_pcppages_bulk()
the checks are still done under zone->lock.
Thus, remove the checks from pcplist refill and drain paths completely.
Introduce a static key check_pages_enabled to control checks during page
allocation a freeing (whether pcplist is used or bypassed). The static
key is enabled if either is true:
- kernel is built with CONFIG_DEBUG_VM=y (debugging)
- debug_pagealloc or page poisoning is boot-time enabled (debugging)
- init_on_alloc or init_on_free is boot-time enabled (hardening)
The resulting user visible changes:
- no checks when draining/refilling pcplists - less overhead, with
likely no practical reduction of ability to catch bad pages
- no checks when bypassing pcplists in default config (no
debugging/hardening) - less overhead etc. as above
- on typical hardened kernels [2], checks are now performed on each page
allocation/free (previously only when bypassing/draining/refilling
pcplists) - the init_on_alloc/init_on_free enabled should be sufficient
indication for preferring more costly alloc/free operations for
hardening purposes and we shouldn't need to introduce another toggle
- code (various wrappers) removal and simplification
[1] https://lore.kernel.org/all/68ba44d8-6899-c018-dcb3-36f3a96e6bea@sra.uni-hannover.de/
[2] https://lore.kernel.org/all/63ebc499.a70a0220.9ac51.29ea@mx.google.com/
[akpm@linux-foundation.org: coding-style cleanups]
[akpm@linux-foundation.org: make check_pages_enabled static]
Link: https://lkml.kernel.org/r/20230216095131.17336-1-vbabka@suse.cz
Reported-by: Alexander Halbuer <halbuer@sra.uni-hannover.de>
Reported-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-16 09:51:31 +00:00
|
|
|
if (!free_pages_prepare(page, order, FPI_NONE))
|
mm, page_alloc: enable/disable IRQs once when freeing a list of pages
Patch series "Follow-up for speed up page cache truncation", v2.
This series is a follow-on for Jan Kara's series "Speed up page cache
truncation" series. We both ended up looking at the same problem but
saw different problems based on the same data. This series builds upon
his work.
A variety of workloads were compared on four separate machines but each
machine showed gains albeit at different levels. Minimally, some of the
differences are due to NUMA where truncating data from a remote node is
slower than a local node. The workloads checked were
o sparse truncate microbenchmark, tiny
o sparse truncate microbenchmark, large
o reaim-io disk workfile
o dbench4 (modified by mmtests to produce more stable results)
o filebench varmail configuration for small memory size
o bonnie, directory operations, working set size 2*RAM
reaim-io, dbench and filebench all showed minor gains. Truncation does
not dominate those workloads but were tested to ensure no other
regressions. They will not be reported further.
The sparse truncate microbench was written by Jan. It creates a number
of files and then times how long it takes to truncate each one. The
"tiny" configuraiton creates a number of files that easily fits in
memory and times how long it takes to truncate files with page cache.
The large configuration uses enough files to have data that is twice the
size of memory and so timings there include truncating page cache and
working set shadow entries in the radix tree.
Patches 1-4 are the most relevant parts of this series. Patches 5-8 are
optional as they are deleting code that is essentially useless but has a
negligible performance impact.
The changelogs have more information on performance but just for bonnie
delete options, the main comparison is
bonnie
4.14.0-rc5 4.14.0-rc5 4.14.0-rc5
jan-v2 vanilla mel-v2
Hmean SeqCreate ops 76.20 ( 0.00%) 75.80 ( -0.53%) 76.80 ( 0.79%)
Hmean SeqCreate read 85.00 ( 0.00%) 85.00 ( 0.00%) 85.00 ( 0.00%)
Hmean SeqCreate del 13752.31 ( 0.00%) 12090.23 ( -12.09%) 15304.84 ( 11.29%)
Hmean RandCreate ops 76.00 ( 0.00%) 75.60 ( -0.53%) 77.00 ( 1.32%)
Hmean RandCreate read 96.80 ( 0.00%) 96.80 ( 0.00%) 97.00 ( 0.21%)
Hmean RandCreate del 13233.75 ( 0.00%) 11525.35 ( -12.91%) 14446.61 ( 9.16%)
Jan's series is the baseline and the vanilla kernel is 12% slower where
as this series on top gains another 11%. This is from a different
machine than the data in the changelogs but the detailed data was not
collected as there was no substantial change in v2.
This patch (of 8):
Freeing a list of pages current enables/disables IRQs for each page
freed. This patch splits freeing a list of pages into two operations --
preparing the pages for freeing and the actual freeing. This is a
tradeoff - we're taking two passes of the list to free in exchange for
avoiding multiple enable/disable of IRQs.
sparsetruncate (tiny)
4.14.0-rc4 4.14.0-rc4
janbatch-v1r1 oneirq-v1r1
Min Time 149.00 ( 0.00%) 141.00 ( 5.37%)
1st-qrtle Time 150.00 ( 0.00%) 142.00 ( 5.33%)
2nd-qrtle Time 151.00 ( 0.00%) 142.00 ( 5.96%)
3rd-qrtle Time 151.00 ( 0.00%) 143.00 ( 5.30%)
Max-90% Time 153.00 ( 0.00%) 144.00 ( 5.88%)
Max-95% Time 155.00 ( 0.00%) 147.00 ( 5.16%)
Max-99% Time 201.00 ( 0.00%) 195.00 ( 2.99%)
Max Time 236.00 ( 0.00%) 230.00 ( 2.54%)
Amean Time 152.65 ( 0.00%) 144.37 ( 5.43%)
Stddev Time 9.78 ( 0.00%) 10.44 ( -6.72%)
Coeff Time 6.41 ( 0.00%) 7.23 ( -12.84%)
Best99%Amean Time 152.07 ( 0.00%) 143.72 ( 5.50%)
Best95%Amean Time 150.75 ( 0.00%) 142.37 ( 5.56%)
Best90%Amean Time 150.59 ( 0.00%) 142.19 ( 5.58%)
Best75%Amean Time 150.36 ( 0.00%) 141.92 ( 5.61%)
Best50%Amean Time 150.04 ( 0.00%) 141.69 ( 5.56%)
Best25%Amean Time 149.85 ( 0.00%) 141.38 ( 5.65%)
With a tiny number of files, each file truncated has resident page cache
and it shows that time to truncate is roughtly 5-6% with some minor
jitter.
4.14.0-rc4 4.14.0-rc4
janbatch-v1r1 oneirq-v1r1
Hmean SeqCreate ops 65.27 ( 0.00%) 81.86 ( 25.43%)
Hmean SeqCreate read 39.48 ( 0.00%) 47.44 ( 20.16%)
Hmean SeqCreate del 24963.95 ( 0.00%) 26319.99 ( 5.43%)
Hmean RandCreate ops 65.47 ( 0.00%) 82.01 ( 25.26%)
Hmean RandCreate read 42.04 ( 0.00%) 51.75 ( 23.09%)
Hmean RandCreate del 23377.66 ( 0.00%) 23764.79 ( 1.66%)
As expected, there is a small gain for the delete operation.
[mgorman@techsingularity.net: use page_private and set_page_private helpers]
Link: http://lkml.kernel.org/r/20171018101547.mjycw7zreb66jzpa@techsingularity.net
Link: http://lkml.kernel.org/r/20171018075952.10627-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Jan Kara <jack@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 01:37:37 +00:00
|
|
|
return false;
|
2005-11-22 05:32:20 +00:00
|
|
|
|
2014-06-04 23:10:17 +00:00
|
|
|
migratetype = get_pfnblock_migratetype(page, pfn);
|
2015-09-08 22:01:25 +00:00
|
|
|
set_pcppage_migratetype(page, migratetype);
|
mm, page_alloc: enable/disable IRQs once when freeing a list of pages
Patch series "Follow-up for speed up page cache truncation", v2.
This series is a follow-on for Jan Kara's series "Speed up page cache
truncation" series. We both ended up looking at the same problem but
saw different problems based on the same data. This series builds upon
his work.
A variety of workloads were compared on four separate machines but each
machine showed gains albeit at different levels. Minimally, some of the
differences are due to NUMA where truncating data from a remote node is
slower than a local node. The workloads checked were
o sparse truncate microbenchmark, tiny
o sparse truncate microbenchmark, large
o reaim-io disk workfile
o dbench4 (modified by mmtests to produce more stable results)
o filebench varmail configuration for small memory size
o bonnie, directory operations, working set size 2*RAM
reaim-io, dbench and filebench all showed minor gains. Truncation does
not dominate those workloads but were tested to ensure no other
regressions. They will not be reported further.
The sparse truncate microbench was written by Jan. It creates a number
of files and then times how long it takes to truncate each one. The
"tiny" configuraiton creates a number of files that easily fits in
memory and times how long it takes to truncate files with page cache.
The large configuration uses enough files to have data that is twice the
size of memory and so timings there include truncating page cache and
working set shadow entries in the radix tree.
Patches 1-4 are the most relevant parts of this series. Patches 5-8 are
optional as they are deleting code that is essentially useless but has a
negligible performance impact.
The changelogs have more information on performance but just for bonnie
delete options, the main comparison is
bonnie
4.14.0-rc5 4.14.0-rc5 4.14.0-rc5
jan-v2 vanilla mel-v2
Hmean SeqCreate ops 76.20 ( 0.00%) 75.80 ( -0.53%) 76.80 ( 0.79%)
Hmean SeqCreate read 85.00 ( 0.00%) 85.00 ( 0.00%) 85.00 ( 0.00%)
Hmean SeqCreate del 13752.31 ( 0.00%) 12090.23 ( -12.09%) 15304.84 ( 11.29%)
Hmean RandCreate ops 76.00 ( 0.00%) 75.60 ( -0.53%) 77.00 ( 1.32%)
Hmean RandCreate read 96.80 ( 0.00%) 96.80 ( 0.00%) 97.00 ( 0.21%)
Hmean RandCreate del 13233.75 ( 0.00%) 11525.35 ( -12.91%) 14446.61 ( 9.16%)
Jan's series is the baseline and the vanilla kernel is 12% slower where
as this series on top gains another 11%. This is from a different
machine than the data in the changelogs but the detailed data was not
collected as there was no substantial change in v2.
This patch (of 8):
Freeing a list of pages current enables/disables IRQs for each page
freed. This patch splits freeing a list of pages into two operations --
preparing the pages for freeing and the actual freeing. This is a
tradeoff - we're taking two passes of the list to free in exchange for
avoiding multiple enable/disable of IRQs.
sparsetruncate (tiny)
4.14.0-rc4 4.14.0-rc4
janbatch-v1r1 oneirq-v1r1
Min Time 149.00 ( 0.00%) 141.00 ( 5.37%)
1st-qrtle Time 150.00 ( 0.00%) 142.00 ( 5.33%)
2nd-qrtle Time 151.00 ( 0.00%) 142.00 ( 5.96%)
3rd-qrtle Time 151.00 ( 0.00%) 143.00 ( 5.30%)
Max-90% Time 153.00 ( 0.00%) 144.00 ( 5.88%)
Max-95% Time 155.00 ( 0.00%) 147.00 ( 5.16%)
Max-99% Time 201.00 ( 0.00%) 195.00 ( 2.99%)
Max Time 236.00 ( 0.00%) 230.00 ( 2.54%)
Amean Time 152.65 ( 0.00%) 144.37 ( 5.43%)
Stddev Time 9.78 ( 0.00%) 10.44 ( -6.72%)
Coeff Time 6.41 ( 0.00%) 7.23 ( -12.84%)
Best99%Amean Time 152.07 ( 0.00%) 143.72 ( 5.50%)
Best95%Amean Time 150.75 ( 0.00%) 142.37 ( 5.56%)
Best90%Amean Time 150.59 ( 0.00%) 142.19 ( 5.58%)
Best75%Amean Time 150.36 ( 0.00%) 141.92 ( 5.61%)
Best50%Amean Time 150.04 ( 0.00%) 141.69 ( 5.56%)
Best25%Amean Time 149.85 ( 0.00%) 141.38 ( 5.65%)
With a tiny number of files, each file truncated has resident page cache
and it shows that time to truncate is roughtly 5-6% with some minor
jitter.
4.14.0-rc4 4.14.0-rc4
janbatch-v1r1 oneirq-v1r1
Hmean SeqCreate ops 65.27 ( 0.00%) 81.86 ( 25.43%)
Hmean SeqCreate read 39.48 ( 0.00%) 47.44 ( 20.16%)
Hmean SeqCreate del 24963.95 ( 0.00%) 26319.99 ( 5.43%)
Hmean RandCreate ops 65.47 ( 0.00%) 82.01 ( 25.26%)
Hmean RandCreate read 42.04 ( 0.00%) 51.75 ( 23.09%)
Hmean RandCreate del 23377.66 ( 0.00%) 23764.79 ( 1.66%)
As expected, there is a small gain for the delete operation.
[mgorman@techsingularity.net: use page_private and set_page_private helpers]
Link: http://lkml.kernel.org/r/20171018101547.mjycw7zreb66jzpa@techsingularity.net
Link: http://lkml.kernel.org/r/20171018075952.10627-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Jan Kara <jack@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 01:37:37 +00:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2022-03-22 21:43:45 +00:00
|
|
|
static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
|
|
|
|
bool free_high)
|
2021-06-29 02:42:18 +00:00
|
|
|
{
|
|
|
|
int min_nr_free, max_nr_free;
|
|
|
|
|
2022-03-22 21:43:45 +00:00
|
|
|
/* Free everything if batch freeing high-order pages. */
|
|
|
|
if (unlikely(free_high))
|
|
|
|
return pcp->count;
|
|
|
|
|
2021-06-29 02:42:18 +00:00
|
|
|
/* Check for PCP disabled or boot pageset */
|
|
|
|
if (unlikely(high < batch))
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
/* Leave at least pcp->batch pages on the list */
|
|
|
|
min_nr_free = batch;
|
|
|
|
max_nr_free = high - batch;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Double the number of pages freed each time there is subsequent
|
|
|
|
* freeing of pages without any allocation.
|
|
|
|
*/
|
|
|
|
batch <<= pcp->free_factor;
|
|
|
|
if (batch < max_nr_free)
|
|
|
|
pcp->free_factor++;
|
|
|
|
batch = clamp(batch, min_nr_free, max_nr_free);
|
|
|
|
|
|
|
|
return batch;
|
|
|
|
}
|
|
|
|
|
2022-03-22 21:43:45 +00:00
|
|
|
static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
|
|
|
|
bool free_high)
|
2021-06-29 02:42:21 +00:00
|
|
|
{
|
|
|
|
int high = READ_ONCE(pcp->high);
|
|
|
|
|
2022-03-22 21:43:45 +00:00
|
|
|
if (unlikely(!high || free_high))
|
2021-06-29 02:42:21 +00:00
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
|
|
|
|
return high;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If reclaim is active, limit the number of pages that can be
|
|
|
|
* stored on pcp lists
|
|
|
|
*/
|
|
|
|
return min(READ_ONCE(pcp->batch) << 2, high);
|
|
|
|
}
|
|
|
|
|
2022-06-24 12:54:21 +00:00
|
|
|
static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
|
|
|
|
struct page *page, int migratetype,
|
2022-03-22 21:43:14 +00:00
|
|
|
unsigned int order)
|
mm, page_alloc: enable/disable IRQs once when freeing a list of pages
Patch series "Follow-up for speed up page cache truncation", v2.
This series is a follow-on for Jan Kara's series "Speed up page cache
truncation" series. We both ended up looking at the same problem but
saw different problems based on the same data. This series builds upon
his work.
A variety of workloads were compared on four separate machines but each
machine showed gains albeit at different levels. Minimally, some of the
differences are due to NUMA where truncating data from a remote node is
slower than a local node. The workloads checked were
o sparse truncate microbenchmark, tiny
o sparse truncate microbenchmark, large
o reaim-io disk workfile
o dbench4 (modified by mmtests to produce more stable results)
o filebench varmail configuration for small memory size
o bonnie, directory operations, working set size 2*RAM
reaim-io, dbench and filebench all showed minor gains. Truncation does
not dominate those workloads but were tested to ensure no other
regressions. They will not be reported further.
The sparse truncate microbench was written by Jan. It creates a number
of files and then times how long it takes to truncate each one. The
"tiny" configuraiton creates a number of files that easily fits in
memory and times how long it takes to truncate files with page cache.
The large configuration uses enough files to have data that is twice the
size of memory and so timings there include truncating page cache and
working set shadow entries in the radix tree.
Patches 1-4 are the most relevant parts of this series. Patches 5-8 are
optional as they are deleting code that is essentially useless but has a
negligible performance impact.
The changelogs have more information on performance but just for bonnie
delete options, the main comparison is
bonnie
4.14.0-rc5 4.14.0-rc5 4.14.0-rc5
jan-v2 vanilla mel-v2
Hmean SeqCreate ops 76.20 ( 0.00%) 75.80 ( -0.53%) 76.80 ( 0.79%)
Hmean SeqCreate read 85.00 ( 0.00%) 85.00 ( 0.00%) 85.00 ( 0.00%)
Hmean SeqCreate del 13752.31 ( 0.00%) 12090.23 ( -12.09%) 15304.84 ( 11.29%)
Hmean RandCreate ops 76.00 ( 0.00%) 75.60 ( -0.53%) 77.00 ( 1.32%)
Hmean RandCreate read 96.80 ( 0.00%) 96.80 ( 0.00%) 97.00 ( 0.21%)
Hmean RandCreate del 13233.75 ( 0.00%) 11525.35 ( -12.91%) 14446.61 ( 9.16%)
Jan's series is the baseline and the vanilla kernel is 12% slower where
as this series on top gains another 11%. This is from a different
machine than the data in the changelogs but the detailed data was not
collected as there was no substantial change in v2.
This patch (of 8):
Freeing a list of pages current enables/disables IRQs for each page
freed. This patch splits freeing a list of pages into two operations --
preparing the pages for freeing and the actual freeing. This is a
tradeoff - we're taking two passes of the list to free in exchange for
avoiding multiple enable/disable of IRQs.
sparsetruncate (tiny)
4.14.0-rc4 4.14.0-rc4
janbatch-v1r1 oneirq-v1r1
Min Time 149.00 ( 0.00%) 141.00 ( 5.37%)
1st-qrtle Time 150.00 ( 0.00%) 142.00 ( 5.33%)
2nd-qrtle Time 151.00 ( 0.00%) 142.00 ( 5.96%)
3rd-qrtle Time 151.00 ( 0.00%) 143.00 ( 5.30%)
Max-90% Time 153.00 ( 0.00%) 144.00 ( 5.88%)
Max-95% Time 155.00 ( 0.00%) 147.00 ( 5.16%)
Max-99% Time 201.00 ( 0.00%) 195.00 ( 2.99%)
Max Time 236.00 ( 0.00%) 230.00 ( 2.54%)
Amean Time 152.65 ( 0.00%) 144.37 ( 5.43%)
Stddev Time 9.78 ( 0.00%) 10.44 ( -6.72%)
Coeff Time 6.41 ( 0.00%) 7.23 ( -12.84%)
Best99%Amean Time 152.07 ( 0.00%) 143.72 ( 5.50%)
Best95%Amean Time 150.75 ( 0.00%) 142.37 ( 5.56%)
Best90%Amean Time 150.59 ( 0.00%) 142.19 ( 5.58%)
Best75%Amean Time 150.36 ( 0.00%) 141.92 ( 5.61%)
Best50%Amean Time 150.04 ( 0.00%) 141.69 ( 5.56%)
Best25%Amean Time 149.85 ( 0.00%) 141.38 ( 5.65%)
With a tiny number of files, each file truncated has resident page cache
and it shows that time to truncate is roughtly 5-6% with some minor
jitter.
4.14.0-rc4 4.14.0-rc4
janbatch-v1r1 oneirq-v1r1
Hmean SeqCreate ops 65.27 ( 0.00%) 81.86 ( 25.43%)
Hmean SeqCreate read 39.48 ( 0.00%) 47.44 ( 20.16%)
Hmean SeqCreate del 24963.95 ( 0.00%) 26319.99 ( 5.43%)
Hmean RandCreate ops 65.47 ( 0.00%) 82.01 ( 25.26%)
Hmean RandCreate read 42.04 ( 0.00%) 51.75 ( 23.09%)
Hmean RandCreate del 23377.66 ( 0.00%) 23764.79 ( 1.66%)
As expected, there is a small gain for the delete operation.
[mgorman@techsingularity.net: use page_private and set_page_private helpers]
Link: http://lkml.kernel.org/r/20171018101547.mjycw7zreb66jzpa@techsingularity.net
Link: http://lkml.kernel.org/r/20171018075952.10627-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Jan Kara <jack@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 01:37:37 +00:00
|
|
|
{
|
2021-06-29 02:42:18 +00:00
|
|
|
int high;
|
2021-06-29 02:43:08 +00:00
|
|
|
int pindex;
|
2022-03-22 21:43:45 +00:00
|
|
|
bool free_high;
|
mm, page_alloc: enable/disable IRQs once when freeing a list of pages
Patch series "Follow-up for speed up page cache truncation", v2.
This series is a follow-on for Jan Kara's series "Speed up page cache
truncation" series. We both ended up looking at the same problem but
saw different problems based on the same data. This series builds upon
his work.
A variety of workloads were compared on four separate machines but each
machine showed gains albeit at different levels. Minimally, some of the
differences are due to NUMA where truncating data from a remote node is
slower than a local node. The workloads checked were
o sparse truncate microbenchmark, tiny
o sparse truncate microbenchmark, large
o reaim-io disk workfile
o dbench4 (modified by mmtests to produce more stable results)
o filebench varmail configuration for small memory size
o bonnie, directory operations, working set size 2*RAM
reaim-io, dbench and filebench all showed minor gains. Truncation does
not dominate those workloads but were tested to ensure no other
regressions. They will not be reported further.
The sparse truncate microbench was written by Jan. It creates a number
of files and then times how long it takes to truncate each one. The
"tiny" configuraiton creates a number of files that easily fits in
memory and times how long it takes to truncate files with page cache.
The large configuration uses enough files to have data that is twice the
size of memory and so timings there include truncating page cache and
working set shadow entries in the radix tree.
Patches 1-4 are the most relevant parts of this series. Patches 5-8 are
optional as they are deleting code that is essentially useless but has a
negligible performance impact.
The changelogs have more information on performance but just for bonnie
delete options, the main comparison is
bonnie
4.14.0-rc5 4.14.0-rc5 4.14.0-rc5
jan-v2 vanilla mel-v2
Hmean SeqCreate ops 76.20 ( 0.00%) 75.80 ( -0.53%) 76.80 ( 0.79%)
Hmean SeqCreate read 85.00 ( 0.00%) 85.00 ( 0.00%) 85.00 ( 0.00%)
Hmean SeqCreate del 13752.31 ( 0.00%) 12090.23 ( -12.09%) 15304.84 ( 11.29%)
Hmean RandCreate ops 76.00 ( 0.00%) 75.60 ( -0.53%) 77.00 ( 1.32%)
Hmean RandCreate read 96.80 ( 0.00%) 96.80 ( 0.00%) 97.00 ( 0.21%)
Hmean RandCreate del 13233.75 ( 0.00%) 11525.35 ( -12.91%) 14446.61 ( 9.16%)
Jan's series is the baseline and the vanilla kernel is 12% slower where
as this series on top gains another 11%. This is from a different
machine than the data in the changelogs but the detailed data was not
collected as there was no substantial change in v2.
This patch (of 8):
Freeing a list of pages current enables/disables IRQs for each page
freed. This patch splits freeing a list of pages into two operations --
preparing the pages for freeing and the actual freeing. This is a
tradeoff - we're taking two passes of the list to free in exchange for
avoiding multiple enable/disable of IRQs.
sparsetruncate (tiny)
4.14.0-rc4 4.14.0-rc4
janbatch-v1r1 oneirq-v1r1
Min Time 149.00 ( 0.00%) 141.00 ( 5.37%)
1st-qrtle Time 150.00 ( 0.00%) 142.00 ( 5.33%)
2nd-qrtle Time 151.00 ( 0.00%) 142.00 ( 5.96%)
3rd-qrtle Time 151.00 ( 0.00%) 143.00 ( 5.30%)
Max-90% Time 153.00 ( 0.00%) 144.00 ( 5.88%)
Max-95% Time 155.00 ( 0.00%) 147.00 ( 5.16%)
Max-99% Time 201.00 ( 0.00%) 195.00 ( 2.99%)
Max Time 236.00 ( 0.00%) 230.00 ( 2.54%)
Amean Time 152.65 ( 0.00%) 144.37 ( 5.43%)
Stddev Time 9.78 ( 0.00%) 10.44 ( -6.72%)
Coeff Time 6.41 ( 0.00%) 7.23 ( -12.84%)
Best99%Amean Time 152.07 ( 0.00%) 143.72 ( 5.50%)
Best95%Amean Time 150.75 ( 0.00%) 142.37 ( 5.56%)
Best90%Amean Time 150.59 ( 0.00%) 142.19 ( 5.58%)
Best75%Amean Time 150.36 ( 0.00%) 141.92 ( 5.61%)
Best50%Amean Time 150.04 ( 0.00%) 141.69 ( 5.56%)
Best25%Amean Time 149.85 ( 0.00%) 141.38 ( 5.65%)
With a tiny number of files, each file truncated has resident page cache
and it shows that time to truncate is roughtly 5-6% with some minor
jitter.
4.14.0-rc4 4.14.0-rc4
janbatch-v1r1 oneirq-v1r1
Hmean SeqCreate ops 65.27 ( 0.00%) 81.86 ( 25.43%)
Hmean SeqCreate read 39.48 ( 0.00%) 47.44 ( 20.16%)
Hmean SeqCreate del 24963.95 ( 0.00%) 26319.99 ( 5.43%)
Hmean RandCreate ops 65.47 ( 0.00%) 82.01 ( 25.26%)
Hmean RandCreate read 42.04 ( 0.00%) 51.75 ( 23.09%)
Hmean RandCreate del 23377.66 ( 0.00%) 23764.79 ( 1.66%)
As expected, there is a small gain for the delete operation.
[mgorman@techsingularity.net: use page_private and set_page_private helpers]
Link: http://lkml.kernel.org/r/20171018101547.mjycw7zreb66jzpa@techsingularity.net
Link: http://lkml.kernel.org/r/20171018075952.10627-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Jan Kara <jack@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 01:37:37 +00:00
|
|
|
|
2022-10-06 10:15:40 +00:00
|
|
|
__count_vm_events(PGFREE, 1 << order);
|
2021-06-29 02:43:08 +00:00
|
|
|
pindex = order_to_pindex(migratetype, order);
|
2022-06-24 12:54:17 +00:00
|
|
|
list_add(&page->pcp_list, &pcp->lists[pindex]);
|
2021-06-29 02:43:08 +00:00
|
|
|
pcp->count += 1 << order;
|
2022-03-22 21:43:45 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* As high-order pages other than THP's stored on PCP can contribute
|
|
|
|
* to fragmentation, limit the number stored when PCP is heavily
|
|
|
|
* freeing without allocation. The remainder after bulk freeing
|
|
|
|
* stops will be drained from vmstat refresh context.
|
|
|
|
*/
|
|
|
|
free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
|
|
|
|
|
|
|
|
high = nr_pcp_high(pcp, zone, free_high);
|
2021-06-29 02:42:18 +00:00
|
|
|
if (pcp->count >= high) {
|
|
|
|
int batch = READ_ONCE(pcp->batch);
|
|
|
|
|
2022-03-22 21:43:45 +00:00
|
|
|
free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
|
2021-06-29 02:42:18 +00:00
|
|
|
}
|
mm, page_alloc: enable/disable IRQs once when freeing a list of pages
Patch series "Follow-up for speed up page cache truncation", v2.
This series is a follow-on for Jan Kara's series "Speed up page cache
truncation" series. We both ended up looking at the same problem but
saw different problems based on the same data. This series builds upon
his work.
A variety of workloads were compared on four separate machines but each
machine showed gains albeit at different levels. Minimally, some of the
differences are due to NUMA where truncating data from a remote node is
slower than a local node. The workloads checked were
o sparse truncate microbenchmark, tiny
o sparse truncate microbenchmark, large
o reaim-io disk workfile
o dbench4 (modified by mmtests to produce more stable results)
o filebench varmail configuration for small memory size
o bonnie, directory operations, working set size 2*RAM
reaim-io, dbench and filebench all showed minor gains. Truncation does
not dominate those workloads but were tested to ensure no other
regressions. They will not be reported further.
The sparse truncate microbench was written by Jan. It creates a number
of files and then times how long it takes to truncate each one. The
"tiny" configuraiton creates a number of files that easily fits in
memory and times how long it takes to truncate files with page cache.
The large configuration uses enough files to have data that is twice the
size of memory and so timings there include truncating page cache and
working set shadow entries in the radix tree.
Patches 1-4 are the most relevant parts of this series. Patches 5-8 are
optional as they are deleting code that is essentially useless but has a
negligible performance impact.
The changelogs have more information on performance but just for bonnie
delete options, the main comparison is
bonnie
4.14.0-rc5 4.14.0-rc5 4.14.0-rc5
jan-v2 vanilla mel-v2
Hmean SeqCreate ops 76.20 ( 0.00%) 75.80 ( -0.53%) 76.80 ( 0.79%)
Hmean SeqCreate read 85.00 ( 0.00%) 85.00 ( 0.00%) 85.00 ( 0.00%)
Hmean SeqCreate del 13752.31 ( 0.00%) 12090.23 ( -12.09%) 15304.84 ( 11.29%)
Hmean RandCreate ops 76.00 ( 0.00%) 75.60 ( -0.53%) 77.00 ( 1.32%)
Hmean RandCreate read 96.80 ( 0.00%) 96.80 ( 0.00%) 97.00 ( 0.21%)
Hmean RandCreate del 13233.75 ( 0.00%) 11525.35 ( -12.91%) 14446.61 ( 9.16%)
Jan's series is the baseline and the vanilla kernel is 12% slower where
as this series on top gains another 11%. This is from a different
machine than the data in the changelogs but the detailed data was not
collected as there was no substantial change in v2.
This patch (of 8):
Freeing a list of pages current enables/disables IRQs for each page
freed. This patch splits freeing a list of pages into two operations --
preparing the pages for freeing and the actual freeing. This is a
tradeoff - we're taking two passes of the list to free in exchange for
avoiding multiple enable/disable of IRQs.
sparsetruncate (tiny)
4.14.0-rc4 4.14.0-rc4
janbatch-v1r1 oneirq-v1r1
Min Time 149.00 ( 0.00%) 141.00 ( 5.37%)
1st-qrtle Time 150.00 ( 0.00%) 142.00 ( 5.33%)
2nd-qrtle Time 151.00 ( 0.00%) 142.00 ( 5.96%)
3rd-qrtle Time 151.00 ( 0.00%) 143.00 ( 5.30%)
Max-90% Time 153.00 ( 0.00%) 144.00 ( 5.88%)
Max-95% Time 155.00 ( 0.00%) 147.00 ( 5.16%)
Max-99% Time 201.00 ( 0.00%) 195.00 ( 2.99%)
Max Time 236.00 ( 0.00%) 230.00 ( 2.54%)
Amean Time 152.65 ( 0.00%) 144.37 ( 5.43%)
Stddev Time 9.78 ( 0.00%) 10.44 ( -6.72%)
Coeff Time 6.41 ( 0.00%) 7.23 ( -12.84%)
Best99%Amean Time 152.07 ( 0.00%) 143.72 ( 5.50%)
Best95%Amean Time 150.75 ( 0.00%) 142.37 ( 5.56%)
Best90%Amean Time 150.59 ( 0.00%) 142.19 ( 5.58%)
Best75%Amean Time 150.36 ( 0.00%) 141.92 ( 5.61%)
Best50%Amean Time 150.04 ( 0.00%) 141.69 ( 5.56%)
Best25%Amean Time 149.85 ( 0.00%) 141.38 ( 5.65%)
With a tiny number of files, each file truncated has resident page cache
and it shows that time to truncate is roughtly 5-6% with some minor
jitter.
4.14.0-rc4 4.14.0-rc4
janbatch-v1r1 oneirq-v1r1
Hmean SeqCreate ops 65.27 ( 0.00%) 81.86 ( 25.43%)
Hmean SeqCreate read 39.48 ( 0.00%) 47.44 ( 20.16%)
Hmean SeqCreate del 24963.95 ( 0.00%) 26319.99 ( 5.43%)
Hmean RandCreate ops 65.47 ( 0.00%) 82.01 ( 25.26%)
Hmean RandCreate read 42.04 ( 0.00%) 51.75 ( 23.09%)
Hmean RandCreate del 23377.66 ( 0.00%) 23764.79 ( 1.66%)
As expected, there is a small gain for the delete operation.
[mgorman@techsingularity.net: use page_private and set_page_private helpers]
Link: http://lkml.kernel.org/r/20171018101547.mjycw7zreb66jzpa@techsingularity.net
Link: http://lkml.kernel.org/r/20171018075952.10627-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Jan Kara <jack@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 01:37:37 +00:00
|
|
|
}
|
page-allocator: split per-cpu list into one-list-per-migrate-type
The following two patches remove searching in the page allocator fast-path
by maintaining multiple free-lists in the per-cpu structure. At the time
the search was introduced, increasing the per-cpu structures would waste a
lot of memory as per-cpu structures were statically allocated at
compile-time. This is no longer the case.
The patches are as follows. They are based on mmotm-2009-08-27.
Patch 1 adds multiple lists to struct per_cpu_pages, one per
migratetype that can be stored on the PCP lists.
Patch 2 notes that the pcpu drain path check empty lists multiple times. The
patch reduces the number of checks by maintaining a count of free
lists encountered. Lists containing pages will then free multiple
pages in batch
The patches were tested with kernbench, netperf udp/tcp, hackbench and
sysbench. The netperf tests were not bound to any CPU in particular and
were run such that the results should be 99% confidence that the reported
results are within 1% of the estimated mean. sysbench was run with a
postgres background and read-only tests. Similar to netperf, it was run
multiple times so that it's 99% confidence results are within 1%. The
patches were tested on x86, x86-64 and ppc64 as
x86: Intel Pentium D 3GHz with 8G RAM (no-brand machine)
kernbench - No significant difference, variance well within noise
netperf-udp - 1.34% to 2.28% gain
netperf-tcp - 0.45% to 1.22% gain
hackbench - Small variances, very close to noise
sysbench - Very small gains
x86-64: AMD Phenom 9950 1.3GHz with 8G RAM (no-brand machine)
kernbench - No significant difference, variance well within noise
netperf-udp - 1.83% to 10.42% gains
netperf-tcp - No conclusive until buffer >= PAGE_SIZE
4096 +15.83%
8192 + 0.34% (not significant)
16384 + 1%
hackbench - Small gains, very close to noise
sysbench - 0.79% to 1.6% gain
ppc64: PPC970MP 2.5GHz with 10GB RAM (it's a terrasoft powerstation)
kernbench - No significant difference, variance well within noise
netperf-udp - 2-3% gain for almost all buffer sizes tested
netperf-tcp - losses on small buffers, gains on larger buffers
possibly indicates some bad caching effect.
hackbench - No significant difference
sysbench - 2-4% gain
This patch:
Currently the per-cpu page allocator searches the PCP list for pages of
the correct migrate-type to reduce the possibility of pages being
inappropriate placed from a fragmentation perspective. This search is
potentially expensive in a fast-path and undesirable. Splitting the
per-cpu list into multiple lists increases the size of a per-cpu structure
and this was potentially a major problem at the time the search was
introduced. These problem has been mitigated as now only the necessary
number of structures is allocated for the running system.
This patch replaces a list search in the per-cpu allocator with one list
per migrate type. The potential snag with this approach is when bulk
freeing pages. We round-robin free pages based on migrate type which has
little bearing on the cache hotness of the page and potentially checks
empty lists repeatedly in the event the majority of PCP pages are of one
type.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Nick Piggin <npiggin@suse.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 00:03:19 +00:00
|
|
|
|
mm, page_alloc: enable/disable IRQs once when freeing a list of pages
Patch series "Follow-up for speed up page cache truncation", v2.
This series is a follow-on for Jan Kara's series "Speed up page cache
truncation" series. We both ended up looking at the same problem but
saw different problems based on the same data. This series builds upon
his work.
A variety of workloads were compared on four separate machines but each
machine showed gains albeit at different levels. Minimally, some of the
differences are due to NUMA where truncating data from a remote node is
slower than a local node. The workloads checked were
o sparse truncate microbenchmark, tiny
o sparse truncate microbenchmark, large
o reaim-io disk workfile
o dbench4 (modified by mmtests to produce more stable results)
o filebench varmail configuration for small memory size
o bonnie, directory operations, working set size 2*RAM
reaim-io, dbench and filebench all showed minor gains. Truncation does
not dominate those workloads but were tested to ensure no other
regressions. They will not be reported further.
The sparse truncate microbench was written by Jan. It creates a number
of files and then times how long it takes to truncate each one. The
"tiny" configuraiton creates a number of files that easily fits in
memory and times how long it takes to truncate files with page cache.
The large configuration uses enough files to have data that is twice the
size of memory and so timings there include truncating page cache and
working set shadow entries in the radix tree.
Patches 1-4 are the most relevant parts of this series. Patches 5-8 are
optional as they are deleting code that is essentially useless but has a
negligible performance impact.
The changelogs have more information on performance but just for bonnie
delete options, the main comparison is
bonnie
4.14.0-rc5 4.14.0-rc5 4.14.0-rc5
jan-v2 vanilla mel-v2
Hmean SeqCreate ops 76.20 ( 0.00%) 75.80 ( -0.53%) 76.80 ( 0.79%)
Hmean SeqCreate read 85.00 ( 0.00%) 85.00 ( 0.00%) 85.00 ( 0.00%)
Hmean SeqCreate del 13752.31 ( 0.00%) 12090.23 ( -12.09%) 15304.84 ( 11.29%)
Hmean RandCreate ops 76.00 ( 0.00%) 75.60 ( -0.53%) 77.00 ( 1.32%)
Hmean RandCreate read 96.80 ( 0.00%) 96.80 ( 0.00%) 97.00 ( 0.21%)
Hmean RandCreate del 13233.75 ( 0.00%) 11525.35 ( -12.91%) 14446.61 ( 9.16%)
Jan's series is the baseline and the vanilla kernel is 12% slower where
as this series on top gains another 11%. This is from a different
machine than the data in the changelogs but the detailed data was not
collected as there was no substantial change in v2.
This patch (of 8):
Freeing a list of pages current enables/disables IRQs for each page
freed. This patch splits freeing a list of pages into two operations --
preparing the pages for freeing and the actual freeing. This is a
tradeoff - we're taking two passes of the list to free in exchange for
avoiding multiple enable/disable of IRQs.
sparsetruncate (tiny)
4.14.0-rc4 4.14.0-rc4
janbatch-v1r1 oneirq-v1r1
Min Time 149.00 ( 0.00%) 141.00 ( 5.37%)
1st-qrtle Time 150.00 ( 0.00%) 142.00 ( 5.33%)
2nd-qrtle Time 151.00 ( 0.00%) 142.00 ( 5.96%)
3rd-qrtle Time 151.00 ( 0.00%) 143.00 ( 5.30%)
Max-90% Time 153.00 ( 0.00%) 144.00 ( 5.88%)
Max-95% Time 155.00 ( 0.00%) 147.00 ( 5.16%)
Max-99% Time 201.00 ( 0.00%) 195.00 ( 2.99%)
Max Time 236.00 ( 0.00%) 230.00 ( 2.54%)
Amean Time 152.65 ( 0.00%) 144.37 ( 5.43%)
Stddev Time 9.78 ( 0.00%) 10.44 ( -6.72%)
Coeff Time 6.41 ( 0.00%) 7.23 ( -12.84%)
Best99%Amean Time 152.07 ( 0.00%) 143.72 ( 5.50%)
Best95%Amean Time 150.75 ( 0.00%) 142.37 ( 5.56%)
Best90%Amean Time 150.59 ( 0.00%) 142.19 ( 5.58%)
Best75%Amean Time 150.36 ( 0.00%) 141.92 ( 5.61%)
Best50%Amean Time 150.04 ( 0.00%) 141.69 ( 5.56%)
Best25%Amean Time 149.85 ( 0.00%) 141.38 ( 5.65%)
With a tiny number of files, each file truncated has resident page cache
and it shows that time to truncate is roughtly 5-6% with some minor
jitter.
4.14.0-rc4 4.14.0-rc4
janbatch-v1r1 oneirq-v1r1
Hmean SeqCreate ops 65.27 ( 0.00%) 81.86 ( 25.43%)
Hmean SeqCreate read 39.48 ( 0.00%) 47.44 ( 20.16%)
Hmean SeqCreate del 24963.95 ( 0.00%) 26319.99 ( 5.43%)
Hmean RandCreate ops 65.47 ( 0.00%) 82.01 ( 25.26%)
Hmean RandCreate read 42.04 ( 0.00%) 51.75 ( 23.09%)
Hmean RandCreate del 23377.66 ( 0.00%) 23764.79 ( 1.66%)
As expected, there is a small gain for the delete operation.
[mgorman@techsingularity.net: use page_private and set_page_private helpers]
Link: http://lkml.kernel.org/r/20171018101547.mjycw7zreb66jzpa@techsingularity.net
Link: http://lkml.kernel.org/r/20171018075952.10627-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Jan Kara <jack@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 01:37:37 +00:00
|
|
|
/*
|
2021-06-29 02:43:08 +00:00
|
|
|
* Free a pcp page
|
mm, page_alloc: enable/disable IRQs once when freeing a list of pages
Patch series "Follow-up for speed up page cache truncation", v2.
This series is a follow-on for Jan Kara's series "Speed up page cache
truncation" series. We both ended up looking at the same problem but
saw different problems based on the same data. This series builds upon
his work.
A variety of workloads were compared on four separate machines but each
machine showed gains albeit at different levels. Minimally, some of the
differences are due to NUMA where truncating data from a remote node is
slower than a local node. The workloads checked were
o sparse truncate microbenchmark, tiny
o sparse truncate microbenchmark, large
o reaim-io disk workfile
o dbench4 (modified by mmtests to produce more stable results)
o filebench varmail configuration for small memory size
o bonnie, directory operations, working set size 2*RAM
reaim-io, dbench and filebench all showed minor gains. Truncation does
not dominate those workloads but were tested to ensure no other
regressions. They will not be reported further.
The sparse truncate microbench was written by Jan. It creates a number
of files and then times how long it takes to truncate each one. The
"tiny" configuraiton creates a number of files that easily fits in
memory and times how long it takes to truncate files with page cache.
The large configuration uses enough files to have data that is twice the
size of memory and so timings there include truncating page cache and
working set shadow entries in the radix tree.
Patches 1-4 are the most relevant parts of this series. Patches 5-8 are
optional as they are deleting code that is essentially useless but has a
negligible performance impact.
The changelogs have more information on performance but just for bonnie
delete options, the main comparison is
bonnie
4.14.0-rc5 4.14.0-rc5 4.14.0-rc5
jan-v2 vanilla mel-v2
Hmean SeqCreate ops 76.20 ( 0.00%) 75.80 ( -0.53%) 76.80 ( 0.79%)
Hmean SeqCreate read 85.00 ( 0.00%) 85.00 ( 0.00%) 85.00 ( 0.00%)
Hmean SeqCreate del 13752.31 ( 0.00%) 12090.23 ( -12.09%) 15304.84 ( 11.29%)
Hmean RandCreate ops 76.00 ( 0.00%) 75.60 ( -0.53%) 77.00 ( 1.32%)
Hmean RandCreate read 96.80 ( 0.00%) 96.80 ( 0.00%) 97.00 ( 0.21%)
Hmean RandCreate del 13233.75 ( 0.00%) 11525.35 ( -12.91%) 14446.61 ( 9.16%)
Jan's series is the baseline and the vanilla kernel is 12% slower where
as this series on top gains another 11%. This is from a different
machine than the data in the changelogs but the detailed data was not
collected as there was no substantial change in v2.
This patch (of 8):
Freeing a list of pages current enables/disables IRQs for each page
freed. This patch splits freeing a list of pages into two operations --
preparing the pages for freeing and the actual freeing. This is a
tradeoff - we're taking two passes of the list to free in exchange for
avoiding multiple enable/disable of IRQs.
sparsetruncate (tiny)
4.14.0-rc4 4.14.0-rc4
janbatch-v1r1 oneirq-v1r1
Min Time 149.00 ( 0.00%) 141.00 ( 5.37%)
1st-qrtle Time 150.00 ( 0.00%) 142.00 ( 5.33%)
2nd-qrtle Time 151.00 ( 0.00%) 142.00 ( 5.96%)
3rd-qrtle Time 151.00 ( 0.00%) 143.00 ( 5.30%)
Max-90% Time 153.00 ( 0.00%) 144.00 ( 5.88%)
Max-95% Time 155.00 ( 0.00%) 147.00 ( 5.16%)
Max-99% Time 201.00 ( 0.00%) 195.00 ( 2.99%)
Max Time 236.00 ( 0.00%) 230.00 ( 2.54%)
Amean Time 152.65 ( 0.00%) 144.37 ( 5.43%)
Stddev Time 9.78 ( 0.00%) 10.44 ( -6.72%)
Coeff Time 6.41 ( 0.00%) 7.23 ( -12.84%)
Best99%Amean Time 152.07 ( 0.00%) 143.72 ( 5.50%)
Best95%Amean Time 150.75 ( 0.00%) 142.37 ( 5.56%)
Best90%Amean Time 150.59 ( 0.00%) 142.19 ( 5.58%)
Best75%Amean Time 150.36 ( 0.00%) 141.92 ( 5.61%)
Best50%Amean Time 150.04 ( 0.00%) 141.69 ( 5.56%)
Best25%Amean Time 149.85 ( 0.00%) 141.38 ( 5.65%)
With a tiny number of files, each file truncated has resident page cache
and it shows that time to truncate is roughtly 5-6% with some minor
jitter.
4.14.0-rc4 4.14.0-rc4
janbatch-v1r1 oneirq-v1r1
Hmean SeqCreate ops 65.27 ( 0.00%) 81.86 ( 25.43%)
Hmean SeqCreate read 39.48 ( 0.00%) 47.44 ( 20.16%)
Hmean SeqCreate del 24963.95 ( 0.00%) 26319.99 ( 5.43%)
Hmean RandCreate ops 65.47 ( 0.00%) 82.01 ( 25.26%)
Hmean RandCreate read 42.04 ( 0.00%) 51.75 ( 23.09%)
Hmean RandCreate del 23377.66 ( 0.00%) 23764.79 ( 1.66%)
As expected, there is a small gain for the delete operation.
[mgorman@techsingularity.net: use page_private and set_page_private helpers]
Link: http://lkml.kernel.org/r/20171018101547.mjycw7zreb66jzpa@techsingularity.net
Link: http://lkml.kernel.org/r/20171018075952.10627-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Jan Kara <jack@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 01:37:37 +00:00
|
|
|
*/
|
2021-06-29 02:43:08 +00:00
|
|
|
void free_unref_page(struct page *page, unsigned int order)
|
mm, page_alloc: enable/disable IRQs once when freeing a list of pages
Patch series "Follow-up for speed up page cache truncation", v2.
This series is a follow-on for Jan Kara's series "Speed up page cache
truncation" series. We both ended up looking at the same problem but
saw different problems based on the same data. This series builds upon
his work.
A variety of workloads were compared on four separate machines but each
machine showed gains albeit at different levels. Minimally, some of the
differences are due to NUMA where truncating data from a remote node is
slower than a local node. The workloads checked were
o sparse truncate microbenchmark, tiny
o sparse truncate microbenchmark, large
o reaim-io disk workfile
o dbench4 (modified by mmtests to produce more stable results)
o filebench varmail configuration for small memory size
o bonnie, directory operations, working set size 2*RAM
reaim-io, dbench and filebench all showed minor gains. Truncation does
not dominate those workloads but were tested to ensure no other
regressions. They will not be reported further.
The sparse truncate microbench was written by Jan. It creates a number
of files and then times how long it takes to truncate each one. The
"tiny" configuraiton creates a number of files that easily fits in
memory and times how long it takes to truncate files with page cache.
The large configuration uses enough files to have data that is twice the
size of memory and so timings there include truncating page cache and
working set shadow entries in the radix tree.
Patches 1-4 are the most relevant parts of this series. Patches 5-8 are
optional as they are deleting code that is essentially useless but has a
negligible performance impact.
The changelogs have more information on performance but just for bonnie
delete options, the main comparison is
bonnie
4.14.0-rc5 4.14.0-rc5 4.14.0-rc5
jan-v2 vanilla mel-v2
Hmean SeqCreate ops 76.20 ( 0.00%) 75.80 ( -0.53%) 76.80 ( 0.79%)
Hmean SeqCreate read 85.00 ( 0.00%) 85.00 ( 0.00%) 85.00 ( 0.00%)
Hmean SeqCreate del 13752.31 ( 0.00%) 12090.23 ( -12.09%) 15304.84 ( 11.29%)
Hmean RandCreate ops 76.00 ( 0.00%) 75.60 ( -0.53%) 77.00 ( 1.32%)
Hmean RandCreate read 96.80 ( 0.00%) 96.80 ( 0.00%) 97.00 ( 0.21%)
Hmean RandCreate del 13233.75 ( 0.00%) 11525.35 ( -12.91%) 14446.61 ( 9.16%)
Jan's series is the baseline and the vanilla kernel is 12% slower where
as this series on top gains another 11%. This is from a different
machine than the data in the changelogs but the detailed data was not
collected as there was no substantial change in v2.
This patch (of 8):
Freeing a list of pages current enables/disables IRQs for each page
freed. This patch splits freeing a list of pages into two operations --
preparing the pages for freeing and the actual freeing. This is a
tradeoff - we're taking two passes of the list to free in exchange for
avoiding multiple enable/disable of IRQs.
sparsetruncate (tiny)
4.14.0-rc4 4.14.0-rc4
janbatch-v1r1 oneirq-v1r1
Min Time 149.00 ( 0.00%) 141.00 ( 5.37%)
1st-qrtle Time 150.00 ( 0.00%) 142.00 ( 5.33%)
2nd-qrtle Time 151.00 ( 0.00%) 142.00 ( 5.96%)
3rd-qrtle Time 151.00 ( 0.00%) 143.00 ( 5.30%)
Max-90% Time 153.00 ( 0.00%) 144.00 ( 5.88%)
Max-95% Time 155.00 ( 0.00%) 147.00 ( 5.16%)
Max-99% Time 201.00 ( 0.00%) 195.00 ( 2.99%)
Max Time 236.00 ( 0.00%) 230.00 ( 2.54%)
Amean Time 152.65 ( 0.00%) 144.37 ( 5.43%)
Stddev Time 9.78 ( 0.00%) 10.44 ( -6.72%)
Coeff Time 6.41 ( 0.00%) 7.23 ( -12.84%)
Best99%Amean Time 152.07 ( 0.00%) 143.72 ( 5.50%)
Best95%Amean Time 150.75 ( 0.00%) 142.37 ( 5.56%)
Best90%Amean Time 150.59 ( 0.00%) 142.19 ( 5.58%)
Best75%Amean Time 150.36 ( 0.00%) 141.92 ( 5.61%)
Best50%Amean Time 150.04 ( 0.00%) 141.69 ( 5.56%)
Best25%Amean Time 149.85 ( 0.00%) 141.38 ( 5.65%)
With a tiny number of files, each file truncated has resident page cache
and it shows that time to truncate is roughtly 5-6% with some minor
jitter.
4.14.0-rc4 4.14.0-rc4
janbatch-v1r1 oneirq-v1r1
Hmean SeqCreate ops 65.27 ( 0.00%) 81.86 ( 25.43%)
Hmean SeqCreate read 39.48 ( 0.00%) 47.44 ( 20.16%)
Hmean SeqCreate del 24963.95 ( 0.00%) 26319.99 ( 5.43%)
Hmean RandCreate ops 65.47 ( 0.00%) 82.01 ( 25.26%)
Hmean RandCreate read 42.04 ( 0.00%) 51.75 ( 23.09%)
Hmean RandCreate del 23377.66 ( 0.00%) 23764.79 ( 1.66%)
As expected, there is a small gain for the delete operation.
[mgorman@techsingularity.net: use page_private and set_page_private helpers]
Link: http://lkml.kernel.org/r/20171018101547.mjycw7zreb66jzpa@techsingularity.net
Link: http://lkml.kernel.org/r/20171018075952.10627-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Jan Kara <jack@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 01:37:37 +00:00
|
|
|
{
|
2022-06-24 12:54:21 +00:00
|
|
|
unsigned long __maybe_unused UP_flags;
|
|
|
|
struct per_cpu_pages *pcp;
|
|
|
|
struct zone *zone;
|
mm, page_alloc: enable/disable IRQs once when freeing a list of pages
Patch series "Follow-up for speed up page cache truncation", v2.
This series is a follow-on for Jan Kara's series "Speed up page cache
truncation" series. We both ended up looking at the same problem but
saw different problems based on the same data. This series builds upon
his work.
A variety of workloads were compared on four separate machines but each
machine showed gains albeit at different levels. Minimally, some of the
differences are due to NUMA where truncating data from a remote node is
slower than a local node. The workloads checked were
o sparse truncate microbenchmark, tiny
o sparse truncate microbenchmark, large
o reaim-io disk workfile
o dbench4 (modified by mmtests to produce more stable results)
o filebench varmail configuration for small memory size
o bonnie, directory operations, working set size 2*RAM
reaim-io, dbench and filebench all showed minor gains. Truncation does
not dominate those workloads but were tested to ensure no other
regressions. They will not be reported further.
The sparse truncate microbench was written by Jan. It creates a number
of files and then times how long it takes to truncate each one. The
"tiny" configuraiton creates a number of files that easily fits in
memory and times how long it takes to truncate files with page cache.
The large configuration uses enough files to have data that is twice the
size of memory and so timings there include truncating page cache and
working set shadow entries in the radix tree.
Patches 1-4 are the most relevant parts of this series. Patches 5-8 are
optional as they are deleting code that is essentially useless but has a
negligible performance impact.
The changelogs have more information on performance but just for bonnie
delete options, the main comparison is
bonnie
4.14.0-rc5 4.14.0-rc5 4.14.0-rc5
jan-v2 vanilla mel-v2
Hmean SeqCreate ops 76.20 ( 0.00%) 75.80 ( -0.53%) 76.80 ( 0.79%)
Hmean SeqCreate read 85.00 ( 0.00%) 85.00 ( 0.00%) 85.00 ( 0.00%)
Hmean SeqCreate del 13752.31 ( 0.00%) 12090.23 ( -12.09%) 15304.84 ( 11.29%)
Hmean RandCreate ops 76.00 ( 0.00%) 75.60 ( -0.53%) 77.00 ( 1.32%)
Hmean RandCreate read 96.80 ( 0.00%) 96.80 ( 0.00%) 97.00 ( 0.21%)
Hmean RandCreate del 13233.75 ( 0.00%) 11525.35 ( -12.91%) 14446.61 ( 9.16%)
Jan's series is the baseline and the vanilla kernel is 12% slower where
as this series on top gains another 11%. This is from a different
machine than the data in the changelogs but the detailed data was not
collected as there was no substantial change in v2.
This patch (of 8):
Freeing a list of pages current enables/disables IRQs for each page
freed. This patch splits freeing a list of pages into two operations --
preparing the pages for freeing and the actual freeing. This is a
tradeoff - we're taking two passes of the list to free in exchange for
avoiding multiple enable/disable of IRQs.
sparsetruncate (tiny)
4.14.0-rc4 4.14.0-rc4
janbatch-v1r1 oneirq-v1r1
Min Time 149.00 ( 0.00%) 141.00 ( 5.37%)
1st-qrtle Time 150.00 ( 0.00%) 142.00 ( 5.33%)
2nd-qrtle Time 151.00 ( 0.00%) 142.00 ( 5.96%)
3rd-qrtle Time 151.00 ( 0.00%) 143.00 ( 5.30%)
Max-90% Time 153.00 ( 0.00%) 144.00 ( 5.88%)
Max-95% Time 155.00 ( 0.00%) 147.00 ( 5.16%)
Max-99% Time 201.00 ( 0.00%) 195.00 ( 2.99%)
Max Time 236.00 ( 0.00%) 230.00 ( 2.54%)
Amean Time 152.65 ( 0.00%) 144.37 ( 5.43%)
Stddev Time 9.78 ( 0.00%) 10.44 ( -6.72%)
Coeff Time 6.41 ( 0.00%) 7.23 ( -12.84%)
Best99%Amean Time 152.07 ( 0.00%) 143.72 ( 5.50%)
Best95%Amean Time 150.75 ( 0.00%) 142.37 ( 5.56%)
Best90%Amean Time 150.59 ( 0.00%) 142.19 ( 5.58%)
Best75%Amean Time 150.36 ( 0.00%) 141.92 ( 5.61%)
Best50%Amean Time 150.04 ( 0.00%) 141.69 ( 5.56%)
Best25%Amean Time 149.85 ( 0.00%) 141.38 ( 5.65%)
With a tiny number of files, each file truncated has resident page cache
and it shows that time to truncate is roughtly 5-6% with some minor
jitter.
4.14.0-rc4 4.14.0-rc4
janbatch-v1r1 oneirq-v1r1
Hmean SeqCreate ops 65.27 ( 0.00%) 81.86 ( 25.43%)
Hmean SeqCreate read 39.48 ( 0.00%) 47.44 ( 20.16%)
Hmean SeqCreate del 24963.95 ( 0.00%) 26319.99 ( 5.43%)
Hmean RandCreate ops 65.47 ( 0.00%) 82.01 ( 25.26%)
Hmean RandCreate read 42.04 ( 0.00%) 51.75 ( 23.09%)
Hmean RandCreate del 23377.66 ( 0.00%) 23764.79 ( 1.66%)
As expected, there is a small gain for the delete operation.
[mgorman@techsingularity.net: use page_private and set_page_private helpers]
Link: http://lkml.kernel.org/r/20171018101547.mjycw7zreb66jzpa@techsingularity.net
Link: http://lkml.kernel.org/r/20171018075952.10627-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Jan Kara <jack@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 01:37:37 +00:00
|
|
|
unsigned long pfn = page_to_pfn(page);
|
2021-06-29 02:42:00 +00:00
|
|
|
int migratetype;
|
mm, page_alloc: enable/disable IRQs once when freeing a list of pages
Patch series "Follow-up for speed up page cache truncation", v2.
This series is a follow-on for Jan Kara's series "Speed up page cache
truncation" series. We both ended up looking at the same problem but
saw different problems based on the same data. This series builds upon
his work.
A variety of workloads were compared on four separate machines but each
machine showed gains albeit at different levels. Minimally, some of the
differences are due to NUMA where truncating data from a remote node is
slower than a local node. The workloads checked were
o sparse truncate microbenchmark, tiny
o sparse truncate microbenchmark, large
o reaim-io disk workfile
o dbench4 (modified by mmtests to produce more stable results)
o filebench varmail configuration for small memory size
o bonnie, directory operations, working set size 2*RAM
reaim-io, dbench and filebench all showed minor gains. Truncation does
not dominate those workloads but were tested to ensure no other
regressions. They will not be reported further.
The sparse truncate microbench was written by Jan. It creates a number
of files and then times how long it takes to truncate each one. The
"tiny" configuraiton creates a number of files that easily fits in
memory and times how long it takes to truncate files with page cache.
The large configuration uses enough files to have data that is twice the
size of memory and so timings there include truncating page cache and
working set shadow entries in the radix tree.
Patches 1-4 are the most relevant parts of this series. Patches 5-8 are
optional as they are deleting code that is essentially useless but has a
negligible performance impact.
The changelogs have more information on performance but just for bonnie
delete options, the main comparison is
bonnie
4.14.0-rc5 4.14.0-rc5 4.14.0-rc5
jan-v2 vanilla mel-v2
Hmean SeqCreate ops 76.20 ( 0.00%) 75.80 ( -0.53%) 76.80 ( 0.79%)
Hmean SeqCreate read 85.00 ( 0.00%) 85.00 ( 0.00%) 85.00 ( 0.00%)
Hmean SeqCreate del 13752.31 ( 0.00%) 12090.23 ( -12.09%) 15304.84 ( 11.29%)
Hmean RandCreate ops 76.00 ( 0.00%) 75.60 ( -0.53%) 77.00 ( 1.32%)
Hmean RandCreate read 96.80 ( 0.00%) 96.80 ( 0.00%) 97.00 ( 0.21%)
Hmean RandCreate del 13233.75 ( 0.00%) 11525.35 ( -12.91%) 14446.61 ( 9.16%)
Jan's series is the baseline and the vanilla kernel is 12% slower where
as this series on top gains another 11%. This is from a different
machine than the data in the changelogs but the detailed data was not
collected as there was no substantial change in v2.
This patch (of 8):
Freeing a list of pages current enables/disables IRQs for each page
freed. This patch splits freeing a list of pages into two operations --
preparing the pages for freeing and the actual freeing. This is a
tradeoff - we're taking two passes of the list to free in exchange for
avoiding multiple enable/disable of IRQs.
sparsetruncate (tiny)
4.14.0-rc4 4.14.0-rc4
janbatch-v1r1 oneirq-v1r1
Min Time 149.00 ( 0.00%) 141.00 ( 5.37%)
1st-qrtle Time 150.00 ( 0.00%) 142.00 ( 5.33%)
2nd-qrtle Time 151.00 ( 0.00%) 142.00 ( 5.96%)
3rd-qrtle Time 151.00 ( 0.00%) 143.00 ( 5.30%)
Max-90% Time 153.00 ( 0.00%) 144.00 ( 5.88%)
Max-95% Time 155.00 ( 0.00%) 147.00 ( 5.16%)
Max-99% Time 201.00 ( 0.00%) 195.00 ( 2.99%)
Max Time 236.00 ( 0.00%) 230.00 ( 2.54%)
Amean Time 152.65 ( 0.00%) 144.37 ( 5.43%)
Stddev Time 9.78 ( 0.00%) 10.44 ( -6.72%)
Coeff Time 6.41 ( 0.00%) 7.23 ( -12.84%)
Best99%Amean Time 152.07 ( 0.00%) 143.72 ( 5.50%)
Best95%Amean Time 150.75 ( 0.00%) 142.37 ( 5.56%)
Best90%Amean Time 150.59 ( 0.00%) 142.19 ( 5.58%)
Best75%Amean Time 150.36 ( 0.00%) 141.92 ( 5.61%)
Best50%Amean Time 150.04 ( 0.00%) 141.69 ( 5.56%)
Best25%Amean Time 149.85 ( 0.00%) 141.38 ( 5.65%)
With a tiny number of files, each file truncated has resident page cache
and it shows that time to truncate is roughtly 5-6% with some minor
jitter.
4.14.0-rc4 4.14.0-rc4
janbatch-v1r1 oneirq-v1r1
Hmean SeqCreate ops 65.27 ( 0.00%) 81.86 ( 25.43%)
Hmean SeqCreate read 39.48 ( 0.00%) 47.44 ( 20.16%)
Hmean SeqCreate del 24963.95 ( 0.00%) 26319.99 ( 5.43%)
Hmean RandCreate ops 65.47 ( 0.00%) 82.01 ( 25.26%)
Hmean RandCreate read 42.04 ( 0.00%) 51.75 ( 23.09%)
Hmean RandCreate del 23377.66 ( 0.00%) 23764.79 ( 1.66%)
As expected, there is a small gain for the delete operation.
[mgorman@techsingularity.net: use page_private and set_page_private helpers]
Link: http://lkml.kernel.org/r/20171018101547.mjycw7zreb66jzpa@techsingularity.net
Link: http://lkml.kernel.org/r/20171018075952.10627-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Jan Kara <jack@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 01:37:37 +00:00
|
|
|
|
2021-06-29 02:43:08 +00:00
|
|
|
if (!free_unref_page_prepare(page, pfn, order))
|
mm, page_alloc: enable/disable IRQs once when freeing a list of pages
Patch series "Follow-up for speed up page cache truncation", v2.
This series is a follow-on for Jan Kara's series "Speed up page cache
truncation" series. We both ended up looking at the same problem but
saw different problems based on the same data. This series builds upon
his work.
A variety of workloads were compared on four separate machines but each
machine showed gains albeit at different levels. Minimally, some of the
differences are due to NUMA where truncating data from a remote node is
slower than a local node. The workloads checked were
o sparse truncate microbenchmark, tiny
o sparse truncate microbenchmark, large
o reaim-io disk workfile
o dbench4 (modified by mmtests to produce more stable results)
o filebench varmail configuration for small memory size
o bonnie, directory operations, working set size 2*RAM
reaim-io, dbench and filebench all showed minor gains. Truncation does
not dominate those workloads but were tested to ensure no other
regressions. They will not be reported further.
The sparse truncate microbench was written by Jan. It creates a number
of files and then times how long it takes to truncate each one. The
"tiny" configuraiton creates a number of files that easily fits in
memory and times how long it takes to truncate files with page cache.
The large configuration uses enough files to have data that is twice the
size of memory and so timings there include truncating page cache and
working set shadow entries in the radix tree.
Patches 1-4 are the most relevant parts of this series. Patches 5-8 are
optional as they are deleting code that is essentially useless but has a
negligible performance impact.
The changelogs have more information on performance but just for bonnie
delete options, the main comparison is
bonnie
4.14.0-rc5 4.14.0-rc5 4.14.0-rc5
jan-v2 vanilla mel-v2
Hmean SeqCreate ops 76.20 ( 0.00%) 75.80 ( -0.53%) 76.80 ( 0.79%)
Hmean SeqCreate read 85.00 ( 0.00%) 85.00 ( 0.00%) 85.00 ( 0.00%)
Hmean SeqCreate del 13752.31 ( 0.00%) 12090.23 ( -12.09%) 15304.84 ( 11.29%)
Hmean RandCreate ops 76.00 ( 0.00%) 75.60 ( -0.53%) 77.00 ( 1.32%)
Hmean RandCreate read 96.80 ( 0.00%) 96.80 ( 0.00%) 97.00 ( 0.21%)
Hmean RandCreate del 13233.75 ( 0.00%) 11525.35 ( -12.91%) 14446.61 ( 9.16%)
Jan's series is the baseline and the vanilla kernel is 12% slower where
as this series on top gains another 11%. This is from a different
machine than the data in the changelogs but the detailed data was not
collected as there was no substantial change in v2.
This patch (of 8):
Freeing a list of pages current enables/disables IRQs for each page
freed. This patch splits freeing a list of pages into two operations --
preparing the pages for freeing and the actual freeing. This is a
tradeoff - we're taking two passes of the list to free in exchange for
avoiding multiple enable/disable of IRQs.
sparsetruncate (tiny)
4.14.0-rc4 4.14.0-rc4
janbatch-v1r1 oneirq-v1r1
Min Time 149.00 ( 0.00%) 141.00 ( 5.37%)
1st-qrtle Time 150.00 ( 0.00%) 142.00 ( 5.33%)
2nd-qrtle Time 151.00 ( 0.00%) 142.00 ( 5.96%)
3rd-qrtle Time 151.00 ( 0.00%) 143.00 ( 5.30%)
Max-90% Time 153.00 ( 0.00%) 144.00 ( 5.88%)
Max-95% Time 155.00 ( 0.00%) 147.00 ( 5.16%)
Max-99% Time 201.00 ( 0.00%) 195.00 ( 2.99%)
Max Time 236.00 ( 0.00%) 230.00 ( 2.54%)
Amean Time 152.65 ( 0.00%) 144.37 ( 5.43%)
Stddev Time 9.78 ( 0.00%) 10.44 ( -6.72%)
Coeff Time 6.41 ( 0.00%) 7.23 ( -12.84%)
Best99%Amean Time 152.07 ( 0.00%) 143.72 ( 5.50%)
Best95%Amean Time 150.75 ( 0.00%) 142.37 ( 5.56%)
Best90%Amean Time 150.59 ( 0.00%) 142.19 ( 5.58%)
Best75%Amean Time 150.36 ( 0.00%) 141.92 ( 5.61%)
Best50%Amean Time 150.04 ( 0.00%) 141.69 ( 5.56%)
Best25%Amean Time 149.85 ( 0.00%) 141.38 ( 5.65%)
With a tiny number of files, each file truncated has resident page cache
and it shows that time to truncate is roughtly 5-6% with some minor
jitter.
4.14.0-rc4 4.14.0-rc4
janbatch-v1r1 oneirq-v1r1
Hmean SeqCreate ops 65.27 ( 0.00%) 81.86 ( 25.43%)
Hmean SeqCreate read 39.48 ( 0.00%) 47.44 ( 20.16%)
Hmean SeqCreate del 24963.95 ( 0.00%) 26319.99 ( 5.43%)
Hmean RandCreate ops 65.47 ( 0.00%) 82.01 ( 25.26%)
Hmean RandCreate read 42.04 ( 0.00%) 51.75 ( 23.09%)
Hmean RandCreate del 23377.66 ( 0.00%) 23764.79 ( 1.66%)
As expected, there is a small gain for the delete operation.
[mgorman@techsingularity.net: use page_private and set_page_private helpers]
Link: http://lkml.kernel.org/r/20171018101547.mjycw7zreb66jzpa@techsingularity.net
Link: http://lkml.kernel.org/r/20171018075952.10627-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Jan Kara <jack@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 01:37:37 +00:00
|
|
|
return;
|
2009-06-16 22:32:08 +00:00
|
|
|
|
page-allocator: split per-cpu list into one-list-per-migrate-type
The following two patches remove searching in the page allocator fast-path
by maintaining multiple free-lists in the per-cpu structure. At the time
the search was introduced, increasing the per-cpu structures would waste a
lot of memory as per-cpu structures were statically allocated at
compile-time. This is no longer the case.
The patches are as follows. They are based on mmotm-2009-08-27.
Patch 1 adds multiple lists to struct per_cpu_pages, one per
migratetype that can be stored on the PCP lists.
Patch 2 notes that the pcpu drain path check empty lists multiple times. The
patch reduces the number of checks by maintaining a count of free
lists encountered. Lists containing pages will then free multiple
pages in batch
The patches were tested with kernbench, netperf udp/tcp, hackbench and
sysbench. The netperf tests were not bound to any CPU in particular and
were run such that the results should be 99% confidence that the reported
results are within 1% of the estimated mean. sysbench was run with a
postgres background and read-only tests. Similar to netperf, it was run
multiple times so that it's 99% confidence results are within 1%. The
patches were tested on x86, x86-64 and ppc64 as
x86: Intel Pentium D 3GHz with 8G RAM (no-brand machine)
kernbench - No significant difference, variance well within noise
netperf-udp - 1.34% to 2.28% gain
netperf-tcp - 0.45% to 1.22% gain
hackbench - Small variances, very close to noise
sysbench - Very small gains
x86-64: AMD Phenom 9950 1.3GHz with 8G RAM (no-brand machine)
kernbench - No significant difference, variance well within noise
netperf-udp - 1.83% to 10.42% gains
netperf-tcp - No conclusive until buffer >= PAGE_SIZE
4096 +15.83%
8192 + 0.34% (not significant)
16384 + 1%
hackbench - Small gains, very close to noise
sysbench - 0.79% to 1.6% gain
ppc64: PPC970MP 2.5GHz with 10GB RAM (it's a terrasoft powerstation)
kernbench - No significant difference, variance well within noise
netperf-udp - 2-3% gain for almost all buffer sizes tested
netperf-tcp - losses on small buffers, gains on larger buffers
possibly indicates some bad caching effect.
hackbench - No significant difference
sysbench - 2-4% gain
This patch:
Currently the per-cpu page allocator searches the PCP list for pages of
the correct migrate-type to reduce the possibility of pages being
inappropriate placed from a fragmentation perspective. This search is
potentially expensive in a fast-path and undesirable. Splitting the
per-cpu list into multiple lists increases the size of a per-cpu structure
and this was potentially a major problem at the time the search was
introduced. These problem has been mitigated as now only the necessary
number of structures is allocated for the running system.
This patch replaces a list search in the per-cpu allocator with one list
per migrate type. The potential snag with this approach is when bulk
freeing pages. We round-robin free pages based on migrate type which has
little bearing on the cache hotness of the page and potentially checks
empty lists repeatedly in the event the majority of PCP pages are of one
type.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Nick Piggin <npiggin@suse.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 00:03:19 +00:00
|
|
|
/*
|
|
|
|
* We only track unmovable, reclaimable and movable on pcp lists.
|
2021-06-29 02:42:00 +00:00
|
|
|
* Place ISOLATE pages on the isolated list because they are being
|
2017-05-03 21:52:52 +00:00
|
|
|
* offlined but treat HIGHATOMIC as movable pages so we can get those
|
page-allocator: split per-cpu list into one-list-per-migrate-type
The following two patches remove searching in the page allocator fast-path
by maintaining multiple free-lists in the per-cpu structure. At the time
the search was introduced, increasing the per-cpu structures would waste a
lot of memory as per-cpu structures were statically allocated at
compile-time. This is no longer the case.
The patches are as follows. They are based on mmotm-2009-08-27.
Patch 1 adds multiple lists to struct per_cpu_pages, one per
migratetype that can be stored on the PCP lists.
Patch 2 notes that the pcpu drain path check empty lists multiple times. The
patch reduces the number of checks by maintaining a count of free
lists encountered. Lists containing pages will then free multiple
pages in batch
The patches were tested with kernbench, netperf udp/tcp, hackbench and
sysbench. The netperf tests were not bound to any CPU in particular and
were run such that the results should be 99% confidence that the reported
results are within 1% of the estimated mean. sysbench was run with a
postgres background and read-only tests. Similar to netperf, it was run
multiple times so that it's 99% confidence results are within 1%. The
patches were tested on x86, x86-64 and ppc64 as
x86: Intel Pentium D 3GHz with 8G RAM (no-brand machine)
kernbench - No significant difference, variance well within noise
netperf-udp - 1.34% to 2.28% gain
netperf-tcp - 0.45% to 1.22% gain
hackbench - Small variances, very close to noise
sysbench - Very small gains
x86-64: AMD Phenom 9950 1.3GHz with 8G RAM (no-brand machine)
kernbench - No significant difference, variance well within noise
netperf-udp - 1.83% to 10.42% gains
netperf-tcp - No conclusive until buffer >= PAGE_SIZE
4096 +15.83%
8192 + 0.34% (not significant)
16384 + 1%
hackbench - Small gains, very close to noise
sysbench - 0.79% to 1.6% gain
ppc64: PPC970MP 2.5GHz with 10GB RAM (it's a terrasoft powerstation)
kernbench - No significant difference, variance well within noise
netperf-udp - 2-3% gain for almost all buffer sizes tested
netperf-tcp - losses on small buffers, gains on larger buffers
possibly indicates some bad caching effect.
hackbench - No significant difference
sysbench - 2-4% gain
This patch:
Currently the per-cpu page allocator searches the PCP list for pages of
the correct migrate-type to reduce the possibility of pages being
inappropriate placed from a fragmentation perspective. This search is
potentially expensive in a fast-path and undesirable. Splitting the
per-cpu list into multiple lists increases the size of a per-cpu structure
and this was potentially a major problem at the time the search was
introduced. These problem has been mitigated as now only the necessary
number of structures is allocated for the running system.
This patch replaces a list search in the per-cpu allocator with one list
per migrate type. The potential snag with this approach is when bulk
freeing pages. We round-robin free pages based on migrate type which has
little bearing on the cache hotness of the page and potentially checks
empty lists repeatedly in the event the majority of PCP pages are of one
type.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Nick Piggin <npiggin@suse.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 00:03:19 +00:00
|
|
|
* areas back if necessary. Otherwise, we may have to free
|
|
|
|
* excessively into the page allocator
|
|
|
|
*/
|
2021-06-29 02:42:00 +00:00
|
|
|
migratetype = get_pcppage_migratetype(page);
|
|
|
|
if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
|
2013-02-23 00:33:58 +00:00
|
|
|
if (unlikely(is_migrate_isolate(migratetype))) {
|
2021-06-29 02:43:08 +00:00
|
|
|
free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
|
mm, page_alloc: enable/disable IRQs once when freeing a list of pages
Patch series "Follow-up for speed up page cache truncation", v2.
This series is a follow-on for Jan Kara's series "Speed up page cache
truncation" series. We both ended up looking at the same problem but
saw different problems based on the same data. This series builds upon
his work.
A variety of workloads were compared on four separate machines but each
machine showed gains albeit at different levels. Minimally, some of the
differences are due to NUMA where truncating data from a remote node is
slower than a local node. The workloads checked were
o sparse truncate microbenchmark, tiny
o sparse truncate microbenchmark, large
o reaim-io disk workfile
o dbench4 (modified by mmtests to produce more stable results)
o filebench varmail configuration for small memory size
o bonnie, directory operations, working set size 2*RAM
reaim-io, dbench and filebench all showed minor gains. Truncation does
not dominate those workloads but were tested to ensure no other
regressions. They will not be reported further.
The sparse truncate microbench was written by Jan. It creates a number
of files and then times how long it takes to truncate each one. The
"tiny" configuraiton creates a number of files that easily fits in
memory and times how long it takes to truncate files with page cache.
The large configuration uses enough files to have data that is twice the
size of memory and so timings there include truncating page cache and
working set shadow entries in the radix tree.
Patches 1-4 are the most relevant parts of this series. Patches 5-8 are
optional as they are deleting code that is essentially useless but has a
negligible performance impact.
The changelogs have more information on performance but just for bonnie
delete options, the main comparison is
bonnie
4.14.0-rc5 4.14.0-rc5 4.14.0-rc5
jan-v2 vanilla mel-v2
Hmean SeqCreate ops 76.20 ( 0.00%) 75.80 ( -0.53%) 76.80 ( 0.79%)
Hmean SeqCreate read 85.00 ( 0.00%) 85.00 ( 0.00%) 85.00 ( 0.00%)
Hmean SeqCreate del 13752.31 ( 0.00%) 12090.23 ( -12.09%) 15304.84 ( 11.29%)
Hmean RandCreate ops 76.00 ( 0.00%) 75.60 ( -0.53%) 77.00 ( 1.32%)
Hmean RandCreate read 96.80 ( 0.00%) 96.80 ( 0.00%) 97.00 ( 0.21%)
Hmean RandCreate del 13233.75 ( 0.00%) 11525.35 ( -12.91%) 14446.61 ( 9.16%)
Jan's series is the baseline and the vanilla kernel is 12% slower where
as this series on top gains another 11%. This is from a different
machine than the data in the changelogs but the detailed data was not
collected as there was no substantial change in v2.
This patch (of 8):
Freeing a list of pages current enables/disables IRQs for each page
freed. This patch splits freeing a list of pages into two operations --
preparing the pages for freeing and the actual freeing. This is a
tradeoff - we're taking two passes of the list to free in exchange for
avoiding multiple enable/disable of IRQs.
sparsetruncate (tiny)
4.14.0-rc4 4.14.0-rc4
janbatch-v1r1 oneirq-v1r1
Min Time 149.00 ( 0.00%) 141.00 ( 5.37%)
1st-qrtle Time 150.00 ( 0.00%) 142.00 ( 5.33%)
2nd-qrtle Time 151.00 ( 0.00%) 142.00 ( 5.96%)
3rd-qrtle Time 151.00 ( 0.00%) 143.00 ( 5.30%)
Max-90% Time 153.00 ( 0.00%) 144.00 ( 5.88%)
Max-95% Time 155.00 ( 0.00%) 147.00 ( 5.16%)
Max-99% Time 201.00 ( 0.00%) 195.00 ( 2.99%)
Max Time 236.00 ( 0.00%) 230.00 ( 2.54%)
Amean Time 152.65 ( 0.00%) 144.37 ( 5.43%)
Stddev Time 9.78 ( 0.00%) 10.44 ( -6.72%)
Coeff Time 6.41 ( 0.00%) 7.23 ( -12.84%)
Best99%Amean Time 152.07 ( 0.00%) 143.72 ( 5.50%)
Best95%Amean Time 150.75 ( 0.00%) 142.37 ( 5.56%)
Best90%Amean Time 150.59 ( 0.00%) 142.19 ( 5.58%)
Best75%Amean Time 150.36 ( 0.00%) 141.92 ( 5.61%)
Best50%Amean Time 150.04 ( 0.00%) 141.69 ( 5.56%)
Best25%Amean Time 149.85 ( 0.00%) 141.38 ( 5.65%)
With a tiny number of files, each file truncated has resident page cache
and it shows that time to truncate is roughtly 5-6% with some minor
jitter.
4.14.0-rc4 4.14.0-rc4
janbatch-v1r1 oneirq-v1r1
Hmean SeqCreate ops 65.27 ( 0.00%) 81.86 ( 25.43%)
Hmean SeqCreate read 39.48 ( 0.00%) 47.44 ( 20.16%)
Hmean SeqCreate del 24963.95 ( 0.00%) 26319.99 ( 5.43%)
Hmean RandCreate ops 65.47 ( 0.00%) 82.01 ( 25.26%)
Hmean RandCreate read 42.04 ( 0.00%) 51.75 ( 23.09%)
Hmean RandCreate del 23377.66 ( 0.00%) 23764.79 ( 1.66%)
As expected, there is a small gain for the delete operation.
[mgorman@techsingularity.net: use page_private and set_page_private helpers]
Link: http://lkml.kernel.org/r/20171018101547.mjycw7zreb66jzpa@techsingularity.net
Link: http://lkml.kernel.org/r/20171018075952.10627-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Jan Kara <jack@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 01:37:37 +00:00
|
|
|
return;
|
page-allocator: split per-cpu list into one-list-per-migrate-type
The following two patches remove searching in the page allocator fast-path
by maintaining multiple free-lists in the per-cpu structure. At the time
the search was introduced, increasing the per-cpu structures would waste a
lot of memory as per-cpu structures were statically allocated at
compile-time. This is no longer the case.
The patches are as follows. They are based on mmotm-2009-08-27.
Patch 1 adds multiple lists to struct per_cpu_pages, one per
migratetype that can be stored on the PCP lists.
Patch 2 notes that the pcpu drain path check empty lists multiple times. The
patch reduces the number of checks by maintaining a count of free
lists encountered. Lists containing pages will then free multiple
pages in batch
The patches were tested with kernbench, netperf udp/tcp, hackbench and
sysbench. The netperf tests were not bound to any CPU in particular and
were run such that the results should be 99% confidence that the reported
results are within 1% of the estimated mean. sysbench was run with a
postgres background and read-only tests. Similar to netperf, it was run
multiple times so that it's 99% confidence results are within 1%. The
patches were tested on x86, x86-64 and ppc64 as
x86: Intel Pentium D 3GHz with 8G RAM (no-brand machine)
kernbench - No significant difference, variance well within noise
netperf-udp - 1.34% to 2.28% gain
netperf-tcp - 0.45% to 1.22% gain
hackbench - Small variances, very close to noise
sysbench - Very small gains
x86-64: AMD Phenom 9950 1.3GHz with 8G RAM (no-brand machine)
kernbench - No significant difference, variance well within noise
netperf-udp - 1.83% to 10.42% gains
netperf-tcp - No conclusive until buffer >= PAGE_SIZE
4096 +15.83%
8192 + 0.34% (not significant)
16384 + 1%
hackbench - Small gains, very close to noise
sysbench - 0.79% to 1.6% gain
ppc64: PPC970MP 2.5GHz with 10GB RAM (it's a terrasoft powerstation)
kernbench - No significant difference, variance well within noise
netperf-udp - 2-3% gain for almost all buffer sizes tested
netperf-tcp - losses on small buffers, gains on larger buffers
possibly indicates some bad caching effect.
hackbench - No significant difference
sysbench - 2-4% gain
This patch:
Currently the per-cpu page allocator searches the PCP list for pages of
the correct migrate-type to reduce the possibility of pages being
inappropriate placed from a fragmentation perspective. This search is
potentially expensive in a fast-path and undesirable. Splitting the
per-cpu list into multiple lists increases the size of a per-cpu structure
and this was potentially a major problem at the time the search was
introduced. These problem has been mitigated as now only the necessary
number of structures is allocated for the running system.
This patch replaces a list search in the per-cpu allocator with one list
per migrate type. The potential snag with this approach is when bulk
freeing pages. We round-robin free pages based on migrate type which has
little bearing on the cache hotness of the page and potentially checks
empty lists repeatedly in the event the majority of PCP pages are of one
type.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Nick Piggin <npiggin@suse.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 00:03:19 +00:00
|
|
|
}
|
|
|
|
migratetype = MIGRATE_MOVABLE;
|
|
|
|
}
|
|
|
|
|
2022-06-24 12:54:21 +00:00
|
|
|
zone = page_zone(page);
|
|
|
|
pcp_trylock_prepare(UP_flags);
|
2022-11-18 10:17:14 +00:00
|
|
|
pcp = pcp_spin_trylock(zone->per_cpu_pageset);
|
2022-06-24 12:54:23 +00:00
|
|
|
if (pcp) {
|
2022-06-24 12:54:21 +00:00
|
|
|
free_unref_page_commit(zone, pcp, page, migratetype, order);
|
2022-11-18 10:17:14 +00:00
|
|
|
pcp_spin_unlock(pcp);
|
2022-06-24 12:54:21 +00:00
|
|
|
} else {
|
|
|
|
free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
|
|
|
|
}
|
|
|
|
pcp_trylock_finish(UP_flags);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2012-01-10 23:07:04 +00:00
|
|
|
/*
|
|
|
|
* Free a list of 0-order pages
|
|
|
|
*/
|
2017-11-16 01:37:59 +00:00
|
|
|
void free_unref_page_list(struct list_head *list)
|
2012-01-10 23:07:04 +00:00
|
|
|
{
|
2022-11-18 10:17:14 +00:00
|
|
|
unsigned long __maybe_unused UP_flags;
|
2012-01-10 23:07:04 +00:00
|
|
|
struct page *page, *next;
|
2022-06-24 12:54:21 +00:00
|
|
|
struct per_cpu_pages *pcp = NULL;
|
|
|
|
struct zone *locked_zone = NULL;
|
2017-12-14 23:32:55 +00:00
|
|
|
int batch_count = 0;
|
2021-06-29 02:42:00 +00:00
|
|
|
int migratetype;
|
mm, page_alloc: enable/disable IRQs once when freeing a list of pages
Patch series "Follow-up for speed up page cache truncation", v2.
This series is a follow-on for Jan Kara's series "Speed up page cache
truncation" series. We both ended up looking at the same problem but
saw different problems based on the same data. This series builds upon
his work.
A variety of workloads were compared on four separate machines but each
machine showed gains albeit at different levels. Minimally, some of the
differences are due to NUMA where truncating data from a remote node is
slower than a local node. The workloads checked were
o sparse truncate microbenchmark, tiny
o sparse truncate microbenchmark, large
o reaim-io disk workfile
o dbench4 (modified by mmtests to produce more stable results)
o filebench varmail configuration for small memory size
o bonnie, directory operations, working set size 2*RAM
reaim-io, dbench and filebench all showed minor gains. Truncation does
not dominate those workloads but were tested to ensure no other
regressions. They will not be reported further.
The sparse truncate microbench was written by Jan. It creates a number
of files and then times how long it takes to truncate each one. The
"tiny" configuraiton creates a number of files that easily fits in
memory and times how long it takes to truncate files with page cache.
The large configuration uses enough files to have data that is twice the
size of memory and so timings there include truncating page cache and
working set shadow entries in the radix tree.
Patches 1-4 are the most relevant parts of this series. Patches 5-8 are
optional as they are deleting code that is essentially useless but has a
negligible performance impact.
The changelogs have more information on performance but just for bonnie
delete options, the main comparison is
bonnie
4.14.0-rc5 4.14.0-rc5 4.14.0-rc5
jan-v2 vanilla mel-v2
Hmean SeqCreate ops 76.20 ( 0.00%) 75.80 ( -0.53%) 76.80 ( 0.79%)
Hmean SeqCreate read 85.00 ( 0.00%) 85.00 ( 0.00%) 85.00 ( 0.00%)
Hmean SeqCreate del 13752.31 ( 0.00%) 12090.23 ( -12.09%) 15304.84 ( 11.29%)
Hmean RandCreate ops 76.00 ( 0.00%) 75.60 ( -0.53%) 77.00 ( 1.32%)
Hmean RandCreate read 96.80 ( 0.00%) 96.80 ( 0.00%) 97.00 ( 0.21%)
Hmean RandCreate del 13233.75 ( 0.00%) 11525.35 ( -12.91%) 14446.61 ( 9.16%)
Jan's series is the baseline and the vanilla kernel is 12% slower where
as this series on top gains another 11%. This is from a different
machine than the data in the changelogs but the detailed data was not
collected as there was no substantial change in v2.
This patch (of 8):
Freeing a list of pages current enables/disables IRQs for each page
freed. This patch splits freeing a list of pages into two operations --
preparing the pages for freeing and the actual freeing. This is a
tradeoff - we're taking two passes of the list to free in exchange for
avoiding multiple enable/disable of IRQs.
sparsetruncate (tiny)
4.14.0-rc4 4.14.0-rc4
janbatch-v1r1 oneirq-v1r1
Min Time 149.00 ( 0.00%) 141.00 ( 5.37%)
1st-qrtle Time 150.00 ( 0.00%) 142.00 ( 5.33%)
2nd-qrtle Time 151.00 ( 0.00%) 142.00 ( 5.96%)
3rd-qrtle Time 151.00 ( 0.00%) 143.00 ( 5.30%)
Max-90% Time 153.00 ( 0.00%) 144.00 ( 5.88%)
Max-95% Time 155.00 ( 0.00%) 147.00 ( 5.16%)
Max-99% Time 201.00 ( 0.00%) 195.00 ( 2.99%)
Max Time 236.00 ( 0.00%) 230.00 ( 2.54%)
Amean Time 152.65 ( 0.00%) 144.37 ( 5.43%)
Stddev Time 9.78 ( 0.00%) 10.44 ( -6.72%)
Coeff Time 6.41 ( 0.00%) 7.23 ( -12.84%)
Best99%Amean Time 152.07 ( 0.00%) 143.72 ( 5.50%)
Best95%Amean Time 150.75 ( 0.00%) 142.37 ( 5.56%)
Best90%Amean Time 150.59 ( 0.00%) 142.19 ( 5.58%)
Best75%Amean Time 150.36 ( 0.00%) 141.92 ( 5.61%)
Best50%Amean Time 150.04 ( 0.00%) 141.69 ( 5.56%)
Best25%Amean Time 149.85 ( 0.00%) 141.38 ( 5.65%)
With a tiny number of files, each file truncated has resident page cache
and it shows that time to truncate is roughtly 5-6% with some minor
jitter.
4.14.0-rc4 4.14.0-rc4
janbatch-v1r1 oneirq-v1r1
Hmean SeqCreate ops 65.27 ( 0.00%) 81.86 ( 25.43%)
Hmean SeqCreate read 39.48 ( 0.00%) 47.44 ( 20.16%)
Hmean SeqCreate del 24963.95 ( 0.00%) 26319.99 ( 5.43%)
Hmean RandCreate ops 65.47 ( 0.00%) 82.01 ( 25.26%)
Hmean RandCreate read 42.04 ( 0.00%) 51.75 ( 23.09%)
Hmean RandCreate del 23377.66 ( 0.00%) 23764.79 ( 1.66%)
As expected, there is a small gain for the delete operation.
[mgorman@techsingularity.net: use page_private and set_page_private helpers]
Link: http://lkml.kernel.org/r/20171018101547.mjycw7zreb66jzpa@techsingularity.net
Link: http://lkml.kernel.org/r/20171018075952.10627-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Jan Kara <jack@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 01:37:37 +00:00
|
|
|
|
|
|
|
/* Prepare pages for freeing */
|
|
|
|
list_for_each_entry_safe(page, next, list, lru) {
|
2022-03-22 21:43:14 +00:00
|
|
|
unsigned long pfn = page_to_pfn(page);
|
2021-09-09 01:10:11 +00:00
|
|
|
if (!free_unref_page_prepare(page, pfn, 0)) {
|
mm, page_alloc: enable/disable IRQs once when freeing a list of pages
Patch series "Follow-up for speed up page cache truncation", v2.
This series is a follow-on for Jan Kara's series "Speed up page cache
truncation" series. We both ended up looking at the same problem but
saw different problems based on the same data. This series builds upon
his work.
A variety of workloads were compared on four separate machines but each
machine showed gains albeit at different levels. Minimally, some of the
differences are due to NUMA where truncating data from a remote node is
slower than a local node. The workloads checked were
o sparse truncate microbenchmark, tiny
o sparse truncate microbenchmark, large
o reaim-io disk workfile
o dbench4 (modified by mmtests to produce more stable results)
o filebench varmail configuration for small memory size
o bonnie, directory operations, working set size 2*RAM
reaim-io, dbench and filebench all showed minor gains. Truncation does
not dominate those workloads but were tested to ensure no other
regressions. They will not be reported further.
The sparse truncate microbench was written by Jan. It creates a number
of files and then times how long it takes to truncate each one. The
"tiny" configuraiton creates a number of files that easily fits in
memory and times how long it takes to truncate files with page cache.
The large configuration uses enough files to have data that is twice the
size of memory and so timings there include truncating page cache and
working set shadow entries in the radix tree.
Patches 1-4 are the most relevant parts of this series. Patches 5-8 are
optional as they are deleting code that is essentially useless but has a
negligible performance impact.
The changelogs have more information on performance but just for bonnie
delete options, the main comparison is
bonnie
4.14.0-rc5 4.14.0-rc5 4.14.0-rc5
jan-v2 vanilla mel-v2
Hmean SeqCreate ops 76.20 ( 0.00%) 75.80 ( -0.53%) 76.80 ( 0.79%)
Hmean SeqCreate read 85.00 ( 0.00%) 85.00 ( 0.00%) 85.00 ( 0.00%)
Hmean SeqCreate del 13752.31 ( 0.00%) 12090.23 ( -12.09%) 15304.84 ( 11.29%)
Hmean RandCreate ops 76.00 ( 0.00%) 75.60 ( -0.53%) 77.00 ( 1.32%)
Hmean RandCreate read 96.80 ( 0.00%) 96.80 ( 0.00%) 97.00 ( 0.21%)
Hmean RandCreate del 13233.75 ( 0.00%) 11525.35 ( -12.91%) 14446.61 ( 9.16%)
Jan's series is the baseline and the vanilla kernel is 12% slower where
as this series on top gains another 11%. This is from a different
machine than the data in the changelogs but the detailed data was not
collected as there was no substantial change in v2.
This patch (of 8):
Freeing a list of pages current enables/disables IRQs for each page
freed. This patch splits freeing a list of pages into two operations --
preparing the pages for freeing and the actual freeing. This is a
tradeoff - we're taking two passes of the list to free in exchange for
avoiding multiple enable/disable of IRQs.
sparsetruncate (tiny)
4.14.0-rc4 4.14.0-rc4
janbatch-v1r1 oneirq-v1r1
Min Time 149.00 ( 0.00%) 141.00 ( 5.37%)
1st-qrtle Time 150.00 ( 0.00%) 142.00 ( 5.33%)
2nd-qrtle Time 151.00 ( 0.00%) 142.00 ( 5.96%)
3rd-qrtle Time 151.00 ( 0.00%) 143.00 ( 5.30%)
Max-90% Time 153.00 ( 0.00%) 144.00 ( 5.88%)
Max-95% Time 155.00 ( 0.00%) 147.00 ( 5.16%)
Max-99% Time 201.00 ( 0.00%) 195.00 ( 2.99%)
Max Time 236.00 ( 0.00%) 230.00 ( 2.54%)
Amean Time 152.65 ( 0.00%) 144.37 ( 5.43%)
Stddev Time 9.78 ( 0.00%) 10.44 ( -6.72%)
Coeff Time 6.41 ( 0.00%) 7.23 ( -12.84%)
Best99%Amean Time 152.07 ( 0.00%) 143.72 ( 5.50%)
Best95%Amean Time 150.75 ( 0.00%) 142.37 ( 5.56%)
Best90%Amean Time 150.59 ( 0.00%) 142.19 ( 5.58%)
Best75%Amean Time 150.36 ( 0.00%) 141.92 ( 5.61%)
Best50%Amean Time 150.04 ( 0.00%) 141.69 ( 5.56%)
Best25%Amean Time 149.85 ( 0.00%) 141.38 ( 5.65%)
With a tiny number of files, each file truncated has resident page cache
and it shows that time to truncate is roughtly 5-6% with some minor
jitter.
4.14.0-rc4 4.14.0-rc4
janbatch-v1r1 oneirq-v1r1
Hmean SeqCreate ops 65.27 ( 0.00%) 81.86 ( 25.43%)
Hmean SeqCreate read 39.48 ( 0.00%) 47.44 ( 20.16%)
Hmean SeqCreate del 24963.95 ( 0.00%) 26319.99 ( 5.43%)
Hmean RandCreate ops 65.47 ( 0.00%) 82.01 ( 25.26%)
Hmean RandCreate read 42.04 ( 0.00%) 51.75 ( 23.09%)
Hmean RandCreate del 23377.66 ( 0.00%) 23764.79 ( 1.66%)
As expected, there is a small gain for the delete operation.
[mgorman@techsingularity.net: use page_private and set_page_private helpers]
Link: http://lkml.kernel.org/r/20171018101547.mjycw7zreb66jzpa@techsingularity.net
Link: http://lkml.kernel.org/r/20171018075952.10627-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Jan Kara <jack@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 01:37:37 +00:00
|
|
|
list_del(&page->lru);
|
2021-09-09 01:10:11 +00:00
|
|
|
continue;
|
|
|
|
}
|
2021-06-29 02:42:00 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Free isolated pages directly to the allocator, see
|
|
|
|
* comment in free_unref_page.
|
|
|
|
*/
|
|
|
|
migratetype = get_pcppage_migratetype(page);
|
2021-08-20 02:04:12 +00:00
|
|
|
if (unlikely(is_migrate_isolate(migratetype))) {
|
|
|
|
list_del(&page->lru);
|
|
|
|
free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
|
|
|
|
continue;
|
2021-06-29 02:42:00 +00:00
|
|
|
}
|
mm, page_alloc: enable/disable IRQs once when freeing a list of pages
Patch series "Follow-up for speed up page cache truncation", v2.
This series is a follow-on for Jan Kara's series "Speed up page cache
truncation" series. We both ended up looking at the same problem but
saw different problems based on the same data. This series builds upon
his work.
A variety of workloads were compared on four separate machines but each
machine showed gains albeit at different levels. Minimally, some of the
differences are due to NUMA where truncating data from a remote node is
slower than a local node. The workloads checked were
o sparse truncate microbenchmark, tiny
o sparse truncate microbenchmark, large
o reaim-io disk workfile
o dbench4 (modified by mmtests to produce more stable results)
o filebench varmail configuration for small memory size
o bonnie, directory operations, working set size 2*RAM
reaim-io, dbench and filebench all showed minor gains. Truncation does
not dominate those workloads but were tested to ensure no other
regressions. They will not be reported further.
The sparse truncate microbench was written by Jan. It creates a number
of files and then times how long it takes to truncate each one. The
"tiny" configuraiton creates a number of files that easily fits in
memory and times how long it takes to truncate files with page cache.
The large configuration uses enough files to have data that is twice the
size of memory and so timings there include truncating page cache and
working set shadow entries in the radix tree.
Patches 1-4 are the most relevant parts of this series. Patches 5-8 are
optional as they are deleting code that is essentially useless but has a
negligible performance impact.
The changelogs have more information on performance but just for bonnie
delete options, the main comparison is
bonnie
4.14.0-rc5 4.14.0-rc5 4.14.0-rc5
jan-v2 vanilla mel-v2
Hmean SeqCreate ops 76.20 ( 0.00%) 75.80 ( -0.53%) 76.80 ( 0.79%)
Hmean SeqCreate read 85.00 ( 0.00%) 85.00 ( 0.00%) 85.00 ( 0.00%)
Hmean SeqCreate del 13752.31 ( 0.00%) 12090.23 ( -12.09%) 15304.84 ( 11.29%)
Hmean RandCreate ops 76.00 ( 0.00%) 75.60 ( -0.53%) 77.00 ( 1.32%)
Hmean RandCreate read 96.80 ( 0.00%) 96.80 ( 0.00%) 97.00 ( 0.21%)
Hmean RandCreate del 13233.75 ( 0.00%) 11525.35 ( -12.91%) 14446.61 ( 9.16%)
Jan's series is the baseline and the vanilla kernel is 12% slower where
as this series on top gains another 11%. This is from a different
machine than the data in the changelogs but the detailed data was not
collected as there was no substantial change in v2.
This patch (of 8):
Freeing a list of pages current enables/disables IRQs for each page
freed. This patch splits freeing a list of pages into two operations --
preparing the pages for freeing and the actual freeing. This is a
tradeoff - we're taking two passes of the list to free in exchange for
avoiding multiple enable/disable of IRQs.
sparsetruncate (tiny)
4.14.0-rc4 4.14.0-rc4
janbatch-v1r1 oneirq-v1r1
Min Time 149.00 ( 0.00%) 141.00 ( 5.37%)
1st-qrtle Time 150.00 ( 0.00%) 142.00 ( 5.33%)
2nd-qrtle Time 151.00 ( 0.00%) 142.00 ( 5.96%)
3rd-qrtle Time 151.00 ( 0.00%) 143.00 ( 5.30%)
Max-90% Time 153.00 ( 0.00%) 144.00 ( 5.88%)
Max-95% Time 155.00 ( 0.00%) 147.00 ( 5.16%)
Max-99% Time 201.00 ( 0.00%) 195.00 ( 2.99%)
Max Time 236.00 ( 0.00%) 230.00 ( 2.54%)
Amean Time 152.65 ( 0.00%) 144.37 ( 5.43%)
Stddev Time 9.78 ( 0.00%) 10.44 ( -6.72%)
Coeff Time 6.41 ( 0.00%) 7.23 ( -12.84%)
Best99%Amean Time 152.07 ( 0.00%) 143.72 ( 5.50%)
Best95%Amean Time 150.75 ( 0.00%) 142.37 ( 5.56%)
Best90%Amean Time 150.59 ( 0.00%) 142.19 ( 5.58%)
Best75%Amean Time 150.36 ( 0.00%) 141.92 ( 5.61%)
Best50%Amean Time 150.04 ( 0.00%) 141.69 ( 5.56%)
Best25%Amean Time 149.85 ( 0.00%) 141.38 ( 5.65%)
With a tiny number of files, each file truncated has resident page cache
and it shows that time to truncate is roughtly 5-6% with some minor
jitter.
4.14.0-rc4 4.14.0-rc4
janbatch-v1r1 oneirq-v1r1
Hmean SeqCreate ops 65.27 ( 0.00%) 81.86 ( 25.43%)
Hmean SeqCreate read 39.48 ( 0.00%) 47.44 ( 20.16%)
Hmean SeqCreate del 24963.95 ( 0.00%) 26319.99 ( 5.43%)
Hmean RandCreate ops 65.47 ( 0.00%) 82.01 ( 25.26%)
Hmean RandCreate read 42.04 ( 0.00%) 51.75 ( 23.09%)
Hmean RandCreate del 23377.66 ( 0.00%) 23764.79 ( 1.66%)
As expected, there is a small gain for the delete operation.
[mgorman@techsingularity.net: use page_private and set_page_private helpers]
Link: http://lkml.kernel.org/r/20171018101547.mjycw7zreb66jzpa@techsingularity.net
Link: http://lkml.kernel.org/r/20171018075952.10627-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Jan Kara <jack@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 01:37:37 +00:00
|
|
|
}
|
2012-01-10 23:07:04 +00:00
|
|
|
|
|
|
|
list_for_each_entry_safe(page, next, list, lru) {
|
2022-06-24 12:54:21 +00:00
|
|
|
struct zone *zone = page_zone(page);
|
|
|
|
|
2022-11-18 10:17:13 +00:00
|
|
|
list_del(&page->lru);
|
2022-11-18 10:17:14 +00:00
|
|
|
migratetype = get_pcppage_migratetype(page);
|
2022-11-18 10:17:13 +00:00
|
|
|
|
2022-11-22 13:12:29 +00:00
|
|
|
/*
|
|
|
|
* Either different zone requiring a different pcp lock or
|
|
|
|
* excessive lock hold times when freeing a large list of
|
|
|
|
* pages.
|
|
|
|
*/
|
|
|
|
if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
|
2022-11-18 10:17:14 +00:00
|
|
|
if (pcp) {
|
|
|
|
pcp_spin_unlock(pcp);
|
|
|
|
pcp_trylock_finish(UP_flags);
|
|
|
|
}
|
2022-06-24 12:54:23 +00:00
|
|
|
|
2022-11-22 13:12:29 +00:00
|
|
|
batch_count = 0;
|
|
|
|
|
2022-11-18 10:17:14 +00:00
|
|
|
/*
|
|
|
|
* trylock is necessary as pages may be getting freed
|
|
|
|
* from IRQ or SoftIRQ context after an IO completion.
|
|
|
|
*/
|
|
|
|
pcp_trylock_prepare(UP_flags);
|
|
|
|
pcp = pcp_spin_trylock(zone->per_cpu_pageset);
|
|
|
|
if (unlikely(!pcp)) {
|
|
|
|
pcp_trylock_finish(UP_flags);
|
|
|
|
free_one_page(zone, page, page_to_pfn(page),
|
|
|
|
0, migratetype, FPI_NONE);
|
|
|
|
locked_zone = NULL;
|
|
|
|
continue;
|
|
|
|
}
|
2022-06-24 12:54:21 +00:00
|
|
|
locked_zone = zone;
|
|
|
|
}
|
|
|
|
|
2021-08-20 02:04:12 +00:00
|
|
|
/*
|
|
|
|
* Non-isolated types over MIGRATE_PCPTYPES get added
|
|
|
|
* to the MIGRATE_MOVABLE pcp list.
|
|
|
|
*/
|
|
|
|
if (unlikely(migratetype >= MIGRATE_PCPTYPES))
|
|
|
|
migratetype = MIGRATE_MOVABLE;
|
|
|
|
|
2017-11-16 01:37:59 +00:00
|
|
|
trace_mm_page_free_batched(page);
|
2022-06-24 12:54:21 +00:00
|
|
|
free_unref_page_commit(zone, pcp, page, migratetype, 0);
|
2022-11-22 13:12:29 +00:00
|
|
|
batch_count++;
|
2012-01-10 23:07:04 +00:00
|
|
|
}
|
2022-06-24 12:54:21 +00:00
|
|
|
|
2022-11-18 10:17:14 +00:00
|
|
|
if (pcp) {
|
|
|
|
pcp_spin_unlock(pcp);
|
|
|
|
pcp_trylock_finish(UP_flags);
|
|
|
|
}
|
2012-01-10 23:07:04 +00:00
|
|
|
}
|
|
|
|
|
2006-03-22 08:08:05 +00:00
|
|
|
/*
|
|
|
|
* split_page takes a non-compound higher-order page, and splits it into
|
|
|
|
* n (1<<order) sub-pages: page[0..n]
|
|
|
|
* Each sub-page must be freed individually.
|
|
|
|
*
|
|
|
|
* Note: this is probably too low level an operation for use in drivers.
|
|
|
|
* Please consult with lkml before using this in your driver.
|
|
|
|
*/
|
|
|
|
void split_page(struct page *page, unsigned int order)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
2014-01-23 23:52:54 +00:00
|
|
|
VM_BUG_ON_PAGE(PageCompound(page), page);
|
|
|
|
VM_BUG_ON_PAGE(!page_count(page), page);
|
2008-11-25 15:55:53 +00:00
|
|
|
|
2016-07-26 22:23:49 +00:00
|
|
|
for (i = 1; i < (1 << order); i++)
|
2006-03-22 08:08:40 +00:00
|
|
|
set_page_refcounted(page + i);
|
2020-10-16 03:05:29 +00:00
|
|
|
split_page_owner(page, 1 << order);
|
2021-03-13 05:08:33 +00:00
|
|
|
split_page_memcg(page, 1 << order);
|
2006-03-22 08:08:05 +00:00
|
|
|
}
|
2013-03-25 22:47:38 +00:00
|
|
|
EXPORT_SYMBOL_GPL(split_page);
|
2006-03-22 08:08:05 +00:00
|
|
|
|
2014-11-13 23:19:21 +00:00
|
|
|
int __isolate_free_page(struct page *page, unsigned int order)
|
2010-05-24 21:32:27 +00:00
|
|
|
{
|
2022-09-01 01:50:43 +00:00
|
|
|
struct zone *zone = page_zone(page);
|
|
|
|
int mt = get_pageblock_migratetype(page);
|
2010-05-24 21:32:27 +00:00
|
|
|
|
2013-02-23 00:33:58 +00:00
|
|
|
if (!is_migrate_isolate(mt)) {
|
2022-09-01 01:50:43 +00:00
|
|
|
unsigned long watermark;
|
2016-10-07 23:58:00 +00:00
|
|
|
/*
|
|
|
|
* Obey watermarks as if the page was being allocated. We can
|
|
|
|
* emulate a high-order watermark check with a raised order-0
|
|
|
|
* watermark, because we already know our high-order page
|
|
|
|
* exists.
|
|
|
|
*/
|
2019-03-05 23:44:50 +00:00
|
|
|
watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
|
2018-05-23 01:18:21 +00:00
|
|
|
if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
|
2012-12-12 00:02:57 +00:00
|
|
|
return 0;
|
|
|
|
|
2013-01-11 22:32:16 +00:00
|
|
|
__mod_zone_freepage_state(zone, -(1UL << order), mt);
|
2012-12-12 00:02:57 +00:00
|
|
|
}
|
2010-05-24 21:32:27 +00:00
|
|
|
|
2020-04-07 03:04:49 +00:00
|
|
|
del_page_from_free_list(page, zone, order);
|
2012-10-08 23:32:00 +00:00
|
|
|
|
2016-07-28 22:45:07 +00:00
|
|
|
/*
|
|
|
|
* Set the pageblock if the isolated page is at least half of a
|
|
|
|
* pageblock
|
|
|
|
*/
|
2010-05-24 21:32:27 +00:00
|
|
|
if (order >= pageblock_order - 1) {
|
|
|
|
struct page *endpage = page + (1 << order) - 1;
|
2011-12-29 12:09:50 +00:00
|
|
|
for (; page < endpage; page += pageblock_nr_pages) {
|
|
|
|
int mt = get_pageblock_migratetype(page);
|
2022-03-22 21:43:05 +00:00
|
|
|
/*
|
|
|
|
* Only change normal pageblocks (i.e., they can merge
|
|
|
|
* with others)
|
|
|
|
*/
|
|
|
|
if (migratetype_is_mergeable(mt))
|
2011-12-29 12:09:50 +00:00
|
|
|
set_pageblock_migratetype(page,
|
|
|
|
MIGRATE_MOVABLE);
|
|
|
|
}
|
2010-05-24 21:32:27 +00:00
|
|
|
}
|
|
|
|
|
2013-01-11 22:32:16 +00:00
|
|
|
return 1UL << order;
|
2012-10-08 23:29:12 +00:00
|
|
|
}
|
|
|
|
|
2020-04-07 03:04:53 +00:00
|
|
|
/**
|
|
|
|
* __putback_isolated_page - Return a now-isolated page back where we got it
|
|
|
|
* @page: Page that was isolated
|
|
|
|
* @order: Order of the isolated page
|
2020-04-10 21:32:29 +00:00
|
|
|
* @mt: The page's pageblock's migratetype
|
2020-04-07 03:04:53 +00:00
|
|
|
*
|
|
|
|
* This function is meant to return a page pulled from the free lists via
|
|
|
|
* __isolate_free_page back to the free lists they were pulled from.
|
|
|
|
*/
|
|
|
|
void __putback_isolated_page(struct page *page, unsigned int order, int mt)
|
|
|
|
{
|
|
|
|
struct zone *zone = page_zone(page);
|
|
|
|
|
|
|
|
/* zone lock should be held when this function is called */
|
|
|
|
lockdep_assert_held(&zone->lock);
|
|
|
|
|
|
|
|
/* Return isolated page to tail of freelist. */
|
mm/page_alloc: convert "report" flag of __free_one_page() to a proper flag
Patch series "mm: place pages to the freelist tail when onlining and undoing isolation", v2.
When adding separate memory blocks via add_memory*() and onlining them
immediately, the metadata (especially the memmap) of the next block will
be placed onto one of the just added+onlined block. This creates a chain
of unmovable allocations: If the last memory block cannot get
offlined+removed() so will all dependent ones. We directly have unmovable
allocations all over the place.
This can be observed quite easily using virtio-mem, however, it can also
be observed when using DIMMs. The freshly onlined pages will usually be
placed to the head of the freelists, meaning they will be allocated next,
turning the just-added memory usually immediately un-removable. The fresh
pages are cold, prefering to allocate others (that might be hot) also
feels to be the natural thing to do.
It also applies to the hyper-v balloon xen-balloon, and ppc64 dlpar: when
adding separate, successive memory blocks, each memory block will have
unmovable allocations on them - for example gigantic pages will fail to
allocate.
While the ZONE_NORMAL doesn't provide any guarantees that memory can get
offlined+removed again (any kind of fragmentation with unmovable
allocations is possible), there are many scenarios (hotplugging a lot of
memory, running workload, hotunplug some memory/as much as possible) where
we can offline+remove quite a lot with this patchset.
a) To visualize the problem, a very simple example:
Start a VM with 4GB and 8GB of virtio-mem memory:
[root@localhost ~]# lsmem
RANGE SIZE STATE REMOVABLE BLOCK
0x0000000000000000-0x00000000bfffffff 3G online yes 0-23
0x0000000100000000-0x000000033fffffff 9G online yes 32-103
Memory block size: 128M
Total online memory: 12G
Total offline memory: 0B
Then try to unplug as much as possible using virtio-mem. Observe which
memory blocks are still around. Without this patch set:
[root@localhost ~]# lsmem
RANGE SIZE STATE REMOVABLE BLOCK
0x0000000000000000-0x00000000bfffffff 3G online yes 0-23
0x0000000100000000-0x000000013fffffff 1G online yes 32-39
0x0000000148000000-0x000000014fffffff 128M online yes 41
0x0000000158000000-0x000000015fffffff 128M online yes 43
0x0000000168000000-0x000000016fffffff 128M online yes 45
0x0000000178000000-0x000000017fffffff 128M online yes 47
0x0000000188000000-0x0000000197ffffff 256M online yes 49-50
0x00000001a0000000-0x00000001a7ffffff 128M online yes 52
0x00000001b0000000-0x00000001b7ffffff 128M online yes 54
0x00000001c0000000-0x00000001c7ffffff 128M online yes 56
0x00000001d0000000-0x00000001d7ffffff 128M online yes 58
0x00000001e0000000-0x00000001e7ffffff 128M online yes 60
0x00000001f0000000-0x00000001f7ffffff 128M online yes 62
0x0000000200000000-0x0000000207ffffff 128M online yes 64
0x0000000210000000-0x0000000217ffffff 128M online yes 66
0x0000000220000000-0x0000000227ffffff 128M online yes 68
0x0000000230000000-0x0000000237ffffff 128M online yes 70
0x0000000240000000-0x0000000247ffffff 128M online yes 72
0x0000000250000000-0x0000000257ffffff 128M online yes 74
0x0000000260000000-0x0000000267ffffff 128M online yes 76
0x0000000270000000-0x0000000277ffffff 128M online yes 78
0x0000000280000000-0x0000000287ffffff 128M online yes 80
0x0000000290000000-0x0000000297ffffff 128M online yes 82
0x00000002a0000000-0x00000002a7ffffff 128M online yes 84
0x00000002b0000000-0x00000002b7ffffff 128M online yes 86
0x00000002c0000000-0x00000002c7ffffff 128M online yes 88
0x00000002d0000000-0x00000002d7ffffff 128M online yes 90
0x00000002e0000000-0x00000002e7ffffff 128M online yes 92
0x00000002f0000000-0x00000002f7ffffff 128M online yes 94
0x0000000300000000-0x0000000307ffffff 128M online yes 96
0x0000000310000000-0x0000000317ffffff 128M online yes 98
0x0000000320000000-0x0000000327ffffff 128M online yes 100
0x0000000330000000-0x000000033fffffff 256M online yes 102-103
Memory block size: 128M
Total online memory: 8.1G
Total offline memory: 0B
With this patch set:
[root@localhost ~]# lsmem
RANGE SIZE STATE REMOVABLE BLOCK
0x0000000000000000-0x00000000bfffffff 3G online yes 0-23
0x0000000100000000-0x000000013fffffff 1G online yes 32-39
Memory block size: 128M
Total online memory: 4G
Total offline memory: 0B
All memory can get unplugged, all memory block can get removed. Of
course, no workload ran and the system was basically idle, but it
highlights the issue - the fairly deterministic chain of unmovable
allocations. When a huge page for the 2MB memmap is needed, a
just-onlined 4MB page will be split. The remaining 2MB page will be used
for the memmap of the next memory block. So one memory block will hold
the memmap of the two following memory blocks. Finally the pages of the
last-onlined memory block will get used for the next bigger allocations -
if any allocation is unmovable, all dependent memory blocks cannot get
unplugged and removed until that allocation is gone.
Note that with bigger memory blocks (e.g., 256MB), *all* memory
blocks are dependent and none can get unplugged again!
b) Experiment with memory intensive workload
I performed an experiment with an older version of this patch set (before
we used undo_isolate_page_range() in online_pages(): Hotplug 56GB to a VM
with an initial 4GB, onlining all memory to ZONE_NORMAL right from the
kernel when adding it. I then run various memory intensive workloads that
consume most system memory for a total of 45 minutes. Once finished, I
try to unplug as much memory as possible.
With this change, I am able to remove via virtio-mem (adding individual
128MB memory blocks) 413 out of 448 added memory blocks. Via individual
(256MB) DIMMs 380 out of 448 added memory blocks. (I don't have any
numbers without this patchset, but looking at the above example, it's at
most half of the 448 memory blocks for virtio-mem, and most probably none
for DIMMs).
Again, there are workloads that might behave very differently due to the
nature of ZONE_NORMAL.
This change also affects (besides memory onlining):
- Other users of undo_isolate_page_range(): Pages are always placed to the
tail.
-- When memory offlining fails
-- When memory isolation fails after having isolated some pageblocks
-- When alloc_contig_range() either succeeds or fails
- Other users of __putback_isolated_page(): Pages are always placed to the
tail.
-- Free page reporting
- Other users of __free_pages_core()
-- AFAIKs, any memory that is getting exposed to the buddy during boot.
IIUC we will now usually allocate memory from lower addresses within
a zone first (especially during boot).
- Other users of generic_online_page()
-- Hyper-V balloon
This patch (of 5):
Let's prepare for additional flags and avoid long parameter lists of
bools. Follow-up patches will also make use of the flags in
__free_pages_ok().
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Wei Yang <richard.weiyang@linux.alibaba.com>
Reviewed-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Scott Cheloha <cheloha@linux.ibm.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Link: https://lkml.kernel.org/r/20201005121534.15649-1-david@redhat.com
Link: https://lkml.kernel.org/r/20201005121534.15649-2-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16 03:09:20 +00:00
|
|
|
__free_one_page(page, page_to_pfn(page), zone, order, mt,
|
mm/page_alloc: place pages to tail in __putback_isolated_page()
__putback_isolated_page() already documents that pages will be placed to
the tail of the freelist - this is, however, not the case for "order >=
MAX_ORDER - 2" (see buddy_merge_likely()) - which should be the case for
all existing users.
This change affects two users:
- free page reporting
- page isolation, when undoing the isolation (including memory onlining).
This behavior is desirable for pages that haven't really been touched
lately, so exactly the two users that don't actually read/write page
content, but rather move untouched pages.
The new behavior is especially desirable for memory onlining, where we
allow allocation of newly onlined pages via undo_isolate_page_range() in
online_pages(). Right now, we always place them to the head of the
freelist, resulting in undesireable behavior: Assume we add individual
memory chunks via add_memory() and online them right away to the NORMAL
zone. We create a dependency chain of unmovable allocations e.g., via the
memmap. The memmap of the next chunk will be placed onto previous chunks
- if the last block cannot get offlined+removed, all dependent ones cannot
get offlined+removed. While this can already be observed with individual
DIMMs, it's more of an issue for virtio-mem (and I suspect also ppc
DLPAR).
Document that this should only be used for optimizations, and no code
should rely on this behavior for correction (if the order of the freelists
ever changes).
We won't care about page shuffling: memory onlining already properly
shuffles after onlining. free page reporting doesn't care about
physically contiguous ranges, and there are already cases where page
isolation will simply move (physically close) free pages to (currently)
the head of the freelists via move_freepages_block() instead of shuffling.
If this becomes ever relevant, we should shuffle the whole zone when
undoing isolation of larger ranges, and after free_contig_range().
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Wei Yang <richard.weiyang@linux.alibaba.com>
Reviewed-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Scott Cheloha <cheloha@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Wei Liu <wei.liu@kernel.org>
Link: https://lkml.kernel.org/r/20201005121534.15649-3-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16 03:09:26 +00:00
|
|
|
FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
|
2020-04-07 03:04:53 +00:00
|
|
|
}
|
|
|
|
|
2016-05-20 00:13:27 +00:00
|
|
|
/*
|
|
|
|
* Update NUMA hit/miss statistics
|
|
|
|
*/
|
2021-06-29 02:41:50 +00:00
|
|
|
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
|
|
|
|
long nr_account)
|
2016-05-20 00:13:27 +00:00
|
|
|
{
|
|
|
|
#ifdef CONFIG_NUMA
|
mm: change the call sites of numa statistics items
Patch series "Separate NUMA statistics from zone statistics", v2.
Each page allocation updates a set of per-zone statistics with a call to
zone_statistics(). As discussed in 2017 MM summit, these are a
substantial source of overhead in the page allocator and are very rarely
consumed. This significant overhead in cache bouncing caused by zone
counters (NUMA associated counters) update in parallel in multi-threaded
page allocation (pointed out by Dave Hansen).
A link to the MM summit slides:
http://people.netfilter.org/hawk/presentations/MM-summit2017/MM-summit2017-JesperBrouer.pdf
To mitigate this overhead, this patchset separates NUMA statistics from
zone statistics framework, and update NUMA counter threshold to a fixed
size of MAX_U16 - 2, as a small threshold greatly increases the update
frequency of the global counter from local per cpu counter (suggested by
Ying Huang). The rationality is that these statistics counters don't
need to be read often, unlike other VM counters, so it's not a problem
to use a large threshold and make readers more expensive.
With this patchset, we see 31.3% drop of CPU cycles(537-->369, see
below) for per single page allocation and reclaim on Jesper's
page_bench03 benchmark. Meanwhile, this patchset keeps the same style
of virtual memory statistics with little end-user-visible effects (only
move the numa stats to show behind zone page stats, see the first patch
for details).
I did an experiment of single page allocation and reclaim concurrently
using Jesper's page_bench03 benchmark on a 2-Socket Broadwell-based
server (88 processors with 126G memory) with different size of threshold
of pcp counter.
Benchmark provided by Jesper D Brouer(increase loop times to 10000000):
https://github.com/netoptimizer/prototype-kernel/tree/master/kernel/mm/bench
Threshold CPU cycles Throughput(88 threads)
32 799 241760478
64 640 301628829
125 537 358906028 <==> system by default
256 468 412397590
512 428 450550704
4096 399 482520943
20000 394 489009617
30000 395 488017817
65533 369(-31.3%) 521661345(+45.3%) <==> with this patchset
N/A 342(-36.3%) 562900157(+56.8%) <==> disable zone_statistics
This patch (of 3):
In this patch, NUMA statistics is separated from zone statistics
framework, all the call sites of NUMA stats are changed to use
numa-stats-specific functions, it does not have any functionality change
except that the number of NUMA stats is shown behind zone page stats
when users *read* the zone info.
E.g. cat /proc/zoneinfo
***Base*** ***With this patch***
nr_free_pages 3976 nr_free_pages 3976
nr_zone_inactive_anon 0 nr_zone_inactive_anon 0
nr_zone_active_anon 0 nr_zone_active_anon 0
nr_zone_inactive_file 0 nr_zone_inactive_file 0
nr_zone_active_file 0 nr_zone_active_file 0
nr_zone_unevictable 0 nr_zone_unevictable 0
nr_zone_write_pending 0 nr_zone_write_pending 0
nr_mlock 0 nr_mlock 0
nr_page_table_pages 0 nr_page_table_pages 0
nr_kernel_stack 0 nr_kernel_stack 0
nr_bounce 0 nr_bounce 0
nr_zspages 0 nr_zspages 0
numa_hit 0 *nr_free_cma 0*
numa_miss 0 numa_hit 0
numa_foreign 0 numa_miss 0
numa_interleave 0 numa_foreign 0
numa_local 0 numa_interleave 0
numa_other 0 numa_local 0
*nr_free_cma 0* numa_other 0
... ...
vm stats threshold: 10 vm stats threshold: 10
... ...
The next patch updates the numa stats counter size and threshold.
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/1503568801-21305-2-git-send-email-kemi.wang@intel.com
Signed-off-by: Kemi Wang <kemi.wang@intel.com>
Reported-by: Jesper Dangaard Brouer <brouer@redhat.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christopher Lameter <cl@linux.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Ying Huang <ying.huang@intel.com>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-08 23:12:48 +00:00
|
|
|
enum numa_stat_item local_stat = NUMA_LOCAL;
|
2016-05-20 00:13:27 +00:00
|
|
|
|
2017-11-16 01:38:22 +00:00
|
|
|
/* skip numa counters update if numa stats is disabled */
|
|
|
|
if (!static_branch_likely(&vm_numa_stat_key))
|
|
|
|
return;
|
|
|
|
|
2018-08-22 04:53:32 +00:00
|
|
|
if (zone_to_nid(z) != numa_node_id())
|
2016-05-20 00:13:27 +00:00
|
|
|
local_stat = NUMA_OTHER;
|
|
|
|
|
2018-08-22 04:53:32 +00:00
|
|
|
if (zone_to_nid(z) == zone_to_nid(preferred_zone))
|
2021-06-29 02:41:50 +00:00
|
|
|
__count_numa_events(z, NUMA_HIT, nr_account);
|
2017-01-11 00:57:39 +00:00
|
|
|
else {
|
2021-06-29 02:41:50 +00:00
|
|
|
__count_numa_events(z, NUMA_MISS, nr_account);
|
|
|
|
__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
|
2016-05-20 00:13:27 +00:00
|
|
|
}
|
2021-06-29 02:41:50 +00:00
|
|
|
__count_numa_events(z, local_stat, nr_account);
|
2016-05-20 00:13:27 +00:00
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
2022-06-24 12:54:19 +00:00
|
|
|
static __always_inline
|
|
|
|
struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
|
|
|
|
unsigned int order, unsigned int alloc_flags,
|
|
|
|
int migratetype)
|
|
|
|
{
|
|
|
|
struct page *page;
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
do {
|
|
|
|
page = NULL;
|
|
|
|
spin_lock_irqsave(&zone->lock, flags);
|
|
|
|
/*
|
|
|
|
* order-0 request can reach here when the pcplist is skipped
|
|
|
|
* due to non-CMA allocation context. HIGHATOMIC area is
|
|
|
|
* reserved for high-order atomic allocation, so order-0
|
|
|
|
* request should skip it.
|
|
|
|
*/
|
2023-01-13 11:12:14 +00:00
|
|
|
if (alloc_flags & ALLOC_HIGHATOMIC)
|
2022-06-24 12:54:19 +00:00
|
|
|
page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
|
|
|
|
if (!page) {
|
|
|
|
page = __rmqueue(zone, order, migratetype, alloc_flags);
|
2023-01-13 11:12:14 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* If the allocation fails, allow OOM handling access
|
|
|
|
* to HIGHATOMIC reserves as failing now is worse than
|
|
|
|
* failing a high-order atomic allocation in the
|
|
|
|
* future.
|
|
|
|
*/
|
|
|
|
if (!page && (alloc_flags & ALLOC_OOM))
|
|
|
|
page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
|
|
|
|
|
2022-06-24 12:54:19 +00:00
|
|
|
if (!page) {
|
|
|
|
spin_unlock_irqrestore(&zone->lock, flags);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
__mod_zone_freepage_state(zone, -(1 << order),
|
|
|
|
get_pcppage_migratetype(page));
|
|
|
|
spin_unlock_irqrestore(&zone->lock, flags);
|
|
|
|
} while (check_new_pages(page, order));
|
|
|
|
|
|
|
|
__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
|
|
|
|
zone_statistics(preferred_zone, zone, 1);
|
|
|
|
|
|
|
|
return page;
|
|
|
|
}
|
|
|
|
|
2017-02-24 22:56:26 +00:00
|
|
|
/* Remove page from the per-cpu list, caller must protect the list */
|
2021-04-30 06:01:55 +00:00
|
|
|
static inline
|
2021-06-29 02:43:08 +00:00
|
|
|
struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
|
|
|
|
int migratetype,
|
mm, page_alloc: spread allocations across zones before introducing fragmentation
Patch series "Fragmentation avoidance improvements", v5.
It has been noted before that fragmentation avoidance (aka
anti-fragmentation) is not perfect. Given sufficient time or an adverse
workload, memory gets fragmented and the long-term success of high-order
allocations degrades. This series defines an adverse workload, a definition
of external fragmentation events (including serious) ones and a series
that reduces the level of those fragmentation events.
The details of the workload and the consequences are described in more
detail in the changelogs. However, from patch 1, this is a high-level
summary of the adverse workload. The exact details are found in the
mmtests implementation.
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch)
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameterr create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed
3. Warm up a number of fio read-only threads accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll fault back in old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup
Overall the series reduces external fragmentation causing events by over 94%
on 1 and 2 socket machines, which in turn impacts high-order allocation
success rates over the long term. There are differences in latencies and
high-order allocation success rates. Latencies are a mixed bag as they
are vulnerable to exact system state and whether allocations succeeded
so they are treated as a secondary metric.
Patch 1 uses lower zones if they are populated and have free memory
instead of fragmenting a higher zone. It's special cased to
handle a Normal->DMA32 fallback with the reasons explained
in the changelog.
Patch 2-4 boosts watermarks temporarily when an external fragmentation
event occurs. kswapd wakes to reclaim a small amount of old memory
and then wakes kcompactd on completion to recover the system
slightly. This introduces some overhead in the slowpath. The level
of boosting can be tuned or disabled depending on the tolerance
for fragmentation vs allocation latency.
Patch 5 stalls some movable allocation requests to let kswapd from patch 4
make some progress. The duration of the stalls is very low but it
is possible to tune the system to avoid fragmentation events if
larger stalls can be tolerated.
The bulk of the improvement in fragmentation avoidance is from patches
1-4 but patch 5 can deal with a rare corner case and provides the option
of tuning a system for THP allocation success rates in exchange for
some stalls to control fragmentation.
This patch (of 5):
The page allocator zone lists are iterated based on the watermarks of each
zone which does not take anti-fragmentation into account. On x86, node 0
may have multiple zones while other nodes have one zone. A consequence is
that tasks running on node 0 may fragment ZONE_NORMAL even though
ZONE_DMA32 has plenty of free memory. This patch special cases the
allocator fast path such that it'll try an allocation from a lower local
zone before fragmenting a higher zone. In this case, stealing of
pageblocks or orders larger than a pageblock are still allowed in the fast
path as they are uninteresting from a fragmentation point of view.
This was evaluated using a benchmark designed to fragment memory before
attempting THP allocations. It's implemented in mmtests as the following
configurations
configs/config-global-dhp__workload_thpfioscale
configs/config-global-dhp__workload_thpfioscale-defrag
configs/config-global-dhp__workload_thpfioscale-madvhugepage
e.g. from mmtests
./run-mmtests.sh --run-monitor --config configs/config-global-dhp__workload_thpfioscale test-run-1
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch).
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameter create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed.
3. Warm up a number of fio read-only processes accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll refault old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds.
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup the test files.
Note that due to the use of IO and page cache that this benchmark is not
suitable for running on large machines where the time to fragment memory
may be excessive. Also note that while this is one mix that generates
fragmentation that it's not the only mix that generates fragmentation.
Differences in workload that are more slab-intensive or whether SLUB is
used with high-order pages may yield different results.
When the page allocator fragments memory, it records the event using the
mm_page_alloc_extfrag ftrace event. If the fallback_order is smaller than
a pageblock order (order-9 on 64-bit x86) then it's considered to be an
"external fragmentation event" that may cause issues in the future.
Hence, the primary metric here is the number of external fragmentation
events that occur with order < 9. The secondary metric is allocation
latency and huge page allocation success rates but note that differences
in latencies and what the success rate also can affect the number of
external fragmentation event which is why it's a secondary metric.
1-socket Skylake machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 1 THP allocating thread
--------------------------------------
4.20-rc3 extfrag events < order 9: 804694
4.20-rc3+patch: 408912 (49% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 662.92 ( 0.00%) 653.58 * 1.41%*
Amean fault-huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
Fault latencies are slightly reduced while allocation success rates remain
at zero as this configuration does not make any special effort to allocate
THP and fio is heavily active at the time and either filling memory or
keeping pages resident. However, a 49% reduction of serious fragmentation
events reduces the changes of external fragmentation being a problem in
the future.
Vlastimil asked during review for a breakdown of the allocation types
that are falling back.
vanilla
3816 MIGRATE_UNMOVABLE
800845 MIGRATE_MOVABLE
33 MIGRATE_UNRECLAIMABLE
patch
735 MIGRATE_UNMOVABLE
408135 MIGRATE_MOVABLE
42 MIGRATE_UNRECLAIMABLE
The majority of the fallbacks are due to movable allocations and this is
consistent for the workload throughout the series so will not be presented
again as the primary source of fallbacks are movable allocations.
Movable fallbacks are sometimes considered "ok" to fallback because they
can be migrated. The problem is that they can fill an
unmovable/reclaimable pageblock causing those allocations to fallback
later and polluting pageblocks with pages that cannot move. If there is a
movable fallback, it is pretty much guaranteed to affect an
unmovable/reclaimable pageblock and while it might not be enough to
actually cause a unmovable/reclaimable fallback in the future, we cannot
know that in advance so the patch takes the only option available to it.
Hence, it's important to control them. This point is also consistent
throughout the series and will not be repeated.
1-socket Skylake machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 291392
4.20-rc3+patch: 191187 (34% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 1495.14 ( 0.00%) 1467.55 ( 1.85%)
Amean fault-huge-1 1098.48 ( 0.00%) 1127.11 ( -2.61%)
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 78.57 ( 0.00%) 77.64 ( -1.18%)
Fragmentation events were reduced quite a bit although this is known
to be a little variable. The latencies and allocation success rates
are similar but they were already quite high.
2-socket Haswell machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 5 THP allocating threads
----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 215698
4.20-rc3+patch: 200210 (7% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 1350.05 ( 0.00%) 1346.45 ( 0.27%)
Amean fault-huge-5 4181.01 ( 0.00%) 3418.60 ( 18.24%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 1.15 ( 0.00%) 0.78 ( -31.88%)
The reduction of external fragmentation events is slight and this is
partially due to the removal of __GFP_THISNODE in commit ac5b2c18911f
("mm: thp: relax __GFP_THISNODE for MADV_HUGEPAGE mappings") as THP
allocations can now spill over to remote nodes instead of fragmenting
local memory.
2-socket Haswell machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 166352
4.20-rc3+patch: 147463 (11% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 6138.97 ( 0.00%) 6217.43 ( -1.28%)
Amean fault-huge-5 2294.28 ( 0.00%) 3163.33 * -37.88%*
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 96.82 ( 0.00%) 95.14 ( -1.74%)
There was a slight reduction in external fragmentation events although the
latencies were higher. The allocation success rate is high enough that
the system is struggling and there is quite a lot of parallel reclaim and
compaction activity. There is also a certain degree of luck on whether
processes start on node 0 or not for this patch but the relevance is
reduced later in the series.
Overall, the patch reduces the number of external fragmentation causing
events so the success of THP over long periods of time would be improved
for this adverse workload.
Link: http://lkml.kernel.org/r/20181123114528.28802-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 08:35:41 +00:00
|
|
|
unsigned int alloc_flags,
|
2017-11-16 01:38:03 +00:00
|
|
|
struct per_cpu_pages *pcp,
|
2017-02-24 22:56:26 +00:00
|
|
|
struct list_head *list)
|
|
|
|
{
|
|
|
|
struct page *page;
|
|
|
|
|
|
|
|
do {
|
|
|
|
if (list_empty(list)) {
|
2021-06-29 02:43:08 +00:00
|
|
|
int batch = READ_ONCE(pcp->batch);
|
|
|
|
int alloced;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Scale batch relative to order if batch implies
|
|
|
|
* free pages can be stored on the PCP. Batch can
|
|
|
|
* be 1 for small zones or for boot pagesets which
|
|
|
|
* should never store free pages as the pages may
|
|
|
|
* belong to arbitrary zones.
|
|
|
|
*/
|
|
|
|
if (batch > 1)
|
|
|
|
batch = max(batch >> order, 2);
|
|
|
|
alloced = rmqueue_bulk(zone, order,
|
|
|
|
batch, list,
|
mm, page_alloc: spread allocations across zones before introducing fragmentation
Patch series "Fragmentation avoidance improvements", v5.
It has been noted before that fragmentation avoidance (aka
anti-fragmentation) is not perfect. Given sufficient time or an adverse
workload, memory gets fragmented and the long-term success of high-order
allocations degrades. This series defines an adverse workload, a definition
of external fragmentation events (including serious) ones and a series
that reduces the level of those fragmentation events.
The details of the workload and the consequences are described in more
detail in the changelogs. However, from patch 1, this is a high-level
summary of the adverse workload. The exact details are found in the
mmtests implementation.
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch)
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameterr create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed
3. Warm up a number of fio read-only threads accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll fault back in old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup
Overall the series reduces external fragmentation causing events by over 94%
on 1 and 2 socket machines, which in turn impacts high-order allocation
success rates over the long term. There are differences in latencies and
high-order allocation success rates. Latencies are a mixed bag as they
are vulnerable to exact system state and whether allocations succeeded
so they are treated as a secondary metric.
Patch 1 uses lower zones if they are populated and have free memory
instead of fragmenting a higher zone. It's special cased to
handle a Normal->DMA32 fallback with the reasons explained
in the changelog.
Patch 2-4 boosts watermarks temporarily when an external fragmentation
event occurs. kswapd wakes to reclaim a small amount of old memory
and then wakes kcompactd on completion to recover the system
slightly. This introduces some overhead in the slowpath. The level
of boosting can be tuned or disabled depending on the tolerance
for fragmentation vs allocation latency.
Patch 5 stalls some movable allocation requests to let kswapd from patch 4
make some progress. The duration of the stalls is very low but it
is possible to tune the system to avoid fragmentation events if
larger stalls can be tolerated.
The bulk of the improvement in fragmentation avoidance is from patches
1-4 but patch 5 can deal with a rare corner case and provides the option
of tuning a system for THP allocation success rates in exchange for
some stalls to control fragmentation.
This patch (of 5):
The page allocator zone lists are iterated based on the watermarks of each
zone which does not take anti-fragmentation into account. On x86, node 0
may have multiple zones while other nodes have one zone. A consequence is
that tasks running on node 0 may fragment ZONE_NORMAL even though
ZONE_DMA32 has plenty of free memory. This patch special cases the
allocator fast path such that it'll try an allocation from a lower local
zone before fragmenting a higher zone. In this case, stealing of
pageblocks or orders larger than a pageblock are still allowed in the fast
path as they are uninteresting from a fragmentation point of view.
This was evaluated using a benchmark designed to fragment memory before
attempting THP allocations. It's implemented in mmtests as the following
configurations
configs/config-global-dhp__workload_thpfioscale
configs/config-global-dhp__workload_thpfioscale-defrag
configs/config-global-dhp__workload_thpfioscale-madvhugepage
e.g. from mmtests
./run-mmtests.sh --run-monitor --config configs/config-global-dhp__workload_thpfioscale test-run-1
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch).
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameter create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed.
3. Warm up a number of fio read-only processes accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll refault old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds.
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup the test files.
Note that due to the use of IO and page cache that this benchmark is not
suitable for running on large machines where the time to fragment memory
may be excessive. Also note that while this is one mix that generates
fragmentation that it's not the only mix that generates fragmentation.
Differences in workload that are more slab-intensive or whether SLUB is
used with high-order pages may yield different results.
When the page allocator fragments memory, it records the event using the
mm_page_alloc_extfrag ftrace event. If the fallback_order is smaller than
a pageblock order (order-9 on 64-bit x86) then it's considered to be an
"external fragmentation event" that may cause issues in the future.
Hence, the primary metric here is the number of external fragmentation
events that occur with order < 9. The secondary metric is allocation
latency and huge page allocation success rates but note that differences
in latencies and what the success rate also can affect the number of
external fragmentation event which is why it's a secondary metric.
1-socket Skylake machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 1 THP allocating thread
--------------------------------------
4.20-rc3 extfrag events < order 9: 804694
4.20-rc3+patch: 408912 (49% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 662.92 ( 0.00%) 653.58 * 1.41%*
Amean fault-huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
Fault latencies are slightly reduced while allocation success rates remain
at zero as this configuration does not make any special effort to allocate
THP and fio is heavily active at the time and either filling memory or
keeping pages resident. However, a 49% reduction of serious fragmentation
events reduces the changes of external fragmentation being a problem in
the future.
Vlastimil asked during review for a breakdown of the allocation types
that are falling back.
vanilla
3816 MIGRATE_UNMOVABLE
800845 MIGRATE_MOVABLE
33 MIGRATE_UNRECLAIMABLE
patch
735 MIGRATE_UNMOVABLE
408135 MIGRATE_MOVABLE
42 MIGRATE_UNRECLAIMABLE
The majority of the fallbacks are due to movable allocations and this is
consistent for the workload throughout the series so will not be presented
again as the primary source of fallbacks are movable allocations.
Movable fallbacks are sometimes considered "ok" to fallback because they
can be migrated. The problem is that they can fill an
unmovable/reclaimable pageblock causing those allocations to fallback
later and polluting pageblocks with pages that cannot move. If there is a
movable fallback, it is pretty much guaranteed to affect an
unmovable/reclaimable pageblock and while it might not be enough to
actually cause a unmovable/reclaimable fallback in the future, we cannot
know that in advance so the patch takes the only option available to it.
Hence, it's important to control them. This point is also consistent
throughout the series and will not be repeated.
1-socket Skylake machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 291392
4.20-rc3+patch: 191187 (34% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 1495.14 ( 0.00%) 1467.55 ( 1.85%)
Amean fault-huge-1 1098.48 ( 0.00%) 1127.11 ( -2.61%)
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 78.57 ( 0.00%) 77.64 ( -1.18%)
Fragmentation events were reduced quite a bit although this is known
to be a little variable. The latencies and allocation success rates
are similar but they were already quite high.
2-socket Haswell machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 5 THP allocating threads
----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 215698
4.20-rc3+patch: 200210 (7% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 1350.05 ( 0.00%) 1346.45 ( 0.27%)
Amean fault-huge-5 4181.01 ( 0.00%) 3418.60 ( 18.24%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 1.15 ( 0.00%) 0.78 ( -31.88%)
The reduction of external fragmentation events is slight and this is
partially due to the removal of __GFP_THISNODE in commit ac5b2c18911f
("mm: thp: relax __GFP_THISNODE for MADV_HUGEPAGE mappings") as THP
allocations can now spill over to remote nodes instead of fragmenting
local memory.
2-socket Haswell machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 166352
4.20-rc3+patch: 147463 (11% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 6138.97 ( 0.00%) 6217.43 ( -1.28%)
Amean fault-huge-5 2294.28 ( 0.00%) 3163.33 * -37.88%*
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 96.82 ( 0.00%) 95.14 ( -1.74%)
There was a slight reduction in external fragmentation events although the
latencies were higher. The allocation success rate is high enough that
the system is struggling and there is quite a lot of parallel reclaim and
compaction activity. There is also a certain degree of luck on whether
processes start on node 0 or not for this patch but the relevance is
reduced later in the series.
Overall, the patch reduces the number of external fragmentation causing
events so the success of THP over long periods of time would be improved
for this adverse workload.
Link: http://lkml.kernel.org/r/20181123114528.28802-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 08:35:41 +00:00
|
|
|
migratetype, alloc_flags);
|
2021-06-29 02:43:08 +00:00
|
|
|
|
|
|
|
pcp->count += alloced << order;
|
2017-02-24 22:56:26 +00:00
|
|
|
if (unlikely(list_empty(list)))
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
2022-06-24 12:54:17 +00:00
|
|
|
page = list_first_entry(list, struct page, pcp_list);
|
|
|
|
list_del(&page->pcp_list);
|
2021-06-29 02:43:08 +00:00
|
|
|
pcp->count -= 1 << order;
|
mm, page_alloc: reduce page alloc/free sanity checks
Historically, we have performed sanity checks on all struct pages being
allocated or freed, making sure they have no unexpected page flags or
certain field values. This can detect insufficient cleanup and some cases
of use-after-free, although on its own it can't always identify the
culprit. The result is a warning and the "bad page" being leaked.
The checks do need some cpu cycles, so in 4.7 with commits 479f854a207c
("mm, page_alloc: defer debugging checks of pages allocated from the PCP")
and 4db7548ccbd9 ("mm, page_alloc: defer debugging checks of freed pages
until a PCP drain") they were no longer performed in the hot paths when
allocating and freeing from pcplists, but only when pcplists are bypassed,
refilled or drained. For debugging purposes, with CONFIG_DEBUG_VM enabled
the checks were instead still done in the hot paths and not when refilling
or draining pcplists.
With 4462b32c9285 ("mm, page_alloc: more extensive free page checking with
debug_pagealloc"), enabling debug_pagealloc also moved the sanity checks
back to hot pahs. When both debug_pagealloc and CONFIG_DEBUG_VM are
enabled, the checks are done both in hotpaths and pcplist refill/drain.
Even though the non-debug default today might seem to be a sensible
tradeoff between overhead and ability to detect bad pages, on closer look
it's arguably not. As most allocations go through the pcplists, catching
any bad pages when refilling or draining pcplists has only a small chance,
insufficient for debugging or serious hardening purposes. On the other
hand the cost of the checks is concentrated in the already expensive
drain/refill batching operations, and those are done under the often
contended zone lock. That was recently identified as an issue for page
allocation and the zone lock contention reduced by moving the checks
outside of the locked section with a patch "mm: reduce lock contention of
pcp buffer refill", but the cost of the checks is still visible compared
to their removal [1]. In the pcplist draining path free_pcppages_bulk()
the checks are still done under zone->lock.
Thus, remove the checks from pcplist refill and drain paths completely.
Introduce a static key check_pages_enabled to control checks during page
allocation a freeing (whether pcplist is used or bypassed). The static
key is enabled if either is true:
- kernel is built with CONFIG_DEBUG_VM=y (debugging)
- debug_pagealloc or page poisoning is boot-time enabled (debugging)
- init_on_alloc or init_on_free is boot-time enabled (hardening)
The resulting user visible changes:
- no checks when draining/refilling pcplists - less overhead, with
likely no practical reduction of ability to catch bad pages
- no checks when bypassing pcplists in default config (no
debugging/hardening) - less overhead etc. as above
- on typical hardened kernels [2], checks are now performed on each page
allocation/free (previously only when bypassing/draining/refilling
pcplists) - the init_on_alloc/init_on_free enabled should be sufficient
indication for preferring more costly alloc/free operations for
hardening purposes and we shouldn't need to introduce another toggle
- code (various wrappers) removal and simplification
[1] https://lore.kernel.org/all/68ba44d8-6899-c018-dcb3-36f3a96e6bea@sra.uni-hannover.de/
[2] https://lore.kernel.org/all/63ebc499.a70a0220.9ac51.29ea@mx.google.com/
[akpm@linux-foundation.org: coding-style cleanups]
[akpm@linux-foundation.org: make check_pages_enabled static]
Link: https://lkml.kernel.org/r/20230216095131.17336-1-vbabka@suse.cz
Reported-by: Alexander Halbuer <halbuer@sra.uni-hannover.de>
Reported-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-16 09:51:31 +00:00
|
|
|
} while (check_new_pages(page, order));
|
2017-02-24 22:56:26 +00:00
|
|
|
|
|
|
|
return page;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Lock and remove page from the per-cpu list */
|
|
|
|
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
|
2021-06-29 02:43:08 +00:00
|
|
|
struct zone *zone, unsigned int order,
|
2022-08-31 01:34:04 +00:00
|
|
|
int migratetype, unsigned int alloc_flags)
|
2017-02-24 22:56:26 +00:00
|
|
|
{
|
|
|
|
struct per_cpu_pages *pcp;
|
|
|
|
struct list_head *list;
|
|
|
|
struct page *page;
|
2022-06-24 12:54:21 +00:00
|
|
|
unsigned long __maybe_unused UP_flags;
|
2017-02-24 22:56:26 +00:00
|
|
|
|
2022-11-18 10:17:14 +00:00
|
|
|
/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
|
2022-06-24 12:54:21 +00:00
|
|
|
pcp_trylock_prepare(UP_flags);
|
2022-11-18 10:17:14 +00:00
|
|
|
pcp = pcp_spin_trylock(zone->per_cpu_pageset);
|
2022-06-24 12:54:23 +00:00
|
|
|
if (!pcp) {
|
2022-06-24 12:54:21 +00:00
|
|
|
pcp_trylock_finish(UP_flags);
|
|
|
|
return NULL;
|
|
|
|
}
|
2021-06-29 02:42:18 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* On allocation, reduce the number of pages that are batch freed.
|
|
|
|
* See nr_pcp_free() where free_factor is increased for subsequent
|
|
|
|
* frees.
|
|
|
|
*/
|
|
|
|
pcp->free_factor >>= 1;
|
2021-06-29 02:43:08 +00:00
|
|
|
list = &pcp->lists[order_to_pindex(migratetype, order)];
|
|
|
|
page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
|
2022-11-18 10:17:14 +00:00
|
|
|
pcp_spin_unlock(pcp);
|
2022-06-24 12:54:21 +00:00
|
|
|
pcp_trylock_finish(UP_flags);
|
2017-02-24 22:56:26 +00:00
|
|
|
if (page) {
|
2022-10-06 10:15:40 +00:00
|
|
|
__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
|
2021-06-29 02:41:50 +00:00
|
|
|
zone_statistics(preferred_zone, zone, 1);
|
2017-02-24 22:56:26 +00:00
|
|
|
}
|
|
|
|
return page;
|
|
|
|
}
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
2022-09-18 02:56:40 +00:00
|
|
|
* Allocate a page from the given zone.
|
|
|
|
* Use pcplists for THP or "cheap" high-order allocations.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
2022-09-15 15:03:48 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Do not instrument rmqueue() with KMSAN. This function may call
|
|
|
|
* __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
|
|
|
|
* If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
|
|
|
|
* may call rmqueue() again, which will result in a deadlock.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
2022-09-15 15:03:48 +00:00
|
|
|
__no_sanitize_memory
|
2009-06-16 22:32:05 +00:00
|
|
|
static inline
|
2017-02-24 22:56:26 +00:00
|
|
|
struct page *rmqueue(struct zone *preferred_zone,
|
2014-06-04 23:10:21 +00:00
|
|
|
struct zone *zone, unsigned int order,
|
2016-05-20 00:13:38 +00:00
|
|
|
gfp_t gfp_flags, unsigned int alloc_flags,
|
|
|
|
int migratetype)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2005-11-22 05:32:20 +00:00
|
|
|
struct page *page;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2022-06-24 12:54:19 +00:00
|
|
|
/*
|
|
|
|
* We most definitely don't want callers attempting to
|
|
|
|
* allocate greater than order-1 page units with __GFP_NOFAIL.
|
|
|
|
*/
|
|
|
|
WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
|
|
|
|
|
2021-06-29 02:43:08 +00:00
|
|
|
if (likely(pcp_allowed_order(order))) {
|
2020-10-03 05:21:45 +00:00
|
|
|
/*
|
|
|
|
* MIGRATE_MOVABLE pcplist could have the pages on CMA area and
|
|
|
|
* we need to skip it when CMA area isn't allowed.
|
|
|
|
*/
|
|
|
|
if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
|
|
|
|
migratetype != MIGRATE_MOVABLE) {
|
2021-06-29 02:43:08 +00:00
|
|
|
page = rmqueue_pcplist(preferred_zone, zone, order,
|
2022-08-31 01:34:04 +00:00
|
|
|
migratetype, alloc_flags);
|
2022-06-24 12:54:21 +00:00
|
|
|
if (likely(page))
|
|
|
|
goto out;
|
2020-10-03 05:21:45 +00:00
|
|
|
}
|
2017-02-24 22:56:26 +00:00
|
|
|
}
|
2016-06-03 21:55:52 +00:00
|
|
|
|
2022-06-24 12:54:19 +00:00
|
|
|
page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
|
|
|
|
migratetype);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2017-02-24 22:56:26 +00:00
|
|
|
out:
|
mm, page_alloc: do not wake kswapd with zone lock held
syzbot reported the following regression in the latest merge window and
it was confirmed by Qian Cai that a similar bug was visible from a
different context.
======================================================
WARNING: possible circular locking dependency detected
4.20.0+ #297 Not tainted
------------------------------------------------------
syz-executor0/8529 is trying to acquire lock:
000000005e7fb829 (&pgdat->kswapd_wait){....}, at:
__wake_up_common_lock+0x19e/0x330 kernel/sched/wait.c:120
but task is already holding lock:
000000009bb7bae0 (&(&zone->lock)->rlock){-.-.}, at: spin_lock
include/linux/spinlock.h:329 [inline]
000000009bb7bae0 (&(&zone->lock)->rlock){-.-.}, at: rmqueue_bulk
mm/page_alloc.c:2548 [inline]
000000009bb7bae0 (&(&zone->lock)->rlock){-.-.}, at: __rmqueue_pcplist
mm/page_alloc.c:3021 [inline]
000000009bb7bae0 (&(&zone->lock)->rlock){-.-.}, at: rmqueue_pcplist
mm/page_alloc.c:3050 [inline]
000000009bb7bae0 (&(&zone->lock)->rlock){-.-.}, at: rmqueue
mm/page_alloc.c:3072 [inline]
000000009bb7bae0 (&(&zone->lock)->rlock){-.-.}, at:
get_page_from_freelist+0x1bae/0x52a0 mm/page_alloc.c:3491
It appears to be a false positive in that the only way the lock ordering
should be inverted is if kswapd is waking itself and the wakeup
allocates debugging objects which should already be allocated if it's
kswapd doing the waking. Nevertheless, the possibility exists and so
it's best to avoid the problem.
This patch flags a zone as needing a kswapd using the, surprisingly,
unused zone flag field. The flag is read without the lock held to do
the wakeup. It's possible that the flag setting context is not the same
as the flag clearing context or for small races to occur. However, each
race possibility is harmless and there is no visible degredation in
fragmentation treatment.
While zone->flag could have continued to be unused, there is potential
for moving some existing fields into the flags field instead.
Particularly read-mostly ones like zone->initialized and
zone->contiguous.
Link: http://lkml.kernel.org/r/20190103225712.GJ31517@techsingularity.net
Fixes: 1c30844d2dfe ("mm: reclaim small amounts of memory when an external fragmentation event occurs")
Reported-by: syzbot+93d94a001cfbce9e60e1@syzkaller.appspotmail.com
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Qian Cai <cai@lca.pw>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-08 23:23:39 +00:00
|
|
|
/* Separate test+clear to avoid unnecessary atomics */
|
2022-06-24 12:54:20 +00:00
|
|
|
if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
|
mm, page_alloc: do not wake kswapd with zone lock held
syzbot reported the following regression in the latest merge window and
it was confirmed by Qian Cai that a similar bug was visible from a
different context.
======================================================
WARNING: possible circular locking dependency detected
4.20.0+ #297 Not tainted
------------------------------------------------------
syz-executor0/8529 is trying to acquire lock:
000000005e7fb829 (&pgdat->kswapd_wait){....}, at:
__wake_up_common_lock+0x19e/0x330 kernel/sched/wait.c:120
but task is already holding lock:
000000009bb7bae0 (&(&zone->lock)->rlock){-.-.}, at: spin_lock
include/linux/spinlock.h:329 [inline]
000000009bb7bae0 (&(&zone->lock)->rlock){-.-.}, at: rmqueue_bulk
mm/page_alloc.c:2548 [inline]
000000009bb7bae0 (&(&zone->lock)->rlock){-.-.}, at: __rmqueue_pcplist
mm/page_alloc.c:3021 [inline]
000000009bb7bae0 (&(&zone->lock)->rlock){-.-.}, at: rmqueue_pcplist
mm/page_alloc.c:3050 [inline]
000000009bb7bae0 (&(&zone->lock)->rlock){-.-.}, at: rmqueue
mm/page_alloc.c:3072 [inline]
000000009bb7bae0 (&(&zone->lock)->rlock){-.-.}, at:
get_page_from_freelist+0x1bae/0x52a0 mm/page_alloc.c:3491
It appears to be a false positive in that the only way the lock ordering
should be inverted is if kswapd is waking itself and the wakeup
allocates debugging objects which should already be allocated if it's
kswapd doing the waking. Nevertheless, the possibility exists and so
it's best to avoid the problem.
This patch flags a zone as needing a kswapd using the, surprisingly,
unused zone flag field. The flag is read without the lock held to do
the wakeup. It's possible that the flag setting context is not the same
as the flag clearing context or for small races to occur. However, each
race possibility is harmless and there is no visible degredation in
fragmentation treatment.
While zone->flag could have continued to be unused, there is potential
for moving some existing fields into the flags field instead.
Particularly read-mostly ones like zone->initialized and
zone->contiguous.
Link: http://lkml.kernel.org/r/20190103225712.GJ31517@techsingularity.net
Fixes: 1c30844d2dfe ("mm: reclaim small amounts of memory when an external fragmentation event occurs")
Reported-by: syzbot+93d94a001cfbce9e60e1@syzkaller.appspotmail.com
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Qian Cai <cai@lca.pw>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-08 23:23:39 +00:00
|
|
|
clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
|
|
|
|
wakeup_kswapd(zone, 0, 0, zone_idx(zone));
|
|
|
|
}
|
|
|
|
|
2017-02-24 22:56:26 +00:00
|
|
|
VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
|
2005-04-16 22:20:36 +00:00
|
|
|
return page;
|
|
|
|
}
|
|
|
|
|
2006-12-08 10:39:45 +00:00
|
|
|
#ifdef CONFIG_FAIL_PAGE_ALLOC
|
|
|
|
|
2011-07-26 23:09:03 +00:00
|
|
|
static struct {
|
2006-12-08 10:39:45 +00:00
|
|
|
struct fault_attr attr;
|
|
|
|
|
2015-09-26 22:04:07 +00:00
|
|
|
bool ignore_gfp_highmem;
|
2015-11-07 00:28:28 +00:00
|
|
|
bool ignore_gfp_reclaim;
|
2007-07-16 06:40:23 +00:00
|
|
|
u32 min_order;
|
2006-12-08 10:39:45 +00:00
|
|
|
} fail_page_alloc = {
|
|
|
|
.attr = FAULT_ATTR_INITIALIZER,
|
2015-11-07 00:28:28 +00:00
|
|
|
.ignore_gfp_reclaim = true,
|
2015-09-26 22:04:07 +00:00
|
|
|
.ignore_gfp_highmem = true,
|
2007-07-16 06:40:23 +00:00
|
|
|
.min_order = 1,
|
2006-12-08 10:39:45 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
static int __init setup_fail_page_alloc(char *str)
|
|
|
|
{
|
|
|
|
return setup_fault_attr(&fail_page_alloc.attr, str);
|
|
|
|
}
|
|
|
|
__setup("fail_page_alloc=", setup_fail_page_alloc);
|
|
|
|
|
2018-12-28 08:39:23 +00:00
|
|
|
static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
|
2006-12-08 10:39:45 +00:00
|
|
|
{
|
2022-11-18 10:00:11 +00:00
|
|
|
int flags = 0;
|
|
|
|
|
2007-07-16 06:40:23 +00:00
|
|
|
if (order < fail_page_alloc.min_order)
|
2012-07-31 23:41:51 +00:00
|
|
|
return false;
|
2006-12-08 10:39:45 +00:00
|
|
|
if (gfp_mask & __GFP_NOFAIL)
|
2012-07-31 23:41:51 +00:00
|
|
|
return false;
|
2006-12-08 10:39:45 +00:00
|
|
|
if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
|
2012-07-31 23:41:51 +00:00
|
|
|
return false;
|
2015-11-07 00:28:28 +00:00
|
|
|
if (fail_page_alloc.ignore_gfp_reclaim &&
|
|
|
|
(gfp_mask & __GFP_DIRECT_RECLAIM))
|
2012-07-31 23:41:51 +00:00
|
|
|
return false;
|
2006-12-08 10:39:45 +00:00
|
|
|
|
2022-11-18 10:00:11 +00:00
|
|
|
/* See comment in __should_failslab() */
|
2022-05-19 21:08:55 +00:00
|
|
|
if (gfp_mask & __GFP_NOWARN)
|
2022-11-18 10:00:11 +00:00
|
|
|
flags |= FAULT_NOWARN;
|
2022-05-19 21:08:55 +00:00
|
|
|
|
2022-11-18 10:00:11 +00:00
|
|
|
return should_fail_ex(&fail_page_alloc.attr, 1 << order, flags);
|
2006-12-08 10:39:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
|
|
|
|
|
|
|
|
static int __init fail_page_alloc_debugfs(void)
|
|
|
|
{
|
2018-06-14 22:27:58 +00:00
|
|
|
umode_t mode = S_IFREG | 0600;
|
2006-12-08 10:39:45 +00:00
|
|
|
struct dentry *dir;
|
|
|
|
|
2011-08-03 23:21:01 +00:00
|
|
|
dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
|
|
|
|
&fail_page_alloc.attr);
|
2011-07-26 23:09:03 +00:00
|
|
|
|
2019-03-05 23:46:09 +00:00
|
|
|
debugfs_create_bool("ignore-gfp-wait", mode, dir,
|
|
|
|
&fail_page_alloc.ignore_gfp_reclaim);
|
|
|
|
debugfs_create_bool("ignore-gfp-highmem", mode, dir,
|
|
|
|
&fail_page_alloc.ignore_gfp_highmem);
|
|
|
|
debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
|
2006-12-08 10:39:45 +00:00
|
|
|
|
2019-03-05 23:46:09 +00:00
|
|
|
return 0;
|
2006-12-08 10:39:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
late_initcall(fail_page_alloc_debugfs);
|
|
|
|
|
|
|
|
#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
|
|
|
|
|
|
|
|
#else /* CONFIG_FAIL_PAGE_ALLOC */
|
|
|
|
|
2018-12-28 08:39:23 +00:00
|
|
|
static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
|
2006-12-08 10:39:45 +00:00
|
|
|
{
|
2012-07-31 23:41:51 +00:00
|
|
|
return false;
|
2006-12-08 10:39:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* CONFIG_FAIL_PAGE_ALLOC */
|
|
|
|
|
2021-07-15 04:26:43 +00:00
|
|
|
noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
|
2018-12-28 08:39:23 +00:00
|
|
|
{
|
|
|
|
return __should_fail_alloc_page(gfp_mask, order);
|
|
|
|
}
|
|
|
|
ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
|
|
|
|
|
page_alloc: consider highatomic reserve in watermark fast
zone_watermark_fast was introduced by commit 48ee5f3696f6 ("mm,
page_alloc: shortcut watermark checks for order-0 pages"). The commit
simply checks if free pages is bigger than watermark without additional
calculation such like reducing watermark.
It considered free cma pages but it did not consider highatomic reserved.
This may incur exhaustion of free pages except high order atomic free
pages.
Assume that reserved_highatomic pageblock is bigger than watermark min,
and there are only few free pages except high order atomic free. Because
zone_watermark_fast passes the allocation without considering high order
atomic free, normal reclaimable allocation like GFP_HIGHUSER will consume
all the free pages. Then finally order-0 atomic allocation may fail on
allocation.
This means watermark min is not protected against non-atomic allocation.
The order-0 atomic allocation with ALLOC_HARDER unwantedly can be failed.
Additionally the __GFP_MEMALLOC allocation with ALLOC_NO_WATERMARKS also
can be failed.
To avoid the problem, zone_watermark_fast should consider highatomic
reserve. If the actual size of high atomic free is counted accurately
like cma free, we may use it. On this patch just use
nr_reserved_highatomic. Additionally introduce
__zone_watermark_unusable_free to factor out common parts between
zone_watermark_fast and __zone_watermark_ok.
This is an example of ALLOC_HARDER allocation failure using v4.19 based
kernel.
Binder:9343_3: page allocation failure: order:0, mode:0x480020(GFP_ATOMIC), nodemask=(null)
Call trace:
[<ffffff8008f40f8c>] dump_stack+0xb8/0xf0
[<ffffff8008223320>] warn_alloc+0xd8/0x12c
[<ffffff80082245e4>] __alloc_pages_nodemask+0x120c/0x1250
[<ffffff800827f6e8>] new_slab+0x128/0x604
[<ffffff800827b0cc>] ___slab_alloc+0x508/0x670
[<ffffff800827ba00>] __kmalloc+0x2f8/0x310
[<ffffff80084ac3e0>] context_struct_to_string+0x104/0x1cc
[<ffffff80084ad8fc>] security_sid_to_context_core+0x74/0x144
[<ffffff80084ad880>] security_sid_to_context+0x10/0x18
[<ffffff800849bd80>] selinux_secid_to_secctx+0x20/0x28
[<ffffff800849109c>] security_secid_to_secctx+0x3c/0x70
[<ffffff8008bfe118>] binder_transaction+0xe68/0x454c
Mem-Info:
active_anon:102061 inactive_anon:81551 isolated_anon:0
active_file:59102 inactive_file:68924 isolated_file:64
unevictable:611 dirty:63 writeback:0 unstable:0
slab_reclaimable:13324 slab_unreclaimable:44354
mapped:83015 shmem:4858 pagetables:26316 bounce:0
free:2727 free_pcp:1035 free_cma:178
Node 0 active_anon:408244kB inactive_anon:326204kB active_file:236408kB inactive_file:275696kB unevictable:2444kB isolated(anon):0kB isolated(file):256kB mapped:332060kB dirty:252kB writeback:0kB shmem:19432kB writeback_tmp:0kB unstable:0kB all_unreclaimable? no
Normal free:10908kB min:6192kB low:44388kB high:47060kB active_anon:409160kB inactive_anon:325924kB active_file:235820kB inactive_file:276628kB unevictable:2444kB writepending:252kB present:3076096kB managed:2673676kB mlocked:2444kB kernel_stack:62512kB pagetables:105264kB bounce:0kB free_pcp:4140kB local_pcp:40kB free_cma:712kB
lowmem_reserve[]: 0 0
Normal: 505*4kB (H) 357*8kB (H) 201*16kB (H) 65*32kB (H) 1*64kB (H) 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB = 10236kB
138826 total pagecache pages
5460 pages in swap cache
Swap cache stats: add 8273090, delete 8267506, find 1004381/4060142
This is an example of ALLOC_NO_WATERMARKS allocation failure using v4.14
based kernel.
kswapd0: page allocation failure: order:0, mode:0x140000a(GFP_NOIO|__GFP_HIGHMEM|__GFP_MOVABLE), nodemask=(null)
kswapd0 cpuset=/ mems_allowed=0
CPU: 4 PID: 1221 Comm: kswapd0 Not tainted 4.14.113-18770262-userdebug #1
Call trace:
[<0000000000000000>] dump_backtrace+0x0/0x248
[<0000000000000000>] show_stack+0x18/0x20
[<0000000000000000>] __dump_stack+0x20/0x28
[<0000000000000000>] dump_stack+0x68/0x90
[<0000000000000000>] warn_alloc+0x104/0x198
[<0000000000000000>] __alloc_pages_nodemask+0xdc0/0xdf0
[<0000000000000000>] zs_malloc+0x148/0x3d0
[<0000000000000000>] zram_bvec_rw+0x410/0x798
[<0000000000000000>] zram_rw_page+0x88/0xdc
[<0000000000000000>] bdev_write_page+0x70/0xbc
[<0000000000000000>] __swap_writepage+0x58/0x37c
[<0000000000000000>] swap_writepage+0x40/0x4c
[<0000000000000000>] shrink_page_list+0xc30/0xf48
[<0000000000000000>] shrink_inactive_list+0x2b0/0x61c
[<0000000000000000>] shrink_node_memcg+0x23c/0x618
[<0000000000000000>] shrink_node+0x1c8/0x304
[<0000000000000000>] kswapd+0x680/0x7c4
[<0000000000000000>] kthread+0x110/0x120
[<0000000000000000>] ret_from_fork+0x10/0x18
Mem-Info:
active_anon:111826 inactive_anon:65557 isolated_anon:0\x0a active_file:44260 inactive_file:83422 isolated_file:0\x0a unevictable:4158 dirty:117 writeback:0 unstable:0\x0a slab_reclaimable:13943 slab_unreclaimable:43315\x0a mapped:102511 shmem:3299 pagetables:19566 bounce:0\x0a free:3510 free_pcp:553 free_cma:0
Node 0 active_anon:447304kB inactive_anon:262228kB active_file:177040kB inactive_file:333688kB unevictable:16632kB isolated(anon):0kB isolated(file):0kB mapped:410044kB d irty:468kB writeback:0kB shmem:13196kB writeback_tmp:0kB unstable:0kB all_unreclaimable? no
Normal free:14040kB min:7440kB low:94500kB high:98136kB reserved_highatomic:32768KB active_anon:447336kB inactive_anon:261668kB active_file:177572kB inactive_file:333768k B unevictable:16632kB writepending:480kB present:4081664kB managed:3637088kB mlocked:16632kB kernel_stack:47072kB pagetables:78264kB bounce:0kB free_pcp:2280kB local_pcp:720kB free_cma:0kB [ 4738.329607] lowmem_reserve[]: 0 0
Normal: 860*4kB (H) 453*8kB (H) 180*16kB (H) 26*32kB (H) 34*64kB (H) 6*128kB (H) 2*256kB (H) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 14232kB
This is trace log which shows GFP_HIGHUSER consumes free pages right
before ALLOC_NO_WATERMARKS.
<...>-22275 [006] .... 889.213383: mm_page_alloc: page=00000000d2be5665 pfn=970744 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213385: mm_page_alloc: page=000000004b2335c2 pfn=970745 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213387: mm_page_alloc: page=00000000017272e1 pfn=970278 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213389: mm_page_alloc: page=00000000c4be79fb pfn=970279 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213391: mm_page_alloc: page=00000000f8a51d4f pfn=970260 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213393: mm_page_alloc: page=000000006ba8f5ac pfn=970261 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213395: mm_page_alloc: page=00000000819f1cd3 pfn=970196 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213396: mm_page_alloc: page=00000000f6b72a64 pfn=970197 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
kswapd0-1207 [005] ...1 889.213398: mm_page_alloc: page= (null) pfn=0 order=0 migratetype=1 nr_free=3650 gfp_flags=GFP_NOWAIT|__GFP_HIGHMEM|__GFP_NOWARN|__GFP_MOVABLE
[jaewon31.kim@samsung.com: remove redundant code for high-order]
Link: http://lkml.kernel.org/r/20200623035242.27232-1-jaewon31.kim@samsung.com
Reported-by: Yong-Taek Lee <ytk.lee@samsung.com>
Suggested-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Jaewon Kim <jaewon31.kim@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Baoquan He <bhe@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Yong-Taek Lee <ytk.lee@samsung.com>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20200619235958.11283-1-jaewon31.kim@samsung.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 06:25:20 +00:00
|
|
|
static inline long __zone_watermark_unusable_free(struct zone *z,
|
|
|
|
unsigned int order, unsigned int alloc_flags)
|
|
|
|
{
|
|
|
|
long unusable_free = (1 << order) - 1;
|
|
|
|
|
|
|
|
/*
|
2023-01-13 11:12:15 +00:00
|
|
|
* If the caller does not have rights to reserves below the min
|
|
|
|
* watermark then subtract the high-atomic reserves. This will
|
|
|
|
* over-estimate the size of the atomic reserve but it avoids a search.
|
page_alloc: consider highatomic reserve in watermark fast
zone_watermark_fast was introduced by commit 48ee5f3696f6 ("mm,
page_alloc: shortcut watermark checks for order-0 pages"). The commit
simply checks if free pages is bigger than watermark without additional
calculation such like reducing watermark.
It considered free cma pages but it did not consider highatomic reserved.
This may incur exhaustion of free pages except high order atomic free
pages.
Assume that reserved_highatomic pageblock is bigger than watermark min,
and there are only few free pages except high order atomic free. Because
zone_watermark_fast passes the allocation without considering high order
atomic free, normal reclaimable allocation like GFP_HIGHUSER will consume
all the free pages. Then finally order-0 atomic allocation may fail on
allocation.
This means watermark min is not protected against non-atomic allocation.
The order-0 atomic allocation with ALLOC_HARDER unwantedly can be failed.
Additionally the __GFP_MEMALLOC allocation with ALLOC_NO_WATERMARKS also
can be failed.
To avoid the problem, zone_watermark_fast should consider highatomic
reserve. If the actual size of high atomic free is counted accurately
like cma free, we may use it. On this patch just use
nr_reserved_highatomic. Additionally introduce
__zone_watermark_unusable_free to factor out common parts between
zone_watermark_fast and __zone_watermark_ok.
This is an example of ALLOC_HARDER allocation failure using v4.19 based
kernel.
Binder:9343_3: page allocation failure: order:0, mode:0x480020(GFP_ATOMIC), nodemask=(null)
Call trace:
[<ffffff8008f40f8c>] dump_stack+0xb8/0xf0
[<ffffff8008223320>] warn_alloc+0xd8/0x12c
[<ffffff80082245e4>] __alloc_pages_nodemask+0x120c/0x1250
[<ffffff800827f6e8>] new_slab+0x128/0x604
[<ffffff800827b0cc>] ___slab_alloc+0x508/0x670
[<ffffff800827ba00>] __kmalloc+0x2f8/0x310
[<ffffff80084ac3e0>] context_struct_to_string+0x104/0x1cc
[<ffffff80084ad8fc>] security_sid_to_context_core+0x74/0x144
[<ffffff80084ad880>] security_sid_to_context+0x10/0x18
[<ffffff800849bd80>] selinux_secid_to_secctx+0x20/0x28
[<ffffff800849109c>] security_secid_to_secctx+0x3c/0x70
[<ffffff8008bfe118>] binder_transaction+0xe68/0x454c
Mem-Info:
active_anon:102061 inactive_anon:81551 isolated_anon:0
active_file:59102 inactive_file:68924 isolated_file:64
unevictable:611 dirty:63 writeback:0 unstable:0
slab_reclaimable:13324 slab_unreclaimable:44354
mapped:83015 shmem:4858 pagetables:26316 bounce:0
free:2727 free_pcp:1035 free_cma:178
Node 0 active_anon:408244kB inactive_anon:326204kB active_file:236408kB inactive_file:275696kB unevictable:2444kB isolated(anon):0kB isolated(file):256kB mapped:332060kB dirty:252kB writeback:0kB shmem:19432kB writeback_tmp:0kB unstable:0kB all_unreclaimable? no
Normal free:10908kB min:6192kB low:44388kB high:47060kB active_anon:409160kB inactive_anon:325924kB active_file:235820kB inactive_file:276628kB unevictable:2444kB writepending:252kB present:3076096kB managed:2673676kB mlocked:2444kB kernel_stack:62512kB pagetables:105264kB bounce:0kB free_pcp:4140kB local_pcp:40kB free_cma:712kB
lowmem_reserve[]: 0 0
Normal: 505*4kB (H) 357*8kB (H) 201*16kB (H) 65*32kB (H) 1*64kB (H) 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB = 10236kB
138826 total pagecache pages
5460 pages in swap cache
Swap cache stats: add 8273090, delete 8267506, find 1004381/4060142
This is an example of ALLOC_NO_WATERMARKS allocation failure using v4.14
based kernel.
kswapd0: page allocation failure: order:0, mode:0x140000a(GFP_NOIO|__GFP_HIGHMEM|__GFP_MOVABLE), nodemask=(null)
kswapd0 cpuset=/ mems_allowed=0
CPU: 4 PID: 1221 Comm: kswapd0 Not tainted 4.14.113-18770262-userdebug #1
Call trace:
[<0000000000000000>] dump_backtrace+0x0/0x248
[<0000000000000000>] show_stack+0x18/0x20
[<0000000000000000>] __dump_stack+0x20/0x28
[<0000000000000000>] dump_stack+0x68/0x90
[<0000000000000000>] warn_alloc+0x104/0x198
[<0000000000000000>] __alloc_pages_nodemask+0xdc0/0xdf0
[<0000000000000000>] zs_malloc+0x148/0x3d0
[<0000000000000000>] zram_bvec_rw+0x410/0x798
[<0000000000000000>] zram_rw_page+0x88/0xdc
[<0000000000000000>] bdev_write_page+0x70/0xbc
[<0000000000000000>] __swap_writepage+0x58/0x37c
[<0000000000000000>] swap_writepage+0x40/0x4c
[<0000000000000000>] shrink_page_list+0xc30/0xf48
[<0000000000000000>] shrink_inactive_list+0x2b0/0x61c
[<0000000000000000>] shrink_node_memcg+0x23c/0x618
[<0000000000000000>] shrink_node+0x1c8/0x304
[<0000000000000000>] kswapd+0x680/0x7c4
[<0000000000000000>] kthread+0x110/0x120
[<0000000000000000>] ret_from_fork+0x10/0x18
Mem-Info:
active_anon:111826 inactive_anon:65557 isolated_anon:0\x0a active_file:44260 inactive_file:83422 isolated_file:0\x0a unevictable:4158 dirty:117 writeback:0 unstable:0\x0a slab_reclaimable:13943 slab_unreclaimable:43315\x0a mapped:102511 shmem:3299 pagetables:19566 bounce:0\x0a free:3510 free_pcp:553 free_cma:0
Node 0 active_anon:447304kB inactive_anon:262228kB active_file:177040kB inactive_file:333688kB unevictable:16632kB isolated(anon):0kB isolated(file):0kB mapped:410044kB d irty:468kB writeback:0kB shmem:13196kB writeback_tmp:0kB unstable:0kB all_unreclaimable? no
Normal free:14040kB min:7440kB low:94500kB high:98136kB reserved_highatomic:32768KB active_anon:447336kB inactive_anon:261668kB active_file:177572kB inactive_file:333768k B unevictable:16632kB writepending:480kB present:4081664kB managed:3637088kB mlocked:16632kB kernel_stack:47072kB pagetables:78264kB bounce:0kB free_pcp:2280kB local_pcp:720kB free_cma:0kB [ 4738.329607] lowmem_reserve[]: 0 0
Normal: 860*4kB (H) 453*8kB (H) 180*16kB (H) 26*32kB (H) 34*64kB (H) 6*128kB (H) 2*256kB (H) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 14232kB
This is trace log which shows GFP_HIGHUSER consumes free pages right
before ALLOC_NO_WATERMARKS.
<...>-22275 [006] .... 889.213383: mm_page_alloc: page=00000000d2be5665 pfn=970744 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213385: mm_page_alloc: page=000000004b2335c2 pfn=970745 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213387: mm_page_alloc: page=00000000017272e1 pfn=970278 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213389: mm_page_alloc: page=00000000c4be79fb pfn=970279 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213391: mm_page_alloc: page=00000000f8a51d4f pfn=970260 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213393: mm_page_alloc: page=000000006ba8f5ac pfn=970261 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213395: mm_page_alloc: page=00000000819f1cd3 pfn=970196 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213396: mm_page_alloc: page=00000000f6b72a64 pfn=970197 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
kswapd0-1207 [005] ...1 889.213398: mm_page_alloc: page= (null) pfn=0 order=0 migratetype=1 nr_free=3650 gfp_flags=GFP_NOWAIT|__GFP_HIGHMEM|__GFP_NOWARN|__GFP_MOVABLE
[jaewon31.kim@samsung.com: remove redundant code for high-order]
Link: http://lkml.kernel.org/r/20200623035242.27232-1-jaewon31.kim@samsung.com
Reported-by: Yong-Taek Lee <ytk.lee@samsung.com>
Suggested-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Jaewon Kim <jaewon31.kim@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Baoquan He <bhe@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Yong-Taek Lee <ytk.lee@samsung.com>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20200619235958.11283-1-jaewon31.kim@samsung.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 06:25:20 +00:00
|
|
|
*/
|
2023-01-13 11:12:15 +00:00
|
|
|
if (likely(!(alloc_flags & ALLOC_RESERVES)))
|
page_alloc: consider highatomic reserve in watermark fast
zone_watermark_fast was introduced by commit 48ee5f3696f6 ("mm,
page_alloc: shortcut watermark checks for order-0 pages"). The commit
simply checks if free pages is bigger than watermark without additional
calculation such like reducing watermark.
It considered free cma pages but it did not consider highatomic reserved.
This may incur exhaustion of free pages except high order atomic free
pages.
Assume that reserved_highatomic pageblock is bigger than watermark min,
and there are only few free pages except high order atomic free. Because
zone_watermark_fast passes the allocation without considering high order
atomic free, normal reclaimable allocation like GFP_HIGHUSER will consume
all the free pages. Then finally order-0 atomic allocation may fail on
allocation.
This means watermark min is not protected against non-atomic allocation.
The order-0 atomic allocation with ALLOC_HARDER unwantedly can be failed.
Additionally the __GFP_MEMALLOC allocation with ALLOC_NO_WATERMARKS also
can be failed.
To avoid the problem, zone_watermark_fast should consider highatomic
reserve. If the actual size of high atomic free is counted accurately
like cma free, we may use it. On this patch just use
nr_reserved_highatomic. Additionally introduce
__zone_watermark_unusable_free to factor out common parts between
zone_watermark_fast and __zone_watermark_ok.
This is an example of ALLOC_HARDER allocation failure using v4.19 based
kernel.
Binder:9343_3: page allocation failure: order:0, mode:0x480020(GFP_ATOMIC), nodemask=(null)
Call trace:
[<ffffff8008f40f8c>] dump_stack+0xb8/0xf0
[<ffffff8008223320>] warn_alloc+0xd8/0x12c
[<ffffff80082245e4>] __alloc_pages_nodemask+0x120c/0x1250
[<ffffff800827f6e8>] new_slab+0x128/0x604
[<ffffff800827b0cc>] ___slab_alloc+0x508/0x670
[<ffffff800827ba00>] __kmalloc+0x2f8/0x310
[<ffffff80084ac3e0>] context_struct_to_string+0x104/0x1cc
[<ffffff80084ad8fc>] security_sid_to_context_core+0x74/0x144
[<ffffff80084ad880>] security_sid_to_context+0x10/0x18
[<ffffff800849bd80>] selinux_secid_to_secctx+0x20/0x28
[<ffffff800849109c>] security_secid_to_secctx+0x3c/0x70
[<ffffff8008bfe118>] binder_transaction+0xe68/0x454c
Mem-Info:
active_anon:102061 inactive_anon:81551 isolated_anon:0
active_file:59102 inactive_file:68924 isolated_file:64
unevictable:611 dirty:63 writeback:0 unstable:0
slab_reclaimable:13324 slab_unreclaimable:44354
mapped:83015 shmem:4858 pagetables:26316 bounce:0
free:2727 free_pcp:1035 free_cma:178
Node 0 active_anon:408244kB inactive_anon:326204kB active_file:236408kB inactive_file:275696kB unevictable:2444kB isolated(anon):0kB isolated(file):256kB mapped:332060kB dirty:252kB writeback:0kB shmem:19432kB writeback_tmp:0kB unstable:0kB all_unreclaimable? no
Normal free:10908kB min:6192kB low:44388kB high:47060kB active_anon:409160kB inactive_anon:325924kB active_file:235820kB inactive_file:276628kB unevictable:2444kB writepending:252kB present:3076096kB managed:2673676kB mlocked:2444kB kernel_stack:62512kB pagetables:105264kB bounce:0kB free_pcp:4140kB local_pcp:40kB free_cma:712kB
lowmem_reserve[]: 0 0
Normal: 505*4kB (H) 357*8kB (H) 201*16kB (H) 65*32kB (H) 1*64kB (H) 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB = 10236kB
138826 total pagecache pages
5460 pages in swap cache
Swap cache stats: add 8273090, delete 8267506, find 1004381/4060142
This is an example of ALLOC_NO_WATERMARKS allocation failure using v4.14
based kernel.
kswapd0: page allocation failure: order:0, mode:0x140000a(GFP_NOIO|__GFP_HIGHMEM|__GFP_MOVABLE), nodemask=(null)
kswapd0 cpuset=/ mems_allowed=0
CPU: 4 PID: 1221 Comm: kswapd0 Not tainted 4.14.113-18770262-userdebug #1
Call trace:
[<0000000000000000>] dump_backtrace+0x0/0x248
[<0000000000000000>] show_stack+0x18/0x20
[<0000000000000000>] __dump_stack+0x20/0x28
[<0000000000000000>] dump_stack+0x68/0x90
[<0000000000000000>] warn_alloc+0x104/0x198
[<0000000000000000>] __alloc_pages_nodemask+0xdc0/0xdf0
[<0000000000000000>] zs_malloc+0x148/0x3d0
[<0000000000000000>] zram_bvec_rw+0x410/0x798
[<0000000000000000>] zram_rw_page+0x88/0xdc
[<0000000000000000>] bdev_write_page+0x70/0xbc
[<0000000000000000>] __swap_writepage+0x58/0x37c
[<0000000000000000>] swap_writepage+0x40/0x4c
[<0000000000000000>] shrink_page_list+0xc30/0xf48
[<0000000000000000>] shrink_inactive_list+0x2b0/0x61c
[<0000000000000000>] shrink_node_memcg+0x23c/0x618
[<0000000000000000>] shrink_node+0x1c8/0x304
[<0000000000000000>] kswapd+0x680/0x7c4
[<0000000000000000>] kthread+0x110/0x120
[<0000000000000000>] ret_from_fork+0x10/0x18
Mem-Info:
active_anon:111826 inactive_anon:65557 isolated_anon:0\x0a active_file:44260 inactive_file:83422 isolated_file:0\x0a unevictable:4158 dirty:117 writeback:0 unstable:0\x0a slab_reclaimable:13943 slab_unreclaimable:43315\x0a mapped:102511 shmem:3299 pagetables:19566 bounce:0\x0a free:3510 free_pcp:553 free_cma:0
Node 0 active_anon:447304kB inactive_anon:262228kB active_file:177040kB inactive_file:333688kB unevictable:16632kB isolated(anon):0kB isolated(file):0kB mapped:410044kB d irty:468kB writeback:0kB shmem:13196kB writeback_tmp:0kB unstable:0kB all_unreclaimable? no
Normal free:14040kB min:7440kB low:94500kB high:98136kB reserved_highatomic:32768KB active_anon:447336kB inactive_anon:261668kB active_file:177572kB inactive_file:333768k B unevictable:16632kB writepending:480kB present:4081664kB managed:3637088kB mlocked:16632kB kernel_stack:47072kB pagetables:78264kB bounce:0kB free_pcp:2280kB local_pcp:720kB free_cma:0kB [ 4738.329607] lowmem_reserve[]: 0 0
Normal: 860*4kB (H) 453*8kB (H) 180*16kB (H) 26*32kB (H) 34*64kB (H) 6*128kB (H) 2*256kB (H) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 14232kB
This is trace log which shows GFP_HIGHUSER consumes free pages right
before ALLOC_NO_WATERMARKS.
<...>-22275 [006] .... 889.213383: mm_page_alloc: page=00000000d2be5665 pfn=970744 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213385: mm_page_alloc: page=000000004b2335c2 pfn=970745 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213387: mm_page_alloc: page=00000000017272e1 pfn=970278 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213389: mm_page_alloc: page=00000000c4be79fb pfn=970279 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213391: mm_page_alloc: page=00000000f8a51d4f pfn=970260 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213393: mm_page_alloc: page=000000006ba8f5ac pfn=970261 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213395: mm_page_alloc: page=00000000819f1cd3 pfn=970196 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213396: mm_page_alloc: page=00000000f6b72a64 pfn=970197 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
kswapd0-1207 [005] ...1 889.213398: mm_page_alloc: page= (null) pfn=0 order=0 migratetype=1 nr_free=3650 gfp_flags=GFP_NOWAIT|__GFP_HIGHMEM|__GFP_NOWARN|__GFP_MOVABLE
[jaewon31.kim@samsung.com: remove redundant code for high-order]
Link: http://lkml.kernel.org/r/20200623035242.27232-1-jaewon31.kim@samsung.com
Reported-by: Yong-Taek Lee <ytk.lee@samsung.com>
Suggested-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Jaewon Kim <jaewon31.kim@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Baoquan He <bhe@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Yong-Taek Lee <ytk.lee@samsung.com>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20200619235958.11283-1-jaewon31.kim@samsung.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 06:25:20 +00:00
|
|
|
unusable_free += z->nr_reserved_highatomic;
|
|
|
|
|
|
|
|
#ifdef CONFIG_CMA
|
|
|
|
/* If allocation can't use CMA areas don't use free CMA pages */
|
|
|
|
if (!(alloc_flags & ALLOC_CMA))
|
|
|
|
unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
return unusable_free;
|
|
|
|
}
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
2015-11-07 00:28:40 +00:00
|
|
|
* Return true if free base pages are above 'mark'. For high-order checks it
|
|
|
|
* will return true of the order-0 watermark is reached and there is at least
|
|
|
|
* one free page of a suitable size. Checking now avoids taking the zone lock
|
|
|
|
* to check in the allocation paths if no pages are free.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
2016-05-20 23:57:12 +00:00
|
|
|
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
|
2020-06-03 22:59:01 +00:00
|
|
|
int highest_zoneidx, unsigned int alloc_flags,
|
2016-05-20 23:57:12 +00:00
|
|
|
long free_pages)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2007-02-10 09:43:02 +00:00
|
|
|
long min = mark;
|
2005-04-16 22:20:36 +00:00
|
|
|
int o;
|
|
|
|
|
2015-11-07 00:28:37 +00:00
|
|
|
/* free_pages may go negative - that's OK */
|
page_alloc: consider highatomic reserve in watermark fast
zone_watermark_fast was introduced by commit 48ee5f3696f6 ("mm,
page_alloc: shortcut watermark checks for order-0 pages"). The commit
simply checks if free pages is bigger than watermark without additional
calculation such like reducing watermark.
It considered free cma pages but it did not consider highatomic reserved.
This may incur exhaustion of free pages except high order atomic free
pages.
Assume that reserved_highatomic pageblock is bigger than watermark min,
and there are only few free pages except high order atomic free. Because
zone_watermark_fast passes the allocation without considering high order
atomic free, normal reclaimable allocation like GFP_HIGHUSER will consume
all the free pages. Then finally order-0 atomic allocation may fail on
allocation.
This means watermark min is not protected against non-atomic allocation.
The order-0 atomic allocation with ALLOC_HARDER unwantedly can be failed.
Additionally the __GFP_MEMALLOC allocation with ALLOC_NO_WATERMARKS also
can be failed.
To avoid the problem, zone_watermark_fast should consider highatomic
reserve. If the actual size of high atomic free is counted accurately
like cma free, we may use it. On this patch just use
nr_reserved_highatomic. Additionally introduce
__zone_watermark_unusable_free to factor out common parts between
zone_watermark_fast and __zone_watermark_ok.
This is an example of ALLOC_HARDER allocation failure using v4.19 based
kernel.
Binder:9343_3: page allocation failure: order:0, mode:0x480020(GFP_ATOMIC), nodemask=(null)
Call trace:
[<ffffff8008f40f8c>] dump_stack+0xb8/0xf0
[<ffffff8008223320>] warn_alloc+0xd8/0x12c
[<ffffff80082245e4>] __alloc_pages_nodemask+0x120c/0x1250
[<ffffff800827f6e8>] new_slab+0x128/0x604
[<ffffff800827b0cc>] ___slab_alloc+0x508/0x670
[<ffffff800827ba00>] __kmalloc+0x2f8/0x310
[<ffffff80084ac3e0>] context_struct_to_string+0x104/0x1cc
[<ffffff80084ad8fc>] security_sid_to_context_core+0x74/0x144
[<ffffff80084ad880>] security_sid_to_context+0x10/0x18
[<ffffff800849bd80>] selinux_secid_to_secctx+0x20/0x28
[<ffffff800849109c>] security_secid_to_secctx+0x3c/0x70
[<ffffff8008bfe118>] binder_transaction+0xe68/0x454c
Mem-Info:
active_anon:102061 inactive_anon:81551 isolated_anon:0
active_file:59102 inactive_file:68924 isolated_file:64
unevictable:611 dirty:63 writeback:0 unstable:0
slab_reclaimable:13324 slab_unreclaimable:44354
mapped:83015 shmem:4858 pagetables:26316 bounce:0
free:2727 free_pcp:1035 free_cma:178
Node 0 active_anon:408244kB inactive_anon:326204kB active_file:236408kB inactive_file:275696kB unevictable:2444kB isolated(anon):0kB isolated(file):256kB mapped:332060kB dirty:252kB writeback:0kB shmem:19432kB writeback_tmp:0kB unstable:0kB all_unreclaimable? no
Normal free:10908kB min:6192kB low:44388kB high:47060kB active_anon:409160kB inactive_anon:325924kB active_file:235820kB inactive_file:276628kB unevictable:2444kB writepending:252kB present:3076096kB managed:2673676kB mlocked:2444kB kernel_stack:62512kB pagetables:105264kB bounce:0kB free_pcp:4140kB local_pcp:40kB free_cma:712kB
lowmem_reserve[]: 0 0
Normal: 505*4kB (H) 357*8kB (H) 201*16kB (H) 65*32kB (H) 1*64kB (H) 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB = 10236kB
138826 total pagecache pages
5460 pages in swap cache
Swap cache stats: add 8273090, delete 8267506, find 1004381/4060142
This is an example of ALLOC_NO_WATERMARKS allocation failure using v4.14
based kernel.
kswapd0: page allocation failure: order:0, mode:0x140000a(GFP_NOIO|__GFP_HIGHMEM|__GFP_MOVABLE), nodemask=(null)
kswapd0 cpuset=/ mems_allowed=0
CPU: 4 PID: 1221 Comm: kswapd0 Not tainted 4.14.113-18770262-userdebug #1
Call trace:
[<0000000000000000>] dump_backtrace+0x0/0x248
[<0000000000000000>] show_stack+0x18/0x20
[<0000000000000000>] __dump_stack+0x20/0x28
[<0000000000000000>] dump_stack+0x68/0x90
[<0000000000000000>] warn_alloc+0x104/0x198
[<0000000000000000>] __alloc_pages_nodemask+0xdc0/0xdf0
[<0000000000000000>] zs_malloc+0x148/0x3d0
[<0000000000000000>] zram_bvec_rw+0x410/0x798
[<0000000000000000>] zram_rw_page+0x88/0xdc
[<0000000000000000>] bdev_write_page+0x70/0xbc
[<0000000000000000>] __swap_writepage+0x58/0x37c
[<0000000000000000>] swap_writepage+0x40/0x4c
[<0000000000000000>] shrink_page_list+0xc30/0xf48
[<0000000000000000>] shrink_inactive_list+0x2b0/0x61c
[<0000000000000000>] shrink_node_memcg+0x23c/0x618
[<0000000000000000>] shrink_node+0x1c8/0x304
[<0000000000000000>] kswapd+0x680/0x7c4
[<0000000000000000>] kthread+0x110/0x120
[<0000000000000000>] ret_from_fork+0x10/0x18
Mem-Info:
active_anon:111826 inactive_anon:65557 isolated_anon:0\x0a active_file:44260 inactive_file:83422 isolated_file:0\x0a unevictable:4158 dirty:117 writeback:0 unstable:0\x0a slab_reclaimable:13943 slab_unreclaimable:43315\x0a mapped:102511 shmem:3299 pagetables:19566 bounce:0\x0a free:3510 free_pcp:553 free_cma:0
Node 0 active_anon:447304kB inactive_anon:262228kB active_file:177040kB inactive_file:333688kB unevictable:16632kB isolated(anon):0kB isolated(file):0kB mapped:410044kB d irty:468kB writeback:0kB shmem:13196kB writeback_tmp:0kB unstable:0kB all_unreclaimable? no
Normal free:14040kB min:7440kB low:94500kB high:98136kB reserved_highatomic:32768KB active_anon:447336kB inactive_anon:261668kB active_file:177572kB inactive_file:333768k B unevictable:16632kB writepending:480kB present:4081664kB managed:3637088kB mlocked:16632kB kernel_stack:47072kB pagetables:78264kB bounce:0kB free_pcp:2280kB local_pcp:720kB free_cma:0kB [ 4738.329607] lowmem_reserve[]: 0 0
Normal: 860*4kB (H) 453*8kB (H) 180*16kB (H) 26*32kB (H) 34*64kB (H) 6*128kB (H) 2*256kB (H) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 14232kB
This is trace log which shows GFP_HIGHUSER consumes free pages right
before ALLOC_NO_WATERMARKS.
<...>-22275 [006] .... 889.213383: mm_page_alloc: page=00000000d2be5665 pfn=970744 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213385: mm_page_alloc: page=000000004b2335c2 pfn=970745 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213387: mm_page_alloc: page=00000000017272e1 pfn=970278 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213389: mm_page_alloc: page=00000000c4be79fb pfn=970279 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213391: mm_page_alloc: page=00000000f8a51d4f pfn=970260 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213393: mm_page_alloc: page=000000006ba8f5ac pfn=970261 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213395: mm_page_alloc: page=00000000819f1cd3 pfn=970196 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213396: mm_page_alloc: page=00000000f6b72a64 pfn=970197 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
kswapd0-1207 [005] ...1 889.213398: mm_page_alloc: page= (null) pfn=0 order=0 migratetype=1 nr_free=3650 gfp_flags=GFP_NOWAIT|__GFP_HIGHMEM|__GFP_NOWARN|__GFP_MOVABLE
[jaewon31.kim@samsung.com: remove redundant code for high-order]
Link: http://lkml.kernel.org/r/20200623035242.27232-1-jaewon31.kim@samsung.com
Reported-by: Yong-Taek Lee <ytk.lee@samsung.com>
Suggested-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Jaewon Kim <jaewon31.kim@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Baoquan He <bhe@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Yong-Taek Lee <ytk.lee@samsung.com>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20200619235958.11283-1-jaewon31.kim@samsung.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 06:25:20 +00:00
|
|
|
free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
|
2015-11-07 00:28:37 +00:00
|
|
|
|
2023-01-13 11:12:15 +00:00
|
|
|
if (unlikely(alloc_flags & ALLOC_RESERVES)) {
|
|
|
|
/*
|
|
|
|
* __GFP_HIGH allows access to 50% of the min reserve as well
|
|
|
|
* as OOM.
|
|
|
|
*/
|
2023-01-13 11:12:16 +00:00
|
|
|
if (alloc_flags & ALLOC_MIN_RESERVE) {
|
2023-01-13 11:12:15 +00:00
|
|
|
min -= min / 2;
|
2015-11-07 00:28:37 +00:00
|
|
|
|
2023-01-13 11:12:16 +00:00
|
|
|
/*
|
|
|
|
* Non-blocking allocations (e.g. GFP_ATOMIC) can
|
|
|
|
* access more reserves than just __GFP_HIGH. Other
|
|
|
|
* non-blocking allocations requests such as GFP_NOWAIT
|
|
|
|
* or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
|
|
|
|
* access to the min reserve.
|
|
|
|
*/
|
|
|
|
if (alloc_flags & ALLOC_NON_BLOCK)
|
|
|
|
min -= min / 4;
|
|
|
|
}
|
2015-11-07 00:28:37 +00:00
|
|
|
|
2017-09-06 23:24:50 +00:00
|
|
|
/*
|
2023-01-13 11:12:15 +00:00
|
|
|
* OOM victims can try even harder than the normal reserve
|
2017-09-06 23:24:50 +00:00
|
|
|
* users on the grounds that it's definitely going to be in
|
|
|
|
* the exit path shortly and free memory. Any allocation it
|
|
|
|
* makes during the free path will be small and short-lived.
|
|
|
|
*/
|
|
|
|
if (alloc_flags & ALLOC_OOM)
|
|
|
|
min -= min / 2;
|
|
|
|
}
|
|
|
|
|
2015-11-07 00:28:40 +00:00
|
|
|
/*
|
|
|
|
* Check watermarks for an order-0 allocation request. If these
|
|
|
|
* are not met, then a high-order request also cannot go ahead
|
|
|
|
* even if a suitable page happened to be free.
|
|
|
|
*/
|
2020-06-03 22:59:01 +00:00
|
|
|
if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
|
mm: page allocator: adjust the per-cpu counter threshold when memory is low
Commit aa45484 ("calculate a better estimate of NR_FREE_PAGES when memory
is low") noted that watermarks were based on the vmstat NR_FREE_PAGES. To
avoid synchronization overhead, these counters are maintained on a per-cpu
basis and drained both periodically and when a threshold is above a
threshold. On large CPU systems, the difference between the estimate and
real value of NR_FREE_PAGES can be very high. The system can get into a
case where pages are allocated far below the min watermark potentially
causing livelock issues. The commit solved the problem by taking a better
reading of NR_FREE_PAGES when memory was low.
Unfortately, as reported by Shaohua Li this accurate reading can consume a
large amount of CPU time on systems with many sockets due to cache line
bouncing. This patch takes a different approach. For large machines
where counter drift might be unsafe and while kswapd is awake, the per-cpu
thresholds for the target pgdat are reduced to limit the level of drift to
what should be a safe level. This incurs a performance penalty in heavy
memory pressure by a factor that depends on the workload and the machine
but the machine should function correctly without accidentally exhausting
all memory on a node. There is an additional cost when kswapd wakes and
sleeps but the event is not expected to be frequent - in Shaohua's test
case, there was one recorded sleep and wake event at least.
To ensure that kswapd wakes up, a safe version of zone_watermark_ok() is
introduced that takes a more accurate reading of NR_FREE_PAGES when called
from wakeup_kswapd, when deciding whether it is really safe to go back to
sleep in sleeping_prematurely() and when deciding if a zone is really
balanced or not in balance_pgdat(). We are still using an expensive
function but limiting how often it is called.
When the test case is reproduced, the time spent in the watermark
functions is reduced. The following report is on the percentage of time
spent cumulatively spent in the functions zone_nr_free_pages(),
zone_watermark_ok(), __zone_watermark_ok(), zone_watermark_ok_safe(),
zone_page_state_snapshot(), zone_page_state().
vanilla 11.6615%
disable-threshold 0.2584%
David said:
: We had to pull aa454840 "mm: page allocator: calculate a better estimate
: of NR_FREE_PAGES when memory is low and kswapd is awake" from 2.6.36
: internally because tests showed that it would cause the machine to stall
: as the result of heavy kswapd activity. I merged it back with this fix as
: it is pending in the -mm tree and it solves the issue we were seeing, so I
: definitely think this should be pushed to -stable (and I would seriously
: consider it for 2.6.37 inclusion even at this late date).
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reported-by: Shaohua Li <shaohua.li@intel.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Tested-by: Nicolas Bareil <nico@chdir.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: <stable@kernel.org> [2.6.37.1, 2.6.36.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 23:45:41 +00:00
|
|
|
return false;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2015-11-07 00:28:40 +00:00
|
|
|
/* If this is an order-0 request then the watermark is fine */
|
|
|
|
if (!order)
|
|
|
|
return true;
|
|
|
|
|
|
|
|
/* For a high-order request, check at least one suitable page is free */
|
2023-03-15 11:31:33 +00:00
|
|
|
for (o = order; o <= MAX_ORDER; o++) {
|
2015-11-07 00:28:40 +00:00
|
|
|
struct free_area *area = &z->free_area[o];
|
|
|
|
int mt;
|
|
|
|
|
|
|
|
if (!area->nr_free)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
|
2019-05-14 22:41:32 +00:00
|
|
|
if (!free_area_empty(area, mt))
|
2015-11-07 00:28:40 +00:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_CMA
|
2018-05-23 01:18:21 +00:00
|
|
|
if ((alloc_flags & ALLOC_CMA) &&
|
2019-05-14 22:41:32 +00:00
|
|
|
!free_area_empty(area, MIGRATE_CMA)) {
|
2015-11-07 00:28:40 +00:00
|
|
|
return true;
|
2018-05-23 01:18:21 +00:00
|
|
|
}
|
2015-11-07 00:28:40 +00:00
|
|
|
#endif
|
2023-01-13 11:12:14 +00:00
|
|
|
if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
|
|
|
|
!free_area_empty(area, MIGRATE_HIGHATOMIC)) {
|
mm, page_alloc: fix potential false positive in __zone_watermark_ok
Since commit 97a16fc82a7c ("mm, page_alloc: only enforce watermarks for
order-0 allocations"), __zone_watermark_ok() check for high-order
allocations will shortcut per-migratetype free list checks for
ALLOC_HARDER allocations, and return true as long as there's free page
of any migratetype. The intention is that ALLOC_HARDER can allocate
from MIGRATE_HIGHATOMIC free lists, while normal allocations can't.
However, as a side effect, the watermark check will then also return
true when there are pages only on the MIGRATE_ISOLATE list, or (prior to
CMA conversion to ZONE_MOVABLE) on the MIGRATE_CMA list. Since the
allocation cannot actually obtain isolated pages, and might not be able
to obtain CMA pages, this can result in a false positive.
The condition should be rare and perhaps the outcome is not a fatal one.
Still, it's better if the watermark check is correct. There also
shouldn't be a performance tradeoff here.
Link: http://lkml.kernel.org/r/20171102125001.23708-1-vbabka@suse.cz
Fixes: 97a16fc82a7c ("mm, page_alloc: only enforce watermarks for order-0 allocations")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 01:38:30 +00:00
|
|
|
return true;
|
2023-01-13 11:12:14 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
2015-11-07 00:28:40 +00:00
|
|
|
return false;
|
mm: page allocator: adjust the per-cpu counter threshold when memory is low
Commit aa45484 ("calculate a better estimate of NR_FREE_PAGES when memory
is low") noted that watermarks were based on the vmstat NR_FREE_PAGES. To
avoid synchronization overhead, these counters are maintained on a per-cpu
basis and drained both periodically and when a threshold is above a
threshold. On large CPU systems, the difference between the estimate and
real value of NR_FREE_PAGES can be very high. The system can get into a
case where pages are allocated far below the min watermark potentially
causing livelock issues. The commit solved the problem by taking a better
reading of NR_FREE_PAGES when memory was low.
Unfortately, as reported by Shaohua Li this accurate reading can consume a
large amount of CPU time on systems with many sockets due to cache line
bouncing. This patch takes a different approach. For large machines
where counter drift might be unsafe and while kswapd is awake, the per-cpu
thresholds for the target pgdat are reduced to limit the level of drift to
what should be a safe level. This incurs a performance penalty in heavy
memory pressure by a factor that depends on the workload and the machine
but the machine should function correctly without accidentally exhausting
all memory on a node. There is an additional cost when kswapd wakes and
sleeps but the event is not expected to be frequent - in Shaohua's test
case, there was one recorded sleep and wake event at least.
To ensure that kswapd wakes up, a safe version of zone_watermark_ok() is
introduced that takes a more accurate reading of NR_FREE_PAGES when called
from wakeup_kswapd, when deciding whether it is really safe to go back to
sleep in sleeping_prematurely() and when deciding if a zone is really
balanced or not in balance_pgdat(). We are still using an expensive
function but limiting how often it is called.
When the test case is reproduced, the time spent in the watermark
functions is reduced. The following report is on the percentage of time
spent cumulatively spent in the functions zone_nr_free_pages(),
zone_watermark_ok(), __zone_watermark_ok(), zone_watermark_ok_safe(),
zone_page_state_snapshot(), zone_page_state().
vanilla 11.6615%
disable-threshold 0.2584%
David said:
: We had to pull aa454840 "mm: page allocator: calculate a better estimate
: of NR_FREE_PAGES when memory is low and kswapd is awake" from 2.6.36
: internally because tests showed that it would cause the machine to stall
: as the result of heavy kswapd activity. I merged it back with this fix as
: it is pending in the -mm tree and it solves the issue we were seeing, so I
: definitely think this should be pushed to -stable (and I would seriously
: consider it for 2.6.37 inclusion even at this late date).
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reported-by: Shaohua Li <shaohua.li@intel.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Tested-by: Nicolas Bareil <nico@chdir.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: <stable@kernel.org> [2.6.37.1, 2.6.36.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 23:45:41 +00:00
|
|
|
}
|
|
|
|
|
2014-06-04 23:10:21 +00:00
|
|
|
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
|
2020-06-03 22:59:01 +00:00
|
|
|
int highest_zoneidx, unsigned int alloc_flags)
|
mm: page allocator: adjust the per-cpu counter threshold when memory is low
Commit aa45484 ("calculate a better estimate of NR_FREE_PAGES when memory
is low") noted that watermarks were based on the vmstat NR_FREE_PAGES. To
avoid synchronization overhead, these counters are maintained on a per-cpu
basis and drained both periodically and when a threshold is above a
threshold. On large CPU systems, the difference between the estimate and
real value of NR_FREE_PAGES can be very high. The system can get into a
case where pages are allocated far below the min watermark potentially
causing livelock issues. The commit solved the problem by taking a better
reading of NR_FREE_PAGES when memory was low.
Unfortately, as reported by Shaohua Li this accurate reading can consume a
large amount of CPU time on systems with many sockets due to cache line
bouncing. This patch takes a different approach. For large machines
where counter drift might be unsafe and while kswapd is awake, the per-cpu
thresholds for the target pgdat are reduced to limit the level of drift to
what should be a safe level. This incurs a performance penalty in heavy
memory pressure by a factor that depends on the workload and the machine
but the machine should function correctly without accidentally exhausting
all memory on a node. There is an additional cost when kswapd wakes and
sleeps but the event is not expected to be frequent - in Shaohua's test
case, there was one recorded sleep and wake event at least.
To ensure that kswapd wakes up, a safe version of zone_watermark_ok() is
introduced that takes a more accurate reading of NR_FREE_PAGES when called
from wakeup_kswapd, when deciding whether it is really safe to go back to
sleep in sleeping_prematurely() and when deciding if a zone is really
balanced or not in balance_pgdat(). We are still using an expensive
function but limiting how often it is called.
When the test case is reproduced, the time spent in the watermark
functions is reduced. The following report is on the percentage of time
spent cumulatively spent in the functions zone_nr_free_pages(),
zone_watermark_ok(), __zone_watermark_ok(), zone_watermark_ok_safe(),
zone_page_state_snapshot(), zone_page_state().
vanilla 11.6615%
disable-threshold 0.2584%
David said:
: We had to pull aa454840 "mm: page allocator: calculate a better estimate
: of NR_FREE_PAGES when memory is low and kswapd is awake" from 2.6.36
: internally because tests showed that it would cause the machine to stall
: as the result of heavy kswapd activity. I merged it back with this fix as
: it is pending in the -mm tree and it solves the issue we were seeing, so I
: definitely think this should be pushed to -stable (and I would seriously
: consider it for 2.6.37 inclusion even at this late date).
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reported-by: Shaohua Li <shaohua.li@intel.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Tested-by: Nicolas Bareil <nico@chdir.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: <stable@kernel.org> [2.6.37.1, 2.6.36.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 23:45:41 +00:00
|
|
|
{
|
2020-06-03 22:59:01 +00:00
|
|
|
return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
|
mm: page allocator: adjust the per-cpu counter threshold when memory is low
Commit aa45484 ("calculate a better estimate of NR_FREE_PAGES when memory
is low") noted that watermarks were based on the vmstat NR_FREE_PAGES. To
avoid synchronization overhead, these counters are maintained on a per-cpu
basis and drained both periodically and when a threshold is above a
threshold. On large CPU systems, the difference between the estimate and
real value of NR_FREE_PAGES can be very high. The system can get into a
case where pages are allocated far below the min watermark potentially
causing livelock issues. The commit solved the problem by taking a better
reading of NR_FREE_PAGES when memory was low.
Unfortately, as reported by Shaohua Li this accurate reading can consume a
large amount of CPU time on systems with many sockets due to cache line
bouncing. This patch takes a different approach. For large machines
where counter drift might be unsafe and while kswapd is awake, the per-cpu
thresholds for the target pgdat are reduced to limit the level of drift to
what should be a safe level. This incurs a performance penalty in heavy
memory pressure by a factor that depends on the workload and the machine
but the machine should function correctly without accidentally exhausting
all memory on a node. There is an additional cost when kswapd wakes and
sleeps but the event is not expected to be frequent - in Shaohua's test
case, there was one recorded sleep and wake event at least.
To ensure that kswapd wakes up, a safe version of zone_watermark_ok() is
introduced that takes a more accurate reading of NR_FREE_PAGES when called
from wakeup_kswapd, when deciding whether it is really safe to go back to
sleep in sleeping_prematurely() and when deciding if a zone is really
balanced or not in balance_pgdat(). We are still using an expensive
function but limiting how often it is called.
When the test case is reproduced, the time spent in the watermark
functions is reduced. The following report is on the percentage of time
spent cumulatively spent in the functions zone_nr_free_pages(),
zone_watermark_ok(), __zone_watermark_ok(), zone_watermark_ok_safe(),
zone_page_state_snapshot(), zone_page_state().
vanilla 11.6615%
disable-threshold 0.2584%
David said:
: We had to pull aa454840 "mm: page allocator: calculate a better estimate
: of NR_FREE_PAGES when memory is low and kswapd is awake" from 2.6.36
: internally because tests showed that it would cause the machine to stall
: as the result of heavy kswapd activity. I merged it back with this fix as
: it is pending in the -mm tree and it solves the issue we were seeing, so I
: definitely think this should be pushed to -stable (and I would seriously
: consider it for 2.6.37 inclusion even at this late date).
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reported-by: Shaohua Li <shaohua.li@intel.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Tested-by: Nicolas Bareil <nico@chdir.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: <stable@kernel.org> [2.6.37.1, 2.6.36.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 23:45:41 +00:00
|
|
|
zone_page_state(z, NR_FREE_PAGES));
|
|
|
|
}
|
|
|
|
|
2016-05-20 00:14:07 +00:00
|
|
|
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
|
2020-06-03 22:59:01 +00:00
|
|
|
unsigned long mark, int highest_zoneidx,
|
mm, page_alloc: skip ->waternark_boost for atomic order-0 allocations
When boosting is enabled, it is observed that rate of atomic order-0
allocation failures are high due to the fact that free levels in the
system are checked with ->watermark_boost offset. This is not a problem
for sleepable allocations but for atomic allocations which looks like
regression.
This problem is seen frequently on system setup of Android kernel running
on Snapdragon hardware with 4GB RAM size. When no extfrag event occurred
in the system, ->watermark_boost factor is zero, thus the watermark
configurations in the system are:
_watermark = (
[WMARK_MIN] = 1272, --> ~5MB
[WMARK_LOW] = 9067, --> ~36MB
[WMARK_HIGH] = 9385), --> ~38MB
watermark_boost = 0
After launching some memory hungry applications in Android which can cause
extfrag events in the system to an extent that ->watermark_boost can be
set to max i.e. default boost factor makes it to 150% of high watermark.
_watermark = (
[WMARK_MIN] = 1272, --> ~5MB
[WMARK_LOW] = 9067, --> ~36MB
[WMARK_HIGH] = 9385), --> ~38MB
watermark_boost = 14077, -->~57MB
With default system configuration, for an atomic order-0 allocation to
succeed, having free memory of ~2MB will suffice. But boosting makes the
min_wmark to ~61MB thus for an atomic order-0 allocation to be successful
system should have minimum of ~23MB of free memory(from calculations of
zone_watermark_ok(), min = 3/4(min/2)). But failures are observed despite
system is having ~20MB of free memory. In the testing, this is
reproducible as early as first 300secs since boot and with furtherlowram
configurations(<2GB) it is observed as early as first 150secs since boot.
These failures can be avoided by excluding the ->watermark_boost in
watermark caluculations for atomic order-0 allocations.
[akpm@linux-foundation.org: fix comment grammar, reflow comment]
[charante@codeaurora.org: fix suggested by Mel Gorman]
Link: http://lkml.kernel.org/r/31556793-57b1-1c21-1a9d-22674d9bd938@codeaurora.org
Signed-off-by: Charan Teja Reddy <charante@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Link: http://lkml.kernel.org/r/1589882284-21010-1-git-send-email-charante@codeaurora.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 06:25:24 +00:00
|
|
|
unsigned int alloc_flags, gfp_t gfp_mask)
|
2016-05-20 00:14:07 +00:00
|
|
|
{
|
page_alloc: consider highatomic reserve in watermark fast
zone_watermark_fast was introduced by commit 48ee5f3696f6 ("mm,
page_alloc: shortcut watermark checks for order-0 pages"). The commit
simply checks if free pages is bigger than watermark without additional
calculation such like reducing watermark.
It considered free cma pages but it did not consider highatomic reserved.
This may incur exhaustion of free pages except high order atomic free
pages.
Assume that reserved_highatomic pageblock is bigger than watermark min,
and there are only few free pages except high order atomic free. Because
zone_watermark_fast passes the allocation without considering high order
atomic free, normal reclaimable allocation like GFP_HIGHUSER will consume
all the free pages. Then finally order-0 atomic allocation may fail on
allocation.
This means watermark min is not protected against non-atomic allocation.
The order-0 atomic allocation with ALLOC_HARDER unwantedly can be failed.
Additionally the __GFP_MEMALLOC allocation with ALLOC_NO_WATERMARKS also
can be failed.
To avoid the problem, zone_watermark_fast should consider highatomic
reserve. If the actual size of high atomic free is counted accurately
like cma free, we may use it. On this patch just use
nr_reserved_highatomic. Additionally introduce
__zone_watermark_unusable_free to factor out common parts between
zone_watermark_fast and __zone_watermark_ok.
This is an example of ALLOC_HARDER allocation failure using v4.19 based
kernel.
Binder:9343_3: page allocation failure: order:0, mode:0x480020(GFP_ATOMIC), nodemask=(null)
Call trace:
[<ffffff8008f40f8c>] dump_stack+0xb8/0xf0
[<ffffff8008223320>] warn_alloc+0xd8/0x12c
[<ffffff80082245e4>] __alloc_pages_nodemask+0x120c/0x1250
[<ffffff800827f6e8>] new_slab+0x128/0x604
[<ffffff800827b0cc>] ___slab_alloc+0x508/0x670
[<ffffff800827ba00>] __kmalloc+0x2f8/0x310
[<ffffff80084ac3e0>] context_struct_to_string+0x104/0x1cc
[<ffffff80084ad8fc>] security_sid_to_context_core+0x74/0x144
[<ffffff80084ad880>] security_sid_to_context+0x10/0x18
[<ffffff800849bd80>] selinux_secid_to_secctx+0x20/0x28
[<ffffff800849109c>] security_secid_to_secctx+0x3c/0x70
[<ffffff8008bfe118>] binder_transaction+0xe68/0x454c
Mem-Info:
active_anon:102061 inactive_anon:81551 isolated_anon:0
active_file:59102 inactive_file:68924 isolated_file:64
unevictable:611 dirty:63 writeback:0 unstable:0
slab_reclaimable:13324 slab_unreclaimable:44354
mapped:83015 shmem:4858 pagetables:26316 bounce:0
free:2727 free_pcp:1035 free_cma:178
Node 0 active_anon:408244kB inactive_anon:326204kB active_file:236408kB inactive_file:275696kB unevictable:2444kB isolated(anon):0kB isolated(file):256kB mapped:332060kB dirty:252kB writeback:0kB shmem:19432kB writeback_tmp:0kB unstable:0kB all_unreclaimable? no
Normal free:10908kB min:6192kB low:44388kB high:47060kB active_anon:409160kB inactive_anon:325924kB active_file:235820kB inactive_file:276628kB unevictable:2444kB writepending:252kB present:3076096kB managed:2673676kB mlocked:2444kB kernel_stack:62512kB pagetables:105264kB bounce:0kB free_pcp:4140kB local_pcp:40kB free_cma:712kB
lowmem_reserve[]: 0 0
Normal: 505*4kB (H) 357*8kB (H) 201*16kB (H) 65*32kB (H) 1*64kB (H) 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB = 10236kB
138826 total pagecache pages
5460 pages in swap cache
Swap cache stats: add 8273090, delete 8267506, find 1004381/4060142
This is an example of ALLOC_NO_WATERMARKS allocation failure using v4.14
based kernel.
kswapd0: page allocation failure: order:0, mode:0x140000a(GFP_NOIO|__GFP_HIGHMEM|__GFP_MOVABLE), nodemask=(null)
kswapd0 cpuset=/ mems_allowed=0
CPU: 4 PID: 1221 Comm: kswapd0 Not tainted 4.14.113-18770262-userdebug #1
Call trace:
[<0000000000000000>] dump_backtrace+0x0/0x248
[<0000000000000000>] show_stack+0x18/0x20
[<0000000000000000>] __dump_stack+0x20/0x28
[<0000000000000000>] dump_stack+0x68/0x90
[<0000000000000000>] warn_alloc+0x104/0x198
[<0000000000000000>] __alloc_pages_nodemask+0xdc0/0xdf0
[<0000000000000000>] zs_malloc+0x148/0x3d0
[<0000000000000000>] zram_bvec_rw+0x410/0x798
[<0000000000000000>] zram_rw_page+0x88/0xdc
[<0000000000000000>] bdev_write_page+0x70/0xbc
[<0000000000000000>] __swap_writepage+0x58/0x37c
[<0000000000000000>] swap_writepage+0x40/0x4c
[<0000000000000000>] shrink_page_list+0xc30/0xf48
[<0000000000000000>] shrink_inactive_list+0x2b0/0x61c
[<0000000000000000>] shrink_node_memcg+0x23c/0x618
[<0000000000000000>] shrink_node+0x1c8/0x304
[<0000000000000000>] kswapd+0x680/0x7c4
[<0000000000000000>] kthread+0x110/0x120
[<0000000000000000>] ret_from_fork+0x10/0x18
Mem-Info:
active_anon:111826 inactive_anon:65557 isolated_anon:0\x0a active_file:44260 inactive_file:83422 isolated_file:0\x0a unevictable:4158 dirty:117 writeback:0 unstable:0\x0a slab_reclaimable:13943 slab_unreclaimable:43315\x0a mapped:102511 shmem:3299 pagetables:19566 bounce:0\x0a free:3510 free_pcp:553 free_cma:0
Node 0 active_anon:447304kB inactive_anon:262228kB active_file:177040kB inactive_file:333688kB unevictable:16632kB isolated(anon):0kB isolated(file):0kB mapped:410044kB d irty:468kB writeback:0kB shmem:13196kB writeback_tmp:0kB unstable:0kB all_unreclaimable? no
Normal free:14040kB min:7440kB low:94500kB high:98136kB reserved_highatomic:32768KB active_anon:447336kB inactive_anon:261668kB active_file:177572kB inactive_file:333768k B unevictable:16632kB writepending:480kB present:4081664kB managed:3637088kB mlocked:16632kB kernel_stack:47072kB pagetables:78264kB bounce:0kB free_pcp:2280kB local_pcp:720kB free_cma:0kB [ 4738.329607] lowmem_reserve[]: 0 0
Normal: 860*4kB (H) 453*8kB (H) 180*16kB (H) 26*32kB (H) 34*64kB (H) 6*128kB (H) 2*256kB (H) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 14232kB
This is trace log which shows GFP_HIGHUSER consumes free pages right
before ALLOC_NO_WATERMARKS.
<...>-22275 [006] .... 889.213383: mm_page_alloc: page=00000000d2be5665 pfn=970744 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213385: mm_page_alloc: page=000000004b2335c2 pfn=970745 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213387: mm_page_alloc: page=00000000017272e1 pfn=970278 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213389: mm_page_alloc: page=00000000c4be79fb pfn=970279 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213391: mm_page_alloc: page=00000000f8a51d4f pfn=970260 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213393: mm_page_alloc: page=000000006ba8f5ac pfn=970261 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213395: mm_page_alloc: page=00000000819f1cd3 pfn=970196 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213396: mm_page_alloc: page=00000000f6b72a64 pfn=970197 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
kswapd0-1207 [005] ...1 889.213398: mm_page_alloc: page= (null) pfn=0 order=0 migratetype=1 nr_free=3650 gfp_flags=GFP_NOWAIT|__GFP_HIGHMEM|__GFP_NOWARN|__GFP_MOVABLE
[jaewon31.kim@samsung.com: remove redundant code for high-order]
Link: http://lkml.kernel.org/r/20200623035242.27232-1-jaewon31.kim@samsung.com
Reported-by: Yong-Taek Lee <ytk.lee@samsung.com>
Suggested-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Jaewon Kim <jaewon31.kim@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Baoquan He <bhe@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Yong-Taek Lee <ytk.lee@samsung.com>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20200619235958.11283-1-jaewon31.kim@samsung.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 06:25:20 +00:00
|
|
|
long free_pages;
|
2018-05-23 01:18:21 +00:00
|
|
|
|
page_alloc: consider highatomic reserve in watermark fast
zone_watermark_fast was introduced by commit 48ee5f3696f6 ("mm,
page_alloc: shortcut watermark checks for order-0 pages"). The commit
simply checks if free pages is bigger than watermark without additional
calculation such like reducing watermark.
It considered free cma pages but it did not consider highatomic reserved.
This may incur exhaustion of free pages except high order atomic free
pages.
Assume that reserved_highatomic pageblock is bigger than watermark min,
and there are only few free pages except high order atomic free. Because
zone_watermark_fast passes the allocation without considering high order
atomic free, normal reclaimable allocation like GFP_HIGHUSER will consume
all the free pages. Then finally order-0 atomic allocation may fail on
allocation.
This means watermark min is not protected against non-atomic allocation.
The order-0 atomic allocation with ALLOC_HARDER unwantedly can be failed.
Additionally the __GFP_MEMALLOC allocation with ALLOC_NO_WATERMARKS also
can be failed.
To avoid the problem, zone_watermark_fast should consider highatomic
reserve. If the actual size of high atomic free is counted accurately
like cma free, we may use it. On this patch just use
nr_reserved_highatomic. Additionally introduce
__zone_watermark_unusable_free to factor out common parts between
zone_watermark_fast and __zone_watermark_ok.
This is an example of ALLOC_HARDER allocation failure using v4.19 based
kernel.
Binder:9343_3: page allocation failure: order:0, mode:0x480020(GFP_ATOMIC), nodemask=(null)
Call trace:
[<ffffff8008f40f8c>] dump_stack+0xb8/0xf0
[<ffffff8008223320>] warn_alloc+0xd8/0x12c
[<ffffff80082245e4>] __alloc_pages_nodemask+0x120c/0x1250
[<ffffff800827f6e8>] new_slab+0x128/0x604
[<ffffff800827b0cc>] ___slab_alloc+0x508/0x670
[<ffffff800827ba00>] __kmalloc+0x2f8/0x310
[<ffffff80084ac3e0>] context_struct_to_string+0x104/0x1cc
[<ffffff80084ad8fc>] security_sid_to_context_core+0x74/0x144
[<ffffff80084ad880>] security_sid_to_context+0x10/0x18
[<ffffff800849bd80>] selinux_secid_to_secctx+0x20/0x28
[<ffffff800849109c>] security_secid_to_secctx+0x3c/0x70
[<ffffff8008bfe118>] binder_transaction+0xe68/0x454c
Mem-Info:
active_anon:102061 inactive_anon:81551 isolated_anon:0
active_file:59102 inactive_file:68924 isolated_file:64
unevictable:611 dirty:63 writeback:0 unstable:0
slab_reclaimable:13324 slab_unreclaimable:44354
mapped:83015 shmem:4858 pagetables:26316 bounce:0
free:2727 free_pcp:1035 free_cma:178
Node 0 active_anon:408244kB inactive_anon:326204kB active_file:236408kB inactive_file:275696kB unevictable:2444kB isolated(anon):0kB isolated(file):256kB mapped:332060kB dirty:252kB writeback:0kB shmem:19432kB writeback_tmp:0kB unstable:0kB all_unreclaimable? no
Normal free:10908kB min:6192kB low:44388kB high:47060kB active_anon:409160kB inactive_anon:325924kB active_file:235820kB inactive_file:276628kB unevictable:2444kB writepending:252kB present:3076096kB managed:2673676kB mlocked:2444kB kernel_stack:62512kB pagetables:105264kB bounce:0kB free_pcp:4140kB local_pcp:40kB free_cma:712kB
lowmem_reserve[]: 0 0
Normal: 505*4kB (H) 357*8kB (H) 201*16kB (H) 65*32kB (H) 1*64kB (H) 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB = 10236kB
138826 total pagecache pages
5460 pages in swap cache
Swap cache stats: add 8273090, delete 8267506, find 1004381/4060142
This is an example of ALLOC_NO_WATERMARKS allocation failure using v4.14
based kernel.
kswapd0: page allocation failure: order:0, mode:0x140000a(GFP_NOIO|__GFP_HIGHMEM|__GFP_MOVABLE), nodemask=(null)
kswapd0 cpuset=/ mems_allowed=0
CPU: 4 PID: 1221 Comm: kswapd0 Not tainted 4.14.113-18770262-userdebug #1
Call trace:
[<0000000000000000>] dump_backtrace+0x0/0x248
[<0000000000000000>] show_stack+0x18/0x20
[<0000000000000000>] __dump_stack+0x20/0x28
[<0000000000000000>] dump_stack+0x68/0x90
[<0000000000000000>] warn_alloc+0x104/0x198
[<0000000000000000>] __alloc_pages_nodemask+0xdc0/0xdf0
[<0000000000000000>] zs_malloc+0x148/0x3d0
[<0000000000000000>] zram_bvec_rw+0x410/0x798
[<0000000000000000>] zram_rw_page+0x88/0xdc
[<0000000000000000>] bdev_write_page+0x70/0xbc
[<0000000000000000>] __swap_writepage+0x58/0x37c
[<0000000000000000>] swap_writepage+0x40/0x4c
[<0000000000000000>] shrink_page_list+0xc30/0xf48
[<0000000000000000>] shrink_inactive_list+0x2b0/0x61c
[<0000000000000000>] shrink_node_memcg+0x23c/0x618
[<0000000000000000>] shrink_node+0x1c8/0x304
[<0000000000000000>] kswapd+0x680/0x7c4
[<0000000000000000>] kthread+0x110/0x120
[<0000000000000000>] ret_from_fork+0x10/0x18
Mem-Info:
active_anon:111826 inactive_anon:65557 isolated_anon:0\x0a active_file:44260 inactive_file:83422 isolated_file:0\x0a unevictable:4158 dirty:117 writeback:0 unstable:0\x0a slab_reclaimable:13943 slab_unreclaimable:43315\x0a mapped:102511 shmem:3299 pagetables:19566 bounce:0\x0a free:3510 free_pcp:553 free_cma:0
Node 0 active_anon:447304kB inactive_anon:262228kB active_file:177040kB inactive_file:333688kB unevictable:16632kB isolated(anon):0kB isolated(file):0kB mapped:410044kB d irty:468kB writeback:0kB shmem:13196kB writeback_tmp:0kB unstable:0kB all_unreclaimable? no
Normal free:14040kB min:7440kB low:94500kB high:98136kB reserved_highatomic:32768KB active_anon:447336kB inactive_anon:261668kB active_file:177572kB inactive_file:333768k B unevictable:16632kB writepending:480kB present:4081664kB managed:3637088kB mlocked:16632kB kernel_stack:47072kB pagetables:78264kB bounce:0kB free_pcp:2280kB local_pcp:720kB free_cma:0kB [ 4738.329607] lowmem_reserve[]: 0 0
Normal: 860*4kB (H) 453*8kB (H) 180*16kB (H) 26*32kB (H) 34*64kB (H) 6*128kB (H) 2*256kB (H) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 14232kB
This is trace log which shows GFP_HIGHUSER consumes free pages right
before ALLOC_NO_WATERMARKS.
<...>-22275 [006] .... 889.213383: mm_page_alloc: page=00000000d2be5665 pfn=970744 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213385: mm_page_alloc: page=000000004b2335c2 pfn=970745 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213387: mm_page_alloc: page=00000000017272e1 pfn=970278 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213389: mm_page_alloc: page=00000000c4be79fb pfn=970279 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213391: mm_page_alloc: page=00000000f8a51d4f pfn=970260 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213393: mm_page_alloc: page=000000006ba8f5ac pfn=970261 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213395: mm_page_alloc: page=00000000819f1cd3 pfn=970196 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213396: mm_page_alloc: page=00000000f6b72a64 pfn=970197 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
kswapd0-1207 [005] ...1 889.213398: mm_page_alloc: page= (null) pfn=0 order=0 migratetype=1 nr_free=3650 gfp_flags=GFP_NOWAIT|__GFP_HIGHMEM|__GFP_NOWARN|__GFP_MOVABLE
[jaewon31.kim@samsung.com: remove redundant code for high-order]
Link: http://lkml.kernel.org/r/20200623035242.27232-1-jaewon31.kim@samsung.com
Reported-by: Yong-Taek Lee <ytk.lee@samsung.com>
Suggested-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Jaewon Kim <jaewon31.kim@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Baoquan He <bhe@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Yong-Taek Lee <ytk.lee@samsung.com>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20200619235958.11283-1-jaewon31.kim@samsung.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 06:25:20 +00:00
|
|
|
free_pages = zone_page_state(z, NR_FREE_PAGES);
|
2016-05-20 00:14:07 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Fast check for order-0 only. If this fails then the reserves
|
page_alloc: consider highatomic reserve in watermark fast
zone_watermark_fast was introduced by commit 48ee5f3696f6 ("mm,
page_alloc: shortcut watermark checks for order-0 pages"). The commit
simply checks if free pages is bigger than watermark without additional
calculation such like reducing watermark.
It considered free cma pages but it did not consider highatomic reserved.
This may incur exhaustion of free pages except high order atomic free
pages.
Assume that reserved_highatomic pageblock is bigger than watermark min,
and there are only few free pages except high order atomic free. Because
zone_watermark_fast passes the allocation without considering high order
atomic free, normal reclaimable allocation like GFP_HIGHUSER will consume
all the free pages. Then finally order-0 atomic allocation may fail on
allocation.
This means watermark min is not protected against non-atomic allocation.
The order-0 atomic allocation with ALLOC_HARDER unwantedly can be failed.
Additionally the __GFP_MEMALLOC allocation with ALLOC_NO_WATERMARKS also
can be failed.
To avoid the problem, zone_watermark_fast should consider highatomic
reserve. If the actual size of high atomic free is counted accurately
like cma free, we may use it. On this patch just use
nr_reserved_highatomic. Additionally introduce
__zone_watermark_unusable_free to factor out common parts between
zone_watermark_fast and __zone_watermark_ok.
This is an example of ALLOC_HARDER allocation failure using v4.19 based
kernel.
Binder:9343_3: page allocation failure: order:0, mode:0x480020(GFP_ATOMIC), nodemask=(null)
Call trace:
[<ffffff8008f40f8c>] dump_stack+0xb8/0xf0
[<ffffff8008223320>] warn_alloc+0xd8/0x12c
[<ffffff80082245e4>] __alloc_pages_nodemask+0x120c/0x1250
[<ffffff800827f6e8>] new_slab+0x128/0x604
[<ffffff800827b0cc>] ___slab_alloc+0x508/0x670
[<ffffff800827ba00>] __kmalloc+0x2f8/0x310
[<ffffff80084ac3e0>] context_struct_to_string+0x104/0x1cc
[<ffffff80084ad8fc>] security_sid_to_context_core+0x74/0x144
[<ffffff80084ad880>] security_sid_to_context+0x10/0x18
[<ffffff800849bd80>] selinux_secid_to_secctx+0x20/0x28
[<ffffff800849109c>] security_secid_to_secctx+0x3c/0x70
[<ffffff8008bfe118>] binder_transaction+0xe68/0x454c
Mem-Info:
active_anon:102061 inactive_anon:81551 isolated_anon:0
active_file:59102 inactive_file:68924 isolated_file:64
unevictable:611 dirty:63 writeback:0 unstable:0
slab_reclaimable:13324 slab_unreclaimable:44354
mapped:83015 shmem:4858 pagetables:26316 bounce:0
free:2727 free_pcp:1035 free_cma:178
Node 0 active_anon:408244kB inactive_anon:326204kB active_file:236408kB inactive_file:275696kB unevictable:2444kB isolated(anon):0kB isolated(file):256kB mapped:332060kB dirty:252kB writeback:0kB shmem:19432kB writeback_tmp:0kB unstable:0kB all_unreclaimable? no
Normal free:10908kB min:6192kB low:44388kB high:47060kB active_anon:409160kB inactive_anon:325924kB active_file:235820kB inactive_file:276628kB unevictable:2444kB writepending:252kB present:3076096kB managed:2673676kB mlocked:2444kB kernel_stack:62512kB pagetables:105264kB bounce:0kB free_pcp:4140kB local_pcp:40kB free_cma:712kB
lowmem_reserve[]: 0 0
Normal: 505*4kB (H) 357*8kB (H) 201*16kB (H) 65*32kB (H) 1*64kB (H) 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB = 10236kB
138826 total pagecache pages
5460 pages in swap cache
Swap cache stats: add 8273090, delete 8267506, find 1004381/4060142
This is an example of ALLOC_NO_WATERMARKS allocation failure using v4.14
based kernel.
kswapd0: page allocation failure: order:0, mode:0x140000a(GFP_NOIO|__GFP_HIGHMEM|__GFP_MOVABLE), nodemask=(null)
kswapd0 cpuset=/ mems_allowed=0
CPU: 4 PID: 1221 Comm: kswapd0 Not tainted 4.14.113-18770262-userdebug #1
Call trace:
[<0000000000000000>] dump_backtrace+0x0/0x248
[<0000000000000000>] show_stack+0x18/0x20
[<0000000000000000>] __dump_stack+0x20/0x28
[<0000000000000000>] dump_stack+0x68/0x90
[<0000000000000000>] warn_alloc+0x104/0x198
[<0000000000000000>] __alloc_pages_nodemask+0xdc0/0xdf0
[<0000000000000000>] zs_malloc+0x148/0x3d0
[<0000000000000000>] zram_bvec_rw+0x410/0x798
[<0000000000000000>] zram_rw_page+0x88/0xdc
[<0000000000000000>] bdev_write_page+0x70/0xbc
[<0000000000000000>] __swap_writepage+0x58/0x37c
[<0000000000000000>] swap_writepage+0x40/0x4c
[<0000000000000000>] shrink_page_list+0xc30/0xf48
[<0000000000000000>] shrink_inactive_list+0x2b0/0x61c
[<0000000000000000>] shrink_node_memcg+0x23c/0x618
[<0000000000000000>] shrink_node+0x1c8/0x304
[<0000000000000000>] kswapd+0x680/0x7c4
[<0000000000000000>] kthread+0x110/0x120
[<0000000000000000>] ret_from_fork+0x10/0x18
Mem-Info:
active_anon:111826 inactive_anon:65557 isolated_anon:0\x0a active_file:44260 inactive_file:83422 isolated_file:0\x0a unevictable:4158 dirty:117 writeback:0 unstable:0\x0a slab_reclaimable:13943 slab_unreclaimable:43315\x0a mapped:102511 shmem:3299 pagetables:19566 bounce:0\x0a free:3510 free_pcp:553 free_cma:0
Node 0 active_anon:447304kB inactive_anon:262228kB active_file:177040kB inactive_file:333688kB unevictable:16632kB isolated(anon):0kB isolated(file):0kB mapped:410044kB d irty:468kB writeback:0kB shmem:13196kB writeback_tmp:0kB unstable:0kB all_unreclaimable? no
Normal free:14040kB min:7440kB low:94500kB high:98136kB reserved_highatomic:32768KB active_anon:447336kB inactive_anon:261668kB active_file:177572kB inactive_file:333768k B unevictable:16632kB writepending:480kB present:4081664kB managed:3637088kB mlocked:16632kB kernel_stack:47072kB pagetables:78264kB bounce:0kB free_pcp:2280kB local_pcp:720kB free_cma:0kB [ 4738.329607] lowmem_reserve[]: 0 0
Normal: 860*4kB (H) 453*8kB (H) 180*16kB (H) 26*32kB (H) 34*64kB (H) 6*128kB (H) 2*256kB (H) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 14232kB
This is trace log which shows GFP_HIGHUSER consumes free pages right
before ALLOC_NO_WATERMARKS.
<...>-22275 [006] .... 889.213383: mm_page_alloc: page=00000000d2be5665 pfn=970744 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213385: mm_page_alloc: page=000000004b2335c2 pfn=970745 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213387: mm_page_alloc: page=00000000017272e1 pfn=970278 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213389: mm_page_alloc: page=00000000c4be79fb pfn=970279 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213391: mm_page_alloc: page=00000000f8a51d4f pfn=970260 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213393: mm_page_alloc: page=000000006ba8f5ac pfn=970261 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213395: mm_page_alloc: page=00000000819f1cd3 pfn=970196 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213396: mm_page_alloc: page=00000000f6b72a64 pfn=970197 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
kswapd0-1207 [005] ...1 889.213398: mm_page_alloc: page= (null) pfn=0 order=0 migratetype=1 nr_free=3650 gfp_flags=GFP_NOWAIT|__GFP_HIGHMEM|__GFP_NOWARN|__GFP_MOVABLE
[jaewon31.kim@samsung.com: remove redundant code for high-order]
Link: http://lkml.kernel.org/r/20200623035242.27232-1-jaewon31.kim@samsung.com
Reported-by: Yong-Taek Lee <ytk.lee@samsung.com>
Suggested-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Jaewon Kim <jaewon31.kim@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Baoquan He <bhe@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Yong-Taek Lee <ytk.lee@samsung.com>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20200619235958.11283-1-jaewon31.kim@samsung.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 06:25:20 +00:00
|
|
|
* need to be calculated.
|
2016-05-20 00:14:07 +00:00
|
|
|
*/
|
page_alloc: consider highatomic reserve in watermark fast
zone_watermark_fast was introduced by commit 48ee5f3696f6 ("mm,
page_alloc: shortcut watermark checks for order-0 pages"). The commit
simply checks if free pages is bigger than watermark without additional
calculation such like reducing watermark.
It considered free cma pages but it did not consider highatomic reserved.
This may incur exhaustion of free pages except high order atomic free
pages.
Assume that reserved_highatomic pageblock is bigger than watermark min,
and there are only few free pages except high order atomic free. Because
zone_watermark_fast passes the allocation without considering high order
atomic free, normal reclaimable allocation like GFP_HIGHUSER will consume
all the free pages. Then finally order-0 atomic allocation may fail on
allocation.
This means watermark min is not protected against non-atomic allocation.
The order-0 atomic allocation with ALLOC_HARDER unwantedly can be failed.
Additionally the __GFP_MEMALLOC allocation with ALLOC_NO_WATERMARKS also
can be failed.
To avoid the problem, zone_watermark_fast should consider highatomic
reserve. If the actual size of high atomic free is counted accurately
like cma free, we may use it. On this patch just use
nr_reserved_highatomic. Additionally introduce
__zone_watermark_unusable_free to factor out common parts between
zone_watermark_fast and __zone_watermark_ok.
This is an example of ALLOC_HARDER allocation failure using v4.19 based
kernel.
Binder:9343_3: page allocation failure: order:0, mode:0x480020(GFP_ATOMIC), nodemask=(null)
Call trace:
[<ffffff8008f40f8c>] dump_stack+0xb8/0xf0
[<ffffff8008223320>] warn_alloc+0xd8/0x12c
[<ffffff80082245e4>] __alloc_pages_nodemask+0x120c/0x1250
[<ffffff800827f6e8>] new_slab+0x128/0x604
[<ffffff800827b0cc>] ___slab_alloc+0x508/0x670
[<ffffff800827ba00>] __kmalloc+0x2f8/0x310
[<ffffff80084ac3e0>] context_struct_to_string+0x104/0x1cc
[<ffffff80084ad8fc>] security_sid_to_context_core+0x74/0x144
[<ffffff80084ad880>] security_sid_to_context+0x10/0x18
[<ffffff800849bd80>] selinux_secid_to_secctx+0x20/0x28
[<ffffff800849109c>] security_secid_to_secctx+0x3c/0x70
[<ffffff8008bfe118>] binder_transaction+0xe68/0x454c
Mem-Info:
active_anon:102061 inactive_anon:81551 isolated_anon:0
active_file:59102 inactive_file:68924 isolated_file:64
unevictable:611 dirty:63 writeback:0 unstable:0
slab_reclaimable:13324 slab_unreclaimable:44354
mapped:83015 shmem:4858 pagetables:26316 bounce:0
free:2727 free_pcp:1035 free_cma:178
Node 0 active_anon:408244kB inactive_anon:326204kB active_file:236408kB inactive_file:275696kB unevictable:2444kB isolated(anon):0kB isolated(file):256kB mapped:332060kB dirty:252kB writeback:0kB shmem:19432kB writeback_tmp:0kB unstable:0kB all_unreclaimable? no
Normal free:10908kB min:6192kB low:44388kB high:47060kB active_anon:409160kB inactive_anon:325924kB active_file:235820kB inactive_file:276628kB unevictable:2444kB writepending:252kB present:3076096kB managed:2673676kB mlocked:2444kB kernel_stack:62512kB pagetables:105264kB bounce:0kB free_pcp:4140kB local_pcp:40kB free_cma:712kB
lowmem_reserve[]: 0 0
Normal: 505*4kB (H) 357*8kB (H) 201*16kB (H) 65*32kB (H) 1*64kB (H) 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB = 10236kB
138826 total pagecache pages
5460 pages in swap cache
Swap cache stats: add 8273090, delete 8267506, find 1004381/4060142
This is an example of ALLOC_NO_WATERMARKS allocation failure using v4.14
based kernel.
kswapd0: page allocation failure: order:0, mode:0x140000a(GFP_NOIO|__GFP_HIGHMEM|__GFP_MOVABLE), nodemask=(null)
kswapd0 cpuset=/ mems_allowed=0
CPU: 4 PID: 1221 Comm: kswapd0 Not tainted 4.14.113-18770262-userdebug #1
Call trace:
[<0000000000000000>] dump_backtrace+0x0/0x248
[<0000000000000000>] show_stack+0x18/0x20
[<0000000000000000>] __dump_stack+0x20/0x28
[<0000000000000000>] dump_stack+0x68/0x90
[<0000000000000000>] warn_alloc+0x104/0x198
[<0000000000000000>] __alloc_pages_nodemask+0xdc0/0xdf0
[<0000000000000000>] zs_malloc+0x148/0x3d0
[<0000000000000000>] zram_bvec_rw+0x410/0x798
[<0000000000000000>] zram_rw_page+0x88/0xdc
[<0000000000000000>] bdev_write_page+0x70/0xbc
[<0000000000000000>] __swap_writepage+0x58/0x37c
[<0000000000000000>] swap_writepage+0x40/0x4c
[<0000000000000000>] shrink_page_list+0xc30/0xf48
[<0000000000000000>] shrink_inactive_list+0x2b0/0x61c
[<0000000000000000>] shrink_node_memcg+0x23c/0x618
[<0000000000000000>] shrink_node+0x1c8/0x304
[<0000000000000000>] kswapd+0x680/0x7c4
[<0000000000000000>] kthread+0x110/0x120
[<0000000000000000>] ret_from_fork+0x10/0x18
Mem-Info:
active_anon:111826 inactive_anon:65557 isolated_anon:0\x0a active_file:44260 inactive_file:83422 isolated_file:0\x0a unevictable:4158 dirty:117 writeback:0 unstable:0\x0a slab_reclaimable:13943 slab_unreclaimable:43315\x0a mapped:102511 shmem:3299 pagetables:19566 bounce:0\x0a free:3510 free_pcp:553 free_cma:0
Node 0 active_anon:447304kB inactive_anon:262228kB active_file:177040kB inactive_file:333688kB unevictable:16632kB isolated(anon):0kB isolated(file):0kB mapped:410044kB d irty:468kB writeback:0kB shmem:13196kB writeback_tmp:0kB unstable:0kB all_unreclaimable? no
Normal free:14040kB min:7440kB low:94500kB high:98136kB reserved_highatomic:32768KB active_anon:447336kB inactive_anon:261668kB active_file:177572kB inactive_file:333768k B unevictable:16632kB writepending:480kB present:4081664kB managed:3637088kB mlocked:16632kB kernel_stack:47072kB pagetables:78264kB bounce:0kB free_pcp:2280kB local_pcp:720kB free_cma:0kB [ 4738.329607] lowmem_reserve[]: 0 0
Normal: 860*4kB (H) 453*8kB (H) 180*16kB (H) 26*32kB (H) 34*64kB (H) 6*128kB (H) 2*256kB (H) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 14232kB
This is trace log which shows GFP_HIGHUSER consumes free pages right
before ALLOC_NO_WATERMARKS.
<...>-22275 [006] .... 889.213383: mm_page_alloc: page=00000000d2be5665 pfn=970744 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213385: mm_page_alloc: page=000000004b2335c2 pfn=970745 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213387: mm_page_alloc: page=00000000017272e1 pfn=970278 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213389: mm_page_alloc: page=00000000c4be79fb pfn=970279 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213391: mm_page_alloc: page=00000000f8a51d4f pfn=970260 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213393: mm_page_alloc: page=000000006ba8f5ac pfn=970261 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213395: mm_page_alloc: page=00000000819f1cd3 pfn=970196 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213396: mm_page_alloc: page=00000000f6b72a64 pfn=970197 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
kswapd0-1207 [005] ...1 889.213398: mm_page_alloc: page= (null) pfn=0 order=0 migratetype=1 nr_free=3650 gfp_flags=GFP_NOWAIT|__GFP_HIGHMEM|__GFP_NOWARN|__GFP_MOVABLE
[jaewon31.kim@samsung.com: remove redundant code for high-order]
Link: http://lkml.kernel.org/r/20200623035242.27232-1-jaewon31.kim@samsung.com
Reported-by: Yong-Taek Lee <ytk.lee@samsung.com>
Suggested-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Jaewon Kim <jaewon31.kim@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Baoquan He <bhe@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Yong-Taek Lee <ytk.lee@samsung.com>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20200619235958.11283-1-jaewon31.kim@samsung.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 06:25:20 +00:00
|
|
|
if (!order) {
|
2022-07-25 09:52:12 +00:00
|
|
|
long usable_free;
|
|
|
|
long reserved;
|
page_alloc: consider highatomic reserve in watermark fast
zone_watermark_fast was introduced by commit 48ee5f3696f6 ("mm,
page_alloc: shortcut watermark checks for order-0 pages"). The commit
simply checks if free pages is bigger than watermark without additional
calculation such like reducing watermark.
It considered free cma pages but it did not consider highatomic reserved.
This may incur exhaustion of free pages except high order atomic free
pages.
Assume that reserved_highatomic pageblock is bigger than watermark min,
and there are only few free pages except high order atomic free. Because
zone_watermark_fast passes the allocation without considering high order
atomic free, normal reclaimable allocation like GFP_HIGHUSER will consume
all the free pages. Then finally order-0 atomic allocation may fail on
allocation.
This means watermark min is not protected against non-atomic allocation.
The order-0 atomic allocation with ALLOC_HARDER unwantedly can be failed.
Additionally the __GFP_MEMALLOC allocation with ALLOC_NO_WATERMARKS also
can be failed.
To avoid the problem, zone_watermark_fast should consider highatomic
reserve. If the actual size of high atomic free is counted accurately
like cma free, we may use it. On this patch just use
nr_reserved_highatomic. Additionally introduce
__zone_watermark_unusable_free to factor out common parts between
zone_watermark_fast and __zone_watermark_ok.
This is an example of ALLOC_HARDER allocation failure using v4.19 based
kernel.
Binder:9343_3: page allocation failure: order:0, mode:0x480020(GFP_ATOMIC), nodemask=(null)
Call trace:
[<ffffff8008f40f8c>] dump_stack+0xb8/0xf0
[<ffffff8008223320>] warn_alloc+0xd8/0x12c
[<ffffff80082245e4>] __alloc_pages_nodemask+0x120c/0x1250
[<ffffff800827f6e8>] new_slab+0x128/0x604
[<ffffff800827b0cc>] ___slab_alloc+0x508/0x670
[<ffffff800827ba00>] __kmalloc+0x2f8/0x310
[<ffffff80084ac3e0>] context_struct_to_string+0x104/0x1cc
[<ffffff80084ad8fc>] security_sid_to_context_core+0x74/0x144
[<ffffff80084ad880>] security_sid_to_context+0x10/0x18
[<ffffff800849bd80>] selinux_secid_to_secctx+0x20/0x28
[<ffffff800849109c>] security_secid_to_secctx+0x3c/0x70
[<ffffff8008bfe118>] binder_transaction+0xe68/0x454c
Mem-Info:
active_anon:102061 inactive_anon:81551 isolated_anon:0
active_file:59102 inactive_file:68924 isolated_file:64
unevictable:611 dirty:63 writeback:0 unstable:0
slab_reclaimable:13324 slab_unreclaimable:44354
mapped:83015 shmem:4858 pagetables:26316 bounce:0
free:2727 free_pcp:1035 free_cma:178
Node 0 active_anon:408244kB inactive_anon:326204kB active_file:236408kB inactive_file:275696kB unevictable:2444kB isolated(anon):0kB isolated(file):256kB mapped:332060kB dirty:252kB writeback:0kB shmem:19432kB writeback_tmp:0kB unstable:0kB all_unreclaimable? no
Normal free:10908kB min:6192kB low:44388kB high:47060kB active_anon:409160kB inactive_anon:325924kB active_file:235820kB inactive_file:276628kB unevictable:2444kB writepending:252kB present:3076096kB managed:2673676kB mlocked:2444kB kernel_stack:62512kB pagetables:105264kB bounce:0kB free_pcp:4140kB local_pcp:40kB free_cma:712kB
lowmem_reserve[]: 0 0
Normal: 505*4kB (H) 357*8kB (H) 201*16kB (H) 65*32kB (H) 1*64kB (H) 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB = 10236kB
138826 total pagecache pages
5460 pages in swap cache
Swap cache stats: add 8273090, delete 8267506, find 1004381/4060142
This is an example of ALLOC_NO_WATERMARKS allocation failure using v4.14
based kernel.
kswapd0: page allocation failure: order:0, mode:0x140000a(GFP_NOIO|__GFP_HIGHMEM|__GFP_MOVABLE), nodemask=(null)
kswapd0 cpuset=/ mems_allowed=0
CPU: 4 PID: 1221 Comm: kswapd0 Not tainted 4.14.113-18770262-userdebug #1
Call trace:
[<0000000000000000>] dump_backtrace+0x0/0x248
[<0000000000000000>] show_stack+0x18/0x20
[<0000000000000000>] __dump_stack+0x20/0x28
[<0000000000000000>] dump_stack+0x68/0x90
[<0000000000000000>] warn_alloc+0x104/0x198
[<0000000000000000>] __alloc_pages_nodemask+0xdc0/0xdf0
[<0000000000000000>] zs_malloc+0x148/0x3d0
[<0000000000000000>] zram_bvec_rw+0x410/0x798
[<0000000000000000>] zram_rw_page+0x88/0xdc
[<0000000000000000>] bdev_write_page+0x70/0xbc
[<0000000000000000>] __swap_writepage+0x58/0x37c
[<0000000000000000>] swap_writepage+0x40/0x4c
[<0000000000000000>] shrink_page_list+0xc30/0xf48
[<0000000000000000>] shrink_inactive_list+0x2b0/0x61c
[<0000000000000000>] shrink_node_memcg+0x23c/0x618
[<0000000000000000>] shrink_node+0x1c8/0x304
[<0000000000000000>] kswapd+0x680/0x7c4
[<0000000000000000>] kthread+0x110/0x120
[<0000000000000000>] ret_from_fork+0x10/0x18
Mem-Info:
active_anon:111826 inactive_anon:65557 isolated_anon:0\x0a active_file:44260 inactive_file:83422 isolated_file:0\x0a unevictable:4158 dirty:117 writeback:0 unstable:0\x0a slab_reclaimable:13943 slab_unreclaimable:43315\x0a mapped:102511 shmem:3299 pagetables:19566 bounce:0\x0a free:3510 free_pcp:553 free_cma:0
Node 0 active_anon:447304kB inactive_anon:262228kB active_file:177040kB inactive_file:333688kB unevictable:16632kB isolated(anon):0kB isolated(file):0kB mapped:410044kB d irty:468kB writeback:0kB shmem:13196kB writeback_tmp:0kB unstable:0kB all_unreclaimable? no
Normal free:14040kB min:7440kB low:94500kB high:98136kB reserved_highatomic:32768KB active_anon:447336kB inactive_anon:261668kB active_file:177572kB inactive_file:333768k B unevictable:16632kB writepending:480kB present:4081664kB managed:3637088kB mlocked:16632kB kernel_stack:47072kB pagetables:78264kB bounce:0kB free_pcp:2280kB local_pcp:720kB free_cma:0kB [ 4738.329607] lowmem_reserve[]: 0 0
Normal: 860*4kB (H) 453*8kB (H) 180*16kB (H) 26*32kB (H) 34*64kB (H) 6*128kB (H) 2*256kB (H) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 14232kB
This is trace log which shows GFP_HIGHUSER consumes free pages right
before ALLOC_NO_WATERMARKS.
<...>-22275 [006] .... 889.213383: mm_page_alloc: page=00000000d2be5665 pfn=970744 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213385: mm_page_alloc: page=000000004b2335c2 pfn=970745 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213387: mm_page_alloc: page=00000000017272e1 pfn=970278 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213389: mm_page_alloc: page=00000000c4be79fb pfn=970279 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213391: mm_page_alloc: page=00000000f8a51d4f pfn=970260 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213393: mm_page_alloc: page=000000006ba8f5ac pfn=970261 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213395: mm_page_alloc: page=00000000819f1cd3 pfn=970196 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213396: mm_page_alloc: page=00000000f6b72a64 pfn=970197 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
kswapd0-1207 [005] ...1 889.213398: mm_page_alloc: page= (null) pfn=0 order=0 migratetype=1 nr_free=3650 gfp_flags=GFP_NOWAIT|__GFP_HIGHMEM|__GFP_NOWARN|__GFP_MOVABLE
[jaewon31.kim@samsung.com: remove redundant code for high-order]
Link: http://lkml.kernel.org/r/20200623035242.27232-1-jaewon31.kim@samsung.com
Reported-by: Yong-Taek Lee <ytk.lee@samsung.com>
Suggested-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Jaewon Kim <jaewon31.kim@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Baoquan He <bhe@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Yong-Taek Lee <ytk.lee@samsung.com>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20200619235958.11283-1-jaewon31.kim@samsung.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 06:25:20 +00:00
|
|
|
|
2022-07-25 09:52:12 +00:00
|
|
|
usable_free = free_pages;
|
|
|
|
reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
|
|
|
|
|
|
|
|
/* reserved may over estimate high-atomic reserves. */
|
|
|
|
usable_free -= min(usable_free, reserved);
|
|
|
|
if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
|
page_alloc: consider highatomic reserve in watermark fast
zone_watermark_fast was introduced by commit 48ee5f3696f6 ("mm,
page_alloc: shortcut watermark checks for order-0 pages"). The commit
simply checks if free pages is bigger than watermark without additional
calculation such like reducing watermark.
It considered free cma pages but it did not consider highatomic reserved.
This may incur exhaustion of free pages except high order atomic free
pages.
Assume that reserved_highatomic pageblock is bigger than watermark min,
and there are only few free pages except high order atomic free. Because
zone_watermark_fast passes the allocation without considering high order
atomic free, normal reclaimable allocation like GFP_HIGHUSER will consume
all the free pages. Then finally order-0 atomic allocation may fail on
allocation.
This means watermark min is not protected against non-atomic allocation.
The order-0 atomic allocation with ALLOC_HARDER unwantedly can be failed.
Additionally the __GFP_MEMALLOC allocation with ALLOC_NO_WATERMARKS also
can be failed.
To avoid the problem, zone_watermark_fast should consider highatomic
reserve. If the actual size of high atomic free is counted accurately
like cma free, we may use it. On this patch just use
nr_reserved_highatomic. Additionally introduce
__zone_watermark_unusable_free to factor out common parts between
zone_watermark_fast and __zone_watermark_ok.
This is an example of ALLOC_HARDER allocation failure using v4.19 based
kernel.
Binder:9343_3: page allocation failure: order:0, mode:0x480020(GFP_ATOMIC), nodemask=(null)
Call trace:
[<ffffff8008f40f8c>] dump_stack+0xb8/0xf0
[<ffffff8008223320>] warn_alloc+0xd8/0x12c
[<ffffff80082245e4>] __alloc_pages_nodemask+0x120c/0x1250
[<ffffff800827f6e8>] new_slab+0x128/0x604
[<ffffff800827b0cc>] ___slab_alloc+0x508/0x670
[<ffffff800827ba00>] __kmalloc+0x2f8/0x310
[<ffffff80084ac3e0>] context_struct_to_string+0x104/0x1cc
[<ffffff80084ad8fc>] security_sid_to_context_core+0x74/0x144
[<ffffff80084ad880>] security_sid_to_context+0x10/0x18
[<ffffff800849bd80>] selinux_secid_to_secctx+0x20/0x28
[<ffffff800849109c>] security_secid_to_secctx+0x3c/0x70
[<ffffff8008bfe118>] binder_transaction+0xe68/0x454c
Mem-Info:
active_anon:102061 inactive_anon:81551 isolated_anon:0
active_file:59102 inactive_file:68924 isolated_file:64
unevictable:611 dirty:63 writeback:0 unstable:0
slab_reclaimable:13324 slab_unreclaimable:44354
mapped:83015 shmem:4858 pagetables:26316 bounce:0
free:2727 free_pcp:1035 free_cma:178
Node 0 active_anon:408244kB inactive_anon:326204kB active_file:236408kB inactive_file:275696kB unevictable:2444kB isolated(anon):0kB isolated(file):256kB mapped:332060kB dirty:252kB writeback:0kB shmem:19432kB writeback_tmp:0kB unstable:0kB all_unreclaimable? no
Normal free:10908kB min:6192kB low:44388kB high:47060kB active_anon:409160kB inactive_anon:325924kB active_file:235820kB inactive_file:276628kB unevictable:2444kB writepending:252kB present:3076096kB managed:2673676kB mlocked:2444kB kernel_stack:62512kB pagetables:105264kB bounce:0kB free_pcp:4140kB local_pcp:40kB free_cma:712kB
lowmem_reserve[]: 0 0
Normal: 505*4kB (H) 357*8kB (H) 201*16kB (H) 65*32kB (H) 1*64kB (H) 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB = 10236kB
138826 total pagecache pages
5460 pages in swap cache
Swap cache stats: add 8273090, delete 8267506, find 1004381/4060142
This is an example of ALLOC_NO_WATERMARKS allocation failure using v4.14
based kernel.
kswapd0: page allocation failure: order:0, mode:0x140000a(GFP_NOIO|__GFP_HIGHMEM|__GFP_MOVABLE), nodemask=(null)
kswapd0 cpuset=/ mems_allowed=0
CPU: 4 PID: 1221 Comm: kswapd0 Not tainted 4.14.113-18770262-userdebug #1
Call trace:
[<0000000000000000>] dump_backtrace+0x0/0x248
[<0000000000000000>] show_stack+0x18/0x20
[<0000000000000000>] __dump_stack+0x20/0x28
[<0000000000000000>] dump_stack+0x68/0x90
[<0000000000000000>] warn_alloc+0x104/0x198
[<0000000000000000>] __alloc_pages_nodemask+0xdc0/0xdf0
[<0000000000000000>] zs_malloc+0x148/0x3d0
[<0000000000000000>] zram_bvec_rw+0x410/0x798
[<0000000000000000>] zram_rw_page+0x88/0xdc
[<0000000000000000>] bdev_write_page+0x70/0xbc
[<0000000000000000>] __swap_writepage+0x58/0x37c
[<0000000000000000>] swap_writepage+0x40/0x4c
[<0000000000000000>] shrink_page_list+0xc30/0xf48
[<0000000000000000>] shrink_inactive_list+0x2b0/0x61c
[<0000000000000000>] shrink_node_memcg+0x23c/0x618
[<0000000000000000>] shrink_node+0x1c8/0x304
[<0000000000000000>] kswapd+0x680/0x7c4
[<0000000000000000>] kthread+0x110/0x120
[<0000000000000000>] ret_from_fork+0x10/0x18
Mem-Info:
active_anon:111826 inactive_anon:65557 isolated_anon:0\x0a active_file:44260 inactive_file:83422 isolated_file:0\x0a unevictable:4158 dirty:117 writeback:0 unstable:0\x0a slab_reclaimable:13943 slab_unreclaimable:43315\x0a mapped:102511 shmem:3299 pagetables:19566 bounce:0\x0a free:3510 free_pcp:553 free_cma:0
Node 0 active_anon:447304kB inactive_anon:262228kB active_file:177040kB inactive_file:333688kB unevictable:16632kB isolated(anon):0kB isolated(file):0kB mapped:410044kB d irty:468kB writeback:0kB shmem:13196kB writeback_tmp:0kB unstable:0kB all_unreclaimable? no
Normal free:14040kB min:7440kB low:94500kB high:98136kB reserved_highatomic:32768KB active_anon:447336kB inactive_anon:261668kB active_file:177572kB inactive_file:333768k B unevictable:16632kB writepending:480kB present:4081664kB managed:3637088kB mlocked:16632kB kernel_stack:47072kB pagetables:78264kB bounce:0kB free_pcp:2280kB local_pcp:720kB free_cma:0kB [ 4738.329607] lowmem_reserve[]: 0 0
Normal: 860*4kB (H) 453*8kB (H) 180*16kB (H) 26*32kB (H) 34*64kB (H) 6*128kB (H) 2*256kB (H) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 14232kB
This is trace log which shows GFP_HIGHUSER consumes free pages right
before ALLOC_NO_WATERMARKS.
<...>-22275 [006] .... 889.213383: mm_page_alloc: page=00000000d2be5665 pfn=970744 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213385: mm_page_alloc: page=000000004b2335c2 pfn=970745 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213387: mm_page_alloc: page=00000000017272e1 pfn=970278 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213389: mm_page_alloc: page=00000000c4be79fb pfn=970279 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213391: mm_page_alloc: page=00000000f8a51d4f pfn=970260 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213393: mm_page_alloc: page=000000006ba8f5ac pfn=970261 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213395: mm_page_alloc: page=00000000819f1cd3 pfn=970196 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
<...>-22275 [006] .... 889.213396: mm_page_alloc: page=00000000f6b72a64 pfn=970197 order=0 migratetype=0 nr_free=3650 gfp_flags=GFP_HIGHUSER|__GFP_ZERO
kswapd0-1207 [005] ...1 889.213398: mm_page_alloc: page= (null) pfn=0 order=0 migratetype=1 nr_free=3650 gfp_flags=GFP_NOWAIT|__GFP_HIGHMEM|__GFP_NOWARN|__GFP_MOVABLE
[jaewon31.kim@samsung.com: remove redundant code for high-order]
Link: http://lkml.kernel.org/r/20200623035242.27232-1-jaewon31.kim@samsung.com
Reported-by: Yong-Taek Lee <ytk.lee@samsung.com>
Suggested-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Jaewon Kim <jaewon31.kim@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Baoquan He <bhe@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Yong-Taek Lee <ytk.lee@samsung.com>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20200619235958.11283-1-jaewon31.kim@samsung.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 06:25:20 +00:00
|
|
|
return true;
|
|
|
|
}
|
2016-05-20 00:14:07 +00:00
|
|
|
|
mm, page_alloc: skip ->waternark_boost for atomic order-0 allocations
When boosting is enabled, it is observed that rate of atomic order-0
allocation failures are high due to the fact that free levels in the
system are checked with ->watermark_boost offset. This is not a problem
for sleepable allocations but for atomic allocations which looks like
regression.
This problem is seen frequently on system setup of Android kernel running
on Snapdragon hardware with 4GB RAM size. When no extfrag event occurred
in the system, ->watermark_boost factor is zero, thus the watermark
configurations in the system are:
_watermark = (
[WMARK_MIN] = 1272, --> ~5MB
[WMARK_LOW] = 9067, --> ~36MB
[WMARK_HIGH] = 9385), --> ~38MB
watermark_boost = 0
After launching some memory hungry applications in Android which can cause
extfrag events in the system to an extent that ->watermark_boost can be
set to max i.e. default boost factor makes it to 150% of high watermark.
_watermark = (
[WMARK_MIN] = 1272, --> ~5MB
[WMARK_LOW] = 9067, --> ~36MB
[WMARK_HIGH] = 9385), --> ~38MB
watermark_boost = 14077, -->~57MB
With default system configuration, for an atomic order-0 allocation to
succeed, having free memory of ~2MB will suffice. But boosting makes the
min_wmark to ~61MB thus for an atomic order-0 allocation to be successful
system should have minimum of ~23MB of free memory(from calculations of
zone_watermark_ok(), min = 3/4(min/2)). But failures are observed despite
system is having ~20MB of free memory. In the testing, this is
reproducible as early as first 300secs since boot and with furtherlowram
configurations(<2GB) it is observed as early as first 150secs since boot.
These failures can be avoided by excluding the ->watermark_boost in
watermark caluculations for atomic order-0 allocations.
[akpm@linux-foundation.org: fix comment grammar, reflow comment]
[charante@codeaurora.org: fix suggested by Mel Gorman]
Link: http://lkml.kernel.org/r/31556793-57b1-1c21-1a9d-22674d9bd938@codeaurora.org
Signed-off-by: Charan Teja Reddy <charante@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Link: http://lkml.kernel.org/r/1589882284-21010-1-git-send-email-charante@codeaurora.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 06:25:24 +00:00
|
|
|
if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
|
|
|
|
free_pages))
|
|
|
|
return true;
|
2023-01-13 11:12:17 +00:00
|
|
|
|
mm, page_alloc: skip ->waternark_boost for atomic order-0 allocations
When boosting is enabled, it is observed that rate of atomic order-0
allocation failures are high due to the fact that free levels in the
system are checked with ->watermark_boost offset. This is not a problem
for sleepable allocations but for atomic allocations which looks like
regression.
This problem is seen frequently on system setup of Android kernel running
on Snapdragon hardware with 4GB RAM size. When no extfrag event occurred
in the system, ->watermark_boost factor is zero, thus the watermark
configurations in the system are:
_watermark = (
[WMARK_MIN] = 1272, --> ~5MB
[WMARK_LOW] = 9067, --> ~36MB
[WMARK_HIGH] = 9385), --> ~38MB
watermark_boost = 0
After launching some memory hungry applications in Android which can cause
extfrag events in the system to an extent that ->watermark_boost can be
set to max i.e. default boost factor makes it to 150% of high watermark.
_watermark = (
[WMARK_MIN] = 1272, --> ~5MB
[WMARK_LOW] = 9067, --> ~36MB
[WMARK_HIGH] = 9385), --> ~38MB
watermark_boost = 14077, -->~57MB
With default system configuration, for an atomic order-0 allocation to
succeed, having free memory of ~2MB will suffice. But boosting makes the
min_wmark to ~61MB thus for an atomic order-0 allocation to be successful
system should have minimum of ~23MB of free memory(from calculations of
zone_watermark_ok(), min = 3/4(min/2)). But failures are observed despite
system is having ~20MB of free memory. In the testing, this is
reproducible as early as first 300secs since boot and with furtherlowram
configurations(<2GB) it is observed as early as first 150secs since boot.
These failures can be avoided by excluding the ->watermark_boost in
watermark caluculations for atomic order-0 allocations.
[akpm@linux-foundation.org: fix comment grammar, reflow comment]
[charante@codeaurora.org: fix suggested by Mel Gorman]
Link: http://lkml.kernel.org/r/31556793-57b1-1c21-1a9d-22674d9bd938@codeaurora.org
Signed-off-by: Charan Teja Reddy <charante@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Link: http://lkml.kernel.org/r/1589882284-21010-1-git-send-email-charante@codeaurora.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 06:25:24 +00:00
|
|
|
/*
|
2023-01-13 11:12:17 +00:00
|
|
|
* Ignore watermark boosting for __GFP_HIGH order-0 allocations
|
mm, page_alloc: skip ->waternark_boost for atomic order-0 allocations
When boosting is enabled, it is observed that rate of atomic order-0
allocation failures are high due to the fact that free levels in the
system are checked with ->watermark_boost offset. This is not a problem
for sleepable allocations but for atomic allocations which looks like
regression.
This problem is seen frequently on system setup of Android kernel running
on Snapdragon hardware with 4GB RAM size. When no extfrag event occurred
in the system, ->watermark_boost factor is zero, thus the watermark
configurations in the system are:
_watermark = (
[WMARK_MIN] = 1272, --> ~5MB
[WMARK_LOW] = 9067, --> ~36MB
[WMARK_HIGH] = 9385), --> ~38MB
watermark_boost = 0
After launching some memory hungry applications in Android which can cause
extfrag events in the system to an extent that ->watermark_boost can be
set to max i.e. default boost factor makes it to 150% of high watermark.
_watermark = (
[WMARK_MIN] = 1272, --> ~5MB
[WMARK_LOW] = 9067, --> ~36MB
[WMARK_HIGH] = 9385), --> ~38MB
watermark_boost = 14077, -->~57MB
With default system configuration, for an atomic order-0 allocation to
succeed, having free memory of ~2MB will suffice. But boosting makes the
min_wmark to ~61MB thus for an atomic order-0 allocation to be successful
system should have minimum of ~23MB of free memory(from calculations of
zone_watermark_ok(), min = 3/4(min/2)). But failures are observed despite
system is having ~20MB of free memory. In the testing, this is
reproducible as early as first 300secs since boot and with furtherlowram
configurations(<2GB) it is observed as early as first 150secs since boot.
These failures can be avoided by excluding the ->watermark_boost in
watermark caluculations for atomic order-0 allocations.
[akpm@linux-foundation.org: fix comment grammar, reflow comment]
[charante@codeaurora.org: fix suggested by Mel Gorman]
Link: http://lkml.kernel.org/r/31556793-57b1-1c21-1a9d-22674d9bd938@codeaurora.org
Signed-off-by: Charan Teja Reddy <charante@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Link: http://lkml.kernel.org/r/1589882284-21010-1-git-send-email-charante@codeaurora.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 06:25:24 +00:00
|
|
|
* when checking the min watermark. The min watermark is the
|
|
|
|
* point where boosting is ignored so that kswapd is woken up
|
|
|
|
* when below the low watermark.
|
|
|
|
*/
|
2023-01-13 11:12:17 +00:00
|
|
|
if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
|
mm, page_alloc: skip ->waternark_boost for atomic order-0 allocations
When boosting is enabled, it is observed that rate of atomic order-0
allocation failures are high due to the fact that free levels in the
system are checked with ->watermark_boost offset. This is not a problem
for sleepable allocations but for atomic allocations which looks like
regression.
This problem is seen frequently on system setup of Android kernel running
on Snapdragon hardware with 4GB RAM size. When no extfrag event occurred
in the system, ->watermark_boost factor is zero, thus the watermark
configurations in the system are:
_watermark = (
[WMARK_MIN] = 1272, --> ~5MB
[WMARK_LOW] = 9067, --> ~36MB
[WMARK_HIGH] = 9385), --> ~38MB
watermark_boost = 0
After launching some memory hungry applications in Android which can cause
extfrag events in the system to an extent that ->watermark_boost can be
set to max i.e. default boost factor makes it to 150% of high watermark.
_watermark = (
[WMARK_MIN] = 1272, --> ~5MB
[WMARK_LOW] = 9067, --> ~36MB
[WMARK_HIGH] = 9385), --> ~38MB
watermark_boost = 14077, -->~57MB
With default system configuration, for an atomic order-0 allocation to
succeed, having free memory of ~2MB will suffice. But boosting makes the
min_wmark to ~61MB thus for an atomic order-0 allocation to be successful
system should have minimum of ~23MB of free memory(from calculations of
zone_watermark_ok(), min = 3/4(min/2)). But failures are observed despite
system is having ~20MB of free memory. In the testing, this is
reproducible as early as first 300secs since boot and with furtherlowram
configurations(<2GB) it is observed as early as first 150secs since boot.
These failures can be avoided by excluding the ->watermark_boost in
watermark caluculations for atomic order-0 allocations.
[akpm@linux-foundation.org: fix comment grammar, reflow comment]
[charante@codeaurora.org: fix suggested by Mel Gorman]
Link: http://lkml.kernel.org/r/31556793-57b1-1c21-1a9d-22674d9bd938@codeaurora.org
Signed-off-by: Charan Teja Reddy <charante@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Link: http://lkml.kernel.org/r/1589882284-21010-1-git-send-email-charante@codeaurora.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 06:25:24 +00:00
|
|
|
&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
|
|
|
|
mark = z->_watermark[WMARK_MIN];
|
|
|
|
return __zone_watermark_ok(z, order, mark, highest_zoneidx,
|
|
|
|
alloc_flags, free_pages);
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
2016-05-20 00:14:07 +00:00
|
|
|
}
|
|
|
|
|
2014-06-04 23:10:21 +00:00
|
|
|
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
|
2020-06-03 22:59:01 +00:00
|
|
|
unsigned long mark, int highest_zoneidx)
|
mm: page allocator: adjust the per-cpu counter threshold when memory is low
Commit aa45484 ("calculate a better estimate of NR_FREE_PAGES when memory
is low") noted that watermarks were based on the vmstat NR_FREE_PAGES. To
avoid synchronization overhead, these counters are maintained on a per-cpu
basis and drained both periodically and when a threshold is above a
threshold. On large CPU systems, the difference between the estimate and
real value of NR_FREE_PAGES can be very high. The system can get into a
case where pages are allocated far below the min watermark potentially
causing livelock issues. The commit solved the problem by taking a better
reading of NR_FREE_PAGES when memory was low.
Unfortately, as reported by Shaohua Li this accurate reading can consume a
large amount of CPU time on systems with many sockets due to cache line
bouncing. This patch takes a different approach. For large machines
where counter drift might be unsafe and while kswapd is awake, the per-cpu
thresholds for the target pgdat are reduced to limit the level of drift to
what should be a safe level. This incurs a performance penalty in heavy
memory pressure by a factor that depends on the workload and the machine
but the machine should function correctly without accidentally exhausting
all memory on a node. There is an additional cost when kswapd wakes and
sleeps but the event is not expected to be frequent - in Shaohua's test
case, there was one recorded sleep and wake event at least.
To ensure that kswapd wakes up, a safe version of zone_watermark_ok() is
introduced that takes a more accurate reading of NR_FREE_PAGES when called
from wakeup_kswapd, when deciding whether it is really safe to go back to
sleep in sleeping_prematurely() and when deciding if a zone is really
balanced or not in balance_pgdat(). We are still using an expensive
function but limiting how often it is called.
When the test case is reproduced, the time spent in the watermark
functions is reduced. The following report is on the percentage of time
spent cumulatively spent in the functions zone_nr_free_pages(),
zone_watermark_ok(), __zone_watermark_ok(), zone_watermark_ok_safe(),
zone_page_state_snapshot(), zone_page_state().
vanilla 11.6615%
disable-threshold 0.2584%
David said:
: We had to pull aa454840 "mm: page allocator: calculate a better estimate
: of NR_FREE_PAGES when memory is low and kswapd is awake" from 2.6.36
: internally because tests showed that it would cause the machine to stall
: as the result of heavy kswapd activity. I merged it back with this fix as
: it is pending in the -mm tree and it solves the issue we were seeing, so I
: definitely think this should be pushed to -stable (and I would seriously
: consider it for 2.6.37 inclusion even at this late date).
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reported-by: Shaohua Li <shaohua.li@intel.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Tested-by: Nicolas Bareil <nico@chdir.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: <stable@kernel.org> [2.6.37.1, 2.6.36.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 23:45:41 +00:00
|
|
|
{
|
|
|
|
long free_pages = zone_page_state(z, NR_FREE_PAGES);
|
|
|
|
|
|
|
|
if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
|
|
|
|
free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
|
|
|
|
|
2020-06-03 22:59:01 +00:00
|
|
|
return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
|
mm: page allocator: adjust the per-cpu counter threshold when memory is low
Commit aa45484 ("calculate a better estimate of NR_FREE_PAGES when memory
is low") noted that watermarks were based on the vmstat NR_FREE_PAGES. To
avoid synchronization overhead, these counters are maintained on a per-cpu
basis and drained both periodically and when a threshold is above a
threshold. On large CPU systems, the difference between the estimate and
real value of NR_FREE_PAGES can be very high. The system can get into a
case where pages are allocated far below the min watermark potentially
causing livelock issues. The commit solved the problem by taking a better
reading of NR_FREE_PAGES when memory was low.
Unfortately, as reported by Shaohua Li this accurate reading can consume a
large amount of CPU time on systems with many sockets due to cache line
bouncing. This patch takes a different approach. For large machines
where counter drift might be unsafe and while kswapd is awake, the per-cpu
thresholds for the target pgdat are reduced to limit the level of drift to
what should be a safe level. This incurs a performance penalty in heavy
memory pressure by a factor that depends on the workload and the machine
but the machine should function correctly without accidentally exhausting
all memory on a node. There is an additional cost when kswapd wakes and
sleeps but the event is not expected to be frequent - in Shaohua's test
case, there was one recorded sleep and wake event at least.
To ensure that kswapd wakes up, a safe version of zone_watermark_ok() is
introduced that takes a more accurate reading of NR_FREE_PAGES when called
from wakeup_kswapd, when deciding whether it is really safe to go back to
sleep in sleeping_prematurely() and when deciding if a zone is really
balanced or not in balance_pgdat(). We are still using an expensive
function but limiting how often it is called.
When the test case is reproduced, the time spent in the watermark
functions is reduced. The following report is on the percentage of time
spent cumulatively spent in the functions zone_nr_free_pages(),
zone_watermark_ok(), __zone_watermark_ok(), zone_watermark_ok_safe(),
zone_page_state_snapshot(), zone_page_state().
vanilla 11.6615%
disable-threshold 0.2584%
David said:
: We had to pull aa454840 "mm: page allocator: calculate a better estimate
: of NR_FREE_PAGES when memory is low and kswapd is awake" from 2.6.36
: internally because tests showed that it would cause the machine to stall
: as the result of heavy kswapd activity. I merged it back with this fix as
: it is pending in the -mm tree and it solves the issue we were seeing, so I
: definitely think this should be pushed to -stable (and I would seriously
: consider it for 2.6.37 inclusion even at this late date).
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reported-by: Shaohua Li <shaohua.li@intel.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Tested-by: Nicolas Bareil <nico@chdir.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: <stable@kernel.org> [2.6.37.1, 2.6.36.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 23:45:41 +00:00
|
|
|
free_pages);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
[PATCH] memory page_alloc zonelist caching speedup
Optimize the critical zonelist scanning for free pages in the kernel memory
allocator by caching the zones that were found to be full recently, and
skipping them.
Remembers the zones in a zonelist that were short of free memory in the
last second. And it stashes a zone-to-node table in the zonelist struct,
to optimize that conversion (minimize its cache footprint.)
Recent changes:
This differs in a significant way from a similar patch that I
posted a week ago. Now, instead of having a nodemask_t of
recently full nodes, I have a bitmask of recently full zones.
This solves a problem that last weeks patch had, which on
systems with multiple zones per node (such as DMA zone) would
take seeing any of these zones full as meaning that all zones
on that node were full.
Also I changed names - from "zonelist faster" to "zonelist cache",
as that seemed to better convey what we're doing here - caching
some of the key zonelist state (for faster access.)
See below for some performance benchmark results. After all that
discussion with David on why I didn't need them, I went and got
some ;). I wanted to verify that I had not hurt the normal case
of memory allocation noticeably. At least for my one little
microbenchmark, I found (1) the normal case wasn't affected, and
(2) workloads that forced scanning across multiple nodes for
memory improved up to 10% fewer System CPU cycles and lower
elapsed clock time ('sys' and 'real'). Good. See details, below.
I didn't have the logic in get_page_from_freelist() for various
full nodes and zone reclaim failures correct. That should be
fixed up now - notice the new goto labels zonelist_scan,
this_zone_full, and try_next_zone, in get_page_from_freelist().
There are two reasons I persued this alternative, over some earlier
proposals that would have focused on optimizing the fake numa
emulation case by caching the last useful zone:
1) Contrary to what I said before, we (SGI, on large ia64 sn2 systems)
have seen real customer loads where the cost to scan the zonelist
was a problem, due to many nodes being full of memory before
we got to a node we could use. Or at least, I think we have.
This was related to me by another engineer, based on experiences
from some time past. So this is not guaranteed. Most likely, though.
The following approach should help such real numa systems just as
much as it helps fake numa systems, or any combination thereof.
2) The effort to distinguish fake from real numa, using node_distance,
so that we could cache a fake numa node and optimize choosing
it over equivalent distance fake nodes, while continuing to
properly scan all real nodes in distance order, was going to
require a nasty blob of zonelist and node distance munging.
The following approach has no new dependency on node distances or
zone sorting.
See comment in the patch below for a description of what it actually does.
Technical details of note (or controversy):
- See the use of "zlc_active" and "did_zlc_setup" below, to delay
adding any work for this new mechanism until we've looked at the
first zone in zonelist. I figured the odds of the first zone
having the memory we needed were high enough that we should just
look there, first, then get fancy only if we need to keep looking.
- Some odd hackery was needed to add items to struct zonelist, while
not tripping up the custom zonelists built by the mm/mempolicy.c
code for MPOL_BIND. My usual wordy comments below explain this.
Search for "MPOL_BIND".
- Some per-node data in the struct zonelist is now modified frequently,
with no locking. Multiple CPU cores on a node could hit and mangle
this data. The theory is that this is just performance hint data,
and the memory allocator will work just fine despite any such mangling.
The fields at risk are the struct 'zonelist_cache' fields 'fullzones'
(a bitmask) and 'last_full_zap' (unsigned long jiffies). It should
all be self correcting after at most a one second delay.
- This still does a linear scan of the same lengths as before. All
I've optimized is making the scan faster, not algorithmically
shorter. It is now able to scan a compact array of 'unsigned
short' in the case of many full nodes, so one cache line should
cover quite a few nodes, rather than each node hitting another
one or two new and distinct cache lines.
- If both Andi and Nick don't find this too complicated, I will be
(pleasantly) flabbergasted.
- I removed the comment claiming we only use one cachline's worth of
zonelist. We seem, at least in the fake numa case, to have put the
lie to that claim.
- I pay no attention to the various watermarks and such in this performance
hint. A node could be marked full for one watermark, and then skipped
over when searching for a page using a different watermark. I think
that's actually quite ok, as it will tend to slightly increase the
spreading of memory over other nodes, away from a memory stressed node.
===============
Performance - some benchmark results and analysis:
This benchmark runs a memory hog program that uses multiple
threads to touch alot of memory as quickly as it can.
Multiple runs were made, touching 12, 38, 64 or 90 GBytes out of
the total 96 GBytes on the system, and using 1, 19, 37, or 55
threads (on a 56 CPU system.) System, user and real (elapsed)
timings were recorded for each run, shown in units of seconds,
in the table below.
Two kernels were tested - 2.6.18-mm3 and the same kernel with
this zonelist caching patch added. The table also shows the
percentage improvement the zonelist caching sys time is over
(lower than) the stock *-mm kernel.
number 2.6.18-mm3 zonelist-cache delta (< 0 good) percent
GBs N ------------ -------------- ---------------- systime
mem threads sys user real sys user real sys user real better
12 1 153 24 177 151 24 176 -2 0 -1 1%
12 19 99 22 8 99 22 8 0 0 0 0%
12 37 111 25 6 112 25 6 1 0 0 -0%
12 55 115 25 5 110 23 5 -5 -2 0 4%
38 1 502 74 576 497 73 570 -5 -1 -6 0%
38 19 426 78 48 373 76 39 -53 -2 -9 12%
38 37 544 83 36 547 82 36 3 -1 0 -0%
38 55 501 77 23 511 80 24 10 3 1 -1%
64 1 917 125 1042 890 124 1014 -27 -1 -28 2%
64 19 1118 138 119 965 141 103 -153 3 -16 13%
64 37 1202 151 94 1136 150 81 -66 -1 -13 5%
64 55 1118 141 61 1072 140 58 -46 -1 -3 4%
90 1 1342 177 1519 1275 174 1450 -67 -3 -69 4%
90 19 2392 199 192 2116 189 176 -276 -10 -16 11%
90 37 3313 238 175 2972 225 145 -341 -13 -30 10%
90 55 1948 210 104 1843 213 100 -105 3 -4 5%
Notes:
1) This test ran a memory hog program that started a specified number N of
threads, and had each thread allocate and touch 1/N'th of
the total memory to be used in the test run in a single loop,
writing a constant word to memory, one store every 4096 bytes.
Watching this test during some earlier trial runs, I would see
each of these threads sit down on one CPU and stay there, for
the remainder of the pass, a different CPU for each thread.
2) The 'real' column is not comparable to the 'sys' or 'user' columns.
The 'real' column is seconds wall clock time elapsed, from beginning
to end of that test pass. The 'sys' and 'user' columns are total
CPU seconds spent on that test pass. For a 19 thread test run,
for example, the sum of 'sys' and 'user' could be up to 19 times the
number of 'real' elapsed wall clock seconds.
3) Tests were run on a fresh, single-user boot, to minimize the amount
of memory already in use at the start of the test, and to minimize
the amount of background activity that might interfere.
4) Tests were done on a 56 CPU, 28 Node system with 96 GBytes of RAM.
5) Notice that the 'real' time gets large for the single thread runs, even
though the measured 'sys' and 'user' times are modest. I'm not sure what
that means - probably something to do with it being slow for one thread to
be accessing memory along ways away. Perhaps the fake numa system, running
ostensibly the same workload, would not show this substantial degradation
of 'real' time for one thread on many nodes -- lets hope not.
6) The high thread count passes (one thread per CPU - on 55 of 56 CPUs)
ran quite efficiently, as one might expect. Each pair of threads needed
to allocate and touch the memory on the node the two threads shared, a
pleasantly parallizable workload.
7) The intermediate thread count passes, when asking for alot of memory forcing
them to go to a few neighboring nodes, improved the most with this zonelist
caching patch.
Conclusions:
* This zonelist cache patch probably makes little difference one way or the
other for most workloads on real numa hardware, if those workloads avoid
heavy off node allocations.
* For memory intensive workloads requiring substantial off-node allocations
on real numa hardware, this patch improves both kernel and elapsed timings
up to ten per-cent.
* For fake numa systems, I'm optimistic, but will have to leave that up to
Rohit Seth to actually test (once I get him a 2.6.18 backport.)
Signed-off-by: Paul Jackson <pj@sgi.com>
Cc: Rohit Seth <rohitseth@google.com>
Cc: Christoph Lameter <clameter@engr.sgi.com>
Cc: David Rientjes <rientjes@cs.washington.edu>
Cc: Paul Menage <menage@google.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 04:31:48 +00:00
|
|
|
#ifdef CONFIG_NUMA
|
2021-11-05 20:40:24 +00:00
|
|
|
int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
|
|
|
|
|
2012-10-08 23:33:24 +00:00
|
|
|
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
|
|
|
|
{
|
mm/page_alloc: fix nodes for reclaim in fast path
When @node_reclaim_node isn't 0, the page allocator tries to reclaim
pages if the amount of free memory in the zones are below the low
watermark. On Power platform, none of NUMA nodes are scanned for page
reclaim because no nodes match the condition in zone_allows_reclaim().
On Power platform, RECLAIM_DISTANCE is set to 10 which is the distance
of Node-A to Node-A. So the preferred node even won't be scanned for
page reclaim.
__alloc_pages_nodemask()
get_page_from_freelist()
zone_allows_reclaim()
Anton proposed the test code as below:
# cat alloc.c
:
int main(int argc, char *argv[])
{
void *p;
unsigned long size;
unsigned long start, end;
start = time(NULL);
size = strtoul(argv[1], NULL, 0);
printf("To allocate %ldGB memory\n", size);
size <<= 30;
p = malloc(size);
assert(p);
memset(p, 0, size);
end = time(NULL);
printf("Used time: %ld seconds\n", end - start);
sleep(3600);
return 0;
}
The system I use for testing has two NUMA nodes. Both have 128GB
memory. In below scnario, the page caches on node#0 should be reclaimed
when it encounters pressure to accommodate request of allocation.
# echo 2 > /proc/sys/vm/zone_reclaim_mode; \
sync; \
echo 3 > /proc/sys/vm/drop_caches; \
# taskset -c 0 cat file.32G > /dev/null; \
grep FilePages /sys/devices/system/node/node0/meminfo
Node 0 FilePages: 33619712 kB
# taskset -c 0 ./alloc 128
# grep FilePages /sys/devices/system/node/node0/meminfo
Node 0 FilePages: 33619840 kB
# grep MemFree /sys/devices/system/node/node0/meminfo
Node 0 MemFree: 186816 kB
With the patch applied, the pagecache on node-0 is reclaimed when its
free memory is running out. It's the expected behaviour.
# echo 2 > /proc/sys/vm/zone_reclaim_mode; \
sync; \
echo 3 > /proc/sys/vm/drop_caches
# taskset -c 0 cat file.32G > /dev/null; \
grep FilePages /sys/devices/system/node/node0/meminfo
Node 0 FilePages: 33605568 kB
# taskset -c 0 ./alloc 128
# grep FilePages /sys/devices/system/node/node0/meminfo
Node 0 FilePages: 1379520 kB
# grep MemFree /sys/devices/system/node/node0/meminfo
Node 0 MemFree: 317120 kB
Fixes: 5f7a75acdb24 ("mm: page_alloc: do not cache reclaim distances")
Link: http://lkml.kernel.org/r/1486532455-29613-1-git-send-email-gwshan@linux.vnet.ibm.com
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Anton Blanchard <anton@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: <stable@vger.kernel.org> [3.16+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-24 22:59:33 +00:00
|
|
|
return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
|
2019-08-08 19:53:01 +00:00
|
|
|
node_reclaim_distance;
|
2012-10-08 23:33:24 +00:00
|
|
|
}
|
[PATCH] memory page_alloc zonelist caching speedup
Optimize the critical zonelist scanning for free pages in the kernel memory
allocator by caching the zones that were found to be full recently, and
skipping them.
Remembers the zones in a zonelist that were short of free memory in the
last second. And it stashes a zone-to-node table in the zonelist struct,
to optimize that conversion (minimize its cache footprint.)
Recent changes:
This differs in a significant way from a similar patch that I
posted a week ago. Now, instead of having a nodemask_t of
recently full nodes, I have a bitmask of recently full zones.
This solves a problem that last weeks patch had, which on
systems with multiple zones per node (such as DMA zone) would
take seeing any of these zones full as meaning that all zones
on that node were full.
Also I changed names - from "zonelist faster" to "zonelist cache",
as that seemed to better convey what we're doing here - caching
some of the key zonelist state (for faster access.)
See below for some performance benchmark results. After all that
discussion with David on why I didn't need them, I went and got
some ;). I wanted to verify that I had not hurt the normal case
of memory allocation noticeably. At least for my one little
microbenchmark, I found (1) the normal case wasn't affected, and
(2) workloads that forced scanning across multiple nodes for
memory improved up to 10% fewer System CPU cycles and lower
elapsed clock time ('sys' and 'real'). Good. See details, below.
I didn't have the logic in get_page_from_freelist() for various
full nodes and zone reclaim failures correct. That should be
fixed up now - notice the new goto labels zonelist_scan,
this_zone_full, and try_next_zone, in get_page_from_freelist().
There are two reasons I persued this alternative, over some earlier
proposals that would have focused on optimizing the fake numa
emulation case by caching the last useful zone:
1) Contrary to what I said before, we (SGI, on large ia64 sn2 systems)
have seen real customer loads where the cost to scan the zonelist
was a problem, due to many nodes being full of memory before
we got to a node we could use. Or at least, I think we have.
This was related to me by another engineer, based on experiences
from some time past. So this is not guaranteed. Most likely, though.
The following approach should help such real numa systems just as
much as it helps fake numa systems, or any combination thereof.
2) The effort to distinguish fake from real numa, using node_distance,
so that we could cache a fake numa node and optimize choosing
it over equivalent distance fake nodes, while continuing to
properly scan all real nodes in distance order, was going to
require a nasty blob of zonelist and node distance munging.
The following approach has no new dependency on node distances or
zone sorting.
See comment in the patch below for a description of what it actually does.
Technical details of note (or controversy):
- See the use of "zlc_active" and "did_zlc_setup" below, to delay
adding any work for this new mechanism until we've looked at the
first zone in zonelist. I figured the odds of the first zone
having the memory we needed were high enough that we should just
look there, first, then get fancy only if we need to keep looking.
- Some odd hackery was needed to add items to struct zonelist, while
not tripping up the custom zonelists built by the mm/mempolicy.c
code for MPOL_BIND. My usual wordy comments below explain this.
Search for "MPOL_BIND".
- Some per-node data in the struct zonelist is now modified frequently,
with no locking. Multiple CPU cores on a node could hit and mangle
this data. The theory is that this is just performance hint data,
and the memory allocator will work just fine despite any such mangling.
The fields at risk are the struct 'zonelist_cache' fields 'fullzones'
(a bitmask) and 'last_full_zap' (unsigned long jiffies). It should
all be self correcting after at most a one second delay.
- This still does a linear scan of the same lengths as before. All
I've optimized is making the scan faster, not algorithmically
shorter. It is now able to scan a compact array of 'unsigned
short' in the case of many full nodes, so one cache line should
cover quite a few nodes, rather than each node hitting another
one or two new and distinct cache lines.
- If both Andi and Nick don't find this too complicated, I will be
(pleasantly) flabbergasted.
- I removed the comment claiming we only use one cachline's worth of
zonelist. We seem, at least in the fake numa case, to have put the
lie to that claim.
- I pay no attention to the various watermarks and such in this performance
hint. A node could be marked full for one watermark, and then skipped
over when searching for a page using a different watermark. I think
that's actually quite ok, as it will tend to slightly increase the
spreading of memory over other nodes, away from a memory stressed node.
===============
Performance - some benchmark results and analysis:
This benchmark runs a memory hog program that uses multiple
threads to touch alot of memory as quickly as it can.
Multiple runs were made, touching 12, 38, 64 or 90 GBytes out of
the total 96 GBytes on the system, and using 1, 19, 37, or 55
threads (on a 56 CPU system.) System, user and real (elapsed)
timings were recorded for each run, shown in units of seconds,
in the table below.
Two kernels were tested - 2.6.18-mm3 and the same kernel with
this zonelist caching patch added. The table also shows the
percentage improvement the zonelist caching sys time is over
(lower than) the stock *-mm kernel.
number 2.6.18-mm3 zonelist-cache delta (< 0 good) percent
GBs N ------------ -------------- ---------------- systime
mem threads sys user real sys user real sys user real better
12 1 153 24 177 151 24 176 -2 0 -1 1%
12 19 99 22 8 99 22 8 0 0 0 0%
12 37 111 25 6 112 25 6 1 0 0 -0%
12 55 115 25 5 110 23 5 -5 -2 0 4%
38 1 502 74 576 497 73 570 -5 -1 -6 0%
38 19 426 78 48 373 76 39 -53 -2 -9 12%
38 37 544 83 36 547 82 36 3 -1 0 -0%
38 55 501 77 23 511 80 24 10 3 1 -1%
64 1 917 125 1042 890 124 1014 -27 -1 -28 2%
64 19 1118 138 119 965 141 103 -153 3 -16 13%
64 37 1202 151 94 1136 150 81 -66 -1 -13 5%
64 55 1118 141 61 1072 140 58 -46 -1 -3 4%
90 1 1342 177 1519 1275 174 1450 -67 -3 -69 4%
90 19 2392 199 192 2116 189 176 -276 -10 -16 11%
90 37 3313 238 175 2972 225 145 -341 -13 -30 10%
90 55 1948 210 104 1843 213 100 -105 3 -4 5%
Notes:
1) This test ran a memory hog program that started a specified number N of
threads, and had each thread allocate and touch 1/N'th of
the total memory to be used in the test run in a single loop,
writing a constant word to memory, one store every 4096 bytes.
Watching this test during some earlier trial runs, I would see
each of these threads sit down on one CPU and stay there, for
the remainder of the pass, a different CPU for each thread.
2) The 'real' column is not comparable to the 'sys' or 'user' columns.
The 'real' column is seconds wall clock time elapsed, from beginning
to end of that test pass. The 'sys' and 'user' columns are total
CPU seconds spent on that test pass. For a 19 thread test run,
for example, the sum of 'sys' and 'user' could be up to 19 times the
number of 'real' elapsed wall clock seconds.
3) Tests were run on a fresh, single-user boot, to minimize the amount
of memory already in use at the start of the test, and to minimize
the amount of background activity that might interfere.
4) Tests were done on a 56 CPU, 28 Node system with 96 GBytes of RAM.
5) Notice that the 'real' time gets large for the single thread runs, even
though the measured 'sys' and 'user' times are modest. I'm not sure what
that means - probably something to do with it being slow for one thread to
be accessing memory along ways away. Perhaps the fake numa system, running
ostensibly the same workload, would not show this substantial degradation
of 'real' time for one thread on many nodes -- lets hope not.
6) The high thread count passes (one thread per CPU - on 55 of 56 CPUs)
ran quite efficiently, as one might expect. Each pair of threads needed
to allocate and touch the memory on the node the two threads shared, a
pleasantly parallizable workload.
7) The intermediate thread count passes, when asking for alot of memory forcing
them to go to a few neighboring nodes, improved the most with this zonelist
caching patch.
Conclusions:
* This zonelist cache patch probably makes little difference one way or the
other for most workloads on real numa hardware, if those workloads avoid
heavy off node allocations.
* For memory intensive workloads requiring substantial off-node allocations
on real numa hardware, this patch improves both kernel and elapsed timings
up to ten per-cent.
* For fake numa systems, I'm optimistic, but will have to leave that up to
Rohit Seth to actually test (once I get him a 2.6.18 backport.)
Signed-off-by: Paul Jackson <pj@sgi.com>
Cc: Rohit Seth <rohitseth@google.com>
Cc: Christoph Lameter <clameter@engr.sgi.com>
Cc: David Rientjes <rientjes@cs.washington.edu>
Cc: Paul Menage <menage@google.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 04:31:48 +00:00
|
|
|
#else /* CONFIG_NUMA */
|
2012-10-08 23:33:24 +00:00
|
|
|
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
|
|
|
|
{
|
|
|
|
return true;
|
|
|
|
}
|
[PATCH] memory page_alloc zonelist caching speedup
Optimize the critical zonelist scanning for free pages in the kernel memory
allocator by caching the zones that were found to be full recently, and
skipping them.
Remembers the zones in a zonelist that were short of free memory in the
last second. And it stashes a zone-to-node table in the zonelist struct,
to optimize that conversion (minimize its cache footprint.)
Recent changes:
This differs in a significant way from a similar patch that I
posted a week ago. Now, instead of having a nodemask_t of
recently full nodes, I have a bitmask of recently full zones.
This solves a problem that last weeks patch had, which on
systems with multiple zones per node (such as DMA zone) would
take seeing any of these zones full as meaning that all zones
on that node were full.
Also I changed names - from "zonelist faster" to "zonelist cache",
as that seemed to better convey what we're doing here - caching
some of the key zonelist state (for faster access.)
See below for some performance benchmark results. After all that
discussion with David on why I didn't need them, I went and got
some ;). I wanted to verify that I had not hurt the normal case
of memory allocation noticeably. At least for my one little
microbenchmark, I found (1) the normal case wasn't affected, and
(2) workloads that forced scanning across multiple nodes for
memory improved up to 10% fewer System CPU cycles and lower
elapsed clock time ('sys' and 'real'). Good. See details, below.
I didn't have the logic in get_page_from_freelist() for various
full nodes and zone reclaim failures correct. That should be
fixed up now - notice the new goto labels zonelist_scan,
this_zone_full, and try_next_zone, in get_page_from_freelist().
There are two reasons I persued this alternative, over some earlier
proposals that would have focused on optimizing the fake numa
emulation case by caching the last useful zone:
1) Contrary to what I said before, we (SGI, on large ia64 sn2 systems)
have seen real customer loads where the cost to scan the zonelist
was a problem, due to many nodes being full of memory before
we got to a node we could use. Or at least, I think we have.
This was related to me by another engineer, based on experiences
from some time past. So this is not guaranteed. Most likely, though.
The following approach should help such real numa systems just as
much as it helps fake numa systems, or any combination thereof.
2) The effort to distinguish fake from real numa, using node_distance,
so that we could cache a fake numa node and optimize choosing
it over equivalent distance fake nodes, while continuing to
properly scan all real nodes in distance order, was going to
require a nasty blob of zonelist and node distance munging.
The following approach has no new dependency on node distances or
zone sorting.
See comment in the patch below for a description of what it actually does.
Technical details of note (or controversy):
- See the use of "zlc_active" and "did_zlc_setup" below, to delay
adding any work for this new mechanism until we've looked at the
first zone in zonelist. I figured the odds of the first zone
having the memory we needed were high enough that we should just
look there, first, then get fancy only if we need to keep looking.
- Some odd hackery was needed to add items to struct zonelist, while
not tripping up the custom zonelists built by the mm/mempolicy.c
code for MPOL_BIND. My usual wordy comments below explain this.
Search for "MPOL_BIND".
- Some per-node data in the struct zonelist is now modified frequently,
with no locking. Multiple CPU cores on a node could hit and mangle
this data. The theory is that this is just performance hint data,
and the memory allocator will work just fine despite any such mangling.
The fields at risk are the struct 'zonelist_cache' fields 'fullzones'
(a bitmask) and 'last_full_zap' (unsigned long jiffies). It should
all be self correcting after at most a one second delay.
- This still does a linear scan of the same lengths as before. All
I've optimized is making the scan faster, not algorithmically
shorter. It is now able to scan a compact array of 'unsigned
short' in the case of many full nodes, so one cache line should
cover quite a few nodes, rather than each node hitting another
one or two new and distinct cache lines.
- If both Andi and Nick don't find this too complicated, I will be
(pleasantly) flabbergasted.
- I removed the comment claiming we only use one cachline's worth of
zonelist. We seem, at least in the fake numa case, to have put the
lie to that claim.
- I pay no attention to the various watermarks and such in this performance
hint. A node could be marked full for one watermark, and then skipped
over when searching for a page using a different watermark. I think
that's actually quite ok, as it will tend to slightly increase the
spreading of memory over other nodes, away from a memory stressed node.
===============
Performance - some benchmark results and analysis:
This benchmark runs a memory hog program that uses multiple
threads to touch alot of memory as quickly as it can.
Multiple runs were made, touching 12, 38, 64 or 90 GBytes out of
the total 96 GBytes on the system, and using 1, 19, 37, or 55
threads (on a 56 CPU system.) System, user and real (elapsed)
timings were recorded for each run, shown in units of seconds,
in the table below.
Two kernels were tested - 2.6.18-mm3 and the same kernel with
this zonelist caching patch added. The table also shows the
percentage improvement the zonelist caching sys time is over
(lower than) the stock *-mm kernel.
number 2.6.18-mm3 zonelist-cache delta (< 0 good) percent
GBs N ------------ -------------- ---------------- systime
mem threads sys user real sys user real sys user real better
12 1 153 24 177 151 24 176 -2 0 -1 1%
12 19 99 22 8 99 22 8 0 0 0 0%
12 37 111 25 6 112 25 6 1 0 0 -0%
12 55 115 25 5 110 23 5 -5 -2 0 4%
38 1 502 74 576 497 73 570 -5 -1 -6 0%
38 19 426 78 48 373 76 39 -53 -2 -9 12%
38 37 544 83 36 547 82 36 3 -1 0 -0%
38 55 501 77 23 511 80 24 10 3 1 -1%
64 1 917 125 1042 890 124 1014 -27 -1 -28 2%
64 19 1118 138 119 965 141 103 -153 3 -16 13%
64 37 1202 151 94 1136 150 81 -66 -1 -13 5%
64 55 1118 141 61 1072 140 58 -46 -1 -3 4%
90 1 1342 177 1519 1275 174 1450 -67 -3 -69 4%
90 19 2392 199 192 2116 189 176 -276 -10 -16 11%
90 37 3313 238 175 2972 225 145 -341 -13 -30 10%
90 55 1948 210 104 1843 213 100 -105 3 -4 5%
Notes:
1) This test ran a memory hog program that started a specified number N of
threads, and had each thread allocate and touch 1/N'th of
the total memory to be used in the test run in a single loop,
writing a constant word to memory, one store every 4096 bytes.
Watching this test during some earlier trial runs, I would see
each of these threads sit down on one CPU and stay there, for
the remainder of the pass, a different CPU for each thread.
2) The 'real' column is not comparable to the 'sys' or 'user' columns.
The 'real' column is seconds wall clock time elapsed, from beginning
to end of that test pass. The 'sys' and 'user' columns are total
CPU seconds spent on that test pass. For a 19 thread test run,
for example, the sum of 'sys' and 'user' could be up to 19 times the
number of 'real' elapsed wall clock seconds.
3) Tests were run on a fresh, single-user boot, to minimize the amount
of memory already in use at the start of the test, and to minimize
the amount of background activity that might interfere.
4) Tests were done on a 56 CPU, 28 Node system with 96 GBytes of RAM.
5) Notice that the 'real' time gets large for the single thread runs, even
though the measured 'sys' and 'user' times are modest. I'm not sure what
that means - probably something to do with it being slow for one thread to
be accessing memory along ways away. Perhaps the fake numa system, running
ostensibly the same workload, would not show this substantial degradation
of 'real' time for one thread on many nodes -- lets hope not.
6) The high thread count passes (one thread per CPU - on 55 of 56 CPUs)
ran quite efficiently, as one might expect. Each pair of threads needed
to allocate and touch the memory on the node the two threads shared, a
pleasantly parallizable workload.
7) The intermediate thread count passes, when asking for alot of memory forcing
them to go to a few neighboring nodes, improved the most with this zonelist
caching patch.
Conclusions:
* This zonelist cache patch probably makes little difference one way or the
other for most workloads on real numa hardware, if those workloads avoid
heavy off node allocations.
* For memory intensive workloads requiring substantial off-node allocations
on real numa hardware, this patch improves both kernel and elapsed timings
up to ten per-cent.
* For fake numa systems, I'm optimistic, but will have to leave that up to
Rohit Seth to actually test (once I get him a 2.6.18 backport.)
Signed-off-by: Paul Jackson <pj@sgi.com>
Cc: Rohit Seth <rohitseth@google.com>
Cc: Christoph Lameter <clameter@engr.sgi.com>
Cc: David Rientjes <rientjes@cs.washington.edu>
Cc: Paul Menage <menage@google.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 04:31:48 +00:00
|
|
|
#endif /* CONFIG_NUMA */
|
|
|
|
|
mm, page_alloc: spread allocations across zones before introducing fragmentation
Patch series "Fragmentation avoidance improvements", v5.
It has been noted before that fragmentation avoidance (aka
anti-fragmentation) is not perfect. Given sufficient time or an adverse
workload, memory gets fragmented and the long-term success of high-order
allocations degrades. This series defines an adverse workload, a definition
of external fragmentation events (including serious) ones and a series
that reduces the level of those fragmentation events.
The details of the workload and the consequences are described in more
detail in the changelogs. However, from patch 1, this is a high-level
summary of the adverse workload. The exact details are found in the
mmtests implementation.
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch)
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameterr create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed
3. Warm up a number of fio read-only threads accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll fault back in old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup
Overall the series reduces external fragmentation causing events by over 94%
on 1 and 2 socket machines, which in turn impacts high-order allocation
success rates over the long term. There are differences in latencies and
high-order allocation success rates. Latencies are a mixed bag as they
are vulnerable to exact system state and whether allocations succeeded
so they are treated as a secondary metric.
Patch 1 uses lower zones if they are populated and have free memory
instead of fragmenting a higher zone. It's special cased to
handle a Normal->DMA32 fallback with the reasons explained
in the changelog.
Patch 2-4 boosts watermarks temporarily when an external fragmentation
event occurs. kswapd wakes to reclaim a small amount of old memory
and then wakes kcompactd on completion to recover the system
slightly. This introduces some overhead in the slowpath. The level
of boosting can be tuned or disabled depending on the tolerance
for fragmentation vs allocation latency.
Patch 5 stalls some movable allocation requests to let kswapd from patch 4
make some progress. The duration of the stalls is very low but it
is possible to tune the system to avoid fragmentation events if
larger stalls can be tolerated.
The bulk of the improvement in fragmentation avoidance is from patches
1-4 but patch 5 can deal with a rare corner case and provides the option
of tuning a system for THP allocation success rates in exchange for
some stalls to control fragmentation.
This patch (of 5):
The page allocator zone lists are iterated based on the watermarks of each
zone which does not take anti-fragmentation into account. On x86, node 0
may have multiple zones while other nodes have one zone. A consequence is
that tasks running on node 0 may fragment ZONE_NORMAL even though
ZONE_DMA32 has plenty of free memory. This patch special cases the
allocator fast path such that it'll try an allocation from a lower local
zone before fragmenting a higher zone. In this case, stealing of
pageblocks or orders larger than a pageblock are still allowed in the fast
path as they are uninteresting from a fragmentation point of view.
This was evaluated using a benchmark designed to fragment memory before
attempting THP allocations. It's implemented in mmtests as the following
configurations
configs/config-global-dhp__workload_thpfioscale
configs/config-global-dhp__workload_thpfioscale-defrag
configs/config-global-dhp__workload_thpfioscale-madvhugepage
e.g. from mmtests
./run-mmtests.sh --run-monitor --config configs/config-global-dhp__workload_thpfioscale test-run-1
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch).
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameter create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed.
3. Warm up a number of fio read-only processes accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll refault old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds.
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup the test files.
Note that due to the use of IO and page cache that this benchmark is not
suitable for running on large machines where the time to fragment memory
may be excessive. Also note that while this is one mix that generates
fragmentation that it's not the only mix that generates fragmentation.
Differences in workload that are more slab-intensive or whether SLUB is
used with high-order pages may yield different results.
When the page allocator fragments memory, it records the event using the
mm_page_alloc_extfrag ftrace event. If the fallback_order is smaller than
a pageblock order (order-9 on 64-bit x86) then it's considered to be an
"external fragmentation event" that may cause issues in the future.
Hence, the primary metric here is the number of external fragmentation
events that occur with order < 9. The secondary metric is allocation
latency and huge page allocation success rates but note that differences
in latencies and what the success rate also can affect the number of
external fragmentation event which is why it's a secondary metric.
1-socket Skylake machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 1 THP allocating thread
--------------------------------------
4.20-rc3 extfrag events < order 9: 804694
4.20-rc3+patch: 408912 (49% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 662.92 ( 0.00%) 653.58 * 1.41%*
Amean fault-huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
Fault latencies are slightly reduced while allocation success rates remain
at zero as this configuration does not make any special effort to allocate
THP and fio is heavily active at the time and either filling memory or
keeping pages resident. However, a 49% reduction of serious fragmentation
events reduces the changes of external fragmentation being a problem in
the future.
Vlastimil asked during review for a breakdown of the allocation types
that are falling back.
vanilla
3816 MIGRATE_UNMOVABLE
800845 MIGRATE_MOVABLE
33 MIGRATE_UNRECLAIMABLE
patch
735 MIGRATE_UNMOVABLE
408135 MIGRATE_MOVABLE
42 MIGRATE_UNRECLAIMABLE
The majority of the fallbacks are due to movable allocations and this is
consistent for the workload throughout the series so will not be presented
again as the primary source of fallbacks are movable allocations.
Movable fallbacks are sometimes considered "ok" to fallback because they
can be migrated. The problem is that they can fill an
unmovable/reclaimable pageblock causing those allocations to fallback
later and polluting pageblocks with pages that cannot move. If there is a
movable fallback, it is pretty much guaranteed to affect an
unmovable/reclaimable pageblock and while it might not be enough to
actually cause a unmovable/reclaimable fallback in the future, we cannot
know that in advance so the patch takes the only option available to it.
Hence, it's important to control them. This point is also consistent
throughout the series and will not be repeated.
1-socket Skylake machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 291392
4.20-rc3+patch: 191187 (34% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 1495.14 ( 0.00%) 1467.55 ( 1.85%)
Amean fault-huge-1 1098.48 ( 0.00%) 1127.11 ( -2.61%)
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 78.57 ( 0.00%) 77.64 ( -1.18%)
Fragmentation events were reduced quite a bit although this is known
to be a little variable. The latencies and allocation success rates
are similar but they were already quite high.
2-socket Haswell machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 5 THP allocating threads
----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 215698
4.20-rc3+patch: 200210 (7% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 1350.05 ( 0.00%) 1346.45 ( 0.27%)
Amean fault-huge-5 4181.01 ( 0.00%) 3418.60 ( 18.24%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 1.15 ( 0.00%) 0.78 ( -31.88%)
The reduction of external fragmentation events is slight and this is
partially due to the removal of __GFP_THISNODE in commit ac5b2c18911f
("mm: thp: relax __GFP_THISNODE for MADV_HUGEPAGE mappings") as THP
allocations can now spill over to remote nodes instead of fragmenting
local memory.
2-socket Haswell machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 166352
4.20-rc3+patch: 147463 (11% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 6138.97 ( 0.00%) 6217.43 ( -1.28%)
Amean fault-huge-5 2294.28 ( 0.00%) 3163.33 * -37.88%*
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 96.82 ( 0.00%) 95.14 ( -1.74%)
There was a slight reduction in external fragmentation events although the
latencies were higher. The allocation success rate is high enough that
the system is struggling and there is quite a lot of parallel reclaim and
compaction activity. There is also a certain degree of luck on whether
processes start on node 0 or not for this patch but the relevance is
reduced later in the series.
Overall, the patch reduces the number of external fragmentation causing
events so the success of THP over long periods of time would be improved
for this adverse workload.
Link: http://lkml.kernel.org/r/20181123114528.28802-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 08:35:41 +00:00
|
|
|
/*
|
|
|
|
* The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
|
|
|
|
* fragmentation is subtle. If the preferred zone was HIGHMEM then
|
|
|
|
* premature use of a lower zone may cause lowmem pressure problems that
|
|
|
|
* are worse than fragmentation. If the next zone is ZONE_DMA then it is
|
|
|
|
* probably too small. It only makes sense to spread allocations to avoid
|
|
|
|
* fragmentation between the Normal and DMA32 zones.
|
|
|
|
*/
|
|
|
|
static inline unsigned int
|
2018-12-28 08:35:48 +00:00
|
|
|
alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
|
mm, page_alloc: spread allocations across zones before introducing fragmentation
Patch series "Fragmentation avoidance improvements", v5.
It has been noted before that fragmentation avoidance (aka
anti-fragmentation) is not perfect. Given sufficient time or an adverse
workload, memory gets fragmented and the long-term success of high-order
allocations degrades. This series defines an adverse workload, a definition
of external fragmentation events (including serious) ones and a series
that reduces the level of those fragmentation events.
The details of the workload and the consequences are described in more
detail in the changelogs. However, from patch 1, this is a high-level
summary of the adverse workload. The exact details are found in the
mmtests implementation.
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch)
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameterr create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed
3. Warm up a number of fio read-only threads accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll fault back in old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup
Overall the series reduces external fragmentation causing events by over 94%
on 1 and 2 socket machines, which in turn impacts high-order allocation
success rates over the long term. There are differences in latencies and
high-order allocation success rates. Latencies are a mixed bag as they
are vulnerable to exact system state and whether allocations succeeded
so they are treated as a secondary metric.
Patch 1 uses lower zones if they are populated and have free memory
instead of fragmenting a higher zone. It's special cased to
handle a Normal->DMA32 fallback with the reasons explained
in the changelog.
Patch 2-4 boosts watermarks temporarily when an external fragmentation
event occurs. kswapd wakes to reclaim a small amount of old memory
and then wakes kcompactd on completion to recover the system
slightly. This introduces some overhead in the slowpath. The level
of boosting can be tuned or disabled depending on the tolerance
for fragmentation vs allocation latency.
Patch 5 stalls some movable allocation requests to let kswapd from patch 4
make some progress. The duration of the stalls is very low but it
is possible to tune the system to avoid fragmentation events if
larger stalls can be tolerated.
The bulk of the improvement in fragmentation avoidance is from patches
1-4 but patch 5 can deal with a rare corner case and provides the option
of tuning a system for THP allocation success rates in exchange for
some stalls to control fragmentation.
This patch (of 5):
The page allocator zone lists are iterated based on the watermarks of each
zone which does not take anti-fragmentation into account. On x86, node 0
may have multiple zones while other nodes have one zone. A consequence is
that tasks running on node 0 may fragment ZONE_NORMAL even though
ZONE_DMA32 has plenty of free memory. This patch special cases the
allocator fast path such that it'll try an allocation from a lower local
zone before fragmenting a higher zone. In this case, stealing of
pageblocks or orders larger than a pageblock are still allowed in the fast
path as they are uninteresting from a fragmentation point of view.
This was evaluated using a benchmark designed to fragment memory before
attempting THP allocations. It's implemented in mmtests as the following
configurations
configs/config-global-dhp__workload_thpfioscale
configs/config-global-dhp__workload_thpfioscale-defrag
configs/config-global-dhp__workload_thpfioscale-madvhugepage
e.g. from mmtests
./run-mmtests.sh --run-monitor --config configs/config-global-dhp__workload_thpfioscale test-run-1
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch).
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameter create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed.
3. Warm up a number of fio read-only processes accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll refault old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds.
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup the test files.
Note that due to the use of IO and page cache that this benchmark is not
suitable for running on large machines where the time to fragment memory
may be excessive. Also note that while this is one mix that generates
fragmentation that it's not the only mix that generates fragmentation.
Differences in workload that are more slab-intensive or whether SLUB is
used with high-order pages may yield different results.
When the page allocator fragments memory, it records the event using the
mm_page_alloc_extfrag ftrace event. If the fallback_order is smaller than
a pageblock order (order-9 on 64-bit x86) then it's considered to be an
"external fragmentation event" that may cause issues in the future.
Hence, the primary metric here is the number of external fragmentation
events that occur with order < 9. The secondary metric is allocation
latency and huge page allocation success rates but note that differences
in latencies and what the success rate also can affect the number of
external fragmentation event which is why it's a secondary metric.
1-socket Skylake machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 1 THP allocating thread
--------------------------------------
4.20-rc3 extfrag events < order 9: 804694
4.20-rc3+patch: 408912 (49% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 662.92 ( 0.00%) 653.58 * 1.41%*
Amean fault-huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
Fault latencies are slightly reduced while allocation success rates remain
at zero as this configuration does not make any special effort to allocate
THP and fio is heavily active at the time and either filling memory or
keeping pages resident. However, a 49% reduction of serious fragmentation
events reduces the changes of external fragmentation being a problem in
the future.
Vlastimil asked during review for a breakdown of the allocation types
that are falling back.
vanilla
3816 MIGRATE_UNMOVABLE
800845 MIGRATE_MOVABLE
33 MIGRATE_UNRECLAIMABLE
patch
735 MIGRATE_UNMOVABLE
408135 MIGRATE_MOVABLE
42 MIGRATE_UNRECLAIMABLE
The majority of the fallbacks are due to movable allocations and this is
consistent for the workload throughout the series so will not be presented
again as the primary source of fallbacks are movable allocations.
Movable fallbacks are sometimes considered "ok" to fallback because they
can be migrated. The problem is that they can fill an
unmovable/reclaimable pageblock causing those allocations to fallback
later and polluting pageblocks with pages that cannot move. If there is a
movable fallback, it is pretty much guaranteed to affect an
unmovable/reclaimable pageblock and while it might not be enough to
actually cause a unmovable/reclaimable fallback in the future, we cannot
know that in advance so the patch takes the only option available to it.
Hence, it's important to control them. This point is also consistent
throughout the series and will not be repeated.
1-socket Skylake machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 291392
4.20-rc3+patch: 191187 (34% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 1495.14 ( 0.00%) 1467.55 ( 1.85%)
Amean fault-huge-1 1098.48 ( 0.00%) 1127.11 ( -2.61%)
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 78.57 ( 0.00%) 77.64 ( -1.18%)
Fragmentation events were reduced quite a bit although this is known
to be a little variable. The latencies and allocation success rates
are similar but they were already quite high.
2-socket Haswell machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 5 THP allocating threads
----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 215698
4.20-rc3+patch: 200210 (7% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 1350.05 ( 0.00%) 1346.45 ( 0.27%)
Amean fault-huge-5 4181.01 ( 0.00%) 3418.60 ( 18.24%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 1.15 ( 0.00%) 0.78 ( -31.88%)
The reduction of external fragmentation events is slight and this is
partially due to the removal of __GFP_THISNODE in commit ac5b2c18911f
("mm: thp: relax __GFP_THISNODE for MADV_HUGEPAGE mappings") as THP
allocations can now spill over to remote nodes instead of fragmenting
local memory.
2-socket Haswell machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 166352
4.20-rc3+patch: 147463 (11% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 6138.97 ( 0.00%) 6217.43 ( -1.28%)
Amean fault-huge-5 2294.28 ( 0.00%) 3163.33 * -37.88%*
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 96.82 ( 0.00%) 95.14 ( -1.74%)
There was a slight reduction in external fragmentation events although the
latencies were higher. The allocation success rate is high enough that
the system is struggling and there is quite a lot of parallel reclaim and
compaction activity. There is also a certain degree of luck on whether
processes start on node 0 or not for this patch but the relevance is
reduced later in the series.
Overall, the patch reduces the number of external fragmentation causing
events so the success of THP over long periods of time would be improved
for this adverse workload.
Link: http://lkml.kernel.org/r/20181123114528.28802-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 08:35:41 +00:00
|
|
|
{
|
2020-04-02 04:09:47 +00:00
|
|
|
unsigned int alloc_flags;
|
2018-12-28 08:35:48 +00:00
|
|
|
|
2020-04-02 04:09:47 +00:00
|
|
|
/*
|
|
|
|
* __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
|
|
|
|
* to save a branch.
|
|
|
|
*/
|
|
|
|
alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
|
2018-12-28 08:35:48 +00:00
|
|
|
|
|
|
|
#ifdef CONFIG_ZONE_DMA32
|
2019-04-26 05:23:58 +00:00
|
|
|
if (!zone)
|
|
|
|
return alloc_flags;
|
|
|
|
|
mm, page_alloc: spread allocations across zones before introducing fragmentation
Patch series "Fragmentation avoidance improvements", v5.
It has been noted before that fragmentation avoidance (aka
anti-fragmentation) is not perfect. Given sufficient time or an adverse
workload, memory gets fragmented and the long-term success of high-order
allocations degrades. This series defines an adverse workload, a definition
of external fragmentation events (including serious) ones and a series
that reduces the level of those fragmentation events.
The details of the workload and the consequences are described in more
detail in the changelogs. However, from patch 1, this is a high-level
summary of the adverse workload. The exact details are found in the
mmtests implementation.
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch)
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameterr create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed
3. Warm up a number of fio read-only threads accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll fault back in old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup
Overall the series reduces external fragmentation causing events by over 94%
on 1 and 2 socket machines, which in turn impacts high-order allocation
success rates over the long term. There are differences in latencies and
high-order allocation success rates. Latencies are a mixed bag as they
are vulnerable to exact system state and whether allocations succeeded
so they are treated as a secondary metric.
Patch 1 uses lower zones if they are populated and have free memory
instead of fragmenting a higher zone. It's special cased to
handle a Normal->DMA32 fallback with the reasons explained
in the changelog.
Patch 2-4 boosts watermarks temporarily when an external fragmentation
event occurs. kswapd wakes to reclaim a small amount of old memory
and then wakes kcompactd on completion to recover the system
slightly. This introduces some overhead in the slowpath. The level
of boosting can be tuned or disabled depending on the tolerance
for fragmentation vs allocation latency.
Patch 5 stalls some movable allocation requests to let kswapd from patch 4
make some progress. The duration of the stalls is very low but it
is possible to tune the system to avoid fragmentation events if
larger stalls can be tolerated.
The bulk of the improvement in fragmentation avoidance is from patches
1-4 but patch 5 can deal with a rare corner case and provides the option
of tuning a system for THP allocation success rates in exchange for
some stalls to control fragmentation.
This patch (of 5):
The page allocator zone lists are iterated based on the watermarks of each
zone which does not take anti-fragmentation into account. On x86, node 0
may have multiple zones while other nodes have one zone. A consequence is
that tasks running on node 0 may fragment ZONE_NORMAL even though
ZONE_DMA32 has plenty of free memory. This patch special cases the
allocator fast path such that it'll try an allocation from a lower local
zone before fragmenting a higher zone. In this case, stealing of
pageblocks or orders larger than a pageblock are still allowed in the fast
path as they are uninteresting from a fragmentation point of view.
This was evaluated using a benchmark designed to fragment memory before
attempting THP allocations. It's implemented in mmtests as the following
configurations
configs/config-global-dhp__workload_thpfioscale
configs/config-global-dhp__workload_thpfioscale-defrag
configs/config-global-dhp__workload_thpfioscale-madvhugepage
e.g. from mmtests
./run-mmtests.sh --run-monitor --config configs/config-global-dhp__workload_thpfioscale test-run-1
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch).
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameter create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed.
3. Warm up a number of fio read-only processes accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll refault old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds.
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup the test files.
Note that due to the use of IO and page cache that this benchmark is not
suitable for running on large machines where the time to fragment memory
may be excessive. Also note that while this is one mix that generates
fragmentation that it's not the only mix that generates fragmentation.
Differences in workload that are more slab-intensive or whether SLUB is
used with high-order pages may yield different results.
When the page allocator fragments memory, it records the event using the
mm_page_alloc_extfrag ftrace event. If the fallback_order is smaller than
a pageblock order (order-9 on 64-bit x86) then it's considered to be an
"external fragmentation event" that may cause issues in the future.
Hence, the primary metric here is the number of external fragmentation
events that occur with order < 9. The secondary metric is allocation
latency and huge page allocation success rates but note that differences
in latencies and what the success rate also can affect the number of
external fragmentation event which is why it's a secondary metric.
1-socket Skylake machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 1 THP allocating thread
--------------------------------------
4.20-rc3 extfrag events < order 9: 804694
4.20-rc3+patch: 408912 (49% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 662.92 ( 0.00%) 653.58 * 1.41%*
Amean fault-huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
Fault latencies are slightly reduced while allocation success rates remain
at zero as this configuration does not make any special effort to allocate
THP and fio is heavily active at the time and either filling memory or
keeping pages resident. However, a 49% reduction of serious fragmentation
events reduces the changes of external fragmentation being a problem in
the future.
Vlastimil asked during review for a breakdown of the allocation types
that are falling back.
vanilla
3816 MIGRATE_UNMOVABLE
800845 MIGRATE_MOVABLE
33 MIGRATE_UNRECLAIMABLE
patch
735 MIGRATE_UNMOVABLE
408135 MIGRATE_MOVABLE
42 MIGRATE_UNRECLAIMABLE
The majority of the fallbacks are due to movable allocations and this is
consistent for the workload throughout the series so will not be presented
again as the primary source of fallbacks are movable allocations.
Movable fallbacks are sometimes considered "ok" to fallback because they
can be migrated. The problem is that they can fill an
unmovable/reclaimable pageblock causing those allocations to fallback
later and polluting pageblocks with pages that cannot move. If there is a
movable fallback, it is pretty much guaranteed to affect an
unmovable/reclaimable pageblock and while it might not be enough to
actually cause a unmovable/reclaimable fallback in the future, we cannot
know that in advance so the patch takes the only option available to it.
Hence, it's important to control them. This point is also consistent
throughout the series and will not be repeated.
1-socket Skylake machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 291392
4.20-rc3+patch: 191187 (34% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 1495.14 ( 0.00%) 1467.55 ( 1.85%)
Amean fault-huge-1 1098.48 ( 0.00%) 1127.11 ( -2.61%)
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 78.57 ( 0.00%) 77.64 ( -1.18%)
Fragmentation events were reduced quite a bit although this is known
to be a little variable. The latencies and allocation success rates
are similar but they were already quite high.
2-socket Haswell machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 5 THP allocating threads
----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 215698
4.20-rc3+patch: 200210 (7% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 1350.05 ( 0.00%) 1346.45 ( 0.27%)
Amean fault-huge-5 4181.01 ( 0.00%) 3418.60 ( 18.24%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 1.15 ( 0.00%) 0.78 ( -31.88%)
The reduction of external fragmentation events is slight and this is
partially due to the removal of __GFP_THISNODE in commit ac5b2c18911f
("mm: thp: relax __GFP_THISNODE for MADV_HUGEPAGE mappings") as THP
allocations can now spill over to remote nodes instead of fragmenting
local memory.
2-socket Haswell machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 166352
4.20-rc3+patch: 147463 (11% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 6138.97 ( 0.00%) 6217.43 ( -1.28%)
Amean fault-huge-5 2294.28 ( 0.00%) 3163.33 * -37.88%*
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 96.82 ( 0.00%) 95.14 ( -1.74%)
There was a slight reduction in external fragmentation events although the
latencies were higher. The allocation success rate is high enough that
the system is struggling and there is quite a lot of parallel reclaim and
compaction activity. There is also a certain degree of luck on whether
processes start on node 0 or not for this patch but the relevance is
reduced later in the series.
Overall, the patch reduces the number of external fragmentation causing
events so the success of THP over long periods of time would be improved
for this adverse workload.
Link: http://lkml.kernel.org/r/20181123114528.28802-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 08:35:41 +00:00
|
|
|
if (zone_idx(zone) != ZONE_NORMAL)
|
2019-04-26 05:24:01 +00:00
|
|
|
return alloc_flags;
|
mm, page_alloc: spread allocations across zones before introducing fragmentation
Patch series "Fragmentation avoidance improvements", v5.
It has been noted before that fragmentation avoidance (aka
anti-fragmentation) is not perfect. Given sufficient time or an adverse
workload, memory gets fragmented and the long-term success of high-order
allocations degrades. This series defines an adverse workload, a definition
of external fragmentation events (including serious) ones and a series
that reduces the level of those fragmentation events.
The details of the workload and the consequences are described in more
detail in the changelogs. However, from patch 1, this is a high-level
summary of the adverse workload. The exact details are found in the
mmtests implementation.
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch)
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameterr create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed
3. Warm up a number of fio read-only threads accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll fault back in old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup
Overall the series reduces external fragmentation causing events by over 94%
on 1 and 2 socket machines, which in turn impacts high-order allocation
success rates over the long term. There are differences in latencies and
high-order allocation success rates. Latencies are a mixed bag as they
are vulnerable to exact system state and whether allocations succeeded
so they are treated as a secondary metric.
Patch 1 uses lower zones if they are populated and have free memory
instead of fragmenting a higher zone. It's special cased to
handle a Normal->DMA32 fallback with the reasons explained
in the changelog.
Patch 2-4 boosts watermarks temporarily when an external fragmentation
event occurs. kswapd wakes to reclaim a small amount of old memory
and then wakes kcompactd on completion to recover the system
slightly. This introduces some overhead in the slowpath. The level
of boosting can be tuned or disabled depending on the tolerance
for fragmentation vs allocation latency.
Patch 5 stalls some movable allocation requests to let kswapd from patch 4
make some progress. The duration of the stalls is very low but it
is possible to tune the system to avoid fragmentation events if
larger stalls can be tolerated.
The bulk of the improvement in fragmentation avoidance is from patches
1-4 but patch 5 can deal with a rare corner case and provides the option
of tuning a system for THP allocation success rates in exchange for
some stalls to control fragmentation.
This patch (of 5):
The page allocator zone lists are iterated based on the watermarks of each
zone which does not take anti-fragmentation into account. On x86, node 0
may have multiple zones while other nodes have one zone. A consequence is
that tasks running on node 0 may fragment ZONE_NORMAL even though
ZONE_DMA32 has plenty of free memory. This patch special cases the
allocator fast path such that it'll try an allocation from a lower local
zone before fragmenting a higher zone. In this case, stealing of
pageblocks or orders larger than a pageblock are still allowed in the fast
path as they are uninteresting from a fragmentation point of view.
This was evaluated using a benchmark designed to fragment memory before
attempting THP allocations. It's implemented in mmtests as the following
configurations
configs/config-global-dhp__workload_thpfioscale
configs/config-global-dhp__workload_thpfioscale-defrag
configs/config-global-dhp__workload_thpfioscale-madvhugepage
e.g. from mmtests
./run-mmtests.sh --run-monitor --config configs/config-global-dhp__workload_thpfioscale test-run-1
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch).
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameter create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed.
3. Warm up a number of fio read-only processes accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll refault old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds.
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup the test files.
Note that due to the use of IO and page cache that this benchmark is not
suitable for running on large machines where the time to fragment memory
may be excessive. Also note that while this is one mix that generates
fragmentation that it's not the only mix that generates fragmentation.
Differences in workload that are more slab-intensive or whether SLUB is
used with high-order pages may yield different results.
When the page allocator fragments memory, it records the event using the
mm_page_alloc_extfrag ftrace event. If the fallback_order is smaller than
a pageblock order (order-9 on 64-bit x86) then it's considered to be an
"external fragmentation event" that may cause issues in the future.
Hence, the primary metric here is the number of external fragmentation
events that occur with order < 9. The secondary metric is allocation
latency and huge page allocation success rates but note that differences
in latencies and what the success rate also can affect the number of
external fragmentation event which is why it's a secondary metric.
1-socket Skylake machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 1 THP allocating thread
--------------------------------------
4.20-rc3 extfrag events < order 9: 804694
4.20-rc3+patch: 408912 (49% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 662.92 ( 0.00%) 653.58 * 1.41%*
Amean fault-huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
Fault latencies are slightly reduced while allocation success rates remain
at zero as this configuration does not make any special effort to allocate
THP and fio is heavily active at the time and either filling memory or
keeping pages resident. However, a 49% reduction of serious fragmentation
events reduces the changes of external fragmentation being a problem in
the future.
Vlastimil asked during review for a breakdown of the allocation types
that are falling back.
vanilla
3816 MIGRATE_UNMOVABLE
800845 MIGRATE_MOVABLE
33 MIGRATE_UNRECLAIMABLE
patch
735 MIGRATE_UNMOVABLE
408135 MIGRATE_MOVABLE
42 MIGRATE_UNRECLAIMABLE
The majority of the fallbacks are due to movable allocations and this is
consistent for the workload throughout the series so will not be presented
again as the primary source of fallbacks are movable allocations.
Movable fallbacks are sometimes considered "ok" to fallback because they
can be migrated. The problem is that they can fill an
unmovable/reclaimable pageblock causing those allocations to fallback
later and polluting pageblocks with pages that cannot move. If there is a
movable fallback, it is pretty much guaranteed to affect an
unmovable/reclaimable pageblock and while it might not be enough to
actually cause a unmovable/reclaimable fallback in the future, we cannot
know that in advance so the patch takes the only option available to it.
Hence, it's important to control them. This point is also consistent
throughout the series and will not be repeated.
1-socket Skylake machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 291392
4.20-rc3+patch: 191187 (34% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 1495.14 ( 0.00%) 1467.55 ( 1.85%)
Amean fault-huge-1 1098.48 ( 0.00%) 1127.11 ( -2.61%)
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 78.57 ( 0.00%) 77.64 ( -1.18%)
Fragmentation events were reduced quite a bit although this is known
to be a little variable. The latencies and allocation success rates
are similar but they were already quite high.
2-socket Haswell machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 5 THP allocating threads
----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 215698
4.20-rc3+patch: 200210 (7% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 1350.05 ( 0.00%) 1346.45 ( 0.27%)
Amean fault-huge-5 4181.01 ( 0.00%) 3418.60 ( 18.24%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 1.15 ( 0.00%) 0.78 ( -31.88%)
The reduction of external fragmentation events is slight and this is
partially due to the removal of __GFP_THISNODE in commit ac5b2c18911f
("mm: thp: relax __GFP_THISNODE for MADV_HUGEPAGE mappings") as THP
allocations can now spill over to remote nodes instead of fragmenting
local memory.
2-socket Haswell machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 166352
4.20-rc3+patch: 147463 (11% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 6138.97 ( 0.00%) 6217.43 ( -1.28%)
Amean fault-huge-5 2294.28 ( 0.00%) 3163.33 * -37.88%*
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 96.82 ( 0.00%) 95.14 ( -1.74%)
There was a slight reduction in external fragmentation events although the
latencies were higher. The allocation success rate is high enough that
the system is struggling and there is quite a lot of parallel reclaim and
compaction activity. There is also a certain degree of luck on whether
processes start on node 0 or not for this patch but the relevance is
reduced later in the series.
Overall, the patch reduces the number of external fragmentation causing
events so the success of THP over long periods of time would be improved
for this adverse workload.
Link: http://lkml.kernel.org/r/20181123114528.28802-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 08:35:41 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
|
|
|
|
* the pointer is within zone->zone_pgdat->node_zones[]. Also assume
|
|
|
|
* on UMA that if Normal is populated then so is DMA32.
|
|
|
|
*/
|
|
|
|
BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
|
|
|
|
if (nr_online_nodes > 1 && !populated_zone(--zone))
|
2019-04-26 05:24:01 +00:00
|
|
|
return alloc_flags;
|
mm, page_alloc: spread allocations across zones before introducing fragmentation
Patch series "Fragmentation avoidance improvements", v5.
It has been noted before that fragmentation avoidance (aka
anti-fragmentation) is not perfect. Given sufficient time or an adverse
workload, memory gets fragmented and the long-term success of high-order
allocations degrades. This series defines an adverse workload, a definition
of external fragmentation events (including serious) ones and a series
that reduces the level of those fragmentation events.
The details of the workload and the consequences are described in more
detail in the changelogs. However, from patch 1, this is a high-level
summary of the adverse workload. The exact details are found in the
mmtests implementation.
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch)
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameterr create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed
3. Warm up a number of fio read-only threads accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll fault back in old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup
Overall the series reduces external fragmentation causing events by over 94%
on 1 and 2 socket machines, which in turn impacts high-order allocation
success rates over the long term. There are differences in latencies and
high-order allocation success rates. Latencies are a mixed bag as they
are vulnerable to exact system state and whether allocations succeeded
so they are treated as a secondary metric.
Patch 1 uses lower zones if they are populated and have free memory
instead of fragmenting a higher zone. It's special cased to
handle a Normal->DMA32 fallback with the reasons explained
in the changelog.
Patch 2-4 boosts watermarks temporarily when an external fragmentation
event occurs. kswapd wakes to reclaim a small amount of old memory
and then wakes kcompactd on completion to recover the system
slightly. This introduces some overhead in the slowpath. The level
of boosting can be tuned or disabled depending on the tolerance
for fragmentation vs allocation latency.
Patch 5 stalls some movable allocation requests to let kswapd from patch 4
make some progress. The duration of the stalls is very low but it
is possible to tune the system to avoid fragmentation events if
larger stalls can be tolerated.
The bulk of the improvement in fragmentation avoidance is from patches
1-4 but patch 5 can deal with a rare corner case and provides the option
of tuning a system for THP allocation success rates in exchange for
some stalls to control fragmentation.
This patch (of 5):
The page allocator zone lists are iterated based on the watermarks of each
zone which does not take anti-fragmentation into account. On x86, node 0
may have multiple zones while other nodes have one zone. A consequence is
that tasks running on node 0 may fragment ZONE_NORMAL even though
ZONE_DMA32 has plenty of free memory. This patch special cases the
allocator fast path such that it'll try an allocation from a lower local
zone before fragmenting a higher zone. In this case, stealing of
pageblocks or orders larger than a pageblock are still allowed in the fast
path as they are uninteresting from a fragmentation point of view.
This was evaluated using a benchmark designed to fragment memory before
attempting THP allocations. It's implemented in mmtests as the following
configurations
configs/config-global-dhp__workload_thpfioscale
configs/config-global-dhp__workload_thpfioscale-defrag
configs/config-global-dhp__workload_thpfioscale-madvhugepage
e.g. from mmtests
./run-mmtests.sh --run-monitor --config configs/config-global-dhp__workload_thpfioscale test-run-1
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch).
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameter create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed.
3. Warm up a number of fio read-only processes accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll refault old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds.
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup the test files.
Note that due to the use of IO and page cache that this benchmark is not
suitable for running on large machines where the time to fragment memory
may be excessive. Also note that while this is one mix that generates
fragmentation that it's not the only mix that generates fragmentation.
Differences in workload that are more slab-intensive or whether SLUB is
used with high-order pages may yield different results.
When the page allocator fragments memory, it records the event using the
mm_page_alloc_extfrag ftrace event. If the fallback_order is smaller than
a pageblock order (order-9 on 64-bit x86) then it's considered to be an
"external fragmentation event" that may cause issues in the future.
Hence, the primary metric here is the number of external fragmentation
events that occur with order < 9. The secondary metric is allocation
latency and huge page allocation success rates but note that differences
in latencies and what the success rate also can affect the number of
external fragmentation event which is why it's a secondary metric.
1-socket Skylake machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 1 THP allocating thread
--------------------------------------
4.20-rc3 extfrag events < order 9: 804694
4.20-rc3+patch: 408912 (49% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 662.92 ( 0.00%) 653.58 * 1.41%*
Amean fault-huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
Fault latencies are slightly reduced while allocation success rates remain
at zero as this configuration does not make any special effort to allocate
THP and fio is heavily active at the time and either filling memory or
keeping pages resident. However, a 49% reduction of serious fragmentation
events reduces the changes of external fragmentation being a problem in
the future.
Vlastimil asked during review for a breakdown of the allocation types
that are falling back.
vanilla
3816 MIGRATE_UNMOVABLE
800845 MIGRATE_MOVABLE
33 MIGRATE_UNRECLAIMABLE
patch
735 MIGRATE_UNMOVABLE
408135 MIGRATE_MOVABLE
42 MIGRATE_UNRECLAIMABLE
The majority of the fallbacks are due to movable allocations and this is
consistent for the workload throughout the series so will not be presented
again as the primary source of fallbacks are movable allocations.
Movable fallbacks are sometimes considered "ok" to fallback because they
can be migrated. The problem is that they can fill an
unmovable/reclaimable pageblock causing those allocations to fallback
later and polluting pageblocks with pages that cannot move. If there is a
movable fallback, it is pretty much guaranteed to affect an
unmovable/reclaimable pageblock and while it might not be enough to
actually cause a unmovable/reclaimable fallback in the future, we cannot
know that in advance so the patch takes the only option available to it.
Hence, it's important to control them. This point is also consistent
throughout the series and will not be repeated.
1-socket Skylake machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 291392
4.20-rc3+patch: 191187 (34% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 1495.14 ( 0.00%) 1467.55 ( 1.85%)
Amean fault-huge-1 1098.48 ( 0.00%) 1127.11 ( -2.61%)
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 78.57 ( 0.00%) 77.64 ( -1.18%)
Fragmentation events were reduced quite a bit although this is known
to be a little variable. The latencies and allocation success rates
are similar but they were already quite high.
2-socket Haswell machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 5 THP allocating threads
----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 215698
4.20-rc3+patch: 200210 (7% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 1350.05 ( 0.00%) 1346.45 ( 0.27%)
Amean fault-huge-5 4181.01 ( 0.00%) 3418.60 ( 18.24%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 1.15 ( 0.00%) 0.78 ( -31.88%)
The reduction of external fragmentation events is slight and this is
partially due to the removal of __GFP_THISNODE in commit ac5b2c18911f
("mm: thp: relax __GFP_THISNODE for MADV_HUGEPAGE mappings") as THP
allocations can now spill over to remote nodes instead of fragmenting
local memory.
2-socket Haswell machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 166352
4.20-rc3+patch: 147463 (11% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 6138.97 ( 0.00%) 6217.43 ( -1.28%)
Amean fault-huge-5 2294.28 ( 0.00%) 3163.33 * -37.88%*
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 96.82 ( 0.00%) 95.14 ( -1.74%)
There was a slight reduction in external fragmentation events although the
latencies were higher. The allocation success rate is high enough that
the system is struggling and there is quite a lot of parallel reclaim and
compaction activity. There is also a certain degree of luck on whether
processes start on node 0 or not for this patch but the relevance is
reduced later in the series.
Overall, the patch reduces the number of external fragmentation causing
events so the success of THP over long periods of time would be improved
for this adverse workload.
Link: http://lkml.kernel.org/r/20181123114528.28802-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 08:35:41 +00:00
|
|
|
|
2019-04-26 05:24:01 +00:00
|
|
|
alloc_flags |= ALLOC_NOFRAGMENT;
|
2018-12-28 08:35:48 +00:00
|
|
|
#endif /* CONFIG_ZONE_DMA32 */
|
|
|
|
return alloc_flags;
|
mm, page_alloc: spread allocations across zones before introducing fragmentation
Patch series "Fragmentation avoidance improvements", v5.
It has been noted before that fragmentation avoidance (aka
anti-fragmentation) is not perfect. Given sufficient time or an adverse
workload, memory gets fragmented and the long-term success of high-order
allocations degrades. This series defines an adverse workload, a definition
of external fragmentation events (including serious) ones and a series
that reduces the level of those fragmentation events.
The details of the workload and the consequences are described in more
detail in the changelogs. However, from patch 1, this is a high-level
summary of the adverse workload. The exact details are found in the
mmtests implementation.
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch)
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameterr create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed
3. Warm up a number of fio read-only threads accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll fault back in old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup
Overall the series reduces external fragmentation causing events by over 94%
on 1 and 2 socket machines, which in turn impacts high-order allocation
success rates over the long term. There are differences in latencies and
high-order allocation success rates. Latencies are a mixed bag as they
are vulnerable to exact system state and whether allocations succeeded
so they are treated as a secondary metric.
Patch 1 uses lower zones if they are populated and have free memory
instead of fragmenting a higher zone. It's special cased to
handle a Normal->DMA32 fallback with the reasons explained
in the changelog.
Patch 2-4 boosts watermarks temporarily when an external fragmentation
event occurs. kswapd wakes to reclaim a small amount of old memory
and then wakes kcompactd on completion to recover the system
slightly. This introduces some overhead in the slowpath. The level
of boosting can be tuned or disabled depending on the tolerance
for fragmentation vs allocation latency.
Patch 5 stalls some movable allocation requests to let kswapd from patch 4
make some progress. The duration of the stalls is very low but it
is possible to tune the system to avoid fragmentation events if
larger stalls can be tolerated.
The bulk of the improvement in fragmentation avoidance is from patches
1-4 but patch 5 can deal with a rare corner case and provides the option
of tuning a system for THP allocation success rates in exchange for
some stalls to control fragmentation.
This patch (of 5):
The page allocator zone lists are iterated based on the watermarks of each
zone which does not take anti-fragmentation into account. On x86, node 0
may have multiple zones while other nodes have one zone. A consequence is
that tasks running on node 0 may fragment ZONE_NORMAL even though
ZONE_DMA32 has plenty of free memory. This patch special cases the
allocator fast path such that it'll try an allocation from a lower local
zone before fragmenting a higher zone. In this case, stealing of
pageblocks or orders larger than a pageblock are still allowed in the fast
path as they are uninteresting from a fragmentation point of view.
This was evaluated using a benchmark designed to fragment memory before
attempting THP allocations. It's implemented in mmtests as the following
configurations
configs/config-global-dhp__workload_thpfioscale
configs/config-global-dhp__workload_thpfioscale-defrag
configs/config-global-dhp__workload_thpfioscale-madvhugepage
e.g. from mmtests
./run-mmtests.sh --run-monitor --config configs/config-global-dhp__workload_thpfioscale test-run-1
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch).
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameter create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed.
3. Warm up a number of fio read-only processes accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll refault old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds.
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup the test files.
Note that due to the use of IO and page cache that this benchmark is not
suitable for running on large machines where the time to fragment memory
may be excessive. Also note that while this is one mix that generates
fragmentation that it's not the only mix that generates fragmentation.
Differences in workload that are more slab-intensive or whether SLUB is
used with high-order pages may yield different results.
When the page allocator fragments memory, it records the event using the
mm_page_alloc_extfrag ftrace event. If the fallback_order is smaller than
a pageblock order (order-9 on 64-bit x86) then it's considered to be an
"external fragmentation event" that may cause issues in the future.
Hence, the primary metric here is the number of external fragmentation
events that occur with order < 9. The secondary metric is allocation
latency and huge page allocation success rates but note that differences
in latencies and what the success rate also can affect the number of
external fragmentation event which is why it's a secondary metric.
1-socket Skylake machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 1 THP allocating thread
--------------------------------------
4.20-rc3 extfrag events < order 9: 804694
4.20-rc3+patch: 408912 (49% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 662.92 ( 0.00%) 653.58 * 1.41%*
Amean fault-huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
Fault latencies are slightly reduced while allocation success rates remain
at zero as this configuration does not make any special effort to allocate
THP and fio is heavily active at the time and either filling memory or
keeping pages resident. However, a 49% reduction of serious fragmentation
events reduces the changes of external fragmentation being a problem in
the future.
Vlastimil asked during review for a breakdown of the allocation types
that are falling back.
vanilla
3816 MIGRATE_UNMOVABLE
800845 MIGRATE_MOVABLE
33 MIGRATE_UNRECLAIMABLE
patch
735 MIGRATE_UNMOVABLE
408135 MIGRATE_MOVABLE
42 MIGRATE_UNRECLAIMABLE
The majority of the fallbacks are due to movable allocations and this is
consistent for the workload throughout the series so will not be presented
again as the primary source of fallbacks are movable allocations.
Movable fallbacks are sometimes considered "ok" to fallback because they
can be migrated. The problem is that they can fill an
unmovable/reclaimable pageblock causing those allocations to fallback
later and polluting pageblocks with pages that cannot move. If there is a
movable fallback, it is pretty much guaranteed to affect an
unmovable/reclaimable pageblock and while it might not be enough to
actually cause a unmovable/reclaimable fallback in the future, we cannot
know that in advance so the patch takes the only option available to it.
Hence, it's important to control them. This point is also consistent
throughout the series and will not be repeated.
1-socket Skylake machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 291392
4.20-rc3+patch: 191187 (34% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 1495.14 ( 0.00%) 1467.55 ( 1.85%)
Amean fault-huge-1 1098.48 ( 0.00%) 1127.11 ( -2.61%)
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 78.57 ( 0.00%) 77.64 ( -1.18%)
Fragmentation events were reduced quite a bit although this is known
to be a little variable. The latencies and allocation success rates
are similar but they were already quite high.
2-socket Haswell machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 5 THP allocating threads
----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 215698
4.20-rc3+patch: 200210 (7% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 1350.05 ( 0.00%) 1346.45 ( 0.27%)
Amean fault-huge-5 4181.01 ( 0.00%) 3418.60 ( 18.24%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 1.15 ( 0.00%) 0.78 ( -31.88%)
The reduction of external fragmentation events is slight and this is
partially due to the removal of __GFP_THISNODE in commit ac5b2c18911f
("mm: thp: relax __GFP_THISNODE for MADV_HUGEPAGE mappings") as THP
allocations can now spill over to remote nodes instead of fragmenting
local memory.
2-socket Haswell machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 166352
4.20-rc3+patch: 147463 (11% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 6138.97 ( 0.00%) 6217.43 ( -1.28%)
Amean fault-huge-5 2294.28 ( 0.00%) 3163.33 * -37.88%*
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 96.82 ( 0.00%) 95.14 ( -1.74%)
There was a slight reduction in external fragmentation events although the
latencies were higher. The allocation success rate is high enough that
the system is struggling and there is quite a lot of parallel reclaim and
compaction activity. There is also a certain degree of luck on whether
processes start on node 0 or not for this patch but the relevance is
reduced later in the series.
Overall, the patch reduces the number of external fragmentation causing
events so the success of THP over long periods of time would be improved
for this adverse workload.
Link: http://lkml.kernel.org/r/20181123114528.28802-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 08:35:41 +00:00
|
|
|
}
|
|
|
|
|
2021-05-05 01:39:00 +00:00
|
|
|
/* Must be called after current_gfp_context() which can change gfp_mask */
|
|
|
|
static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
|
|
|
|
unsigned int alloc_flags)
|
2020-08-07 06:26:04 +00:00
|
|
|
{
|
|
|
|
#ifdef CONFIG_CMA
|
2021-05-05 01:39:00 +00:00
|
|
|
if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
|
2020-08-07 06:26:04 +00:00
|
|
|
alloc_flags |= ALLOC_CMA;
|
|
|
|
#endif
|
|
|
|
return alloc_flags;
|
|
|
|
}
|
|
|
|
|
2005-11-14 00:06:43 +00:00
|
|
|
/*
|
2006-12-07 04:31:38 +00:00
|
|
|
* get_page_from_freelist goes through the zonelist trying to allocate
|
2005-11-14 00:06:43 +00:00
|
|
|
* a page.
|
|
|
|
*/
|
|
|
|
static struct page *
|
2015-02-11 23:25:41 +00:00
|
|
|
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
|
|
|
|
const struct alloc_context *ac)
|
2005-06-22 00:14:41 +00:00
|
|
|
{
|
mm, page_alloc: spread allocations across zones before introducing fragmentation
Patch series "Fragmentation avoidance improvements", v5.
It has been noted before that fragmentation avoidance (aka
anti-fragmentation) is not perfect. Given sufficient time or an adverse
workload, memory gets fragmented and the long-term success of high-order
allocations degrades. This series defines an adverse workload, a definition
of external fragmentation events (including serious) ones and a series
that reduces the level of those fragmentation events.
The details of the workload and the consequences are described in more
detail in the changelogs. However, from patch 1, this is a high-level
summary of the adverse workload. The exact details are found in the
mmtests implementation.
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch)
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameterr create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed
3. Warm up a number of fio read-only threads accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll fault back in old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup
Overall the series reduces external fragmentation causing events by over 94%
on 1 and 2 socket machines, which in turn impacts high-order allocation
success rates over the long term. There are differences in latencies and
high-order allocation success rates. Latencies are a mixed bag as they
are vulnerable to exact system state and whether allocations succeeded
so they are treated as a secondary metric.
Patch 1 uses lower zones if they are populated and have free memory
instead of fragmenting a higher zone. It's special cased to
handle a Normal->DMA32 fallback with the reasons explained
in the changelog.
Patch 2-4 boosts watermarks temporarily when an external fragmentation
event occurs. kswapd wakes to reclaim a small amount of old memory
and then wakes kcompactd on completion to recover the system
slightly. This introduces some overhead in the slowpath. The level
of boosting can be tuned or disabled depending on the tolerance
for fragmentation vs allocation latency.
Patch 5 stalls some movable allocation requests to let kswapd from patch 4
make some progress. The duration of the stalls is very low but it
is possible to tune the system to avoid fragmentation events if
larger stalls can be tolerated.
The bulk of the improvement in fragmentation avoidance is from patches
1-4 but patch 5 can deal with a rare corner case and provides the option
of tuning a system for THP allocation success rates in exchange for
some stalls to control fragmentation.
This patch (of 5):
The page allocator zone lists are iterated based on the watermarks of each
zone which does not take anti-fragmentation into account. On x86, node 0
may have multiple zones while other nodes have one zone. A consequence is
that tasks running on node 0 may fragment ZONE_NORMAL even though
ZONE_DMA32 has plenty of free memory. This patch special cases the
allocator fast path such that it'll try an allocation from a lower local
zone before fragmenting a higher zone. In this case, stealing of
pageblocks or orders larger than a pageblock are still allowed in the fast
path as they are uninteresting from a fragmentation point of view.
This was evaluated using a benchmark designed to fragment memory before
attempting THP allocations. It's implemented in mmtests as the following
configurations
configs/config-global-dhp__workload_thpfioscale
configs/config-global-dhp__workload_thpfioscale-defrag
configs/config-global-dhp__workload_thpfioscale-madvhugepage
e.g. from mmtests
./run-mmtests.sh --run-monitor --config configs/config-global-dhp__workload_thpfioscale test-run-1
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch).
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameter create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed.
3. Warm up a number of fio read-only processes accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll refault old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds.
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup the test files.
Note that due to the use of IO and page cache that this benchmark is not
suitable for running on large machines where the time to fragment memory
may be excessive. Also note that while this is one mix that generates
fragmentation that it's not the only mix that generates fragmentation.
Differences in workload that are more slab-intensive or whether SLUB is
used with high-order pages may yield different results.
When the page allocator fragments memory, it records the event using the
mm_page_alloc_extfrag ftrace event. If the fallback_order is smaller than
a pageblock order (order-9 on 64-bit x86) then it's considered to be an
"external fragmentation event" that may cause issues in the future.
Hence, the primary metric here is the number of external fragmentation
events that occur with order < 9. The secondary metric is allocation
latency and huge page allocation success rates but note that differences
in latencies and what the success rate also can affect the number of
external fragmentation event which is why it's a secondary metric.
1-socket Skylake machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 1 THP allocating thread
--------------------------------------
4.20-rc3 extfrag events < order 9: 804694
4.20-rc3+patch: 408912 (49% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 662.92 ( 0.00%) 653.58 * 1.41%*
Amean fault-huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
Fault latencies are slightly reduced while allocation success rates remain
at zero as this configuration does not make any special effort to allocate
THP and fio is heavily active at the time and either filling memory or
keeping pages resident. However, a 49% reduction of serious fragmentation
events reduces the changes of external fragmentation being a problem in
the future.
Vlastimil asked during review for a breakdown of the allocation types
that are falling back.
vanilla
3816 MIGRATE_UNMOVABLE
800845 MIGRATE_MOVABLE
33 MIGRATE_UNRECLAIMABLE
patch
735 MIGRATE_UNMOVABLE
408135 MIGRATE_MOVABLE
42 MIGRATE_UNRECLAIMABLE
The majority of the fallbacks are due to movable allocations and this is
consistent for the workload throughout the series so will not be presented
again as the primary source of fallbacks are movable allocations.
Movable fallbacks are sometimes considered "ok" to fallback because they
can be migrated. The problem is that they can fill an
unmovable/reclaimable pageblock causing those allocations to fallback
later and polluting pageblocks with pages that cannot move. If there is a
movable fallback, it is pretty much guaranteed to affect an
unmovable/reclaimable pageblock and while it might not be enough to
actually cause a unmovable/reclaimable fallback in the future, we cannot
know that in advance so the patch takes the only option available to it.
Hence, it's important to control them. This point is also consistent
throughout the series and will not be repeated.
1-socket Skylake machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 291392
4.20-rc3+patch: 191187 (34% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 1495.14 ( 0.00%) 1467.55 ( 1.85%)
Amean fault-huge-1 1098.48 ( 0.00%) 1127.11 ( -2.61%)
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 78.57 ( 0.00%) 77.64 ( -1.18%)
Fragmentation events were reduced quite a bit although this is known
to be a little variable. The latencies and allocation success rates
are similar but they were already quite high.
2-socket Haswell machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 5 THP allocating threads
----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 215698
4.20-rc3+patch: 200210 (7% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 1350.05 ( 0.00%) 1346.45 ( 0.27%)
Amean fault-huge-5 4181.01 ( 0.00%) 3418.60 ( 18.24%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 1.15 ( 0.00%) 0.78 ( -31.88%)
The reduction of external fragmentation events is slight and this is
partially due to the removal of __GFP_THISNODE in commit ac5b2c18911f
("mm: thp: relax __GFP_THISNODE for MADV_HUGEPAGE mappings") as THP
allocations can now spill over to remote nodes instead of fragmenting
local memory.
2-socket Haswell machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 166352
4.20-rc3+patch: 147463 (11% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 6138.97 ( 0.00%) 6217.43 ( -1.28%)
Amean fault-huge-5 2294.28 ( 0.00%) 3163.33 * -37.88%*
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 96.82 ( 0.00%) 95.14 ( -1.74%)
There was a slight reduction in external fragmentation events although the
latencies were higher. The allocation success rate is high enough that
the system is struggling and there is quite a lot of parallel reclaim and
compaction activity. There is also a certain degree of luck on whether
processes start on node 0 or not for this patch but the relevance is
reduced later in the series.
Overall, the patch reduces the number of external fragmentation causing
events so the success of THP over long periods of time would be improved
for this adverse workload.
Link: http://lkml.kernel.org/r/20181123114528.28802-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 08:35:41 +00:00
|
|
|
struct zoneref *z;
|
2009-06-16 22:31:59 +00:00
|
|
|
struct zone *zone;
|
2022-05-13 03:22:51 +00:00
|
|
|
struct pglist_data *last_pgdat = NULL;
|
|
|
|
bool last_pgdat_dirty_ok = false;
|
mm, page_alloc: spread allocations across zones before introducing fragmentation
Patch series "Fragmentation avoidance improvements", v5.
It has been noted before that fragmentation avoidance (aka
anti-fragmentation) is not perfect. Given sufficient time or an adverse
workload, memory gets fragmented and the long-term success of high-order
allocations degrades. This series defines an adverse workload, a definition
of external fragmentation events (including serious) ones and a series
that reduces the level of those fragmentation events.
The details of the workload and the consequences are described in more
detail in the changelogs. However, from patch 1, this is a high-level
summary of the adverse workload. The exact details are found in the
mmtests implementation.
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch)
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameterr create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed
3. Warm up a number of fio read-only threads accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll fault back in old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup
Overall the series reduces external fragmentation causing events by over 94%
on 1 and 2 socket machines, which in turn impacts high-order allocation
success rates over the long term. There are differences in latencies and
high-order allocation success rates. Latencies are a mixed bag as they
are vulnerable to exact system state and whether allocations succeeded
so they are treated as a secondary metric.
Patch 1 uses lower zones if they are populated and have free memory
instead of fragmenting a higher zone. It's special cased to
handle a Normal->DMA32 fallback with the reasons explained
in the changelog.
Patch 2-4 boosts watermarks temporarily when an external fragmentation
event occurs. kswapd wakes to reclaim a small amount of old memory
and then wakes kcompactd on completion to recover the system
slightly. This introduces some overhead in the slowpath. The level
of boosting can be tuned or disabled depending on the tolerance
for fragmentation vs allocation latency.
Patch 5 stalls some movable allocation requests to let kswapd from patch 4
make some progress. The duration of the stalls is very low but it
is possible to tune the system to avoid fragmentation events if
larger stalls can be tolerated.
The bulk of the improvement in fragmentation avoidance is from patches
1-4 but patch 5 can deal with a rare corner case and provides the option
of tuning a system for THP allocation success rates in exchange for
some stalls to control fragmentation.
This patch (of 5):
The page allocator zone lists are iterated based on the watermarks of each
zone which does not take anti-fragmentation into account. On x86, node 0
may have multiple zones while other nodes have one zone. A consequence is
that tasks running on node 0 may fragment ZONE_NORMAL even though
ZONE_DMA32 has plenty of free memory. This patch special cases the
allocator fast path such that it'll try an allocation from a lower local
zone before fragmenting a higher zone. In this case, stealing of
pageblocks or orders larger than a pageblock are still allowed in the fast
path as they are uninteresting from a fragmentation point of view.
This was evaluated using a benchmark designed to fragment memory before
attempting THP allocations. It's implemented in mmtests as the following
configurations
configs/config-global-dhp__workload_thpfioscale
configs/config-global-dhp__workload_thpfioscale-defrag
configs/config-global-dhp__workload_thpfioscale-madvhugepage
e.g. from mmtests
./run-mmtests.sh --run-monitor --config configs/config-global-dhp__workload_thpfioscale test-run-1
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch).
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameter create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed.
3. Warm up a number of fio read-only processes accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll refault old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds.
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup the test files.
Note that due to the use of IO and page cache that this benchmark is not
suitable for running on large machines where the time to fragment memory
may be excessive. Also note that while this is one mix that generates
fragmentation that it's not the only mix that generates fragmentation.
Differences in workload that are more slab-intensive or whether SLUB is
used with high-order pages may yield different results.
When the page allocator fragments memory, it records the event using the
mm_page_alloc_extfrag ftrace event. If the fallback_order is smaller than
a pageblock order (order-9 on 64-bit x86) then it's considered to be an
"external fragmentation event" that may cause issues in the future.
Hence, the primary metric here is the number of external fragmentation
events that occur with order < 9. The secondary metric is allocation
latency and huge page allocation success rates but note that differences
in latencies and what the success rate also can affect the number of
external fragmentation event which is why it's a secondary metric.
1-socket Skylake machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 1 THP allocating thread
--------------------------------------
4.20-rc3 extfrag events < order 9: 804694
4.20-rc3+patch: 408912 (49% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 662.92 ( 0.00%) 653.58 * 1.41%*
Amean fault-huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
Fault latencies are slightly reduced while allocation success rates remain
at zero as this configuration does not make any special effort to allocate
THP and fio is heavily active at the time and either filling memory or
keeping pages resident. However, a 49% reduction of serious fragmentation
events reduces the changes of external fragmentation being a problem in
the future.
Vlastimil asked during review for a breakdown of the allocation types
that are falling back.
vanilla
3816 MIGRATE_UNMOVABLE
800845 MIGRATE_MOVABLE
33 MIGRATE_UNRECLAIMABLE
patch
735 MIGRATE_UNMOVABLE
408135 MIGRATE_MOVABLE
42 MIGRATE_UNRECLAIMABLE
The majority of the fallbacks are due to movable allocations and this is
consistent for the workload throughout the series so will not be presented
again as the primary source of fallbacks are movable allocations.
Movable fallbacks are sometimes considered "ok" to fallback because they
can be migrated. The problem is that they can fill an
unmovable/reclaimable pageblock causing those allocations to fallback
later and polluting pageblocks with pages that cannot move. If there is a
movable fallback, it is pretty much guaranteed to affect an
unmovable/reclaimable pageblock and while it might not be enough to
actually cause a unmovable/reclaimable fallback in the future, we cannot
know that in advance so the patch takes the only option available to it.
Hence, it's important to control them. This point is also consistent
throughout the series and will not be repeated.
1-socket Skylake machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 291392
4.20-rc3+patch: 191187 (34% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 1495.14 ( 0.00%) 1467.55 ( 1.85%)
Amean fault-huge-1 1098.48 ( 0.00%) 1127.11 ( -2.61%)
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 78.57 ( 0.00%) 77.64 ( -1.18%)
Fragmentation events were reduced quite a bit although this is known
to be a little variable. The latencies and allocation success rates
are similar but they were already quite high.
2-socket Haswell machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 5 THP allocating threads
----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 215698
4.20-rc3+patch: 200210 (7% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 1350.05 ( 0.00%) 1346.45 ( 0.27%)
Amean fault-huge-5 4181.01 ( 0.00%) 3418.60 ( 18.24%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 1.15 ( 0.00%) 0.78 ( -31.88%)
The reduction of external fragmentation events is slight and this is
partially due to the removal of __GFP_THISNODE in commit ac5b2c18911f
("mm: thp: relax __GFP_THISNODE for MADV_HUGEPAGE mappings") as THP
allocations can now spill over to remote nodes instead of fragmenting
local memory.
2-socket Haswell machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 166352
4.20-rc3+patch: 147463 (11% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 6138.97 ( 0.00%) 6217.43 ( -1.28%)
Amean fault-huge-5 2294.28 ( 0.00%) 3163.33 * -37.88%*
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 96.82 ( 0.00%) 95.14 ( -1.74%)
There was a slight reduction in external fragmentation events although the
latencies were higher. The allocation success rate is high enough that
the system is struggling and there is quite a lot of parallel reclaim and
compaction activity. There is also a certain degree of luck on whether
processes start on node 0 or not for this patch but the relevance is
reduced later in the series.
Overall, the patch reduces the number of external fragmentation causing
events so the success of THP over long periods of time would be improved
for this adverse workload.
Link: http://lkml.kernel.org/r/20181123114528.28802-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 08:35:41 +00:00
|
|
|
bool no_fallback;
|
2016-07-28 22:46:53 +00:00
|
|
|
|
mm, page_alloc: spread allocations across zones before introducing fragmentation
Patch series "Fragmentation avoidance improvements", v5.
It has been noted before that fragmentation avoidance (aka
anti-fragmentation) is not perfect. Given sufficient time or an adverse
workload, memory gets fragmented and the long-term success of high-order
allocations degrades. This series defines an adverse workload, a definition
of external fragmentation events (including serious) ones and a series
that reduces the level of those fragmentation events.
The details of the workload and the consequences are described in more
detail in the changelogs. However, from patch 1, this is a high-level
summary of the adverse workload. The exact details are found in the
mmtests implementation.
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch)
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameterr create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed
3. Warm up a number of fio read-only threads accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll fault back in old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup
Overall the series reduces external fragmentation causing events by over 94%
on 1 and 2 socket machines, which in turn impacts high-order allocation
success rates over the long term. There are differences in latencies and
high-order allocation success rates. Latencies are a mixed bag as they
are vulnerable to exact system state and whether allocations succeeded
so they are treated as a secondary metric.
Patch 1 uses lower zones if they are populated and have free memory
instead of fragmenting a higher zone. It's special cased to
handle a Normal->DMA32 fallback with the reasons explained
in the changelog.
Patch 2-4 boosts watermarks temporarily when an external fragmentation
event occurs. kswapd wakes to reclaim a small amount of old memory
and then wakes kcompactd on completion to recover the system
slightly. This introduces some overhead in the slowpath. The level
of boosting can be tuned or disabled depending on the tolerance
for fragmentation vs allocation latency.
Patch 5 stalls some movable allocation requests to let kswapd from patch 4
make some progress. The duration of the stalls is very low but it
is possible to tune the system to avoid fragmentation events if
larger stalls can be tolerated.
The bulk of the improvement in fragmentation avoidance is from patches
1-4 but patch 5 can deal with a rare corner case and provides the option
of tuning a system for THP allocation success rates in exchange for
some stalls to control fragmentation.
This patch (of 5):
The page allocator zone lists are iterated based on the watermarks of each
zone which does not take anti-fragmentation into account. On x86, node 0
may have multiple zones while other nodes have one zone. A consequence is
that tasks running on node 0 may fragment ZONE_NORMAL even though
ZONE_DMA32 has plenty of free memory. This patch special cases the
allocator fast path such that it'll try an allocation from a lower local
zone before fragmenting a higher zone. In this case, stealing of
pageblocks or orders larger than a pageblock are still allowed in the fast
path as they are uninteresting from a fragmentation point of view.
This was evaluated using a benchmark designed to fragment memory before
attempting THP allocations. It's implemented in mmtests as the following
configurations
configs/config-global-dhp__workload_thpfioscale
configs/config-global-dhp__workload_thpfioscale-defrag
configs/config-global-dhp__workload_thpfioscale-madvhugepage
e.g. from mmtests
./run-mmtests.sh --run-monitor --config configs/config-global-dhp__workload_thpfioscale test-run-1
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch).
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameter create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed.
3. Warm up a number of fio read-only processes accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll refault old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds.
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup the test files.
Note that due to the use of IO and page cache that this benchmark is not
suitable for running on large machines where the time to fragment memory
may be excessive. Also note that while this is one mix that generates
fragmentation that it's not the only mix that generates fragmentation.
Differences in workload that are more slab-intensive or whether SLUB is
used with high-order pages may yield different results.
When the page allocator fragments memory, it records the event using the
mm_page_alloc_extfrag ftrace event. If the fallback_order is smaller than
a pageblock order (order-9 on 64-bit x86) then it's considered to be an
"external fragmentation event" that may cause issues in the future.
Hence, the primary metric here is the number of external fragmentation
events that occur with order < 9. The secondary metric is allocation
latency and huge page allocation success rates but note that differences
in latencies and what the success rate also can affect the number of
external fragmentation event which is why it's a secondary metric.
1-socket Skylake machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 1 THP allocating thread
--------------------------------------
4.20-rc3 extfrag events < order 9: 804694
4.20-rc3+patch: 408912 (49% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 662.92 ( 0.00%) 653.58 * 1.41%*
Amean fault-huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
Fault latencies are slightly reduced while allocation success rates remain
at zero as this configuration does not make any special effort to allocate
THP and fio is heavily active at the time and either filling memory or
keeping pages resident. However, a 49% reduction of serious fragmentation
events reduces the changes of external fragmentation being a problem in
the future.
Vlastimil asked during review for a breakdown of the allocation types
that are falling back.
vanilla
3816 MIGRATE_UNMOVABLE
800845 MIGRATE_MOVABLE
33 MIGRATE_UNRECLAIMABLE
patch
735 MIGRATE_UNMOVABLE
408135 MIGRATE_MOVABLE
42 MIGRATE_UNRECLAIMABLE
The majority of the fallbacks are due to movable allocations and this is
consistent for the workload throughout the series so will not be presented
again as the primary source of fallbacks are movable allocations.
Movable fallbacks are sometimes considered "ok" to fallback because they
can be migrated. The problem is that they can fill an
unmovable/reclaimable pageblock causing those allocations to fallback
later and polluting pageblocks with pages that cannot move. If there is a
movable fallback, it is pretty much guaranteed to affect an
unmovable/reclaimable pageblock and while it might not be enough to
actually cause a unmovable/reclaimable fallback in the future, we cannot
know that in advance so the patch takes the only option available to it.
Hence, it's important to control them. This point is also consistent
throughout the series and will not be repeated.
1-socket Skylake machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 291392
4.20-rc3+patch: 191187 (34% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 1495.14 ( 0.00%) 1467.55 ( 1.85%)
Amean fault-huge-1 1098.48 ( 0.00%) 1127.11 ( -2.61%)
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 78.57 ( 0.00%) 77.64 ( -1.18%)
Fragmentation events were reduced quite a bit although this is known
to be a little variable. The latencies and allocation success rates
are similar but they were already quite high.
2-socket Haswell machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 5 THP allocating threads
----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 215698
4.20-rc3+patch: 200210 (7% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 1350.05 ( 0.00%) 1346.45 ( 0.27%)
Amean fault-huge-5 4181.01 ( 0.00%) 3418.60 ( 18.24%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 1.15 ( 0.00%) 0.78 ( -31.88%)
The reduction of external fragmentation events is slight and this is
partially due to the removal of __GFP_THISNODE in commit ac5b2c18911f
("mm: thp: relax __GFP_THISNODE for MADV_HUGEPAGE mappings") as THP
allocations can now spill over to remote nodes instead of fragmenting
local memory.
2-socket Haswell machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 166352
4.20-rc3+patch: 147463 (11% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 6138.97 ( 0.00%) 6217.43 ( -1.28%)
Amean fault-huge-5 2294.28 ( 0.00%) 3163.33 * -37.88%*
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 96.82 ( 0.00%) 95.14 ( -1.74%)
There was a slight reduction in external fragmentation events although the
latencies were higher. The allocation success rate is high enough that
the system is struggling and there is quite a lot of parallel reclaim and
compaction activity. There is also a certain degree of luck on whether
processes start on node 0 or not for this patch but the relevance is
reduced later in the series.
Overall, the patch reduces the number of external fragmentation causing
events so the success of THP over long periods of time would be improved
for this adverse workload.
Link: http://lkml.kernel.org/r/20181123114528.28802-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 08:35:41 +00:00
|
|
|
retry:
|
2005-11-14 00:06:43 +00:00
|
|
|
/*
|
[PATCH] memory page_alloc zonelist caching speedup
Optimize the critical zonelist scanning for free pages in the kernel memory
allocator by caching the zones that were found to be full recently, and
skipping them.
Remembers the zones in a zonelist that were short of free memory in the
last second. And it stashes a zone-to-node table in the zonelist struct,
to optimize that conversion (minimize its cache footprint.)
Recent changes:
This differs in a significant way from a similar patch that I
posted a week ago. Now, instead of having a nodemask_t of
recently full nodes, I have a bitmask of recently full zones.
This solves a problem that last weeks patch had, which on
systems with multiple zones per node (such as DMA zone) would
take seeing any of these zones full as meaning that all zones
on that node were full.
Also I changed names - from "zonelist faster" to "zonelist cache",
as that seemed to better convey what we're doing here - caching
some of the key zonelist state (for faster access.)
See below for some performance benchmark results. After all that
discussion with David on why I didn't need them, I went and got
some ;). I wanted to verify that I had not hurt the normal case
of memory allocation noticeably. At least for my one little
microbenchmark, I found (1) the normal case wasn't affected, and
(2) workloads that forced scanning across multiple nodes for
memory improved up to 10% fewer System CPU cycles and lower
elapsed clock time ('sys' and 'real'). Good. See details, below.
I didn't have the logic in get_page_from_freelist() for various
full nodes and zone reclaim failures correct. That should be
fixed up now - notice the new goto labels zonelist_scan,
this_zone_full, and try_next_zone, in get_page_from_freelist().
There are two reasons I persued this alternative, over some earlier
proposals that would have focused on optimizing the fake numa
emulation case by caching the last useful zone:
1) Contrary to what I said before, we (SGI, on large ia64 sn2 systems)
have seen real customer loads where the cost to scan the zonelist
was a problem, due to many nodes being full of memory before
we got to a node we could use. Or at least, I think we have.
This was related to me by another engineer, based on experiences
from some time past. So this is not guaranteed. Most likely, though.
The following approach should help such real numa systems just as
much as it helps fake numa systems, or any combination thereof.
2) The effort to distinguish fake from real numa, using node_distance,
so that we could cache a fake numa node and optimize choosing
it over equivalent distance fake nodes, while continuing to
properly scan all real nodes in distance order, was going to
require a nasty blob of zonelist and node distance munging.
The following approach has no new dependency on node distances or
zone sorting.
See comment in the patch below for a description of what it actually does.
Technical details of note (or controversy):
- See the use of "zlc_active" and "did_zlc_setup" below, to delay
adding any work for this new mechanism until we've looked at the
first zone in zonelist. I figured the odds of the first zone
having the memory we needed were high enough that we should just
look there, first, then get fancy only if we need to keep looking.
- Some odd hackery was needed to add items to struct zonelist, while
not tripping up the custom zonelists built by the mm/mempolicy.c
code for MPOL_BIND. My usual wordy comments below explain this.
Search for "MPOL_BIND".
- Some per-node data in the struct zonelist is now modified frequently,
with no locking. Multiple CPU cores on a node could hit and mangle
this data. The theory is that this is just performance hint data,
and the memory allocator will work just fine despite any such mangling.
The fields at risk are the struct 'zonelist_cache' fields 'fullzones'
(a bitmask) and 'last_full_zap' (unsigned long jiffies). It should
all be self correcting after at most a one second delay.
- This still does a linear scan of the same lengths as before. All
I've optimized is making the scan faster, not algorithmically
shorter. It is now able to scan a compact array of 'unsigned
short' in the case of many full nodes, so one cache line should
cover quite a few nodes, rather than each node hitting another
one or two new and distinct cache lines.
- If both Andi and Nick don't find this too complicated, I will be
(pleasantly) flabbergasted.
- I removed the comment claiming we only use one cachline's worth of
zonelist. We seem, at least in the fake numa case, to have put the
lie to that claim.
- I pay no attention to the various watermarks and such in this performance
hint. A node could be marked full for one watermark, and then skipped
over when searching for a page using a different watermark. I think
that's actually quite ok, as it will tend to slightly increase the
spreading of memory over other nodes, away from a memory stressed node.
===============
Performance - some benchmark results and analysis:
This benchmark runs a memory hog program that uses multiple
threads to touch alot of memory as quickly as it can.
Multiple runs were made, touching 12, 38, 64 or 90 GBytes out of
the total 96 GBytes on the system, and using 1, 19, 37, or 55
threads (on a 56 CPU system.) System, user and real (elapsed)
timings were recorded for each run, shown in units of seconds,
in the table below.
Two kernels were tested - 2.6.18-mm3 and the same kernel with
this zonelist caching patch added. The table also shows the
percentage improvement the zonelist caching sys time is over
(lower than) the stock *-mm kernel.
number 2.6.18-mm3 zonelist-cache delta (< 0 good) percent
GBs N ------------ -------------- ---------------- systime
mem threads sys user real sys user real sys user real better
12 1 153 24 177 151 24 176 -2 0 -1 1%
12 19 99 22 8 99 22 8 0 0 0 0%
12 37 111 25 6 112 25 6 1 0 0 -0%
12 55 115 25 5 110 23 5 -5 -2 0 4%
38 1 502 74 576 497 73 570 -5 -1 -6 0%
38 19 426 78 48 373 76 39 -53 -2 -9 12%
38 37 544 83 36 547 82 36 3 -1 0 -0%
38 55 501 77 23 511 80 24 10 3 1 -1%
64 1 917 125 1042 890 124 1014 -27 -1 -28 2%
64 19 1118 138 119 965 141 103 -153 3 -16 13%
64 37 1202 151 94 1136 150 81 -66 -1 -13 5%
64 55 1118 141 61 1072 140 58 -46 -1 -3 4%
90 1 1342 177 1519 1275 174 1450 -67 -3 -69 4%
90 19 2392 199 192 2116 189 176 -276 -10 -16 11%
90 37 3313 238 175 2972 225 145 -341 -13 -30 10%
90 55 1948 210 104 1843 213 100 -105 3 -4 5%
Notes:
1) This test ran a memory hog program that started a specified number N of
threads, and had each thread allocate and touch 1/N'th of
the total memory to be used in the test run in a single loop,
writing a constant word to memory, one store every 4096 bytes.
Watching this test during some earlier trial runs, I would see
each of these threads sit down on one CPU and stay there, for
the remainder of the pass, a different CPU for each thread.
2) The 'real' column is not comparable to the 'sys' or 'user' columns.
The 'real' column is seconds wall clock time elapsed, from beginning
to end of that test pass. The 'sys' and 'user' columns are total
CPU seconds spent on that test pass. For a 19 thread test run,
for example, the sum of 'sys' and 'user' could be up to 19 times the
number of 'real' elapsed wall clock seconds.
3) Tests were run on a fresh, single-user boot, to minimize the amount
of memory already in use at the start of the test, and to minimize
the amount of background activity that might interfere.
4) Tests were done on a 56 CPU, 28 Node system with 96 GBytes of RAM.
5) Notice that the 'real' time gets large for the single thread runs, even
though the measured 'sys' and 'user' times are modest. I'm not sure what
that means - probably something to do with it being slow for one thread to
be accessing memory along ways away. Perhaps the fake numa system, running
ostensibly the same workload, would not show this substantial degradation
of 'real' time for one thread on many nodes -- lets hope not.
6) The high thread count passes (one thread per CPU - on 55 of 56 CPUs)
ran quite efficiently, as one might expect. Each pair of threads needed
to allocate and touch the memory on the node the two threads shared, a
pleasantly parallizable workload.
7) The intermediate thread count passes, when asking for alot of memory forcing
them to go to a few neighboring nodes, improved the most with this zonelist
caching patch.
Conclusions:
* This zonelist cache patch probably makes little difference one way or the
other for most workloads on real numa hardware, if those workloads avoid
heavy off node allocations.
* For memory intensive workloads requiring substantial off-node allocations
on real numa hardware, this patch improves both kernel and elapsed timings
up to ten per-cent.
* For fake numa systems, I'm optimistic, but will have to leave that up to
Rohit Seth to actually test (once I get him a 2.6.18 backport.)
Signed-off-by: Paul Jackson <pj@sgi.com>
Cc: Rohit Seth <rohitseth@google.com>
Cc: Christoph Lameter <clameter@engr.sgi.com>
Cc: David Rientjes <rientjes@cs.washington.edu>
Cc: Paul Menage <menage@google.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 04:31:48 +00:00
|
|
|
* Scan zonelist, looking for a zone with enough free.
|
2023-02-28 08:35:37 +00:00
|
|
|
* See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
|
2005-11-14 00:06:43 +00:00
|
|
|
*/
|
mm, page_alloc: spread allocations across zones before introducing fragmentation
Patch series "Fragmentation avoidance improvements", v5.
It has been noted before that fragmentation avoidance (aka
anti-fragmentation) is not perfect. Given sufficient time or an adverse
workload, memory gets fragmented and the long-term success of high-order
allocations degrades. This series defines an adverse workload, a definition
of external fragmentation events (including serious) ones and a series
that reduces the level of those fragmentation events.
The details of the workload and the consequences are described in more
detail in the changelogs. However, from patch 1, this is a high-level
summary of the adverse workload. The exact details are found in the
mmtests implementation.
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch)
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameterr create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed
3. Warm up a number of fio read-only threads accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll fault back in old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup
Overall the series reduces external fragmentation causing events by over 94%
on 1 and 2 socket machines, which in turn impacts high-order allocation
success rates over the long term. There are differences in latencies and
high-order allocation success rates. Latencies are a mixed bag as they
are vulnerable to exact system state and whether allocations succeeded
so they are treated as a secondary metric.
Patch 1 uses lower zones if they are populated and have free memory
instead of fragmenting a higher zone. It's special cased to
handle a Normal->DMA32 fallback with the reasons explained
in the changelog.
Patch 2-4 boosts watermarks temporarily when an external fragmentation
event occurs. kswapd wakes to reclaim a small amount of old memory
and then wakes kcompactd on completion to recover the system
slightly. This introduces some overhead in the slowpath. The level
of boosting can be tuned or disabled depending on the tolerance
for fragmentation vs allocation latency.
Patch 5 stalls some movable allocation requests to let kswapd from patch 4
make some progress. The duration of the stalls is very low but it
is possible to tune the system to avoid fragmentation events if
larger stalls can be tolerated.
The bulk of the improvement in fragmentation avoidance is from patches
1-4 but patch 5 can deal with a rare corner case and provides the option
of tuning a system for THP allocation success rates in exchange for
some stalls to control fragmentation.
This patch (of 5):
The page allocator zone lists are iterated based on the watermarks of each
zone which does not take anti-fragmentation into account. On x86, node 0
may have multiple zones while other nodes have one zone. A consequence is
that tasks running on node 0 may fragment ZONE_NORMAL even though
ZONE_DMA32 has plenty of free memory. This patch special cases the
allocator fast path such that it'll try an allocation from a lower local
zone before fragmenting a higher zone. In this case, stealing of
pageblocks or orders larger than a pageblock are still allowed in the fast
path as they are uninteresting from a fragmentation point of view.
This was evaluated using a benchmark designed to fragment memory before
attempting THP allocations. It's implemented in mmtests as the following
configurations
configs/config-global-dhp__workload_thpfioscale
configs/config-global-dhp__workload_thpfioscale-defrag
configs/config-global-dhp__workload_thpfioscale-madvhugepage
e.g. from mmtests
./run-mmtests.sh --run-monitor --config configs/config-global-dhp__workload_thpfioscale test-run-1
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch).
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameter create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed.
3. Warm up a number of fio read-only processes accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll refault old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds.
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup the test files.
Note that due to the use of IO and page cache that this benchmark is not
suitable for running on large machines where the time to fragment memory
may be excessive. Also note that while this is one mix that generates
fragmentation that it's not the only mix that generates fragmentation.
Differences in workload that are more slab-intensive or whether SLUB is
used with high-order pages may yield different results.
When the page allocator fragments memory, it records the event using the
mm_page_alloc_extfrag ftrace event. If the fallback_order is smaller than
a pageblock order (order-9 on 64-bit x86) then it's considered to be an
"external fragmentation event" that may cause issues in the future.
Hence, the primary metric here is the number of external fragmentation
events that occur with order < 9. The secondary metric is allocation
latency and huge page allocation success rates but note that differences
in latencies and what the success rate also can affect the number of
external fragmentation event which is why it's a secondary metric.
1-socket Skylake machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 1 THP allocating thread
--------------------------------------
4.20-rc3 extfrag events < order 9: 804694
4.20-rc3+patch: 408912 (49% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 662.92 ( 0.00%) 653.58 * 1.41%*
Amean fault-huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
Fault latencies are slightly reduced while allocation success rates remain
at zero as this configuration does not make any special effort to allocate
THP and fio is heavily active at the time and either filling memory or
keeping pages resident. However, a 49% reduction of serious fragmentation
events reduces the changes of external fragmentation being a problem in
the future.
Vlastimil asked during review for a breakdown of the allocation types
that are falling back.
vanilla
3816 MIGRATE_UNMOVABLE
800845 MIGRATE_MOVABLE
33 MIGRATE_UNRECLAIMABLE
patch
735 MIGRATE_UNMOVABLE
408135 MIGRATE_MOVABLE
42 MIGRATE_UNRECLAIMABLE
The majority of the fallbacks are due to movable allocations and this is
consistent for the workload throughout the series so will not be presented
again as the primary source of fallbacks are movable allocations.
Movable fallbacks are sometimes considered "ok" to fallback because they
can be migrated. The problem is that they can fill an
unmovable/reclaimable pageblock causing those allocations to fallback
later and polluting pageblocks with pages that cannot move. If there is a
movable fallback, it is pretty much guaranteed to affect an
unmovable/reclaimable pageblock and while it might not be enough to
actually cause a unmovable/reclaimable fallback in the future, we cannot
know that in advance so the patch takes the only option available to it.
Hence, it's important to control them. This point is also consistent
throughout the series and will not be repeated.
1-socket Skylake machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 291392
4.20-rc3+patch: 191187 (34% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 1495.14 ( 0.00%) 1467.55 ( 1.85%)
Amean fault-huge-1 1098.48 ( 0.00%) 1127.11 ( -2.61%)
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 78.57 ( 0.00%) 77.64 ( -1.18%)
Fragmentation events were reduced quite a bit although this is known
to be a little variable. The latencies and allocation success rates
are similar but they were already quite high.
2-socket Haswell machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 5 THP allocating threads
----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 215698
4.20-rc3+patch: 200210 (7% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 1350.05 ( 0.00%) 1346.45 ( 0.27%)
Amean fault-huge-5 4181.01 ( 0.00%) 3418.60 ( 18.24%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 1.15 ( 0.00%) 0.78 ( -31.88%)
The reduction of external fragmentation events is slight and this is
partially due to the removal of __GFP_THISNODE in commit ac5b2c18911f
("mm: thp: relax __GFP_THISNODE for MADV_HUGEPAGE mappings") as THP
allocations can now spill over to remote nodes instead of fragmenting
local memory.
2-socket Haswell machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 166352
4.20-rc3+patch: 147463 (11% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 6138.97 ( 0.00%) 6217.43 ( -1.28%)
Amean fault-huge-5 2294.28 ( 0.00%) 3163.33 * -37.88%*
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 96.82 ( 0.00%) 95.14 ( -1.74%)
There was a slight reduction in external fragmentation events although the
latencies were higher. The allocation success rate is high enough that
the system is struggling and there is quite a lot of parallel reclaim and
compaction activity. There is also a certain degree of luck on whether
processes start on node 0 or not for this patch but the relevance is
reduced later in the series.
Overall, the patch reduces the number of external fragmentation causing
events so the success of THP over long periods of time would be improved
for this adverse workload.
Link: http://lkml.kernel.org/r/20181123114528.28802-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 08:35:41 +00:00
|
|
|
no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
|
|
|
|
z = ac->preferred_zoneref;
|
2020-10-13 23:55:57 +00:00
|
|
|
for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
|
|
|
|
ac->nodemask) {
|
2016-05-20 00:13:47 +00:00
|
|
|
struct page *page;
|
2013-09-11 21:20:46 +00:00
|
|
|
unsigned long mark;
|
|
|
|
|
2014-06-04 23:10:08 +00:00
|
|
|
if (cpusets_enabled() &&
|
|
|
|
(alloc_flags & ALLOC_CPUSET) &&
|
2016-05-20 00:14:30 +00:00
|
|
|
!__cpuset_zone_allowed(zone, gfp_mask))
|
mm: page allocator: initialise ZLC for first zone eligible for zone_reclaim
There have been a small number of complaints about significant stalls
while copying large amounts of data on NUMA machines reported on a
distribution bugzilla. In these cases, zone_reclaim was enabled by
default due to large NUMA distances. In general, the complaints have not
been about the workload itself unless it was a file server (in which case
the recommendation was disable zone_reclaim).
The stalls are mostly due to significant amounts of time spent scanning
the preferred zone for pages to free. After a failure, it might fallback
to another node (as zonelists are often node-ordered rather than
zone-ordered) but stall quickly again when the next allocation attempt
occurs. In bad cases, each page allocated results in a full scan of the
preferred zone.
Patch 1 checks the preferred zone for recent allocation failure
which is particularly important if zone_reclaim has failed
recently. This avoids rescanning the zone in the near future and
instead falling back to another node. This may hurt node locality
in some cases but a failure to zone_reclaim is more expensive than
a remote access.
Patch 2 clears the zlc information after direct reclaim.
Otherwise, zone_reclaim can mark zones full, direct reclaim can
reclaim enough pages but the zone is still not considered for
allocation.
This was tested on a 24-thread 2-node x86_64 machine. The tests were
focused on large amounts of IO. All tests were bound to the CPUs on
node-0 to avoid disturbances due to processes being scheduled on different
nodes. The kernels tested are
3.0-rc6-vanilla Vanilla 3.0-rc6
zlcfirst Patch 1 applied
zlcreconsider Patches 1+2 applied
FS-Mark
./fs_mark -d /tmp/fsmark-10813 -D 100 -N 5000 -n 208 -L 35 -t 24 -S0 -s 524288
fsmark-3.0-rc6 3.0-rc6 3.0-rc6
vanilla zlcfirs zlcreconsider
Files/s min 54.90 ( 0.00%) 49.80 (-10.24%) 49.10 (-11.81%)
Files/s mean 100.11 ( 0.00%) 135.17 (25.94%) 146.93 (31.87%)
Files/s stddev 57.51 ( 0.00%) 138.97 (58.62%) 158.69 (63.76%)
Files/s max 361.10 ( 0.00%) 834.40 (56.72%) 802.40 (55.00%)
Overhead min 76704.00 ( 0.00%) 76501.00 ( 0.27%) 77784.00 (-1.39%)
Overhead mean 1485356.51 ( 0.00%) 1035797.83 (43.40%) 1594680.26 (-6.86%)
Overhead stddev 1848122.53 ( 0.00%) 881489.88 (109.66%) 1772354.90 ( 4.27%)
Overhead max 7989060.00 ( 0.00%) 3369118.00 (137.13%) 10135324.00 (-21.18%)
MMTests Statistics: duration
User/Sys Time Running Test (seconds) 501.49 493.91 499.93
Total Elapsed Time (seconds) 2451.57 2257.48 2215.92
MMTests Statistics: vmstat
Page Ins 46268 63840 66008
Page Outs 90821596 90671128 88043732
Swap Ins 0 0 0
Swap Outs 0 0 0
Direct pages scanned 13091697 8966863 8971790
Kswapd pages scanned 0 1830011 1831116
Kswapd pages reclaimed 0 1829068 1829930
Direct pages reclaimed 13037777 8956828 8648314
Kswapd efficiency 100% 99% 99%
Kswapd velocity 0.000 810.643 826.346
Direct efficiency 99% 99% 96%
Direct velocity 5340.128 3972.068 4048.788
Percentage direct scans 100% 83% 83%
Page writes by reclaim 0 3 0
Slabs scanned 796672 720640 720256
Direct inode steals 7422667 7160012 7088638
Kswapd inode steals 0 1736840 2021238
Test completes far faster with a large increase in the number of files
created per second. Standard deviation is high as a small number of
iterations were much higher than the mean. The number of pages scanned by
zone_reclaim is reduced and kswapd is used for more work.
LARGE DD
3.0-rc6 3.0-rc6 3.0-rc6
vanilla zlcfirst zlcreconsider
download tar 59 ( 0.00%) 59 ( 0.00%) 55 ( 7.27%)
dd source files 527 ( 0.00%) 296 (78.04%) 320 (64.69%)
delete source 36 ( 0.00%) 19 (89.47%) 20 (80.00%)
MMTests Statistics: duration
User/Sys Time Running Test (seconds) 125.03 118.98 122.01
Total Elapsed Time (seconds) 624.56 375.02 398.06
MMTests Statistics: vmstat
Page Ins 3594216 439368 407032
Page Outs 23380832 23380488 23377444
Swap Ins 0 0 0
Swap Outs 0 436 287
Direct pages scanned 17482342 69315973 82864918
Kswapd pages scanned 0 519123 575425
Kswapd pages reclaimed 0 466501 522487
Direct pages reclaimed 5858054 2732949 2712547
Kswapd efficiency 100% 89% 90%
Kswapd velocity 0.000 1384.254 1445.574
Direct efficiency 33% 3% 3%
Direct velocity 27991.453 184832.737 208171.929
Percentage direct scans 100% 99% 99%
Page writes by reclaim 0 5082 13917
Slabs scanned 17280 29952 35328
Direct inode steals 115257 1431122 332201
Kswapd inode steals 0 0 979532
This test downloads a large tarfile and copies it with dd a number of
times - similar to the most recent bug report I've dealt with. Time to
completion is reduced. The number of pages scanned directly is still
disturbingly high with a low efficiency but this is likely due to the
number of dirty pages encountered. The figures could probably be improved
with more work around how kswapd is used and how dirty pages are handled
but that is separate work and this result is significant on its own.
Streaming Mapped Writer
MMTests Statistics: duration
User/Sys Time Running Test (seconds) 124.47 111.67 112.64
Total Elapsed Time (seconds) 2138.14 1816.30 1867.56
MMTests Statistics: vmstat
Page Ins 90760 89124 89516
Page Outs 121028340 120199524 120736696
Swap Ins 0 86 55
Swap Outs 0 0 0
Direct pages scanned 114989363 96461439 96330619
Kswapd pages scanned 56430948 56965763 57075875
Kswapd pages reclaimed 27743219 27752044 27766606
Direct pages reclaimed 49777 46884 36655
Kswapd efficiency 49% 48% 48%
Kswapd velocity 26392.541 31363.631 30561.736
Direct efficiency 0% 0% 0%
Direct velocity 53780.091 53108.759 51581.004
Percentage direct scans 67% 62% 62%
Page writes by reclaim 385 122 1513
Slabs scanned 43008 39040 42112
Direct inode steals 0 10 8
Kswapd inode steals 733 534 477
This test just creates a large file mapping and writes to it linearly.
Time to completion is again reduced.
The gains are mostly down to two things. In many cases, there is less
scanning as zone_reclaim simply gives up faster due to recent failures.
The second reason is that memory is used more efficiently. Instead of
scanning the preferred zone every time, the allocator falls back to
another zone and uses it instead improving overall memory utilisation.
This patch: initialise ZLC for first zone eligible for zone_reclaim.
The zonelist cache (ZLC) is used among other things to record if
zone_reclaim() failed for a particular zone recently. The intention is to
avoid a high cost scanning extremely long zonelists or scanning within the
zone uselessly.
Currently the zonelist cache is setup only after the first zone has been
considered and zone_reclaim() has been called. The objective was to avoid
a costly setup but zone_reclaim is itself quite expensive. If it is
failing regularly such as the first eligible zone having mostly mapped
pages, the cost in scanning and allocation stalls is far higher than the
ZLC initialisation step.
This patch initialises ZLC before the first eligible zone calls
zone_reclaim(). Once initialised, it is checked whether the zone failed
zone_reclaim recently. If it has, the zone is skipped. As the first zone
is now being checked, additional care has to be taken about zones marked
full. A zone can be marked "full" because it should not have enough
unmapped pages for zone_reclaim but this is excessive as direct reclaim or
kswapd may succeed where zone_reclaim fails. Only mark zones "full" after
zone_reclaim fails if it failed to reclaim enough pages after scanning.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-07-26 00:12:29 +00:00
|
|
|
continue;
|
mm: try to distribute dirty pages fairly across zones
The maximum number of dirty pages that exist in the system at any time is
determined by a number of pages considered dirtyable and a user-configured
percentage of those, or an absolute number in bytes.
This number of dirtyable pages is the sum of memory provided by all the
zones in the system minus their lowmem reserves and high watermarks, so
that the system can retain a healthy number of free pages without having
to reclaim dirty pages.
But there is a flaw in that we have a zoned page allocator which does not
care about the global state but rather the state of individual memory
zones. And right now there is nothing that prevents one zone from filling
up with dirty pages while other zones are spared, which frequently leads
to situations where kswapd, in order to restore the watermark of free
pages, does indeed have to write pages from that zone's LRU list. This
can interfere so badly with IO from the flusher threads that major
filesystems (btrfs, xfs, ext4) mostly ignore write requests from reclaim
already, taking away the VM's only possibility to keep such a zone
balanced, aside from hoping the flushers will soon clean pages from that
zone.
Enter per-zone dirty limits. They are to a zone's dirtyable memory what
the global limit is to the global amount of dirtyable memory, and try to
make sure that no single zone receives more than its fair share of the
globally allowed dirty pages in the first place. As the number of pages
considered dirtyable excludes the zones' lowmem reserves and high
watermarks, the maximum number of dirty pages in a zone is such that the
zone can always be balanced without requiring page cleaning.
As this is a placement decision in the page allocator and pages are
dirtied only after the allocation, this patch allows allocators to pass
__GFP_WRITE when they know in advance that the page will be written to and
become dirty soon. The page allocator will then attempt to allocate from
the first zone of the zonelist - which on NUMA is determined by the task's
NUMA memory policy - that has not exceeded its dirty limit.
At first glance, it would appear that the diversion to lower zones can
increase pressure on them, but this is not the case. With a full high
zone, allocations will be diverted to lower zones eventually, so it is
more of a shift in timing of the lower zone allocations. Workloads that
previously could fit their dirty pages completely in the higher zone may
be forced to allocate from lower zones, but the amount of pages that
"spill over" are limited themselves by the lower zones' dirty constraints,
and thus unlikely to become a problem.
For now, the problem of unfair dirty page distribution remains for NUMA
configurations where the zones allowed for allocation are in sum not big
enough to trigger the global dirty limits, wake up the flusher threads and
remedy the situation. Because of this, an allocation that could not
succeed on any of the considered zones is allowed to ignore the dirty
limits before going into direct reclaim or even failing the allocation,
until a future patch changes the global dirty throttling and flusher
thread activation so that they take individual zone states into account.
Test results
15M DMA + 3246M DMA32 + 504 Normal = 3765M memory
40% dirty ratio
16G USB thumb drive
10 runs of dd if=/dev/zero of=disk/zeroes bs=32k count=$((10 << 15))
seconds nr_vmscan_write
(stddev) min| median| max
xfs
vanilla: 549.747( 3.492) 0.000| 0.000| 0.000
patched: 550.996( 3.802) 0.000| 0.000| 0.000
fuse-ntfs
vanilla: 1183.094(53.178) 54349.000| 59341.000| 65163.000
patched: 558.049(17.914) 0.000| 0.000| 43.000
btrfs
vanilla: 573.679(14.015) 156657.000| 460178.000| 606926.000
patched: 563.365(11.368) 0.000| 0.000| 1362.000
ext4
vanilla: 561.197(15.782) 0.000|2725438.000|4143837.000
patched: 568.806(17.496) 0.000| 0.000| 0.000
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Tested-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10 23:07:49 +00:00
|
|
|
/*
|
|
|
|
* When allocating a page cache page for writing, we
|
2016-07-28 22:46:11 +00:00
|
|
|
* want to get it from a node that is within its dirty
|
|
|
|
* limit, such that no single node holds more than its
|
mm: try to distribute dirty pages fairly across zones
The maximum number of dirty pages that exist in the system at any time is
determined by a number of pages considered dirtyable and a user-configured
percentage of those, or an absolute number in bytes.
This number of dirtyable pages is the sum of memory provided by all the
zones in the system minus their lowmem reserves and high watermarks, so
that the system can retain a healthy number of free pages without having
to reclaim dirty pages.
But there is a flaw in that we have a zoned page allocator which does not
care about the global state but rather the state of individual memory
zones. And right now there is nothing that prevents one zone from filling
up with dirty pages while other zones are spared, which frequently leads
to situations where kswapd, in order to restore the watermark of free
pages, does indeed have to write pages from that zone's LRU list. This
can interfere so badly with IO from the flusher threads that major
filesystems (btrfs, xfs, ext4) mostly ignore write requests from reclaim
already, taking away the VM's only possibility to keep such a zone
balanced, aside from hoping the flushers will soon clean pages from that
zone.
Enter per-zone dirty limits. They are to a zone's dirtyable memory what
the global limit is to the global amount of dirtyable memory, and try to
make sure that no single zone receives more than its fair share of the
globally allowed dirty pages in the first place. As the number of pages
considered dirtyable excludes the zones' lowmem reserves and high
watermarks, the maximum number of dirty pages in a zone is such that the
zone can always be balanced without requiring page cleaning.
As this is a placement decision in the page allocator and pages are
dirtied only after the allocation, this patch allows allocators to pass
__GFP_WRITE when they know in advance that the page will be written to and
become dirty soon. The page allocator will then attempt to allocate from
the first zone of the zonelist - which on NUMA is determined by the task's
NUMA memory policy - that has not exceeded its dirty limit.
At first glance, it would appear that the diversion to lower zones can
increase pressure on them, but this is not the case. With a full high
zone, allocations will be diverted to lower zones eventually, so it is
more of a shift in timing of the lower zone allocations. Workloads that
previously could fit their dirty pages completely in the higher zone may
be forced to allocate from lower zones, but the amount of pages that
"spill over" are limited themselves by the lower zones' dirty constraints,
and thus unlikely to become a problem.
For now, the problem of unfair dirty page distribution remains for NUMA
configurations where the zones allowed for allocation are in sum not big
enough to trigger the global dirty limits, wake up the flusher threads and
remedy the situation. Because of this, an allocation that could not
succeed on any of the considered zones is allowed to ignore the dirty
limits before going into direct reclaim or even failing the allocation,
until a future patch changes the global dirty throttling and flusher
thread activation so that they take individual zone states into account.
Test results
15M DMA + 3246M DMA32 + 504 Normal = 3765M memory
40% dirty ratio
16G USB thumb drive
10 runs of dd if=/dev/zero of=disk/zeroes bs=32k count=$((10 << 15))
seconds nr_vmscan_write
(stddev) min| median| max
xfs
vanilla: 549.747( 3.492) 0.000| 0.000| 0.000
patched: 550.996( 3.802) 0.000| 0.000| 0.000
fuse-ntfs
vanilla: 1183.094(53.178) 54349.000| 59341.000| 65163.000
patched: 558.049(17.914) 0.000| 0.000| 43.000
btrfs
vanilla: 573.679(14.015) 156657.000| 460178.000| 606926.000
patched: 563.365(11.368) 0.000| 0.000| 1362.000
ext4
vanilla: 561.197(15.782) 0.000|2725438.000|4143837.000
patched: 568.806(17.496) 0.000| 0.000| 0.000
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Tested-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10 23:07:49 +00:00
|
|
|
* proportional share of globally allowed dirty pages.
|
2016-07-28 22:46:11 +00:00
|
|
|
* The dirty limits take into account the node's
|
mm: try to distribute dirty pages fairly across zones
The maximum number of dirty pages that exist in the system at any time is
determined by a number of pages considered dirtyable and a user-configured
percentage of those, or an absolute number in bytes.
This number of dirtyable pages is the sum of memory provided by all the
zones in the system minus their lowmem reserves and high watermarks, so
that the system can retain a healthy number of free pages without having
to reclaim dirty pages.
But there is a flaw in that we have a zoned page allocator which does not
care about the global state but rather the state of individual memory
zones. And right now there is nothing that prevents one zone from filling
up with dirty pages while other zones are spared, which frequently leads
to situations where kswapd, in order to restore the watermark of free
pages, does indeed have to write pages from that zone's LRU list. This
can interfere so badly with IO from the flusher threads that major
filesystems (btrfs, xfs, ext4) mostly ignore write requests from reclaim
already, taking away the VM's only possibility to keep such a zone
balanced, aside from hoping the flushers will soon clean pages from that
zone.
Enter per-zone dirty limits. They are to a zone's dirtyable memory what
the global limit is to the global amount of dirtyable memory, and try to
make sure that no single zone receives more than its fair share of the
globally allowed dirty pages in the first place. As the number of pages
considered dirtyable excludes the zones' lowmem reserves and high
watermarks, the maximum number of dirty pages in a zone is such that the
zone can always be balanced without requiring page cleaning.
As this is a placement decision in the page allocator and pages are
dirtied only after the allocation, this patch allows allocators to pass
__GFP_WRITE when they know in advance that the page will be written to and
become dirty soon. The page allocator will then attempt to allocate from
the first zone of the zonelist - which on NUMA is determined by the task's
NUMA memory policy - that has not exceeded its dirty limit.
At first glance, it would appear that the diversion to lower zones can
increase pressure on them, but this is not the case. With a full high
zone, allocations will be diverted to lower zones eventually, so it is
more of a shift in timing of the lower zone allocations. Workloads that
previously could fit their dirty pages completely in the higher zone may
be forced to allocate from lower zones, but the amount of pages that
"spill over" are limited themselves by the lower zones' dirty constraints,
and thus unlikely to become a problem.
For now, the problem of unfair dirty page distribution remains for NUMA
configurations where the zones allowed for allocation are in sum not big
enough to trigger the global dirty limits, wake up the flusher threads and
remedy the situation. Because of this, an allocation that could not
succeed on any of the considered zones is allowed to ignore the dirty
limits before going into direct reclaim or even failing the allocation,
until a future patch changes the global dirty throttling and flusher
thread activation so that they take individual zone states into account.
Test results
15M DMA + 3246M DMA32 + 504 Normal = 3765M memory
40% dirty ratio
16G USB thumb drive
10 runs of dd if=/dev/zero of=disk/zeroes bs=32k count=$((10 << 15))
seconds nr_vmscan_write
(stddev) min| median| max
xfs
vanilla: 549.747( 3.492) 0.000| 0.000| 0.000
patched: 550.996( 3.802) 0.000| 0.000| 0.000
fuse-ntfs
vanilla: 1183.094(53.178) 54349.000| 59341.000| 65163.000
patched: 558.049(17.914) 0.000| 0.000| 43.000
btrfs
vanilla: 573.679(14.015) 156657.000| 460178.000| 606926.000
patched: 563.365(11.368) 0.000| 0.000| 1362.000
ext4
vanilla: 561.197(15.782) 0.000|2725438.000|4143837.000
patched: 568.806(17.496) 0.000| 0.000| 0.000
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Tested-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10 23:07:49 +00:00
|
|
|
* lowmem reserves and high watermark so that kswapd
|
|
|
|
* should be able to balance it without having to
|
|
|
|
* write pages from its LRU list.
|
|
|
|
*
|
|
|
|
* XXX: For now, allow allocations to potentially
|
2016-07-28 22:46:11 +00:00
|
|
|
* exceed the per-node dirty limit in the slowpath
|
2015-11-07 00:28:12 +00:00
|
|
|
* (spread_dirty_pages unset) before going into reclaim,
|
mm: try to distribute dirty pages fairly across zones
The maximum number of dirty pages that exist in the system at any time is
determined by a number of pages considered dirtyable and a user-configured
percentage of those, or an absolute number in bytes.
This number of dirtyable pages is the sum of memory provided by all the
zones in the system minus their lowmem reserves and high watermarks, so
that the system can retain a healthy number of free pages without having
to reclaim dirty pages.
But there is a flaw in that we have a zoned page allocator which does not
care about the global state but rather the state of individual memory
zones. And right now there is nothing that prevents one zone from filling
up with dirty pages while other zones are spared, which frequently leads
to situations where kswapd, in order to restore the watermark of free
pages, does indeed have to write pages from that zone's LRU list. This
can interfere so badly with IO from the flusher threads that major
filesystems (btrfs, xfs, ext4) mostly ignore write requests from reclaim
already, taking away the VM's only possibility to keep such a zone
balanced, aside from hoping the flushers will soon clean pages from that
zone.
Enter per-zone dirty limits. They are to a zone's dirtyable memory what
the global limit is to the global amount of dirtyable memory, and try to
make sure that no single zone receives more than its fair share of the
globally allowed dirty pages in the first place. As the number of pages
considered dirtyable excludes the zones' lowmem reserves and high
watermarks, the maximum number of dirty pages in a zone is such that the
zone can always be balanced without requiring page cleaning.
As this is a placement decision in the page allocator and pages are
dirtied only after the allocation, this patch allows allocators to pass
__GFP_WRITE when they know in advance that the page will be written to and
become dirty soon. The page allocator will then attempt to allocate from
the first zone of the zonelist - which on NUMA is determined by the task's
NUMA memory policy - that has not exceeded its dirty limit.
At first glance, it would appear that the diversion to lower zones can
increase pressure on them, but this is not the case. With a full high
zone, allocations will be diverted to lower zones eventually, so it is
more of a shift in timing of the lower zone allocations. Workloads that
previously could fit their dirty pages completely in the higher zone may
be forced to allocate from lower zones, but the amount of pages that
"spill over" are limited themselves by the lower zones' dirty constraints,
and thus unlikely to become a problem.
For now, the problem of unfair dirty page distribution remains for NUMA
configurations where the zones allowed for allocation are in sum not big
enough to trigger the global dirty limits, wake up the flusher threads and
remedy the situation. Because of this, an allocation that could not
succeed on any of the considered zones is allowed to ignore the dirty
limits before going into direct reclaim or even failing the allocation,
until a future patch changes the global dirty throttling and flusher
thread activation so that they take individual zone states into account.
Test results
15M DMA + 3246M DMA32 + 504 Normal = 3765M memory
40% dirty ratio
16G USB thumb drive
10 runs of dd if=/dev/zero of=disk/zeroes bs=32k count=$((10 << 15))
seconds nr_vmscan_write
(stddev) min| median| max
xfs
vanilla: 549.747( 3.492) 0.000| 0.000| 0.000
patched: 550.996( 3.802) 0.000| 0.000| 0.000
fuse-ntfs
vanilla: 1183.094(53.178) 54349.000| 59341.000| 65163.000
patched: 558.049(17.914) 0.000| 0.000| 43.000
btrfs
vanilla: 573.679(14.015) 156657.000| 460178.000| 606926.000
patched: 563.365(11.368) 0.000| 0.000| 1362.000
ext4
vanilla: 561.197(15.782) 0.000|2725438.000|4143837.000
patched: 568.806(17.496) 0.000| 0.000| 0.000
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Tested-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10 23:07:49 +00:00
|
|
|
* which is important when on a NUMA setup the allowed
|
2016-07-28 22:46:11 +00:00
|
|
|
* nodes are together not big enough to reach the
|
mm: try to distribute dirty pages fairly across zones
The maximum number of dirty pages that exist in the system at any time is
determined by a number of pages considered dirtyable and a user-configured
percentage of those, or an absolute number in bytes.
This number of dirtyable pages is the sum of memory provided by all the
zones in the system minus their lowmem reserves and high watermarks, so
that the system can retain a healthy number of free pages without having
to reclaim dirty pages.
But there is a flaw in that we have a zoned page allocator which does not
care about the global state but rather the state of individual memory
zones. And right now there is nothing that prevents one zone from filling
up with dirty pages while other zones are spared, which frequently leads
to situations where kswapd, in order to restore the watermark of free
pages, does indeed have to write pages from that zone's LRU list. This
can interfere so badly with IO from the flusher threads that major
filesystems (btrfs, xfs, ext4) mostly ignore write requests from reclaim
already, taking away the VM's only possibility to keep such a zone
balanced, aside from hoping the flushers will soon clean pages from that
zone.
Enter per-zone dirty limits. They are to a zone's dirtyable memory what
the global limit is to the global amount of dirtyable memory, and try to
make sure that no single zone receives more than its fair share of the
globally allowed dirty pages in the first place. As the number of pages
considered dirtyable excludes the zones' lowmem reserves and high
watermarks, the maximum number of dirty pages in a zone is such that the
zone can always be balanced without requiring page cleaning.
As this is a placement decision in the page allocator and pages are
dirtied only after the allocation, this patch allows allocators to pass
__GFP_WRITE when they know in advance that the page will be written to and
become dirty soon. The page allocator will then attempt to allocate from
the first zone of the zonelist - which on NUMA is determined by the task's
NUMA memory policy - that has not exceeded its dirty limit.
At first glance, it would appear that the diversion to lower zones can
increase pressure on them, but this is not the case. With a full high
zone, allocations will be diverted to lower zones eventually, so it is
more of a shift in timing of the lower zone allocations. Workloads that
previously could fit their dirty pages completely in the higher zone may
be forced to allocate from lower zones, but the amount of pages that
"spill over" are limited themselves by the lower zones' dirty constraints,
and thus unlikely to become a problem.
For now, the problem of unfair dirty page distribution remains for NUMA
configurations where the zones allowed for allocation are in sum not big
enough to trigger the global dirty limits, wake up the flusher threads and
remedy the situation. Because of this, an allocation that could not
succeed on any of the considered zones is allowed to ignore the dirty
limits before going into direct reclaim or even failing the allocation,
until a future patch changes the global dirty throttling and flusher
thread activation so that they take individual zone states into account.
Test results
15M DMA + 3246M DMA32 + 504 Normal = 3765M memory
40% dirty ratio
16G USB thumb drive
10 runs of dd if=/dev/zero of=disk/zeroes bs=32k count=$((10 << 15))
seconds nr_vmscan_write
(stddev) min| median| max
xfs
vanilla: 549.747( 3.492) 0.000| 0.000| 0.000
patched: 550.996( 3.802) 0.000| 0.000| 0.000
fuse-ntfs
vanilla: 1183.094(53.178) 54349.000| 59341.000| 65163.000
patched: 558.049(17.914) 0.000| 0.000| 43.000
btrfs
vanilla: 573.679(14.015) 156657.000| 460178.000| 606926.000
patched: 563.365(11.368) 0.000| 0.000| 1362.000
ext4
vanilla: 561.197(15.782) 0.000|2725438.000|4143837.000
patched: 568.806(17.496) 0.000| 0.000| 0.000
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Tested-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10 23:07:49 +00:00
|
|
|
* global limit. The proper fix for these situations
|
2016-07-28 22:46:11 +00:00
|
|
|
* will require awareness of nodes in the
|
mm: try to distribute dirty pages fairly across zones
The maximum number of dirty pages that exist in the system at any time is
determined by a number of pages considered dirtyable and a user-configured
percentage of those, or an absolute number in bytes.
This number of dirtyable pages is the sum of memory provided by all the
zones in the system minus their lowmem reserves and high watermarks, so
that the system can retain a healthy number of free pages without having
to reclaim dirty pages.
But there is a flaw in that we have a zoned page allocator which does not
care about the global state but rather the state of individual memory
zones. And right now there is nothing that prevents one zone from filling
up with dirty pages while other zones are spared, which frequently leads
to situations where kswapd, in order to restore the watermark of free
pages, does indeed have to write pages from that zone's LRU list. This
can interfere so badly with IO from the flusher threads that major
filesystems (btrfs, xfs, ext4) mostly ignore write requests from reclaim
already, taking away the VM's only possibility to keep such a zone
balanced, aside from hoping the flushers will soon clean pages from that
zone.
Enter per-zone dirty limits. They are to a zone's dirtyable memory what
the global limit is to the global amount of dirtyable memory, and try to
make sure that no single zone receives more than its fair share of the
globally allowed dirty pages in the first place. As the number of pages
considered dirtyable excludes the zones' lowmem reserves and high
watermarks, the maximum number of dirty pages in a zone is such that the
zone can always be balanced without requiring page cleaning.
As this is a placement decision in the page allocator and pages are
dirtied only after the allocation, this patch allows allocators to pass
__GFP_WRITE when they know in advance that the page will be written to and
become dirty soon. The page allocator will then attempt to allocate from
the first zone of the zonelist - which on NUMA is determined by the task's
NUMA memory policy - that has not exceeded its dirty limit.
At first glance, it would appear that the diversion to lower zones can
increase pressure on them, but this is not the case. With a full high
zone, allocations will be diverted to lower zones eventually, so it is
more of a shift in timing of the lower zone allocations. Workloads that
previously could fit their dirty pages completely in the higher zone may
be forced to allocate from lower zones, but the amount of pages that
"spill over" are limited themselves by the lower zones' dirty constraints,
and thus unlikely to become a problem.
For now, the problem of unfair dirty page distribution remains for NUMA
configurations where the zones allowed for allocation are in sum not big
enough to trigger the global dirty limits, wake up the flusher threads and
remedy the situation. Because of this, an allocation that could not
succeed on any of the considered zones is allowed to ignore the dirty
limits before going into direct reclaim or even failing the allocation,
until a future patch changes the global dirty throttling and flusher
thread activation so that they take individual zone states into account.
Test results
15M DMA + 3246M DMA32 + 504 Normal = 3765M memory
40% dirty ratio
16G USB thumb drive
10 runs of dd if=/dev/zero of=disk/zeroes bs=32k count=$((10 << 15))
seconds nr_vmscan_write
(stddev) min| median| max
xfs
vanilla: 549.747( 3.492) 0.000| 0.000| 0.000
patched: 550.996( 3.802) 0.000| 0.000| 0.000
fuse-ntfs
vanilla: 1183.094(53.178) 54349.000| 59341.000| 65163.000
patched: 558.049(17.914) 0.000| 0.000| 43.000
btrfs
vanilla: 573.679(14.015) 156657.000| 460178.000| 606926.000
patched: 563.365(11.368) 0.000| 0.000| 1362.000
ext4
vanilla: 561.197(15.782) 0.000|2725438.000|4143837.000
patched: 568.806(17.496) 0.000| 0.000| 0.000
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Tested-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10 23:07:49 +00:00
|
|
|
* dirty-throttling and the flusher threads.
|
|
|
|
*/
|
2016-07-28 22:46:53 +00:00
|
|
|
if (ac->spread_dirty_pages) {
|
2022-05-13 03:22:51 +00:00
|
|
|
if (last_pgdat != zone->zone_pgdat) {
|
|
|
|
last_pgdat = zone->zone_pgdat;
|
|
|
|
last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
|
|
|
|
}
|
2016-07-28 22:46:53 +00:00
|
|
|
|
2022-05-13 03:22:51 +00:00
|
|
|
if (!last_pgdat_dirty_ok)
|
2016-07-28 22:46:53 +00:00
|
|
|
continue;
|
|
|
|
}
|
2005-11-14 00:06:43 +00:00
|
|
|
|
mm, page_alloc: spread allocations across zones before introducing fragmentation
Patch series "Fragmentation avoidance improvements", v5.
It has been noted before that fragmentation avoidance (aka
anti-fragmentation) is not perfect. Given sufficient time or an adverse
workload, memory gets fragmented and the long-term success of high-order
allocations degrades. This series defines an adverse workload, a definition
of external fragmentation events (including serious) ones and a series
that reduces the level of those fragmentation events.
The details of the workload and the consequences are described in more
detail in the changelogs. However, from patch 1, this is a high-level
summary of the adverse workload. The exact details are found in the
mmtests implementation.
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch)
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameterr create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed
3. Warm up a number of fio read-only threads accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll fault back in old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup
Overall the series reduces external fragmentation causing events by over 94%
on 1 and 2 socket machines, which in turn impacts high-order allocation
success rates over the long term. There are differences in latencies and
high-order allocation success rates. Latencies are a mixed bag as they
are vulnerable to exact system state and whether allocations succeeded
so they are treated as a secondary metric.
Patch 1 uses lower zones if they are populated and have free memory
instead of fragmenting a higher zone. It's special cased to
handle a Normal->DMA32 fallback with the reasons explained
in the changelog.
Patch 2-4 boosts watermarks temporarily when an external fragmentation
event occurs. kswapd wakes to reclaim a small amount of old memory
and then wakes kcompactd on completion to recover the system
slightly. This introduces some overhead in the slowpath. The level
of boosting can be tuned or disabled depending on the tolerance
for fragmentation vs allocation latency.
Patch 5 stalls some movable allocation requests to let kswapd from patch 4
make some progress. The duration of the stalls is very low but it
is possible to tune the system to avoid fragmentation events if
larger stalls can be tolerated.
The bulk of the improvement in fragmentation avoidance is from patches
1-4 but patch 5 can deal with a rare corner case and provides the option
of tuning a system for THP allocation success rates in exchange for
some stalls to control fragmentation.
This patch (of 5):
The page allocator zone lists are iterated based on the watermarks of each
zone which does not take anti-fragmentation into account. On x86, node 0
may have multiple zones while other nodes have one zone. A consequence is
that tasks running on node 0 may fragment ZONE_NORMAL even though
ZONE_DMA32 has plenty of free memory. This patch special cases the
allocator fast path such that it'll try an allocation from a lower local
zone before fragmenting a higher zone. In this case, stealing of
pageblocks or orders larger than a pageblock are still allowed in the fast
path as they are uninteresting from a fragmentation point of view.
This was evaluated using a benchmark designed to fragment memory before
attempting THP allocations. It's implemented in mmtests as the following
configurations
configs/config-global-dhp__workload_thpfioscale
configs/config-global-dhp__workload_thpfioscale-defrag
configs/config-global-dhp__workload_thpfioscale-madvhugepage
e.g. from mmtests
./run-mmtests.sh --run-monitor --config configs/config-global-dhp__workload_thpfioscale test-run-1
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch).
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameter create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed.
3. Warm up a number of fio read-only processes accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll refault old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds.
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup the test files.
Note that due to the use of IO and page cache that this benchmark is not
suitable for running on large machines where the time to fragment memory
may be excessive. Also note that while this is one mix that generates
fragmentation that it's not the only mix that generates fragmentation.
Differences in workload that are more slab-intensive or whether SLUB is
used with high-order pages may yield different results.
When the page allocator fragments memory, it records the event using the
mm_page_alloc_extfrag ftrace event. If the fallback_order is smaller than
a pageblock order (order-9 on 64-bit x86) then it's considered to be an
"external fragmentation event" that may cause issues in the future.
Hence, the primary metric here is the number of external fragmentation
events that occur with order < 9. The secondary metric is allocation
latency and huge page allocation success rates but note that differences
in latencies and what the success rate also can affect the number of
external fragmentation event which is why it's a secondary metric.
1-socket Skylake machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 1 THP allocating thread
--------------------------------------
4.20-rc3 extfrag events < order 9: 804694
4.20-rc3+patch: 408912 (49% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 662.92 ( 0.00%) 653.58 * 1.41%*
Amean fault-huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
Fault latencies are slightly reduced while allocation success rates remain
at zero as this configuration does not make any special effort to allocate
THP and fio is heavily active at the time and either filling memory or
keeping pages resident. However, a 49% reduction of serious fragmentation
events reduces the changes of external fragmentation being a problem in
the future.
Vlastimil asked during review for a breakdown of the allocation types
that are falling back.
vanilla
3816 MIGRATE_UNMOVABLE
800845 MIGRATE_MOVABLE
33 MIGRATE_UNRECLAIMABLE
patch
735 MIGRATE_UNMOVABLE
408135 MIGRATE_MOVABLE
42 MIGRATE_UNRECLAIMABLE
The majority of the fallbacks are due to movable allocations and this is
consistent for the workload throughout the series so will not be presented
again as the primary source of fallbacks are movable allocations.
Movable fallbacks are sometimes considered "ok" to fallback because they
can be migrated. The problem is that they can fill an
unmovable/reclaimable pageblock causing those allocations to fallback
later and polluting pageblocks with pages that cannot move. If there is a
movable fallback, it is pretty much guaranteed to affect an
unmovable/reclaimable pageblock and while it might not be enough to
actually cause a unmovable/reclaimable fallback in the future, we cannot
know that in advance so the patch takes the only option available to it.
Hence, it's important to control them. This point is also consistent
throughout the series and will not be repeated.
1-socket Skylake machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 291392
4.20-rc3+patch: 191187 (34% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 1495.14 ( 0.00%) 1467.55 ( 1.85%)
Amean fault-huge-1 1098.48 ( 0.00%) 1127.11 ( -2.61%)
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 78.57 ( 0.00%) 77.64 ( -1.18%)
Fragmentation events were reduced quite a bit although this is known
to be a little variable. The latencies and allocation success rates
are similar but they were already quite high.
2-socket Haswell machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 5 THP allocating threads
----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 215698
4.20-rc3+patch: 200210 (7% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 1350.05 ( 0.00%) 1346.45 ( 0.27%)
Amean fault-huge-5 4181.01 ( 0.00%) 3418.60 ( 18.24%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 1.15 ( 0.00%) 0.78 ( -31.88%)
The reduction of external fragmentation events is slight and this is
partially due to the removal of __GFP_THISNODE in commit ac5b2c18911f
("mm: thp: relax __GFP_THISNODE for MADV_HUGEPAGE mappings") as THP
allocations can now spill over to remote nodes instead of fragmenting
local memory.
2-socket Haswell machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 166352
4.20-rc3+patch: 147463 (11% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 6138.97 ( 0.00%) 6217.43 ( -1.28%)
Amean fault-huge-5 2294.28 ( 0.00%) 3163.33 * -37.88%*
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 96.82 ( 0.00%) 95.14 ( -1.74%)
There was a slight reduction in external fragmentation events although the
latencies were higher. The allocation success rate is high enough that
the system is struggling and there is quite a lot of parallel reclaim and
compaction activity. There is also a certain degree of luck on whether
processes start on node 0 or not for this patch but the relevance is
reduced later in the series.
Overall, the patch reduces the number of external fragmentation causing
events so the success of THP over long periods of time would be improved
for this adverse workload.
Link: http://lkml.kernel.org/r/20181123114528.28802-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 08:35:41 +00:00
|
|
|
if (no_fallback && nr_online_nodes > 1 &&
|
|
|
|
zone != ac->preferred_zoneref->zone) {
|
|
|
|
int local_nid;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If moving to a remote node, retry but allow
|
|
|
|
* fragmenting fallbacks. Locality is more important
|
|
|
|
* than fragmentation avoidance.
|
|
|
|
*/
|
|
|
|
local_nid = zone_to_nid(ac->preferred_zoneref->zone);
|
|
|
|
if (zone_to_nid(zone) != local_nid) {
|
|
|
|
alloc_flags &= ~ALLOC_NOFRAGMENT;
|
|
|
|
goto retry;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-12-28 08:35:44 +00:00
|
|
|
mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
|
2016-05-20 00:14:07 +00:00
|
|
|
if (!zone_watermark_fast(zone, order, mark,
|
mm, page_alloc: skip ->waternark_boost for atomic order-0 allocations
When boosting is enabled, it is observed that rate of atomic order-0
allocation failures are high due to the fact that free levels in the
system are checked with ->watermark_boost offset. This is not a problem
for sleepable allocations but for atomic allocations which looks like
regression.
This problem is seen frequently on system setup of Android kernel running
on Snapdragon hardware with 4GB RAM size. When no extfrag event occurred
in the system, ->watermark_boost factor is zero, thus the watermark
configurations in the system are:
_watermark = (
[WMARK_MIN] = 1272, --> ~5MB
[WMARK_LOW] = 9067, --> ~36MB
[WMARK_HIGH] = 9385), --> ~38MB
watermark_boost = 0
After launching some memory hungry applications in Android which can cause
extfrag events in the system to an extent that ->watermark_boost can be
set to max i.e. default boost factor makes it to 150% of high watermark.
_watermark = (
[WMARK_MIN] = 1272, --> ~5MB
[WMARK_LOW] = 9067, --> ~36MB
[WMARK_HIGH] = 9385), --> ~38MB
watermark_boost = 14077, -->~57MB
With default system configuration, for an atomic order-0 allocation to
succeed, having free memory of ~2MB will suffice. But boosting makes the
min_wmark to ~61MB thus for an atomic order-0 allocation to be successful
system should have minimum of ~23MB of free memory(from calculations of
zone_watermark_ok(), min = 3/4(min/2)). But failures are observed despite
system is having ~20MB of free memory. In the testing, this is
reproducible as early as first 300secs since boot and with furtherlowram
configurations(<2GB) it is observed as early as first 150secs since boot.
These failures can be avoided by excluding the ->watermark_boost in
watermark caluculations for atomic order-0 allocations.
[akpm@linux-foundation.org: fix comment grammar, reflow comment]
[charante@codeaurora.org: fix suggested by Mel Gorman]
Link: http://lkml.kernel.org/r/31556793-57b1-1c21-1a9d-22674d9bd938@codeaurora.org
Signed-off-by: Charan Teja Reddy <charante@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Link: http://lkml.kernel.org/r/1589882284-21010-1-git-send-email-charante@codeaurora.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 06:25:24 +00:00
|
|
|
ac->highest_zoneidx, alloc_flags,
|
|
|
|
gfp_mask)) {
|
2009-06-16 22:33:22 +00:00
|
|
|
int ret;
|
|
|
|
|
2018-04-05 23:22:31 +00:00
|
|
|
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
|
|
|
|
/*
|
|
|
|
* Watermark failed for this zone, but see if we can
|
|
|
|
* grow this zone if it contains deferred pages.
|
|
|
|
*/
|
2023-01-05 08:25:06 +00:00
|
|
|
if (deferred_pages_enabled()) {
|
2018-04-05 23:22:31 +00:00
|
|
|
if (_deferred_grow_zone(zone, order))
|
|
|
|
goto try_this_zone;
|
|
|
|
}
|
|
|
|
#endif
|
2014-06-04 23:10:14 +00:00
|
|
|
/* Checked here to keep the fast path fast */
|
|
|
|
BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
|
|
|
|
if (alloc_flags & ALLOC_NO_WATERMARKS)
|
|
|
|
goto try_this_zone;
|
|
|
|
|
2021-05-05 01:36:04 +00:00
|
|
|
if (!node_reclaim_enabled() ||
|
2016-05-20 00:14:10 +00:00
|
|
|
!zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
|
mm: page allocator: initialise ZLC for first zone eligible for zone_reclaim
There have been a small number of complaints about significant stalls
while copying large amounts of data on NUMA machines reported on a
distribution bugzilla. In these cases, zone_reclaim was enabled by
default due to large NUMA distances. In general, the complaints have not
been about the workload itself unless it was a file server (in which case
the recommendation was disable zone_reclaim).
The stalls are mostly due to significant amounts of time spent scanning
the preferred zone for pages to free. After a failure, it might fallback
to another node (as zonelists are often node-ordered rather than
zone-ordered) but stall quickly again when the next allocation attempt
occurs. In bad cases, each page allocated results in a full scan of the
preferred zone.
Patch 1 checks the preferred zone for recent allocation failure
which is particularly important if zone_reclaim has failed
recently. This avoids rescanning the zone in the near future and
instead falling back to another node. This may hurt node locality
in some cases but a failure to zone_reclaim is more expensive than
a remote access.
Patch 2 clears the zlc information after direct reclaim.
Otherwise, zone_reclaim can mark zones full, direct reclaim can
reclaim enough pages but the zone is still not considered for
allocation.
This was tested on a 24-thread 2-node x86_64 machine. The tests were
focused on large amounts of IO. All tests were bound to the CPUs on
node-0 to avoid disturbances due to processes being scheduled on different
nodes. The kernels tested are
3.0-rc6-vanilla Vanilla 3.0-rc6
zlcfirst Patch 1 applied
zlcreconsider Patches 1+2 applied
FS-Mark
./fs_mark -d /tmp/fsmark-10813 -D 100 -N 5000 -n 208 -L 35 -t 24 -S0 -s 524288
fsmark-3.0-rc6 3.0-rc6 3.0-rc6
vanilla zlcfirs zlcreconsider
Files/s min 54.90 ( 0.00%) 49.80 (-10.24%) 49.10 (-11.81%)
Files/s mean 100.11 ( 0.00%) 135.17 (25.94%) 146.93 (31.87%)
Files/s stddev 57.51 ( 0.00%) 138.97 (58.62%) 158.69 (63.76%)
Files/s max 361.10 ( 0.00%) 834.40 (56.72%) 802.40 (55.00%)
Overhead min 76704.00 ( 0.00%) 76501.00 ( 0.27%) 77784.00 (-1.39%)
Overhead mean 1485356.51 ( 0.00%) 1035797.83 (43.40%) 1594680.26 (-6.86%)
Overhead stddev 1848122.53 ( 0.00%) 881489.88 (109.66%) 1772354.90 ( 4.27%)
Overhead max 7989060.00 ( 0.00%) 3369118.00 (137.13%) 10135324.00 (-21.18%)
MMTests Statistics: duration
User/Sys Time Running Test (seconds) 501.49 493.91 499.93
Total Elapsed Time (seconds) 2451.57 2257.48 2215.92
MMTests Statistics: vmstat
Page Ins 46268 63840 66008
Page Outs 90821596 90671128 88043732
Swap Ins 0 0 0
Swap Outs 0 0 0
Direct pages scanned 13091697 8966863 8971790
Kswapd pages scanned 0 1830011 1831116
Kswapd pages reclaimed 0 1829068 1829930
Direct pages reclaimed 13037777 8956828 8648314
Kswapd efficiency 100% 99% 99%
Kswapd velocity 0.000 810.643 826.346
Direct efficiency 99% 99% 96%
Direct velocity 5340.128 3972.068 4048.788
Percentage direct scans 100% 83% 83%
Page writes by reclaim 0 3 0
Slabs scanned 796672 720640 720256
Direct inode steals 7422667 7160012 7088638
Kswapd inode steals 0 1736840 2021238
Test completes far faster with a large increase in the number of files
created per second. Standard deviation is high as a small number of
iterations were much higher than the mean. The number of pages scanned by
zone_reclaim is reduced and kswapd is used for more work.
LARGE DD
3.0-rc6 3.0-rc6 3.0-rc6
vanilla zlcfirst zlcreconsider
download tar 59 ( 0.00%) 59 ( 0.00%) 55 ( 7.27%)
dd source files 527 ( 0.00%) 296 (78.04%) 320 (64.69%)
delete source 36 ( 0.00%) 19 (89.47%) 20 (80.00%)
MMTests Statistics: duration
User/Sys Time Running Test (seconds) 125.03 118.98 122.01
Total Elapsed Time (seconds) 624.56 375.02 398.06
MMTests Statistics: vmstat
Page Ins 3594216 439368 407032
Page Outs 23380832 23380488 23377444
Swap Ins 0 0 0
Swap Outs 0 436 287
Direct pages scanned 17482342 69315973 82864918
Kswapd pages scanned 0 519123 575425
Kswapd pages reclaimed 0 466501 522487
Direct pages reclaimed 5858054 2732949 2712547
Kswapd efficiency 100% 89% 90%
Kswapd velocity 0.000 1384.254 1445.574
Direct efficiency 33% 3% 3%
Direct velocity 27991.453 184832.737 208171.929
Percentage direct scans 100% 99% 99%
Page writes by reclaim 0 5082 13917
Slabs scanned 17280 29952 35328
Direct inode steals 115257 1431122 332201
Kswapd inode steals 0 0 979532
This test downloads a large tarfile and copies it with dd a number of
times - similar to the most recent bug report I've dealt with. Time to
completion is reduced. The number of pages scanned directly is still
disturbingly high with a low efficiency but this is likely due to the
number of dirty pages encountered. The figures could probably be improved
with more work around how kswapd is used and how dirty pages are handled
but that is separate work and this result is significant on its own.
Streaming Mapped Writer
MMTests Statistics: duration
User/Sys Time Running Test (seconds) 124.47 111.67 112.64
Total Elapsed Time (seconds) 2138.14 1816.30 1867.56
MMTests Statistics: vmstat
Page Ins 90760 89124 89516
Page Outs 121028340 120199524 120736696
Swap Ins 0 86 55
Swap Outs 0 0 0
Direct pages scanned 114989363 96461439 96330619
Kswapd pages scanned 56430948 56965763 57075875
Kswapd pages reclaimed 27743219 27752044 27766606
Direct pages reclaimed 49777 46884 36655
Kswapd efficiency 49% 48% 48%
Kswapd velocity 26392.541 31363.631 30561.736
Direct efficiency 0% 0% 0%
Direct velocity 53780.091 53108.759 51581.004
Percentage direct scans 67% 62% 62%
Page writes by reclaim 385 122 1513
Slabs scanned 43008 39040 42112
Direct inode steals 0 10 8
Kswapd inode steals 733 534 477
This test just creates a large file mapping and writes to it linearly.
Time to completion is again reduced.
The gains are mostly down to two things. In many cases, there is less
scanning as zone_reclaim simply gives up faster due to recent failures.
The second reason is that memory is used more efficiently. Instead of
scanning the preferred zone every time, the allocator falls back to
another zone and uses it instead improving overall memory utilisation.
This patch: initialise ZLC for first zone eligible for zone_reclaim.
The zonelist cache (ZLC) is used among other things to record if
zone_reclaim() failed for a particular zone recently. The intention is to
avoid a high cost scanning extremely long zonelists or scanning within the
zone uselessly.
Currently the zonelist cache is setup only after the first zone has been
considered and zone_reclaim() has been called. The objective was to avoid
a costly setup but zone_reclaim is itself quite expensive. If it is
failing regularly such as the first eligible zone having mostly mapped
pages, the cost in scanning and allocation stalls is far higher than the
ZLC initialisation step.
This patch initialises ZLC before the first eligible zone calls
zone_reclaim(). Once initialised, it is checked whether the zone failed
zone_reclaim recently. If it has, the zone is skipped. As the first zone
is now being checked, additional care has to be taken about zones marked
full. A zone can be marked "full" because it should not have enough
unmapped pages for zone_reclaim but this is excessive as direct reclaim or
kswapd may succeed where zone_reclaim fails. Only mark zones "full" after
zone_reclaim fails if it failed to reclaim enough pages after scanning.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-07-26 00:12:29 +00:00
|
|
|
continue;
|
|
|
|
|
2016-07-28 22:46:32 +00:00
|
|
|
ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
|
2009-06-16 22:33:22 +00:00
|
|
|
switch (ret) {
|
2016-07-28 22:46:32 +00:00
|
|
|
case NODE_RECLAIM_NOSCAN:
|
2009-06-16 22:33:22 +00:00
|
|
|
/* did not scan */
|
mm: page allocator: initialise ZLC for first zone eligible for zone_reclaim
There have been a small number of complaints about significant stalls
while copying large amounts of data on NUMA machines reported on a
distribution bugzilla. In these cases, zone_reclaim was enabled by
default due to large NUMA distances. In general, the complaints have not
been about the workload itself unless it was a file server (in which case
the recommendation was disable zone_reclaim).
The stalls are mostly due to significant amounts of time spent scanning
the preferred zone for pages to free. After a failure, it might fallback
to another node (as zonelists are often node-ordered rather than
zone-ordered) but stall quickly again when the next allocation attempt
occurs. In bad cases, each page allocated results in a full scan of the
preferred zone.
Patch 1 checks the preferred zone for recent allocation failure
which is particularly important if zone_reclaim has failed
recently. This avoids rescanning the zone in the near future and
instead falling back to another node. This may hurt node locality
in some cases but a failure to zone_reclaim is more expensive than
a remote access.
Patch 2 clears the zlc information after direct reclaim.
Otherwise, zone_reclaim can mark zones full, direct reclaim can
reclaim enough pages but the zone is still not considered for
allocation.
This was tested on a 24-thread 2-node x86_64 machine. The tests were
focused on large amounts of IO. All tests were bound to the CPUs on
node-0 to avoid disturbances due to processes being scheduled on different
nodes. The kernels tested are
3.0-rc6-vanilla Vanilla 3.0-rc6
zlcfirst Patch 1 applied
zlcreconsider Patches 1+2 applied
FS-Mark
./fs_mark -d /tmp/fsmark-10813 -D 100 -N 5000 -n 208 -L 35 -t 24 -S0 -s 524288
fsmark-3.0-rc6 3.0-rc6 3.0-rc6
vanilla zlcfirs zlcreconsider
Files/s min 54.90 ( 0.00%) 49.80 (-10.24%) 49.10 (-11.81%)
Files/s mean 100.11 ( 0.00%) 135.17 (25.94%) 146.93 (31.87%)
Files/s stddev 57.51 ( 0.00%) 138.97 (58.62%) 158.69 (63.76%)
Files/s max 361.10 ( 0.00%) 834.40 (56.72%) 802.40 (55.00%)
Overhead min 76704.00 ( 0.00%) 76501.00 ( 0.27%) 77784.00 (-1.39%)
Overhead mean 1485356.51 ( 0.00%) 1035797.83 (43.40%) 1594680.26 (-6.86%)
Overhead stddev 1848122.53 ( 0.00%) 881489.88 (109.66%) 1772354.90 ( 4.27%)
Overhead max 7989060.00 ( 0.00%) 3369118.00 (137.13%) 10135324.00 (-21.18%)
MMTests Statistics: duration
User/Sys Time Running Test (seconds) 501.49 493.91 499.93
Total Elapsed Time (seconds) 2451.57 2257.48 2215.92
MMTests Statistics: vmstat
Page Ins 46268 63840 66008
Page Outs 90821596 90671128 88043732
Swap Ins 0 0 0
Swap Outs 0 0 0
Direct pages scanned 13091697 8966863 8971790
Kswapd pages scanned 0 1830011 1831116
Kswapd pages reclaimed 0 1829068 1829930
Direct pages reclaimed 13037777 8956828 8648314
Kswapd efficiency 100% 99% 99%
Kswapd velocity 0.000 810.643 826.346
Direct efficiency 99% 99% 96%
Direct velocity 5340.128 3972.068 4048.788
Percentage direct scans 100% 83% 83%
Page writes by reclaim 0 3 0
Slabs scanned 796672 720640 720256
Direct inode steals 7422667 7160012 7088638
Kswapd inode steals 0 1736840 2021238
Test completes far faster with a large increase in the number of files
created per second. Standard deviation is high as a small number of
iterations were much higher than the mean. The number of pages scanned by
zone_reclaim is reduced and kswapd is used for more work.
LARGE DD
3.0-rc6 3.0-rc6 3.0-rc6
vanilla zlcfirst zlcreconsider
download tar 59 ( 0.00%) 59 ( 0.00%) 55 ( 7.27%)
dd source files 527 ( 0.00%) 296 (78.04%) 320 (64.69%)
delete source 36 ( 0.00%) 19 (89.47%) 20 (80.00%)
MMTests Statistics: duration
User/Sys Time Running Test (seconds) 125.03 118.98 122.01
Total Elapsed Time (seconds) 624.56 375.02 398.06
MMTests Statistics: vmstat
Page Ins 3594216 439368 407032
Page Outs 23380832 23380488 23377444
Swap Ins 0 0 0
Swap Outs 0 436 287
Direct pages scanned 17482342 69315973 82864918
Kswapd pages scanned 0 519123 575425
Kswapd pages reclaimed 0 466501 522487
Direct pages reclaimed 5858054 2732949 2712547
Kswapd efficiency 100% 89% 90%
Kswapd velocity 0.000 1384.254 1445.574
Direct efficiency 33% 3% 3%
Direct velocity 27991.453 184832.737 208171.929
Percentage direct scans 100% 99% 99%
Page writes by reclaim 0 5082 13917
Slabs scanned 17280 29952 35328
Direct inode steals 115257 1431122 332201
Kswapd inode steals 0 0 979532
This test downloads a large tarfile and copies it with dd a number of
times - similar to the most recent bug report I've dealt with. Time to
completion is reduced. The number of pages scanned directly is still
disturbingly high with a low efficiency but this is likely due to the
number of dirty pages encountered. The figures could probably be improved
with more work around how kswapd is used and how dirty pages are handled
but that is separate work and this result is significant on its own.
Streaming Mapped Writer
MMTests Statistics: duration
User/Sys Time Running Test (seconds) 124.47 111.67 112.64
Total Elapsed Time (seconds) 2138.14 1816.30 1867.56
MMTests Statistics: vmstat
Page Ins 90760 89124 89516
Page Outs 121028340 120199524 120736696
Swap Ins 0 86 55
Swap Outs 0 0 0
Direct pages scanned 114989363 96461439 96330619
Kswapd pages scanned 56430948 56965763 57075875
Kswapd pages reclaimed 27743219 27752044 27766606
Direct pages reclaimed 49777 46884 36655
Kswapd efficiency 49% 48% 48%
Kswapd velocity 26392.541 31363.631 30561.736
Direct efficiency 0% 0% 0%
Direct velocity 53780.091 53108.759 51581.004
Percentage direct scans 67% 62% 62%
Page writes by reclaim 385 122 1513
Slabs scanned 43008 39040 42112
Direct inode steals 0 10 8
Kswapd inode steals 733 534 477
This test just creates a large file mapping and writes to it linearly.
Time to completion is again reduced.
The gains are mostly down to two things. In many cases, there is less
scanning as zone_reclaim simply gives up faster due to recent failures.
The second reason is that memory is used more efficiently. Instead of
scanning the preferred zone every time, the allocator falls back to
another zone and uses it instead improving overall memory utilisation.
This patch: initialise ZLC for first zone eligible for zone_reclaim.
The zonelist cache (ZLC) is used among other things to record if
zone_reclaim() failed for a particular zone recently. The intention is to
avoid a high cost scanning extremely long zonelists or scanning within the
zone uselessly.
Currently the zonelist cache is setup only after the first zone has been
considered and zone_reclaim() has been called. The objective was to avoid
a costly setup but zone_reclaim is itself quite expensive. If it is
failing regularly such as the first eligible zone having mostly mapped
pages, the cost in scanning and allocation stalls is far higher than the
ZLC initialisation step.
This patch initialises ZLC before the first eligible zone calls
zone_reclaim(). Once initialised, it is checked whether the zone failed
zone_reclaim recently. If it has, the zone is skipped. As the first zone
is now being checked, additional care has to be taken about zones marked
full. A zone can be marked "full" because it should not have enough
unmapped pages for zone_reclaim but this is excessive as direct reclaim or
kswapd may succeed where zone_reclaim fails. Only mark zones "full" after
zone_reclaim fails if it failed to reclaim enough pages after scanning.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-07-26 00:12:29 +00:00
|
|
|
continue;
|
2016-07-28 22:46:32 +00:00
|
|
|
case NODE_RECLAIM_FULL:
|
2009-06-16 22:33:22 +00:00
|
|
|
/* scanned but unreclaimable */
|
mm: page allocator: initialise ZLC for first zone eligible for zone_reclaim
There have been a small number of complaints about significant stalls
while copying large amounts of data on NUMA machines reported on a
distribution bugzilla. In these cases, zone_reclaim was enabled by
default due to large NUMA distances. In general, the complaints have not
been about the workload itself unless it was a file server (in which case
the recommendation was disable zone_reclaim).
The stalls are mostly due to significant amounts of time spent scanning
the preferred zone for pages to free. After a failure, it might fallback
to another node (as zonelists are often node-ordered rather than
zone-ordered) but stall quickly again when the next allocation attempt
occurs. In bad cases, each page allocated results in a full scan of the
preferred zone.
Patch 1 checks the preferred zone for recent allocation failure
which is particularly important if zone_reclaim has failed
recently. This avoids rescanning the zone in the near future and
instead falling back to another node. This may hurt node locality
in some cases but a failure to zone_reclaim is more expensive than
a remote access.
Patch 2 clears the zlc information after direct reclaim.
Otherwise, zone_reclaim can mark zones full, direct reclaim can
reclaim enough pages but the zone is still not considered for
allocation.
This was tested on a 24-thread 2-node x86_64 machine. The tests were
focused on large amounts of IO. All tests were bound to the CPUs on
node-0 to avoid disturbances due to processes being scheduled on different
nodes. The kernels tested are
3.0-rc6-vanilla Vanilla 3.0-rc6
zlcfirst Patch 1 applied
zlcreconsider Patches 1+2 applied
FS-Mark
./fs_mark -d /tmp/fsmark-10813 -D 100 -N 5000 -n 208 -L 35 -t 24 -S0 -s 524288
fsmark-3.0-rc6 3.0-rc6 3.0-rc6
vanilla zlcfirs zlcreconsider
Files/s min 54.90 ( 0.00%) 49.80 (-10.24%) 49.10 (-11.81%)
Files/s mean 100.11 ( 0.00%) 135.17 (25.94%) 146.93 (31.87%)
Files/s stddev 57.51 ( 0.00%) 138.97 (58.62%) 158.69 (63.76%)
Files/s max 361.10 ( 0.00%) 834.40 (56.72%) 802.40 (55.00%)
Overhead min 76704.00 ( 0.00%) 76501.00 ( 0.27%) 77784.00 (-1.39%)
Overhead mean 1485356.51 ( 0.00%) 1035797.83 (43.40%) 1594680.26 (-6.86%)
Overhead stddev 1848122.53 ( 0.00%) 881489.88 (109.66%) 1772354.90 ( 4.27%)
Overhead max 7989060.00 ( 0.00%) 3369118.00 (137.13%) 10135324.00 (-21.18%)
MMTests Statistics: duration
User/Sys Time Running Test (seconds) 501.49 493.91 499.93
Total Elapsed Time (seconds) 2451.57 2257.48 2215.92
MMTests Statistics: vmstat
Page Ins 46268 63840 66008
Page Outs 90821596 90671128 88043732
Swap Ins 0 0 0
Swap Outs 0 0 0
Direct pages scanned 13091697 8966863 8971790
Kswapd pages scanned 0 1830011 1831116
Kswapd pages reclaimed 0 1829068 1829930
Direct pages reclaimed 13037777 8956828 8648314
Kswapd efficiency 100% 99% 99%
Kswapd velocity 0.000 810.643 826.346
Direct efficiency 99% 99% 96%
Direct velocity 5340.128 3972.068 4048.788
Percentage direct scans 100% 83% 83%
Page writes by reclaim 0 3 0
Slabs scanned 796672 720640 720256
Direct inode steals 7422667 7160012 7088638
Kswapd inode steals 0 1736840 2021238
Test completes far faster with a large increase in the number of files
created per second. Standard deviation is high as a small number of
iterations were much higher than the mean. The number of pages scanned by
zone_reclaim is reduced and kswapd is used for more work.
LARGE DD
3.0-rc6 3.0-rc6 3.0-rc6
vanilla zlcfirst zlcreconsider
download tar 59 ( 0.00%) 59 ( 0.00%) 55 ( 7.27%)
dd source files 527 ( 0.00%) 296 (78.04%) 320 (64.69%)
delete source 36 ( 0.00%) 19 (89.47%) 20 (80.00%)
MMTests Statistics: duration
User/Sys Time Running Test (seconds) 125.03 118.98 122.01
Total Elapsed Time (seconds) 624.56 375.02 398.06
MMTests Statistics: vmstat
Page Ins 3594216 439368 407032
Page Outs 23380832 23380488 23377444
Swap Ins 0 0 0
Swap Outs 0 436 287
Direct pages scanned 17482342 69315973 82864918
Kswapd pages scanned 0 519123 575425
Kswapd pages reclaimed 0 466501 522487
Direct pages reclaimed 5858054 2732949 2712547
Kswapd efficiency 100% 89% 90%
Kswapd velocity 0.000 1384.254 1445.574
Direct efficiency 33% 3% 3%
Direct velocity 27991.453 184832.737 208171.929
Percentage direct scans 100% 99% 99%
Page writes by reclaim 0 5082 13917
Slabs scanned 17280 29952 35328
Direct inode steals 115257 1431122 332201
Kswapd inode steals 0 0 979532
This test downloads a large tarfile and copies it with dd a number of
times - similar to the most recent bug report I've dealt with. Time to
completion is reduced. The number of pages scanned directly is still
disturbingly high with a low efficiency but this is likely due to the
number of dirty pages encountered. The figures could probably be improved
with more work around how kswapd is used and how dirty pages are handled
but that is separate work and this result is significant on its own.
Streaming Mapped Writer
MMTests Statistics: duration
User/Sys Time Running Test (seconds) 124.47 111.67 112.64
Total Elapsed Time (seconds) 2138.14 1816.30 1867.56
MMTests Statistics: vmstat
Page Ins 90760 89124 89516
Page Outs 121028340 120199524 120736696
Swap Ins 0 86 55
Swap Outs 0 0 0
Direct pages scanned 114989363 96461439 96330619
Kswapd pages scanned 56430948 56965763 57075875
Kswapd pages reclaimed 27743219 27752044 27766606
Direct pages reclaimed 49777 46884 36655
Kswapd efficiency 49% 48% 48%
Kswapd velocity 26392.541 31363.631 30561.736
Direct efficiency 0% 0% 0%
Direct velocity 53780.091 53108.759 51581.004
Percentage direct scans 67% 62% 62%
Page writes by reclaim 385 122 1513
Slabs scanned 43008 39040 42112
Direct inode steals 0 10 8
Kswapd inode steals 733 534 477
This test just creates a large file mapping and writes to it linearly.
Time to completion is again reduced.
The gains are mostly down to two things. In many cases, there is less
scanning as zone_reclaim simply gives up faster due to recent failures.
The second reason is that memory is used more efficiently. Instead of
scanning the preferred zone every time, the allocator falls back to
another zone and uses it instead improving overall memory utilisation.
This patch: initialise ZLC for first zone eligible for zone_reclaim.
The zonelist cache (ZLC) is used among other things to record if
zone_reclaim() failed for a particular zone recently. The intention is to
avoid a high cost scanning extremely long zonelists or scanning within the
zone uselessly.
Currently the zonelist cache is setup only after the first zone has been
considered and zone_reclaim() has been called. The objective was to avoid
a costly setup but zone_reclaim is itself quite expensive. If it is
failing regularly such as the first eligible zone having mostly mapped
pages, the cost in scanning and allocation stalls is far higher than the
ZLC initialisation step.
This patch initialises ZLC before the first eligible zone calls
zone_reclaim(). Once initialised, it is checked whether the zone failed
zone_reclaim recently. If it has, the zone is skipped. As the first zone
is now being checked, additional care has to be taken about zones marked
full. A zone can be marked "full" because it should not have enough
unmapped pages for zone_reclaim but this is excessive as direct reclaim or
kswapd may succeed where zone_reclaim fails. Only mark zones "full" after
zone_reclaim fails if it failed to reclaim enough pages after scanning.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-07-26 00:12:29 +00:00
|
|
|
continue;
|
2009-06-16 22:33:22 +00:00
|
|
|
default:
|
|
|
|
/* did we reclaim enough */
|
2013-04-29 22:07:57 +00:00
|
|
|
if (zone_watermark_ok(zone, order, mark,
|
2020-06-03 22:59:01 +00:00
|
|
|
ac->highest_zoneidx, alloc_flags))
|
2013-04-29 22:07:57 +00:00
|
|
|
goto try_this_zone;
|
|
|
|
|
|
|
|
continue;
|
2006-12-07 04:31:38 +00:00
|
|
|
}
|
2005-11-14 00:06:43 +00:00
|
|
|
}
|
|
|
|
|
2009-06-16 22:33:22 +00:00
|
|
|
try_this_zone:
|
2017-02-24 22:56:26 +00:00
|
|
|
page = rmqueue(ac->preferred_zoneref->zone, zone, order,
|
2015-11-07 00:28:37 +00:00
|
|
|
gfp_mask, alloc_flags, ac->migratetype);
|
mm: set page->pfmemalloc in prep_new_page()
The possibility of replacing the numerous parameters of alloc_pages*
functions with a single structure has been discussed when Minchan proposed
to expand the x86 kernel stack [1]. This series implements the change,
along with few more cleanups/microoptimizations.
The series is based on next-20150108 and I used gcc 4.8.3 20140627 on
openSUSE 13.2 for compiling. Config includess NUMA and COMPACTION.
The core change is the introduction of a new struct alloc_context, which looks
like this:
struct alloc_context {
struct zonelist *zonelist;
nodemask_t *nodemask;
struct zone *preferred_zone;
int classzone_idx;
int migratetype;
enum zone_type high_zoneidx;
};
All the contents is mostly constant, except that __alloc_pages_slowpath()
changes preferred_zone, classzone_idx and potentially zonelist. But
that's not a problem in case control returns to retry_cpuset: in
__alloc_pages_nodemask(), those will be reset to initial values again
(although it's a bit subtle). On the other hand, gfp_flags and alloc_info
mutate so much that it doesn't make sense to put them into alloc_context.
Still, the result is one parameter instead of up to 7. This is all in
Patch 2.
Patch 3 is a step to expand alloc_context usage out of page_alloc.c
itself. The function try_to_compact_pages() can also much benefit from
the parameter reduction, but it means the struct definition has to be
moved to a shared header.
Patch 1 should IMHO be included even if the rest is deemed not useful
enough. It improves maintainability and also has some code/stack
reduction. Patch 4 is OTOH a tiny optimization.
Overall bloat-o-meter results:
add/remove: 0/0 grow/shrink: 0/4 up/down: 0/-460 (-460)
function old new delta
nr_free_zone_pages 129 115 -14
__alloc_pages_direct_compact 329 256 -73
get_page_from_freelist 2670 2576 -94
__alloc_pages_nodemask 2564 2285 -279
try_to_compact_pages 582 579 -3
Overall stack sizes per ./scripts/checkstack.pl:
old new delta
get_page_from_freelist: 184 184 0
__alloc_pages_nodemask 248 200 -48
__alloc_pages_direct_c 40 - -40
try_to_compact_pages 72 72 0
-88
[1] http://marc.info/?l=linux-mm&m=140142462528257&w=2
This patch (of 4):
prep_new_page() sets almost everything in the struct page of the page
being allocated, except page->pfmemalloc. This is not obvious and has at
least once led to a bug where page->pfmemalloc was forgotten to be set
correctly, see commit 8fb74b9fb2b1 ("mm: compaction: partially revert
capture of suitable high-order page").
This patch moves the pfmemalloc setting to prep_new_page(), which means it
needs to gain alloc_flags parameter. The call to prep_new_page is moved
from buffered_rmqueue() to get_page_from_freelist(), which also leads to
simpler code. An obsolete comment for buffered_rmqueue() is replaced.
In addition to better maintainability there is a small reduction of code
and stack usage for get_page_from_freelist(), which inlines the other
functions involved.
add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-145 (-145)
function old new delta
get_page_from_freelist 2670 2525 -145
Stack usage is reduced from 184 to 168 bytes.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 23:25:38 +00:00
|
|
|
if (page) {
|
2016-05-20 00:14:35 +00:00
|
|
|
prep_new_page(page, order, gfp_mask, alloc_flags);
|
2015-11-07 00:28:37 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* If this is a high-order atomic allocation then check
|
|
|
|
* if the pageblock should be reserved for the future
|
|
|
|
*/
|
2023-01-13 11:12:14 +00:00
|
|
|
if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
|
2015-11-07 00:28:37 +00:00
|
|
|
reserve_highatomic_pageblock(page, zone, order);
|
|
|
|
|
mm: set page->pfmemalloc in prep_new_page()
The possibility of replacing the numerous parameters of alloc_pages*
functions with a single structure has been discussed when Minchan proposed
to expand the x86 kernel stack [1]. This series implements the change,
along with few more cleanups/microoptimizations.
The series is based on next-20150108 and I used gcc 4.8.3 20140627 on
openSUSE 13.2 for compiling. Config includess NUMA and COMPACTION.
The core change is the introduction of a new struct alloc_context, which looks
like this:
struct alloc_context {
struct zonelist *zonelist;
nodemask_t *nodemask;
struct zone *preferred_zone;
int classzone_idx;
int migratetype;
enum zone_type high_zoneidx;
};
All the contents is mostly constant, except that __alloc_pages_slowpath()
changes preferred_zone, classzone_idx and potentially zonelist. But
that's not a problem in case control returns to retry_cpuset: in
__alloc_pages_nodemask(), those will be reset to initial values again
(although it's a bit subtle). On the other hand, gfp_flags and alloc_info
mutate so much that it doesn't make sense to put them into alloc_context.
Still, the result is one parameter instead of up to 7. This is all in
Patch 2.
Patch 3 is a step to expand alloc_context usage out of page_alloc.c
itself. The function try_to_compact_pages() can also much benefit from
the parameter reduction, but it means the struct definition has to be
moved to a shared header.
Patch 1 should IMHO be included even if the rest is deemed not useful
enough. It improves maintainability and also has some code/stack
reduction. Patch 4 is OTOH a tiny optimization.
Overall bloat-o-meter results:
add/remove: 0/0 grow/shrink: 0/4 up/down: 0/-460 (-460)
function old new delta
nr_free_zone_pages 129 115 -14
__alloc_pages_direct_compact 329 256 -73
get_page_from_freelist 2670 2576 -94
__alloc_pages_nodemask 2564 2285 -279
try_to_compact_pages 582 579 -3
Overall stack sizes per ./scripts/checkstack.pl:
old new delta
get_page_from_freelist: 184 184 0
__alloc_pages_nodemask 248 200 -48
__alloc_pages_direct_c 40 - -40
try_to_compact_pages 72 72 0
-88
[1] http://marc.info/?l=linux-mm&m=140142462528257&w=2
This patch (of 4):
prep_new_page() sets almost everything in the struct page of the page
being allocated, except page->pfmemalloc. This is not obvious and has at
least once led to a bug where page->pfmemalloc was forgotten to be set
correctly, see commit 8fb74b9fb2b1 ("mm: compaction: partially revert
capture of suitable high-order page").
This patch moves the pfmemalloc setting to prep_new_page(), which means it
needs to gain alloc_flags parameter. The call to prep_new_page is moved
from buffered_rmqueue() to get_page_from_freelist(), which also leads to
simpler code. An obsolete comment for buffered_rmqueue() is replaced.
In addition to better maintainability there is a small reduction of code
and stack usage for get_page_from_freelist(), which inlines the other
functions involved.
add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-145 (-145)
function old new delta
get_page_from_freelist 2670 2525 -145
Stack usage is reduced from 184 to 168 bytes.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 23:25:38 +00:00
|
|
|
return page;
|
2018-04-05 23:22:31 +00:00
|
|
|
} else {
|
|
|
|
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
|
|
|
|
/* Try again if zone has deferred pages */
|
2023-01-05 08:25:06 +00:00
|
|
|
if (deferred_pages_enabled()) {
|
2018-04-05 23:22:31 +00:00
|
|
|
if (_deferred_grow_zone(zone, order))
|
|
|
|
goto try_this_zone;
|
|
|
|
}
|
|
|
|
#endif
|
mm: set page->pfmemalloc in prep_new_page()
The possibility of replacing the numerous parameters of alloc_pages*
functions with a single structure has been discussed when Minchan proposed
to expand the x86 kernel stack [1]. This series implements the change,
along with few more cleanups/microoptimizations.
The series is based on next-20150108 and I used gcc 4.8.3 20140627 on
openSUSE 13.2 for compiling. Config includess NUMA and COMPACTION.
The core change is the introduction of a new struct alloc_context, which looks
like this:
struct alloc_context {
struct zonelist *zonelist;
nodemask_t *nodemask;
struct zone *preferred_zone;
int classzone_idx;
int migratetype;
enum zone_type high_zoneidx;
};
All the contents is mostly constant, except that __alloc_pages_slowpath()
changes preferred_zone, classzone_idx and potentially zonelist. But
that's not a problem in case control returns to retry_cpuset: in
__alloc_pages_nodemask(), those will be reset to initial values again
(although it's a bit subtle). On the other hand, gfp_flags and alloc_info
mutate so much that it doesn't make sense to put them into alloc_context.
Still, the result is one parameter instead of up to 7. This is all in
Patch 2.
Patch 3 is a step to expand alloc_context usage out of page_alloc.c
itself. The function try_to_compact_pages() can also much benefit from
the parameter reduction, but it means the struct definition has to be
moved to a shared header.
Patch 1 should IMHO be included even if the rest is deemed not useful
enough. It improves maintainability and also has some code/stack
reduction. Patch 4 is OTOH a tiny optimization.
Overall bloat-o-meter results:
add/remove: 0/0 grow/shrink: 0/4 up/down: 0/-460 (-460)
function old new delta
nr_free_zone_pages 129 115 -14
__alloc_pages_direct_compact 329 256 -73
get_page_from_freelist 2670 2576 -94
__alloc_pages_nodemask 2564 2285 -279
try_to_compact_pages 582 579 -3
Overall stack sizes per ./scripts/checkstack.pl:
old new delta
get_page_from_freelist: 184 184 0
__alloc_pages_nodemask 248 200 -48
__alloc_pages_direct_c 40 - -40
try_to_compact_pages 72 72 0
-88
[1] http://marc.info/?l=linux-mm&m=140142462528257&w=2
This patch (of 4):
prep_new_page() sets almost everything in the struct page of the page
being allocated, except page->pfmemalloc. This is not obvious and has at
least once led to a bug where page->pfmemalloc was forgotten to be set
correctly, see commit 8fb74b9fb2b1 ("mm: compaction: partially revert
capture of suitable high-order page").
This patch moves the pfmemalloc setting to prep_new_page(), which means it
needs to gain alloc_flags parameter. The call to prep_new_page is moved
from buffered_rmqueue() to get_page_from_freelist(), which also leads to
simpler code. An obsolete comment for buffered_rmqueue() is replaced.
In addition to better maintainability there is a small reduction of code
and stack usage for get_page_from_freelist(), which inlines the other
functions involved.
add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-145 (-145)
function old new delta
get_page_from_freelist 2670 2525 -145
Stack usage is reduced from 184 to 168 bytes.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 23:25:38 +00:00
|
|
|
}
|
2008-04-28 09:12:16 +00:00
|
|
|
}
|
[PATCH] memory page_alloc zonelist caching speedup
Optimize the critical zonelist scanning for free pages in the kernel memory
allocator by caching the zones that were found to be full recently, and
skipping them.
Remembers the zones in a zonelist that were short of free memory in the
last second. And it stashes a zone-to-node table in the zonelist struct,
to optimize that conversion (minimize its cache footprint.)
Recent changes:
This differs in a significant way from a similar patch that I
posted a week ago. Now, instead of having a nodemask_t of
recently full nodes, I have a bitmask of recently full zones.
This solves a problem that last weeks patch had, which on
systems with multiple zones per node (such as DMA zone) would
take seeing any of these zones full as meaning that all zones
on that node were full.
Also I changed names - from "zonelist faster" to "zonelist cache",
as that seemed to better convey what we're doing here - caching
some of the key zonelist state (for faster access.)
See below for some performance benchmark results. After all that
discussion with David on why I didn't need them, I went and got
some ;). I wanted to verify that I had not hurt the normal case
of memory allocation noticeably. At least for my one little
microbenchmark, I found (1) the normal case wasn't affected, and
(2) workloads that forced scanning across multiple nodes for
memory improved up to 10% fewer System CPU cycles and lower
elapsed clock time ('sys' and 'real'). Good. See details, below.
I didn't have the logic in get_page_from_freelist() for various
full nodes and zone reclaim failures correct. That should be
fixed up now - notice the new goto labels zonelist_scan,
this_zone_full, and try_next_zone, in get_page_from_freelist().
There are two reasons I persued this alternative, over some earlier
proposals that would have focused on optimizing the fake numa
emulation case by caching the last useful zone:
1) Contrary to what I said before, we (SGI, on large ia64 sn2 systems)
have seen real customer loads where the cost to scan the zonelist
was a problem, due to many nodes being full of memory before
we got to a node we could use. Or at least, I think we have.
This was related to me by another engineer, based on experiences
from some time past. So this is not guaranteed. Most likely, though.
The following approach should help such real numa systems just as
much as it helps fake numa systems, or any combination thereof.
2) The effort to distinguish fake from real numa, using node_distance,
so that we could cache a fake numa node and optimize choosing
it over equivalent distance fake nodes, while continuing to
properly scan all real nodes in distance order, was going to
require a nasty blob of zonelist and node distance munging.
The following approach has no new dependency on node distances or
zone sorting.
See comment in the patch below for a description of what it actually does.
Technical details of note (or controversy):
- See the use of "zlc_active" and "did_zlc_setup" below, to delay
adding any work for this new mechanism until we've looked at the
first zone in zonelist. I figured the odds of the first zone
having the memory we needed were high enough that we should just
look there, first, then get fancy only if we need to keep looking.
- Some odd hackery was needed to add items to struct zonelist, while
not tripping up the custom zonelists built by the mm/mempolicy.c
code for MPOL_BIND. My usual wordy comments below explain this.
Search for "MPOL_BIND".
- Some per-node data in the struct zonelist is now modified frequently,
with no locking. Multiple CPU cores on a node could hit and mangle
this data. The theory is that this is just performance hint data,
and the memory allocator will work just fine despite any such mangling.
The fields at risk are the struct 'zonelist_cache' fields 'fullzones'
(a bitmask) and 'last_full_zap' (unsigned long jiffies). It should
all be self correcting after at most a one second delay.
- This still does a linear scan of the same lengths as before. All
I've optimized is making the scan faster, not algorithmically
shorter. It is now able to scan a compact array of 'unsigned
short' in the case of many full nodes, so one cache line should
cover quite a few nodes, rather than each node hitting another
one or two new and distinct cache lines.
- If both Andi and Nick don't find this too complicated, I will be
(pleasantly) flabbergasted.
- I removed the comment claiming we only use one cachline's worth of
zonelist. We seem, at least in the fake numa case, to have put the
lie to that claim.
- I pay no attention to the various watermarks and such in this performance
hint. A node could be marked full for one watermark, and then skipped
over when searching for a page using a different watermark. I think
that's actually quite ok, as it will tend to slightly increase the
spreading of memory over other nodes, away from a memory stressed node.
===============
Performance - some benchmark results and analysis:
This benchmark runs a memory hog program that uses multiple
threads to touch alot of memory as quickly as it can.
Multiple runs were made, touching 12, 38, 64 or 90 GBytes out of
the total 96 GBytes on the system, and using 1, 19, 37, or 55
threads (on a 56 CPU system.) System, user and real (elapsed)
timings were recorded for each run, shown in units of seconds,
in the table below.
Two kernels were tested - 2.6.18-mm3 and the same kernel with
this zonelist caching patch added. The table also shows the
percentage improvement the zonelist caching sys time is over
(lower than) the stock *-mm kernel.
number 2.6.18-mm3 zonelist-cache delta (< 0 good) percent
GBs N ------------ -------------- ---------------- systime
mem threads sys user real sys user real sys user real better
12 1 153 24 177 151 24 176 -2 0 -1 1%
12 19 99 22 8 99 22 8 0 0 0 0%
12 37 111 25 6 112 25 6 1 0 0 -0%
12 55 115 25 5 110 23 5 -5 -2 0 4%
38 1 502 74 576 497 73 570 -5 -1 -6 0%
38 19 426 78 48 373 76 39 -53 -2 -9 12%
38 37 544 83 36 547 82 36 3 -1 0 -0%
38 55 501 77 23 511 80 24 10 3 1 -1%
64 1 917 125 1042 890 124 1014 -27 -1 -28 2%
64 19 1118 138 119 965 141 103 -153 3 -16 13%
64 37 1202 151 94 1136 150 81 -66 -1 -13 5%
64 55 1118 141 61 1072 140 58 -46 -1 -3 4%
90 1 1342 177 1519 1275 174 1450 -67 -3 -69 4%
90 19 2392 199 192 2116 189 176 -276 -10 -16 11%
90 37 3313 238 175 2972 225 145 -341 -13 -30 10%
90 55 1948 210 104 1843 213 100 -105 3 -4 5%
Notes:
1) This test ran a memory hog program that started a specified number N of
threads, and had each thread allocate and touch 1/N'th of
the total memory to be used in the test run in a single loop,
writing a constant word to memory, one store every 4096 bytes.
Watching this test during some earlier trial runs, I would see
each of these threads sit down on one CPU and stay there, for
the remainder of the pass, a different CPU for each thread.
2) The 'real' column is not comparable to the 'sys' or 'user' columns.
The 'real' column is seconds wall clock time elapsed, from beginning
to end of that test pass. The 'sys' and 'user' columns are total
CPU seconds spent on that test pass. For a 19 thread test run,
for example, the sum of 'sys' and 'user' could be up to 19 times the
number of 'real' elapsed wall clock seconds.
3) Tests were run on a fresh, single-user boot, to minimize the amount
of memory already in use at the start of the test, and to minimize
the amount of background activity that might interfere.
4) Tests were done on a 56 CPU, 28 Node system with 96 GBytes of RAM.
5) Notice that the 'real' time gets large for the single thread runs, even
though the measured 'sys' and 'user' times are modest. I'm not sure what
that means - probably something to do with it being slow for one thread to
be accessing memory along ways away. Perhaps the fake numa system, running
ostensibly the same workload, would not show this substantial degradation
of 'real' time for one thread on many nodes -- lets hope not.
6) The high thread count passes (one thread per CPU - on 55 of 56 CPUs)
ran quite efficiently, as one might expect. Each pair of threads needed
to allocate and touch the memory on the node the two threads shared, a
pleasantly parallizable workload.
7) The intermediate thread count passes, when asking for alot of memory forcing
them to go to a few neighboring nodes, improved the most with this zonelist
caching patch.
Conclusions:
* This zonelist cache patch probably makes little difference one way or the
other for most workloads on real numa hardware, if those workloads avoid
heavy off node allocations.
* For memory intensive workloads requiring substantial off-node allocations
on real numa hardware, this patch improves both kernel and elapsed timings
up to ten per-cent.
* For fake numa systems, I'm optimistic, but will have to leave that up to
Rohit Seth to actually test (once I get him a 2.6.18 backport.)
Signed-off-by: Paul Jackson <pj@sgi.com>
Cc: Rohit Seth <rohitseth@google.com>
Cc: Christoph Lameter <clameter@engr.sgi.com>
Cc: David Rientjes <rientjes@cs.washington.edu>
Cc: Paul Menage <menage@google.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 04:31:48 +00:00
|
|
|
|
mm, page_alloc: spread allocations across zones before introducing fragmentation
Patch series "Fragmentation avoidance improvements", v5.
It has been noted before that fragmentation avoidance (aka
anti-fragmentation) is not perfect. Given sufficient time or an adverse
workload, memory gets fragmented and the long-term success of high-order
allocations degrades. This series defines an adverse workload, a definition
of external fragmentation events (including serious) ones and a series
that reduces the level of those fragmentation events.
The details of the workload and the consequences are described in more
detail in the changelogs. However, from patch 1, this is a high-level
summary of the adverse workload. The exact details are found in the
mmtests implementation.
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch)
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameterr create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed
3. Warm up a number of fio read-only threads accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll fault back in old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup
Overall the series reduces external fragmentation causing events by over 94%
on 1 and 2 socket machines, which in turn impacts high-order allocation
success rates over the long term. There are differences in latencies and
high-order allocation success rates. Latencies are a mixed bag as they
are vulnerable to exact system state and whether allocations succeeded
so they are treated as a secondary metric.
Patch 1 uses lower zones if they are populated and have free memory
instead of fragmenting a higher zone. It's special cased to
handle a Normal->DMA32 fallback with the reasons explained
in the changelog.
Patch 2-4 boosts watermarks temporarily when an external fragmentation
event occurs. kswapd wakes to reclaim a small amount of old memory
and then wakes kcompactd on completion to recover the system
slightly. This introduces some overhead in the slowpath. The level
of boosting can be tuned or disabled depending on the tolerance
for fragmentation vs allocation latency.
Patch 5 stalls some movable allocation requests to let kswapd from patch 4
make some progress. The duration of the stalls is very low but it
is possible to tune the system to avoid fragmentation events if
larger stalls can be tolerated.
The bulk of the improvement in fragmentation avoidance is from patches
1-4 but patch 5 can deal with a rare corner case and provides the option
of tuning a system for THP allocation success rates in exchange for
some stalls to control fragmentation.
This patch (of 5):
The page allocator zone lists are iterated based on the watermarks of each
zone which does not take anti-fragmentation into account. On x86, node 0
may have multiple zones while other nodes have one zone. A consequence is
that tasks running on node 0 may fragment ZONE_NORMAL even though
ZONE_DMA32 has plenty of free memory. This patch special cases the
allocator fast path such that it'll try an allocation from a lower local
zone before fragmenting a higher zone. In this case, stealing of
pageblocks or orders larger than a pageblock are still allowed in the fast
path as they are uninteresting from a fragmentation point of view.
This was evaluated using a benchmark designed to fragment memory before
attempting THP allocations. It's implemented in mmtests as the following
configurations
configs/config-global-dhp__workload_thpfioscale
configs/config-global-dhp__workload_thpfioscale-defrag
configs/config-global-dhp__workload_thpfioscale-madvhugepage
e.g. from mmtests
./run-mmtests.sh --run-monitor --config configs/config-global-dhp__workload_thpfioscale test-run-1
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch).
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameter create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed.
3. Warm up a number of fio read-only processes accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll refault old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds.
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup the test files.
Note that due to the use of IO and page cache that this benchmark is not
suitable for running on large machines where the time to fragment memory
may be excessive. Also note that while this is one mix that generates
fragmentation that it's not the only mix that generates fragmentation.
Differences in workload that are more slab-intensive or whether SLUB is
used with high-order pages may yield different results.
When the page allocator fragments memory, it records the event using the
mm_page_alloc_extfrag ftrace event. If the fallback_order is smaller than
a pageblock order (order-9 on 64-bit x86) then it's considered to be an
"external fragmentation event" that may cause issues in the future.
Hence, the primary metric here is the number of external fragmentation
events that occur with order < 9. The secondary metric is allocation
latency and huge page allocation success rates but note that differences
in latencies and what the success rate also can affect the number of
external fragmentation event which is why it's a secondary metric.
1-socket Skylake machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 1 THP allocating thread
--------------------------------------
4.20-rc3 extfrag events < order 9: 804694
4.20-rc3+patch: 408912 (49% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 662.92 ( 0.00%) 653.58 * 1.41%*
Amean fault-huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
Fault latencies are slightly reduced while allocation success rates remain
at zero as this configuration does not make any special effort to allocate
THP and fio is heavily active at the time and either filling memory or
keeping pages resident. However, a 49% reduction of serious fragmentation
events reduces the changes of external fragmentation being a problem in
the future.
Vlastimil asked during review for a breakdown of the allocation types
that are falling back.
vanilla
3816 MIGRATE_UNMOVABLE
800845 MIGRATE_MOVABLE
33 MIGRATE_UNRECLAIMABLE
patch
735 MIGRATE_UNMOVABLE
408135 MIGRATE_MOVABLE
42 MIGRATE_UNRECLAIMABLE
The majority of the fallbacks are due to movable allocations and this is
consistent for the workload throughout the series so will not be presented
again as the primary source of fallbacks are movable allocations.
Movable fallbacks are sometimes considered "ok" to fallback because they
can be migrated. The problem is that they can fill an
unmovable/reclaimable pageblock causing those allocations to fallback
later and polluting pageblocks with pages that cannot move. If there is a
movable fallback, it is pretty much guaranteed to affect an
unmovable/reclaimable pageblock and while it might not be enough to
actually cause a unmovable/reclaimable fallback in the future, we cannot
know that in advance so the patch takes the only option available to it.
Hence, it's important to control them. This point is also consistent
throughout the series and will not be repeated.
1-socket Skylake machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 291392
4.20-rc3+patch: 191187 (34% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 1495.14 ( 0.00%) 1467.55 ( 1.85%)
Amean fault-huge-1 1098.48 ( 0.00%) 1127.11 ( -2.61%)
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 78.57 ( 0.00%) 77.64 ( -1.18%)
Fragmentation events were reduced quite a bit although this is known
to be a little variable. The latencies and allocation success rates
are similar but they were already quite high.
2-socket Haswell machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 5 THP allocating threads
----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 215698
4.20-rc3+patch: 200210 (7% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 1350.05 ( 0.00%) 1346.45 ( 0.27%)
Amean fault-huge-5 4181.01 ( 0.00%) 3418.60 ( 18.24%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 1.15 ( 0.00%) 0.78 ( -31.88%)
The reduction of external fragmentation events is slight and this is
partially due to the removal of __GFP_THISNODE in commit ac5b2c18911f
("mm: thp: relax __GFP_THISNODE for MADV_HUGEPAGE mappings") as THP
allocations can now spill over to remote nodes instead of fragmenting
local memory.
2-socket Haswell machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 166352
4.20-rc3+patch: 147463 (11% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 6138.97 ( 0.00%) 6217.43 ( -1.28%)
Amean fault-huge-5 2294.28 ( 0.00%) 3163.33 * -37.88%*
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 96.82 ( 0.00%) 95.14 ( -1.74%)
There was a slight reduction in external fragmentation events although the
latencies were higher. The allocation success rate is high enough that
the system is struggling and there is quite a lot of parallel reclaim and
compaction activity. There is also a certain degree of luck on whether
processes start on node 0 or not for this patch but the relevance is
reduced later in the series.
Overall, the patch reduces the number of external fragmentation causing
events so the success of THP over long periods of time would be improved
for this adverse workload.
Link: http://lkml.kernel.org/r/20181123114528.28802-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 08:35:41 +00:00
|
|
|
/*
|
|
|
|
* It's possible on a UMA machine to get through all zones that are
|
|
|
|
* fragmented. If avoiding fragmentation, reset and try again.
|
|
|
|
*/
|
|
|
|
if (no_fallback) {
|
|
|
|
alloc_flags &= ~ALLOC_NOFRAGMENT;
|
|
|
|
goto retry;
|
|
|
|
}
|
|
|
|
|
2014-08-06 23:07:22 +00:00
|
|
|
return NULL;
|
2005-06-22 00:14:41 +00:00
|
|
|
}
|
|
|
|
|
2017-02-22 23:46:16 +00:00
|
|
|
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
|
2011-05-25 00:12:16 +00:00
|
|
|
{
|
|
|
|
unsigned int filter = SHOW_MEM_FILTER_NODES;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This documents exceptions given to allocations in certain
|
|
|
|
* contexts that are allowed to allocate outside current's set
|
|
|
|
* of allowed nodes.
|
|
|
|
*/
|
|
|
|
if (!(gfp_mask & __GFP_NOMEMALLOC))
|
2017-09-06 23:24:50 +00:00
|
|
|
if (tsk_is_oom_victim(current) ||
|
2011-05-25 00:12:16 +00:00
|
|
|
(current->flags & (PF_MEMALLOC | PF_EXITING)))
|
|
|
|
filter &= ~SHOW_MEM_FILTER_NODES;
|
2021-09-02 21:58:13 +00:00
|
|
|
if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
|
2011-05-25 00:12:16 +00:00
|
|
|
filter &= ~SHOW_MEM_FILTER_NODES;
|
|
|
|
|
2022-08-23 09:22:30 +00:00
|
|
|
__show_mem(filter, nodemask, gfp_zone(gfp_mask));
|
2017-02-22 23:41:45 +00:00
|
|
|
}
|
|
|
|
|
2017-02-22 23:46:10 +00:00
|
|
|
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
|
2017-02-22 23:41:45 +00:00
|
|
|
{
|
|
|
|
struct va_format vaf;
|
|
|
|
va_list args;
|
2019-11-06 05:16:51 +00:00
|
|
|
static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
|
2017-02-22 23:41:45 +00:00
|
|
|
|
mm/page_alloc.c: do not warn allocation failure on zone DMA if no managed pages
In kdump kernel of x86_64, page allocation failure is observed:
kworker/u2:2: page allocation failure: order:0, mode:0xcc1(GFP_KERNEL|GFP_DMA), nodemask=(null),cpuset=/,mems_allowed=0
CPU: 0 PID: 55 Comm: kworker/u2:2 Not tainted 5.16.0-rc4+ #5
Hardware name: AMD Dinar/Dinar, BIOS RDN1505B 06/05/2013
Workqueue: events_unbound async_run_entry_fn
Call Trace:
<TASK>
dump_stack_lvl+0x48/0x5e
warn_alloc.cold+0x72/0xd6
__alloc_pages_slowpath.constprop.0+0xc69/0xcd0
__alloc_pages+0x1df/0x210
new_slab+0x389/0x4d0
___slab_alloc+0x58f/0x770
__slab_alloc.constprop.0+0x4a/0x80
kmem_cache_alloc_trace+0x24b/0x2c0
sr_probe+0x1db/0x620
......
device_add+0x405/0x920
......
__scsi_add_device+0xe5/0x100
ata_scsi_scan_host+0x97/0x1d0
async_run_entry_fn+0x30/0x130
process_one_work+0x1e8/0x3c0
worker_thread+0x50/0x3b0
? rescuer_thread+0x350/0x350
kthread+0x16b/0x190
? set_kthread_struct+0x40/0x40
ret_from_fork+0x22/0x30
</TASK>
Mem-Info:
......
The above failure happened when calling kmalloc() to allocate buffer with
GFP_DMA. It requests to allocate slab page from DMA zone while no managed
pages at all in there.
sr_probe()
--> get_capabilities()
--> buffer = kmalloc(512, GFP_KERNEL | GFP_DMA);
Because in the current kernel, dma-kmalloc will be created as long as
CONFIG_ZONE_DMA is enabled. However, kdump kernel of x86_64 doesn't have
managed pages on DMA zone since commit 6f599d84231f ("x86/kdump: Always
reserve the low 1M when the crashkernel option is specified"). The
failure can be always reproduced.
For now, let's mute the warning of allocation failure if requesting pages
from DMA zone while no managed pages.
[akpm@linux-foundation.org: fix warning]
Link: https://lkml.kernel.org/r/20211223094435.248523-4-bhe@redhat.com
Fixes: 6f599d84231f ("x86/kdump: Always reserve the low 1M when the crashkernel option is specified")
Signed-off-by: Baoquan He <bhe@redhat.com>
Acked-by: John Donnelly <john.p.donnelly@oracle.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Laight <David.Laight@ACULAB.COM>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-14 22:07:44 +00:00
|
|
|
if ((gfp_mask & __GFP_NOWARN) ||
|
|
|
|
!__ratelimit(&nopage_rs) ||
|
|
|
|
((gfp_mask & __GFP_DMA) && !has_managed_dma()))
|
2017-02-22 23:41:45 +00:00
|
|
|
return;
|
|
|
|
|
2016-10-08 00:01:55 +00:00
|
|
|
va_start(args, fmt);
|
|
|
|
vaf.fmt = fmt;
|
|
|
|
vaf.va = &args;
|
mm, oom: reorganize the oom report in dump_header
OOM report contains several sections. The first one is the allocation
context that has triggered the OOM. Then we have cpuset context followed
by the stack trace of the OOM path. The tird one is the OOM memory
information. Followed by the current memory state of all system tasks.
At last, we will show oom eligible tasks and the information about the
chosen oom victim.
One thing that makes parsing more awkward than necessary is that we do not
have a single and easily parsable line about the oom context. This patch
is reorganizing the oom report to
1) who invoked oom and what was the allocation request
[ 515.902945] tuned invoked oom-killer: gfp_mask=0x6200ca(GFP_HIGHUSER_MOVABLE), order=0, oom_score_adj=0
2) OOM stack trace
[ 515.904273] CPU: 24 PID: 1809 Comm: tuned Not tainted 4.20.0-rc3+ #3
[ 515.905518] Hardware name: Inspur SA5212M4/YZMB-00370-107, BIOS 4.1.10 11/14/2016
[ 515.906821] Call Trace:
[ 515.908062] dump_stack+0x5a/0x73
[ 515.909311] dump_header+0x55/0x28c
[ 515.914260] oom_kill_process+0x2d8/0x300
[ 515.916708] out_of_memory+0x145/0x4a0
[ 515.917932] __alloc_pages_slowpath+0x7d2/0xa16
[ 515.919157] __alloc_pages_nodemask+0x277/0x290
[ 515.920367] filemap_fault+0x3d0/0x6c0
[ 515.921529] ? filemap_map_pages+0x2b8/0x420
[ 515.922709] ext4_filemap_fault+0x2c/0x40 [ext4]
[ 515.923884] __do_fault+0x20/0x80
[ 515.925032] __handle_mm_fault+0xbc0/0xe80
[ 515.926195] handle_mm_fault+0xfa/0x210
[ 515.927357] __do_page_fault+0x233/0x4c0
[ 515.928506] do_page_fault+0x32/0x140
[ 515.929646] ? page_fault+0x8/0x30
[ 515.930770] page_fault+0x1e/0x30
3) OOM memory information
[ 515.958093] Mem-Info:
[ 515.959647] active_anon:26501758 inactive_anon:1179809 isolated_anon:0
active_file:4402672 inactive_file:483963 isolated_file:1344
unevictable:0 dirty:4886753 writeback:0 unstable:0
slab_reclaimable:148442 slab_unreclaimable:18741
mapped:1347 shmem:1347 pagetables:58669 bounce:0
free:88663 free_pcp:0 free_cma:0
...
4) current memory state of all system tasks
[ 516.079544] [ 744] 0 744 9211 1345 114688 82 0 systemd-journal
[ 516.082034] [ 787] 0 787 31764 0 143360 92 0 lvmetad
[ 516.084465] [ 792] 0 792 10930 1 110592 208 -1000 systemd-udevd
[ 516.086865] [ 1199] 0 1199 13866 0 131072 112 -1000 auditd
[ 516.089190] [ 1222] 0 1222 31990 1 110592 157 0 smartd
[ 516.091477] [ 1225] 0 1225 4864 85 81920 43 0 irqbalance
[ 516.093712] [ 1226] 0 1226 52612 0 258048 426 0 abrtd
[ 516.112128] [ 1280] 0 1280 109774 55 299008 400 0 NetworkManager
[ 516.113998] [ 1295] 0 1295 28817 37 69632 24 0 ksmtuned
[ 516.144596] [ 10718] 0 10718 2622484 1721372 15998976 267219 0 panic
[ 516.145792] [ 10719] 0 10719 2622484 1164767 9818112 53576 0 panic
[ 516.146977] [ 10720] 0 10720 2622484 1174361 9904128 53709 0 panic
[ 516.148163] [ 10721] 0 10721 2622484 1209070 10194944 54824 0 panic
[ 516.149329] [ 10722] 0 10722 2622484 1745799 14774272 91138 0 panic
5) oom context (contrains and the chosen victim).
oom-kill:constraint=CONSTRAINT_NONE,nodemask=(null),cpuset=/,mems_allowed=0-1,task=panic,pid=10737,uid=0
An admin can easily get the full oom context at a single line which
makes parsing much easier.
Link: http://lkml.kernel.org/r/1542799799-36184-1-git-send-email-ufo19890607@gmail.com
Signed-off-by: yuzhoujian <yuzhoujian@didichuxing.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Yang Shi <yang.s@alibaba-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 08:36:07 +00:00
|
|
|
pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
|
2017-11-16 01:39:14 +00:00
|
|
|
current->comm, &vaf, gfp_mask, &gfp_mask,
|
|
|
|
nodemask_pr_args(nodemask));
|
2016-10-08 00:01:55 +00:00
|
|
|
va_end(args);
|
2011-11-01 00:08:35 +00:00
|
|
|
|
2017-02-22 23:46:10 +00:00
|
|
|
cpuset_print_current_mems_allowed();
|
mm, oom: reorganize the oom report in dump_header
OOM report contains several sections. The first one is the allocation
context that has triggered the OOM. Then we have cpuset context followed
by the stack trace of the OOM path. The tird one is the OOM memory
information. Followed by the current memory state of all system tasks.
At last, we will show oom eligible tasks and the information about the
chosen oom victim.
One thing that makes parsing more awkward than necessary is that we do not
have a single and easily parsable line about the oom context. This patch
is reorganizing the oom report to
1) who invoked oom and what was the allocation request
[ 515.902945] tuned invoked oom-killer: gfp_mask=0x6200ca(GFP_HIGHUSER_MOVABLE), order=0, oom_score_adj=0
2) OOM stack trace
[ 515.904273] CPU: 24 PID: 1809 Comm: tuned Not tainted 4.20.0-rc3+ #3
[ 515.905518] Hardware name: Inspur SA5212M4/YZMB-00370-107, BIOS 4.1.10 11/14/2016
[ 515.906821] Call Trace:
[ 515.908062] dump_stack+0x5a/0x73
[ 515.909311] dump_header+0x55/0x28c
[ 515.914260] oom_kill_process+0x2d8/0x300
[ 515.916708] out_of_memory+0x145/0x4a0
[ 515.917932] __alloc_pages_slowpath+0x7d2/0xa16
[ 515.919157] __alloc_pages_nodemask+0x277/0x290
[ 515.920367] filemap_fault+0x3d0/0x6c0
[ 515.921529] ? filemap_map_pages+0x2b8/0x420
[ 515.922709] ext4_filemap_fault+0x2c/0x40 [ext4]
[ 515.923884] __do_fault+0x20/0x80
[ 515.925032] __handle_mm_fault+0xbc0/0xe80
[ 515.926195] handle_mm_fault+0xfa/0x210
[ 515.927357] __do_page_fault+0x233/0x4c0
[ 515.928506] do_page_fault+0x32/0x140
[ 515.929646] ? page_fault+0x8/0x30
[ 515.930770] page_fault+0x1e/0x30
3) OOM memory information
[ 515.958093] Mem-Info:
[ 515.959647] active_anon:26501758 inactive_anon:1179809 isolated_anon:0
active_file:4402672 inactive_file:483963 isolated_file:1344
unevictable:0 dirty:4886753 writeback:0 unstable:0
slab_reclaimable:148442 slab_unreclaimable:18741
mapped:1347 shmem:1347 pagetables:58669 bounce:0
free:88663 free_pcp:0 free_cma:0
...
4) current memory state of all system tasks
[ 516.079544] [ 744] 0 744 9211 1345 114688 82 0 systemd-journal
[ 516.082034] [ 787] 0 787 31764 0 143360 92 0 lvmetad
[ 516.084465] [ 792] 0 792 10930 1 110592 208 -1000 systemd-udevd
[ 516.086865] [ 1199] 0 1199 13866 0 131072 112 -1000 auditd
[ 516.089190] [ 1222] 0 1222 31990 1 110592 157 0 smartd
[ 516.091477] [ 1225] 0 1225 4864 85 81920 43 0 irqbalance
[ 516.093712] [ 1226] 0 1226 52612 0 258048 426 0 abrtd
[ 516.112128] [ 1280] 0 1280 109774 55 299008 400 0 NetworkManager
[ 516.113998] [ 1295] 0 1295 28817 37 69632 24 0 ksmtuned
[ 516.144596] [ 10718] 0 10718 2622484 1721372 15998976 267219 0 panic
[ 516.145792] [ 10719] 0 10719 2622484 1164767 9818112 53576 0 panic
[ 516.146977] [ 10720] 0 10720 2622484 1174361 9904128 53709 0 panic
[ 516.148163] [ 10721] 0 10721 2622484 1209070 10194944 54824 0 panic
[ 516.149329] [ 10722] 0 10722 2622484 1745799 14774272 91138 0 panic
5) oom context (contrains and the chosen victim).
oom-kill:constraint=CONSTRAINT_NONE,nodemask=(null),cpuset=/,mems_allowed=0-1,task=panic,pid=10737,uid=0
An admin can easily get the full oom context at a single line which
makes parsing much easier.
Link: http://lkml.kernel.org/r/1542799799-36184-1-git-send-email-ufo19890607@gmail.com
Signed-off-by: yuzhoujian <yuzhoujian@didichuxing.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Yang Shi <yang.s@alibaba-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 08:36:07 +00:00
|
|
|
pr_cont("\n");
|
2011-05-25 00:12:16 +00:00
|
|
|
dump_stack();
|
2017-02-22 23:46:28 +00:00
|
|
|
warn_alloc_show_mem(gfp_mask, nodemask);
|
2011-05-25 00:12:16 +00:00
|
|
|
}
|
|
|
|
|
2017-02-22 23:46:25 +00:00
|
|
|
static inline struct page *
|
|
|
|
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
|
|
|
|
unsigned int alloc_flags,
|
|
|
|
const struct alloc_context *ac)
|
|
|
|
{
|
|
|
|
struct page *page;
|
|
|
|
|
|
|
|
page = get_page_from_freelist(gfp_mask, order,
|
|
|
|
alloc_flags|ALLOC_CPUSET, ac);
|
|
|
|
/*
|
|
|
|
* fallback to ignore cpuset restriction if our nodes
|
|
|
|
* are depleted
|
|
|
|
*/
|
|
|
|
if (!page)
|
|
|
|
page = get_page_from_freelist(gfp_mask, order,
|
|
|
|
alloc_flags, ac);
|
|
|
|
|
|
|
|
return page;
|
|
|
|
}
|
|
|
|
|
2009-06-16 22:31:57 +00:00
|
|
|
static inline struct page *
|
|
|
|
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
|
2015-02-11 23:25:41 +00:00
|
|
|
const struct alloc_context *ac, unsigned long *did_some_progress)
|
2009-06-16 22:31:57 +00:00
|
|
|
{
|
2015-09-08 22:00:36 +00:00
|
|
|
struct oom_control oc = {
|
|
|
|
.zonelist = ac->zonelist,
|
|
|
|
.nodemask = ac->nodemask,
|
2016-07-26 22:22:33 +00:00
|
|
|
.memcg = NULL,
|
2015-09-08 22:00:36 +00:00
|
|
|
.gfp_mask = gfp_mask,
|
|
|
|
.order = order,
|
|
|
|
};
|
2009-06-16 22:31:57 +00:00
|
|
|
struct page *page;
|
|
|
|
|
2015-01-26 20:58:32 +00:00
|
|
|
*did_some_progress = 0;
|
|
|
|
|
|
|
|
/*
|
2015-06-24 23:57:19 +00:00
|
|
|
* Acquire the oom lock. If that fails, somebody else is
|
|
|
|
* making progress for us.
|
2015-01-26 20:58:32 +00:00
|
|
|
*/
|
2015-06-24 23:57:19 +00:00
|
|
|
if (!mutex_trylock(&oom_lock)) {
|
2015-01-26 20:58:32 +00:00
|
|
|
*did_some_progress = 1;
|
2009-06-16 22:31:57 +00:00
|
|
|
schedule_timeout_uninterruptible(1);
|
2005-04-16 22:20:36 +00:00
|
|
|
return NULL;
|
|
|
|
}
|
2005-11-17 20:35:02 +00:00
|
|
|
|
2009-06-16 22:31:57 +00:00
|
|
|
/*
|
|
|
|
* Go through the zonelist yet one more time, keep very high watermark
|
|
|
|
* here, this is only to catch a parallel oom killing, we must fail if
|
2017-08-31 23:15:20 +00:00
|
|
|
* we're still under heavy pressure. But make sure that this reclaim
|
|
|
|
* attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
|
|
|
|
* allocation which will never fail due to oom_lock already held.
|
2009-06-16 22:31:57 +00:00
|
|
|
*/
|
2017-08-31 23:15:20 +00:00
|
|
|
page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
|
|
|
|
~__GFP_DIRECT_RECLAIM, order,
|
|
|
|
ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
|
2005-11-14 00:06:43 +00:00
|
|
|
if (page)
|
2009-06-16 22:31:57 +00:00
|
|
|
goto out;
|
|
|
|
|
2017-02-22 23:46:22 +00:00
|
|
|
/* Coredumps can quickly deplete all memory reserves */
|
|
|
|
if (current->flags & PF_DUMPCORE)
|
|
|
|
goto out;
|
|
|
|
/* The OOM killer will not help higher order allocs */
|
|
|
|
if (order > PAGE_ALLOC_COSTLY_ORDER)
|
|
|
|
goto out;
|
2017-07-12 21:36:45 +00:00
|
|
|
/*
|
|
|
|
* We have already exhausted all our reclaim opportunities without any
|
|
|
|
* success so it is time to admit defeat. We will skip the OOM killer
|
|
|
|
* because it is very likely that the caller has a more reasonable
|
|
|
|
* fallback than shooting a random task.
|
2020-10-13 23:55:45 +00:00
|
|
|
*
|
|
|
|
* The OOM killer may not free memory on a specific node.
|
2017-07-12 21:36:45 +00:00
|
|
|
*/
|
2020-10-13 23:55:45 +00:00
|
|
|
if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
|
2017-07-12 21:36:45 +00:00
|
|
|
goto out;
|
2017-02-22 23:46:22 +00:00
|
|
|
/* The OOM killer does not needlessly kill tasks for lowmem */
|
2020-06-03 22:59:01 +00:00
|
|
|
if (ac->highest_zoneidx < ZONE_NORMAL)
|
2017-02-22 23:46:22 +00:00
|
|
|
goto out;
|
|
|
|
if (pm_suspended_storage())
|
|
|
|
goto out;
|
|
|
|
/*
|
|
|
|
* XXX: GFP_NOFS allocations should rather fail than rely on
|
|
|
|
* other request to make a forward progress.
|
|
|
|
* We are in an unfortunate situation where out_of_memory cannot
|
|
|
|
* do much for this context but let's try it to at least get
|
|
|
|
* access to memory reserved if the current task is killed (see
|
|
|
|
* out_of_memory). Once filesystems are ready to handle allocation
|
|
|
|
* failures more gracefully we should just bail out here.
|
|
|
|
*/
|
|
|
|
|
2018-02-01 00:20:07 +00:00
|
|
|
/* Exhausted what can be done so it's blame time */
|
2022-05-19 21:08:55 +00:00
|
|
|
if (out_of_memory(&oc) ||
|
|
|
|
WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
|
2015-02-11 23:26:24 +00:00
|
|
|
*did_some_progress = 1;
|
2016-01-14 23:20:36 +00:00
|
|
|
|
2017-02-22 23:46:25 +00:00
|
|
|
/*
|
|
|
|
* Help non-failing allocations by giving them access to memory
|
|
|
|
* reserves
|
|
|
|
*/
|
|
|
|
if (gfp_mask & __GFP_NOFAIL)
|
|
|
|
page = __alloc_pages_cpuset_fallback(gfp_mask, order,
|
2016-01-14 23:20:36 +00:00
|
|
|
ALLOC_NO_WATERMARKS, ac);
|
|
|
|
}
|
2009-06-16 22:31:57 +00:00
|
|
|
out:
|
2015-06-24 23:57:19 +00:00
|
|
|
mutex_unlock(&oom_lock);
|
2009-06-16 22:31:57 +00:00
|
|
|
return page;
|
|
|
|
}
|
|
|
|
|
2016-05-20 23:57:06 +00:00
|
|
|
/*
|
2021-05-07 01:06:50 +00:00
|
|
|
* Maximum number of compaction retries with a progress before OOM
|
2016-05-20 23:57:06 +00:00
|
|
|
* killer is consider as the only way to move forward.
|
|
|
|
*/
|
|
|
|
#define MAX_COMPACT_RETRIES 16
|
|
|
|
|
2010-05-24 21:32:30 +00:00
|
|
|
#ifdef CONFIG_COMPACTION
|
|
|
|
/* Try memory compaction for high-order allocations before reclaim */
|
|
|
|
static struct page *
|
|
|
|
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
|
2016-05-20 00:13:38 +00:00
|
|
|
unsigned int alloc_flags, const struct alloc_context *ac,
|
2016-07-28 22:49:28 +00:00
|
|
|
enum compact_priority prio, enum compact_result *compact_result)
|
2010-05-24 21:32:30 +00:00
|
|
|
{
|
2019-03-05 23:45:41 +00:00
|
|
|
struct page *page = NULL;
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
unsigned long pflags;
|
2017-05-08 22:59:50 +00:00
|
|
|
unsigned int noreclaim_flag;
|
mm, compaction: defer each zone individually instead of preferred zone
When direct sync compaction is often unsuccessful, it may become deferred
for some time to avoid further useless attempts, both sync and async.
Successful high-order allocations un-defer compaction, while further
unsuccessful compaction attempts prolong the compaction deferred period.
Currently the checking and setting deferred status is performed only on
the preferred zone of the allocation that invoked direct compaction. But
compaction itself is attempted on all eligible zones in the zonelist, so
the behavior is suboptimal and may lead both to scenarios where 1)
compaction is attempted uselessly, or 2) where it's not attempted despite
good chances of succeeding, as shown on the examples below:
1) A direct compaction with Normal preferred zone failed and set
deferred compaction for the Normal zone. Another unrelated direct
compaction with DMA32 as preferred zone will attempt to compact DMA32
zone even though the first compaction attempt also included DMA32 zone.
In another scenario, compaction with Normal preferred zone failed to
compact Normal zone, but succeeded in the DMA32 zone, so it will not
defer compaction. In the next attempt, it will try Normal zone which
will fail again, instead of skipping Normal zone and trying DMA32
directly.
2) Kswapd will balance DMA32 zone and reset defer status based on
watermarks looking good. A direct compaction with preferred Normal
zone will skip compaction of all zones including DMA32 because Normal
was still deferred. The allocation might have succeeded in DMA32, but
won't.
This patch makes compaction deferring work on individual zone basis
instead of preferred zone. For each zone, it checks compaction_deferred()
to decide if the zone should be skipped. If watermarks fail after
compacting the zone, defer_compaction() is called. The zone where
watermarks passed can still be deferred when the allocation attempt is
unsuccessful. When allocation is successful, compaction_defer_reset() is
called for the zone containing the allocated page. This approach should
approximate calling defer_compaction() only on zones where compaction was
attempted and did not yield allocated page. There might be corner cases
but that is inevitable as long as the decision to stop compacting dues not
guarantee that a page will be allocated.
Due to a new COMPACT_DEFERRED return value, some functions relying
implicitly on COMPACT_SKIPPED = 0 had to be updated, with comments made
more accurate. The did_some_progress output parameter of
__alloc_pages_direct_compact() is removed completely, as the caller
actually does not use it after compaction sets it - it is only considered
when direct reclaim sets it.
During testing on a two-node machine with a single very small Normal zone
on node 1, this patch has improved success rates in stress-highalloc
mmtests benchmark. The success here were previously made worse by commit
3a025760fc15 ("mm: page_alloc: spill to remote nodes before waking
kswapd") as kswapd was no longer resetting often enough the deferred
compaction for the Normal zone, and DMA32 zones on both nodes were thus
not considered for compaction. On different machine, success rates were
improved with __GFP_NO_KSWAPD allocations.
[akpm@linux-foundation.org: fix CONFIG_COMPACTION=n build]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:27:02 +00:00
|
|
|
|
|
|
|
if (!order)
|
2012-01-13 01:19:41 +00:00
|
|
|
return NULL;
|
|
|
|
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
psi_memstall_enter(&pflags);
|
2022-01-20 02:10:15 +00:00
|
|
|
delayacct_compact_start();
|
2017-05-08 22:59:50 +00:00
|
|
|
noreclaim_flag = memalloc_noreclaim_save();
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
|
2016-05-20 23:56:53 +00:00
|
|
|
*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
|
2019-03-05 23:45:41 +00:00
|
|
|
prio, &page);
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
|
2017-05-08 22:59:50 +00:00
|
|
|
memalloc_noreclaim_restore(noreclaim_flag);
|
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 22:06:27 +00:00
|
|
|
psi_memstall_leave(&pflags);
|
2022-01-20 02:10:15 +00:00
|
|
|
delayacct_compact_end();
|
2010-05-24 21:32:30 +00:00
|
|
|
|
2021-05-05 01:36:51 +00:00
|
|
|
if (*compact_result == COMPACT_SKIPPED)
|
|
|
|
return NULL;
|
2014-10-09 22:27:04 +00:00
|
|
|
/*
|
|
|
|
* At least in one zone compaction wasn't deferred or skipped, so let's
|
|
|
|
* count a compaction stall
|
|
|
|
*/
|
|
|
|
count_vm_event(COMPACTSTALL);
|
2013-01-11 22:32:16 +00:00
|
|
|
|
2019-03-05 23:45:41 +00:00
|
|
|
/* Prep a captured page if available */
|
|
|
|
if (page)
|
|
|
|
prep_new_page(page, order, gfp_mask, alloc_flags);
|
|
|
|
|
|
|
|
/* Try get a page from the freelist if available */
|
|
|
|
if (!page)
|
|
|
|
page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
|
mm, compaction: defer each zone individually instead of preferred zone
When direct sync compaction is often unsuccessful, it may become deferred
for some time to avoid further useless attempts, both sync and async.
Successful high-order allocations un-defer compaction, while further
unsuccessful compaction attempts prolong the compaction deferred period.
Currently the checking and setting deferred status is performed only on
the preferred zone of the allocation that invoked direct compaction. But
compaction itself is attempted on all eligible zones in the zonelist, so
the behavior is suboptimal and may lead both to scenarios where 1)
compaction is attempted uselessly, or 2) where it's not attempted despite
good chances of succeeding, as shown on the examples below:
1) A direct compaction with Normal preferred zone failed and set
deferred compaction for the Normal zone. Another unrelated direct
compaction with DMA32 as preferred zone will attempt to compact DMA32
zone even though the first compaction attempt also included DMA32 zone.
In another scenario, compaction with Normal preferred zone failed to
compact Normal zone, but succeeded in the DMA32 zone, so it will not
defer compaction. In the next attempt, it will try Normal zone which
will fail again, instead of skipping Normal zone and trying DMA32
directly.
2) Kswapd will balance DMA32 zone and reset defer status based on
watermarks looking good. A direct compaction with preferred Normal
zone will skip compaction of all zones including DMA32 because Normal
was still deferred. The allocation might have succeeded in DMA32, but
won't.
This patch makes compaction deferring work on individual zone basis
instead of preferred zone. For each zone, it checks compaction_deferred()
to decide if the zone should be skipped. If watermarks fail after
compacting the zone, defer_compaction() is called. The zone where
watermarks passed can still be deferred when the allocation attempt is
unsuccessful. When allocation is successful, compaction_defer_reset() is
called for the zone containing the allocated page. This approach should
approximate calling defer_compaction() only on zones where compaction was
attempted and did not yield allocated page. There might be corner cases
but that is inevitable as long as the decision to stop compacting dues not
guarantee that a page will be allocated.
Due to a new COMPACT_DEFERRED return value, some functions relying
implicitly on COMPACT_SKIPPED = 0 had to be updated, with comments made
more accurate. The did_some_progress output parameter of
__alloc_pages_direct_compact() is removed completely, as the caller
actually does not use it after compaction sets it - it is only considered
when direct reclaim sets it.
During testing on a two-node machine with a single very small Normal zone
on node 1, this patch has improved success rates in stress-highalloc
mmtests benchmark. The success here were previously made worse by commit
3a025760fc15 ("mm: page_alloc: spill to remote nodes before waking
kswapd") as kswapd was no longer resetting often enough the deferred
compaction for the Normal zone, and DMA32 zones on both nodes were thus
not considered for compaction. On different machine, success rates were
improved with __GFP_NO_KSWAPD allocations.
[akpm@linux-foundation.org: fix CONFIG_COMPACTION=n build]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:27:02 +00:00
|
|
|
|
2014-10-09 22:27:04 +00:00
|
|
|
if (page) {
|
|
|
|
struct zone *zone = page_zone(page);
|
mm, compaction: defer each zone individually instead of preferred zone
When direct sync compaction is often unsuccessful, it may become deferred
for some time to avoid further useless attempts, both sync and async.
Successful high-order allocations un-defer compaction, while further
unsuccessful compaction attempts prolong the compaction deferred period.
Currently the checking and setting deferred status is performed only on
the preferred zone of the allocation that invoked direct compaction. But
compaction itself is attempted on all eligible zones in the zonelist, so
the behavior is suboptimal and may lead both to scenarios where 1)
compaction is attempted uselessly, or 2) where it's not attempted despite
good chances of succeeding, as shown on the examples below:
1) A direct compaction with Normal preferred zone failed and set
deferred compaction for the Normal zone. Another unrelated direct
compaction with DMA32 as preferred zone will attempt to compact DMA32
zone even though the first compaction attempt also included DMA32 zone.
In another scenario, compaction with Normal preferred zone failed to
compact Normal zone, but succeeded in the DMA32 zone, so it will not
defer compaction. In the next attempt, it will try Normal zone which
will fail again, instead of skipping Normal zone and trying DMA32
directly.
2) Kswapd will balance DMA32 zone and reset defer status based on
watermarks looking good. A direct compaction with preferred Normal
zone will skip compaction of all zones including DMA32 because Normal
was still deferred. The allocation might have succeeded in DMA32, but
won't.
This patch makes compaction deferring work on individual zone basis
instead of preferred zone. For each zone, it checks compaction_deferred()
to decide if the zone should be skipped. If watermarks fail after
compacting the zone, defer_compaction() is called. The zone where
watermarks passed can still be deferred when the allocation attempt is
unsuccessful. When allocation is successful, compaction_defer_reset() is
called for the zone containing the allocated page. This approach should
approximate calling defer_compaction() only on zones where compaction was
attempted and did not yield allocated page. There might be corner cases
but that is inevitable as long as the decision to stop compacting dues not
guarantee that a page will be allocated.
Due to a new COMPACT_DEFERRED return value, some functions relying
implicitly on COMPACT_SKIPPED = 0 had to be updated, with comments made
more accurate. The did_some_progress output parameter of
__alloc_pages_direct_compact() is removed completely, as the caller
actually does not use it after compaction sets it - it is only considered
when direct reclaim sets it.
During testing on a two-node machine with a single very small Normal zone
on node 1, this patch has improved success rates in stress-highalloc
mmtests benchmark. The success here were previously made worse by commit
3a025760fc15 ("mm: page_alloc: spill to remote nodes before waking
kswapd") as kswapd was no longer resetting often enough the deferred
compaction for the Normal zone, and DMA32 zones on both nodes were thus
not considered for compaction. On different machine, success rates were
improved with __GFP_NO_KSWAPD allocations.
[akpm@linux-foundation.org: fix CONFIG_COMPACTION=n build]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:27:02 +00:00
|
|
|
|
2014-10-09 22:27:04 +00:00
|
|
|
zone->compact_blockskip_flush = false;
|
|
|
|
compaction_defer_reset(zone, order, true);
|
|
|
|
count_vm_event(COMPACTSUCCESS);
|
|
|
|
return page;
|
|
|
|
}
|
2010-05-24 21:32:30 +00:00
|
|
|
|
2014-10-09 22:27:04 +00:00
|
|
|
/*
|
|
|
|
* It's bad if compaction run occurs and fails. The most likely reason
|
|
|
|
* is that pages exist, but not enough to satisfy watermarks.
|
|
|
|
*/
|
|
|
|
count_vm_event(COMPACTFAIL);
|
2012-01-13 01:19:41 +00:00
|
|
|
|
2014-10-09 22:27:04 +00:00
|
|
|
cond_resched();
|
2010-05-24 21:32:30 +00:00
|
|
|
|
|
|
|
return NULL;
|
|
|
|
}
|
2016-05-20 23:57:06 +00:00
|
|
|
|
2016-10-08 00:00:28 +00:00
|
|
|
static inline bool
|
|
|
|
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
|
|
|
|
enum compact_result compact_result,
|
|
|
|
enum compact_priority *compact_priority,
|
2016-10-08 00:00:31 +00:00
|
|
|
int *compaction_retries)
|
2016-10-08 00:00:28 +00:00
|
|
|
{
|
|
|
|
int max_retries = MAX_COMPACT_RETRIES;
|
2016-10-08 00:00:34 +00:00
|
|
|
int min_priority;
|
2017-02-22 23:42:03 +00:00
|
|
|
bool ret = false;
|
|
|
|
int retries = *compaction_retries;
|
|
|
|
enum compact_priority priority = *compact_priority;
|
2016-10-08 00:00:28 +00:00
|
|
|
|
|
|
|
if (!order)
|
|
|
|
return false;
|
|
|
|
|
mm/page_alloc: bail out on fatal signal during reclaim/compaction retry attempt
A customer experienced a low-memory situation and decided to issue a
SIGKILL (i.e. a fatal signal). Instead of promptly terminating as one
would expect, the aforementioned task remained unresponsive.
Further investigation indicated that the task was "stuck" in the
reclaim/compaction retry loop. Now, it does not make sense to retry
compaction when a fatal signal is pending.
In the context of try_to_compact_pages(), indeed COMPACT_SKIPPED can be
returned; albeit, not every zone, on the zone list, would be considered in
the case a fatal signal is found to be pending. Yet, in
should_compact_retry(), given the last known compaction result, each zone,
on the zone list, can be considered/or checked (see
compaction_zonelist_suitable()). For example, if a zone was found to
succeed, then reclaim/compaction would be tried again (notwithstanding the
above).
This patch ensures that compaction is not needlessly retried irrespective
of the last known compaction result e.g. if it was skipped, in the
unlikely case a fatal signal is found pending. So, OOM is at least
attempted.
Link: https://lkml.kernel.org/r/20210520142901.3371299-1-atomlin@redhat.com
Signed-off-by: Aaron Tomlin <atomlin@redhat.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 02:41:10 +00:00
|
|
|
if (fatal_signal_pending(current))
|
|
|
|
return false;
|
|
|
|
|
2016-10-08 00:00:31 +00:00
|
|
|
if (compaction_made_progress(compact_result))
|
|
|
|
(*compaction_retries)++;
|
|
|
|
|
2016-10-08 00:00:28 +00:00
|
|
|
/*
|
|
|
|
* compaction considers all the zone as desperately out of memory
|
|
|
|
* so it doesn't really make much sense to retry except when the
|
|
|
|
* failure could be caused by insufficient priority
|
|
|
|
*/
|
2016-10-08 00:00:31 +00:00
|
|
|
if (compaction_failed(compact_result))
|
|
|
|
goto check_priority;
|
2016-10-08 00:00:28 +00:00
|
|
|
|
mm, compaction: raise compaction priority after it withdrawns
Mike Kravetz reports that "hugetlb allocations could stall for minutes or
hours when should_compact_retry() would return true more often then it
should. Specifically, this was in the case where compact_result was
COMPACT_DEFERRED and COMPACT_PARTIAL_SKIPPED and no progress was being
made."
The problem is that the compaction_withdrawn() test in
should_compact_retry() includes compaction outcomes that are only possible
on low compaction priority, and results in a retry without increasing the
priority. This may result in furter reclaim, and more incomplete
compaction attempts.
With this patch, compaction priority is raised when possible, or
should_compact_retry() returns false.
The COMPACT_SKIPPED result doesn't really fit together with the other
outcomes in compaction_withdrawn(), as that's a result caused by
insufficient order-0 pages, not due to low compaction priority. With this
patch, it is moved to a new compaction_needs_reclaim() function, and for
that outcome we keep the current logic of retrying if it looks like
reclaim will be able to help.
Link: http://lkml.kernel.org/r/20190806014744.15446-4-mike.kravetz@oracle.com
Reported-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Tested-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 22:37:32 +00:00
|
|
|
/*
|
|
|
|
* compaction was skipped because there are not enough order-0 pages
|
|
|
|
* to work with, so we retry only if it looks like reclaim can help.
|
|
|
|
*/
|
|
|
|
if (compaction_needs_reclaim(compact_result)) {
|
|
|
|
ret = compaction_zonelist_suitable(ac, order, alloc_flags);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
2016-10-08 00:00:28 +00:00
|
|
|
/*
|
|
|
|
* make sure the compaction wasn't deferred or didn't bail out early
|
|
|
|
* due to locks contention before we declare that we should give up.
|
mm, compaction: raise compaction priority after it withdrawns
Mike Kravetz reports that "hugetlb allocations could stall for minutes or
hours when should_compact_retry() would return true more often then it
should. Specifically, this was in the case where compact_result was
COMPACT_DEFERRED and COMPACT_PARTIAL_SKIPPED and no progress was being
made."
The problem is that the compaction_withdrawn() test in
should_compact_retry() includes compaction outcomes that are only possible
on low compaction priority, and results in a retry without increasing the
priority. This may result in furter reclaim, and more incomplete
compaction attempts.
With this patch, compaction priority is raised when possible, or
should_compact_retry() returns false.
The COMPACT_SKIPPED result doesn't really fit together with the other
outcomes in compaction_withdrawn(), as that's a result caused by
insufficient order-0 pages, not due to low compaction priority. With this
patch, it is moved to a new compaction_needs_reclaim() function, and for
that outcome we keep the current logic of retrying if it looks like
reclaim will be able to help.
Link: http://lkml.kernel.org/r/20190806014744.15446-4-mike.kravetz@oracle.com
Reported-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Tested-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 22:37:32 +00:00
|
|
|
* But the next retry should use a higher priority if allowed, so
|
|
|
|
* we don't just keep bailing out endlessly.
|
2016-10-08 00:00:28 +00:00
|
|
|
*/
|
2017-02-22 23:42:03 +00:00
|
|
|
if (compaction_withdrawn(compact_result)) {
|
mm, compaction: raise compaction priority after it withdrawns
Mike Kravetz reports that "hugetlb allocations could stall for minutes or
hours when should_compact_retry() would return true more often then it
should. Specifically, this was in the case where compact_result was
COMPACT_DEFERRED and COMPACT_PARTIAL_SKIPPED and no progress was being
made."
The problem is that the compaction_withdrawn() test in
should_compact_retry() includes compaction outcomes that are only possible
on low compaction priority, and results in a retry without increasing the
priority. This may result in furter reclaim, and more incomplete
compaction attempts.
With this patch, compaction priority is raised when possible, or
should_compact_retry() returns false.
The COMPACT_SKIPPED result doesn't really fit together with the other
outcomes in compaction_withdrawn(), as that's a result caused by
insufficient order-0 pages, not due to low compaction priority. With this
patch, it is moved to a new compaction_needs_reclaim() function, and for
that outcome we keep the current logic of retrying if it looks like
reclaim will be able to help.
Link: http://lkml.kernel.org/r/20190806014744.15446-4-mike.kravetz@oracle.com
Reported-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Tested-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-23 22:37:32 +00:00
|
|
|
goto check_priority;
|
2017-02-22 23:42:03 +00:00
|
|
|
}
|
2016-10-08 00:00:28 +00:00
|
|
|
|
|
|
|
/*
|
2017-07-12 21:36:45 +00:00
|
|
|
* !costly requests are much more important than __GFP_RETRY_MAYFAIL
|
2016-10-08 00:00:28 +00:00
|
|
|
* costly ones because they are de facto nofail and invoke OOM
|
|
|
|
* killer to move on while costly can fail and users are ready
|
|
|
|
* to cope with that. 1/4 retries is rather arbitrary but we
|
|
|
|
* would need much more detailed feedback from compaction to
|
|
|
|
* make a better decision.
|
|
|
|
*/
|
|
|
|
if (order > PAGE_ALLOC_COSTLY_ORDER)
|
|
|
|
max_retries /= 4;
|
2017-02-22 23:42:03 +00:00
|
|
|
if (*compaction_retries <= max_retries) {
|
|
|
|
ret = true;
|
|
|
|
goto out;
|
|
|
|
}
|
2016-10-08 00:00:28 +00:00
|
|
|
|
2016-10-08 00:00:31 +00:00
|
|
|
/*
|
|
|
|
* Make sure there are attempts at the highest priority if we exhausted
|
|
|
|
* all retries or failed at the lower priorities.
|
|
|
|
*/
|
|
|
|
check_priority:
|
2016-10-08 00:00:34 +00:00
|
|
|
min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
|
|
|
|
MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
|
2017-02-22 23:42:03 +00:00
|
|
|
|
2016-10-08 00:00:34 +00:00
|
|
|
if (*compact_priority > min_priority) {
|
2016-10-08 00:00:31 +00:00
|
|
|
(*compact_priority)--;
|
|
|
|
*compaction_retries = 0;
|
2017-02-22 23:42:03 +00:00
|
|
|
ret = true;
|
2016-10-08 00:00:31 +00:00
|
|
|
}
|
2017-02-22 23:42:03 +00:00
|
|
|
out:
|
|
|
|
trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
|
|
|
|
return ret;
|
2016-10-08 00:00:28 +00:00
|
|
|
}
|
2010-05-24 21:32:30 +00:00
|
|
|
#else
|
|
|
|
static inline struct page *
|
|
|
|
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
|
2016-05-20 00:13:38 +00:00
|
|
|
unsigned int alloc_flags, const struct alloc_context *ac,
|
2016-07-28 22:49:28 +00:00
|
|
|
enum compact_priority prio, enum compact_result *compact_result)
|
2010-05-24 21:32:30 +00:00
|
|
|
{
|
2016-05-20 23:57:06 +00:00
|
|
|
*compact_result = COMPACT_SKIPPED;
|
2010-05-24 21:32:30 +00:00
|
|
|
return NULL;
|
|
|
|
}
|
2016-05-20 23:57:06 +00:00
|
|
|
|
|
|
|
static inline bool
|
2016-05-20 23:57:12 +00:00
|
|
|
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
|
|
|
|
enum compact_result compact_result,
|
2016-07-28 22:49:28 +00:00
|
|
|
enum compact_priority *compact_priority,
|
2016-10-08 00:00:31 +00:00
|
|
|
int *compaction_retries)
|
2016-05-20 23:57:06 +00:00
|
|
|
{
|
2016-05-20 23:57:15 +00:00
|
|
|
struct zone *zone;
|
|
|
|
struct zoneref *z;
|
|
|
|
|
|
|
|
if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* There are setups with compaction disabled which would prefer to loop
|
|
|
|
* inside the allocator rather than hit the oom killer prematurely.
|
|
|
|
* Let's give them a good hope and keep retrying while the order-0
|
|
|
|
* watermarks are OK.
|
|
|
|
*/
|
2020-06-03 22:59:01 +00:00
|
|
|
for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
|
|
|
|
ac->highest_zoneidx, ac->nodemask) {
|
2016-05-20 23:57:15 +00:00
|
|
|
if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
|
2020-06-03 22:59:01 +00:00
|
|
|
ac->highest_zoneidx, alloc_flags))
|
2016-05-20 23:57:15 +00:00
|
|
|
return true;
|
|
|
|
}
|
2016-05-20 23:57:06 +00:00
|
|
|
return false;
|
|
|
|
}
|
2016-10-08 00:00:28 +00:00
|
|
|
#endif /* CONFIG_COMPACTION */
|
2010-05-24 21:32:30 +00:00
|
|
|
|
2017-03-03 09:13:38 +00:00
|
|
|
#ifdef CONFIG_LOCKDEP
|
lockdep: fix fs_reclaim annotation
While revisiting my Btrfs swapfile series [1], I introduced a situation
in which reclaim would lock i_rwsem, and even though the swapon() path
clearly made GFP_KERNEL allocations while holding i_rwsem, I got no
complaints from lockdep. It turns out that the rework of the fs_reclaim
annotation was broken: if the current task has PF_MEMALLOC set, we don't
acquire the dummy fs_reclaim lock, but when reclaiming we always check
this _after_ we've just set the PF_MEMALLOC flag. In most cases, we can
fix this by moving the fs_reclaim_{acquire,release}() outside of the
memalloc_noreclaim_{save,restore}(), althought kswapd is slightly
different. After applying this, I got the expected lockdep splats.
1: https://lwn.net/Articles/625412/
Link: http://lkml.kernel.org/r/9f8aa70652a98e98d7c4de0fc96a4addcee13efe.1523778026.git.osandov@fb.com
Fixes: d92a8cfcb37e ("locking/lockdep: Rework FS_RECLAIM annotation")
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-08 00:07:02 +00:00
|
|
|
static struct lockdep_map __fs_reclaim_map =
|
2017-03-03 09:13:38 +00:00
|
|
|
STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
|
|
|
|
|
2020-12-15 03:08:30 +00:00
|
|
|
static bool __need_reclaim(gfp_t gfp_mask)
|
2017-03-03 09:13:38 +00:00
|
|
|
{
|
|
|
|
/* no reclaim without waiting on it */
|
|
|
|
if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
/* this guy won't enter reclaim */
|
2018-03-22 23:17:10 +00:00
|
|
|
if (current->flags & PF_MEMALLOC)
|
2017-03-03 09:13:38 +00:00
|
|
|
return false;
|
|
|
|
|
|
|
|
if (gfp_mask & __GFP_NOLOCKDEP)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2021-09-02 21:52:58 +00:00
|
|
|
void __fs_reclaim_acquire(unsigned long ip)
|
lockdep: fix fs_reclaim annotation
While revisiting my Btrfs swapfile series [1], I introduced a situation
in which reclaim would lock i_rwsem, and even though the swapon() path
clearly made GFP_KERNEL allocations while holding i_rwsem, I got no
complaints from lockdep. It turns out that the rework of the fs_reclaim
annotation was broken: if the current task has PF_MEMALLOC set, we don't
acquire the dummy fs_reclaim lock, but when reclaiming we always check
this _after_ we've just set the PF_MEMALLOC flag. In most cases, we can
fix this by moving the fs_reclaim_{acquire,release}() outside of the
memalloc_noreclaim_{save,restore}(), althought kswapd is slightly
different. After applying this, I got the expected lockdep splats.
1: https://lwn.net/Articles/625412/
Link: http://lkml.kernel.org/r/9f8aa70652a98e98d7c4de0fc96a4addcee13efe.1523778026.git.osandov@fb.com
Fixes: d92a8cfcb37e ("locking/lockdep: Rework FS_RECLAIM annotation")
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-08 00:07:02 +00:00
|
|
|
{
|
2021-09-02 21:52:58 +00:00
|
|
|
lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
|
lockdep: fix fs_reclaim annotation
While revisiting my Btrfs swapfile series [1], I introduced a situation
in which reclaim would lock i_rwsem, and even though the swapon() path
clearly made GFP_KERNEL allocations while holding i_rwsem, I got no
complaints from lockdep. It turns out that the rework of the fs_reclaim
annotation was broken: if the current task has PF_MEMALLOC set, we don't
acquire the dummy fs_reclaim lock, but when reclaiming we always check
this _after_ we've just set the PF_MEMALLOC flag. In most cases, we can
fix this by moving the fs_reclaim_{acquire,release}() outside of the
memalloc_noreclaim_{save,restore}(), althought kswapd is slightly
different. After applying this, I got the expected lockdep splats.
1: https://lwn.net/Articles/625412/
Link: http://lkml.kernel.org/r/9f8aa70652a98e98d7c4de0fc96a4addcee13efe.1523778026.git.osandov@fb.com
Fixes: d92a8cfcb37e ("locking/lockdep: Rework FS_RECLAIM annotation")
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-08 00:07:02 +00:00
|
|
|
}
|
|
|
|
|
2021-09-02 21:52:58 +00:00
|
|
|
void __fs_reclaim_release(unsigned long ip)
|
lockdep: fix fs_reclaim annotation
While revisiting my Btrfs swapfile series [1], I introduced a situation
in which reclaim would lock i_rwsem, and even though the swapon() path
clearly made GFP_KERNEL allocations while holding i_rwsem, I got no
complaints from lockdep. It turns out that the rework of the fs_reclaim
annotation was broken: if the current task has PF_MEMALLOC set, we don't
acquire the dummy fs_reclaim lock, but when reclaiming we always check
this _after_ we've just set the PF_MEMALLOC flag. In most cases, we can
fix this by moving the fs_reclaim_{acquire,release}() outside of the
memalloc_noreclaim_{save,restore}(), althought kswapd is slightly
different. After applying this, I got the expected lockdep splats.
1: https://lwn.net/Articles/625412/
Link: http://lkml.kernel.org/r/9f8aa70652a98e98d7c4de0fc96a4addcee13efe.1523778026.git.osandov@fb.com
Fixes: d92a8cfcb37e ("locking/lockdep: Rework FS_RECLAIM annotation")
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-08 00:07:02 +00:00
|
|
|
{
|
2021-09-02 21:52:58 +00:00
|
|
|
lock_release(&__fs_reclaim_map, ip);
|
lockdep: fix fs_reclaim annotation
While revisiting my Btrfs swapfile series [1], I introduced a situation
in which reclaim would lock i_rwsem, and even though the swapon() path
clearly made GFP_KERNEL allocations while holding i_rwsem, I got no
complaints from lockdep. It turns out that the rework of the fs_reclaim
annotation was broken: if the current task has PF_MEMALLOC set, we don't
acquire the dummy fs_reclaim lock, but when reclaiming we always check
this _after_ we've just set the PF_MEMALLOC flag. In most cases, we can
fix this by moving the fs_reclaim_{acquire,release}() outside of the
memalloc_noreclaim_{save,restore}(), althought kswapd is slightly
different. After applying this, I got the expected lockdep splats.
1: https://lwn.net/Articles/625412/
Link: http://lkml.kernel.org/r/9f8aa70652a98e98d7c4de0fc96a4addcee13efe.1523778026.git.osandov@fb.com
Fixes: d92a8cfcb37e ("locking/lockdep: Rework FS_RECLAIM annotation")
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-08 00:07:02 +00:00
|
|
|
}
|
|
|
|
|
2017-03-03 09:13:38 +00:00
|
|
|
void fs_reclaim_acquire(gfp_t gfp_mask)
|
|
|
|
{
|
2020-12-15 03:08:30 +00:00
|
|
|
gfp_mask = current_gfp_context(gfp_mask);
|
|
|
|
|
|
|
|
if (__need_reclaim(gfp_mask)) {
|
|
|
|
if (gfp_mask & __GFP_FS)
|
2021-09-02 21:52:58 +00:00
|
|
|
__fs_reclaim_acquire(_RET_IP_);
|
2020-12-15 03:08:30 +00:00
|
|
|
|
|
|
|
#ifdef CONFIG_MMU_NOTIFIER
|
|
|
|
lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
|
|
|
|
lock_map_release(&__mmu_notifier_invalidate_range_start_map);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
}
|
2017-03-03 09:13:38 +00:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
|
|
|
|
|
|
|
|
void fs_reclaim_release(gfp_t gfp_mask)
|
|
|
|
{
|
2020-12-15 03:08:30 +00:00
|
|
|
gfp_mask = current_gfp_context(gfp_mask);
|
|
|
|
|
|
|
|
if (__need_reclaim(gfp_mask)) {
|
|
|
|
if (gfp_mask & __GFP_FS)
|
2021-09-02 21:52:58 +00:00
|
|
|
__fs_reclaim_release(_RET_IP_);
|
2020-12-15 03:08:30 +00:00
|
|
|
}
|
2017-03-03 09:13:38 +00:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(fs_reclaim_release);
|
|
|
|
#endif
|
|
|
|
|
mm/page_alloc: fix race condition between build_all_zonelists and page allocation
Patrick Daly reported the following problem;
NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK] - before offline operation
[0] - ZONE_MOVABLE
[1] - ZONE_NORMAL
[2] - NULL
For a GFP_KERNEL allocation, alloc_pages_slowpath() will save the
offset of ZONE_NORMAL in ac->preferred_zoneref. If a concurrent
memory_offline operation removes the last page from ZONE_MOVABLE,
build_all_zonelists() & build_zonerefs_node() will update
node_zonelists as shown below. Only populated zones are added.
NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK] - after offline operation
[0] - ZONE_NORMAL
[1] - NULL
[2] - NULL
The race is simple -- page allocation could be in progress when a memory
hot-remove operation triggers a zonelist rebuild that removes zones. The
allocation request will still have a valid ac->preferred_zoneref that is
now pointing to NULL and triggers an OOM kill.
This problem probably always existed but may be slightly easier to trigger
due to 6aa303defb74 ("mm, vmscan: only allocate and reclaim from zones
with pages managed by the buddy allocator") which distinguishes between
zones that are completely unpopulated versus zones that have valid pages
not managed by the buddy allocator (e.g. reserved, memblock, ballooning
etc). Memory hotplug had multiple stages with timing considerations
around managed/present page updates, the zonelist rebuild and the zone
span updates. As David Hildenbrand puts it
memory offlining adjusts managed+present pages of the zone
essentially in one go. If after the adjustments, the zone is no
longer populated (present==0), we rebuild the zone lists.
Once that's done, we try shrinking the zone (start+spanned
pages) -- which results in zone_start_pfn == 0 if there are no
more pages. That happens *after* rebuilding the zonelists via
remove_pfn_range_from_zone().
The only requirement to fix the race is that a page allocation request
identifies when a zonelist rebuild has happened since the allocation
request started and no page has yet been allocated. Use a seqlock_t to
track zonelist updates with a lockless read-side of the zonelist and
protecting the rebuild and update of the counter with a spinlock.
[akpm@linux-foundation.org: make zonelist_update_seq static]
Link: https://lkml.kernel.org/r/20220824110900.vh674ltxmzb3proq@techsingularity.net
Fixes: 6aa303defb74 ("mm, vmscan: only allocate and reclaim from zones with pages managed by the buddy allocator")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Patrick Daly <quic_pdaly@quicinc.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: <stable@vger.kernel.org> [4.9+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-24 11:14:50 +00:00
|
|
|
/*
|
|
|
|
* Zonelists may change due to hotplug during allocation. Detect when zonelists
|
|
|
|
* have been rebuilt so allocation retries. Reader side does not lock and
|
|
|
|
* retries the allocation if zonelist changes. Writer side is protected by the
|
|
|
|
* embedded spin_lock.
|
|
|
|
*/
|
|
|
|
static DEFINE_SEQLOCK(zonelist_update_seq);
|
|
|
|
|
|
|
|
static unsigned int zonelist_iter_begin(void)
|
|
|
|
{
|
|
|
|
if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
|
|
|
|
return read_seqbegin(&zonelist_update_seq);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static unsigned int check_retry_zonelist(unsigned int seq)
|
|
|
|
{
|
|
|
|
if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
|
|
|
|
return read_seqretry(&zonelist_update_seq, seq);
|
|
|
|
|
|
|
|
return seq;
|
|
|
|
}
|
|
|
|
|
2012-01-25 11:09:52 +00:00
|
|
|
/* Perform direct synchronous page reclaim */
|
2020-10-13 23:55:54 +00:00
|
|
|
static unsigned long
|
2015-02-11 23:25:41 +00:00
|
|
|
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
|
|
|
|
const struct alloc_context *ac)
|
2009-06-16 22:31:57 +00:00
|
|
|
{
|
2017-05-08 22:59:50 +00:00
|
|
|
unsigned int noreclaim_flag;
|
2022-03-22 21:43:54 +00:00
|
|
|
unsigned long progress;
|
2009-06-16 22:31:57 +00:00
|
|
|
|
|
|
|
cond_resched();
|
|
|
|
|
|
|
|
/* We now go into synchronous reclaim */
|
|
|
|
cpuset_memory_pressure_bump();
|
2017-03-03 09:13:38 +00:00
|
|
|
fs_reclaim_acquire(gfp_mask);
|
lockdep: fix fs_reclaim annotation
While revisiting my Btrfs swapfile series [1], I introduced a situation
in which reclaim would lock i_rwsem, and even though the swapon() path
clearly made GFP_KERNEL allocations while holding i_rwsem, I got no
complaints from lockdep. It turns out that the rework of the fs_reclaim
annotation was broken: if the current task has PF_MEMALLOC set, we don't
acquire the dummy fs_reclaim lock, but when reclaiming we always check
this _after_ we've just set the PF_MEMALLOC flag. In most cases, we can
fix this by moving the fs_reclaim_{acquire,release}() outside of the
memalloc_noreclaim_{save,restore}(), althought kswapd is slightly
different. After applying this, I got the expected lockdep splats.
1: https://lwn.net/Articles/625412/
Link: http://lkml.kernel.org/r/9f8aa70652a98e98d7c4de0fc96a4addcee13efe.1523778026.git.osandov@fb.com
Fixes: d92a8cfcb37e ("locking/lockdep: Rework FS_RECLAIM annotation")
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-08 00:07:02 +00:00
|
|
|
noreclaim_flag = memalloc_noreclaim_save();
|
2009-06-16 22:31:57 +00:00
|
|
|
|
2015-02-11 23:25:41 +00:00
|
|
|
progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
|
|
|
|
ac->nodemask);
|
2009-06-16 22:31:57 +00:00
|
|
|
|
2017-05-08 22:59:50 +00:00
|
|
|
memalloc_noreclaim_restore(noreclaim_flag);
|
lockdep: fix fs_reclaim annotation
While revisiting my Btrfs swapfile series [1], I introduced a situation
in which reclaim would lock i_rwsem, and even though the swapon() path
clearly made GFP_KERNEL allocations while holding i_rwsem, I got no
complaints from lockdep. It turns out that the rework of the fs_reclaim
annotation was broken: if the current task has PF_MEMALLOC set, we don't
acquire the dummy fs_reclaim lock, but when reclaiming we always check
this _after_ we've just set the PF_MEMALLOC flag. In most cases, we can
fix this by moving the fs_reclaim_{acquire,release}() outside of the
memalloc_noreclaim_{save,restore}(), althought kswapd is slightly
different. After applying this, I got the expected lockdep splats.
1: https://lwn.net/Articles/625412/
Link: http://lkml.kernel.org/r/9f8aa70652a98e98d7c4de0fc96a4addcee13efe.1523778026.git.osandov@fb.com
Fixes: d92a8cfcb37e ("locking/lockdep: Rework FS_RECLAIM annotation")
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-08 00:07:02 +00:00
|
|
|
fs_reclaim_release(gfp_mask);
|
2009-06-16 22:31:57 +00:00
|
|
|
|
|
|
|
cond_resched();
|
|
|
|
|
2012-01-25 11:09:52 +00:00
|
|
|
return progress;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* The really slow allocator path where we enter direct reclaim */
|
|
|
|
static inline struct page *
|
|
|
|
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
|
2016-05-20 00:13:38 +00:00
|
|
|
unsigned int alloc_flags, const struct alloc_context *ac,
|
2015-02-11 23:25:41 +00:00
|
|
|
unsigned long *did_some_progress)
|
2012-01-25 11:09:52 +00:00
|
|
|
{
|
|
|
|
struct page *page = NULL;
|
2022-03-22 21:43:54 +00:00
|
|
|
unsigned long pflags;
|
2012-01-25 11:09:52 +00:00
|
|
|
bool drained = false;
|
|
|
|
|
2022-03-22 21:43:54 +00:00
|
|
|
psi_memstall_enter(&pflags);
|
2015-02-11 23:25:41 +00:00
|
|
|
*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
|
2010-09-09 23:38:18 +00:00
|
|
|
if (unlikely(!(*did_some_progress)))
|
2022-03-22 21:43:54 +00:00
|
|
|
goto out;
|
2009-06-16 22:31:57 +00:00
|
|
|
|
2010-09-09 23:38:18 +00:00
|
|
|
retry:
|
2016-07-28 22:49:13 +00:00
|
|
|
page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
|
2010-09-09 23:38:18 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* If an allocation failed after direct reclaim, it could be because
|
2015-11-07 00:28:37 +00:00
|
|
|
* pages are pinned on the per-cpu lists or in high alloc reserves.
|
2020-08-12 01:33:14 +00:00
|
|
|
* Shrink them and try again
|
2010-09-09 23:38:18 +00:00
|
|
|
*/
|
|
|
|
if (!page && !drained) {
|
2016-12-13 00:42:14 +00:00
|
|
|
unreserve_highatomic_pageblock(ac, false);
|
2014-12-10 23:43:01 +00:00
|
|
|
drain_all_pages(NULL);
|
2010-09-09 23:38:18 +00:00
|
|
|
drained = true;
|
|
|
|
goto retry;
|
|
|
|
}
|
2022-03-22 21:43:54 +00:00
|
|
|
out:
|
|
|
|
psi_memstall_leave(&pflags);
|
2010-09-09 23:38:18 +00:00
|
|
|
|
2009-06-16 22:31:57 +00:00
|
|
|
return page;
|
|
|
|
}
|
|
|
|
|
2018-04-05 23:25:16 +00:00
|
|
|
static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
|
|
|
|
const struct alloc_context *ac)
|
mm: page_alloc: spill to remote nodes before waking kswapd
On NUMA systems, a node may start thrashing cache or even swap anonymous
pages while there are still free pages on remote nodes.
This is a result of commits 81c0a2bb515f ("mm: page_alloc: fair zone
allocator policy") and fff4068cba48 ("mm: page_alloc: revert NUMA aspect
of fair allocation policy").
Before those changes, the allocator would first try all allowed zones,
including those on remote nodes, before waking any kswapds. But now,
the allocator fastpath doubles as the fairness pass, which in turn can
only consider the local node to prevent remote spilling based on
exhausted fairness batches alone. Remote nodes are only considered in
the slowpath, after the kswapds are woken up. But if remote nodes still
have free memory, kswapd should not be woken to rebalance the local node
or it may thrash cash or swap prematurely.
Fix this by adding one more unfair pass over the zonelist that is
allowed to spill to remote nodes after the local fairness pass fails but
before entering the slowpath and waking the kswapds.
This also gets rid of the GFP_THISNODE exemption from the fairness
protocol because the unfair pass is no longer tied to kswapd, which
GFP_THISNODE is not allowed to wake up.
However, because remote spills can be more frequent now - we prefer them
over local kswapd reclaim - the allocation batches on remote nodes could
underflow more heavily. When resetting the batches, use
atomic_long_read() directly instead of zone_page_state() to calculate the
delta as the latter filters negative counter values.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: <stable@kernel.org> [3.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 22:37:48 +00:00
|
|
|
{
|
|
|
|
struct zoneref *z;
|
|
|
|
struct zone *zone;
|
2016-07-28 22:46:26 +00:00
|
|
|
pg_data_t *last_pgdat = NULL;
|
2020-06-03 22:59:01 +00:00
|
|
|
enum zone_type highest_zoneidx = ac->highest_zoneidx;
|
mm: page_alloc: spill to remote nodes before waking kswapd
On NUMA systems, a node may start thrashing cache or even swap anonymous
pages while there are still free pages on remote nodes.
This is a result of commits 81c0a2bb515f ("mm: page_alloc: fair zone
allocator policy") and fff4068cba48 ("mm: page_alloc: revert NUMA aspect
of fair allocation policy").
Before those changes, the allocator would first try all allowed zones,
including those on remote nodes, before waking any kswapds. But now,
the allocator fastpath doubles as the fairness pass, which in turn can
only consider the local node to prevent remote spilling based on
exhausted fairness batches alone. Remote nodes are only considered in
the slowpath, after the kswapds are woken up. But if remote nodes still
have free memory, kswapd should not be woken to rebalance the local node
or it may thrash cash or swap prematurely.
Fix this by adding one more unfair pass over the zonelist that is
allowed to spill to remote nodes after the local fairness pass fails but
before entering the slowpath and waking the kswapds.
This also gets rid of the GFP_THISNODE exemption from the fairness
protocol because the unfair pass is no longer tied to kswapd, which
GFP_THISNODE is not allowed to wake up.
However, because remote spills can be more frequent now - we prefer them
over local kswapd reclaim - the allocation batches on remote nodes could
underflow more heavily. When resetting the batches, use
atomic_long_read() directly instead of zone_page_state() to calculate the
delta as the latter filters negative counter values.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: <stable@kernel.org> [3.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 22:37:48 +00:00
|
|
|
|
2020-06-03 22:59:01 +00:00
|
|
|
for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
|
2018-04-05 23:25:16 +00:00
|
|
|
ac->nodemask) {
|
2022-04-29 06:16:03 +00:00
|
|
|
if (!managed_zone(zone))
|
|
|
|
continue;
|
2022-04-29 21:36:59 +00:00
|
|
|
if (last_pgdat != zone->zone_pgdat) {
|
2020-06-03 22:59:01 +00:00
|
|
|
wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
|
2022-04-29 21:36:59 +00:00
|
|
|
last_pgdat = zone->zone_pgdat;
|
|
|
|
}
|
2016-07-28 22:46:26 +00:00
|
|
|
}
|
mm: page_alloc: spill to remote nodes before waking kswapd
On NUMA systems, a node may start thrashing cache or even swap anonymous
pages while there are still free pages on remote nodes.
This is a result of commits 81c0a2bb515f ("mm: page_alloc: fair zone
allocator policy") and fff4068cba48 ("mm: page_alloc: revert NUMA aspect
of fair allocation policy").
Before those changes, the allocator would first try all allowed zones,
including those on remote nodes, before waking any kswapds. But now,
the allocator fastpath doubles as the fairness pass, which in turn can
only consider the local node to prevent remote spilling based on
exhausted fairness batches alone. Remote nodes are only considered in
the slowpath, after the kswapds are woken up. But if remote nodes still
have free memory, kswapd should not be woken to rebalance the local node
or it may thrash cash or swap prematurely.
Fix this by adding one more unfair pass over the zonelist that is
allowed to spill to remote nodes after the local fairness pass fails but
before entering the slowpath and waking the kswapds.
This also gets rid of the GFP_THISNODE exemption from the fairness
protocol because the unfair pass is no longer tied to kswapd, which
GFP_THISNODE is not allowed to wake up.
However, because remote spills can be more frequent now - we prefer them
over local kswapd reclaim - the allocation batches on remote nodes could
underflow more heavily. When resetting the batches, use
atomic_long_read() directly instead of zone_page_state() to calculate the
delta as the latter filters negative counter values.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: <stable@kernel.org> [3.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 22:37:48 +00:00
|
|
|
}
|
|
|
|
|
2016-05-20 00:13:38 +00:00
|
|
|
static inline unsigned int
|
2023-01-13 11:12:14 +00:00
|
|
|
gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
|
2009-06-16 22:32:02 +00:00
|
|
|
{
|
2016-05-20 00:13:38 +00:00
|
|
|
unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2020-04-02 04:09:47 +00:00
|
|
|
/*
|
2023-01-13 11:12:12 +00:00
|
|
|
* __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
|
2020-04-02 04:09:47 +00:00
|
|
|
* and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
|
|
|
|
* to save two branches.
|
|
|
|
*/
|
2023-01-13 11:12:12 +00:00
|
|
|
BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
|
2020-04-02 04:09:47 +00:00
|
|
|
BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
|
2006-12-08 10:39:45 +00:00
|
|
|
|
2009-06-16 22:32:02 +00:00
|
|
|
/*
|
|
|
|
* The caller may dip into page reserves a bit more if the caller
|
|
|
|
* cannot run direct reclaim, or if the caller has realtime scheduling
|
|
|
|
* policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
|
2023-01-13 11:12:16 +00:00
|
|
|
* set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
|
2009-06-16 22:32:02 +00:00
|
|
|
*/
|
2020-04-02 04:09:47 +00:00
|
|
|
alloc_flags |= (__force int)
|
|
|
|
(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2023-01-13 11:12:16 +00:00
|
|
|
if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
|
2011-01-13 23:46:49 +00:00
|
|
|
/*
|
2014-07-30 23:08:24 +00:00
|
|
|
* Not worth trying to allocate harder for __GFP_NOMEMALLOC even
|
|
|
|
* if it can't schedule.
|
2011-01-13 23:46:49 +00:00
|
|
|
*/
|
2023-01-13 11:12:14 +00:00
|
|
|
if (!(gfp_mask & __GFP_NOMEMALLOC)) {
|
2023-01-13 11:12:16 +00:00
|
|
|
alloc_flags |= ALLOC_NON_BLOCK;
|
2023-01-13 11:12:14 +00:00
|
|
|
|
|
|
|
if (order > 0)
|
|
|
|
alloc_flags |= ALLOC_HIGHATOMIC;
|
|
|
|
}
|
|
|
|
|
2007-10-16 08:25:37 +00:00
|
|
|
/*
|
2023-01-13 11:12:16 +00:00
|
|
|
* Ignore cpuset mems for non-blocking __GFP_HIGH (probably
|
|
|
|
* GFP_ATOMIC) rather than fail, see the comment for
|
2023-02-28 08:35:37 +00:00
|
|
|
* cpuset_node_allowed().
|
2007-10-16 08:25:37 +00:00
|
|
|
*/
|
2023-01-13 11:12:16 +00:00
|
|
|
if (alloc_flags & ALLOC_MIN_RESERVE)
|
|
|
|
alloc_flags &= ~ALLOC_CPUSET;
|
2021-09-02 21:58:13 +00:00
|
|
|
} else if (unlikely(rt_task(current)) && in_task())
|
2023-01-13 11:12:13 +00:00
|
|
|
alloc_flags |= ALLOC_MIN_RESERVE;
|
2009-06-16 22:32:02 +00:00
|
|
|
|
2021-05-05 01:39:00 +00:00
|
|
|
alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
|
2020-08-07 06:26:04 +00:00
|
|
|
|
2009-06-16 22:32:02 +00:00
|
|
|
return alloc_flags;
|
|
|
|
}
|
|
|
|
|
2017-09-06 23:24:50 +00:00
|
|
|
static bool oom_reserves_allowed(struct task_struct *tsk)
|
mm: sl[au]b: add knowledge of PFMEMALLOC reserve pages
When a user or administrator requires swap for their application, they
create a swap partition and file, format it with mkswap and activate it
with swapon. Swap over the network is considered as an option in diskless
systems. The two likely scenarios are when blade servers are used as part
of a cluster where the form factor or maintenance costs do not allow the
use of disks and thin clients.
The Linux Terminal Server Project recommends the use of the Network Block
Device (NBD) for swap according to the manual at
https://sourceforge.net/projects/ltsp/files/Docs-Admin-Guide/LTSPManual.pdf/download
There is also documentation and tutorials on how to setup swap over NBD at
places like https://help.ubuntu.com/community/UbuntuLTSP/EnableNBDSWAP The
nbd-client also documents the use of NBD as swap. Despite this, the fact
is that a machine using NBD for swap can deadlock within minutes if swap
is used intensively. This patch series addresses the problem.
The core issue is that network block devices do not use mempools like
normal block devices do. As the host cannot control where they receive
packets from, they cannot reliably work out in advance how much memory
they might need. Some years ago, Peter Zijlstra developed a series of
patches that supported swap over an NFS that at least one distribution is
carrying within their kernels. This patch series borrows very heavily
from Peter's work to support swapping over NBD as a pre-requisite to
supporting swap-over-NFS. The bulk of the complexity is concerned with
preserving memory that is allocated from the PFMEMALLOC reserves for use
by the network layer which is needed for both NBD and NFS.
Patch 1 adds knowledge of the PFMEMALLOC reserves to SLAB and SLUB to
preserve access to pages allocated under low memory situations
to callers that are freeing memory.
Patch 2 optimises the SLUB fast path to avoid pfmemalloc checks
Patch 3 introduces __GFP_MEMALLOC to allow access to the PFMEMALLOC
reserves without setting PFMEMALLOC.
Patch 4 opens the possibility for softirqs to use PFMEMALLOC reserves
for later use by network packet processing.
Patch 5 only sets page->pfmemalloc when ALLOC_NO_WATERMARKS was required
Patch 6 ignores memory policies when ALLOC_NO_WATERMARKS is set.
Patches 7-12 allows network processing to use PFMEMALLOC reserves when
the socket has been marked as being used by the VM to clean pages. If
packets are received and stored in pages that were allocated under
low-memory situations and are unrelated to the VM, the packets
are dropped.
Patch 11 reintroduces __skb_alloc_page which the networking
folk may object to but is needed in some cases to propogate
pfmemalloc from a newly allocated page to an skb. If there is a
strong objection, this patch can be dropped with the impact being
that swap-over-network will be slower in some cases but it should
not fail.
Patch 13 is a micro-optimisation to avoid a function call in the
common case.
Patch 14 tags NBD sockets as being SOCK_MEMALLOC so they can use
PFMEMALLOC if necessary.
Patch 15 notes that it is still possible for the PFMEMALLOC reserve
to be depleted. To prevent this, direct reclaimers get throttled on
a waitqueue if 50% of the PFMEMALLOC reserves are depleted. It is
expected that kswapd and the direct reclaimers already running
will clean enough pages for the low watermark to be reached and
the throttled processes are woken up.
Patch 16 adds a statistic to track how often processes get throttled
Some basic performance testing was run using kernel builds, netperf on
loopback for UDP and TCP, hackbench (pipes and sockets), iozone and
sysbench. Each of them were expected to use the sl*b allocators
reasonably heavily but there did not appear to be significant performance
variances.
For testing swap-over-NBD, a machine was booted with 2G of RAM with a
swapfile backed by NBD. 8*NUM_CPU processes were started that create
anonymous memory mappings and read them linearly in a loop. The total
size of the mappings were 4*PHYSICAL_MEMORY to use swap heavily under
memory pressure.
Without the patches and using SLUB, the machine locks up within minutes
and runs to completion with them applied. With SLAB, the story is
different as an unpatched kernel run to completion. However, the patched
kernel completed the test 45% faster.
MICRO
3.5.0-rc2 3.5.0-rc2
vanilla swapnbd
Unrecognised test vmscan-anon-mmap-write
MMTests Statistics: duration
Sys Time Running Test (seconds) 197.80 173.07
User+Sys Time Running Test (seconds) 206.96 182.03
Total Elapsed Time (seconds) 3240.70 1762.09
This patch: mm: sl[au]b: add knowledge of PFMEMALLOC reserve pages
Allocations of pages below the min watermark run a risk of the machine
hanging due to a lack of memory. To prevent this, only callers who have
PF_MEMALLOC or TIF_MEMDIE set and are not processing an interrupt are
allowed to allocate with ALLOC_NO_WATERMARKS. Once they are allocated to
a slab though, nothing prevents other callers consuming free objects
within those slabs. This patch limits access to slab pages that were
alloced from the PFMEMALLOC reserves.
When this patch is applied, pages allocated from below the low watermark
are returned with page->pfmemalloc set and it is up to the caller to
determine how the page should be protected. SLAB restricts access to any
page with page->pfmemalloc set to callers which are known to able to
access the PFMEMALLOC reserve. If one is not available, an attempt is
made to allocate a new page rather than use a reserve. SLUB is a bit more
relaxed in that it only records if the current per-CPU page was allocated
from PFMEMALLOC reserve and uses another partial slab if the caller does
not have the necessary GFP or process flags. This was found to be
sufficient in tests to avoid hangs due to SLUB generally maintaining
smaller lists than SLAB.
In low-memory conditions it does mean that !PFMEMALLOC allocators can fail
a slab allocation even though free objects are available because they are
being preserved for callers that are freeing pages.
[a.p.zijlstra@chello.nl: Original implementation]
[sebastian@breakpoint.cc: Correct order of page flag clearing]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: David Miller <davem@davemloft.net>
Cc: Neil Brown <neilb@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Christie <michaelc@cs.wisc.edu>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-31 23:43:58 +00:00
|
|
|
{
|
2017-09-06 23:24:50 +00:00
|
|
|
if (!tsk_is_oom_victim(tsk))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* !MMU doesn't have oom reaper so give access to memory reserves
|
|
|
|
* only to the thread with TIF_MEMDIE set
|
|
|
|
*/
|
|
|
|
if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
|
2016-07-28 22:49:13 +00:00
|
|
|
return false;
|
|
|
|
|
2017-09-06 23:24:50 +00:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Distinguish requests which really need access to full memory
|
|
|
|
* reserves from oom victims which can live with a portion of it
|
|
|
|
*/
|
|
|
|
static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
|
|
|
|
{
|
|
|
|
if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
|
|
|
|
return 0;
|
2016-07-28 22:49:13 +00:00
|
|
|
if (gfp_mask & __GFP_MEMALLOC)
|
2017-09-06 23:24:50 +00:00
|
|
|
return ALLOC_NO_WATERMARKS;
|
2016-07-28 22:49:13 +00:00
|
|
|
if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
|
2017-09-06 23:24:50 +00:00
|
|
|
return ALLOC_NO_WATERMARKS;
|
|
|
|
if (!in_interrupt()) {
|
|
|
|
if (current->flags & PF_MEMALLOC)
|
|
|
|
return ALLOC_NO_WATERMARKS;
|
|
|
|
else if (oom_reserves_allowed(current))
|
|
|
|
return ALLOC_OOM;
|
|
|
|
}
|
2016-07-28 22:49:13 +00:00
|
|
|
|
2017-09-06 23:24:50 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
|
|
|
|
{
|
|
|
|
return !!__gfp_pfmemalloc_flags(gfp_mask);
|
mm: sl[au]b: add knowledge of PFMEMALLOC reserve pages
When a user or administrator requires swap for their application, they
create a swap partition and file, format it with mkswap and activate it
with swapon. Swap over the network is considered as an option in diskless
systems. The two likely scenarios are when blade servers are used as part
of a cluster where the form factor or maintenance costs do not allow the
use of disks and thin clients.
The Linux Terminal Server Project recommends the use of the Network Block
Device (NBD) for swap according to the manual at
https://sourceforge.net/projects/ltsp/files/Docs-Admin-Guide/LTSPManual.pdf/download
There is also documentation and tutorials on how to setup swap over NBD at
places like https://help.ubuntu.com/community/UbuntuLTSP/EnableNBDSWAP The
nbd-client also documents the use of NBD as swap. Despite this, the fact
is that a machine using NBD for swap can deadlock within minutes if swap
is used intensively. This patch series addresses the problem.
The core issue is that network block devices do not use mempools like
normal block devices do. As the host cannot control where they receive
packets from, they cannot reliably work out in advance how much memory
they might need. Some years ago, Peter Zijlstra developed a series of
patches that supported swap over an NFS that at least one distribution is
carrying within their kernels. This patch series borrows very heavily
from Peter's work to support swapping over NBD as a pre-requisite to
supporting swap-over-NFS. The bulk of the complexity is concerned with
preserving memory that is allocated from the PFMEMALLOC reserves for use
by the network layer which is needed for both NBD and NFS.
Patch 1 adds knowledge of the PFMEMALLOC reserves to SLAB and SLUB to
preserve access to pages allocated under low memory situations
to callers that are freeing memory.
Patch 2 optimises the SLUB fast path to avoid pfmemalloc checks
Patch 3 introduces __GFP_MEMALLOC to allow access to the PFMEMALLOC
reserves without setting PFMEMALLOC.
Patch 4 opens the possibility for softirqs to use PFMEMALLOC reserves
for later use by network packet processing.
Patch 5 only sets page->pfmemalloc when ALLOC_NO_WATERMARKS was required
Patch 6 ignores memory policies when ALLOC_NO_WATERMARKS is set.
Patches 7-12 allows network processing to use PFMEMALLOC reserves when
the socket has been marked as being used by the VM to clean pages. If
packets are received and stored in pages that were allocated under
low-memory situations and are unrelated to the VM, the packets
are dropped.
Patch 11 reintroduces __skb_alloc_page which the networking
folk may object to but is needed in some cases to propogate
pfmemalloc from a newly allocated page to an skb. If there is a
strong objection, this patch can be dropped with the impact being
that swap-over-network will be slower in some cases but it should
not fail.
Patch 13 is a micro-optimisation to avoid a function call in the
common case.
Patch 14 tags NBD sockets as being SOCK_MEMALLOC so they can use
PFMEMALLOC if necessary.
Patch 15 notes that it is still possible for the PFMEMALLOC reserve
to be depleted. To prevent this, direct reclaimers get throttled on
a waitqueue if 50% of the PFMEMALLOC reserves are depleted. It is
expected that kswapd and the direct reclaimers already running
will clean enough pages for the low watermark to be reached and
the throttled processes are woken up.
Patch 16 adds a statistic to track how often processes get throttled
Some basic performance testing was run using kernel builds, netperf on
loopback for UDP and TCP, hackbench (pipes and sockets), iozone and
sysbench. Each of them were expected to use the sl*b allocators
reasonably heavily but there did not appear to be significant performance
variances.
For testing swap-over-NBD, a machine was booted with 2G of RAM with a
swapfile backed by NBD. 8*NUM_CPU processes were started that create
anonymous memory mappings and read them linearly in a loop. The total
size of the mappings were 4*PHYSICAL_MEMORY to use swap heavily under
memory pressure.
Without the patches and using SLUB, the machine locks up within minutes
and runs to completion with them applied. With SLAB, the story is
different as an unpatched kernel run to completion. However, the patched
kernel completed the test 45% faster.
MICRO
3.5.0-rc2 3.5.0-rc2
vanilla swapnbd
Unrecognised test vmscan-anon-mmap-write
MMTests Statistics: duration
Sys Time Running Test (seconds) 197.80 173.07
User+Sys Time Running Test (seconds) 206.96 182.03
Total Elapsed Time (seconds) 3240.70 1762.09
This patch: mm: sl[au]b: add knowledge of PFMEMALLOC reserve pages
Allocations of pages below the min watermark run a risk of the machine
hanging due to a lack of memory. To prevent this, only callers who have
PF_MEMALLOC or TIF_MEMDIE set and are not processing an interrupt are
allowed to allocate with ALLOC_NO_WATERMARKS. Once they are allocated to
a slab though, nothing prevents other callers consuming free objects
within those slabs. This patch limits access to slab pages that were
alloced from the PFMEMALLOC reserves.
When this patch is applied, pages allocated from below the low watermark
are returned with page->pfmemalloc set and it is up to the caller to
determine how the page should be protected. SLAB restricts access to any
page with page->pfmemalloc set to callers which are known to able to
access the PFMEMALLOC reserve. If one is not available, an attempt is
made to allocate a new page rather than use a reserve. SLUB is a bit more
relaxed in that it only records if the current per-CPU page was allocated
from PFMEMALLOC reserve and uses another partial slab if the caller does
not have the necessary GFP or process flags. This was found to be
sufficient in tests to avoid hangs due to SLUB generally maintaining
smaller lists than SLAB.
In low-memory conditions it does mean that !PFMEMALLOC allocators can fail
a slab allocation even though free objects are available because they are
being preserved for callers that are freeing pages.
[a.p.zijlstra@chello.nl: Original implementation]
[sebastian@breakpoint.cc: Correct order of page flag clearing]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: David Miller <davem@davemloft.net>
Cc: Neil Brown <neilb@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Christie <michaelc@cs.wisc.edu>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-31 23:43:58 +00:00
|
|
|
}
|
|
|
|
|
2016-05-20 23:57:00 +00:00
|
|
|
/*
|
|
|
|
* Checks whether it makes sense to retry the reclaim to make a forward progress
|
|
|
|
* for the given allocation request.
|
2017-05-03 21:52:16 +00:00
|
|
|
*
|
|
|
|
* We give up when we either have tried MAX_RECLAIM_RETRIES in a row
|
|
|
|
* without success, or when we couldn't even meet the watermark if we
|
|
|
|
* reclaimed all remaining pages on the LRU lists.
|
2016-05-20 23:57:00 +00:00
|
|
|
*
|
|
|
|
* Returns true if a retry is viable or false to enter the oom path.
|
|
|
|
*/
|
|
|
|
static inline bool
|
|
|
|
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
|
|
|
|
struct alloc_context *ac, int alloc_flags,
|
2016-10-08 00:00:40 +00:00
|
|
|
bool did_some_progress, int *no_progress_loops)
|
2016-05-20 23:57:00 +00:00
|
|
|
{
|
|
|
|
struct zone *zone;
|
|
|
|
struct zoneref *z;
|
2018-10-26 22:03:31 +00:00
|
|
|
bool ret = false;
|
2016-05-20 23:57:00 +00:00
|
|
|
|
2016-10-08 00:00:40 +00:00
|
|
|
/*
|
|
|
|
* Costly allocations might have made a progress but this doesn't mean
|
|
|
|
* their order will become available due to high fragmentation so
|
|
|
|
* always increment the no progress counter for them
|
|
|
|
*/
|
|
|
|
if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
|
|
|
|
*no_progress_loops = 0;
|
|
|
|
else
|
|
|
|
(*no_progress_loops)++;
|
|
|
|
|
2016-05-20 23:57:00 +00:00
|
|
|
/*
|
|
|
|
* Make sure we converge to OOM if we cannot make any progress
|
|
|
|
* several times in the row.
|
|
|
|
*/
|
mm: try to exhaust highatomic reserve before the OOM
I got OOM report from production team with v4.4 kernel. It had enough
free memory but failed to allocate GFP_KERNEL order-0 page and finally
encountered OOM kill. It occured during QA process which launches
several apps, switching and so on. It happned rarely. IOW, In normal
situation, it was not a problem but if we are unluck so that several
apps uses peak memory at the same time, it can happen. If we manage to
pass the phase, the system can go working well.
I could reproduce it with my test(memory spike easily. Look at below.
The reason is free pages(19M) of DMA32 zone are reserved for
HIGHORDERATOMIC and doesn't unreserved before the OOM.
balloon invoked oom-killer: gfp_mask=0x24280ca(GFP_HIGHUSER_MOVABLE|__GFP_ZERO), order=0, oom_score_adj=0
balloon cpuset=/ mems_allowed=0
CPU: 1 PID: 8473 Comm: balloon Tainted: G W OE 4.8.0-rc7-00219-g3f74c9559583-dirty #3161
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
Call Trace:
dump_stack+0x63/0x90
dump_header+0x5c/0x1ce
oom_kill_process+0x22e/0x400
out_of_memory+0x1ac/0x210
__alloc_pages_nodemask+0x101e/0x1040
handle_mm_fault+0xa0a/0xbf0
__do_page_fault+0x1dd/0x4d0
trace_do_page_fault+0x43/0x130
do_async_page_fault+0x1a/0xa0
async_page_fault+0x28/0x30
Mem-Info:
active_anon:383949 inactive_anon:106724 isolated_anon:0
active_file:15 inactive_file:44 isolated_file:0
unevictable:0 dirty:0 writeback:24 unstable:0
slab_reclaimable:2483 slab_unreclaimable:3326
mapped:0 shmem:0 pagetables:1906 bounce:0
free:6898 free_pcp:291 free_cma:0
Node 0 active_anon:1535796kB inactive_anon:426896kB active_file:60kB inactive_file:176kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:0kB dirty:0kB writeback:96kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:1418 all_unreclaimable? no
DMA free:8188kB min:44kB low:56kB high:68kB active_anon:7648kB inactive_anon:0kB active_file:0kB inactive_file:4kB unevictable:0kB writepending:0kB present:15992kB managed:15908kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:20kB kernel_stack:0kB pagetables:0kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
lowmem_reserve[]: 0 1952 1952 1952
DMA32 free:19404kB min:5628kB low:7624kB high:9620kB active_anon:1528148kB inactive_anon:426896kB active_file:60kB inactive_file:420kB unevictable:0kB writepending:96kB present:2080640kB managed:2030092kB mlocked:0kB slab_reclaimable:9932kB slab_unreclaimable:13284kB kernel_stack:2496kB pagetables:7624kB bounce:0kB free_pcp:900kB local_pcp:112kB free_cma:0kB
lowmem_reserve[]: 0 0 0 0
DMA: 0*4kB 0*8kB 0*16kB 0*32kB 0*64kB 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 2*4096kB (H) = 8192kB
DMA32: 7*4kB (H) 8*8kB (H) 30*16kB (H) 31*32kB (H) 14*64kB (H) 9*128kB (H) 2*256kB (H) 2*512kB (H) 4*1024kB (H) 5*2048kB (H) 0*4096kB = 19484kB
51131 total pagecache pages
50795 pages in swap cache
Swap cache stats: add 3532405601, delete 3532354806, find 124289150/1822712228
Free swap = 8kB
Total swap = 255996kB
524158 pages RAM
0 pages HighMem/MovableOnly
12658 pages reserved
0 pages cma reserved
0 pages hwpoisoned
Another example exceeded the limit by the race is
in:imklog: page allocation failure: order:0, mode:0x2280020(GFP_ATOMIC|__GFP_NOTRACK)
CPU: 0 PID: 476 Comm: in:imklog Tainted: G E 4.8.0-rc7-00217-g266ef83c51e5-dirty #3135
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
Call Trace:
dump_stack+0x63/0x90
warn_alloc_failed+0xdb/0x130
__alloc_pages_nodemask+0x4d6/0xdb0
new_slab+0x339/0x490
___slab_alloc.constprop.74+0x367/0x480
__slab_alloc.constprop.73+0x20/0x40
__kmalloc+0x1a4/0x1e0
alloc_indirect.isra.14+0x1d/0x50
virtqueue_add_sgs+0x1c4/0x470
__virtblk_add_req+0xae/0x1f0
virtio_queue_rq+0x12d/0x290
__blk_mq_run_hw_queue+0x239/0x370
blk_mq_run_hw_queue+0x8f/0xb0
blk_mq_insert_requests+0x18c/0x1a0
blk_mq_flush_plug_list+0x125/0x140
blk_flush_plug_list+0xc7/0x220
blk_finish_plug+0x2c/0x40
__do_page_cache_readahead+0x196/0x230
filemap_fault+0x448/0x4f0
ext4_filemap_fault+0x36/0x50
__do_fault+0x75/0x140
handle_mm_fault+0x84d/0xbe0
__do_page_fault+0x1dd/0x4d0
trace_do_page_fault+0x43/0x130
do_async_page_fault+0x1a/0xa0
async_page_fault+0x28/0x30
Mem-Info:
active_anon:363826 inactive_anon:121283 isolated_anon:32
active_file:65 inactive_file:152 isolated_file:0
unevictable:0 dirty:0 writeback:46 unstable:0
slab_reclaimable:2778 slab_unreclaimable:3070
mapped:112 shmem:0 pagetables:1822 bounce:0
free:9469 free_pcp:231 free_cma:0
Node 0 active_anon:1455304kB inactive_anon:485132kB active_file:260kB inactive_file:608kB unevictable:0kB isolated(anon):128kB isolated(file):0kB mapped:448kB dirty:0kB writeback:184kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:13641 all_unreclaimable? no
DMA free:7748kB min:44kB low:56kB high:68kB active_anon:7944kB inactive_anon:104kB active_file:0kB inactive_file:0kB unevictable:0kB writepending:0kB present:15992kB managed:15908kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:108kB kernel_stack:0kB pagetables:4kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
lowmem_reserve[]: 0 1952 1952 1952
DMA32 free:30128kB min:5628kB low:7624kB high:9620kB active_anon:1447360kB inactive_anon:485028kB active_file:260kB inactive_file:608kB unevictable:0kB writepending:184kB present:2080640kB managed:2030132kB mlocked:0kB slab_reclaimable:11112kB slab_unreclaimable:12172kB kernel_stack:2400kB pagetables:7284kB bounce:0kB free_pcp:924kB local_pcp:72kB free_cma:0kB
lowmem_reserve[]: 0 0 0 0
DMA: 7*4kB (UE) 3*8kB (UH) 1*16kB (M) 0*32kB 2*64kB (U) 1*128kB (M) 1*256kB (U) 0*512kB 1*1024kB (U) 1*2048kB (U) 1*4096kB (H) = 7748kB
DMA32: 10*4kB (H) 3*8kB (H) 47*16kB (H) 38*32kB (H) 5*64kB (H) 1*128kB (H) 2*256kB (H) 3*512kB (H) 3*1024kB (H) 3*2048kB (H) 4*4096kB (H) = 30128kB
2775 total pagecache pages
2536 pages in swap cache
Swap cache stats: add 206786828, delete 206784292, find 7323106/106686077
Free swap = 108744kB
Total swap = 255996kB
524158 pages RAM
0 pages HighMem/MovableOnly
12648 pages reserved
0 pages cma reserved
0 pages hwpoisoned
It's weird to show that zone has enough free memory above min watermark
but OOMed with 4K GFP_KERNEL allocation due to reserved highatomic
pages. As last resort, try to unreserve highatomic pages again and if
it has moved pages to non-highatmoc free list, retry reclaim once more.
Link: http://lkml.kernel.org/r/1476259429-18279-4-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sangseok Lee <sangseok.lee@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-13 00:42:11 +00:00
|
|
|
if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
|
|
|
|
/* Before OOM, exhaust highatomic_reserve */
|
2016-12-13 00:42:14 +00:00
|
|
|
return unreserve_highatomic_pageblock(ac, true);
|
mm: try to exhaust highatomic reserve before the OOM
I got OOM report from production team with v4.4 kernel. It had enough
free memory but failed to allocate GFP_KERNEL order-0 page and finally
encountered OOM kill. It occured during QA process which launches
several apps, switching and so on. It happned rarely. IOW, In normal
situation, it was not a problem but if we are unluck so that several
apps uses peak memory at the same time, it can happen. If we manage to
pass the phase, the system can go working well.
I could reproduce it with my test(memory spike easily. Look at below.
The reason is free pages(19M) of DMA32 zone are reserved for
HIGHORDERATOMIC and doesn't unreserved before the OOM.
balloon invoked oom-killer: gfp_mask=0x24280ca(GFP_HIGHUSER_MOVABLE|__GFP_ZERO), order=0, oom_score_adj=0
balloon cpuset=/ mems_allowed=0
CPU: 1 PID: 8473 Comm: balloon Tainted: G W OE 4.8.0-rc7-00219-g3f74c9559583-dirty #3161
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
Call Trace:
dump_stack+0x63/0x90
dump_header+0x5c/0x1ce
oom_kill_process+0x22e/0x400
out_of_memory+0x1ac/0x210
__alloc_pages_nodemask+0x101e/0x1040
handle_mm_fault+0xa0a/0xbf0
__do_page_fault+0x1dd/0x4d0
trace_do_page_fault+0x43/0x130
do_async_page_fault+0x1a/0xa0
async_page_fault+0x28/0x30
Mem-Info:
active_anon:383949 inactive_anon:106724 isolated_anon:0
active_file:15 inactive_file:44 isolated_file:0
unevictable:0 dirty:0 writeback:24 unstable:0
slab_reclaimable:2483 slab_unreclaimable:3326
mapped:0 shmem:0 pagetables:1906 bounce:0
free:6898 free_pcp:291 free_cma:0
Node 0 active_anon:1535796kB inactive_anon:426896kB active_file:60kB inactive_file:176kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:0kB dirty:0kB writeback:96kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:1418 all_unreclaimable? no
DMA free:8188kB min:44kB low:56kB high:68kB active_anon:7648kB inactive_anon:0kB active_file:0kB inactive_file:4kB unevictable:0kB writepending:0kB present:15992kB managed:15908kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:20kB kernel_stack:0kB pagetables:0kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
lowmem_reserve[]: 0 1952 1952 1952
DMA32 free:19404kB min:5628kB low:7624kB high:9620kB active_anon:1528148kB inactive_anon:426896kB active_file:60kB inactive_file:420kB unevictable:0kB writepending:96kB present:2080640kB managed:2030092kB mlocked:0kB slab_reclaimable:9932kB slab_unreclaimable:13284kB kernel_stack:2496kB pagetables:7624kB bounce:0kB free_pcp:900kB local_pcp:112kB free_cma:0kB
lowmem_reserve[]: 0 0 0 0
DMA: 0*4kB 0*8kB 0*16kB 0*32kB 0*64kB 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 2*4096kB (H) = 8192kB
DMA32: 7*4kB (H) 8*8kB (H) 30*16kB (H) 31*32kB (H) 14*64kB (H) 9*128kB (H) 2*256kB (H) 2*512kB (H) 4*1024kB (H) 5*2048kB (H) 0*4096kB = 19484kB
51131 total pagecache pages
50795 pages in swap cache
Swap cache stats: add 3532405601, delete 3532354806, find 124289150/1822712228
Free swap = 8kB
Total swap = 255996kB
524158 pages RAM
0 pages HighMem/MovableOnly
12658 pages reserved
0 pages cma reserved
0 pages hwpoisoned
Another example exceeded the limit by the race is
in:imklog: page allocation failure: order:0, mode:0x2280020(GFP_ATOMIC|__GFP_NOTRACK)
CPU: 0 PID: 476 Comm: in:imklog Tainted: G E 4.8.0-rc7-00217-g266ef83c51e5-dirty #3135
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
Call Trace:
dump_stack+0x63/0x90
warn_alloc_failed+0xdb/0x130
__alloc_pages_nodemask+0x4d6/0xdb0
new_slab+0x339/0x490
___slab_alloc.constprop.74+0x367/0x480
__slab_alloc.constprop.73+0x20/0x40
__kmalloc+0x1a4/0x1e0
alloc_indirect.isra.14+0x1d/0x50
virtqueue_add_sgs+0x1c4/0x470
__virtblk_add_req+0xae/0x1f0
virtio_queue_rq+0x12d/0x290
__blk_mq_run_hw_queue+0x239/0x370
blk_mq_run_hw_queue+0x8f/0xb0
blk_mq_insert_requests+0x18c/0x1a0
blk_mq_flush_plug_list+0x125/0x140
blk_flush_plug_list+0xc7/0x220
blk_finish_plug+0x2c/0x40
__do_page_cache_readahead+0x196/0x230
filemap_fault+0x448/0x4f0
ext4_filemap_fault+0x36/0x50
__do_fault+0x75/0x140
handle_mm_fault+0x84d/0xbe0
__do_page_fault+0x1dd/0x4d0
trace_do_page_fault+0x43/0x130
do_async_page_fault+0x1a/0xa0
async_page_fault+0x28/0x30
Mem-Info:
active_anon:363826 inactive_anon:121283 isolated_anon:32
active_file:65 inactive_file:152 isolated_file:0
unevictable:0 dirty:0 writeback:46 unstable:0
slab_reclaimable:2778 slab_unreclaimable:3070
mapped:112 shmem:0 pagetables:1822 bounce:0
free:9469 free_pcp:231 free_cma:0
Node 0 active_anon:1455304kB inactive_anon:485132kB active_file:260kB inactive_file:608kB unevictable:0kB isolated(anon):128kB isolated(file):0kB mapped:448kB dirty:0kB writeback:184kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:13641 all_unreclaimable? no
DMA free:7748kB min:44kB low:56kB high:68kB active_anon:7944kB inactive_anon:104kB active_file:0kB inactive_file:0kB unevictable:0kB writepending:0kB present:15992kB managed:15908kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:108kB kernel_stack:0kB pagetables:4kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
lowmem_reserve[]: 0 1952 1952 1952
DMA32 free:30128kB min:5628kB low:7624kB high:9620kB active_anon:1447360kB inactive_anon:485028kB active_file:260kB inactive_file:608kB unevictable:0kB writepending:184kB present:2080640kB managed:2030132kB mlocked:0kB slab_reclaimable:11112kB slab_unreclaimable:12172kB kernel_stack:2400kB pagetables:7284kB bounce:0kB free_pcp:924kB local_pcp:72kB free_cma:0kB
lowmem_reserve[]: 0 0 0 0
DMA: 7*4kB (UE) 3*8kB (UH) 1*16kB (M) 0*32kB 2*64kB (U) 1*128kB (M) 1*256kB (U) 0*512kB 1*1024kB (U) 1*2048kB (U) 1*4096kB (H) = 7748kB
DMA32: 10*4kB (H) 3*8kB (H) 47*16kB (H) 38*32kB (H) 5*64kB (H) 1*128kB (H) 2*256kB (H) 3*512kB (H) 3*1024kB (H) 3*2048kB (H) 4*4096kB (H) = 30128kB
2775 total pagecache pages
2536 pages in swap cache
Swap cache stats: add 206786828, delete 206784292, find 7323106/106686077
Free swap = 108744kB
Total swap = 255996kB
524158 pages RAM
0 pages HighMem/MovableOnly
12648 pages reserved
0 pages cma reserved
0 pages hwpoisoned
It's weird to show that zone has enough free memory above min watermark
but OOMed with 4K GFP_KERNEL allocation due to reserved highatomic
pages. As last resort, try to unreserve highatomic pages again and if
it has moved pages to non-highatmoc free list, retry reclaim once more.
Link: http://lkml.kernel.org/r/1476259429-18279-4-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sangseok Lee <sangseok.lee@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-13 00:42:11 +00:00
|
|
|
}
|
2016-05-20 23:57:00 +00:00
|
|
|
|
2016-07-28 22:47:05 +00:00
|
|
|
/*
|
|
|
|
* Keep reclaiming pages while there is a chance this will lead
|
|
|
|
* somewhere. If none of the target zones can satisfy our allocation
|
|
|
|
* request even if all reclaimable pages are considered then we are
|
|
|
|
* screwed and have to go OOM.
|
2016-05-20 23:57:00 +00:00
|
|
|
*/
|
2020-06-03 22:59:01 +00:00
|
|
|
for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
|
|
|
|
ac->highest_zoneidx, ac->nodemask) {
|
2016-05-20 23:57:00 +00:00
|
|
|
unsigned long available;
|
2016-05-20 23:57:03 +00:00
|
|
|
unsigned long reclaimable;
|
2017-02-22 23:42:00 +00:00
|
|
|
unsigned long min_wmark = min_wmark_pages(zone);
|
|
|
|
bool wmark;
|
2016-05-20 23:57:00 +00:00
|
|
|
|
2016-07-28 22:47:31 +00:00
|
|
|
available = reclaimable = zone_reclaimable_pages(zone);
|
|
|
|
available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
|
2016-05-20 23:57:00 +00:00
|
|
|
|
|
|
|
/*
|
2017-05-03 21:52:16 +00:00
|
|
|
* Would the allocation succeed if we reclaimed all
|
|
|
|
* reclaimable pages?
|
2016-05-20 23:57:00 +00:00
|
|
|
*/
|
2017-02-22 23:42:00 +00:00
|
|
|
wmark = __zone_watermark_ok(zone, order, min_wmark,
|
2020-06-03 22:59:01 +00:00
|
|
|
ac->highest_zoneidx, alloc_flags, available);
|
2017-02-22 23:42:00 +00:00
|
|
|
trace_reclaim_retry_zone(z, order, reclaimable,
|
|
|
|
available, min_wmark, *no_progress_loops, wmark);
|
|
|
|
if (wmark) {
|
2018-10-26 22:03:31 +00:00
|
|
|
ret = true;
|
2021-11-05 20:42:38 +00:00
|
|
|
break;
|
2016-05-20 23:57:00 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-10-26 22:03:31 +00:00
|
|
|
/*
|
|
|
|
* Memory allocation/reclaim might be called from a WQ context and the
|
|
|
|
* current implementation of the WQ concurrency control doesn't
|
|
|
|
* recognize that a particular WQ is congested if the worker thread is
|
|
|
|
* looping without ever sleeping. Therefore we have to do a short sleep
|
|
|
|
* here rather than calling cond_resched().
|
|
|
|
*/
|
|
|
|
if (current->flags & PF_WQ_WORKER)
|
|
|
|
schedule_timeout_uninterruptible(1);
|
|
|
|
else
|
|
|
|
cond_resched();
|
|
|
|
return ret;
|
2016-05-20 23:57:00 +00:00
|
|
|
}
|
|
|
|
|
mm, page_alloc: fix more premature OOM due to race with cpuset update
I would like to stress that this patchset aims to fix issues and cleanup
the code *within the existing documented semantics*, i.e. patch 1
ignores mempolicy restrictions if the set of allowed nodes has no
intersection with set of nodes allowed by cpuset. I believe discussing
potential changes of the semantics can be better done once we have a
baseline with no known bugs of the current semantics.
I've recently summarized the cpuset/mempolicy issues in a LSF/MM
proposal [1] and the discussion itself [2]. I've been trying to rewrite
the handling as proposed, with the idea that changing semantics to make
all mempolicies static wrt cpuset updates (and discarding the relative
and default modes) can be tried on top, as there's a high risk of being
rejected/reverted because somebody might still care about the removed
modes.
However I haven't yet figured out how to properly:
1) make mempolicies swappable instead of rebinding in place. I thought
mbind() already works that way and uses refcounting to avoid
use-after-free of the old policy by a parallel allocation, but turns
out true refcounting is only done for shared (shmem) mempolicies, and
the actual protection for mbind() comes from mmap_sem. Extending the
refcounting means more overhead in allocator hot path. Also swapping
whole mempolicies means that we have to allocate the new ones, which
can fail, and reverting of the partially done work also means
allocating (note that mbind() doesn't care and will just leave part
of the range updated and part not updated when returning -ENOMEM...).
2) make cpuset's task->mems_allowed also swappable (after converting it
from nodemask to zonelist, which is the easy part) for mostly the
same reasons.
The good news is that while trying to do the above, I've at least
figured out how to hopefully close the remaining premature OOM's, and do
a buch of cleanups on top, removing quite some of the code that was also
supposed to prevent the cpuset update races, but doesn't work anymore
nowadays. This should fix the most pressing concerns with this topic
and give us a better baseline before either proceeding with the original
proposal, or pushing a change of semantics that removes the problem 1)
above. I'd be then fine with trying to change the semantic first and
rewrite later.
Patchset has been tested with the LTP cpuset01 stress test.
[1] https://lkml.kernel.org/r/4c44a589-5fd8-08d0-892c-e893bb525b71@suse.cz
[2] https://lwn.net/Articles/717797/
[3] https://marc.info/?l=linux-mm&m=149191957922828&w=2
This patch (of 6):
Commit e47483bca2cc ("mm, page_alloc: fix premature OOM when racing with
cpuset mems update") has fixed known recent regressions found by LTP's
cpuset01 testcase. I have however found that by modifying the testcase
to use per-vma mempolicies via bind(2) instead of per-task mempolicies
via set_mempolicy(2), the premature OOM still happens and the issue is
much older.
The root of the problem is that the cpuset's mems_allowed and
mempolicy's nodemask can temporarily have no intersection, thus
get_page_from_freelist() cannot find any usable zone. The current
semantic for empty intersection is to ignore mempolicy's nodemask and
honour cpuset restrictions. This is checked in node_zonelist(), but the
racy update can happen after we already passed the check. Such races
should be protected by the seqlock task->mems_allowed_seq, but it
doesn't work here, because 1) mpol_rebind_mm() does not happen under
seqlock for write, and doing so would lead to deadlock, as it takes
mmap_sem for write, while the allocation can have mmap_sem for read when
it's taking the seqlock for read. And 2) the seqlock cookie of callers
of node_zonelist() (alloc_pages_vma() and alloc_pages_current()) is
different than the one of __alloc_pages_slowpath(), so there's still a
potential race window.
This patch fixes the issue by having __alloc_pages_slowpath() check for
empty intersection of cpuset and ac->nodemask before OOM or allocation
failure. If it's indeed empty, the nodemask is ignored and allocation
retried, which mimics node_zonelist(). This works fine, because almost
all callers of __alloc_pages_nodemask are obtaining the nodemask via
node_zonelist(). The only exception is new_node_page() from hotplug,
where the potential violation of nodemask isn't an issue, as there's
already a fallback allocation attempt without any nodemask. If there's
a future caller that needs to have its specific nodemask honoured over
task's cpuset restrictions, we'll have to e.g. add a gfp flag for that.
Link: http://lkml.kernel.org/r/20170517081140.30654-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 22:39:56 +00:00
|
|
|
static inline bool
|
|
|
|
check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* It's possible that cpuset's mems_allowed and the nodemask from
|
|
|
|
* mempolicy don't intersect. This should be normally dealt with by
|
|
|
|
* policy_nodemask(), but it's possible to race with cpuset update in
|
|
|
|
* such a way the check therein was true, and then it became false
|
|
|
|
* before we got our cpuset_mems_cookie here.
|
|
|
|
* This assumes that for all allocations, ac->nodemask can come only
|
|
|
|
* from MPOL_BIND mempolicy (whose documented semantics is to be ignored
|
|
|
|
* when it does not intersect with the cpuset restrictions) or the
|
|
|
|
* caller can deal with a violated nodemask.
|
|
|
|
*/
|
|
|
|
if (cpusets_enabled() && ac->nodemask &&
|
|
|
|
!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
|
|
|
|
ac->nodemask = NULL;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* When updating a task's mems_allowed or mempolicy nodemask, it is
|
|
|
|
* possible to race with parallel threads in such a way that our
|
|
|
|
* allocation can fail while the mask is being updated. If we are about
|
|
|
|
* to fail, check if the cpuset changed during allocation and if so,
|
|
|
|
* retry.
|
|
|
|
*/
|
|
|
|
if (read_mems_allowed_retry(cpuset_mems_cookie))
|
|
|
|
return true;
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2009-06-16 22:31:57 +00:00
|
|
|
static inline struct page *
|
|
|
|
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
|
2015-02-11 23:25:41 +00:00
|
|
|
struct alloc_context *ac)
|
2009-06-16 22:31:57 +00:00
|
|
|
{
|
2015-11-07 00:28:21 +00:00
|
|
|
bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
|
mm, compaction: restrict async compaction to pageblocks of same migratetype
The migrate scanner in async compaction is currently limited to
MIGRATE_MOVABLE pageblocks. This is a heuristic intended to reduce
latency, based on the assumption that non-MOVABLE pageblocks are
unlikely to contain movable pages.
However, with the exception of THP's, most high-order allocations are
not movable. Should the async compaction succeed, this increases the
chance that the non-MOVABLE allocations will fallback to a MOVABLE
pageblock, making the long-term fragmentation worse.
This patch attempts to help the situation by changing async direct
compaction so that the migrate scanner only scans the pageblocks of the
requested migratetype. If it's a non-MOVABLE type and there are such
pageblocks that do contain movable pages, chances are that the
allocation can succeed within one of such pageblocks, removing the need
for a fallback. If that fails, the subsequent sync attempt will ignore
this restriction.
In testing based on 4.9 kernel with stress-highalloc from mmtests
configured for order-4 GFP_KERNEL allocations, this patch has reduced
the number of unmovable allocations falling back to movable pageblocks
by 30%. The number of movable allocations falling back is reduced by
12%.
Link: http://lkml.kernel.org/r/20170307131545.28577-8-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 22:54:49 +00:00
|
|
|
const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
|
2009-06-16 22:31:57 +00:00
|
|
|
struct page *page = NULL;
|
2016-05-20 00:13:38 +00:00
|
|
|
unsigned int alloc_flags;
|
2009-06-16 22:31:57 +00:00
|
|
|
unsigned long did_some_progress;
|
2017-01-24 23:18:38 +00:00
|
|
|
enum compact_priority compact_priority;
|
2016-05-20 23:56:53 +00:00
|
|
|
enum compact_result compact_result;
|
2017-01-24 23:18:38 +00:00
|
|
|
int compaction_retries;
|
|
|
|
int no_progress_loops;
|
|
|
|
unsigned int cpuset_mems_cookie;
|
mm/page_alloc: fix race condition between build_all_zonelists and page allocation
Patrick Daly reported the following problem;
NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK] - before offline operation
[0] - ZONE_MOVABLE
[1] - ZONE_NORMAL
[2] - NULL
For a GFP_KERNEL allocation, alloc_pages_slowpath() will save the
offset of ZONE_NORMAL in ac->preferred_zoneref. If a concurrent
memory_offline operation removes the last page from ZONE_MOVABLE,
build_all_zonelists() & build_zonerefs_node() will update
node_zonelists as shown below. Only populated zones are added.
NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK] - after offline operation
[0] - ZONE_NORMAL
[1] - NULL
[2] - NULL
The race is simple -- page allocation could be in progress when a memory
hot-remove operation triggers a zonelist rebuild that removes zones. The
allocation request will still have a valid ac->preferred_zoneref that is
now pointing to NULL and triggers an OOM kill.
This problem probably always existed but may be slightly easier to trigger
due to 6aa303defb74 ("mm, vmscan: only allocate and reclaim from zones
with pages managed by the buddy allocator") which distinguishes between
zones that are completely unpopulated versus zones that have valid pages
not managed by the buddy allocator (e.g. reserved, memblock, ballooning
etc). Memory hotplug had multiple stages with timing considerations
around managed/present page updates, the zonelist rebuild and the zone
span updates. As David Hildenbrand puts it
memory offlining adjusts managed+present pages of the zone
essentially in one go. If after the adjustments, the zone is no
longer populated (present==0), we rebuild the zone lists.
Once that's done, we try shrinking the zone (start+spanned
pages) -- which results in zone_start_pfn == 0 if there are no
more pages. That happens *after* rebuilding the zonelists via
remove_pfn_range_from_zone().
The only requirement to fix the race is that a page allocation request
identifies when a zonelist rebuild has happened since the allocation
request started and no page has yet been allocated. Use a seqlock_t to
track zonelist updates with a lockless read-side of the zonelist and
protecting the rebuild and update of the counter with a spinlock.
[akpm@linux-foundation.org: make zonelist_update_seq static]
Link: https://lkml.kernel.org/r/20220824110900.vh674ltxmzb3proq@techsingularity.net
Fixes: 6aa303defb74 ("mm, vmscan: only allocate and reclaim from zones with pages managed by the buddy allocator")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Patrick Daly <quic_pdaly@quicinc.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: <stable@vger.kernel.org> [4.9+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-24 11:14:50 +00:00
|
|
|
unsigned int zonelist_iter_cookie;
|
2017-09-06 23:24:50 +00:00
|
|
|
int reserve_flags;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
mm/page_alloc: fix race condition between build_all_zonelists and page allocation
Patrick Daly reported the following problem;
NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK] - before offline operation
[0] - ZONE_MOVABLE
[1] - ZONE_NORMAL
[2] - NULL
For a GFP_KERNEL allocation, alloc_pages_slowpath() will save the
offset of ZONE_NORMAL in ac->preferred_zoneref. If a concurrent
memory_offline operation removes the last page from ZONE_MOVABLE,
build_all_zonelists() & build_zonerefs_node() will update
node_zonelists as shown below. Only populated zones are added.
NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK] - after offline operation
[0] - ZONE_NORMAL
[1] - NULL
[2] - NULL
The race is simple -- page allocation could be in progress when a memory
hot-remove operation triggers a zonelist rebuild that removes zones. The
allocation request will still have a valid ac->preferred_zoneref that is
now pointing to NULL and triggers an OOM kill.
This problem probably always existed but may be slightly easier to trigger
due to 6aa303defb74 ("mm, vmscan: only allocate and reclaim from zones
with pages managed by the buddy allocator") which distinguishes between
zones that are completely unpopulated versus zones that have valid pages
not managed by the buddy allocator (e.g. reserved, memblock, ballooning
etc). Memory hotplug had multiple stages with timing considerations
around managed/present page updates, the zonelist rebuild and the zone
span updates. As David Hildenbrand puts it
memory offlining adjusts managed+present pages of the zone
essentially in one go. If after the adjustments, the zone is no
longer populated (present==0), we rebuild the zone lists.
Once that's done, we try shrinking the zone (start+spanned
pages) -- which results in zone_start_pfn == 0 if there are no
more pages. That happens *after* rebuilding the zonelists via
remove_pfn_range_from_zone().
The only requirement to fix the race is that a page allocation request
identifies when a zonelist rebuild has happened since the allocation
request started and no page has yet been allocated. Use a seqlock_t to
track zonelist updates with a lockless read-side of the zonelist and
protecting the rebuild and update of the counter with a spinlock.
[akpm@linux-foundation.org: make zonelist_update_seq static]
Link: https://lkml.kernel.org/r/20220824110900.vh674ltxmzb3proq@techsingularity.net
Fixes: 6aa303defb74 ("mm, vmscan: only allocate and reclaim from zones with pages managed by the buddy allocator")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Patrick Daly <quic_pdaly@quicinc.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: <stable@vger.kernel.org> [4.9+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-24 11:14:50 +00:00
|
|
|
restart:
|
2017-01-24 23:18:38 +00:00
|
|
|
compaction_retries = 0;
|
|
|
|
no_progress_loops = 0;
|
|
|
|
compact_priority = DEF_COMPACT_PRIORITY;
|
|
|
|
cpuset_mems_cookie = read_mems_allowed_begin();
|
mm/page_alloc: fix race condition between build_all_zonelists and page allocation
Patrick Daly reported the following problem;
NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK] - before offline operation
[0] - ZONE_MOVABLE
[1] - ZONE_NORMAL
[2] - NULL
For a GFP_KERNEL allocation, alloc_pages_slowpath() will save the
offset of ZONE_NORMAL in ac->preferred_zoneref. If a concurrent
memory_offline operation removes the last page from ZONE_MOVABLE,
build_all_zonelists() & build_zonerefs_node() will update
node_zonelists as shown below. Only populated zones are added.
NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK] - after offline operation
[0] - ZONE_NORMAL
[1] - NULL
[2] - NULL
The race is simple -- page allocation could be in progress when a memory
hot-remove operation triggers a zonelist rebuild that removes zones. The
allocation request will still have a valid ac->preferred_zoneref that is
now pointing to NULL and triggers an OOM kill.
This problem probably always existed but may be slightly easier to trigger
due to 6aa303defb74 ("mm, vmscan: only allocate and reclaim from zones
with pages managed by the buddy allocator") which distinguishes between
zones that are completely unpopulated versus zones that have valid pages
not managed by the buddy allocator (e.g. reserved, memblock, ballooning
etc). Memory hotplug had multiple stages with timing considerations
around managed/present page updates, the zonelist rebuild and the zone
span updates. As David Hildenbrand puts it
memory offlining adjusts managed+present pages of the zone
essentially in one go. If after the adjustments, the zone is no
longer populated (present==0), we rebuild the zone lists.
Once that's done, we try shrinking the zone (start+spanned
pages) -- which results in zone_start_pfn == 0 if there are no
more pages. That happens *after* rebuilding the zonelists via
remove_pfn_range_from_zone().
The only requirement to fix the race is that a page allocation request
identifies when a zonelist rebuild has happened since the allocation
request started and no page has yet been allocated. Use a seqlock_t to
track zonelist updates with a lockless read-side of the zonelist and
protecting the rebuild and update of the counter with a spinlock.
[akpm@linux-foundation.org: make zonelist_update_seq static]
Link: https://lkml.kernel.org/r/20220824110900.vh674ltxmzb3proq@techsingularity.net
Fixes: 6aa303defb74 ("mm, vmscan: only allocate and reclaim from zones with pages managed by the buddy allocator")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Patrick Daly <quic_pdaly@quicinc.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: <stable@vger.kernel.org> [4.9+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-24 11:14:50 +00:00
|
|
|
zonelist_iter_cookie = zonelist_iter_begin();
|
2017-02-22 23:46:19 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* The fast path uses conservative alloc_flags to succeed only until
|
|
|
|
* kswapd needs to be woken up, and to avoid the cost of setting up
|
|
|
|
* alloc_flags precisely. So we do that now.
|
|
|
|
*/
|
2023-01-13 11:12:14 +00:00
|
|
|
alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
|
2017-02-22 23:46:19 +00:00
|
|
|
|
mm, page_alloc: fix premature OOM when racing with cpuset mems update
Ganapatrao Kulkarni reported that the LTP test cpuset01 in stress mode
triggers OOM killer in few seconds, despite lots of free memory. The
test attempts to repeatedly fault in memory in one process in a cpuset,
while changing allowed nodes of the cpuset between 0 and 1 in another
process.
The problem comes from insufficient protection against cpuset changes,
which can cause get_page_from_freelist() to consider all zones as
non-eligible due to nodemask and/or current->mems_allowed. This was
masked in the past by sufficient retries, but since commit 682a3385e773
("mm, page_alloc: inline the fast path of the zonelist iterator") we fix
the preferred_zoneref once, and don't iterate over the whole zonelist in
further attempts, thus the only eligible zones might be placed in the
zonelist before our starting point and we always miss them.
A previous patch fixed this problem for current->mems_allowed. However,
cpuset changes also update the task's mempolicy nodemask. The fix has
two parts. We have to repeat the preferred_zoneref search when we
detect cpuset update by way of seqcount, and we have to check the
seqcount before considering OOM.
[akpm@linux-foundation.org: fix typo in comment]
Link: http://lkml.kernel.org/r/20170120103843.24587-5-vbabka@suse.cz
Fixes: c33d6c06f60f ("mm, page_alloc: avoid looking up the first zone in a zonelist twice")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Ganapatrao Kulkarni <gpkulkarni@gmail.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-24 23:18:41 +00:00
|
|
|
/*
|
|
|
|
* We need to recalculate the starting point for the zonelist iterator
|
|
|
|
* because we might have used different nodemask in the fast path, or
|
|
|
|
* there was a cpuset modification and we are retrying - otherwise we
|
|
|
|
* could end up iterating over non-eligible zones endlessly.
|
|
|
|
*/
|
|
|
|
ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
|
2020-06-03 22:59:01 +00:00
|
|
|
ac->highest_zoneidx, ac->nodemask);
|
mm, page_alloc: fix premature OOM when racing with cpuset mems update
Ganapatrao Kulkarni reported that the LTP test cpuset01 in stress mode
triggers OOM killer in few seconds, despite lots of free memory. The
test attempts to repeatedly fault in memory in one process in a cpuset,
while changing allowed nodes of the cpuset between 0 and 1 in another
process.
The problem comes from insufficient protection against cpuset changes,
which can cause get_page_from_freelist() to consider all zones as
non-eligible due to nodemask and/or current->mems_allowed. This was
masked in the past by sufficient retries, but since commit 682a3385e773
("mm, page_alloc: inline the fast path of the zonelist iterator") we fix
the preferred_zoneref once, and don't iterate over the whole zonelist in
further attempts, thus the only eligible zones might be placed in the
zonelist before our starting point and we always miss them.
A previous patch fixed this problem for current->mems_allowed. However,
cpuset changes also update the task's mempolicy nodemask. The fix has
two parts. We have to repeat the preferred_zoneref search when we
detect cpuset update by way of seqcount, and we have to check the
seqcount before considering OOM.
[akpm@linux-foundation.org: fix typo in comment]
Link: http://lkml.kernel.org/r/20170120103843.24587-5-vbabka@suse.cz
Fixes: c33d6c06f60f ("mm, page_alloc: avoid looking up the first zone in a zonelist twice")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Ganapatrao Kulkarni <gpkulkarni@gmail.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-24 23:18:41 +00:00
|
|
|
if (!ac->preferred_zoneref->zone)
|
|
|
|
goto nopage;
|
|
|
|
|
mm/page_alloc: detect allocation forbidden by cpuset and bail out early
There was a report that starting an Ubuntu in docker while using cpuset
to bind it to movable nodes (a node only has movable zone, like a node
for hotplug or a Persistent Memory node in normal usage) will fail due
to memory allocation failure, and then OOM is involved and many other
innocent processes got killed.
It can be reproduced with command:
$ docker run -it --rm --cpuset-mems 4 ubuntu:latest bash -c "grep Mems_allowed /proc/self/status"
(where node 4 is a movable node)
runc:[2:INIT] invoked oom-killer: gfp_mask=0x500cc2(GFP_HIGHUSER|__GFP_ACCOUNT), order=0, oom_score_adj=0
CPU: 8 PID: 8291 Comm: runc:[2:INIT] Tainted: G W I E 5.8.2-0.g71b519a-default #1 openSUSE Tumbleweed (unreleased)
Hardware name: Dell Inc. PowerEdge R640/0PHYDR, BIOS 2.6.4 04/09/2020
Call Trace:
dump_stack+0x6b/0x88
dump_header+0x4a/0x1e2
oom_kill_process.cold+0xb/0x10
out_of_memory.part.0+0xaf/0x230
out_of_memory+0x3d/0x80
__alloc_pages_slowpath.constprop.0+0x954/0xa20
__alloc_pages_nodemask+0x2d3/0x300
pipe_write+0x322/0x590
new_sync_write+0x196/0x1b0
vfs_write+0x1c3/0x1f0
ksys_write+0xa7/0xe0
do_syscall_64+0x52/0xd0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Mem-Info:
active_anon:392832 inactive_anon:182 isolated_anon:0
active_file:68130 inactive_file:151527 isolated_file:0
unevictable:2701 dirty:0 writeback:7
slab_reclaimable:51418 slab_unreclaimable:116300
mapped:45825 shmem:735 pagetables:2540 bounce:0
free:159849484 free_pcp:73 free_cma:0
Node 4 active_anon:1448kB inactive_anon:0kB active_file:0kB inactive_file:0kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:0kB dirty:0kB writeback:0kB shmem:0kB shmem_thp: 0kB shmem_pmdmapped: 0kB anon_thp: 0kB writeback_tmp:0kB all_unreclaimable? no
Node 4 Movable free:130021408kB min:9140kB low:139160kB high:269180kB reserved_highatomic:0KB active_anon:1448kB inactive_anon:0kB active_file:0kB inactive_file:0kB unevictable:0kB writepending:0kB present:130023424kB managed:130023424kB mlocked:0kB kernel_stack:0kB pagetables:0kB bounce:0kB free_pcp:292kB local_pcp:84kB free_cma:0kB
lowmem_reserve[]: 0 0 0 0 0
Node 4 Movable: 1*4kB (M) 0*8kB 0*16kB 1*32kB (M) 0*64kB 0*128kB 1*256kB (M) 1*512kB (M) 1*1024kB (M) 0*2048kB 31743*4096kB (M) = 130021156kB
oom-kill:constraint=CONSTRAINT_CPUSET,nodemask=(null),cpuset=docker-9976a269caec812c134fa317f27487ee36e1129beba7278a463dd53e5fb9997b.scope,mems_allowed=4,global_oom,task_memcg=/system.slice/containerd.service,task=containerd,pid=4100,uid=0
Out of memory: Killed process 4100 (containerd) total-vm:4077036kB, anon-rss:51184kB, file-rss:26016kB, shmem-rss:0kB, UID:0 pgtables:676kB oom_score_adj:0
oom_reaper: reaped process 8248 (docker), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB
oom_reaper: reaped process 2054 (node_exporter), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB
oom_reaper: reaped process 1452 (systemd-journal), now anon-rss:0kB, file-rss:8564kB, shmem-rss:4kB
oom_reaper: reaped process 2146 (munin-node), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB
oom_reaper: reaped process 8291 (runc:[2:INIT]), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB
The reason is that in this case, the target cpuset nodes only have
movable zone, while the creation of an OS in docker sometimes needs to
allocate memory in non-movable zones (dma/dma32/normal) like
GFP_HIGHUSER, and the cpuset limit forbids the allocation, then
out-of-memory killing is involved even when normal nodes and movable
nodes both have many free memory.
The OOM killer cannot help to resolve the situation as there is no
usable memory for the request in the cpuset scope. The only reasonable
measure to take is to fail the allocation right away and have the caller
to deal with it.
So add a check for cases like this in the slowpath of allocation, and
bail out early returning NULL for the allocation.
As page allocation is one of the hottest path in kernel, this check will
hurt all users with sane cpuset configuration, add a static branch check
and detect the abnormal config in cpuset memory binding setup so that
the extra check cost in page allocation is not paid by everyone.
[thanks to Micho Hocko and David Rientjes for suggesting not handling
it inside OOM code, adding cpuset check, refining comments]
Link: https://lkml.kernel.org/r/1632481657-68112-1-git-send-email-feng.tang@intel.com
Signed-off-by: Feng Tang <feng.tang@intel.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Zefan Li <lizefan.x@bytedance.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-05 20:40:34 +00:00
|
|
|
/*
|
|
|
|
* Check for insane configurations where the cpuset doesn't contain
|
|
|
|
* any suitable zone to satisfy the request - e.g. non-movable
|
|
|
|
* GFP_HIGHUSER allocations from MOVABLE nodes only.
|
|
|
|
*/
|
|
|
|
if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
|
|
|
|
struct zoneref *z = first_zones_zonelist(ac->zonelist,
|
|
|
|
ac->highest_zoneidx,
|
|
|
|
&cpuset_current_mems_allowed);
|
|
|
|
if (!z->zone)
|
|
|
|
goto nopage;
|
|
|
|
}
|
|
|
|
|
2018-12-28 08:35:48 +00:00
|
|
|
if (alloc_flags & ALLOC_KSWAPD)
|
2018-04-05 23:25:16 +00:00
|
|
|
wake_all_kswapds(order, gfp_mask, ac);
|
2016-07-28 22:49:16 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* The adjusted alloc_flags might result in immediate success, so try
|
|
|
|
* that first
|
|
|
|
*/
|
|
|
|
page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
|
|
|
|
if (page)
|
|
|
|
goto got_pg;
|
|
|
|
|
mm, page_alloc: restructure direct compaction handling in slowpath
The retry loop in __alloc_pages_slowpath is supposed to keep trying
reclaim and compaction (and OOM), until either the allocation succeeds,
or returns with failure. Success here is more probable when reclaim
precedes compaction, as certain watermarks have to be met for compaction
to even try, and more free pages increase the probability of compaction
success. On the other hand, starting with light async compaction (if
the watermarks allow it), can be more efficient, especially for smaller
orders, if there's enough free memory which is just fragmented.
Thus, the current code starts with compaction before reclaim, and to
make sure that the last reclaim is always followed by a final
compaction, there's another direct compaction call at the end of the
loop. This makes the code hard to follow and adds some duplicated
handling of migration_mode decisions. It's also somewhat inefficient
that even if reclaim or compaction decides not to retry, the final
compaction is still attempted. Some gfp flags combination also shortcut
these retry decisions by "goto noretry;", making it even harder to
follow.
This patch attempts to restructure the code with only minimal functional
changes. The call to the first compaction and THP-specific checks are
now placed above the retry loop, and the "noretry" direct compaction is
removed.
The initial compaction is additionally restricted only to costly orders,
as we can expect smaller orders to be held back by watermarks, and only
larger orders to suffer primarily from fragmentation. This better
matches the checks in reclaim's shrink_zones().
There are two other smaller functional changes. One is that the upgrade
from async migration to light sync migration will always occur after the
initial compaction. This is how it has been until recent patch "mm,
oom: protect !costly allocations some more", which introduced upgrading
the mode based on COMPACT_COMPLETE result, but kept the final compaction
always upgraded, which made it even more special. It's better to return
to the simpler handling for now, as migration modes will be further
modified later in the series.
The second change is that once both reclaim and compaction declare it's
not worth to retry the reclaim/compact loop, there is no final
compaction attempt. As argued above, this is intentional. If that
final compaction were to succeed, it would be due to a wrong retry
decision, or simply a race with somebody else freeing memory for us.
The main outcome of this patch should be simpler code. Logically, the
initial compaction without reclaim is the exceptional case to the
reclaim/compaction scheme, but prior to the patch, it was the last loop
iteration that was exceptional. Now the code matches the logic better.
The change also enable the following patches.
Link: http://lkml.kernel.org/r/20160721073614.24395-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 22:49:19 +00:00
|
|
|
/*
|
|
|
|
* For costly allocations, try direct compaction first, as it's likely
|
mm, compaction: restrict async compaction to pageblocks of same migratetype
The migrate scanner in async compaction is currently limited to
MIGRATE_MOVABLE pageblocks. This is a heuristic intended to reduce
latency, based on the assumption that non-MOVABLE pageblocks are
unlikely to contain movable pages.
However, with the exception of THP's, most high-order allocations are
not movable. Should the async compaction succeed, this increases the
chance that the non-MOVABLE allocations will fallback to a MOVABLE
pageblock, making the long-term fragmentation worse.
This patch attempts to help the situation by changing async direct
compaction so that the migrate scanner only scans the pageblocks of the
requested migratetype. If it's a non-MOVABLE type and there are such
pageblocks that do contain movable pages, chances are that the
allocation can succeed within one of such pageblocks, removing the need
for a fallback. If that fails, the subsequent sync attempt will ignore
this restriction.
In testing based on 4.9 kernel with stress-highalloc from mmtests
configured for order-4 GFP_KERNEL allocations, this patch has reduced
the number of unmovable allocations falling back to movable pageblocks
by 30%. The number of movable allocations falling back is reduced by
12%.
Link: http://lkml.kernel.org/r/20170307131545.28577-8-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 22:54:49 +00:00
|
|
|
* that we have enough base pages and don't need to reclaim. For non-
|
|
|
|
* movable high-order allocations, do that as well, as compaction will
|
|
|
|
* try prevent permanent fragmentation by migrating from blocks of the
|
|
|
|
* same migratetype.
|
|
|
|
* Don't try this for allocations that are allowed to ignore
|
|
|
|
* watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
|
mm, page_alloc: restructure direct compaction handling in slowpath
The retry loop in __alloc_pages_slowpath is supposed to keep trying
reclaim and compaction (and OOM), until either the allocation succeeds,
or returns with failure. Success here is more probable when reclaim
precedes compaction, as certain watermarks have to be met for compaction
to even try, and more free pages increase the probability of compaction
success. On the other hand, starting with light async compaction (if
the watermarks allow it), can be more efficient, especially for smaller
orders, if there's enough free memory which is just fragmented.
Thus, the current code starts with compaction before reclaim, and to
make sure that the last reclaim is always followed by a final
compaction, there's another direct compaction call at the end of the
loop. This makes the code hard to follow and adds some duplicated
handling of migration_mode decisions. It's also somewhat inefficient
that even if reclaim or compaction decides not to retry, the final
compaction is still attempted. Some gfp flags combination also shortcut
these retry decisions by "goto noretry;", making it even harder to
follow.
This patch attempts to restructure the code with only minimal functional
changes. The call to the first compaction and THP-specific checks are
now placed above the retry loop, and the "noretry" direct compaction is
removed.
The initial compaction is additionally restricted only to costly orders,
as we can expect smaller orders to be held back by watermarks, and only
larger orders to suffer primarily from fragmentation. This better
matches the checks in reclaim's shrink_zones().
There are two other smaller functional changes. One is that the upgrade
from async migration to light sync migration will always occur after the
initial compaction. This is how it has been until recent patch "mm,
oom: protect !costly allocations some more", which introduced upgrading
the mode based on COMPACT_COMPLETE result, but kept the final compaction
always upgraded, which made it even more special. It's better to return
to the simpler handling for now, as migration modes will be further
modified later in the series.
The second change is that once both reclaim and compaction declare it's
not worth to retry the reclaim/compact loop, there is no final
compaction attempt. As argued above, this is intentional. If that
final compaction were to succeed, it would be due to a wrong retry
decision, or simply a race with somebody else freeing memory for us.
The main outcome of this patch should be simpler code. Logically, the
initial compaction without reclaim is the exceptional case to the
reclaim/compaction scheme, but prior to the patch, it was the last loop
iteration that was exceptional. Now the code matches the logic better.
The change also enable the following patches.
Link: http://lkml.kernel.org/r/20160721073614.24395-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 22:49:19 +00:00
|
|
|
*/
|
mm, compaction: restrict async compaction to pageblocks of same migratetype
The migrate scanner in async compaction is currently limited to
MIGRATE_MOVABLE pageblocks. This is a heuristic intended to reduce
latency, based on the assumption that non-MOVABLE pageblocks are
unlikely to contain movable pages.
However, with the exception of THP's, most high-order allocations are
not movable. Should the async compaction succeed, this increases the
chance that the non-MOVABLE allocations will fallback to a MOVABLE
pageblock, making the long-term fragmentation worse.
This patch attempts to help the situation by changing async direct
compaction so that the migrate scanner only scans the pageblocks of the
requested migratetype. If it's a non-MOVABLE type and there are such
pageblocks that do contain movable pages, chances are that the
allocation can succeed within one of such pageblocks, removing the need
for a fallback. If that fails, the subsequent sync attempt will ignore
this restriction.
In testing based on 4.9 kernel with stress-highalloc from mmtests
configured for order-4 GFP_KERNEL allocations, this patch has reduced
the number of unmovable allocations falling back to movable pageblocks
by 30%. The number of movable allocations falling back is reduced by
12%.
Link: http://lkml.kernel.org/r/20170307131545.28577-8-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 22:54:49 +00:00
|
|
|
if (can_direct_reclaim &&
|
|
|
|
(costly_order ||
|
|
|
|
(order > 0 && ac->migratetype != MIGRATE_MOVABLE))
|
|
|
|
&& !gfp_pfmemalloc_allowed(gfp_mask)) {
|
mm, page_alloc: restructure direct compaction handling in slowpath
The retry loop in __alloc_pages_slowpath is supposed to keep trying
reclaim and compaction (and OOM), until either the allocation succeeds,
or returns with failure. Success here is more probable when reclaim
precedes compaction, as certain watermarks have to be met for compaction
to even try, and more free pages increase the probability of compaction
success. On the other hand, starting with light async compaction (if
the watermarks allow it), can be more efficient, especially for smaller
orders, if there's enough free memory which is just fragmented.
Thus, the current code starts with compaction before reclaim, and to
make sure that the last reclaim is always followed by a final
compaction, there's another direct compaction call at the end of the
loop. This makes the code hard to follow and adds some duplicated
handling of migration_mode decisions. It's also somewhat inefficient
that even if reclaim or compaction decides not to retry, the final
compaction is still attempted. Some gfp flags combination also shortcut
these retry decisions by "goto noretry;", making it even harder to
follow.
This patch attempts to restructure the code with only minimal functional
changes. The call to the first compaction and THP-specific checks are
now placed above the retry loop, and the "noretry" direct compaction is
removed.
The initial compaction is additionally restricted only to costly orders,
as we can expect smaller orders to be held back by watermarks, and only
larger orders to suffer primarily from fragmentation. This better
matches the checks in reclaim's shrink_zones().
There are two other smaller functional changes. One is that the upgrade
from async migration to light sync migration will always occur after the
initial compaction. This is how it has been until recent patch "mm,
oom: protect !costly allocations some more", which introduced upgrading
the mode based on COMPACT_COMPLETE result, but kept the final compaction
always upgraded, which made it even more special. It's better to return
to the simpler handling for now, as migration modes will be further
modified later in the series.
The second change is that once both reclaim and compaction declare it's
not worth to retry the reclaim/compact loop, there is no final
compaction attempt. As argued above, this is intentional. If that
final compaction were to succeed, it would be due to a wrong retry
decision, or simply a race with somebody else freeing memory for us.
The main outcome of this patch should be simpler code. Logically, the
initial compaction without reclaim is the exceptional case to the
reclaim/compaction scheme, but prior to the patch, it was the last loop
iteration that was exceptional. Now the code matches the logic better.
The change also enable the following patches.
Link: http://lkml.kernel.org/r/20160721073614.24395-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 22:49:19 +00:00
|
|
|
page = __alloc_pages_direct_compact(gfp_mask, order,
|
|
|
|
alloc_flags, ac,
|
2016-07-28 22:49:28 +00:00
|
|
|
INIT_COMPACT_PRIORITY,
|
mm, page_alloc: restructure direct compaction handling in slowpath
The retry loop in __alloc_pages_slowpath is supposed to keep trying
reclaim and compaction (and OOM), until either the allocation succeeds,
or returns with failure. Success here is more probable when reclaim
precedes compaction, as certain watermarks have to be met for compaction
to even try, and more free pages increase the probability of compaction
success. On the other hand, starting with light async compaction (if
the watermarks allow it), can be more efficient, especially for smaller
orders, if there's enough free memory which is just fragmented.
Thus, the current code starts with compaction before reclaim, and to
make sure that the last reclaim is always followed by a final
compaction, there's another direct compaction call at the end of the
loop. This makes the code hard to follow and adds some duplicated
handling of migration_mode decisions. It's also somewhat inefficient
that even if reclaim or compaction decides not to retry, the final
compaction is still attempted. Some gfp flags combination also shortcut
these retry decisions by "goto noretry;", making it even harder to
follow.
This patch attempts to restructure the code with only minimal functional
changes. The call to the first compaction and THP-specific checks are
now placed above the retry loop, and the "noretry" direct compaction is
removed.
The initial compaction is additionally restricted only to costly orders,
as we can expect smaller orders to be held back by watermarks, and only
larger orders to suffer primarily from fragmentation. This better
matches the checks in reclaim's shrink_zones().
There are two other smaller functional changes. One is that the upgrade
from async migration to light sync migration will always occur after the
initial compaction. This is how it has been until recent patch "mm,
oom: protect !costly allocations some more", which introduced upgrading
the mode based on COMPACT_COMPLETE result, but kept the final compaction
always upgraded, which made it even more special. It's better to return
to the simpler handling for now, as migration modes will be further
modified later in the series.
The second change is that once both reclaim and compaction declare it's
not worth to retry the reclaim/compact loop, there is no final
compaction attempt. As argued above, this is intentional. If that
final compaction were to succeed, it would be due to a wrong retry
decision, or simply a race with somebody else freeing memory for us.
The main outcome of this patch should be simpler code. Logically, the
initial compaction without reclaim is the exceptional case to the
reclaim/compaction scheme, but prior to the patch, it was the last loop
iteration that was exceptional. Now the code matches the logic better.
The change also enable the following patches.
Link: http://lkml.kernel.org/r/20160721073614.24395-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 22:49:19 +00:00
|
|
|
&compact_result);
|
|
|
|
if (page)
|
|
|
|
goto got_pg;
|
|
|
|
|
mm, thp: tweak reclaim/compaction effort of local-only and all-node allocations
THP page faults now attempt a __GFP_THISNODE allocation first, which
should only compact existing free memory, followed by another attempt
that can allocate from any node using reclaim/compaction effort
specified by global defrag setting and madvise.
This patch makes the following changes to the scheme:
- Before the patch, the first allocation relies on a check for
pageblock order and __GFP_IO to prevent excessive reclaim. This
however affects also the second attempt, which is not limited to
single node.
Instead of that, reuse the existing check for costly order
__GFP_NORETRY allocations, and make sure the first THP attempt uses
__GFP_NORETRY. As a side-effect, all costly order __GFP_NORETRY
allocations will bail out if compaction needs reclaim, while
previously they only bailed out when compaction was deferred due to
previous failures.
This should be still acceptable within the __GFP_NORETRY semantics.
- Before the patch, the second allocation attempt (on all nodes) was
passing __GFP_NORETRY. This is redundant as the check for pageblock
order (discussed above) was stronger. It's also contrary to
madvise(MADV_HUGEPAGE) which means some effort to allocate THP is
requested.
After this patch, the second attempt doesn't pass __GFP_THISNODE nor
__GFP_NORETRY.
To sum up, THP page faults now try the following attempts:
1. local node only THP allocation with no reclaim, just compaction.
2. for madvised VMA's or when synchronous compaction is enabled always - THP
allocation from any node with effort determined by global defrag setting
and VMA madvise
3. fallback to base pages on any node
Link: http://lkml.kernel.org/r/08a3f4dd-c3ce-0009-86c5-9ee51aba8557@suse.cz
Fixes: b39d0ee2632d ("mm, page_alloc: avoid expensive reclaim when compaction may not succeed")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-01-14 00:29:04 +00:00
|
|
|
/*
|
|
|
|
* Checks for costly allocations with __GFP_NORETRY, which
|
|
|
|
* includes some THP page fault allocations
|
|
|
|
*/
|
|
|
|
if (costly_order && (gfp_mask & __GFP_NORETRY)) {
|
2019-09-04 19:54:22 +00:00
|
|
|
/*
|
|
|
|
* If allocating entire pageblock(s) and compaction
|
|
|
|
* failed because all zones are below low watermarks
|
|
|
|
* or is prohibited because it recently failed at this
|
mm, hugetlb: allow hugepage allocations to reclaim as needed
Commit b39d0ee2632d ("mm, page_alloc: avoid expensive reclaim when
compaction may not succeed") has chnaged the allocator to bail out from
the allocator early to prevent from a potentially excessive memory
reclaim. __GFP_RETRY_MAYFAIL is designed to retry the allocation,
reclaim and compaction loop as long as there is a reasonable chance to
make forward progress. Neither COMPACT_SKIPPED nor COMPACT_DEFERRED at
the INIT_COMPACT_PRIORITY compaction attempt gives this feedback.
The most obvious affected subsystem is hugetlbfs which allocates huge
pages based on an admin request (or via admin configured overcommit). I
have done a simple test which tries to allocate half of the memory for
hugetlb pages while the memory is full of a clean page cache. This is
not an unusual situation because we try to cache as much of the memory
as possible and sysctl/sysfs interface to allocate huge pages is there
for flexibility to allocate hugetlb pages at any time.
System has 1GB of RAM and we are requesting 515MB worth of hugetlb pages
after the memory is prefilled by a clean page cache:
root@test1:~# cat hugetlb_test.sh
set -x
echo 0 > /proc/sys/vm/nr_hugepages
echo 3 > /proc/sys/vm/drop_caches
echo 1 > /proc/sys/vm/compact_memory
dd if=/mnt/data/file-1G of=/dev/null bs=$((4<<10))
TS=$(date +%s)
echo 256 > /proc/sys/vm/nr_hugepages
cat /proc/sys/vm/nr_hugepages
The results for 2 consecutive runs on clean 5.3
root@test1:~# sh hugetlb_test.sh
+ echo 0
+ echo 3
+ echo 1
+ dd if=/mnt/data/file-1G of=/dev/null bs=4096
262144+0 records in
262144+0 records out
1073741824 bytes (1.1 GB) copied, 21.0694 s, 51.0 MB/s
+ date +%s
+ TS=1569905284
+ echo 256
+ cat /proc/sys/vm/nr_hugepages
256
root@test1:~# sh hugetlb_test.sh
+ echo 0
+ echo 3
+ echo 1
+ dd if=/mnt/data/file-1G of=/dev/null bs=4096
262144+0 records in
262144+0 records out
1073741824 bytes (1.1 GB) copied, 21.7548 s, 49.4 MB/s
+ date +%s
+ TS=1569905311
+ echo 256
+ cat /proc/sys/vm/nr_hugepages
256
Now with b39d0ee2632d applied
root@test1:~# sh hugetlb_test.sh
+ echo 0
+ echo 3
+ echo 1
+ dd if=/mnt/data/file-1G of=/dev/null bs=4096
262144+0 records in
262144+0 records out
1073741824 bytes (1.1 GB) copied, 20.1815 s, 53.2 MB/s
+ date +%s
+ TS=1569905516
+ echo 256
+ cat /proc/sys/vm/nr_hugepages
11
root@test1:~# sh hugetlb_test.sh
+ echo 0
+ echo 3
+ echo 1
+ dd if=/mnt/data/file-1G of=/dev/null bs=4096
262144+0 records in
262144+0 records out
1073741824 bytes (1.1 GB) copied, 21.9485 s, 48.9 MB/s
+ date +%s
+ TS=1569905541
+ echo 256
+ cat /proc/sys/vm/nr_hugepages
12
The success rate went down by factor of 20!
Although hugetlb allocation requests might fail and it is reasonable to
expect them to under extremely fragmented memory or when the memory is
under a heavy pressure but the above situation is not that case.
Fix the regression by reverting back to the previous behavior for
__GFP_RETRY_MAYFAIL requests and disable the beail out heuristic for
those requests.
Mike said:
: hugetlbfs allocations are commonly done via sysctl/sysfs shortly after
: boot where this may not be as much of an issue. However, I am aware of at
: least three use cases where allocations are made after the system has been
: up and running for quite some time:
:
: - DB reconfiguration. If sysctl/sysfs fails to get required number of
: huge pages, system is rebooted to perform allocation after boot.
:
: - VM provisioning. If unable get required number of huge pages, fall
: back to base pages.
:
: - An application that does not preallocate pool, but rather allocates
: pages at fault time for optimal NUMA locality.
:
: In all cases, I would expect b39d0ee2632d to cause regressions and
: noticable behavior changes.
:
: My quick/limited testing in
: https://lkml.kernel.org/r/3468b605-a3a9-6978-9699-57c52a90bd7e@oracle.com
: was insufficient. It was also mentioned that if something like
: b39d0ee2632d went forward, I would like exemptions for __GFP_RETRY_MAYFAIL
: requests as in this patch.
[mhocko@suse.com: reworded changelog]
Link: http://lkml.kernel.org/r/20191007075548.12456-1-mhocko@kernel.org
Fixes: b39d0ee2632d ("mm, page_alloc: avoid expensive reclaim when compaction may not succeed")
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-14 21:12:04 +00:00
|
|
|
* order, fail immediately unless the allocator has
|
|
|
|
* requested compaction and reclaim retry.
|
2019-09-04 19:54:22 +00:00
|
|
|
*
|
|
|
|
* Reclaim is
|
|
|
|
* - potentially very expensive because zones are far
|
|
|
|
* below their low watermarks or this is part of very
|
|
|
|
* bursty high order allocations,
|
|
|
|
* - not guaranteed to help because isolate_freepages()
|
|
|
|
* may not iterate over freed pages as part of its
|
|
|
|
* linear scan, and
|
|
|
|
* - unlikely to make entire pageblocks free on its
|
|
|
|
* own.
|
|
|
|
*/
|
|
|
|
if (compact_result == COMPACT_SKIPPED ||
|
|
|
|
compact_result == COMPACT_DEFERRED)
|
|
|
|
goto nopage;
|
mm, page_alloc: restructure direct compaction handling in slowpath
The retry loop in __alloc_pages_slowpath is supposed to keep trying
reclaim and compaction (and OOM), until either the allocation succeeds,
or returns with failure. Success here is more probable when reclaim
precedes compaction, as certain watermarks have to be met for compaction
to even try, and more free pages increase the probability of compaction
success. On the other hand, starting with light async compaction (if
the watermarks allow it), can be more efficient, especially for smaller
orders, if there's enough free memory which is just fragmented.
Thus, the current code starts with compaction before reclaim, and to
make sure that the last reclaim is always followed by a final
compaction, there's another direct compaction call at the end of the
loop. This makes the code hard to follow and adds some duplicated
handling of migration_mode decisions. It's also somewhat inefficient
that even if reclaim or compaction decides not to retry, the final
compaction is still attempted. Some gfp flags combination also shortcut
these retry decisions by "goto noretry;", making it even harder to
follow.
This patch attempts to restructure the code with only minimal functional
changes. The call to the first compaction and THP-specific checks are
now placed above the retry loop, and the "noretry" direct compaction is
removed.
The initial compaction is additionally restricted only to costly orders,
as we can expect smaller orders to be held back by watermarks, and only
larger orders to suffer primarily from fragmentation. This better
matches the checks in reclaim's shrink_zones().
There are two other smaller functional changes. One is that the upgrade
from async migration to light sync migration will always occur after the
initial compaction. This is how it has been until recent patch "mm,
oom: protect !costly allocations some more", which introduced upgrading
the mode based on COMPACT_COMPLETE result, but kept the final compaction
always upgraded, which made it even more special. It's better to return
to the simpler handling for now, as migration modes will be further
modified later in the series.
The second change is that once both reclaim and compaction declare it's
not worth to retry the reclaim/compact loop, there is no final
compaction attempt. As argued above, this is intentional. If that
final compaction were to succeed, it would be due to a wrong retry
decision, or simply a race with somebody else freeing memory for us.
The main outcome of this patch should be simpler code. Logically, the
initial compaction without reclaim is the exceptional case to the
reclaim/compaction scheme, but prior to the patch, it was the last loop
iteration that was exceptional. Now the code matches the logic better.
The change also enable the following patches.
Link: http://lkml.kernel.org/r/20160721073614.24395-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 22:49:19 +00:00
|
|
|
|
|
|
|
/*
|
mm, page_alloc: make THP-specific decisions more generic
Since THP allocations during page faults can be costly, extra decisions
are employed for them to avoid excessive reclaim and compaction, if the
initial compaction doesn't look promising. The detection has never been
perfect as there is no gfp flag specific to THP allocations. At this
moment it checks the whole combination of flags that makes up
GFP_TRANSHUGE, and hopes that no other users of such combination exist,
or would mind being treated the same way. Extra care is also taken to
separate allocations from khugepaged, where latency doesn't matter that
much.
It is however possible to distinguish these allocations in a simpler and
more reliable way. The key observation is that after the initial
compaction followed by the first iteration of "standard"
reclaim/compaction, both __GFP_NORETRY allocations and costly
allocations without __GFP_REPEAT are declared as failures:
/* Do not loop if specifically requested */
if (gfp_mask & __GFP_NORETRY)
goto nopage;
/*
* Do not retry costly high order allocations unless they are
* __GFP_REPEAT
*/
if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
goto nopage;
This means we can further distinguish allocations that are costly order
*and* additionally include the __GFP_NORETRY flag. As it happens,
GFP_TRANSHUGE allocations do already fall into this category. This will
also allow other costly allocations with similar high-order benefit vs
latency considerations to use this semantic. Furthermore, we can
distinguish THP allocations that should try a bit harder (such as from
khugepageed) by removing __GFP_NORETRY, as will be done in the next
patch.
Link: http://lkml.kernel.org/r/20160721073614.24395-6-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 22:49:22 +00:00
|
|
|
* Looks like reclaim/compaction is worth trying, but
|
|
|
|
* sync compaction could be very expensive, so keep
|
mm, thp: remove __GFP_NORETRY from khugepaged and madvised allocations
After the previous patch, we can distinguish costly allocations that
should be really lightweight, such as THP page faults, with
__GFP_NORETRY. This means we don't need to recognize khugepaged
allocations via PF_KTHREAD anymore. We can also change THP page faults
in areas where madvise(MADV_HUGEPAGE) was used to try as hard as
khugepaged, as the process has indicated that it benefits from THP's and
is willing to pay some initial latency costs.
We can also make the flags handling less cryptic by distinguishing
GFP_TRANSHUGE_LIGHT (no reclaim at all, default mode in page fault) from
GFP_TRANSHUGE (only direct reclaim, khugepaged default). Adding
__GFP_NORETRY or __GFP_KSWAPD_RECLAIM is done where needed.
The patch effectively changes the current GFP_TRANSHUGE users as
follows:
* get_huge_zero_page() - the zero page lifetime should be relatively
long and it's shared by multiple users, so it's worth spending some
effort on it. We use GFP_TRANSHUGE, and __GFP_NORETRY is not added.
This also restores direct reclaim to this allocation, which was
unintentionally removed by commit e4a49efe4e7e ("mm: thp: set THP defrag
by default to madvise and add a stall-free defrag option")
* alloc_hugepage_khugepaged_gfpmask() - this is khugepaged, so latency
is not an issue. So if khugepaged "defrag" is enabled (the default), do
reclaim via GFP_TRANSHUGE without __GFP_NORETRY. We can remove the
PF_KTHREAD check from page alloc.
As a side-effect, khugepaged will now no longer check if the initial
compaction was deferred or contended. This is OK, as khugepaged sleep
times between collapsion attempts are long enough to prevent noticeable
disruption, so we should allow it to spend some effort.
* migrate_misplaced_transhuge_page() - already was masking out
__GFP_RECLAIM, so just convert to GFP_TRANSHUGE_LIGHT which is
equivalent.
* alloc_hugepage_direct_gfpmask() - vma's with VM_HUGEPAGE (via madvise)
are now allocating without __GFP_NORETRY. Other vma's keep using
__GFP_NORETRY if direct reclaim/compaction is at all allowed (by default
it's allowed only for madvised vma's). The rest is conversion to
GFP_TRANSHUGE(_LIGHT).
[mhocko@suse.com: suggested GFP_TRANSHUGE_LIGHT]
Link: http://lkml.kernel.org/r/20160721073614.24395-7-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 22:49:25 +00:00
|
|
|
* using async compaction.
|
mm, page_alloc: restructure direct compaction handling in slowpath
The retry loop in __alloc_pages_slowpath is supposed to keep trying
reclaim and compaction (and OOM), until either the allocation succeeds,
or returns with failure. Success here is more probable when reclaim
precedes compaction, as certain watermarks have to be met for compaction
to even try, and more free pages increase the probability of compaction
success. On the other hand, starting with light async compaction (if
the watermarks allow it), can be more efficient, especially for smaller
orders, if there's enough free memory which is just fragmented.
Thus, the current code starts with compaction before reclaim, and to
make sure that the last reclaim is always followed by a final
compaction, there's another direct compaction call at the end of the
loop. This makes the code hard to follow and adds some duplicated
handling of migration_mode decisions. It's also somewhat inefficient
that even if reclaim or compaction decides not to retry, the final
compaction is still attempted. Some gfp flags combination also shortcut
these retry decisions by "goto noretry;", making it even harder to
follow.
This patch attempts to restructure the code with only minimal functional
changes. The call to the first compaction and THP-specific checks are
now placed above the retry loop, and the "noretry" direct compaction is
removed.
The initial compaction is additionally restricted only to costly orders,
as we can expect smaller orders to be held back by watermarks, and only
larger orders to suffer primarily from fragmentation. This better
matches the checks in reclaim's shrink_zones().
There are two other smaller functional changes. One is that the upgrade
from async migration to light sync migration will always occur after the
initial compaction. This is how it has been until recent patch "mm,
oom: protect !costly allocations some more", which introduced upgrading
the mode based on COMPACT_COMPLETE result, but kept the final compaction
always upgraded, which made it even more special. It's better to return
to the simpler handling for now, as migration modes will be further
modified later in the series.
The second change is that once both reclaim and compaction declare it's
not worth to retry the reclaim/compact loop, there is no final
compaction attempt. As argued above, this is intentional. If that
final compaction were to succeed, it would be due to a wrong retry
decision, or simply a race with somebody else freeing memory for us.
The main outcome of this patch should be simpler code. Logically, the
initial compaction without reclaim is the exceptional case to the
reclaim/compaction scheme, but prior to the patch, it was the last loop
iteration that was exceptional. Now the code matches the logic better.
The change also enable the following patches.
Link: http://lkml.kernel.org/r/20160721073614.24395-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 22:49:19 +00:00
|
|
|
*/
|
2016-07-28 22:49:28 +00:00
|
|
|
compact_priority = INIT_COMPACT_PRIORITY;
|
mm, page_alloc: restructure direct compaction handling in slowpath
The retry loop in __alloc_pages_slowpath is supposed to keep trying
reclaim and compaction (and OOM), until either the allocation succeeds,
or returns with failure. Success here is more probable when reclaim
precedes compaction, as certain watermarks have to be met for compaction
to even try, and more free pages increase the probability of compaction
success. On the other hand, starting with light async compaction (if
the watermarks allow it), can be more efficient, especially for smaller
orders, if there's enough free memory which is just fragmented.
Thus, the current code starts with compaction before reclaim, and to
make sure that the last reclaim is always followed by a final
compaction, there's another direct compaction call at the end of the
loop. This makes the code hard to follow and adds some duplicated
handling of migration_mode decisions. It's also somewhat inefficient
that even if reclaim or compaction decides not to retry, the final
compaction is still attempted. Some gfp flags combination also shortcut
these retry decisions by "goto noretry;", making it even harder to
follow.
This patch attempts to restructure the code with only minimal functional
changes. The call to the first compaction and THP-specific checks are
now placed above the retry loop, and the "noretry" direct compaction is
removed.
The initial compaction is additionally restricted only to costly orders,
as we can expect smaller orders to be held back by watermarks, and only
larger orders to suffer primarily from fragmentation. This better
matches the checks in reclaim's shrink_zones().
There are two other smaller functional changes. One is that the upgrade
from async migration to light sync migration will always occur after the
initial compaction. This is how it has been until recent patch "mm,
oom: protect !costly allocations some more", which introduced upgrading
the mode based on COMPACT_COMPLETE result, but kept the final compaction
always upgraded, which made it even more special. It's better to return
to the simpler handling for now, as migration modes will be further
modified later in the series.
The second change is that once both reclaim and compaction declare it's
not worth to retry the reclaim/compact loop, there is no final
compaction attempt. As argued above, this is intentional. If that
final compaction were to succeed, it would be due to a wrong retry
decision, or simply a race with somebody else freeing memory for us.
The main outcome of this patch should be simpler code. Logically, the
initial compaction without reclaim is the exceptional case to the
reclaim/compaction scheme, but prior to the patch, it was the last loop
iteration that was exceptional. Now the code matches the logic better.
The change also enable the following patches.
Link: http://lkml.kernel.org/r/20160721073614.24395-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 22:49:19 +00:00
|
|
|
}
|
|
|
|
}
|
2016-07-28 22:49:16 +00:00
|
|
|
|
2016-07-28 22:49:13 +00:00
|
|
|
retry:
|
2016-07-28 22:49:16 +00:00
|
|
|
/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
|
2018-12-28 08:35:48 +00:00
|
|
|
if (alloc_flags & ALLOC_KSWAPD)
|
2018-04-05 23:25:16 +00:00
|
|
|
wake_all_kswapds(order, gfp_mask, ac);
|
2016-07-28 22:49:13 +00:00
|
|
|
|
2017-09-06 23:24:50 +00:00
|
|
|
reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
|
|
|
|
if (reserve_flags)
|
2022-09-16 07:22:42 +00:00
|
|
|
alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
|
|
|
|
(alloc_flags & ALLOC_KSWAPD);
|
2016-07-28 22:49:16 +00:00
|
|
|
|
2016-06-03 21:56:01 +00:00
|
|
|
/*
|
mm, page_alloc: actually ignore mempolicies for high priority allocations
__alloc_pages_slowpath() has for a long time contained code to ignore
node restrictions from memory policies for high priority allocations.
The current code that resets the zonelist iterator however does
effectively nothing after commit 7810e6781e0f ("mm, page_alloc: do not
break __GFP_THISNODE by zonelist reset") removed a buggy zonelist reset.
Even before that commit, mempolicy restrictions were still not ignored,
as they are passed in ac->nodemask which is untouched by the code.
We can either remove the code, or make it work as intended. Since
ac->nodemask can be set from task's mempolicy via alloc_pages_current()
and thus also alloc_pages(), it may indeed affect kernel allocations,
and it makes sense to ignore it to allow progress for high priority
allocations.
Thus, this patch resets ac->nodemask to NULL in such cases. This
assumes all callers can handle it (i.e. there are no guarantees as in
the case of __GFP_THISNODE) which seems to be the case. The same
assumption is already present in check_retry_cpuset() for some time.
The expected effect is that high priority kernel allocations in the
context of userspace tasks (e.g. OOM victims) restricted by mempolicies
will have higher chance to succeed if they are restricted to nodes with
depleted memory, while there are other nodes with free memory left.
It's not a new intention, but for the first time the code will match the
intention, AFAICS. It was intended by commit 183f6371aac2 ("mm: ignore
mempolicies when using ALLOC_NO_WATERMARK") in v3.6 but I think it never
really worked, as mempolicy restriction was already encoded in nodemask,
not zonelist, at that time.
So originally that was for ALLOC_NO_WATERMARK only. Then it was
adjusted by e46e7b77c909 ("mm, page_alloc: recalculate the preferred
zoneref if the context can ignore memory policies") and cd04ae1e2dc8
("mm, oom: do not rely on TIF_MEMDIE for memory reserves access") to the
current state. So even GFP_ATOMIC would now ignore mempolicies after
the initial attempts fail - if the code worked as people thought it
does.
Link: http://lkml.kernel.org/r/20180612122624.8045-1-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 22:45:05 +00:00
|
|
|
* Reset the nodemask and zonelist iterators if memory policies can be
|
|
|
|
* ignored. These allocations are high priority and system rather than
|
|
|
|
* user oriented.
|
2016-06-03 21:56:01 +00:00
|
|
|
*/
|
2017-09-06 23:24:50 +00:00
|
|
|
if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
|
mm, page_alloc: actually ignore mempolicies for high priority allocations
__alloc_pages_slowpath() has for a long time contained code to ignore
node restrictions from memory policies for high priority allocations.
The current code that resets the zonelist iterator however does
effectively nothing after commit 7810e6781e0f ("mm, page_alloc: do not
break __GFP_THISNODE by zonelist reset") removed a buggy zonelist reset.
Even before that commit, mempolicy restrictions were still not ignored,
as they are passed in ac->nodemask which is untouched by the code.
We can either remove the code, or make it work as intended. Since
ac->nodemask can be set from task's mempolicy via alloc_pages_current()
and thus also alloc_pages(), it may indeed affect kernel allocations,
and it makes sense to ignore it to allow progress for high priority
allocations.
Thus, this patch resets ac->nodemask to NULL in such cases. This
assumes all callers can handle it (i.e. there are no guarantees as in
the case of __GFP_THISNODE) which seems to be the case. The same
assumption is already present in check_retry_cpuset() for some time.
The expected effect is that high priority kernel allocations in the
context of userspace tasks (e.g. OOM victims) restricted by mempolicies
will have higher chance to succeed if they are restricted to nodes with
depleted memory, while there are other nodes with free memory left.
It's not a new intention, but for the first time the code will match the
intention, AFAICS. It was intended by commit 183f6371aac2 ("mm: ignore
mempolicies when using ALLOC_NO_WATERMARK") in v3.6 but I think it never
really worked, as mempolicy restriction was already encoded in nodemask,
not zonelist, at that time.
So originally that was for ALLOC_NO_WATERMARK only. Then it was
adjusted by e46e7b77c909 ("mm, page_alloc: recalculate the preferred
zoneref if the context can ignore memory policies") and cd04ae1e2dc8
("mm, oom: do not rely on TIF_MEMDIE for memory reserves access") to the
current state. So even GFP_ATOMIC would now ignore mempolicies after
the initial attempts fail - if the code worked as people thought it
does.
Link: http://lkml.kernel.org/r/20180612122624.8045-1-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 22:45:05 +00:00
|
|
|
ac->nodemask = NULL;
|
2016-06-03 21:56:01 +00:00
|
|
|
ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
|
2020-06-03 22:59:01 +00:00
|
|
|
ac->highest_zoneidx, ac->nodemask);
|
2016-06-03 21:56:01 +00:00
|
|
|
}
|
|
|
|
|
2016-07-28 22:49:16 +00:00
|
|
|
/* Attempt with potentially adjusted zonelist and alloc_flags */
|
2016-07-28 22:49:13 +00:00
|
|
|
page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
|
2005-11-14 00:06:43 +00:00
|
|
|
if (page)
|
|
|
|
goto got_pg;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2015-11-07 00:28:21 +00:00
|
|
|
/* Caller is not willing to reclaim, we can't balance anything */
|
2017-02-22 23:46:19 +00:00
|
|
|
if (!can_direct_reclaim)
|
2005-04-16 22:20:36 +00:00
|
|
|
goto nopage;
|
|
|
|
|
2017-02-22 23:46:19 +00:00
|
|
|
/* Avoid recursion of direct reclaim */
|
|
|
|
if (current->flags & PF_MEMALLOC)
|
2009-07-29 22:02:06 +00:00
|
|
|
goto nopage;
|
|
|
|
|
mm, page_alloc: restructure direct compaction handling in slowpath
The retry loop in __alloc_pages_slowpath is supposed to keep trying
reclaim and compaction (and OOM), until either the allocation succeeds,
or returns with failure. Success here is more probable when reclaim
precedes compaction, as certain watermarks have to be met for compaction
to even try, and more free pages increase the probability of compaction
success. On the other hand, starting with light async compaction (if
the watermarks allow it), can be more efficient, especially for smaller
orders, if there's enough free memory which is just fragmented.
Thus, the current code starts with compaction before reclaim, and to
make sure that the last reclaim is always followed by a final
compaction, there's another direct compaction call at the end of the
loop. This makes the code hard to follow and adds some duplicated
handling of migration_mode decisions. It's also somewhat inefficient
that even if reclaim or compaction decides not to retry, the final
compaction is still attempted. Some gfp flags combination also shortcut
these retry decisions by "goto noretry;", making it even harder to
follow.
This patch attempts to restructure the code with only minimal functional
changes. The call to the first compaction and THP-specific checks are
now placed above the retry loop, and the "noretry" direct compaction is
removed.
The initial compaction is additionally restricted only to costly orders,
as we can expect smaller orders to be held back by watermarks, and only
larger orders to suffer primarily from fragmentation. This better
matches the checks in reclaim's shrink_zones().
There are two other smaller functional changes. One is that the upgrade
from async migration to light sync migration will always occur after the
initial compaction. This is how it has been until recent patch "mm,
oom: protect !costly allocations some more", which introduced upgrading
the mode based on COMPACT_COMPLETE result, but kept the final compaction
always upgraded, which made it even more special. It's better to return
to the simpler handling for now, as migration modes will be further
modified later in the series.
The second change is that once both reclaim and compaction declare it's
not worth to retry the reclaim/compact loop, there is no final
compaction attempt. As argued above, this is intentional. If that
final compaction were to succeed, it would be due to a wrong retry
decision, or simply a race with somebody else freeing memory for us.
The main outcome of this patch should be simpler code. Logically, the
initial compaction without reclaim is the exceptional case to the
reclaim/compaction scheme, but prior to the patch, it was the last loop
iteration that was exceptional. Now the code matches the logic better.
The change also enable the following patches.
Link: http://lkml.kernel.org/r/20160721073614.24395-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 22:49:19 +00:00
|
|
|
/* Try direct reclaim and then allocating */
|
|
|
|
page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
|
|
|
|
&did_some_progress);
|
|
|
|
if (page)
|
|
|
|
goto got_pg;
|
|
|
|
|
|
|
|
/* Try direct compaction and then allocating */
|
2015-02-11 23:25:41 +00:00
|
|
|
page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
|
2016-07-28 22:49:28 +00:00
|
|
|
compact_priority, &compact_result);
|
2010-05-24 21:32:30 +00:00
|
|
|
if (page)
|
|
|
|
goto got_pg;
|
2014-06-04 23:08:30 +00:00
|
|
|
|
2015-06-24 23:57:21 +00:00
|
|
|
/* Do not loop if specifically requested */
|
|
|
|
if (gfp_mask & __GFP_NORETRY)
|
mm, page_alloc: restructure direct compaction handling in slowpath
The retry loop in __alloc_pages_slowpath is supposed to keep trying
reclaim and compaction (and OOM), until either the allocation succeeds,
or returns with failure. Success here is more probable when reclaim
precedes compaction, as certain watermarks have to be met for compaction
to even try, and more free pages increase the probability of compaction
success. On the other hand, starting with light async compaction (if
the watermarks allow it), can be more efficient, especially for smaller
orders, if there's enough free memory which is just fragmented.
Thus, the current code starts with compaction before reclaim, and to
make sure that the last reclaim is always followed by a final
compaction, there's another direct compaction call at the end of the
loop. This makes the code hard to follow and adds some duplicated
handling of migration_mode decisions. It's also somewhat inefficient
that even if reclaim or compaction decides not to retry, the final
compaction is still attempted. Some gfp flags combination also shortcut
these retry decisions by "goto noretry;", making it even harder to
follow.
This patch attempts to restructure the code with only minimal functional
changes. The call to the first compaction and THP-specific checks are
now placed above the retry loop, and the "noretry" direct compaction is
removed.
The initial compaction is additionally restricted only to costly orders,
as we can expect smaller orders to be held back by watermarks, and only
larger orders to suffer primarily from fragmentation. This better
matches the checks in reclaim's shrink_zones().
There are two other smaller functional changes. One is that the upgrade
from async migration to light sync migration will always occur after the
initial compaction. This is how it has been until recent patch "mm,
oom: protect !costly allocations some more", which introduced upgrading
the mode based on COMPACT_COMPLETE result, but kept the final compaction
always upgraded, which made it even more special. It's better to return
to the simpler handling for now, as migration modes will be further
modified later in the series.
The second change is that once both reclaim and compaction declare it's
not worth to retry the reclaim/compact loop, there is no final
compaction attempt. As argued above, this is intentional. If that
final compaction were to succeed, it would be due to a wrong retry
decision, or simply a race with somebody else freeing memory for us.
The main outcome of this patch should be simpler code. Logically, the
initial compaction without reclaim is the exceptional case to the
reclaim/compaction scheme, but prior to the patch, it was the last loop
iteration that was exceptional. Now the code matches the logic better.
The change also enable the following patches.
Link: http://lkml.kernel.org/r/20160721073614.24395-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 22:49:19 +00:00
|
|
|
goto nopage;
|
2015-06-24 23:57:21 +00:00
|
|
|
|
2016-05-20 23:57:00 +00:00
|
|
|
/*
|
|
|
|
* Do not retry costly high order allocations unless they are
|
2017-07-12 21:36:45 +00:00
|
|
|
* __GFP_RETRY_MAYFAIL
|
2016-05-20 23:57:00 +00:00
|
|
|
*/
|
2017-07-12 21:36:45 +00:00
|
|
|
if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
|
mm, page_alloc: restructure direct compaction handling in slowpath
The retry loop in __alloc_pages_slowpath is supposed to keep trying
reclaim and compaction (and OOM), until either the allocation succeeds,
or returns with failure. Success here is more probable when reclaim
precedes compaction, as certain watermarks have to be met for compaction
to even try, and more free pages increase the probability of compaction
success. On the other hand, starting with light async compaction (if
the watermarks allow it), can be more efficient, especially for smaller
orders, if there's enough free memory which is just fragmented.
Thus, the current code starts with compaction before reclaim, and to
make sure that the last reclaim is always followed by a final
compaction, there's another direct compaction call at the end of the
loop. This makes the code hard to follow and adds some duplicated
handling of migration_mode decisions. It's also somewhat inefficient
that even if reclaim or compaction decides not to retry, the final
compaction is still attempted. Some gfp flags combination also shortcut
these retry decisions by "goto noretry;", making it even harder to
follow.
This patch attempts to restructure the code with only minimal functional
changes. The call to the first compaction and THP-specific checks are
now placed above the retry loop, and the "noretry" direct compaction is
removed.
The initial compaction is additionally restricted only to costly orders,
as we can expect smaller orders to be held back by watermarks, and only
larger orders to suffer primarily from fragmentation. This better
matches the checks in reclaim's shrink_zones().
There are two other smaller functional changes. One is that the upgrade
from async migration to light sync migration will always occur after the
initial compaction. This is how it has been until recent patch "mm,
oom: protect !costly allocations some more", which introduced upgrading
the mode based on COMPACT_COMPLETE result, but kept the final compaction
always upgraded, which made it even more special. It's better to return
to the simpler handling for now, as migration modes will be further
modified later in the series.
The second change is that once both reclaim and compaction declare it's
not worth to retry the reclaim/compact loop, there is no final
compaction attempt. As argued above, this is intentional. If that
final compaction were to succeed, it would be due to a wrong retry
decision, or simply a race with somebody else freeing memory for us.
The main outcome of this patch should be simpler code. Logically, the
initial compaction without reclaim is the exceptional case to the
reclaim/compaction scheme, but prior to the patch, it was the last loop
iteration that was exceptional. Now the code matches the logic better.
The change also enable the following patches.
Link: http://lkml.kernel.org/r/20160721073614.24395-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 22:49:19 +00:00
|
|
|
goto nopage;
|
2016-05-20 23:57:00 +00:00
|
|
|
|
|
|
|
if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
|
2016-10-08 00:00:40 +00:00
|
|
|
did_some_progress > 0, &no_progress_loops))
|
2016-05-20 23:57:00 +00:00
|
|
|
goto retry;
|
|
|
|
|
2016-05-20 23:57:06 +00:00
|
|
|
/*
|
|
|
|
* It doesn't make any sense to retry for the compaction if the order-0
|
|
|
|
* reclaim is not able to make any progress because the current
|
|
|
|
* implementation of the compaction depends on the sufficient amount
|
|
|
|
* of free memory (see __compaction_suitable)
|
|
|
|
*/
|
|
|
|
if (did_some_progress > 0 &&
|
2016-05-20 23:57:12 +00:00
|
|
|
should_compact_retry(ac, order, alloc_flags,
|
2016-07-28 22:49:28 +00:00
|
|
|
compact_result, &compact_priority,
|
2016-10-08 00:00:31 +00:00
|
|
|
&compaction_retries))
|
2016-05-20 23:57:06 +00:00
|
|
|
goto retry;
|
|
|
|
|
mm, page_alloc: fix more premature OOM due to race with cpuset update
I would like to stress that this patchset aims to fix issues and cleanup
the code *within the existing documented semantics*, i.e. patch 1
ignores mempolicy restrictions if the set of allowed nodes has no
intersection with set of nodes allowed by cpuset. I believe discussing
potential changes of the semantics can be better done once we have a
baseline with no known bugs of the current semantics.
I've recently summarized the cpuset/mempolicy issues in a LSF/MM
proposal [1] and the discussion itself [2]. I've been trying to rewrite
the handling as proposed, with the idea that changing semantics to make
all mempolicies static wrt cpuset updates (and discarding the relative
and default modes) can be tried on top, as there's a high risk of being
rejected/reverted because somebody might still care about the removed
modes.
However I haven't yet figured out how to properly:
1) make mempolicies swappable instead of rebinding in place. I thought
mbind() already works that way and uses refcounting to avoid
use-after-free of the old policy by a parallel allocation, but turns
out true refcounting is only done for shared (shmem) mempolicies, and
the actual protection for mbind() comes from mmap_sem. Extending the
refcounting means more overhead in allocator hot path. Also swapping
whole mempolicies means that we have to allocate the new ones, which
can fail, and reverting of the partially done work also means
allocating (note that mbind() doesn't care and will just leave part
of the range updated and part not updated when returning -ENOMEM...).
2) make cpuset's task->mems_allowed also swappable (after converting it
from nodemask to zonelist, which is the easy part) for mostly the
same reasons.
The good news is that while trying to do the above, I've at least
figured out how to hopefully close the remaining premature OOM's, and do
a buch of cleanups on top, removing quite some of the code that was also
supposed to prevent the cpuset update races, but doesn't work anymore
nowadays. This should fix the most pressing concerns with this topic
and give us a better baseline before either proceeding with the original
proposal, or pushing a change of semantics that removes the problem 1)
above. I'd be then fine with trying to change the semantic first and
rewrite later.
Patchset has been tested with the LTP cpuset01 stress test.
[1] https://lkml.kernel.org/r/4c44a589-5fd8-08d0-892c-e893bb525b71@suse.cz
[2] https://lwn.net/Articles/717797/
[3] https://marc.info/?l=linux-mm&m=149191957922828&w=2
This patch (of 6):
Commit e47483bca2cc ("mm, page_alloc: fix premature OOM when racing with
cpuset mems update") has fixed known recent regressions found by LTP's
cpuset01 testcase. I have however found that by modifying the testcase
to use per-vma mempolicies via bind(2) instead of per-task mempolicies
via set_mempolicy(2), the premature OOM still happens and the issue is
much older.
The root of the problem is that the cpuset's mems_allowed and
mempolicy's nodemask can temporarily have no intersection, thus
get_page_from_freelist() cannot find any usable zone. The current
semantic for empty intersection is to ignore mempolicy's nodemask and
honour cpuset restrictions. This is checked in node_zonelist(), but the
racy update can happen after we already passed the check. Such races
should be protected by the seqlock task->mems_allowed_seq, but it
doesn't work here, because 1) mpol_rebind_mm() does not happen under
seqlock for write, and doing so would lead to deadlock, as it takes
mmap_sem for write, while the allocation can have mmap_sem for read when
it's taking the seqlock for read. And 2) the seqlock cookie of callers
of node_zonelist() (alloc_pages_vma() and alloc_pages_current()) is
different than the one of __alloc_pages_slowpath(), so there's still a
potential race window.
This patch fixes the issue by having __alloc_pages_slowpath() check for
empty intersection of cpuset and ac->nodemask before OOM or allocation
failure. If it's indeed empty, the nodemask is ignored and allocation
retried, which mimics node_zonelist(). This works fine, because almost
all callers of __alloc_pages_nodemask are obtaining the nodemask via
node_zonelist(). The only exception is new_node_page() from hotplug,
where the potential violation of nodemask isn't an issue, as there's
already a fallback allocation attempt without any nodemask. If there's
a future caller that needs to have its specific nodemask honoured over
task's cpuset restrictions, we'll have to e.g. add a gfp flag for that.
Link: http://lkml.kernel.org/r/20170517081140.30654-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 22:39:56 +00:00
|
|
|
|
mm/page_alloc: fix race condition between build_all_zonelists and page allocation
Patrick Daly reported the following problem;
NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK] - before offline operation
[0] - ZONE_MOVABLE
[1] - ZONE_NORMAL
[2] - NULL
For a GFP_KERNEL allocation, alloc_pages_slowpath() will save the
offset of ZONE_NORMAL in ac->preferred_zoneref. If a concurrent
memory_offline operation removes the last page from ZONE_MOVABLE,
build_all_zonelists() & build_zonerefs_node() will update
node_zonelists as shown below. Only populated zones are added.
NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK] - after offline operation
[0] - ZONE_NORMAL
[1] - NULL
[2] - NULL
The race is simple -- page allocation could be in progress when a memory
hot-remove operation triggers a zonelist rebuild that removes zones. The
allocation request will still have a valid ac->preferred_zoneref that is
now pointing to NULL and triggers an OOM kill.
This problem probably always existed but may be slightly easier to trigger
due to 6aa303defb74 ("mm, vmscan: only allocate and reclaim from zones
with pages managed by the buddy allocator") which distinguishes between
zones that are completely unpopulated versus zones that have valid pages
not managed by the buddy allocator (e.g. reserved, memblock, ballooning
etc). Memory hotplug had multiple stages with timing considerations
around managed/present page updates, the zonelist rebuild and the zone
span updates. As David Hildenbrand puts it
memory offlining adjusts managed+present pages of the zone
essentially in one go. If after the adjustments, the zone is no
longer populated (present==0), we rebuild the zone lists.
Once that's done, we try shrinking the zone (start+spanned
pages) -- which results in zone_start_pfn == 0 if there are no
more pages. That happens *after* rebuilding the zonelists via
remove_pfn_range_from_zone().
The only requirement to fix the race is that a page allocation request
identifies when a zonelist rebuild has happened since the allocation
request started and no page has yet been allocated. Use a seqlock_t to
track zonelist updates with a lockless read-side of the zonelist and
protecting the rebuild and update of the counter with a spinlock.
[akpm@linux-foundation.org: make zonelist_update_seq static]
Link: https://lkml.kernel.org/r/20220824110900.vh674ltxmzb3proq@techsingularity.net
Fixes: 6aa303defb74 ("mm, vmscan: only allocate and reclaim from zones with pages managed by the buddy allocator")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Patrick Daly <quic_pdaly@quicinc.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: <stable@vger.kernel.org> [4.9+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-24 11:14:50 +00:00
|
|
|
/*
|
|
|
|
* Deal with possible cpuset update races or zonelist updates to avoid
|
|
|
|
* a unnecessary OOM kill.
|
|
|
|
*/
|
|
|
|
if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
|
|
|
|
check_retry_zonelist(zonelist_iter_cookie))
|
|
|
|
goto restart;
|
mm, page_alloc: fix premature OOM when racing with cpuset mems update
Ganapatrao Kulkarni reported that the LTP test cpuset01 in stress mode
triggers OOM killer in few seconds, despite lots of free memory. The
test attempts to repeatedly fault in memory in one process in a cpuset,
while changing allowed nodes of the cpuset between 0 and 1 in another
process.
The problem comes from insufficient protection against cpuset changes,
which can cause get_page_from_freelist() to consider all zones as
non-eligible due to nodemask and/or current->mems_allowed. This was
masked in the past by sufficient retries, but since commit 682a3385e773
("mm, page_alloc: inline the fast path of the zonelist iterator") we fix
the preferred_zoneref once, and don't iterate over the whole zonelist in
further attempts, thus the only eligible zones might be placed in the
zonelist before our starting point and we always miss them.
A previous patch fixed this problem for current->mems_allowed. However,
cpuset changes also update the task's mempolicy nodemask. The fix has
two parts. We have to repeat the preferred_zoneref search when we
detect cpuset update by way of seqcount, and we have to check the
seqcount before considering OOM.
[akpm@linux-foundation.org: fix typo in comment]
Link: http://lkml.kernel.org/r/20170120103843.24587-5-vbabka@suse.cz
Fixes: c33d6c06f60f ("mm, page_alloc: avoid looking up the first zone in a zonelist twice")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Ganapatrao Kulkarni <gpkulkarni@gmail.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-24 23:18:41 +00:00
|
|
|
|
2015-06-24 23:57:21 +00:00
|
|
|
/* Reclaim has failed us, start killing things */
|
|
|
|
page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
|
|
|
|
if (page)
|
|
|
|
goto got_pg;
|
|
|
|
|
2017-02-22 23:46:19 +00:00
|
|
|
/* Avoid allocations with no watermarks from looping endlessly */
|
2017-09-06 23:24:50 +00:00
|
|
|
if (tsk_is_oom_victim(current) &&
|
2020-08-07 06:26:04 +00:00
|
|
|
(alloc_flags & ALLOC_OOM ||
|
mm/page_alloc.c: make sure OOM victim can try allocations with no watermarks once
Roman Gushchin has reported that the OOM killer can trivially selects
next OOM victim when a thread doing memory allocation from page fault
path was selected as first OOM victim.
allocate invoked oom-killer: gfp_mask=0x14280ca(GFP_HIGHUSER_MOVABLE|__GFP_ZERO), nodemask=(null), order=0, oom_score_adj=0
allocate cpuset=/ mems_allowed=0
CPU: 1 PID: 492 Comm: allocate Not tainted 4.12.0-rc1-mm1+ #181
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
Call Trace:
oom_kill_process+0x219/0x3e0
out_of_memory+0x11d/0x480
__alloc_pages_slowpath+0xc84/0xd40
__alloc_pages_nodemask+0x245/0x260
alloc_pages_vma+0xa2/0x270
__handle_mm_fault+0xca9/0x10c0
handle_mm_fault+0xf3/0x210
__do_page_fault+0x240/0x4e0
trace_do_page_fault+0x37/0xe0
do_async_page_fault+0x19/0x70
async_page_fault+0x28/0x30
...
Out of memory: Kill process 492 (allocate) score 899 or sacrifice child
Killed process 492 (allocate) total-vm:2052368kB, anon-rss:1894576kB, file-rss:4kB, shmem-rss:0kB
allocate: page allocation failure: order:0, mode:0x14280ca(GFP_HIGHUSER_MOVABLE|__GFP_ZERO), nodemask=(null)
allocate cpuset=/ mems_allowed=0
CPU: 1 PID: 492 Comm: allocate Not tainted 4.12.0-rc1-mm1+ #181
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
Call Trace:
__alloc_pages_slowpath+0xd32/0xd40
__alloc_pages_nodemask+0x245/0x260
alloc_pages_vma+0xa2/0x270
__handle_mm_fault+0xca9/0x10c0
handle_mm_fault+0xf3/0x210
__do_page_fault+0x240/0x4e0
trace_do_page_fault+0x37/0xe0
do_async_page_fault+0x19/0x70
async_page_fault+0x28/0x30
...
oom_reaper: reaped process 492 (allocate), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB
...
allocate invoked oom-killer: gfp_mask=0x0(), nodemask=(null), order=0, oom_score_adj=0
allocate cpuset=/ mems_allowed=0
CPU: 1 PID: 492 Comm: allocate Not tainted 4.12.0-rc1-mm1+ #181
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
Call Trace:
oom_kill_process+0x219/0x3e0
out_of_memory+0x11d/0x480
pagefault_out_of_memory+0x68/0x80
mm_fault_error+0x8f/0x190
? handle_mm_fault+0xf3/0x210
__do_page_fault+0x4b2/0x4e0
trace_do_page_fault+0x37/0xe0
do_async_page_fault+0x19/0x70
async_page_fault+0x28/0x30
...
Out of memory: Kill process 233 (firewalld) score 10 or sacrifice child
Killed process 233 (firewalld) total-vm:246076kB, anon-rss:20956kB, file-rss:0kB, shmem-rss:0kB
There is a race window that the OOM reaper completes reclaiming the
first victim's memory while nothing but mutex_trylock() prevents the
first victim from calling out_of_memory() from pagefault_out_of_memory()
after memory allocation for page fault path failed due to being selected
as an OOM victim.
This is a side effect of commit 9a67f6488eca926f ("mm: consolidate
GFP_NOFAIL checks in the allocator slowpath") because that commit
silently changed the behavior from
/* Avoid allocations with no watermarks from looping endlessly */
to
/*
* Give up allocations without trying memory reserves if selected
* as an OOM victim
*/
in __alloc_pages_slowpath() by moving the location to check TIF_MEMDIE
flag. I have noticed this change but I didn't post a patch because I
thought it is an acceptable change other than noise by warn_alloc()
because !__GFP_NOFAIL allocations are allowed to fail. But we
overlooked that failing memory allocation from page fault path makes
difference due to the race window explained above.
While it might be possible to add a check to pagefault_out_of_memory()
that prevents the first victim from calling out_of_memory() or remove
out_of_memory() from pagefault_out_of_memory(), changing
pagefault_out_of_memory() does not suppress noise by warn_alloc() when
allocating thread was selected as an OOM victim. There is little point
with printing similar backtraces and memory information from both
out_of_memory() and warn_alloc().
Instead, if we guarantee that current thread can try allocations with no
watermarks once when current thread looping inside
__alloc_pages_slowpath() was selected as an OOM victim, we can follow "who
can use memory reserves" rules and suppress noise by warn_alloc() and
prevent memory allocations from page fault path from calling
pagefault_out_of_memory().
If we take the comment literally, this patch would do
- if (test_thread_flag(TIF_MEMDIE))
- goto nopage;
+ if (alloc_flags == ALLOC_NO_WATERMARKS || (gfp_mask & __GFP_NOMEMALLOC))
+ goto nopage;
because gfp_pfmemalloc_allowed() returns false if __GFP_NOMEMALLOC is
given. But if I recall correctly (I couldn't find the message), the
condition is meant to apply to only OOM victims despite the comment.
Therefore, this patch preserves TIF_MEMDIE check.
Fixes: 9a67f6488eca926f ("mm: consolidate GFP_NOFAIL checks in the allocator slowpath")
Link: http://lkml.kernel.org/r/201705192112.IAF69238.OQOHSJLFOFFMtV@I-love.SAKURA.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Reported-by: Roman Gushchin <guro@fb.com>
Tested-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org> [4.11]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-06-02 21:46:31 +00:00
|
|
|
(gfp_mask & __GFP_NOMEMALLOC)))
|
2017-02-22 23:46:19 +00:00
|
|
|
goto nopage;
|
|
|
|
|
2015-06-24 23:57:21 +00:00
|
|
|
/* Retry as long as the OOM killer is making progress */
|
2016-05-20 23:57:00 +00:00
|
|
|
if (did_some_progress) {
|
|
|
|
no_progress_loops = 0;
|
2015-06-24 23:57:21 +00:00
|
|
|
goto retry;
|
2016-05-20 23:57:00 +00:00
|
|
|
}
|
2015-06-24 23:57:21 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
nopage:
|
mm/page_alloc: fix race condition between build_all_zonelists and page allocation
Patrick Daly reported the following problem;
NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK] - before offline operation
[0] - ZONE_MOVABLE
[1] - ZONE_NORMAL
[2] - NULL
For a GFP_KERNEL allocation, alloc_pages_slowpath() will save the
offset of ZONE_NORMAL in ac->preferred_zoneref. If a concurrent
memory_offline operation removes the last page from ZONE_MOVABLE,
build_all_zonelists() & build_zonerefs_node() will update
node_zonelists as shown below. Only populated zones are added.
NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK] - after offline operation
[0] - ZONE_NORMAL
[1] - NULL
[2] - NULL
The race is simple -- page allocation could be in progress when a memory
hot-remove operation triggers a zonelist rebuild that removes zones. The
allocation request will still have a valid ac->preferred_zoneref that is
now pointing to NULL and triggers an OOM kill.
This problem probably always existed but may be slightly easier to trigger
due to 6aa303defb74 ("mm, vmscan: only allocate and reclaim from zones
with pages managed by the buddy allocator") which distinguishes between
zones that are completely unpopulated versus zones that have valid pages
not managed by the buddy allocator (e.g. reserved, memblock, ballooning
etc). Memory hotplug had multiple stages with timing considerations
around managed/present page updates, the zonelist rebuild and the zone
span updates. As David Hildenbrand puts it
memory offlining adjusts managed+present pages of the zone
essentially in one go. If after the adjustments, the zone is no
longer populated (present==0), we rebuild the zone lists.
Once that's done, we try shrinking the zone (start+spanned
pages) -- which results in zone_start_pfn == 0 if there are no
more pages. That happens *after* rebuilding the zonelists via
remove_pfn_range_from_zone().
The only requirement to fix the race is that a page allocation request
identifies when a zonelist rebuild has happened since the allocation
request started and no page has yet been allocated. Use a seqlock_t to
track zonelist updates with a lockless read-side of the zonelist and
protecting the rebuild and update of the counter with a spinlock.
[akpm@linux-foundation.org: make zonelist_update_seq static]
Link: https://lkml.kernel.org/r/20220824110900.vh674ltxmzb3proq@techsingularity.net
Fixes: 6aa303defb74 ("mm, vmscan: only allocate and reclaim from zones with pages managed by the buddy allocator")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Patrick Daly <quic_pdaly@quicinc.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: <stable@vger.kernel.org> [4.9+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-24 11:14:50 +00:00
|
|
|
/*
|
|
|
|
* Deal with possible cpuset update races or zonelist updates to avoid
|
|
|
|
* a unnecessary OOM kill.
|
|
|
|
*/
|
|
|
|
if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
|
|
|
|
check_retry_zonelist(zonelist_iter_cookie))
|
|
|
|
goto restart;
|
2017-01-24 23:18:38 +00:00
|
|
|
|
2017-02-22 23:46:19 +00:00
|
|
|
/*
|
|
|
|
* Make sure that __GFP_NOFAIL request doesn't leak out and make sure
|
|
|
|
* we always retry
|
|
|
|
*/
|
|
|
|
if (gfp_mask & __GFP_NOFAIL) {
|
|
|
|
/*
|
|
|
|
* All existing users of the __GFP_NOFAIL are blockable, so warn
|
|
|
|
* of any new users that actually require GFP_NOWAIT
|
|
|
|
*/
|
2022-05-19 21:08:55 +00:00
|
|
|
if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
|
2017-02-22 23:46:19 +00:00
|
|
|
goto fail;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* PF_MEMALLOC request from this context is rather bizarre
|
|
|
|
* because we cannot reclaim anything and only can loop waiting
|
|
|
|
* for somebody to do a work for us
|
|
|
|
*/
|
2022-05-19 21:08:55 +00:00
|
|
|
WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
|
2017-02-22 23:46:19 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* non failing costly orders are a hard requirement which we
|
|
|
|
* are not prepared for much so let's warn about these users
|
|
|
|
* so that we can identify them and convert them to something
|
|
|
|
* else.
|
|
|
|
*/
|
2022-09-16 07:22:55 +00:00
|
|
|
WARN_ON_ONCE_GFP(costly_order, gfp_mask);
|
2017-02-22 23:46:19 +00:00
|
|
|
|
2017-02-22 23:46:25 +00:00
|
|
|
/*
|
2023-01-13 11:12:16 +00:00
|
|
|
* Help non-failing allocations by giving some access to memory
|
|
|
|
* reserves normally used for high priority non-blocking
|
|
|
|
* allocations but do not use ALLOC_NO_WATERMARKS because this
|
2017-02-22 23:46:25 +00:00
|
|
|
* could deplete whole memory reserves which would just make
|
2023-01-13 11:12:16 +00:00
|
|
|
* the situation worse.
|
2017-02-22 23:46:25 +00:00
|
|
|
*/
|
2023-01-13 11:12:16 +00:00
|
|
|
page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
|
2017-02-22 23:46:25 +00:00
|
|
|
if (page)
|
|
|
|
goto got_pg;
|
|
|
|
|
2017-02-22 23:46:19 +00:00
|
|
|
cond_resched();
|
|
|
|
goto retry;
|
|
|
|
}
|
|
|
|
fail:
|
2017-02-22 23:46:10 +00:00
|
|
|
warn_alloc(gfp_mask, ac->nodemask,
|
2016-10-08 00:01:55 +00:00
|
|
|
"page allocation failure: order:%u", order);
|
2005-04-16 22:20:36 +00:00
|
|
|
got_pg:
|
mm: sl[au]b: add knowledge of PFMEMALLOC reserve pages
When a user or administrator requires swap for their application, they
create a swap partition and file, format it with mkswap and activate it
with swapon. Swap over the network is considered as an option in diskless
systems. The two likely scenarios are when blade servers are used as part
of a cluster where the form factor or maintenance costs do not allow the
use of disks and thin clients.
The Linux Terminal Server Project recommends the use of the Network Block
Device (NBD) for swap according to the manual at
https://sourceforge.net/projects/ltsp/files/Docs-Admin-Guide/LTSPManual.pdf/download
There is also documentation and tutorials on how to setup swap over NBD at
places like https://help.ubuntu.com/community/UbuntuLTSP/EnableNBDSWAP The
nbd-client also documents the use of NBD as swap. Despite this, the fact
is that a machine using NBD for swap can deadlock within minutes if swap
is used intensively. This patch series addresses the problem.
The core issue is that network block devices do not use mempools like
normal block devices do. As the host cannot control where they receive
packets from, they cannot reliably work out in advance how much memory
they might need. Some years ago, Peter Zijlstra developed a series of
patches that supported swap over an NFS that at least one distribution is
carrying within their kernels. This patch series borrows very heavily
from Peter's work to support swapping over NBD as a pre-requisite to
supporting swap-over-NFS. The bulk of the complexity is concerned with
preserving memory that is allocated from the PFMEMALLOC reserves for use
by the network layer which is needed for both NBD and NFS.
Patch 1 adds knowledge of the PFMEMALLOC reserves to SLAB and SLUB to
preserve access to pages allocated under low memory situations
to callers that are freeing memory.
Patch 2 optimises the SLUB fast path to avoid pfmemalloc checks
Patch 3 introduces __GFP_MEMALLOC to allow access to the PFMEMALLOC
reserves without setting PFMEMALLOC.
Patch 4 opens the possibility for softirqs to use PFMEMALLOC reserves
for later use by network packet processing.
Patch 5 only sets page->pfmemalloc when ALLOC_NO_WATERMARKS was required
Patch 6 ignores memory policies when ALLOC_NO_WATERMARKS is set.
Patches 7-12 allows network processing to use PFMEMALLOC reserves when
the socket has been marked as being used by the VM to clean pages. If
packets are received and stored in pages that were allocated under
low-memory situations and are unrelated to the VM, the packets
are dropped.
Patch 11 reintroduces __skb_alloc_page which the networking
folk may object to but is needed in some cases to propogate
pfmemalloc from a newly allocated page to an skb. If there is a
strong objection, this patch can be dropped with the impact being
that swap-over-network will be slower in some cases but it should
not fail.
Patch 13 is a micro-optimisation to avoid a function call in the
common case.
Patch 14 tags NBD sockets as being SOCK_MEMALLOC so they can use
PFMEMALLOC if necessary.
Patch 15 notes that it is still possible for the PFMEMALLOC reserve
to be depleted. To prevent this, direct reclaimers get throttled on
a waitqueue if 50% of the PFMEMALLOC reserves are depleted. It is
expected that kswapd and the direct reclaimers already running
will clean enough pages for the low watermark to be reached and
the throttled processes are woken up.
Patch 16 adds a statistic to track how often processes get throttled
Some basic performance testing was run using kernel builds, netperf on
loopback for UDP and TCP, hackbench (pipes and sockets), iozone and
sysbench. Each of them were expected to use the sl*b allocators
reasonably heavily but there did not appear to be significant performance
variances.
For testing swap-over-NBD, a machine was booted with 2G of RAM with a
swapfile backed by NBD. 8*NUM_CPU processes were started that create
anonymous memory mappings and read them linearly in a loop. The total
size of the mappings were 4*PHYSICAL_MEMORY to use swap heavily under
memory pressure.
Without the patches and using SLUB, the machine locks up within minutes
and runs to completion with them applied. With SLAB, the story is
different as an unpatched kernel run to completion. However, the patched
kernel completed the test 45% faster.
MICRO
3.5.0-rc2 3.5.0-rc2
vanilla swapnbd
Unrecognised test vmscan-anon-mmap-write
MMTests Statistics: duration
Sys Time Running Test (seconds) 197.80 173.07
User+Sys Time Running Test (seconds) 206.96 182.03
Total Elapsed Time (seconds) 3240.70 1762.09
This patch: mm: sl[au]b: add knowledge of PFMEMALLOC reserve pages
Allocations of pages below the min watermark run a risk of the machine
hanging due to a lack of memory. To prevent this, only callers who have
PF_MEMALLOC or TIF_MEMDIE set and are not processing an interrupt are
allowed to allocate with ALLOC_NO_WATERMARKS. Once they are allocated to
a slab though, nothing prevents other callers consuming free objects
within those slabs. This patch limits access to slab pages that were
alloced from the PFMEMALLOC reserves.
When this patch is applied, pages allocated from below the low watermark
are returned with page->pfmemalloc set and it is up to the caller to
determine how the page should be protected. SLAB restricts access to any
page with page->pfmemalloc set to callers which are known to able to
access the PFMEMALLOC reserve. If one is not available, an attempt is
made to allocate a new page rather than use a reserve. SLUB is a bit more
relaxed in that it only records if the current per-CPU page was allocated
from PFMEMALLOC reserve and uses another partial slab if the caller does
not have the necessary GFP or process flags. This was found to be
sufficient in tests to avoid hangs due to SLUB generally maintaining
smaller lists than SLAB.
In low-memory conditions it does mean that !PFMEMALLOC allocators can fail
a slab allocation even though free objects are available because they are
being preserved for callers that are freeing pages.
[a.p.zijlstra@chello.nl: Original implementation]
[sebastian@breakpoint.cc: Correct order of page flag clearing]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: David Miller <davem@davemloft.net>
Cc: Neil Brown <neilb@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Christie <michaelc@cs.wisc.edu>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-31 23:43:58 +00:00
|
|
|
return page;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
2009-06-16 22:31:57 +00:00
|
|
|
|
2017-02-24 22:56:29 +00:00
|
|
|
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
|
2017-07-06 22:40:03 +00:00
|
|
|
int preferred_nid, nodemask_t *nodemask,
|
2021-04-30 06:01:10 +00:00
|
|
|
struct alloc_context *ac, gfp_t *alloc_gfp,
|
2017-02-24 22:56:29 +00:00
|
|
|
unsigned int *alloc_flags)
|
2009-06-16 22:31:57 +00:00
|
|
|
{
|
2020-06-03 22:59:01 +00:00
|
|
|
ac->highest_zoneidx = gfp_zone(gfp_mask);
|
2017-07-06 22:40:03 +00:00
|
|
|
ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
|
2017-02-24 22:56:29 +00:00
|
|
|
ac->nodemask = nodemask;
|
2020-06-03 22:59:08 +00:00
|
|
|
ac->migratetype = gfp_migratetype(gfp_mask);
|
2009-06-16 22:31:57 +00:00
|
|
|
|
2016-05-20 00:13:30 +00:00
|
|
|
if (cpusets_enabled()) {
|
2021-04-30 06:01:10 +00:00
|
|
|
*alloc_gfp |= __GFP_HARDWALL;
|
2020-08-07 06:26:01 +00:00
|
|
|
/*
|
|
|
|
* When we are in the interrupt context, it is irrelevant
|
|
|
|
* to the current task context. It means that any node ok.
|
|
|
|
*/
|
2021-09-02 21:58:13 +00:00
|
|
|
if (in_task() && !ac->nodemask)
|
2017-02-24 22:56:29 +00:00
|
|
|
ac->nodemask = &cpuset_current_mems_allowed;
|
2017-02-24 22:56:53 +00:00
|
|
|
else
|
|
|
|
*alloc_flags |= ALLOC_CPUSET;
|
2016-05-20 00:13:30 +00:00
|
|
|
}
|
|
|
|
|
2022-06-05 15:25:37 +00:00
|
|
|
might_alloc(gfp_mask);
|
2009-06-16 22:31:57 +00:00
|
|
|
|
|
|
|
if (should_fail_alloc_page(gfp_mask, order))
|
2017-02-24 22:56:29 +00:00
|
|
|
return false;
|
2009-06-16 22:31:57 +00:00
|
|
|
|
2021-05-05 01:39:00 +00:00
|
|
|
*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
|
2018-05-23 01:18:21 +00:00
|
|
|
|
2015-11-07 00:28:12 +00:00
|
|
|
/* Dirty zone balancing only done in the fast path */
|
2017-02-24 22:56:29 +00:00
|
|
|
ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
|
2015-11-07 00:28:12 +00:00
|
|
|
|
2016-06-03 21:56:01 +00:00
|
|
|
/*
|
|
|
|
* The preferred zone is used for statistics but crucially it is
|
|
|
|
* also used as the starting point for the zonelist iterator. It
|
|
|
|
* may get reset for allocations that ignore memory policies.
|
|
|
|
*/
|
2017-02-24 22:56:29 +00:00
|
|
|
ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
|
2020-06-03 22:59:01 +00:00
|
|
|
ac->highest_zoneidx, ac->nodemask);
|
2020-10-13 23:55:51 +00:00
|
|
|
|
|
|
|
return true;
|
2017-02-24 22:56:29 +00:00
|
|
|
}
|
|
|
|
|
2021-04-30 06:01:45 +00:00
|
|
|
/*
|
2021-04-30 06:01:48 +00:00
|
|
|
* __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
|
2021-04-30 06:01:45 +00:00
|
|
|
* @gfp: GFP flags for the allocation
|
|
|
|
* @preferred_nid: The preferred NUMA node ID to allocate from
|
|
|
|
* @nodemask: Set of nodes to allocate from, may be NULL
|
2021-04-30 06:01:48 +00:00
|
|
|
* @nr_pages: The number of pages desired on the list or array
|
|
|
|
* @page_list: Optional list to store the allocated pages
|
|
|
|
* @page_array: Optional array to store the pages
|
2021-04-30 06:01:45 +00:00
|
|
|
*
|
|
|
|
* This is a batched version of the page allocator that attempts to
|
2021-04-30 06:01:48 +00:00
|
|
|
* allocate nr_pages quickly. Pages are added to page_list if page_list
|
|
|
|
* is not NULL, otherwise it is assumed that the page_array is valid.
|
2021-04-30 06:01:45 +00:00
|
|
|
*
|
2021-04-30 06:01:48 +00:00
|
|
|
* For lists, nr_pages is the number of pages that should be allocated.
|
|
|
|
*
|
|
|
|
* For arrays, only NULL elements are populated with pages and nr_pages
|
|
|
|
* is the maximum number of pages that will be stored in the array.
|
|
|
|
*
|
|
|
|
* Returns the number of pages on the list or array.
|
2021-04-30 06:01:45 +00:00
|
|
|
*/
|
|
|
|
unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
|
|
|
|
nodemask_t *nodemask, int nr_pages,
|
2021-04-30 06:01:48 +00:00
|
|
|
struct list_head *page_list,
|
|
|
|
struct page **page_array)
|
2021-04-30 06:01:45 +00:00
|
|
|
{
|
|
|
|
struct page *page;
|
2022-06-24 12:54:21 +00:00
|
|
|
unsigned long __maybe_unused UP_flags;
|
2021-04-30 06:01:45 +00:00
|
|
|
struct zone *zone;
|
|
|
|
struct zoneref *z;
|
|
|
|
struct per_cpu_pages *pcp;
|
|
|
|
struct list_head *pcp_list;
|
|
|
|
struct alloc_context ac;
|
|
|
|
gfp_t alloc_gfp;
|
|
|
|
unsigned int alloc_flags = ALLOC_WMARK_LOW;
|
2021-06-29 02:41:50 +00:00
|
|
|
int nr_populated = 0, nr_account = 0;
|
2021-04-30 06:01:45 +00:00
|
|
|
|
2021-04-30 06:01:48 +00:00
|
|
|
/*
|
|
|
|
* Skip populated array elements to determine if any pages need
|
|
|
|
* to be allocated before disabling IRQs.
|
|
|
|
*/
|
2021-06-25 01:40:04 +00:00
|
|
|
while (page_array && nr_populated < nr_pages && page_array[nr_populated])
|
2021-04-30 06:01:48 +00:00
|
|
|
nr_populated++;
|
|
|
|
|
2021-07-15 04:26:52 +00:00
|
|
|
/* No pages requested? */
|
|
|
|
if (unlikely(nr_pages <= 0))
|
|
|
|
goto out;
|
|
|
|
|
2021-06-25 01:40:07 +00:00
|
|
|
/* Already populated array? */
|
|
|
|
if (unlikely(page_array && nr_pages - nr_populated == 0))
|
2021-07-15 04:26:52 +00:00
|
|
|
goto out;
|
2021-06-25 01:40:07 +00:00
|
|
|
|
2021-10-28 21:36:04 +00:00
|
|
|
/* Bulk allocator does not support memcg accounting. */
|
2023-02-13 19:29:22 +00:00
|
|
|
if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
|
2021-10-28 21:36:04 +00:00
|
|
|
goto failed;
|
|
|
|
|
2021-04-30 06:01:45 +00:00
|
|
|
/* Use the single page allocator for one page. */
|
2021-04-30 06:01:48 +00:00
|
|
|
if (nr_pages - nr_populated == 1)
|
2021-04-30 06:01:45 +00:00
|
|
|
goto failed;
|
|
|
|
|
2021-07-15 04:26:46 +00:00
|
|
|
#ifdef CONFIG_PAGE_OWNER
|
|
|
|
/*
|
|
|
|
* PAGE_OWNER may recurse into the allocator to allocate space to
|
|
|
|
* save the stack with pagesets.lock held. Releasing/reacquiring
|
|
|
|
* removes much of the performance benefit of bulk allocation so
|
|
|
|
* force the caller to allocate one page at a time as it'll have
|
|
|
|
* similar performance to added complexity to the bulk allocator.
|
|
|
|
*/
|
|
|
|
if (static_branch_unlikely(&page_owner_inited))
|
|
|
|
goto failed;
|
|
|
|
#endif
|
|
|
|
|
2021-04-30 06:01:45 +00:00
|
|
|
/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
|
|
|
|
gfp &= gfp_allowed_mask;
|
|
|
|
alloc_gfp = gfp;
|
|
|
|
if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
|
2021-07-15 04:26:52 +00:00
|
|
|
goto out;
|
2021-04-30 06:01:45 +00:00
|
|
|
gfp = alloc_gfp;
|
|
|
|
|
|
|
|
/* Find an allowed local zone that meets the low watermark. */
|
|
|
|
for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
|
|
|
|
unsigned long mark;
|
|
|
|
|
|
|
|
if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
|
|
|
|
!__cpuset_zone_allowed(zone, gfp)) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
|
|
|
|
zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
|
|
|
|
goto failed;
|
|
|
|
}
|
|
|
|
|
|
|
|
mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
|
|
|
|
if (zone_watermark_fast(zone, 0, mark,
|
|
|
|
zonelist_zone_idx(ac.preferred_zoneref),
|
|
|
|
alloc_flags, gfp)) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If there are no allowed local zones that meets the watermarks then
|
|
|
|
* try to allocate a single page and reclaim if necessary.
|
|
|
|
*/
|
2021-04-30 06:01:51 +00:00
|
|
|
if (unlikely(!zone))
|
2021-04-30 06:01:45 +00:00
|
|
|
goto failed;
|
|
|
|
|
2022-11-18 10:17:14 +00:00
|
|
|
/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
|
2022-06-24 12:54:21 +00:00
|
|
|
pcp_trylock_prepare(UP_flags);
|
2022-11-18 10:17:14 +00:00
|
|
|
pcp = pcp_spin_trylock(zone->per_cpu_pageset);
|
2022-06-24 12:54:23 +00:00
|
|
|
if (!pcp)
|
2022-06-24 12:54:21 +00:00
|
|
|
goto failed_irq;
|
2021-04-30 06:01:45 +00:00
|
|
|
|
|
|
|
/* Attempt the batch allocation */
|
2021-06-29 02:43:08 +00:00
|
|
|
pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
|
2021-04-30 06:01:48 +00:00
|
|
|
while (nr_populated < nr_pages) {
|
|
|
|
|
|
|
|
/* Skip existing pages */
|
|
|
|
if (page_array && page_array[nr_populated]) {
|
|
|
|
nr_populated++;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
2021-06-29 02:43:08 +00:00
|
|
|
page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
|
2021-04-30 06:01:45 +00:00
|
|
|
pcp, pcp_list);
|
2021-04-30 06:01:51 +00:00
|
|
|
if (unlikely(!page)) {
|
2022-05-26 09:12:10 +00:00
|
|
|
/* Try and allocate at least one page */
|
2022-06-24 12:54:21 +00:00
|
|
|
if (!nr_account) {
|
2022-11-18 10:17:14 +00:00
|
|
|
pcp_spin_unlock(pcp);
|
2021-04-30 06:01:45 +00:00
|
|
|
goto failed_irq;
|
2022-06-24 12:54:21 +00:00
|
|
|
}
|
2021-04-30 06:01:45 +00:00
|
|
|
break;
|
|
|
|
}
|
2021-06-29 02:41:50 +00:00
|
|
|
nr_account++;
|
2021-04-30 06:01:45 +00:00
|
|
|
|
|
|
|
prep_new_page(page, 0, gfp, 0);
|
2021-04-30 06:01:48 +00:00
|
|
|
if (page_list)
|
|
|
|
list_add(&page->lru, page_list);
|
|
|
|
else
|
|
|
|
page_array[nr_populated] = page;
|
|
|
|
nr_populated++;
|
2021-04-30 06:01:45 +00:00
|
|
|
}
|
|
|
|
|
2022-11-18 10:17:14 +00:00
|
|
|
pcp_spin_unlock(pcp);
|
2022-06-24 12:54:21 +00:00
|
|
|
pcp_trylock_finish(UP_flags);
|
2021-06-29 02:41:54 +00:00
|
|
|
|
2021-06-29 02:41:50 +00:00
|
|
|
__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
|
|
|
|
zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
|
2021-04-30 06:01:45 +00:00
|
|
|
|
2021-07-15 04:26:52 +00:00
|
|
|
out:
|
2021-04-30 06:01:48 +00:00
|
|
|
return nr_populated;
|
2021-04-30 06:01:45 +00:00
|
|
|
|
|
|
|
failed_irq:
|
2022-06-24 12:54:21 +00:00
|
|
|
pcp_trylock_finish(UP_flags);
|
2021-04-30 06:01:45 +00:00
|
|
|
|
|
|
|
failed:
|
|
|
|
page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
|
|
|
|
if (page) {
|
2021-04-30 06:01:48 +00:00
|
|
|
if (page_list)
|
|
|
|
list_add(&page->lru, page_list);
|
|
|
|
else
|
|
|
|
page_array[nr_populated] = page;
|
|
|
|
nr_populated++;
|
2021-04-30 06:01:45 +00:00
|
|
|
}
|
|
|
|
|
2021-07-15 04:26:52 +00:00
|
|
|
goto out;
|
2021-04-30 06:01:45 +00:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
|
|
|
|
|
2017-02-24 22:56:29 +00:00
|
|
|
/*
|
|
|
|
* This is the 'heart' of the zoned buddy allocator.
|
|
|
|
*/
|
2021-04-30 06:01:15 +00:00
|
|
|
struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
|
2017-07-06 22:40:03 +00:00
|
|
|
nodemask_t *nodemask)
|
2017-02-24 22:56:29 +00:00
|
|
|
{
|
|
|
|
struct page *page;
|
|
|
|
unsigned int alloc_flags = ALLOC_WMARK_LOW;
|
2021-04-30 06:01:10 +00:00
|
|
|
gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
|
2017-02-24 22:56:29 +00:00
|
|
|
struct alloc_context ac = { };
|
|
|
|
|
2018-11-16 23:08:53 +00:00
|
|
|
/*
|
|
|
|
* There are several places where we assume that the order value is sane
|
|
|
|
* so bail out early if the request is out of bound.
|
|
|
|
*/
|
2023-03-15 11:31:33 +00:00
|
|
|
if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp))
|
2018-11-16 23:08:53 +00:00
|
|
|
return NULL;
|
|
|
|
|
2021-04-30 06:01:13 +00:00
|
|
|
gfp &= gfp_allowed_mask;
|
2021-05-05 01:38:57 +00:00
|
|
|
/*
|
|
|
|
* Apply scoped allocation constraints. This is mainly about GFP_NOFS
|
|
|
|
* resp. GFP_NOIO which has to be inherited for all allocation requests
|
|
|
|
* from a particular context which has been marked by
|
2021-05-05 01:39:00 +00:00
|
|
|
* memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
|
|
|
|
* movable zones are not used during allocation.
|
2021-05-05 01:38:57 +00:00
|
|
|
*/
|
|
|
|
gfp = current_gfp_context(gfp);
|
2021-04-30 06:01:13 +00:00
|
|
|
alloc_gfp = gfp;
|
|
|
|
if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
|
2021-04-30 06:01:10 +00:00
|
|
|
&alloc_gfp, &alloc_flags))
|
2017-02-24 22:56:29 +00:00
|
|
|
return NULL;
|
|
|
|
|
mm, page_alloc: spread allocations across zones before introducing fragmentation
Patch series "Fragmentation avoidance improvements", v5.
It has been noted before that fragmentation avoidance (aka
anti-fragmentation) is not perfect. Given sufficient time or an adverse
workload, memory gets fragmented and the long-term success of high-order
allocations degrades. This series defines an adverse workload, a definition
of external fragmentation events (including serious) ones and a series
that reduces the level of those fragmentation events.
The details of the workload and the consequences are described in more
detail in the changelogs. However, from patch 1, this is a high-level
summary of the adverse workload. The exact details are found in the
mmtests implementation.
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch)
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameterr create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed
3. Warm up a number of fio read-only threads accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll fault back in old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup
Overall the series reduces external fragmentation causing events by over 94%
on 1 and 2 socket machines, which in turn impacts high-order allocation
success rates over the long term. There are differences in latencies and
high-order allocation success rates. Latencies are a mixed bag as they
are vulnerable to exact system state and whether allocations succeeded
so they are treated as a secondary metric.
Patch 1 uses lower zones if they are populated and have free memory
instead of fragmenting a higher zone. It's special cased to
handle a Normal->DMA32 fallback with the reasons explained
in the changelog.
Patch 2-4 boosts watermarks temporarily when an external fragmentation
event occurs. kswapd wakes to reclaim a small amount of old memory
and then wakes kcompactd on completion to recover the system
slightly. This introduces some overhead in the slowpath. The level
of boosting can be tuned or disabled depending on the tolerance
for fragmentation vs allocation latency.
Patch 5 stalls some movable allocation requests to let kswapd from patch 4
make some progress. The duration of the stalls is very low but it
is possible to tune the system to avoid fragmentation events if
larger stalls can be tolerated.
The bulk of the improvement in fragmentation avoidance is from patches
1-4 but patch 5 can deal with a rare corner case and provides the option
of tuning a system for THP allocation success rates in exchange for
some stalls to control fragmentation.
This patch (of 5):
The page allocator zone lists are iterated based on the watermarks of each
zone which does not take anti-fragmentation into account. On x86, node 0
may have multiple zones while other nodes have one zone. A consequence is
that tasks running on node 0 may fragment ZONE_NORMAL even though
ZONE_DMA32 has plenty of free memory. This patch special cases the
allocator fast path such that it'll try an allocation from a lower local
zone before fragmenting a higher zone. In this case, stealing of
pageblocks or orders larger than a pageblock are still allowed in the fast
path as they are uninteresting from a fragmentation point of view.
This was evaluated using a benchmark designed to fragment memory before
attempting THP allocations. It's implemented in mmtests as the following
configurations
configs/config-global-dhp__workload_thpfioscale
configs/config-global-dhp__workload_thpfioscale-defrag
configs/config-global-dhp__workload_thpfioscale-madvhugepage
e.g. from mmtests
./run-mmtests.sh --run-monitor --config configs/config-global-dhp__workload_thpfioscale test-run-1
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch).
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameter create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed.
3. Warm up a number of fio read-only processes accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll refault old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds.
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup the test files.
Note that due to the use of IO and page cache that this benchmark is not
suitable for running on large machines where the time to fragment memory
may be excessive. Also note that while this is one mix that generates
fragmentation that it's not the only mix that generates fragmentation.
Differences in workload that are more slab-intensive or whether SLUB is
used with high-order pages may yield different results.
When the page allocator fragments memory, it records the event using the
mm_page_alloc_extfrag ftrace event. If the fallback_order is smaller than
a pageblock order (order-9 on 64-bit x86) then it's considered to be an
"external fragmentation event" that may cause issues in the future.
Hence, the primary metric here is the number of external fragmentation
events that occur with order < 9. The secondary metric is allocation
latency and huge page allocation success rates but note that differences
in latencies and what the success rate also can affect the number of
external fragmentation event which is why it's a secondary metric.
1-socket Skylake machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 1 THP allocating thread
--------------------------------------
4.20-rc3 extfrag events < order 9: 804694
4.20-rc3+patch: 408912 (49% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 662.92 ( 0.00%) 653.58 * 1.41%*
Amean fault-huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
Fault latencies are slightly reduced while allocation success rates remain
at zero as this configuration does not make any special effort to allocate
THP and fio is heavily active at the time and either filling memory or
keeping pages resident. However, a 49% reduction of serious fragmentation
events reduces the changes of external fragmentation being a problem in
the future.
Vlastimil asked during review for a breakdown of the allocation types
that are falling back.
vanilla
3816 MIGRATE_UNMOVABLE
800845 MIGRATE_MOVABLE
33 MIGRATE_UNRECLAIMABLE
patch
735 MIGRATE_UNMOVABLE
408135 MIGRATE_MOVABLE
42 MIGRATE_UNRECLAIMABLE
The majority of the fallbacks are due to movable allocations and this is
consistent for the workload throughout the series so will not be presented
again as the primary source of fallbacks are movable allocations.
Movable fallbacks are sometimes considered "ok" to fallback because they
can be migrated. The problem is that they can fill an
unmovable/reclaimable pageblock causing those allocations to fallback
later and polluting pageblocks with pages that cannot move. If there is a
movable fallback, it is pretty much guaranteed to affect an
unmovable/reclaimable pageblock and while it might not be enough to
actually cause a unmovable/reclaimable fallback in the future, we cannot
know that in advance so the patch takes the only option available to it.
Hence, it's important to control them. This point is also consistent
throughout the series and will not be repeated.
1-socket Skylake machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 291392
4.20-rc3+patch: 191187 (34% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 1495.14 ( 0.00%) 1467.55 ( 1.85%)
Amean fault-huge-1 1098.48 ( 0.00%) 1127.11 ( -2.61%)
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 78.57 ( 0.00%) 77.64 ( -1.18%)
Fragmentation events were reduced quite a bit although this is known
to be a little variable. The latencies and allocation success rates
are similar but they were already quite high.
2-socket Haswell machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 5 THP allocating threads
----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 215698
4.20-rc3+patch: 200210 (7% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 1350.05 ( 0.00%) 1346.45 ( 0.27%)
Amean fault-huge-5 4181.01 ( 0.00%) 3418.60 ( 18.24%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 1.15 ( 0.00%) 0.78 ( -31.88%)
The reduction of external fragmentation events is slight and this is
partially due to the removal of __GFP_THISNODE in commit ac5b2c18911f
("mm: thp: relax __GFP_THISNODE for MADV_HUGEPAGE mappings") as THP
allocations can now spill over to remote nodes instead of fragmenting
local memory.
2-socket Haswell machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 166352
4.20-rc3+patch: 147463 (11% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 6138.97 ( 0.00%) 6217.43 ( -1.28%)
Amean fault-huge-5 2294.28 ( 0.00%) 3163.33 * -37.88%*
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 96.82 ( 0.00%) 95.14 ( -1.74%)
There was a slight reduction in external fragmentation events although the
latencies were higher. The allocation success rate is high enough that
the system is struggling and there is quite a lot of parallel reclaim and
compaction activity. There is also a certain degree of luck on whether
processes start on node 0 or not for this patch but the relevance is
reduced later in the series.
Overall, the patch reduces the number of external fragmentation causing
events so the success of THP over long periods of time would be improved
for this adverse workload.
Link: http://lkml.kernel.org/r/20181123114528.28802-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 08:35:41 +00:00
|
|
|
/*
|
|
|
|
* Forbid the first pass from falling back to types that fragment
|
|
|
|
* memory until all local zones are considered.
|
|
|
|
*/
|
2021-04-30 06:01:13 +00:00
|
|
|
alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
|
mm, page_alloc: spread allocations across zones before introducing fragmentation
Patch series "Fragmentation avoidance improvements", v5.
It has been noted before that fragmentation avoidance (aka
anti-fragmentation) is not perfect. Given sufficient time or an adverse
workload, memory gets fragmented and the long-term success of high-order
allocations degrades. This series defines an adverse workload, a definition
of external fragmentation events (including serious) ones and a series
that reduces the level of those fragmentation events.
The details of the workload and the consequences are described in more
detail in the changelogs. However, from patch 1, this is a high-level
summary of the adverse workload. The exact details are found in the
mmtests implementation.
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch)
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameterr create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed
3. Warm up a number of fio read-only threads accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll fault back in old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup
Overall the series reduces external fragmentation causing events by over 94%
on 1 and 2 socket machines, which in turn impacts high-order allocation
success rates over the long term. There are differences in latencies and
high-order allocation success rates. Latencies are a mixed bag as they
are vulnerable to exact system state and whether allocations succeeded
so they are treated as a secondary metric.
Patch 1 uses lower zones if they are populated and have free memory
instead of fragmenting a higher zone. It's special cased to
handle a Normal->DMA32 fallback with the reasons explained
in the changelog.
Patch 2-4 boosts watermarks temporarily when an external fragmentation
event occurs. kswapd wakes to reclaim a small amount of old memory
and then wakes kcompactd on completion to recover the system
slightly. This introduces some overhead in the slowpath. The level
of boosting can be tuned or disabled depending on the tolerance
for fragmentation vs allocation latency.
Patch 5 stalls some movable allocation requests to let kswapd from patch 4
make some progress. The duration of the stalls is very low but it
is possible to tune the system to avoid fragmentation events if
larger stalls can be tolerated.
The bulk of the improvement in fragmentation avoidance is from patches
1-4 but patch 5 can deal with a rare corner case and provides the option
of tuning a system for THP allocation success rates in exchange for
some stalls to control fragmentation.
This patch (of 5):
The page allocator zone lists are iterated based on the watermarks of each
zone which does not take anti-fragmentation into account. On x86, node 0
may have multiple zones while other nodes have one zone. A consequence is
that tasks running on node 0 may fragment ZONE_NORMAL even though
ZONE_DMA32 has plenty of free memory. This patch special cases the
allocator fast path such that it'll try an allocation from a lower local
zone before fragmenting a higher zone. In this case, stealing of
pageblocks or orders larger than a pageblock are still allowed in the fast
path as they are uninteresting from a fragmentation point of view.
This was evaluated using a benchmark designed to fragment memory before
attempting THP allocations. It's implemented in mmtests as the following
configurations
configs/config-global-dhp__workload_thpfioscale
configs/config-global-dhp__workload_thpfioscale-defrag
configs/config-global-dhp__workload_thpfioscale-madvhugepage
e.g. from mmtests
./run-mmtests.sh --run-monitor --config configs/config-global-dhp__workload_thpfioscale test-run-1
The broad details of the workload are as follows;
1. Create an XFS filesystem (not specified in the configuration but done
as part of the testing for this patch).
2. Start 4 fio threads that write a number of 64K files inefficiently.
Inefficiently means that files are created on first access and not
created in advance (fio parameter create_on_open=1) and fallocate
is not used (fallocate=none). With multiple IO issuers this creates
a mix of slab and page cache allocations over time. The total size
of the files is 150% physical memory so that the slabs and page cache
pages get mixed.
3. Warm up a number of fio read-only processes accessing the same files
created in step 2. This part runs for the same length of time it
took to create the files. It'll refault old data and further
interleave slab and page cache allocations. As it's now low on
memory due to step 2, fragmentation occurs as pageblocks get
stolen.
4. While step 3 is still running, start a process that tries to allocate
75% of memory as huge pages with a number of threads. The number of
threads is based on a (NR_CPUS_SOCKET - NR_FIO_THREADS)/4 to avoid THP
threads contending with fio, any other threads or forcing cross-NUMA
scheduling. Note that the test has not been used on a machine with less
than 8 cores. The benchmark records whether huge pages were allocated
and what the fault latency was in microseconds.
5. Measure the number of events potentially causing external fragmentation,
the fault latency and the huge page allocation success rate.
6. Cleanup the test files.
Note that due to the use of IO and page cache that this benchmark is not
suitable for running on large machines where the time to fragment memory
may be excessive. Also note that while this is one mix that generates
fragmentation that it's not the only mix that generates fragmentation.
Differences in workload that are more slab-intensive or whether SLUB is
used with high-order pages may yield different results.
When the page allocator fragments memory, it records the event using the
mm_page_alloc_extfrag ftrace event. If the fallback_order is smaller than
a pageblock order (order-9 on 64-bit x86) then it's considered to be an
"external fragmentation event" that may cause issues in the future.
Hence, the primary metric here is the number of external fragmentation
events that occur with order < 9. The secondary metric is allocation
latency and huge page allocation success rates but note that differences
in latencies and what the success rate also can affect the number of
external fragmentation event which is why it's a secondary metric.
1-socket Skylake machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 1 THP allocating thread
--------------------------------------
4.20-rc3 extfrag events < order 9: 804694
4.20-rc3+patch: 408912 (49% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 662.92 ( 0.00%) 653.58 * 1.41%*
Amean fault-huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
Fault latencies are slightly reduced while allocation success rates remain
at zero as this configuration does not make any special effort to allocate
THP and fio is heavily active at the time and either filling memory or
keeping pages resident. However, a 49% reduction of serious fragmentation
events reduces the changes of external fragmentation being a problem in
the future.
Vlastimil asked during review for a breakdown of the allocation types
that are falling back.
vanilla
3816 MIGRATE_UNMOVABLE
800845 MIGRATE_MOVABLE
33 MIGRATE_UNRECLAIMABLE
patch
735 MIGRATE_UNMOVABLE
408135 MIGRATE_MOVABLE
42 MIGRATE_UNRECLAIMABLE
The majority of the fallbacks are due to movable allocations and this is
consistent for the workload throughout the series so will not be presented
again as the primary source of fallbacks are movable allocations.
Movable fallbacks are sometimes considered "ok" to fallback because they
can be migrated. The problem is that they can fill an
unmovable/reclaimable pageblock causing those allocations to fallback
later and polluting pageblocks with pages that cannot move. If there is a
movable fallback, it is pretty much guaranteed to affect an
unmovable/reclaimable pageblock and while it might not be enough to
actually cause a unmovable/reclaimable fallback in the future, we cannot
know that in advance so the patch takes the only option available to it.
Hence, it's important to control them. This point is also consistent
throughout the series and will not be repeated.
1-socket Skylake machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 291392
4.20-rc3+patch: 191187 (34% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-1 1495.14 ( 0.00%) 1467.55 ( 1.85%)
Amean fault-huge-1 1098.48 ( 0.00%) 1127.11 ( -2.61%)
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-1 78.57 ( 0.00%) 77.64 ( -1.18%)
Fragmentation events were reduced quite a bit although this is known
to be a little variable. The latencies and allocation success rates
are similar but they were already quite high.
2-socket Haswell machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 5 THP allocating threads
----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 215698
4.20-rc3+patch: 200210 (7% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 1350.05 ( 0.00%) 1346.45 ( 0.27%)
Amean fault-huge-5 4181.01 ( 0.00%) 3418.60 ( 18.24%)
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 1.15 ( 0.00%) 0.78 ( -31.88%)
The reduction of external fragmentation events is slight and this is
partially due to the removal of __GFP_THISNODE in commit ac5b2c18911f
("mm: thp: relax __GFP_THISNODE for MADV_HUGEPAGE mappings") as THP
allocations can now spill over to remote nodes instead of fragmenting
local memory.
2-socket Haswell machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------
4.20-rc3 extfrag events < order 9: 166352
4.20-rc3+patch: 147463 (11% reduction)
thpfioscale Fault Latencies
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Amean fault-base-5 6138.97 ( 0.00%) 6217.43 ( -1.28%)
Amean fault-huge-5 2294.28 ( 0.00%) 3163.33 * -37.88%*
thpfioscale Percentage Faults Huge
4.20.0-rc3 4.20.0-rc3
vanilla lowzone-v5r8
Percentage huge-5 96.82 ( 0.00%) 95.14 ( -1.74%)
There was a slight reduction in external fragmentation events although the
latencies were higher. The allocation success rate is high enough that
the system is struggling and there is quite a lot of parallel reclaim and
compaction activity. There is also a certain degree of luck on whether
processes start on node 0 or not for this patch but the relevance is
reduced later in the series.
Overall, the patch reduces the number of external fragmentation causing
events so the success of THP over long periods of time would be improved
for this adverse workload.
Link: http://lkml.kernel.org/r/20181123114528.28802-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 08:35:41 +00:00
|
|
|
|
2009-06-16 22:31:59 +00:00
|
|
|
/* First allocation attempt */
|
2021-04-30 06:01:10 +00:00
|
|
|
page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
|
2016-05-20 00:14:01 +00:00
|
|
|
if (likely(page))
|
|
|
|
goto out;
|
2009-06-16 22:31:57 +00:00
|
|
|
|
2021-05-05 01:38:57 +00:00
|
|
|
alloc_gfp = gfp;
|
2016-05-20 00:14:01 +00:00
|
|
|
ac.spread_dirty_pages = false;
|
2015-02-11 23:25:07 +00:00
|
|
|
|
2016-05-20 00:14:44 +00:00
|
|
|
/*
|
|
|
|
* Restore the original nodemask if it was potentially replaced with
|
|
|
|
* &cpuset_current_mems_allowed to optimize the fast-path attempt.
|
|
|
|
*/
|
2020-04-02 04:09:53 +00:00
|
|
|
ac.nodemask = nodemask;
|
mm, page_alloc: fix fast-path race with cpuset update or removal
Ganapatrao Kulkarni reported that the LTP test cpuset01 in stress mode
triggers OOM killer in few seconds, despite lots of free memory. The
test attempts to repeatedly fault in memory in one process in a cpuset,
while changing allowed nodes of the cpuset between 0 and 1 in another
process.
One possible cause is that in the fast path we find the preferred
zoneref according to current mems_allowed, so that it points to the
middle of the zonelist, skipping e.g. zones of node 1 completely. If
the mems_allowed is updated to contain only node 1, we never reach it in
the zonelist, and trigger OOM before checking the cpuset_mems_cookie.
This patch fixes the particular case by redoing the preferred zoneref
search if we switch back to the original nodemask. The condition is
also slightly changed so that when the last non-root cpuset is removed,
we don't miss it.
Note that this is not a full fix, and more patches will follow.
Link: http://lkml.kernel.org/r/20170120103843.24587-3-vbabka@suse.cz
Fixes: 682a3385e773 ("mm, page_alloc: inline the fast path of the zonelist iterator")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Ganapatrao Kulkarni <gpkulkarni@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-24 23:18:35 +00:00
|
|
|
|
2021-04-30 06:01:10 +00:00
|
|
|
page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
|
cpuset: mm: reduce large amounts of memory barrier related damage v3
Commit c0ff7453bb5c ("cpuset,mm: fix no node to alloc memory when
changing cpuset's mems") wins a super prize for the largest number of
memory barriers entered into fast paths for one commit.
[get|put]_mems_allowed is incredibly heavy with pairs of full memory
barriers inserted into a number of hot paths. This was detected while
investigating at large page allocator slowdown introduced some time
after 2.6.32. The largest portion of this overhead was shown by
oprofile to be at an mfence introduced by this commit into the page
allocator hot path.
For extra style points, the commit introduced the use of yield() in an
implementation of what looks like a spinning mutex.
This patch replaces the full memory barriers on both read and write
sides with a sequence counter with just read barriers on the fast path
side. This is much cheaper on some architectures, including x86. The
main bulk of the patch is the retry logic if the nodemask changes in a
manner that can cause a false failure.
While updating the nodemask, a check is made to see if a false failure
is a risk. If it is, the sequence number gets bumped and parallel
allocators will briefly stall while the nodemask update takes place.
In a page fault test microbenchmark, oprofile samples from
__alloc_pages_nodemask went from 4.53% of all samples to 1.15%. The
actual results were
3.3.0-rc3 3.3.0-rc3
rc3-vanilla nobarrier-v2r1
Clients 1 UserTime 0.07 ( 0.00%) 0.08 (-14.19%)
Clients 2 UserTime 0.07 ( 0.00%) 0.07 ( 2.72%)
Clients 4 UserTime 0.08 ( 0.00%) 0.07 ( 3.29%)
Clients 1 SysTime 0.70 ( 0.00%) 0.65 ( 6.65%)
Clients 2 SysTime 0.85 ( 0.00%) 0.82 ( 3.65%)
Clients 4 SysTime 1.41 ( 0.00%) 1.41 ( 0.32%)
Clients 1 WallTime 0.77 ( 0.00%) 0.74 ( 4.19%)
Clients 2 WallTime 0.47 ( 0.00%) 0.45 ( 3.73%)
Clients 4 WallTime 0.38 ( 0.00%) 0.37 ( 1.58%)
Clients 1 Flt/sec/cpu 497620.28 ( 0.00%) 520294.53 ( 4.56%)
Clients 2 Flt/sec/cpu 414639.05 ( 0.00%) 429882.01 ( 3.68%)
Clients 4 Flt/sec/cpu 257959.16 ( 0.00%) 258761.48 ( 0.31%)
Clients 1 Flt/sec 495161.39 ( 0.00%) 517292.87 ( 4.47%)
Clients 2 Flt/sec 820325.95 ( 0.00%) 850289.77 ( 3.65%)
Clients 4 Flt/sec 1020068.93 ( 0.00%) 1022674.06 ( 0.26%)
MMTests Statistics: duration
Sys Time Running Test (seconds) 135.68 132.17
User+Sys Time Running Test (seconds) 164.2 160.13
Total Elapsed Time (seconds) 123.46 120.87
The overall improvement is small but the System CPU time is much
improved and roughly in correlation to what oprofile reported (these
performance figures are without profiling so skew is expected). The
actual number of page faults is noticeably improved.
For benchmarks like kernel builds, the overall benefit is marginal but
the system CPU time is slightly reduced.
To test the actual bug the commit fixed I opened two terminals. The
first ran within a cpuset and continually ran a small program that
faulted 100M of anonymous data. In a second window, the nodemask of the
cpuset was continually randomised in a loop.
Without the commit, the program would fail every so often (usually
within 10 seconds) and obviously with the commit everything worked fine.
With this patch applied, it also worked fine so the fix should be
functionally equivalent.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 23:34:11 +00:00
|
|
|
|
2016-05-20 00:14:01 +00:00
|
|
|
out:
|
2023-02-13 19:29:22 +00:00
|
|
|
if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
|
2021-04-30 06:01:13 +00:00
|
|
|
unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
|
mm: memcontrol: only mark charged pages with PageKmemcg
To distinguish non-slab pages charged to kmemcg we mark them PageKmemcg,
which sets page->_mapcount to -512. Currently, we set/clear PageKmemcg
in __alloc_pages_nodemask()/free_pages_prepare() for any page allocated
with __GFP_ACCOUNT, including those that aren't actually charged to any
cgroup, i.e. allocated from the root cgroup context. To avoid overhead
in case cgroups are not used, we only do that if memcg_kmem_enabled() is
true. The latter is set iff there are kmem-enabled memory cgroups
(online or offline). The root cgroup is not considered kmem-enabled.
As a result, if a page is allocated with __GFP_ACCOUNT for the root
cgroup when there are kmem-enabled memory cgroups and is freed after all
kmem-enabled memory cgroups were removed, e.g.
# no memory cgroups has been created yet, create one
mkdir /sys/fs/cgroup/memory/test
# run something allocating pages with __GFP_ACCOUNT, e.g.
# a program using pipe
dmesg | tail
# remove the memory cgroup
rmdir /sys/fs/cgroup/memory/test
we'll get bad page state bug complaining about page->_mapcount != -1:
BUG: Bad page state in process swapper/0 pfn:1fd945c
page:ffffea007f651700 count:0 mapcount:-511 mapping: (null) index:0x0
flags: 0x1000000000000000()
To avoid that, let's mark with PageKmemcg only those pages that are
actually charged to and hence pin a non-root memory cgroup.
Fixes: 4949148ad433 ("mm: charge/uncharge kmemcg from generic page allocator paths")
Reported-and-tested-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-08 20:03:12 +00:00
|
|
|
__free_pages(page, order);
|
|
|
|
page = NULL;
|
mm: charge/uncharge kmemcg from generic page allocator paths
Currently, to charge a non-slab allocation to kmemcg one has to use
alloc_kmem_pages helper with __GFP_ACCOUNT flag. A page allocated with
this helper should finally be freed using free_kmem_pages, otherwise it
won't be uncharged.
This API suits its current users fine, but it turns out to be impossible
to use along with page reference counting, i.e. when an allocation is
supposed to be freed with put_page, as it is the case with pipe or unix
socket buffers.
To overcome this limitation, this patch moves charging/uncharging to
generic page allocator paths, i.e. to __alloc_pages_nodemask and
free_pages_prepare, and zaps alloc/free_kmem_pages helpers. This way,
one can use any of the available page allocation functions to get the
allocated page charged to kmemcg - it's enough to pass __GFP_ACCOUNT,
just like in case of kmalloc and friends. A charged page will be
automatically uncharged on free.
To make it possible, we need to mark pages charged to kmemcg somehow.
To avoid introducing a new page flag, we make use of page->_mapcount for
marking such pages. Since pages charged to kmemcg are not supposed to
be mapped to userspace, it should work just fine. There are other
(ab)users of page->_mapcount - buddy and balloon pages - but we don't
conflict with them.
In case kmemcg is compiled out or not used at runtime, this patch
introduces no overhead to generic page allocator paths. If kmemcg is
used, it will be plus one gfp flags check on alloc and plus one
page->_mapcount check on free, which shouldn't hurt performance, because
the data accessed are hot.
Link: http://lkml.kernel.org/r/a9736d856f895bcb465d9f257b54efe32eda6f99.1464079538.git.vdavydov@virtuozzo.com
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 22:24:24 +00:00
|
|
|
}
|
|
|
|
|
2021-04-30 06:01:10 +00:00
|
|
|
trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
|
2022-09-15 15:03:48 +00:00
|
|
|
kmsan_alloc_page(page, order, alloc_gfp);
|
2016-05-20 00:14:01 +00:00
|
|
|
|
2009-06-16 22:31:57 +00:00
|
|
|
return page;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
2021-04-30 06:01:15 +00:00
|
|
|
EXPORT_SYMBOL(__alloc_pages);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2020-12-16 03:55:54 +00:00
|
|
|
struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
|
|
|
|
nodemask_t *nodemask)
|
|
|
|
{
|
|
|
|
struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
|
|
|
|
preferred_nid, nodemask);
|
|
|
|
|
|
|
|
if (page && order > 1)
|
|
|
|
prep_transhuge_page(page);
|
|
|
|
return (struct folio *)page;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(__folio_alloc);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
2018-08-17 22:46:01 +00:00
|
|
|
* Common helper functions. Never use with __GFP_HIGHMEM because the returned
|
|
|
|
* address cannot represent highmem pages. Use alloc_pages and then kmap if
|
|
|
|
* you need to access high mem.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
2008-02-05 06:29:26 +00:00
|
|
|
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2009-09-22 00:01:47 +00:00
|
|
|
struct page *page;
|
|
|
|
|
2018-08-17 22:46:01 +00:00
|
|
|
page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
|
2005-04-16 22:20:36 +00:00
|
|
|
if (!page)
|
|
|
|
return 0;
|
|
|
|
return (unsigned long) page_address(page);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(__get_free_pages);
|
|
|
|
|
2008-02-05 06:29:26 +00:00
|
|
|
unsigned long get_zeroed_page(gfp_t gfp_mask)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2023-03-13 12:27:14 +00:00
|
|
|
return __get_free_page(gfp_mask | __GFP_ZERO);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(get_zeroed_page);
|
|
|
|
|
2020-12-15 03:11:09 +00:00
|
|
|
/**
|
|
|
|
* __free_pages - Free pages allocated with alloc_pages().
|
|
|
|
* @page: The page pointer returned from alloc_pages().
|
|
|
|
* @order: The order of the allocation.
|
|
|
|
*
|
|
|
|
* This function can free multi-page allocations that are not compound
|
|
|
|
* pages. It does not check that the @order passed in matches that of
|
|
|
|
* the allocation, so it is easy to leak memory. Freeing more memory
|
|
|
|
* than was allocated will probably emit a warning.
|
|
|
|
*
|
|
|
|
* If the last reference to this page is speculative, it will be released
|
|
|
|
* by put_page() which only frees the first page of a non-compound
|
|
|
|
* allocation. To prevent the remaining pages from being leaked, we free
|
|
|
|
* the subsequent pages here. If you want to use the page's reference
|
|
|
|
* count to decide when to free the allocation, you should allocate a
|
|
|
|
* compound page, and use put_page() instead of __free_pages().
|
|
|
|
*
|
|
|
|
* Context: May be called in interrupt context or while holding a normal
|
|
|
|
* spinlock, but not in NMI context or while holding a raw spinlock.
|
|
|
|
*/
|
2018-12-28 08:35:22 +00:00
|
|
|
void __free_pages(struct page *page, unsigned int order)
|
|
|
|
{
|
2023-02-09 17:48:28 +00:00
|
|
|
/* get PageHead before we drop reference */
|
|
|
|
int head = PageHead(page);
|
|
|
|
|
2018-12-28 08:35:22 +00:00
|
|
|
if (put_page_testzero(page))
|
|
|
|
free_the_page(page, order);
|
2023-02-09 17:48:28 +00:00
|
|
|
else if (!head)
|
2020-10-13 23:56:04 +00:00
|
|
|
while (order-- > 0)
|
|
|
|
free_the_page(page + (1 << order), order);
|
2018-12-28 08:35:22 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
EXPORT_SYMBOL(__free_pages);
|
|
|
|
|
2008-02-05 06:29:26 +00:00
|
|
|
void free_pages(unsigned long addr, unsigned int order)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
if (addr != 0) {
|
2006-09-26 06:30:55 +00:00
|
|
|
VM_BUG_ON(!virt_addr_valid((void *)addr));
|
2005-04-16 22:20:36 +00:00
|
|
|
__free_pages(virt_to_page((void *)addr), order);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
EXPORT_SYMBOL(free_pages);
|
|
|
|
|
2015-05-07 04:11:57 +00:00
|
|
|
/*
|
|
|
|
* Page Fragment:
|
|
|
|
* An arbitrary-length arbitrary-offset area of memory which resides
|
|
|
|
* within a 0 or higher order page. Multiple fragments within that page
|
|
|
|
* are individually refcounted, in the page's reference counter.
|
|
|
|
*
|
|
|
|
* The page_frag functions below provide a simple allocation framework for
|
|
|
|
* page fragments. This is used by the network stack and network device
|
|
|
|
* drivers to provide a backing region of memory for use as either an
|
|
|
|
* sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
|
|
|
|
*/
|
2017-01-11 00:58:09 +00:00
|
|
|
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
|
|
|
|
gfp_t gfp_mask)
|
2015-05-07 04:11:57 +00:00
|
|
|
{
|
|
|
|
struct page *page = NULL;
|
|
|
|
gfp_t gfp = gfp_mask;
|
|
|
|
|
|
|
|
#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
|
|
|
|
gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
|
|
|
|
__GFP_NOMEMALLOC;
|
|
|
|
page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
|
|
|
|
PAGE_FRAG_CACHE_MAX_ORDER);
|
|
|
|
nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
|
|
|
|
#endif
|
|
|
|
if (unlikely(!page))
|
|
|
|
page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
|
|
|
|
|
|
|
|
nc->va = page ? page_address(page) : NULL;
|
|
|
|
|
|
|
|
return page;
|
|
|
|
}
|
|
|
|
|
2017-01-11 00:58:09 +00:00
|
|
|
void __page_frag_cache_drain(struct page *page, unsigned int count)
|
2016-12-14 23:05:26 +00:00
|
|
|
{
|
|
|
|
VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
|
|
|
|
|
2018-12-28 08:35:22 +00:00
|
|
|
if (page_ref_sub_and_test(page, count))
|
|
|
|
free_the_page(page, compound_order(page));
|
2016-12-14 23:05:26 +00:00
|
|
|
}
|
2017-01-11 00:58:09 +00:00
|
|
|
EXPORT_SYMBOL(__page_frag_cache_drain);
|
2016-12-14 23:05:26 +00:00
|
|
|
|
2021-02-04 10:56:35 +00:00
|
|
|
void *page_frag_alloc_align(struct page_frag_cache *nc,
|
|
|
|
unsigned int fragsz, gfp_t gfp_mask,
|
|
|
|
unsigned int align_mask)
|
2015-05-07 04:11:57 +00:00
|
|
|
{
|
|
|
|
unsigned int size = PAGE_SIZE;
|
|
|
|
struct page *page;
|
|
|
|
int offset;
|
|
|
|
|
|
|
|
if (unlikely(!nc->va)) {
|
|
|
|
refill:
|
2017-01-11 00:58:09 +00:00
|
|
|
page = __page_frag_cache_refill(nc, gfp_mask);
|
2015-05-07 04:11:57 +00:00
|
|
|
if (!page)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
|
|
|
|
/* if size can vary use size else just use PAGE_SIZE */
|
|
|
|
size = nc->size;
|
|
|
|
#endif
|
|
|
|
/* Even if we own the page, we do not use atomic_set().
|
|
|
|
* This would break get_page_unless_zero() users.
|
|
|
|
*/
|
2019-02-15 22:44:12 +00:00
|
|
|
page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
|
2015-05-07 04:11:57 +00:00
|
|
|
|
|
|
|
/* reset page count bias and offset to start of new frag */
|
2015-08-21 21:11:51 +00:00
|
|
|
nc->pfmemalloc = page_is_pfmemalloc(page);
|
2019-02-15 22:44:12 +00:00
|
|
|
nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
|
2015-05-07 04:11:57 +00:00
|
|
|
nc->offset = size;
|
|
|
|
}
|
|
|
|
|
|
|
|
offset = nc->offset - fragsz;
|
|
|
|
if (unlikely(offset < 0)) {
|
|
|
|
page = virt_to_page(nc->va);
|
|
|
|
|
2016-03-17 21:19:26 +00:00
|
|
|
if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
|
2015-05-07 04:11:57 +00:00
|
|
|
goto refill;
|
|
|
|
|
2020-11-15 20:10:29 +00:00
|
|
|
if (unlikely(nc->pfmemalloc)) {
|
|
|
|
free_the_page(page, compound_order(page));
|
|
|
|
goto refill;
|
|
|
|
}
|
|
|
|
|
2015-05-07 04:11:57 +00:00
|
|
|
#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
|
|
|
|
/* if size can vary use size else just use PAGE_SIZE */
|
|
|
|
size = nc->size;
|
|
|
|
#endif
|
|
|
|
/* OK, page count is 0, we can safely set it */
|
2019-02-15 22:44:12 +00:00
|
|
|
set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
|
2015-05-07 04:11:57 +00:00
|
|
|
|
|
|
|
/* reset page count bias and offset to start of new frag */
|
2019-02-15 22:44:12 +00:00
|
|
|
nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
|
2015-05-07 04:11:57 +00:00
|
|
|
offset = size - fragsz;
|
2022-07-15 12:50:13 +00:00
|
|
|
if (unlikely(offset < 0)) {
|
|
|
|
/*
|
|
|
|
* The caller is trying to allocate a fragment
|
|
|
|
* with fragsz > PAGE_SIZE but the cache isn't big
|
|
|
|
* enough to satisfy the request, this may
|
|
|
|
* happen in low memory conditions.
|
|
|
|
* We don't release the cache page because
|
|
|
|
* it could make memory pressure worse
|
|
|
|
* so we simply return NULL here.
|
|
|
|
*/
|
|
|
|
return NULL;
|
|
|
|
}
|
2015-05-07 04:11:57 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
nc->pagecnt_bias--;
|
2021-02-04 10:56:35 +00:00
|
|
|
offset &= align_mask;
|
2015-05-07 04:11:57 +00:00
|
|
|
nc->offset = offset;
|
|
|
|
|
|
|
|
return nc->va + offset;
|
|
|
|
}
|
2021-02-04 10:56:35 +00:00
|
|
|
EXPORT_SYMBOL(page_frag_alloc_align);
|
2015-05-07 04:11:57 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Frees a page fragment allocated out of either a compound or order 0 page.
|
|
|
|
*/
|
2017-01-11 00:58:06 +00:00
|
|
|
void page_frag_free(void *addr)
|
2015-05-07 04:11:57 +00:00
|
|
|
{
|
|
|
|
struct page *page = virt_to_head_page(addr);
|
|
|
|
|
2018-12-28 08:35:22 +00:00
|
|
|
if (unlikely(put_page_testzero(page)))
|
|
|
|
free_the_page(page, compound_order(page));
|
2015-05-07 04:11:57 +00:00
|
|
|
}
|
2017-01-11 00:58:06 +00:00
|
|
|
EXPORT_SYMBOL(page_frag_free);
|
2015-05-07 04:11:57 +00:00
|
|
|
|
2015-11-07 00:29:57 +00:00
|
|
|
static void *make_alloc_exact(unsigned long addr, unsigned int order,
|
|
|
|
size_t size)
|
2011-05-11 22:13:34 +00:00
|
|
|
{
|
|
|
|
if (addr) {
|
2022-05-31 13:20:51 +00:00
|
|
|
unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
|
|
|
|
struct page *page = virt_to_page((void *)addr);
|
|
|
|
struct page *last = page + nr;
|
|
|
|
|
|
|
|
split_page_owner(page, 1 << order);
|
|
|
|
split_page_memcg(page, 1 << order);
|
|
|
|
while (page < --last)
|
|
|
|
set_page_refcounted(last);
|
|
|
|
|
|
|
|
last = page + (1UL << order);
|
|
|
|
for (page += nr; page < last; page++)
|
|
|
|
__free_pages_ok(page, 0, FPI_TO_TAIL);
|
2011-05-11 22:13:34 +00:00
|
|
|
}
|
|
|
|
return (void *)addr;
|
|
|
|
}
|
|
|
|
|
2008-07-24 04:28:11 +00:00
|
|
|
/**
|
|
|
|
* alloc_pages_exact - allocate an exact number physically-contiguous pages.
|
|
|
|
* @size: the number of bytes to allocate
|
mm, page_alloc: disallow __GFP_COMP in alloc_pages_exact()
alloc_pages_exact*() allocates a page of sufficient order and then splits
it to return only the number of pages requested. That makes it
incompatible with __GFP_COMP, because compound pages cannot be split.
As shown by [1] things may silently work until the requested size
(possibly depending on user) stops being power of two. Then for
CONFIG_DEBUG_VM, BUG_ON() triggers in split_page(). Without
CONFIG_DEBUG_VM, consequences are unclear.
There are several options here, none of them great:
1) Don't do the splitting when __GFP_COMP is passed, and return the
whole compound page. However if caller then returns it via
free_pages_exact(), that will be unexpected and the freeing actions
there will be wrong.
2) Warn and remove __GFP_COMP from the flags. But the caller may have
really wanted it, so things may break later somewhere.
3) Warn and return NULL. However NULL may be unexpected, especially
for small sizes.
This patch picks option 2, because as Michal Hocko put it: "callers wanted
it" is much less probable than "caller is simply confused and more gfp
flags is surely better than fewer".
[1] https://lore.kernel.org/lkml/20181126002805.GI18977@shao2-debian/T/#u
Link: http://lkml.kernel.org/r/0c6393eb-b28d-4607-c386-862a71f09de6@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 00:16:47 +00:00
|
|
|
* @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
|
2008-07-24 04:28:11 +00:00
|
|
|
*
|
|
|
|
* This function is similar to alloc_pages(), except that it allocates the
|
|
|
|
* minimum number of pages to satisfy the request. alloc_pages() can only
|
|
|
|
* allocate memory in power-of-two pages.
|
|
|
|
*
|
|
|
|
* This function is also limited by MAX_ORDER.
|
|
|
|
*
|
|
|
|
* Memory allocated by this function must be released by free_pages_exact().
|
2019-03-05 23:48:42 +00:00
|
|
|
*
|
|
|
|
* Return: pointer to the allocated area or %NULL in case of error.
|
2008-07-24 04:28:11 +00:00
|
|
|
*/
|
|
|
|
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
|
|
|
|
{
|
|
|
|
unsigned int order = get_order(size);
|
|
|
|
unsigned long addr;
|
|
|
|
|
2021-11-05 20:40:15 +00:00
|
|
|
if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
|
|
|
|
gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
|
mm, page_alloc: disallow __GFP_COMP in alloc_pages_exact()
alloc_pages_exact*() allocates a page of sufficient order and then splits
it to return only the number of pages requested. That makes it
incompatible with __GFP_COMP, because compound pages cannot be split.
As shown by [1] things may silently work until the requested size
(possibly depending on user) stops being power of two. Then for
CONFIG_DEBUG_VM, BUG_ON() triggers in split_page(). Without
CONFIG_DEBUG_VM, consequences are unclear.
There are several options here, none of them great:
1) Don't do the splitting when __GFP_COMP is passed, and return the
whole compound page. However if caller then returns it via
free_pages_exact(), that will be unexpected and the freeing actions
there will be wrong.
2) Warn and remove __GFP_COMP from the flags. But the caller may have
really wanted it, so things may break later somewhere.
3) Warn and return NULL. However NULL may be unexpected, especially
for small sizes.
This patch picks option 2, because as Michal Hocko put it: "callers wanted
it" is much less probable than "caller is simply confused and more gfp
flags is surely better than fewer".
[1] https://lore.kernel.org/lkml/20181126002805.GI18977@shao2-debian/T/#u
Link: http://lkml.kernel.org/r/0c6393eb-b28d-4607-c386-862a71f09de6@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 00:16:47 +00:00
|
|
|
|
2008-07-24 04:28:11 +00:00
|
|
|
addr = __get_free_pages(gfp_mask, order);
|
2011-05-11 22:13:34 +00:00
|
|
|
return make_alloc_exact(addr, order, size);
|
2008-07-24 04:28:11 +00:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(alloc_pages_exact);
|
|
|
|
|
2011-05-11 22:13:34 +00:00
|
|
|
/**
|
|
|
|
* alloc_pages_exact_nid - allocate an exact number of physically-contiguous
|
|
|
|
* pages on a node.
|
2011-05-16 20:16:54 +00:00
|
|
|
* @nid: the preferred node ID where memory should be allocated
|
2011-05-11 22:13:34 +00:00
|
|
|
* @size: the number of bytes to allocate
|
mm, page_alloc: disallow __GFP_COMP in alloc_pages_exact()
alloc_pages_exact*() allocates a page of sufficient order and then splits
it to return only the number of pages requested. That makes it
incompatible with __GFP_COMP, because compound pages cannot be split.
As shown by [1] things may silently work until the requested size
(possibly depending on user) stops being power of two. Then for
CONFIG_DEBUG_VM, BUG_ON() triggers in split_page(). Without
CONFIG_DEBUG_VM, consequences are unclear.
There are several options here, none of them great:
1) Don't do the splitting when __GFP_COMP is passed, and return the
whole compound page. However if caller then returns it via
free_pages_exact(), that will be unexpected and the freeing actions
there will be wrong.
2) Warn and remove __GFP_COMP from the flags. But the caller may have
really wanted it, so things may break later somewhere.
3) Warn and return NULL. However NULL may be unexpected, especially
for small sizes.
This patch picks option 2, because as Michal Hocko put it: "callers wanted
it" is much less probable than "caller is simply confused and more gfp
flags is surely better than fewer".
[1] https://lore.kernel.org/lkml/20181126002805.GI18977@shao2-debian/T/#u
Link: http://lkml.kernel.org/r/0c6393eb-b28d-4607-c386-862a71f09de6@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 00:16:47 +00:00
|
|
|
* @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
|
2011-05-11 22:13:34 +00:00
|
|
|
*
|
|
|
|
* Like alloc_pages_exact(), but try to allocate on node nid first before falling
|
|
|
|
* back.
|
2019-03-05 23:48:42 +00:00
|
|
|
*
|
|
|
|
* Return: pointer to the allocated area or %NULL in case of error.
|
2011-05-11 22:13:34 +00:00
|
|
|
*/
|
2014-08-06 23:04:59 +00:00
|
|
|
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
|
2011-05-11 22:13:34 +00:00
|
|
|
{
|
2015-11-07 00:29:57 +00:00
|
|
|
unsigned int order = get_order(size);
|
mm, page_alloc: disallow __GFP_COMP in alloc_pages_exact()
alloc_pages_exact*() allocates a page of sufficient order and then splits
it to return only the number of pages requested. That makes it
incompatible with __GFP_COMP, because compound pages cannot be split.
As shown by [1] things may silently work until the requested size
(possibly depending on user) stops being power of two. Then for
CONFIG_DEBUG_VM, BUG_ON() triggers in split_page(). Without
CONFIG_DEBUG_VM, consequences are unclear.
There are several options here, none of them great:
1) Don't do the splitting when __GFP_COMP is passed, and return the
whole compound page. However if caller then returns it via
free_pages_exact(), that will be unexpected and the freeing actions
there will be wrong.
2) Warn and remove __GFP_COMP from the flags. But the caller may have
really wanted it, so things may break later somewhere.
3) Warn and return NULL. However NULL may be unexpected, especially
for small sizes.
This patch picks option 2, because as Michal Hocko put it: "callers wanted
it" is much less probable than "caller is simply confused and more gfp
flags is surely better than fewer".
[1] https://lore.kernel.org/lkml/20181126002805.GI18977@shao2-debian/T/#u
Link: http://lkml.kernel.org/r/0c6393eb-b28d-4607-c386-862a71f09de6@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 00:16:47 +00:00
|
|
|
struct page *p;
|
|
|
|
|
2021-11-05 20:40:15 +00:00
|
|
|
if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
|
|
|
|
gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
|
mm, page_alloc: disallow __GFP_COMP in alloc_pages_exact()
alloc_pages_exact*() allocates a page of sufficient order and then splits
it to return only the number of pages requested. That makes it
incompatible with __GFP_COMP, because compound pages cannot be split.
As shown by [1] things may silently work until the requested size
(possibly depending on user) stops being power of two. Then for
CONFIG_DEBUG_VM, BUG_ON() triggers in split_page(). Without
CONFIG_DEBUG_VM, consequences are unclear.
There are several options here, none of them great:
1) Don't do the splitting when __GFP_COMP is passed, and return the
whole compound page. However if caller then returns it via
free_pages_exact(), that will be unexpected and the freeing actions
there will be wrong.
2) Warn and remove __GFP_COMP from the flags. But the caller may have
really wanted it, so things may break later somewhere.
3) Warn and return NULL. However NULL may be unexpected, especially
for small sizes.
This patch picks option 2, because as Michal Hocko put it: "callers wanted
it" is much less probable than "caller is simply confused and more gfp
flags is surely better than fewer".
[1] https://lore.kernel.org/lkml/20181126002805.GI18977@shao2-debian/T/#u
Link: http://lkml.kernel.org/r/0c6393eb-b28d-4607-c386-862a71f09de6@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 00:16:47 +00:00
|
|
|
|
|
|
|
p = alloc_pages_node(nid, gfp_mask, order);
|
2011-05-11 22:13:34 +00:00
|
|
|
if (!p)
|
|
|
|
return NULL;
|
|
|
|
return make_alloc_exact((unsigned long)page_address(p), order, size);
|
|
|
|
}
|
|
|
|
|
2008-07-24 04:28:11 +00:00
|
|
|
/**
|
|
|
|
* free_pages_exact - release memory allocated via alloc_pages_exact()
|
|
|
|
* @virt: the value returned by alloc_pages_exact.
|
|
|
|
* @size: size of allocation, same value as passed to alloc_pages_exact().
|
|
|
|
*
|
|
|
|
* Release the memory allocated by a previous call to alloc_pages_exact.
|
|
|
|
*/
|
|
|
|
void free_pages_exact(void *virt, size_t size)
|
|
|
|
{
|
|
|
|
unsigned long addr = (unsigned long)virt;
|
|
|
|
unsigned long end = addr + PAGE_ALIGN(size);
|
|
|
|
|
|
|
|
while (addr < end) {
|
|
|
|
free_page(addr);
|
|
|
|
addr += PAGE_SIZE;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(free_pages_exact);
|
|
|
|
|
2013-02-23 00:35:54 +00:00
|
|
|
/**
|
|
|
|
* nr_free_zone_pages - count number of pages beyond high watermark
|
|
|
|
* @offset: The zone index of the highest zone
|
|
|
|
*
|
2019-03-05 23:48:42 +00:00
|
|
|
* nr_free_zone_pages() counts the number of pages which are beyond the
|
2013-02-23 00:35:54 +00:00
|
|
|
* high watermark within all zones at or below a given zone index. For each
|
|
|
|
* zone, the number of pages is calculated as:
|
2017-03-30 20:11:36 +00:00
|
|
|
*
|
|
|
|
* nr_free_zone_pages = managed_pages - high_pages
|
2019-03-05 23:48:42 +00:00
|
|
|
*
|
|
|
|
* Return: number of pages beyond high watermark.
|
2013-02-23 00:35:54 +00:00
|
|
|
*/
|
2013-02-23 00:35:43 +00:00
|
|
|
static unsigned long nr_free_zone_pages(int offset)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2008-04-28 09:12:17 +00:00
|
|
|
struct zoneref *z;
|
2008-04-28 09:12:16 +00:00
|
|
|
struct zone *zone;
|
|
|
|
|
2005-07-30 05:59:18 +00:00
|
|
|
/* Just pick one node, since fallback list is circular */
|
2013-02-23 00:35:43 +00:00
|
|
|
unsigned long sum = 0;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2008-04-28 09:12:14 +00:00
|
|
|
struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2008-04-28 09:12:16 +00:00
|
|
|
for_each_zone_zonelist(zone, z, zonelist, offset) {
|
2018-12-28 08:34:24 +00:00
|
|
|
unsigned long size = zone_managed_pages(zone);
|
2009-06-16 22:32:12 +00:00
|
|
|
unsigned long high = high_wmark_pages(zone);
|
2005-07-30 05:59:18 +00:00
|
|
|
if (size > high)
|
|
|
|
sum += size - high;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
return sum;
|
|
|
|
}
|
|
|
|
|
2013-02-23 00:35:54 +00:00
|
|
|
/**
|
|
|
|
* nr_free_buffer_pages - count number of pages beyond high watermark
|
|
|
|
*
|
|
|
|
* nr_free_buffer_pages() counts the number of pages which are beyond the high
|
|
|
|
* watermark within ZONE_DMA and ZONE_NORMAL.
|
2019-03-05 23:48:42 +00:00
|
|
|
*
|
|
|
|
* Return: number of pages beyond high watermark within ZONE_DMA and
|
|
|
|
* ZONE_NORMAL.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
2013-02-23 00:35:43 +00:00
|
|
|
unsigned long nr_free_buffer_pages(void)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2005-10-21 06:55:38 +00:00
|
|
|
return nr_free_zone_pages(gfp_zone(GFP_USER));
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
2007-07-17 11:04:39 +00:00
|
|
|
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2006-09-27 08:50:06 +00:00
|
|
|
static inline void show_node(struct zone *zone)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2012-12-12 00:00:29 +00:00
|
|
|
if (IS_ENABLED(CONFIG_NUMA))
|
2006-12-07 04:33:03 +00:00
|
|
|
printk("Node %d ", zone_to_nid(zone));
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2016-03-17 21:19:05 +00:00
|
|
|
long si_mem_available(void)
|
|
|
|
{
|
|
|
|
long available;
|
|
|
|
unsigned long pagecache;
|
|
|
|
unsigned long wmark_low = 0;
|
|
|
|
unsigned long pages[NR_LRU_LISTS];
|
2018-10-26 22:05:46 +00:00
|
|
|
unsigned long reclaimable;
|
2016-03-17 21:19:05 +00:00
|
|
|
struct zone *zone;
|
|
|
|
int lru;
|
|
|
|
|
|
|
|
for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
|
2016-08-11 22:32:57 +00:00
|
|
|
pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
|
2016-03-17 21:19:05 +00:00
|
|
|
|
|
|
|
for_each_zone(zone)
|
2018-12-28 08:35:44 +00:00
|
|
|
wmark_low += low_wmark_pages(zone);
|
2016-03-17 21:19:05 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Estimate the amount of memory available for userspace allocations,
|
2022-06-23 02:08:34 +00:00
|
|
|
* without causing swapping or OOM.
|
2016-03-17 21:19:05 +00:00
|
|
|
*/
|
2017-09-06 23:23:36 +00:00
|
|
|
available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
|
2016-03-17 21:19:05 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Not all the page cache can be freed, otherwise the system will
|
2022-06-23 02:08:34 +00:00
|
|
|
* start swapping or thrashing. Assume at least half of the page
|
|
|
|
* cache, or the low watermark worth of cache, needs to stay.
|
2016-03-17 21:19:05 +00:00
|
|
|
*/
|
|
|
|
pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
|
|
|
|
pagecache -= min(pagecache / 2, wmark_low);
|
|
|
|
available += pagecache;
|
|
|
|
|
|
|
|
/*
|
2018-10-26 22:05:46 +00:00
|
|
|
* Part of the reclaimable slab and other kernel memory consists of
|
|
|
|
* items that are in use, and cannot be freed. Cap this estimate at the
|
|
|
|
* low watermark.
|
2016-03-17 21:19:05 +00:00
|
|
|
*/
|
2020-08-07 06:20:39 +00:00
|
|
|
reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
|
|
|
|
global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
|
2018-10-26 22:05:46 +00:00
|
|
|
available += reclaimable - min(reclaimable / 2, wmark_low);
|
2018-04-10 23:27:40 +00:00
|
|
|
|
2016-03-17 21:19:05 +00:00
|
|
|
if (available < 0)
|
|
|
|
available = 0;
|
|
|
|
return available;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(si_mem_available);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
void si_meminfo(struct sysinfo *val)
|
|
|
|
{
|
2018-12-28 08:34:29 +00:00
|
|
|
val->totalram = totalram_pages();
|
2016-07-28 22:46:20 +00:00
|
|
|
val->sharedram = global_node_page_state(NR_SHMEM);
|
2017-09-06 23:23:36 +00:00
|
|
|
val->freeram = global_zone_page_state(NR_FREE_PAGES);
|
2005-04-16 22:20:36 +00:00
|
|
|
val->bufferram = nr_blockdev_pages();
|
2018-12-28 08:34:29 +00:00
|
|
|
val->totalhigh = totalhigh_pages();
|
2005-04-16 22:20:36 +00:00
|
|
|
val->freehigh = nr_free_highpages();
|
|
|
|
val->mem_unit = PAGE_SIZE;
|
|
|
|
}
|
|
|
|
|
|
|
|
EXPORT_SYMBOL(si_meminfo);
|
|
|
|
|
|
|
|
#ifdef CONFIG_NUMA
|
|
|
|
void si_meminfo_node(struct sysinfo *val, int nid)
|
|
|
|
{
|
2013-07-03 22:03:27 +00:00
|
|
|
int zone_type; /* needs to be signed */
|
|
|
|
unsigned long managed_pages = 0;
|
2016-05-20 00:12:23 +00:00
|
|
|
unsigned long managed_highpages = 0;
|
|
|
|
unsigned long free_highpages = 0;
|
2005-04-16 22:20:36 +00:00
|
|
|
pg_data_t *pgdat = NODE_DATA(nid);
|
|
|
|
|
2013-07-03 22:03:27 +00:00
|
|
|
for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
|
2018-12-28 08:34:24 +00:00
|
|
|
managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
|
2013-07-03 22:03:27 +00:00
|
|
|
val->totalram = managed_pages;
|
2016-07-28 22:46:20 +00:00
|
|
|
val->sharedram = node_page_state(pgdat, NR_SHMEM);
|
mm, vmstat: add infrastructure for per-node vmstats
Patchset: "Move LRU page reclaim from zones to nodes v9"
This series moves LRUs from the zones to the node. While this is a
current rebase, the test results were based on mmotm as of June 23rd.
Conceptually, this series is simple but there are a lot of details.
Some of the broad motivations for this are;
1. The residency of a page partially depends on what zone the page was
allocated from. This is partially combatted by the fair zone allocation
policy but that is a partial solution that introduces overhead in the
page allocator paths.
2. Currently, reclaim on node 0 behaves slightly different to node 1. For
example, direct reclaim scans in zonelist order and reclaims even if
the zone is over the high watermark regardless of the age of pages
in that LRU. Kswapd on the other hand starts reclaim on the highest
unbalanced zone. A difference in distribution of file/anon pages due
to when they were allocated results can result in a difference in
again. While the fair zone allocation policy mitigates some of the
problems here, the page reclaim results on a multi-zone node will
always be different to a single-zone node.
it was scheduled on as a result.
3. kswapd and the page allocator scan zones in the opposite order to
avoid interfering with each other but it's sensitive to timing. This
mitigates the page allocator using pages that were allocated very recently
in the ideal case but it's sensitive to timing. When kswapd is allocating
from lower zones then it's great but during the rebalancing of the highest
zone, the page allocator and kswapd interfere with each other. It's worse
if the highest zone is small and difficult to balance.
4. slab shrinkers are node-based which makes it harder to identify the exact
relationship between slab reclaim and LRU reclaim.
The reason we have zone-based reclaim is that we used to have
large highmem zones in common configurations and it was necessary
to quickly find ZONE_NORMAL pages for reclaim. Today, this is much
less of a concern as machines with lots of memory will (or should) use
64-bit kernels. Combinations of 32-bit hardware and 64-bit hardware are
rare. Machines that do use highmem should have relatively low highmem:lowmem
ratios than we worried about in the past.
Conceptually, moving to node LRUs should be easier to understand. The
page allocator plays fewer tricks to game reclaim and reclaim behaves
similarly on all nodes.
The series has been tested on a 16 core UMA machine and a 2-socket 48
core NUMA machine. The UMA results are presented in most cases as the NUMA
machine behaved similarly.
pagealloc
---------
This is a microbenchmark that shows the benefit of removing the fair zone
allocation policy. It was tested uip to order-4 but only orders 0 and 1 are
shown as the other orders were comparable.
4.7.0-rc4 4.7.0-rc4
mmotm-20160623 nodelru-v9
Min total-odr0-1 490.00 ( 0.00%) 457.00 ( 6.73%)
Min total-odr0-2 347.00 ( 0.00%) 329.00 ( 5.19%)
Min total-odr0-4 288.00 ( 0.00%) 273.00 ( 5.21%)
Min total-odr0-8 251.00 ( 0.00%) 239.00 ( 4.78%)
Min total-odr0-16 234.00 ( 0.00%) 222.00 ( 5.13%)
Min total-odr0-32 223.00 ( 0.00%) 211.00 ( 5.38%)
Min total-odr0-64 217.00 ( 0.00%) 208.00 ( 4.15%)
Min total-odr0-128 214.00 ( 0.00%) 204.00 ( 4.67%)
Min total-odr0-256 250.00 ( 0.00%) 230.00 ( 8.00%)
Min total-odr0-512 271.00 ( 0.00%) 269.00 ( 0.74%)
Min total-odr0-1024 291.00 ( 0.00%) 282.00 ( 3.09%)
Min total-odr0-2048 303.00 ( 0.00%) 296.00 ( 2.31%)
Min total-odr0-4096 311.00 ( 0.00%) 309.00 ( 0.64%)
Min total-odr0-8192 316.00 ( 0.00%) 314.00 ( 0.63%)
Min total-odr0-16384 317.00 ( 0.00%) 315.00 ( 0.63%)
Min total-odr1-1 742.00 ( 0.00%) 712.00 ( 4.04%)
Min total-odr1-2 562.00 ( 0.00%) 530.00 ( 5.69%)
Min total-odr1-4 457.00 ( 0.00%) 433.00 ( 5.25%)
Min total-odr1-8 411.00 ( 0.00%) 381.00 ( 7.30%)
Min total-odr1-16 381.00 ( 0.00%) 356.00 ( 6.56%)
Min total-odr1-32 372.00 ( 0.00%) 346.00 ( 6.99%)
Min total-odr1-64 372.00 ( 0.00%) 343.00 ( 7.80%)
Min total-odr1-128 375.00 ( 0.00%) 351.00 ( 6.40%)
Min total-odr1-256 379.00 ( 0.00%) 351.00 ( 7.39%)
Min total-odr1-512 385.00 ( 0.00%) 355.00 ( 7.79%)
Min total-odr1-1024 386.00 ( 0.00%) 358.00 ( 7.25%)
Min total-odr1-2048 390.00 ( 0.00%) 362.00 ( 7.18%)
Min total-odr1-4096 390.00 ( 0.00%) 362.00 ( 7.18%)
Min total-odr1-8192 388.00 ( 0.00%) 363.00 ( 6.44%)
This shows a steady improvement throughout. The primary benefit is from
reduced system CPU usage which is obvious from the overall times;
4.7.0-rc4 4.7.0-rc4
mmotm-20160623nodelru-v8
User 189.19 191.80
System 2604.45 2533.56
Elapsed 2855.30 2786.39
The vmstats also showed that the fair zone allocation policy was definitely
removed as can be seen here;
4.7.0-rc3 4.7.0-rc3
mmotm-20160623 nodelru-v8
DMA32 allocs 28794729769 0
Normal allocs 48432501431 77227309877
Movable allocs 0 0
tiobench on ext4
----------------
tiobench is a benchmark that artifically benefits if old pages remain resident
while new pages get reclaimed. The fair zone allocation policy mitigates this
problem so pages age fairly. While the benchmark has problems, it is important
that tiobench performance remains constant as it implies that page aging
problems that the fair zone allocation policy fixes are not re-introduced.
4.7.0-rc4 4.7.0-rc4
mmotm-20160623 nodelru-v9
Min PotentialReadSpeed 89.65 ( 0.00%) 90.21 ( 0.62%)
Min SeqRead-MB/sec-1 82.68 ( 0.00%) 82.01 ( -0.81%)
Min SeqRead-MB/sec-2 72.76 ( 0.00%) 72.07 ( -0.95%)
Min SeqRead-MB/sec-4 75.13 ( 0.00%) 74.92 ( -0.28%)
Min SeqRead-MB/sec-8 64.91 ( 0.00%) 65.19 ( 0.43%)
Min SeqRead-MB/sec-16 62.24 ( 0.00%) 62.22 ( -0.03%)
Min RandRead-MB/sec-1 0.88 ( 0.00%) 0.88 ( 0.00%)
Min RandRead-MB/sec-2 0.95 ( 0.00%) 0.92 ( -3.16%)
Min RandRead-MB/sec-4 1.43 ( 0.00%) 1.34 ( -6.29%)
Min RandRead-MB/sec-8 1.61 ( 0.00%) 1.60 ( -0.62%)
Min RandRead-MB/sec-16 1.80 ( 0.00%) 1.90 ( 5.56%)
Min SeqWrite-MB/sec-1 76.41 ( 0.00%) 76.85 ( 0.58%)
Min SeqWrite-MB/sec-2 74.11 ( 0.00%) 73.54 ( -0.77%)
Min SeqWrite-MB/sec-4 80.05 ( 0.00%) 80.13 ( 0.10%)
Min SeqWrite-MB/sec-8 72.88 ( 0.00%) 73.20 ( 0.44%)
Min SeqWrite-MB/sec-16 75.91 ( 0.00%) 76.44 ( 0.70%)
Min RandWrite-MB/sec-1 1.18 ( 0.00%) 1.14 ( -3.39%)
Min RandWrite-MB/sec-2 1.02 ( 0.00%) 1.03 ( 0.98%)
Min RandWrite-MB/sec-4 1.05 ( 0.00%) 0.98 ( -6.67%)
Min RandWrite-MB/sec-8 0.89 ( 0.00%) 0.92 ( 3.37%)
Min RandWrite-MB/sec-16 0.92 ( 0.00%) 0.93 ( 1.09%)
4.7.0-rc4 4.7.0-rc4
mmotm-20160623 approx-v9
User 645.72 525.90
System 403.85 331.75
Elapsed 6795.36 6783.67
This shows that the series has little or not impact on tiobench which is
desirable and a reduction in system CPU usage. It indicates that the fair
zone allocation policy was removed in a manner that didn't reintroduce
one class of page aging bug. There were only minor differences in overall
reclaim activity
4.7.0-rc4 4.7.0-rc4
mmotm-20160623nodelru-v8
Minor Faults 645838 647465
Major Faults 573 640
Swap Ins 0 0
Swap Outs 0 0
DMA allocs 0 0
DMA32 allocs 46041453 44190646
Normal allocs 78053072 79887245
Movable allocs 0 0
Allocation stalls 24 67
Stall zone DMA 0 0
Stall zone DMA32 0 0
Stall zone Normal 0 2
Stall zone HighMem 0 0
Stall zone Movable 0 65
Direct pages scanned 10969 30609
Kswapd pages scanned 93375144 93492094
Kswapd pages reclaimed 93372243 93489370
Direct pages reclaimed 10969 30609
Kswapd efficiency 99% 99%
Kswapd velocity 13741.015 13781.934
Direct efficiency 100% 100%
Direct velocity 1.614 4.512
Percentage direct scans 0% 0%
kswapd activity was roughly comparable. There were differences in direct
reclaim activity but negligible in the context of the overall workload
(velocity of 4 pages per second with the patches applied, 1.6 pages per
second in the baseline kernel).
pgbench read-only large configuration on ext4
---------------------------------------------
pgbench is a database benchmark that can be sensitive to page reclaim
decisions. This also checks if removing the fair zone allocation policy
is safe
pgbench Transactions
4.7.0-rc4 4.7.0-rc4
mmotm-20160623 nodelru-v8
Hmean 1 188.26 ( 0.00%) 189.78 ( 0.81%)
Hmean 5 330.66 ( 0.00%) 328.69 ( -0.59%)
Hmean 12 370.32 ( 0.00%) 380.72 ( 2.81%)
Hmean 21 368.89 ( 0.00%) 369.00 ( 0.03%)
Hmean 30 382.14 ( 0.00%) 360.89 ( -5.56%)
Hmean 32 428.87 ( 0.00%) 432.96 ( 0.95%)
Negligible differences again. As with tiobench, overall reclaim activity
was comparable.
bonnie++ on ext4
----------------
No interesting performance difference, negligible differences on reclaim
stats.
paralleldd on ext4
------------------
This workload uses varying numbers of dd instances to read large amounts of
data from disk.
4.7.0-rc3 4.7.0-rc3
mmotm-20160623 nodelru-v9
Amean Elapsd-1 186.04 ( 0.00%) 189.41 ( -1.82%)
Amean Elapsd-3 192.27 ( 0.00%) 191.38 ( 0.46%)
Amean Elapsd-5 185.21 ( 0.00%) 182.75 ( 1.33%)
Amean Elapsd-7 183.71 ( 0.00%) 182.11 ( 0.87%)
Amean Elapsd-12 180.96 ( 0.00%) 181.58 ( -0.35%)
Amean Elapsd-16 181.36 ( 0.00%) 183.72 ( -1.30%)
4.7.0-rc4 4.7.0-rc4
mmotm-20160623 nodelru-v9
User 1548.01 1552.44
System 8609.71 8515.08
Elapsed 3587.10 3594.54
There is little or no change in performance but some drop in system CPU usage.
4.7.0-rc3 4.7.0-rc3
mmotm-20160623 nodelru-v9
Minor Faults 362662 367360
Major Faults 1204 1143
Swap Ins 22 0
Swap Outs 2855 1029
DMA allocs 0 0
DMA32 allocs 31409797 28837521
Normal allocs 46611853 49231282
Movable allocs 0 0
Direct pages scanned 0 0
Kswapd pages scanned 40845270 40869088
Kswapd pages reclaimed 40830976 40855294
Direct pages reclaimed 0 0
Kswapd efficiency 99% 99%
Kswapd velocity 11386.711 11369.769
Direct efficiency 100% 100%
Direct velocity 0.000 0.000
Percentage direct scans 0% 0%
Page writes by reclaim 2855 1029
Page writes file 0 0
Page writes anon 2855 1029
Page reclaim immediate 771 1628
Sector Reads 293312636 293536360
Sector Writes 18213568 18186480
Page rescued immediate 0 0
Slabs scanned 128257 132747
Direct inode steals 181 56
Kswapd inode steals 59 1131
It basically shows that kswapd was active at roughly the same rate in
both kernels. There was also comparable slab scanning activity and direct
reclaim was avoided in both cases. There appears to be a large difference
in numbers of inodes reclaimed but the workload has few active inodes and
is likely a timing artifact.
stutter
-------
stutter simulates a simple workload. One part uses a lot of anonymous
memory, a second measures mmap latency and a third copies a large file.
The primary metric is checking for mmap latency.
stutter
4.7.0-rc4 4.7.0-rc4
mmotm-20160623 nodelru-v8
Min mmap 16.6283 ( 0.00%) 13.4258 ( 19.26%)
1st-qrtle mmap 54.7570 ( 0.00%) 34.9121 ( 36.24%)
2nd-qrtle mmap 57.3163 ( 0.00%) 46.1147 ( 19.54%)
3rd-qrtle mmap 58.9976 ( 0.00%) 47.1882 ( 20.02%)
Max-90% mmap 59.7433 ( 0.00%) 47.4453 ( 20.58%)
Max-93% mmap 60.1298 ( 0.00%) 47.6037 ( 20.83%)
Max-95% mmap 73.4112 ( 0.00%) 82.8719 (-12.89%)
Max-99% mmap 92.8542 ( 0.00%) 88.8870 ( 4.27%)
Max mmap 1440.6569 ( 0.00%) 121.4201 ( 91.57%)
Mean mmap 59.3493 ( 0.00%) 42.2991 ( 28.73%)
Best99%Mean mmap 57.2121 ( 0.00%) 41.8207 ( 26.90%)
Best95%Mean mmap 55.9113 ( 0.00%) 39.9620 ( 28.53%)
Best90%Mean mmap 55.6199 ( 0.00%) 39.3124 ( 29.32%)
Best50%Mean mmap 53.2183 ( 0.00%) 33.1307 ( 37.75%)
Best10%Mean mmap 45.9842 ( 0.00%) 20.4040 ( 55.63%)
Best5%Mean mmap 43.2256 ( 0.00%) 17.9654 ( 58.44%)
Best1%Mean mmap 32.9388 ( 0.00%) 16.6875 ( 49.34%)
This shows a number of improvements with the worst-case outlier greatly
improved.
Some of the vmstats are interesting
4.7.0-rc4 4.7.0-rc4
mmotm-20160623nodelru-v8
Swap Ins 163 502
Swap Outs 0 0
DMA allocs 0 0
DMA32 allocs 618719206 1381662383
Normal allocs 891235743 564138421
Movable allocs 0 0
Allocation stalls 2603 1
Direct pages scanned 216787 2
Kswapd pages scanned 50719775 41778378
Kswapd pages reclaimed 41541765 41777639
Direct pages reclaimed 209159 0
Kswapd efficiency 81% 99%
Kswapd velocity 16859.554 14329.059
Direct efficiency 96% 0%
Direct velocity 72.061 0.001
Percentage direct scans 0% 0%
Page writes by reclaim 6215049 0
Page writes file 6215049 0
Page writes anon 0 0
Page reclaim immediate 70673 90
Sector Reads 81940800 81680456
Sector Writes 100158984 98816036
Page rescued immediate 0 0
Slabs scanned 1366954 22683
While this is not guaranteed in all cases, this particular test showed
a large reduction in direct reclaim activity. It's also worth noting
that no page writes were issued from reclaim context.
This series is not without its hazards. There are at least three areas
that I'm concerned with even though I could not reproduce any problems in
that area.
1. Reclaim/compaction is going to be affected because the amount of reclaim is
no longer targetted at a specific zone. Compaction works on a per-zone basis
so there is no guarantee that reclaiming a few THP's worth page pages will
have a positive impact on compaction success rates.
2. The Slab/LRU reclaim ratio is affected because the frequency the shrinkers
are called is now different. This may or may not be a problem but if it
is, it'll be because shrinkers are not called enough and some balancing
is required.
3. The anon/file reclaim ratio may be affected. Pages about to be dirtied are
distributed between zones and the fair zone allocation policy used to do
something very similar for anon. The distribution is now different but not
necessarily in any way that matters but it's still worth bearing in mind.
VM statistic counters for reclaim decisions are zone-based. If the kernel
is to reclaim on a per-node basis then we need to track per-node
statistics but there is no infrastructure for that. The most notable
change is that the old node_page_state is renamed to
sum_zone_node_page_state. The new node_page_state takes a pglist_data and
uses per-node stats but none exist yet. There is some renaming such as
vm_stat to vm_zone_stat and the addition of vm_node_stat and the renaming
of mod_state to mod_zone_state. Otherwise, this is mostly a mechanical
patch with no functional change. There is a lot of similarity between the
node and zone helpers which is unfortunate but there was no obvious way of
reusing the code and maintaining type safety.
Link: http://lkml.kernel.org/r/1467970510-21195-2-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 22:45:24 +00:00
|
|
|
val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
|
2006-09-26 06:31:12 +00:00
|
|
|
#ifdef CONFIG_HIGHMEM
|
2016-05-20 00:12:23 +00:00
|
|
|
for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
|
|
|
|
struct zone *zone = &pgdat->node_zones[zone_type];
|
|
|
|
|
|
|
|
if (is_highmem(zone)) {
|
2018-12-28 08:34:24 +00:00
|
|
|
managed_highpages += zone_managed_pages(zone);
|
2016-05-20 00:12:23 +00:00
|
|
|
free_highpages += zone_page_state(zone, NR_FREE_PAGES);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
val->totalhigh = managed_highpages;
|
|
|
|
val->freehigh = free_highpages;
|
2006-09-26 06:31:12 +00:00
|
|
|
#else
|
2016-05-20 00:12:23 +00:00
|
|
|
val->totalhigh = managed_highpages;
|
|
|
|
val->freehigh = free_highpages;
|
2006-09-26 06:31:12 +00:00
|
|
|
#endif
|
2005-04-16 22:20:36 +00:00
|
|
|
val->mem_unit = PAGE_SIZE;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2011-03-22 23:30:46 +00:00
|
|
|
/*
|
2011-05-25 00:11:16 +00:00
|
|
|
* Determine whether the node should be displayed or not, depending on whether
|
|
|
|
* SHOW_MEM_FILTER_NODES was passed to show_free_areas().
|
2011-03-22 23:30:46 +00:00
|
|
|
*/
|
2017-02-22 23:46:16 +00:00
|
|
|
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
|
2011-03-22 23:30:46 +00:00
|
|
|
{
|
|
|
|
if (!(flags & SHOW_MEM_FILTER_NODES))
|
2017-02-22 23:46:16 +00:00
|
|
|
return false;
|
2011-03-22 23:30:46 +00:00
|
|
|
|
2017-02-22 23:46:16 +00:00
|
|
|
/*
|
|
|
|
* no node mask - aka implicit memory numa policy. Do not bother with
|
|
|
|
* the synchronization - read_mems_allowed_begin - because we do not
|
|
|
|
* have to be precise here.
|
|
|
|
*/
|
|
|
|
if (!nodemask)
|
|
|
|
nodemask = &cpuset_current_mems_allowed;
|
|
|
|
|
|
|
|
return !node_isset(nid, *nodemask);
|
2011-03-22 23:30:46 +00:00
|
|
|
}
|
|
|
|
|
2012-12-12 00:00:24 +00:00
|
|
|
static void show_migration_types(unsigned char type)
|
|
|
|
{
|
|
|
|
static const char types[MIGRATE_TYPES] = {
|
|
|
|
[MIGRATE_UNMOVABLE] = 'U',
|
|
|
|
[MIGRATE_MOVABLE] = 'M',
|
2015-12-11 21:40:29 +00:00
|
|
|
[MIGRATE_RECLAIMABLE] = 'E',
|
|
|
|
[MIGRATE_HIGHATOMIC] = 'H',
|
2012-12-12 00:00:24 +00:00
|
|
|
#ifdef CONFIG_CMA
|
|
|
|
[MIGRATE_CMA] = 'C',
|
|
|
|
#endif
|
2013-02-23 00:33:58 +00:00
|
|
|
#ifdef CONFIG_MEMORY_ISOLATION
|
2012-12-12 00:00:24 +00:00
|
|
|
[MIGRATE_ISOLATE] = 'I',
|
2013-02-23 00:33:58 +00:00
|
|
|
#endif
|
2012-12-12 00:00:24 +00:00
|
|
|
};
|
|
|
|
char tmp[MIGRATE_TYPES + 1];
|
|
|
|
char *p = tmp;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < MIGRATE_TYPES; i++) {
|
|
|
|
if (type & (1 << i))
|
|
|
|
*p++ = types[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
*p = '\0';
|
2016-10-28 00:46:29 +00:00
|
|
|
printk(KERN_CONT "(%s) ", tmp);
|
2012-12-12 00:00:24 +00:00
|
|
|
}
|
|
|
|
|
2022-08-23 09:22:30 +00:00
|
|
|
static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx)
|
|
|
|
{
|
|
|
|
int zone_idx;
|
|
|
|
for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++)
|
|
|
|
if (zone_managed_pages(pgdat->node_zones + zone_idx))
|
|
|
|
return true;
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* Show free area list (used inside shift_scroll-lock stuff)
|
|
|
|
* We also calculate the percentage fragmentation. We do this by counting the
|
|
|
|
* memory on each free list with the exception of the first item on the list.
|
2015-04-14 22:45:30 +00:00
|
|
|
*
|
|
|
|
* Bits in @filter:
|
|
|
|
* SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
|
|
|
|
* cpuset.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
2022-08-23 09:22:30 +00:00
|
|
|
void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2015-04-14 22:45:30 +00:00
|
|
|
unsigned long free_pcp = 0;
|
2022-07-06 03:46:54 +00:00
|
|
|
int cpu, nid;
|
2005-04-16 22:20:36 +00:00
|
|
|
struct zone *zone;
|
2016-07-28 22:45:31 +00:00
|
|
|
pg_data_t *pgdat;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2009-03-31 22:19:31 +00:00
|
|
|
for_each_populated_zone(zone) {
|
2022-08-23 09:22:30 +00:00
|
|
|
if (zone_idx(zone) > max_zone_idx)
|
|
|
|
continue;
|
2017-02-22 23:46:16 +00:00
|
|
|
if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
|
2011-03-22 23:30:46 +00:00
|
|
|
continue;
|
2015-04-14 22:45:30 +00:00
|
|
|
|
2015-04-14 22:45:32 +00:00
|
|
|
for_each_online_cpu(cpu)
|
mm/page_alloc: split per cpu page lists and zone stats
The PCP (per-cpu page allocator in page_alloc.c) shares locking
requirements with vmstat and the zone lock which is inconvenient and
causes some issues. For example, the PCP list and vmstat share the same
per-cpu space meaning that it's possible that vmstat updates dirty cache
lines holding per-cpu lists across CPUs unless padding is used. Second,
PREEMPT_RT does not want to disable IRQs for too long in the page
allocator.
This series splits the locking requirements and uses locks types more
suitable for PREEMPT_RT, reduces the time when special locking is required
for stats and reduces the time when IRQs need to be disabled on
!PREEMPT_RT kernels.
Why local_lock? PREEMPT_RT considers the following sequence to be unsafe
as documented in Documentation/locking/locktypes.rst
local_irq_disable();
spin_lock(&lock);
The pcp allocator has this sequence for rmqueue_pcplist (local_irq_save)
-> __rmqueue_pcplist -> rmqueue_bulk (spin_lock). While it's possible to
separate this out, it generally means there are points where we enable
IRQs and reenable them again immediately. To prevent a migration and the
per-cpu pointer going stale, migrate_disable is also needed. That is a
custom lock that is similar, but worse, than local_lock. Furthermore, on
PREEMPT_RT, it's undesirable to leave IRQs disabled for too long. By
converting to local_lock which disables migration on PREEMPT_RT, the
locking requirements can be separated and start moving the protections for
PCP, stats and the zone lock to PREEMPT_RT-safe equivalent locking. As a
bonus, local_lock also means that PROVE_LOCKING does something useful.
After that, it's obvious that zone_statistics incurs too much overhead and
leaves IRQs disabled for longer than necessary on !PREEMPT_RT kernels.
zone_statistics uses perfectly accurate counters requiring IRQs be
disabled for parallel RMW sequences when inaccurate ones like vm_events
would do. The series makes the NUMA statistics (NUMA_HIT and friends)
inaccurate counters that then require no special protection on
!PREEMPT_RT.
The bulk page allocator can then do stat updates in bulk with IRQs enabled
which should improve the efficiency. Technically, this could have been
done without the local_lock and vmstat conversion work and the order
simply reflects the timing of when different series were implemented.
Finally, there are places where we conflate IRQs being disabled for the
PCP with the IRQ-safe zone spinlock. The remainder of the series reduces
the scope of what is protected by disabled IRQs on !PREEMPT_RT kernels.
By the end of the series, page_alloc.c does not call local_irq_save so the
locking scope is a bit clearer. The one exception is that modifying
NR_FREE_PAGES still happens in places where it's known the IRQs are
disabled as it's harmless for PREEMPT_RT and would be expensive to split
the locking there.
No performance data is included because despite the overhead of the stats,
it's within the noise for most workloads on !PREEMPT_RT. However, Jesper
Dangaard Brouer ran a page allocation microbenchmark on a E5-1650 v4 @
3.60GHz CPU on the first version of this series. Focusing on the array
variant of the bulk page allocator reveals the following.
(CPU: Intel(R) Xeon(R) CPU E5-1650 v4 @ 3.60GHz)
ARRAY variant: time_bulk_page_alloc_free_array: step=bulk size
Baseline Patched
1 56.383 54.225 (+3.83%)
2 40.047 35.492 (+11.38%)
3 37.339 32.643 (+12.58%)
4 35.578 30.992 (+12.89%)
8 33.592 29.606 (+11.87%)
16 32.362 28.532 (+11.85%)
32 31.476 27.728 (+11.91%)
64 30.633 27.252 (+11.04%)
128 30.596 27.090 (+11.46%)
While this is a positive outcome, the series is more likely to be
interesting to the RT people in terms of getting parts of the PREEMPT_RT
tree into mainline.
This patch (of 9):
The per-cpu page allocator lists and the per-cpu vmstat deltas are stored
in the same struct per_cpu_pages even though vmstats have no direct impact
on the per-cpu page lists. This is inconsistent because the vmstats for a
node are stored on a dedicated structure. The bigger issue is that the
per_cpu_pages structure is not cache-aligned and stat updates either cache
conflict with adjacent per-cpu lists incurring a runtime cost or padding
is required incurring a memory cost.
This patch splits the per-cpu pagelists and the vmstat deltas into
separate structures. It's mostly a mechanical conversion but some
variable renaming is done to clearly distinguish the per-cpu pages
structure (pcp) from the vmstats (pzstats).
Superficially, this appears to increase the size of the per_cpu_pages
structure but the movement of expire fills a structure hole so there is no
impact overall.
[mgorman@techsingularity.net: make it W=1 cleaner]
Link: https://lkml.kernel.org/r/20210514144622.GA3735@techsingularity.net
[mgorman@techsingularity.net: make it W=1 even cleaner]
Link: https://lkml.kernel.org/r/20210516140705.GB3735@techsingularity.net
[lkp@intel.com: check struct per_cpu_zonestat has a non-zero size]
[vbabka@suse.cz: Init zone->per_cpu_zonestats properly]
Link: https://lkml.kernel.org/r/20210512095458.30632-1-mgorman@techsingularity.net
Link: https://lkml.kernel.org/r/20210512095458.30632-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 02:41:38 +00:00
|
|
|
free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2009-09-22 00:01:37 +00:00
|
|
|
printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
|
|
|
|
" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
|
2020-06-02 04:48:21 +00:00
|
|
|
" unevictable:%lu dirty:%lu writeback:%lu\n"
|
2015-04-14 22:45:30 +00:00
|
|
|
" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
|
mm: add NR_SECONDARY_PAGETABLE to count secondary page table uses.
We keep track of several kernel memory stats (total kernel memory, page
tables, stack, vmalloc, etc) on multiple levels (global, per-node,
per-memcg, etc). These stats give insights to users to how much memory
is used by the kernel and for what purposes.
Currently, memory used by KVM mmu is not accounted in any of those
kernel memory stats. This patch series accounts the memory pages
used by KVM for page tables in those stats in a new
NR_SECONDARY_PAGETABLE stat. This stat can be later extended to account
for other types of secondary pages tables (e.g. iommu page tables).
KVM has a decent number of large allocations that aren't for page
tables, but for most of them, the number/size of those allocations
scales linearly with either the number of vCPUs or the amount of memory
assigned to the VM. KVM's secondary page table allocations do not scale
linearly, especially when nested virtualization is in use.
From a KVM perspective, NR_SECONDARY_PAGETABLE will scale with KVM's
per-VM pages_{4k,2m,1g} stats unless the guest is doing something
bizarre (e.g. accessing only 4kb chunks of 2mb pages so that KVM is
forced to allocate a large number of page tables even though the guest
isn't accessing that much memory). However, someone would need to either
understand how KVM works to make that connection, or know (or be told) to
go look at KVM's stats if they're running VMs to better decipher the stats.
Furthermore, having NR_PAGETABLE side-by-side with NR_SECONDARY_PAGETABLE
is informative. For example, when backing a VM with THP vs. HugeTLB,
NR_SECONDARY_PAGETABLE is roughly the same, but NR_PAGETABLE is an order
of magnitude higher with THP. So having this stat will at the very least
prove to be useful for understanding tradeoffs between VM backing types,
and likely even steer folks towards potential optimizations.
The original discussion with more details about the rationale:
https://lore.kernel.org/all/87ilqoi77b.wl-maz@kernel.org
This stat will be used by subsequent patches to count KVM mmu
memory usage.
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220823004639.2387269-2-yosryahmed@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2022-08-23 00:46:36 +00:00
|
|
|
" mapped:%lu shmem:%lu pagetables:%lu\n"
|
|
|
|
" sec_pagetables:%lu bounce:%lu\n"
|
2021-09-02 21:53:01 +00:00
|
|
|
" kernel_misc_reclaimable:%lu\n"
|
2015-04-14 22:45:30 +00:00
|
|
|
" free:%lu free_pcp:%lu free_cma:%lu\n",
|
2016-07-28 22:45:31 +00:00
|
|
|
global_node_page_state(NR_ACTIVE_ANON),
|
|
|
|
global_node_page_state(NR_INACTIVE_ANON),
|
|
|
|
global_node_page_state(NR_ISOLATED_ANON),
|
|
|
|
global_node_page_state(NR_ACTIVE_FILE),
|
|
|
|
global_node_page_state(NR_INACTIVE_FILE),
|
|
|
|
global_node_page_state(NR_ISOLATED_FILE),
|
|
|
|
global_node_page_state(NR_UNEVICTABLE),
|
2016-07-28 22:46:20 +00:00
|
|
|
global_node_page_state(NR_FILE_DIRTY),
|
|
|
|
global_node_page_state(NR_WRITEBACK),
|
2020-08-07 06:20:39 +00:00
|
|
|
global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
|
|
|
|
global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
|
2016-07-28 22:46:14 +00:00
|
|
|
global_node_page_state(NR_FILE_MAPPED),
|
2016-07-28 22:46:20 +00:00
|
|
|
global_node_page_state(NR_SHMEM),
|
2020-12-15 03:07:17 +00:00
|
|
|
global_node_page_state(NR_PAGETABLE),
|
mm: add NR_SECONDARY_PAGETABLE to count secondary page table uses.
We keep track of several kernel memory stats (total kernel memory, page
tables, stack, vmalloc, etc) on multiple levels (global, per-node,
per-memcg, etc). These stats give insights to users to how much memory
is used by the kernel and for what purposes.
Currently, memory used by KVM mmu is not accounted in any of those
kernel memory stats. This patch series accounts the memory pages
used by KVM for page tables in those stats in a new
NR_SECONDARY_PAGETABLE stat. This stat can be later extended to account
for other types of secondary pages tables (e.g. iommu page tables).
KVM has a decent number of large allocations that aren't for page
tables, but for most of them, the number/size of those allocations
scales linearly with either the number of vCPUs or the amount of memory
assigned to the VM. KVM's secondary page table allocations do not scale
linearly, especially when nested virtualization is in use.
From a KVM perspective, NR_SECONDARY_PAGETABLE will scale with KVM's
per-VM pages_{4k,2m,1g} stats unless the guest is doing something
bizarre (e.g. accessing only 4kb chunks of 2mb pages so that KVM is
forced to allocate a large number of page tables even though the guest
isn't accessing that much memory). However, someone would need to either
understand how KVM works to make that connection, or know (or be told) to
go look at KVM's stats if they're running VMs to better decipher the stats.
Furthermore, having NR_PAGETABLE side-by-side with NR_SECONDARY_PAGETABLE
is informative. For example, when backing a VM with THP vs. HugeTLB,
NR_SECONDARY_PAGETABLE is roughly the same, but NR_PAGETABLE is an order
of magnitude higher with THP. So having this stat will at the very least
prove to be useful for understanding tradeoffs between VM backing types,
and likely even steer folks towards potential optimizations.
The original discussion with more details about the rationale:
https://lore.kernel.org/all/87ilqoi77b.wl-maz@kernel.org
This stat will be used by subsequent patches to count KVM mmu
memory usage.
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220823004639.2387269-2-yosryahmed@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2022-08-23 00:46:36 +00:00
|
|
|
global_node_page_state(NR_SECONDARY_PAGETABLE),
|
2017-09-06 23:23:36 +00:00
|
|
|
global_zone_page_state(NR_BOUNCE),
|
2021-09-02 21:53:01 +00:00
|
|
|
global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
|
2017-09-06 23:23:36 +00:00
|
|
|
global_zone_page_state(NR_FREE_PAGES),
|
2015-04-14 22:45:30 +00:00
|
|
|
free_pcp,
|
2017-09-06 23:23:36 +00:00
|
|
|
global_zone_page_state(NR_FREE_CMA_PAGES));
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2016-07-28 22:45:31 +00:00
|
|
|
for_each_online_pgdat(pgdat) {
|
2017-02-22 23:46:16 +00:00
|
|
|
if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
|
2017-02-22 23:46:07 +00:00
|
|
|
continue;
|
2022-08-23 09:22:30 +00:00
|
|
|
if (!node_has_managed_zones(pgdat, max_zone_idx))
|
|
|
|
continue;
|
2017-02-22 23:46:07 +00:00
|
|
|
|
2016-07-28 22:45:31 +00:00
|
|
|
printk("Node %d"
|
|
|
|
" active_anon:%lukB"
|
|
|
|
" inactive_anon:%lukB"
|
|
|
|
" active_file:%lukB"
|
|
|
|
" inactive_file:%lukB"
|
|
|
|
" unevictable:%lukB"
|
|
|
|
" isolated(anon):%lukB"
|
|
|
|
" isolated(file):%lukB"
|
2016-07-28 22:46:14 +00:00
|
|
|
" mapped:%lukB"
|
2016-07-28 22:46:20 +00:00
|
|
|
" dirty:%lukB"
|
|
|
|
" writeback:%lukB"
|
|
|
|
" shmem:%lukB"
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
|
|
" shmem_thp: %lukB"
|
|
|
|
" shmem_pmdmapped: %lukB"
|
|
|
|
" anon_thp: %lukB"
|
|
|
|
#endif
|
|
|
|
" writeback_tmp:%lukB"
|
2020-08-07 06:21:37 +00:00
|
|
|
" kernel_stack:%lukB"
|
|
|
|
#ifdef CONFIG_SHADOW_CALL_STACK
|
|
|
|
" shadow_call_stack:%lukB"
|
|
|
|
#endif
|
2020-12-15 03:07:17 +00:00
|
|
|
" pagetables:%lukB"
|
mm: add NR_SECONDARY_PAGETABLE to count secondary page table uses.
We keep track of several kernel memory stats (total kernel memory, page
tables, stack, vmalloc, etc) on multiple levels (global, per-node,
per-memcg, etc). These stats give insights to users to how much memory
is used by the kernel and for what purposes.
Currently, memory used by KVM mmu is not accounted in any of those
kernel memory stats. This patch series accounts the memory pages
used by KVM for page tables in those stats in a new
NR_SECONDARY_PAGETABLE stat. This stat can be later extended to account
for other types of secondary pages tables (e.g. iommu page tables).
KVM has a decent number of large allocations that aren't for page
tables, but for most of them, the number/size of those allocations
scales linearly with either the number of vCPUs or the amount of memory
assigned to the VM. KVM's secondary page table allocations do not scale
linearly, especially when nested virtualization is in use.
From a KVM perspective, NR_SECONDARY_PAGETABLE will scale with KVM's
per-VM pages_{4k,2m,1g} stats unless the guest is doing something
bizarre (e.g. accessing only 4kb chunks of 2mb pages so that KVM is
forced to allocate a large number of page tables even though the guest
isn't accessing that much memory). However, someone would need to either
understand how KVM works to make that connection, or know (or be told) to
go look at KVM's stats if they're running VMs to better decipher the stats.
Furthermore, having NR_PAGETABLE side-by-side with NR_SECONDARY_PAGETABLE
is informative. For example, when backing a VM with THP vs. HugeTLB,
NR_SECONDARY_PAGETABLE is roughly the same, but NR_PAGETABLE is an order
of magnitude higher with THP. So having this stat will at the very least
prove to be useful for understanding tradeoffs between VM backing types,
and likely even steer folks towards potential optimizations.
The original discussion with more details about the rationale:
https://lore.kernel.org/all/87ilqoi77b.wl-maz@kernel.org
This stat will be used by subsequent patches to count KVM mmu
memory usage.
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220823004639.2387269-2-yosryahmed@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2022-08-23 00:46:36 +00:00
|
|
|
" sec_pagetables:%lukB"
|
2016-07-28 22:45:31 +00:00
|
|
|
" all_unreclaimable? %s"
|
|
|
|
"\n",
|
|
|
|
pgdat->node_id,
|
|
|
|
K(node_page_state(pgdat, NR_ACTIVE_ANON)),
|
|
|
|
K(node_page_state(pgdat, NR_INACTIVE_ANON)),
|
|
|
|
K(node_page_state(pgdat, NR_ACTIVE_FILE)),
|
|
|
|
K(node_page_state(pgdat, NR_INACTIVE_FILE)),
|
|
|
|
K(node_page_state(pgdat, NR_UNEVICTABLE)),
|
|
|
|
K(node_page_state(pgdat, NR_ISOLATED_ANON)),
|
|
|
|
K(node_page_state(pgdat, NR_ISOLATED_FILE)),
|
2016-07-28 22:46:14 +00:00
|
|
|
K(node_page_state(pgdat, NR_FILE_MAPPED)),
|
2016-07-28 22:46:20 +00:00
|
|
|
K(node_page_state(pgdat, NR_FILE_DIRTY)),
|
|
|
|
K(node_page_state(pgdat, NR_WRITEBACK)),
|
2017-04-07 23:04:45 +00:00
|
|
|
K(node_page_state(pgdat, NR_SHMEM)),
|
2016-07-28 22:46:20 +00:00
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
2021-02-24 20:03:31 +00:00
|
|
|
K(node_page_state(pgdat, NR_SHMEM_THPS)),
|
2021-02-24 20:03:35 +00:00
|
|
|
K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
|
2021-02-24 20:03:23 +00:00
|
|
|
K(node_page_state(pgdat, NR_ANON_THPS)),
|
2016-07-28 22:46:20 +00:00
|
|
|
#endif
|
|
|
|
K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
|
2020-08-07 06:21:37 +00:00
|
|
|
node_page_state(pgdat, NR_KERNEL_STACK_KB),
|
|
|
|
#ifdef CONFIG_SHADOW_CALL_STACK
|
|
|
|
node_page_state(pgdat, NR_KERNEL_SCS_KB),
|
|
|
|
#endif
|
2020-12-15 03:07:17 +00:00
|
|
|
K(node_page_state(pgdat, NR_PAGETABLE)),
|
mm: add NR_SECONDARY_PAGETABLE to count secondary page table uses.
We keep track of several kernel memory stats (total kernel memory, page
tables, stack, vmalloc, etc) on multiple levels (global, per-node,
per-memcg, etc). These stats give insights to users to how much memory
is used by the kernel and for what purposes.
Currently, memory used by KVM mmu is not accounted in any of those
kernel memory stats. This patch series accounts the memory pages
used by KVM for page tables in those stats in a new
NR_SECONDARY_PAGETABLE stat. This stat can be later extended to account
for other types of secondary pages tables (e.g. iommu page tables).
KVM has a decent number of large allocations that aren't for page
tables, but for most of them, the number/size of those allocations
scales linearly with either the number of vCPUs or the amount of memory
assigned to the VM. KVM's secondary page table allocations do not scale
linearly, especially when nested virtualization is in use.
From a KVM perspective, NR_SECONDARY_PAGETABLE will scale with KVM's
per-VM pages_{4k,2m,1g} stats unless the guest is doing something
bizarre (e.g. accessing only 4kb chunks of 2mb pages so that KVM is
forced to allocate a large number of page tables even though the guest
isn't accessing that much memory). However, someone would need to either
understand how KVM works to make that connection, or know (or be told) to
go look at KVM's stats if they're running VMs to better decipher the stats.
Furthermore, having NR_PAGETABLE side-by-side with NR_SECONDARY_PAGETABLE
is informative. For example, when backing a VM with THP vs. HugeTLB,
NR_SECONDARY_PAGETABLE is roughly the same, but NR_PAGETABLE is an order
of magnitude higher with THP. So having this stat will at the very least
prove to be useful for understanding tradeoffs between VM backing types,
and likely even steer folks towards potential optimizations.
The original discussion with more details about the rationale:
https://lore.kernel.org/all/87ilqoi77b.wl-maz@kernel.org
This stat will be used by subsequent patches to count KVM mmu
memory usage.
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220823004639.2387269-2-yosryahmed@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2022-08-23 00:46:36 +00:00
|
|
|
K(node_page_state(pgdat, NR_SECONDARY_PAGETABLE)),
|
mm: fix 100% CPU kswapd busyloop on unreclaimable nodes
Patch series "mm: kswapd spinning on unreclaimable nodes - fixes and
cleanups".
Jia reported a scenario in which the kswapd of a node indefinitely spins
at 100% CPU usage. We have seen similar cases at Facebook.
The kernel's current method of judging its ability to reclaim a node (or
whether to back off and sleep) is based on the amount of scanned pages
in proportion to the amount of reclaimable pages. In Jia's and our
scenarios, there are no reclaimable pages in the node, however, and the
condition for backing off is never met. Kswapd busyloops in an attempt
to restore the watermarks while having nothing to work with.
This series reworks the definition of an unreclaimable node based not on
scanning but on whether kswapd is able to actually reclaim pages in
MAX_RECLAIM_RETRIES (16) consecutive runs. This is the same criteria
the page allocator uses for giving up on direct reclaim and invoking the
OOM killer. If it cannot free any pages, kswapd will go to sleep and
leave further attempts to direct reclaim invocations, which will either
make progress and re-enable kswapd, or invoke the OOM killer.
Patch #1 fixes the immediate problem Jia reported, the remainder are
smaller fixlets, cleanups, and overall phasing out of the old method.
Patch #6 is the odd one out. It's a nice cleanup to get_scan_count(),
and directly related to #5, but in itself not relevant to the series.
If the whole series is too ambitious for 4.11, I would consider the
first three patches fixes, the rest cleanups.
This patch (of 9):
Jia He reports a problem with kswapd spinning at 100% CPU when
requesting more hugepages than memory available in the system:
$ echo 4000 >/proc/sys/vm/nr_hugepages
top - 13:42:59 up 3:37, 1 user, load average: 1.09, 1.03, 1.01
Tasks: 1 total, 1 running, 0 sleeping, 0 stopped, 0 zombie
%Cpu(s): 0.0 us, 12.5 sy, 0.0 ni, 85.5 id, 2.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem: 31371520 total, 30915136 used, 456384 free, 320 buffers
KiB Swap: 6284224 total, 115712 used, 6168512 free. 48192 cached Mem
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
76 root 20 0 0 0 0 R 100.0 0.000 217:17.29 kswapd3
At that time, there are no reclaimable pages left in the node, but as
kswapd fails to restore the high watermarks it refuses to go to sleep.
Kswapd needs to back away from nodes that fail to balance. Up until
commit 1d82de618ddd ("mm, vmscan: make kswapd reclaim in terms of
nodes") kswapd had such a mechanism. It considered zones whose
theoretically reclaimable pages it had reclaimed six times over as
unreclaimable and backed away from them. This guard was erroneously
removed as the patch changed the definition of a balanced node.
However, simply restoring this code wouldn't help in the case reported
here: there *are* no reclaimable pages that could be scanned until the
threshold is met. Kswapd would stay awake anyway.
Introduce a new and much simpler way of backing off. If kswapd runs
through MAX_RECLAIM_RETRIES (16) cycles without reclaiming a single
page, make it back off from the node. This is the same number of shots
direct reclaim takes before declaring OOM. Kswapd will go to sleep on
that node until a direct reclaimer manages to reclaim some pages, thus
proving the node reclaimable again.
[hannes@cmpxchg.org: check kswapd failure against the cumulative nr_reclaimed count]
Link: http://lkml.kernel.org/r/20170306162410.GB2090@cmpxchg.org
[shakeelb@google.com: fix condition for throttle_direct_reclaim]
Link: http://lkml.kernel.org/r/20170314183228.20152-1-shakeelb@google.com
Link: http://lkml.kernel.org/r/20170228214007.5621-2-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reported-by: Jia He <hejianet@gmail.com>
Tested-by: Jia He <hejianet@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 21:51:51 +00:00
|
|
|
pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
|
|
|
|
"yes" : "no");
|
2016-07-28 22:45:31 +00:00
|
|
|
}
|
|
|
|
|
2009-03-31 22:19:31 +00:00
|
|
|
for_each_populated_zone(zone) {
|
2005-04-16 22:20:36 +00:00
|
|
|
int i;
|
|
|
|
|
2022-08-23 09:22:30 +00:00
|
|
|
if (zone_idx(zone) > max_zone_idx)
|
|
|
|
continue;
|
2017-02-22 23:46:16 +00:00
|
|
|
if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
|
2011-03-22 23:30:46 +00:00
|
|
|
continue;
|
2015-04-14 22:45:30 +00:00
|
|
|
|
|
|
|
free_pcp = 0;
|
|
|
|
for_each_online_cpu(cpu)
|
mm/page_alloc: split per cpu page lists and zone stats
The PCP (per-cpu page allocator in page_alloc.c) shares locking
requirements with vmstat and the zone lock which is inconvenient and
causes some issues. For example, the PCP list and vmstat share the same
per-cpu space meaning that it's possible that vmstat updates dirty cache
lines holding per-cpu lists across CPUs unless padding is used. Second,
PREEMPT_RT does not want to disable IRQs for too long in the page
allocator.
This series splits the locking requirements and uses locks types more
suitable for PREEMPT_RT, reduces the time when special locking is required
for stats and reduces the time when IRQs need to be disabled on
!PREEMPT_RT kernels.
Why local_lock? PREEMPT_RT considers the following sequence to be unsafe
as documented in Documentation/locking/locktypes.rst
local_irq_disable();
spin_lock(&lock);
The pcp allocator has this sequence for rmqueue_pcplist (local_irq_save)
-> __rmqueue_pcplist -> rmqueue_bulk (spin_lock). While it's possible to
separate this out, it generally means there are points where we enable
IRQs and reenable them again immediately. To prevent a migration and the
per-cpu pointer going stale, migrate_disable is also needed. That is a
custom lock that is similar, but worse, than local_lock. Furthermore, on
PREEMPT_RT, it's undesirable to leave IRQs disabled for too long. By
converting to local_lock which disables migration on PREEMPT_RT, the
locking requirements can be separated and start moving the protections for
PCP, stats and the zone lock to PREEMPT_RT-safe equivalent locking. As a
bonus, local_lock also means that PROVE_LOCKING does something useful.
After that, it's obvious that zone_statistics incurs too much overhead and
leaves IRQs disabled for longer than necessary on !PREEMPT_RT kernels.
zone_statistics uses perfectly accurate counters requiring IRQs be
disabled for parallel RMW sequences when inaccurate ones like vm_events
would do. The series makes the NUMA statistics (NUMA_HIT and friends)
inaccurate counters that then require no special protection on
!PREEMPT_RT.
The bulk page allocator can then do stat updates in bulk with IRQs enabled
which should improve the efficiency. Technically, this could have been
done without the local_lock and vmstat conversion work and the order
simply reflects the timing of when different series were implemented.
Finally, there are places where we conflate IRQs being disabled for the
PCP with the IRQ-safe zone spinlock. The remainder of the series reduces
the scope of what is protected by disabled IRQs on !PREEMPT_RT kernels.
By the end of the series, page_alloc.c does not call local_irq_save so the
locking scope is a bit clearer. The one exception is that modifying
NR_FREE_PAGES still happens in places where it's known the IRQs are
disabled as it's harmless for PREEMPT_RT and would be expensive to split
the locking there.
No performance data is included because despite the overhead of the stats,
it's within the noise for most workloads on !PREEMPT_RT. However, Jesper
Dangaard Brouer ran a page allocation microbenchmark on a E5-1650 v4 @
3.60GHz CPU on the first version of this series. Focusing on the array
variant of the bulk page allocator reveals the following.
(CPU: Intel(R) Xeon(R) CPU E5-1650 v4 @ 3.60GHz)
ARRAY variant: time_bulk_page_alloc_free_array: step=bulk size
Baseline Patched
1 56.383 54.225 (+3.83%)
2 40.047 35.492 (+11.38%)
3 37.339 32.643 (+12.58%)
4 35.578 30.992 (+12.89%)
8 33.592 29.606 (+11.87%)
16 32.362 28.532 (+11.85%)
32 31.476 27.728 (+11.91%)
64 30.633 27.252 (+11.04%)
128 30.596 27.090 (+11.46%)
While this is a positive outcome, the series is more likely to be
interesting to the RT people in terms of getting parts of the PREEMPT_RT
tree into mainline.
This patch (of 9):
The per-cpu page allocator lists and the per-cpu vmstat deltas are stored
in the same struct per_cpu_pages even though vmstats have no direct impact
on the per-cpu page lists. This is inconsistent because the vmstats for a
node are stored on a dedicated structure. The bigger issue is that the
per_cpu_pages structure is not cache-aligned and stat updates either cache
conflict with adjacent per-cpu lists incurring a runtime cost or padding
is required incurring a memory cost.
This patch splits the per-cpu pagelists and the vmstat deltas into
separate structures. It's mostly a mechanical conversion but some
variable renaming is done to clearly distinguish the per-cpu pages
structure (pcp) from the vmstats (pzstats).
Superficially, this appears to increase the size of the per_cpu_pages
structure but the movement of expire fills a structure hole so there is no
impact overall.
[mgorman@techsingularity.net: make it W=1 cleaner]
Link: https://lkml.kernel.org/r/20210514144622.GA3735@techsingularity.net
[mgorman@techsingularity.net: make it W=1 even cleaner]
Link: https://lkml.kernel.org/r/20210516140705.GB3735@techsingularity.net
[lkp@intel.com: check struct per_cpu_zonestat has a non-zero size]
[vbabka@suse.cz: Init zone->per_cpu_zonestats properly]
Link: https://lkml.kernel.org/r/20210512095458.30632-1-mgorman@techsingularity.net
Link: https://lkml.kernel.org/r/20210512095458.30632-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 02:41:38 +00:00
|
|
|
free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
|
2015-04-14 22:45:30 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
show_node(zone);
|
2016-10-28 00:46:29 +00:00
|
|
|
printk(KERN_CONT
|
|
|
|
"%s"
|
2005-04-16 22:20:36 +00:00
|
|
|
" free:%lukB"
|
2021-11-05 20:40:37 +00:00
|
|
|
" boost:%lukB"
|
2005-04-16 22:20:36 +00:00
|
|
|
" min:%lukB"
|
|
|
|
" low:%lukB"
|
|
|
|
" high:%lukB"
|
2019-12-01 01:55:21 +00:00
|
|
|
" reserved_highatomic:%luKB"
|
mm: add per-zone lru list stat
When I did stress test with hackbench, I got OOM message frequently
which didn't ever happen in zone-lru.
gfp_mask=0x26004c0(GFP_KERNEL|__GFP_REPEAT|__GFP_NOTRACK), order=0
..
..
__alloc_pages_nodemask+0xe52/0xe60
? new_slab+0x39c/0x3b0
new_slab+0x39c/0x3b0
___slab_alloc.constprop.87+0x6da/0x840
? __alloc_skb+0x3c/0x260
? _raw_spin_unlock_irq+0x27/0x60
? trace_hardirqs_on_caller+0xec/0x1b0
? finish_task_switch+0xa6/0x220
? poll_select_copy_remaining+0x140/0x140
__slab_alloc.isra.81.constprop.86+0x40/0x6d
? __alloc_skb+0x3c/0x260
kmem_cache_alloc+0x22c/0x260
? __alloc_skb+0x3c/0x260
__alloc_skb+0x3c/0x260
alloc_skb_with_frags+0x4e/0x1a0
sock_alloc_send_pskb+0x16a/0x1b0
? wait_for_unix_gc+0x31/0x90
? alloc_set_pte+0x2ad/0x310
unix_stream_sendmsg+0x28d/0x340
sock_sendmsg+0x2d/0x40
sock_write_iter+0x6c/0xc0
__vfs_write+0xc0/0x120
vfs_write+0x9b/0x1a0
? __might_fault+0x49/0xa0
SyS_write+0x44/0x90
do_fast_syscall_32+0xa6/0x1e0
sysenter_past_esp+0x45/0x74
Mem-Info:
active_anon:104698 inactive_anon:105791 isolated_anon:192
active_file:433 inactive_file:283 isolated_file:22
unevictable:0 dirty:0 writeback:296 unstable:0
slab_reclaimable:6389 slab_unreclaimable:78927
mapped:474 shmem:0 pagetables:101426 bounce:0
free:10518 free_pcp:334 free_cma:0
Node 0 active_anon:418792kB inactive_anon:423164kB active_file:1732kB inactive_file:1132kB unevictable:0kB isolated(anon):768kB isolated(file):88kB mapped:1896kB dirty:0kB writeback:1184kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:1478632 all_unreclaimable? yes
DMA free:3304kB min:68kB low:84kB high:100kB present:15992kB managed:15916kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:4088kB kernel_stack:0kB pagetables:2480kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
lowmem_reserve[]: 0 809 1965 1965
Normal free:3436kB min:3604kB low:4504kB high:5404kB present:897016kB managed:858460kB mlocked:0kB slab_reclaimable:25556kB slab_unreclaimable:311712kB kernel_stack:164608kB pagetables:30844kB bounce:0kB free_pcp:620kB local_pcp:104kB free_cma:0kB
lowmem_reserve[]: 0 0 9247 9247
HighMem free:33808kB min:512kB low:1796kB high:3080kB present:1183736kB managed:1183736kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:372252kB bounce:0kB free_pcp:428kB local_pcp:72kB free_cma:0kB
lowmem_reserve[]: 0 0 0 0
DMA: 2*4kB (UM) 2*8kB (UM) 0*16kB 1*32kB (U) 1*64kB (U) 2*128kB (UM) 1*256kB (U) 1*512kB (M) 0*1024kB 1*2048kB (U) 0*4096kB = 3192kB
Normal: 33*4kB (MH) 79*8kB (ME) 11*16kB (M) 4*32kB (M) 2*64kB (ME) 2*128kB (EH) 7*256kB (EH) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 3244kB
HighMem: 2590*4kB (UM) 1568*8kB (UM) 491*16kB (UM) 60*32kB (UM) 6*64kB (M) 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB = 33064kB
Node 0 hugepages_total=0 hugepages_free=0 hugepages_surp=0 hugepages_size=2048kB
25121 total pagecache pages
24160 pages in swap cache
Swap cache stats: add 86371, delete 62211, find 42865/60187
Free swap = 4015560kB
Total swap = 4192252kB
524186 pages RAM
295934 pages HighMem/MovableOnly
9658 pages reserved
0 pages cma reserved
The order-0 allocation for normal zone failed while there are a lot of
reclaimable memory(i.e., anonymous memory with free swap). I wanted to
analyze the problem but it was hard because we removed per-zone lru stat
so I couldn't know how many of anonymous memory there are in normal/dma
zone.
When we investigate OOM problem, reclaimable memory count is crucial
stat to find a problem. Without it, it's hard to parse the OOM message
so I believe we should keep it.
With per-zone lru stat,
gfp_mask=0x26004c0(GFP_KERNEL|__GFP_REPEAT|__GFP_NOTRACK), order=0
Mem-Info:
active_anon:101103 inactive_anon:102219 isolated_anon:0
active_file:503 inactive_file:544 isolated_file:0
unevictable:0 dirty:0 writeback:34 unstable:0
slab_reclaimable:6298 slab_unreclaimable:74669
mapped:863 shmem:0 pagetables:100998 bounce:0
free:23573 free_pcp:1861 free_cma:0
Node 0 active_anon:404412kB inactive_anon:409040kB active_file:2012kB inactive_file:2176kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:3452kB dirty:0kB writeback:136kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:1320845 all_unreclaimable? yes
DMA free:3296kB min:68kB low:84kB high:100kB active_anon:5540kB inactive_anon:0kB active_file:0kB inactive_file:0kB present:15992kB managed:15916kB mlocked:0kB slab_reclaimable:248kB slab_unreclaimable:2628kB kernel_stack:792kB pagetables:2316kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
lowmem_reserve[]: 0 809 1965 1965
Normal free:3600kB min:3604kB low:4504kB high:5404kB active_anon:86304kB inactive_anon:0kB active_file:160kB inactive_file:376kB present:897016kB managed:858524kB mlocked:0kB slab_reclaimable:24944kB slab_unreclaimable:296048kB kernel_stack:163832kB pagetables:35892kB bounce:0kB free_pcp:3076kB local_pcp:656kB free_cma:0kB
lowmem_reserve[]: 0 0 9247 9247
HighMem free:86156kB min:512kB low:1796kB high:3080kB active_anon:312852kB inactive_anon:410024kB active_file:1924kB inactive_file:2012kB present:1183736kB managed:1183736kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:365784kB bounce:0kB free_pcp:3868kB local_pcp:720kB free_cma:0kB
lowmem_reserve[]: 0 0 0 0
DMA: 8*4kB (UM) 8*8kB (UM) 4*16kB (M) 2*32kB (UM) 2*64kB (UM) 1*128kB (M) 3*256kB (UME) 2*512kB (UE) 1*1024kB (E) 0*2048kB 0*4096kB = 3296kB
Normal: 240*4kB (UME) 160*8kB (UME) 23*16kB (ME) 3*32kB (UE) 3*64kB (UME) 2*128kB (ME) 1*256kB (U) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 3408kB
HighMem: 10942*4kB (UM) 3102*8kB (UM) 866*16kB (UM) 76*32kB (UM) 11*64kB (UM) 4*128kB (UM) 1*256kB (M) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 86344kB
Node 0 hugepages_total=0 hugepages_free=0 hugepages_surp=0 hugepages_size=2048kB
54409 total pagecache pages
53215 pages in swap cache
Swap cache stats: add 300982, delete 247765, find 157978/226539
Free swap = 3803244kB
Total swap = 4192252kB
524186 pages RAM
295934 pages HighMem/MovableOnly
9642 pages reserved
0 pages cma reserved
With that, we can see normal zone has a 86M reclaimable memory so we can
know something goes wrong(I will fix the problem in next patch) in
reclaim.
[mgorman@techsingularity.net: rename zone LRU stats in /proc/vmstat]
Link: http://lkml.kernel.org/r/20160725072300.GK10438@techsingularity.net
Link: http://lkml.kernel.org/r/1469110261-7365-2-git-send-email-mgorman@techsingularity.net
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 22:47:26 +00:00
|
|
|
" active_anon:%lukB"
|
|
|
|
" inactive_anon:%lukB"
|
|
|
|
" active_file:%lukB"
|
|
|
|
" inactive_file:%lukB"
|
|
|
|
" unevictable:%lukB"
|
2016-07-28 22:47:31 +00:00
|
|
|
" writepending:%lukB"
|
2005-04-16 22:20:36 +00:00
|
|
|
" present:%lukB"
|
2012-12-12 21:52:12 +00:00
|
|
|
" managed:%lukB"
|
2009-09-22 00:01:30 +00:00
|
|
|
" mlocked:%lukB"
|
|
|
|
" bounce:%lukB"
|
2015-04-14 22:45:30 +00:00
|
|
|
" free_pcp:%lukB"
|
|
|
|
" local_pcp:%ukB"
|
2012-10-08 23:32:02 +00:00
|
|
|
" free_cma:%lukB"
|
2005-04-16 22:20:36 +00:00
|
|
|
"\n",
|
|
|
|
zone->name,
|
mm: page allocator: adjust the per-cpu counter threshold when memory is low
Commit aa45484 ("calculate a better estimate of NR_FREE_PAGES when memory
is low") noted that watermarks were based on the vmstat NR_FREE_PAGES. To
avoid synchronization overhead, these counters are maintained on a per-cpu
basis and drained both periodically and when a threshold is above a
threshold. On large CPU systems, the difference between the estimate and
real value of NR_FREE_PAGES can be very high. The system can get into a
case where pages are allocated far below the min watermark potentially
causing livelock issues. The commit solved the problem by taking a better
reading of NR_FREE_PAGES when memory was low.
Unfortately, as reported by Shaohua Li this accurate reading can consume a
large amount of CPU time on systems with many sockets due to cache line
bouncing. This patch takes a different approach. For large machines
where counter drift might be unsafe and while kswapd is awake, the per-cpu
thresholds for the target pgdat are reduced to limit the level of drift to
what should be a safe level. This incurs a performance penalty in heavy
memory pressure by a factor that depends on the workload and the machine
but the machine should function correctly without accidentally exhausting
all memory on a node. There is an additional cost when kswapd wakes and
sleeps but the event is not expected to be frequent - in Shaohua's test
case, there was one recorded sleep and wake event at least.
To ensure that kswapd wakes up, a safe version of zone_watermark_ok() is
introduced that takes a more accurate reading of NR_FREE_PAGES when called
from wakeup_kswapd, when deciding whether it is really safe to go back to
sleep in sleeping_prematurely() and when deciding if a zone is really
balanced or not in balance_pgdat(). We are still using an expensive
function but limiting how often it is called.
When the test case is reproduced, the time spent in the watermark
functions is reduced. The following report is on the percentage of time
spent cumulatively spent in the functions zone_nr_free_pages(),
zone_watermark_ok(), __zone_watermark_ok(), zone_watermark_ok_safe(),
zone_page_state_snapshot(), zone_page_state().
vanilla 11.6615%
disable-threshold 0.2584%
David said:
: We had to pull aa454840 "mm: page allocator: calculate a better estimate
: of NR_FREE_PAGES when memory is low and kswapd is awake" from 2.6.36
: internally because tests showed that it would cause the machine to stall
: as the result of heavy kswapd activity. I merged it back with this fix as
: it is pending in the -mm tree and it solves the issue we were seeing, so I
: definitely think this should be pushed to -stable (and I would seriously
: consider it for 2.6.37 inclusion even at this late date).
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reported-by: Shaohua Li <shaohua.li@intel.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Tested-by: Nicolas Bareil <nico@chdir.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: <stable@kernel.org> [2.6.37.1, 2.6.36.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 23:45:41 +00:00
|
|
|
K(zone_page_state(zone, NR_FREE_PAGES)),
|
2021-11-05 20:40:37 +00:00
|
|
|
K(zone->watermark_boost),
|
2009-06-16 22:32:12 +00:00
|
|
|
K(min_wmark_pages(zone)),
|
|
|
|
K(low_wmark_pages(zone)),
|
|
|
|
K(high_wmark_pages(zone)),
|
2019-12-01 01:55:21 +00:00
|
|
|
K(zone->nr_reserved_highatomic),
|
mm: add per-zone lru list stat
When I did stress test with hackbench, I got OOM message frequently
which didn't ever happen in zone-lru.
gfp_mask=0x26004c0(GFP_KERNEL|__GFP_REPEAT|__GFP_NOTRACK), order=0
..
..
__alloc_pages_nodemask+0xe52/0xe60
? new_slab+0x39c/0x3b0
new_slab+0x39c/0x3b0
___slab_alloc.constprop.87+0x6da/0x840
? __alloc_skb+0x3c/0x260
? _raw_spin_unlock_irq+0x27/0x60
? trace_hardirqs_on_caller+0xec/0x1b0
? finish_task_switch+0xa6/0x220
? poll_select_copy_remaining+0x140/0x140
__slab_alloc.isra.81.constprop.86+0x40/0x6d
? __alloc_skb+0x3c/0x260
kmem_cache_alloc+0x22c/0x260
? __alloc_skb+0x3c/0x260
__alloc_skb+0x3c/0x260
alloc_skb_with_frags+0x4e/0x1a0
sock_alloc_send_pskb+0x16a/0x1b0
? wait_for_unix_gc+0x31/0x90
? alloc_set_pte+0x2ad/0x310
unix_stream_sendmsg+0x28d/0x340
sock_sendmsg+0x2d/0x40
sock_write_iter+0x6c/0xc0
__vfs_write+0xc0/0x120
vfs_write+0x9b/0x1a0
? __might_fault+0x49/0xa0
SyS_write+0x44/0x90
do_fast_syscall_32+0xa6/0x1e0
sysenter_past_esp+0x45/0x74
Mem-Info:
active_anon:104698 inactive_anon:105791 isolated_anon:192
active_file:433 inactive_file:283 isolated_file:22
unevictable:0 dirty:0 writeback:296 unstable:0
slab_reclaimable:6389 slab_unreclaimable:78927
mapped:474 shmem:0 pagetables:101426 bounce:0
free:10518 free_pcp:334 free_cma:0
Node 0 active_anon:418792kB inactive_anon:423164kB active_file:1732kB inactive_file:1132kB unevictable:0kB isolated(anon):768kB isolated(file):88kB mapped:1896kB dirty:0kB writeback:1184kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:1478632 all_unreclaimable? yes
DMA free:3304kB min:68kB low:84kB high:100kB present:15992kB managed:15916kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:4088kB kernel_stack:0kB pagetables:2480kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
lowmem_reserve[]: 0 809 1965 1965
Normal free:3436kB min:3604kB low:4504kB high:5404kB present:897016kB managed:858460kB mlocked:0kB slab_reclaimable:25556kB slab_unreclaimable:311712kB kernel_stack:164608kB pagetables:30844kB bounce:0kB free_pcp:620kB local_pcp:104kB free_cma:0kB
lowmem_reserve[]: 0 0 9247 9247
HighMem free:33808kB min:512kB low:1796kB high:3080kB present:1183736kB managed:1183736kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:372252kB bounce:0kB free_pcp:428kB local_pcp:72kB free_cma:0kB
lowmem_reserve[]: 0 0 0 0
DMA: 2*4kB (UM) 2*8kB (UM) 0*16kB 1*32kB (U) 1*64kB (U) 2*128kB (UM) 1*256kB (U) 1*512kB (M) 0*1024kB 1*2048kB (U) 0*4096kB = 3192kB
Normal: 33*4kB (MH) 79*8kB (ME) 11*16kB (M) 4*32kB (M) 2*64kB (ME) 2*128kB (EH) 7*256kB (EH) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 3244kB
HighMem: 2590*4kB (UM) 1568*8kB (UM) 491*16kB (UM) 60*32kB (UM) 6*64kB (M) 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB = 33064kB
Node 0 hugepages_total=0 hugepages_free=0 hugepages_surp=0 hugepages_size=2048kB
25121 total pagecache pages
24160 pages in swap cache
Swap cache stats: add 86371, delete 62211, find 42865/60187
Free swap = 4015560kB
Total swap = 4192252kB
524186 pages RAM
295934 pages HighMem/MovableOnly
9658 pages reserved
0 pages cma reserved
The order-0 allocation for normal zone failed while there are a lot of
reclaimable memory(i.e., anonymous memory with free swap). I wanted to
analyze the problem but it was hard because we removed per-zone lru stat
so I couldn't know how many of anonymous memory there are in normal/dma
zone.
When we investigate OOM problem, reclaimable memory count is crucial
stat to find a problem. Without it, it's hard to parse the OOM message
so I believe we should keep it.
With per-zone lru stat,
gfp_mask=0x26004c0(GFP_KERNEL|__GFP_REPEAT|__GFP_NOTRACK), order=0
Mem-Info:
active_anon:101103 inactive_anon:102219 isolated_anon:0
active_file:503 inactive_file:544 isolated_file:0
unevictable:0 dirty:0 writeback:34 unstable:0
slab_reclaimable:6298 slab_unreclaimable:74669
mapped:863 shmem:0 pagetables:100998 bounce:0
free:23573 free_pcp:1861 free_cma:0
Node 0 active_anon:404412kB inactive_anon:409040kB active_file:2012kB inactive_file:2176kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:3452kB dirty:0kB writeback:136kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:1320845 all_unreclaimable? yes
DMA free:3296kB min:68kB low:84kB high:100kB active_anon:5540kB inactive_anon:0kB active_file:0kB inactive_file:0kB present:15992kB managed:15916kB mlocked:0kB slab_reclaimable:248kB slab_unreclaimable:2628kB kernel_stack:792kB pagetables:2316kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
lowmem_reserve[]: 0 809 1965 1965
Normal free:3600kB min:3604kB low:4504kB high:5404kB active_anon:86304kB inactive_anon:0kB active_file:160kB inactive_file:376kB present:897016kB managed:858524kB mlocked:0kB slab_reclaimable:24944kB slab_unreclaimable:296048kB kernel_stack:163832kB pagetables:35892kB bounce:0kB free_pcp:3076kB local_pcp:656kB free_cma:0kB
lowmem_reserve[]: 0 0 9247 9247
HighMem free:86156kB min:512kB low:1796kB high:3080kB active_anon:312852kB inactive_anon:410024kB active_file:1924kB inactive_file:2012kB present:1183736kB managed:1183736kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:365784kB bounce:0kB free_pcp:3868kB local_pcp:720kB free_cma:0kB
lowmem_reserve[]: 0 0 0 0
DMA: 8*4kB (UM) 8*8kB (UM) 4*16kB (M) 2*32kB (UM) 2*64kB (UM) 1*128kB (M) 3*256kB (UME) 2*512kB (UE) 1*1024kB (E) 0*2048kB 0*4096kB = 3296kB
Normal: 240*4kB (UME) 160*8kB (UME) 23*16kB (ME) 3*32kB (UE) 3*64kB (UME) 2*128kB (ME) 1*256kB (U) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 3408kB
HighMem: 10942*4kB (UM) 3102*8kB (UM) 866*16kB (UM) 76*32kB (UM) 11*64kB (UM) 4*128kB (UM) 1*256kB (M) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 86344kB
Node 0 hugepages_total=0 hugepages_free=0 hugepages_surp=0 hugepages_size=2048kB
54409 total pagecache pages
53215 pages in swap cache
Swap cache stats: add 300982, delete 247765, find 157978/226539
Free swap = 3803244kB
Total swap = 4192252kB
524186 pages RAM
295934 pages HighMem/MovableOnly
9642 pages reserved
0 pages cma reserved
With that, we can see normal zone has a 86M reclaimable memory so we can
know something goes wrong(I will fix the problem in next patch) in
reclaim.
[mgorman@techsingularity.net: rename zone LRU stats in /proc/vmstat]
Link: http://lkml.kernel.org/r/20160725072300.GK10438@techsingularity.net
Link: http://lkml.kernel.org/r/1469110261-7365-2-git-send-email-mgorman@techsingularity.net
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 22:47:26 +00:00
|
|
|
K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
|
|
|
|
K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
|
|
|
|
K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
|
|
|
|
K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
|
|
|
|
K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
|
2016-07-28 22:47:31 +00:00
|
|
|
K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
|
2005-04-16 22:20:36 +00:00
|
|
|
K(zone->present_pages),
|
2018-12-28 08:34:24 +00:00
|
|
|
K(zone_managed_pages(zone)),
|
2009-09-22 00:01:30 +00:00
|
|
|
K(zone_page_state(zone, NR_MLOCK)),
|
|
|
|
K(zone_page_state(zone, NR_BOUNCE)),
|
2015-04-14 22:45:30 +00:00
|
|
|
K(free_pcp),
|
mm/page_alloc: split per cpu page lists and zone stats
The PCP (per-cpu page allocator in page_alloc.c) shares locking
requirements with vmstat and the zone lock which is inconvenient and
causes some issues. For example, the PCP list and vmstat share the same
per-cpu space meaning that it's possible that vmstat updates dirty cache
lines holding per-cpu lists across CPUs unless padding is used. Second,
PREEMPT_RT does not want to disable IRQs for too long in the page
allocator.
This series splits the locking requirements and uses locks types more
suitable for PREEMPT_RT, reduces the time when special locking is required
for stats and reduces the time when IRQs need to be disabled on
!PREEMPT_RT kernels.
Why local_lock? PREEMPT_RT considers the following sequence to be unsafe
as documented in Documentation/locking/locktypes.rst
local_irq_disable();
spin_lock(&lock);
The pcp allocator has this sequence for rmqueue_pcplist (local_irq_save)
-> __rmqueue_pcplist -> rmqueue_bulk (spin_lock). While it's possible to
separate this out, it generally means there are points where we enable
IRQs and reenable them again immediately. To prevent a migration and the
per-cpu pointer going stale, migrate_disable is also needed. That is a
custom lock that is similar, but worse, than local_lock. Furthermore, on
PREEMPT_RT, it's undesirable to leave IRQs disabled for too long. By
converting to local_lock which disables migration on PREEMPT_RT, the
locking requirements can be separated and start moving the protections for
PCP, stats and the zone lock to PREEMPT_RT-safe equivalent locking. As a
bonus, local_lock also means that PROVE_LOCKING does something useful.
After that, it's obvious that zone_statistics incurs too much overhead and
leaves IRQs disabled for longer than necessary on !PREEMPT_RT kernels.
zone_statistics uses perfectly accurate counters requiring IRQs be
disabled for parallel RMW sequences when inaccurate ones like vm_events
would do. The series makes the NUMA statistics (NUMA_HIT and friends)
inaccurate counters that then require no special protection on
!PREEMPT_RT.
The bulk page allocator can then do stat updates in bulk with IRQs enabled
which should improve the efficiency. Technically, this could have been
done without the local_lock and vmstat conversion work and the order
simply reflects the timing of when different series were implemented.
Finally, there are places where we conflate IRQs being disabled for the
PCP with the IRQ-safe zone spinlock. The remainder of the series reduces
the scope of what is protected by disabled IRQs on !PREEMPT_RT kernels.
By the end of the series, page_alloc.c does not call local_irq_save so the
locking scope is a bit clearer. The one exception is that modifying
NR_FREE_PAGES still happens in places where it's known the IRQs are
disabled as it's harmless for PREEMPT_RT and would be expensive to split
the locking there.
No performance data is included because despite the overhead of the stats,
it's within the noise for most workloads on !PREEMPT_RT. However, Jesper
Dangaard Brouer ran a page allocation microbenchmark on a E5-1650 v4 @
3.60GHz CPU on the first version of this series. Focusing on the array
variant of the bulk page allocator reveals the following.
(CPU: Intel(R) Xeon(R) CPU E5-1650 v4 @ 3.60GHz)
ARRAY variant: time_bulk_page_alloc_free_array: step=bulk size
Baseline Patched
1 56.383 54.225 (+3.83%)
2 40.047 35.492 (+11.38%)
3 37.339 32.643 (+12.58%)
4 35.578 30.992 (+12.89%)
8 33.592 29.606 (+11.87%)
16 32.362 28.532 (+11.85%)
32 31.476 27.728 (+11.91%)
64 30.633 27.252 (+11.04%)
128 30.596 27.090 (+11.46%)
While this is a positive outcome, the series is more likely to be
interesting to the RT people in terms of getting parts of the PREEMPT_RT
tree into mainline.
This patch (of 9):
The per-cpu page allocator lists and the per-cpu vmstat deltas are stored
in the same struct per_cpu_pages even though vmstats have no direct impact
on the per-cpu page lists. This is inconsistent because the vmstats for a
node are stored on a dedicated structure. The bigger issue is that the
per_cpu_pages structure is not cache-aligned and stat updates either cache
conflict with adjacent per-cpu lists incurring a runtime cost or padding
is required incurring a memory cost.
This patch splits the per-cpu pagelists and the vmstat deltas into
separate structures. It's mostly a mechanical conversion but some
variable renaming is done to clearly distinguish the per-cpu pages
structure (pcp) from the vmstats (pzstats).
Superficially, this appears to increase the size of the per_cpu_pages
structure but the movement of expire fills a structure hole so there is no
impact overall.
[mgorman@techsingularity.net: make it W=1 cleaner]
Link: https://lkml.kernel.org/r/20210514144622.GA3735@techsingularity.net
[mgorman@techsingularity.net: make it W=1 even cleaner]
Link: https://lkml.kernel.org/r/20210516140705.GB3735@techsingularity.net
[lkp@intel.com: check struct per_cpu_zonestat has a non-zero size]
[vbabka@suse.cz: Init zone->per_cpu_zonestats properly]
Link: https://lkml.kernel.org/r/20210512095458.30632-1-mgorman@techsingularity.net
Link: https://lkml.kernel.org/r/20210512095458.30632-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 02:41:38 +00:00
|
|
|
K(this_cpu_read(zone->per_cpu_pageset->count)),
|
2016-07-28 22:47:14 +00:00
|
|
|
K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
|
2005-04-16 22:20:36 +00:00
|
|
|
printk("lowmem_reserve[]:");
|
|
|
|
for (i = 0; i < MAX_NR_ZONES; i++)
|
2016-10-28 00:46:29 +00:00
|
|
|
printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
|
|
|
|
printk(KERN_CONT "\n");
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2009-03-31 22:19:31 +00:00
|
|
|
for_each_populated_zone(zone) {
|
2015-11-07 00:29:57 +00:00
|
|
|
unsigned int order;
|
2023-03-15 11:31:33 +00:00
|
|
|
unsigned long nr[MAX_ORDER + 1], flags, total = 0;
|
|
|
|
unsigned char types[MAX_ORDER + 1];
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2022-08-23 09:22:30 +00:00
|
|
|
if (zone_idx(zone) > max_zone_idx)
|
|
|
|
continue;
|
2017-02-22 23:46:16 +00:00
|
|
|
if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
|
2011-03-22 23:30:46 +00:00
|
|
|
continue;
|
2005-04-16 22:20:36 +00:00
|
|
|
show_node(zone);
|
2016-10-28 00:46:29 +00:00
|
|
|
printk(KERN_CONT "%s: ", zone->name);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
spin_lock_irqsave(&zone->lock, flags);
|
2023-03-15 11:31:33 +00:00
|
|
|
for (order = 0; order <= MAX_ORDER; order++) {
|
2012-12-12 00:00:24 +00:00
|
|
|
struct free_area *area = &zone->free_area[order];
|
|
|
|
int type;
|
|
|
|
|
|
|
|
nr[order] = area->nr_free;
|
2006-06-23 09:03:50 +00:00
|
|
|
total += nr[order] << order;
|
2012-12-12 00:00:24 +00:00
|
|
|
|
|
|
|
types[order] = 0;
|
|
|
|
for (type = 0; type < MIGRATE_TYPES; type++) {
|
2019-05-14 22:41:32 +00:00
|
|
|
if (!free_area_empty(area, type))
|
2012-12-12 00:00:24 +00:00
|
|
|
types[order] |= 1 << type;
|
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(&zone->lock, flags);
|
2023-03-15 11:31:33 +00:00
|
|
|
for (order = 0; order <= MAX_ORDER; order++) {
|
2016-10-28 00:46:29 +00:00
|
|
|
printk(KERN_CONT "%lu*%lukB ",
|
|
|
|
nr[order], K(1UL) << order);
|
2012-12-12 00:00:24 +00:00
|
|
|
if (nr[order])
|
|
|
|
show_migration_types(types[order]);
|
|
|
|
}
|
2016-10-28 00:46:29 +00:00
|
|
|
printk(KERN_CONT "= %lukB\n", K(total));
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2022-07-06 03:46:54 +00:00
|
|
|
for_each_online_node(nid) {
|
|
|
|
if (show_mem_node_skip(filter, nid, nodemask))
|
|
|
|
continue;
|
|
|
|
hugetlb_show_meminfo_node(nid);
|
|
|
|
}
|
2013-04-29 22:07:48 +00:00
|
|
|
|
2016-07-28 22:46:20 +00:00
|
|
|
printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
|
2008-02-05 06:29:30 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
show_swap_cache_info();
|
|
|
|
}
|
|
|
|
|
2008-04-28 09:12:18 +00:00
|
|
|
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
|
|
|
|
{
|
|
|
|
zoneref->zone = zone;
|
|
|
|
zoneref->zone_idx = zone_idx(zone);
|
|
|
|
}
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* Builds allocation fallback zone lists.
|
2006-01-06 08:11:16 +00:00
|
|
|
*
|
|
|
|
* Add all populated zones of a node to the zonelist.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
2017-09-06 23:20:30 +00:00
|
|
|
static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2006-01-06 08:11:16 +00:00
|
|
|
struct zone *zone;
|
2013-07-08 23:00:06 +00:00
|
|
|
enum zone_type zone_type = MAX_NR_ZONES;
|
2017-09-06 23:20:30 +00:00
|
|
|
int nr_zones = 0;
|
2006-01-06 08:11:18 +00:00
|
|
|
|
|
|
|
do {
|
2006-09-26 06:31:18 +00:00
|
|
|
zone_type--;
|
2006-01-06 08:11:19 +00:00
|
|
|
zone = pgdat->node_zones + zone_type;
|
2022-04-15 02:13:43 +00:00
|
|
|
if (populated_zone(zone)) {
|
2017-09-06 23:20:30 +00:00
|
|
|
zoneref_set_zone(zone, &zonerefs[nr_zones++]);
|
2006-01-06 08:11:19 +00:00
|
|
|
check_highest_zone(zone_type);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
2006-09-26 06:31:18 +00:00
|
|
|
} while (zone_type);
|
2013-07-08 23:00:06 +00:00
|
|
|
|
2006-01-06 08:11:19 +00:00
|
|
|
return nr_zones;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_NUMA
|
2007-07-16 06:38:01 +00:00
|
|
|
|
|
|
|
static int __parse_numa_zonelist_order(char *s)
|
|
|
|
{
|
2017-09-06 23:20:13 +00:00
|
|
|
/*
|
2021-05-07 01:06:47 +00:00
|
|
|
* We used to support different zonelists modes but they turned
|
2017-09-06 23:20:13 +00:00
|
|
|
* out to be just not useful. Let's keep the warning in place
|
|
|
|
* if somebody still use the cmd line parameter so that we do
|
|
|
|
* not fail it silently
|
|
|
|
*/
|
|
|
|
if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
|
|
|
|
pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
|
2007-07-16 06:38:01 +00:00
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2017-09-06 23:20:13 +00:00
|
|
|
char numa_zonelist_order[] = "Node";
|
|
|
|
|
2007-07-16 06:38:01 +00:00
|
|
|
/*
|
|
|
|
* sysctl handler for numa_zonelist_order
|
|
|
|
*/
|
2014-06-06 21:38:09 +00:00
|
|
|
int numa_zonelist_order_handler(struct ctl_table *table, int write,
|
2020-04-24 06:43:38 +00:00
|
|
|
void *buffer, size_t *length, loff_t *ppos)
|
2007-07-16 06:38:01 +00:00
|
|
|
{
|
2020-04-24 06:43:38 +00:00
|
|
|
if (write)
|
|
|
|
return __parse_numa_zonelist_order(buffer);
|
|
|
|
return proc_dostring(table, write, buffer, length, ppos);
|
2007-07-16 06:38:01 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static int node_load[MAX_NUMNODES];
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/**
|
2005-05-01 15:59:25 +00:00
|
|
|
* find_next_best_node - find the next node that should appear in a given node's fallback list
|
2005-04-16 22:20:36 +00:00
|
|
|
* @node: node whose fallback list we're appending
|
|
|
|
* @used_node_mask: nodemask_t of already used nodes
|
|
|
|
*
|
|
|
|
* We use a number of factors to determine which is the next node that should
|
|
|
|
* appear on a given node's fallback list. The node should not have appeared
|
|
|
|
* already in @node's fallback list, and it should be the next closest node
|
|
|
|
* according to the distance array (which contains arbitrary distance values
|
|
|
|
* from each node to each node in the system), and should also prefer nodes
|
|
|
|
* with no CPUs, since presumably they'll have very little allocation pressure
|
|
|
|
* on them otherwise.
|
2019-03-05 23:48:42 +00:00
|
|
|
*
|
|
|
|
* Return: node id of the found node or %NUMA_NO_NODE if no node is found.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
mm/numa: automatically generate node migration order
Patch series "Migrate Pages in lieu of discard", v11.
We're starting to see systems with more and more kinds of memory such as
Intel's implementation of persistent memory.
Let's say you have a system with some DRAM and some persistent memory.
Today, once DRAM fills up, reclaim will start and some of the DRAM
contents will be thrown out. Allocations will, at some point, start
falling over to the slower persistent memory.
That has two nasty properties. First, the newer allocations can end up in
the slower persistent memory. Second, reclaimed data in DRAM are just
discarded even if there are gobs of space in persistent memory that could
be used.
This patchset implements a solution to these problems. At the end of the
reclaim process in shrink_page_list() just before the last page refcount
is dropped, the page is migrated to persistent memory instead of being
dropped.
While I've talked about a DRAM/PMEM pairing, this approach would function
in any environment where memory tiers exist.
This is not perfect. It "strands" pages in slower memory and never brings
them back to fast DRAM. Huang Ying has follow-on work which repurposes
NUMA balancing to promote hot pages back to DRAM.
This is also all based on an upstream mechanism that allows persistent
memory to be onlined and used as if it were volatile:
http://lkml.kernel.org/r/20190124231441.37A4A305@viggo.jf.intel.com
With that, the DRAM and PMEM in each socket will be represented as 2
separate NUMA nodes, with the CPUs sit in the DRAM node. So the
general inter-NUMA demotion mechanism introduced in the patchset can
migrate the cold DRAM pages to the PMEM node.
We have tested the patchset with the postgresql and pgbench. On a
2-socket server machine with DRAM and PMEM, the kernel with the patchset
can improve the score of pgbench up to 22.1% compared with that of the
DRAM only + disk case. This comes from the reduced disk read throughput
(which reduces up to 70.8%).
== Open Issues ==
* Memory policies and cpusets that, for instance, restrict allocations
to DRAM can be demoted to PMEM whenever they opt in to this
new mechanism. A cgroup-level API to opt-in or opt-out of
these migrations will likely be required as a follow-on.
* Could be more aggressive about where anon LRU scanning occurs
since it no longer necessarily involves I/O. get_scan_count()
for instance says: "If we have no swap space, do not bother
scanning anon pages"
This patch (of 9):
Prepare for the kernel to auto-migrate pages to other memory nodes with a
node migration table. This allows creating single migration target for
each NUMA node to enable the kernel to do NUMA page migrations instead of
simply discarding colder pages. A node with no target is a "terminal
node", so reclaim acts normally there. The migration target does not
fundamentally _need_ to be a single node, but this implementation starts
there to limit complexity.
When memory fills up on a node, memory contents can be automatically
migrated to another node. The biggest problems are knowing when to
migrate and to where the migration should be targeted.
The most straightforward way to generate the "to where" list would be to
follow the page allocator fallback lists. Those lists already tell us if
memory is full where to look next. It would also be logical to move
memory in that order.
But, the allocator fallback lists have a fatal flaw: most nodes appear in
all the lists. This would potentially lead to migration cycles (A->B,
B->A, A->B, ...).
Instead of using the allocator fallback lists directly, keep a separate
node migration ordering. But, reuse the same data used to generate page
allocator fallback in the first place: find_next_best_node().
This means that the firmware data used to populate node distances
essentially dictates the ordering for now. It should also be
architecture-neutral since all NUMA architectures have a working
find_next_best_node().
RCU is used to allow lock-less read of node_demotion[] and prevent
demotion cycles been observed. If multiple reads of node_demotion[] are
performed, a single rcu_read_lock() must be held over all reads to ensure
no cycles are observed. Details are as follows.
=== What does RCU provide? ===
Imagine a simple loop which walks down the demotion path looking
for the last node:
terminal_node = start_node;
while (node_demotion[terminal_node] != NUMA_NO_NODE) {
terminal_node = node_demotion[terminal_node];
}
The initial values are:
node_demotion[0] = 1;
node_demotion[1] = NUMA_NO_NODE;
and are updated to:
node_demotion[0] = NUMA_NO_NODE;
node_demotion[1] = 0;
What guarantees that the cycle is not observed:
node_demotion[0] = 1;
node_demotion[1] = 0;
and would loop forever?
With RCU, a rcu_read_lock/unlock() can be placed around the loop. Since
the write side does a synchronize_rcu(), the loop that observed the old
contents is known to be complete before the synchronize_rcu() has
completed.
RCU, combined with disable_all_migrate_targets(), ensures that the old
migration state is not visible by the time __set_migration_target_nodes()
is called.
=== What does READ_ONCE() provide? ===
READ_ONCE() forbids the compiler from merging or reordering successive
reads of node_demotion[]. This ensures that any updates are *eventually*
observed.
Consider the above loop again. The compiler could theoretically read the
entirety of node_demotion[] into local storage (registers) and never go
back to memory, and *permanently* observe bad values for node_demotion[].
Note: RCU does not provide any universal compiler-ordering
guarantees:
https://lore.kernel.org/lkml/20150921204327.GH4029@linux.vnet.ibm.com/
This code is unused for now. It will be called later in the
series.
Link: https://lkml.kernel.org/r/20210721063926.3024591-1-ying.huang@intel.com
Link: https://lkml.kernel.org/r/20210715055145.195411-1-ying.huang@intel.com
Link: https://lkml.kernel.org/r/20210715055145.195411-2-ying.huang@intel.com
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Wei Xu <weixugc@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Keith Busch <kbusch@kernel.org>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-02 21:59:06 +00:00
|
|
|
int find_next_best_node(int node, nodemask_t *used_node_mask)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2006-02-17 19:38:21 +00:00
|
|
|
int n, val;
|
2005-04-16 22:20:36 +00:00
|
|
|
int min_val = INT_MAX;
|
2013-02-23 00:35:36 +00:00
|
|
|
int best_node = NUMA_NO_NODE;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2006-02-17 19:38:21 +00:00
|
|
|
/* Use the local node if we haven't already */
|
|
|
|
if (!node_isset(node, *used_node_mask)) {
|
|
|
|
node_set(node, *used_node_mask);
|
|
|
|
return node;
|
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2012-12-12 21:51:46 +00:00
|
|
|
for_each_node_state(n, N_MEMORY) {
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Don't want a node to appear more than once */
|
|
|
|
if (node_isset(n, *used_node_mask))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
/* Use the distance array to find the distance */
|
|
|
|
val = node_distance(node, n);
|
|
|
|
|
2006-02-17 19:38:21 +00:00
|
|
|
/* Penalize nodes under us ("prefer the next node") */
|
|
|
|
val += (n < node);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Give preference to headless and unused nodes */
|
2020-10-13 23:55:42 +00:00
|
|
|
if (!cpumask_empty(cpumask_of_node(n)))
|
2005-04-16 22:20:36 +00:00
|
|
|
val += PENALTY_FOR_NODE_WITH_CPUS;
|
|
|
|
|
|
|
|
/* Slight preference for less loaded node */
|
2022-04-29 06:16:01 +00:00
|
|
|
val *= MAX_NUMNODES;
|
2005-04-16 22:20:36 +00:00
|
|
|
val += node_load[n];
|
|
|
|
|
|
|
|
if (val < min_val) {
|
|
|
|
min_val = val;
|
|
|
|
best_node = n;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (best_node >= 0)
|
|
|
|
node_set(best_node, *used_node_mask);
|
|
|
|
|
|
|
|
return best_node;
|
|
|
|
}
|
|
|
|
|
2007-07-16 06:38:01 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Build zonelists ordered by node and zones within node.
|
|
|
|
* This results in maximum locality--normal zone overflows into local
|
|
|
|
* DMA zone, if any--but risks exhausting DMA zone.
|
|
|
|
*/
|
2017-09-06 23:20:30 +00:00
|
|
|
static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
|
|
|
|
unsigned nr_nodes)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2017-09-06 23:20:30 +00:00
|
|
|
struct zoneref *zonerefs;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
|
|
|
|
|
|
|
|
for (i = 0; i < nr_nodes; i++) {
|
|
|
|
int nr_zones;
|
|
|
|
|
|
|
|
pg_data_t *node = NODE_DATA(node_order[i]);
|
2007-07-16 06:38:01 +00:00
|
|
|
|
2017-09-06 23:20:30 +00:00
|
|
|
nr_zones = build_zonerefs_node(node, zonerefs);
|
|
|
|
zonerefs += nr_zones;
|
|
|
|
}
|
|
|
|
zonerefs->zone = NULL;
|
|
|
|
zonerefs->zone_idx = 0;
|
2007-07-16 06:38:01 +00:00
|
|
|
}
|
|
|
|
|
2007-10-16 08:25:37 +00:00
|
|
|
/*
|
|
|
|
* Build gfp_thisnode zonelists
|
|
|
|
*/
|
|
|
|
static void build_thisnode_zonelists(pg_data_t *pgdat)
|
|
|
|
{
|
2017-09-06 23:20:30 +00:00
|
|
|
struct zoneref *zonerefs;
|
|
|
|
int nr_zones;
|
2007-10-16 08:25:37 +00:00
|
|
|
|
2017-09-06 23:20:30 +00:00
|
|
|
zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
|
|
|
|
nr_zones = build_zonerefs_node(pgdat, zonerefs);
|
|
|
|
zonerefs += nr_zones;
|
|
|
|
zonerefs->zone = NULL;
|
|
|
|
zonerefs->zone_idx = 0;
|
2007-10-16 08:25:37 +00:00
|
|
|
}
|
|
|
|
|
2007-07-16 06:38:01 +00:00
|
|
|
/*
|
|
|
|
* Build zonelists ordered by zone and nodes within zones.
|
|
|
|
* This results in conserving DMA zone[s] until all Normal memory is
|
|
|
|
* exhausted, but results in overflowing to remote node while memory
|
|
|
|
* may still exist in local DMA zone.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static void build_zonelists(pg_data_t *pgdat)
|
|
|
|
{
|
2017-09-06 23:20:30 +00:00
|
|
|
static int node_order[MAX_NUMNODES];
|
2022-04-29 06:16:01 +00:00
|
|
|
int node, nr_nodes = 0;
|
2020-06-03 22:59:05 +00:00
|
|
|
nodemask_t used_mask = NODE_MASK_NONE;
|
2007-07-16 06:38:01 +00:00
|
|
|
int local_node, prev_node;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* NUMA-aware ordering of nodes */
|
|
|
|
local_node = pgdat->node_id;
|
|
|
|
prev_node = local_node;
|
2007-07-16 06:38:01 +00:00
|
|
|
|
|
|
|
memset(node_order, 0, sizeof(node_order));
|
2005-04-16 22:20:36 +00:00
|
|
|
while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
|
|
|
|
/*
|
|
|
|
* We don't want to pressure a particular node.
|
|
|
|
* So adding penalty to the first node in same
|
|
|
|
* distance group to make it round-robin.
|
|
|
|
*/
|
2012-10-08 23:33:24 +00:00
|
|
|
if (node_distance(local_node, node) !=
|
|
|
|
node_distance(local_node, prev_node))
|
2022-04-29 06:16:01 +00:00
|
|
|
node_load[node] += 1;
|
2007-07-16 06:38:01 +00:00
|
|
|
|
2017-09-06 23:20:30 +00:00
|
|
|
node_order[nr_nodes++] = node;
|
2005-04-16 22:20:36 +00:00
|
|
|
prev_node = node;
|
|
|
|
}
|
2007-10-16 08:25:37 +00:00
|
|
|
|
2017-09-06 23:20:30 +00:00
|
|
|
build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
|
2007-10-16 08:25:37 +00:00
|
|
|
build_thisnode_zonelists(pgdat);
|
2021-11-05 20:40:18 +00:00
|
|
|
pr_info("Fallback order for Node %d: ", local_node);
|
|
|
|
for (node = 0; node < nr_nodes; node++)
|
|
|
|
pr_cont("%d ", node_order[node]);
|
|
|
|
pr_cont("\n");
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2010-05-26 21:45:00 +00:00
|
|
|
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
|
|
|
|
/*
|
|
|
|
* Return node id of node used for "local" allocations.
|
|
|
|
* I.e., first node id of first zone in arg node's generic zonelist.
|
|
|
|
* Used for initializing percpu 'numa_mem', which is used primarily
|
|
|
|
* for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
|
|
|
|
*/
|
|
|
|
int local_memory_node(int node)
|
|
|
|
{
|
2016-05-20 00:14:10 +00:00
|
|
|
struct zoneref *z;
|
2010-05-26 21:45:00 +00:00
|
|
|
|
2016-05-20 00:14:10 +00:00
|
|
|
z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
|
2010-05-26 21:45:00 +00:00
|
|
|
gfp_zone(GFP_KERNEL),
|
2016-05-20 00:14:10 +00:00
|
|
|
NULL);
|
2018-08-22 04:53:32 +00:00
|
|
|
return zone_to_nid(z->zone);
|
2010-05-26 21:45:00 +00:00
|
|
|
}
|
|
|
|
#endif
|
2007-07-16 06:38:01 +00:00
|
|
|
|
2016-08-10 23:27:49 +00:00
|
|
|
static void setup_min_unmapped_ratio(void);
|
|
|
|
static void setup_min_slab_ratio(void);
|
2005-04-16 22:20:36 +00:00
|
|
|
#else /* CONFIG_NUMA */
|
|
|
|
|
2007-07-16 06:38:01 +00:00
|
|
|
static void build_zonelists(pg_data_t *pgdat)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2006-09-26 06:31:19 +00:00
|
|
|
int node, local_node;
|
2017-09-06 23:20:30 +00:00
|
|
|
struct zoneref *zonerefs;
|
|
|
|
int nr_zones;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
local_node = pgdat->node_id;
|
|
|
|
|
2017-09-06 23:20:30 +00:00
|
|
|
zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
|
|
|
|
nr_zones = build_zonerefs_node(pgdat, zonerefs);
|
|
|
|
zonerefs += nr_zones;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2008-04-28 09:12:16 +00:00
|
|
|
/*
|
|
|
|
* Now we build the zonelist so that it contains the zones
|
|
|
|
* of all the other nodes.
|
|
|
|
* We don't want to pressure a particular node, so when
|
|
|
|
* building the zones for node N, we make sure that the
|
|
|
|
* zones coming right after the local ones are those from
|
|
|
|
* node N+1 (modulo N)
|
|
|
|
*/
|
|
|
|
for (node = local_node + 1; node < MAX_NUMNODES; node++) {
|
|
|
|
if (!node_online(node))
|
|
|
|
continue;
|
2017-09-06 23:20:30 +00:00
|
|
|
nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
|
|
|
|
zonerefs += nr_zones;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
2008-04-28 09:12:16 +00:00
|
|
|
for (node = 0; node < local_node; node++) {
|
|
|
|
if (!node_online(node))
|
|
|
|
continue;
|
2017-09-06 23:20:30 +00:00
|
|
|
nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
|
|
|
|
zonerefs += nr_zones;
|
2008-04-28 09:12:16 +00:00
|
|
|
}
|
|
|
|
|
2017-09-06 23:20:30 +00:00
|
|
|
zonerefs->zone = NULL;
|
|
|
|
zonerefs->zone_idx = 0;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* CONFIG_NUMA */
|
|
|
|
|
2010-01-05 06:34:51 +00:00
|
|
|
/*
|
|
|
|
* Boot pageset table. One per cpu which is going to be used for all
|
|
|
|
* zones and all nodes. The parameters will be set in such a way
|
|
|
|
* that an item put on a list will immediately be handed over to
|
|
|
|
* the buddy list. This is safe since pageset manipulation is done
|
|
|
|
* with interrupts disabled.
|
|
|
|
*
|
|
|
|
* The boot_pagesets must be kept even after bootup is complete for
|
|
|
|
* unused processors and/or zones. They do play a role for bootstrapping
|
|
|
|
* hotplugged processors.
|
|
|
|
*
|
|
|
|
* zoneinfo_show() and maybe other functions do
|
|
|
|
* not check if the processor is online before following the pageset pointer.
|
|
|
|
* Other parts of the kernel may not check if the zone is available.
|
|
|
|
*/
|
mm/page_alloc: split per cpu page lists and zone stats
The PCP (per-cpu page allocator in page_alloc.c) shares locking
requirements with vmstat and the zone lock which is inconvenient and
causes some issues. For example, the PCP list and vmstat share the same
per-cpu space meaning that it's possible that vmstat updates dirty cache
lines holding per-cpu lists across CPUs unless padding is used. Second,
PREEMPT_RT does not want to disable IRQs for too long in the page
allocator.
This series splits the locking requirements and uses locks types more
suitable for PREEMPT_RT, reduces the time when special locking is required
for stats and reduces the time when IRQs need to be disabled on
!PREEMPT_RT kernels.
Why local_lock? PREEMPT_RT considers the following sequence to be unsafe
as documented in Documentation/locking/locktypes.rst
local_irq_disable();
spin_lock(&lock);
The pcp allocator has this sequence for rmqueue_pcplist (local_irq_save)
-> __rmqueue_pcplist -> rmqueue_bulk (spin_lock). While it's possible to
separate this out, it generally means there are points where we enable
IRQs and reenable them again immediately. To prevent a migration and the
per-cpu pointer going stale, migrate_disable is also needed. That is a
custom lock that is similar, but worse, than local_lock. Furthermore, on
PREEMPT_RT, it's undesirable to leave IRQs disabled for too long. By
converting to local_lock which disables migration on PREEMPT_RT, the
locking requirements can be separated and start moving the protections for
PCP, stats and the zone lock to PREEMPT_RT-safe equivalent locking. As a
bonus, local_lock also means that PROVE_LOCKING does something useful.
After that, it's obvious that zone_statistics incurs too much overhead and
leaves IRQs disabled for longer than necessary on !PREEMPT_RT kernels.
zone_statistics uses perfectly accurate counters requiring IRQs be
disabled for parallel RMW sequences when inaccurate ones like vm_events
would do. The series makes the NUMA statistics (NUMA_HIT and friends)
inaccurate counters that then require no special protection on
!PREEMPT_RT.
The bulk page allocator can then do stat updates in bulk with IRQs enabled
which should improve the efficiency. Technically, this could have been
done without the local_lock and vmstat conversion work and the order
simply reflects the timing of when different series were implemented.
Finally, there are places where we conflate IRQs being disabled for the
PCP with the IRQ-safe zone spinlock. The remainder of the series reduces
the scope of what is protected by disabled IRQs on !PREEMPT_RT kernels.
By the end of the series, page_alloc.c does not call local_irq_save so the
locking scope is a bit clearer. The one exception is that modifying
NR_FREE_PAGES still happens in places where it's known the IRQs are
disabled as it's harmless for PREEMPT_RT and would be expensive to split
the locking there.
No performance data is included because despite the overhead of the stats,
it's within the noise for most workloads on !PREEMPT_RT. However, Jesper
Dangaard Brouer ran a page allocation microbenchmark on a E5-1650 v4 @
3.60GHz CPU on the first version of this series. Focusing on the array
variant of the bulk page allocator reveals the following.
(CPU: Intel(R) Xeon(R) CPU E5-1650 v4 @ 3.60GHz)
ARRAY variant: time_bulk_page_alloc_free_array: step=bulk size
Baseline Patched
1 56.383 54.225 (+3.83%)
2 40.047 35.492 (+11.38%)
3 37.339 32.643 (+12.58%)
4 35.578 30.992 (+12.89%)
8 33.592 29.606 (+11.87%)
16 32.362 28.532 (+11.85%)
32 31.476 27.728 (+11.91%)
64 30.633 27.252 (+11.04%)
128 30.596 27.090 (+11.46%)
While this is a positive outcome, the series is more likely to be
interesting to the RT people in terms of getting parts of the PREEMPT_RT
tree into mainline.
This patch (of 9):
The per-cpu page allocator lists and the per-cpu vmstat deltas are stored
in the same struct per_cpu_pages even though vmstats have no direct impact
on the per-cpu page lists. This is inconsistent because the vmstats for a
node are stored on a dedicated structure. The bigger issue is that the
per_cpu_pages structure is not cache-aligned and stat updates either cache
conflict with adjacent per-cpu lists incurring a runtime cost or padding
is required incurring a memory cost.
This patch splits the per-cpu pagelists and the vmstat deltas into
separate structures. It's mostly a mechanical conversion but some
variable renaming is done to clearly distinguish the per-cpu pages
structure (pcp) from the vmstats (pzstats).
Superficially, this appears to increase the size of the per_cpu_pages
structure but the movement of expire fills a structure hole so there is no
impact overall.
[mgorman@techsingularity.net: make it W=1 cleaner]
Link: https://lkml.kernel.org/r/20210514144622.GA3735@techsingularity.net
[mgorman@techsingularity.net: make it W=1 even cleaner]
Link: https://lkml.kernel.org/r/20210516140705.GB3735@techsingularity.net
[lkp@intel.com: check struct per_cpu_zonestat has a non-zero size]
[vbabka@suse.cz: Init zone->per_cpu_zonestats properly]
Link: https://lkml.kernel.org/r/20210512095458.30632-1-mgorman@techsingularity.net
Link: https://lkml.kernel.org/r/20210512095458.30632-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 02:41:38 +00:00
|
|
|
static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
|
2020-12-15 03:10:53 +00:00
|
|
|
/* These effectively disable the pcplists in the boot pageset completely */
|
|
|
|
#define BOOT_PAGESET_HIGH 0
|
|
|
|
#define BOOT_PAGESET_BATCH 1
|
mm/page_alloc: split per cpu page lists and zone stats
The PCP (per-cpu page allocator in page_alloc.c) shares locking
requirements with vmstat and the zone lock which is inconvenient and
causes some issues. For example, the PCP list and vmstat share the same
per-cpu space meaning that it's possible that vmstat updates dirty cache
lines holding per-cpu lists across CPUs unless padding is used. Second,
PREEMPT_RT does not want to disable IRQs for too long in the page
allocator.
This series splits the locking requirements and uses locks types more
suitable for PREEMPT_RT, reduces the time when special locking is required
for stats and reduces the time when IRQs need to be disabled on
!PREEMPT_RT kernels.
Why local_lock? PREEMPT_RT considers the following sequence to be unsafe
as documented in Documentation/locking/locktypes.rst
local_irq_disable();
spin_lock(&lock);
The pcp allocator has this sequence for rmqueue_pcplist (local_irq_save)
-> __rmqueue_pcplist -> rmqueue_bulk (spin_lock). While it's possible to
separate this out, it generally means there are points where we enable
IRQs and reenable them again immediately. To prevent a migration and the
per-cpu pointer going stale, migrate_disable is also needed. That is a
custom lock that is similar, but worse, than local_lock. Furthermore, on
PREEMPT_RT, it's undesirable to leave IRQs disabled for too long. By
converting to local_lock which disables migration on PREEMPT_RT, the
locking requirements can be separated and start moving the protections for
PCP, stats and the zone lock to PREEMPT_RT-safe equivalent locking. As a
bonus, local_lock also means that PROVE_LOCKING does something useful.
After that, it's obvious that zone_statistics incurs too much overhead and
leaves IRQs disabled for longer than necessary on !PREEMPT_RT kernels.
zone_statistics uses perfectly accurate counters requiring IRQs be
disabled for parallel RMW sequences when inaccurate ones like vm_events
would do. The series makes the NUMA statistics (NUMA_HIT and friends)
inaccurate counters that then require no special protection on
!PREEMPT_RT.
The bulk page allocator can then do stat updates in bulk with IRQs enabled
which should improve the efficiency. Technically, this could have been
done without the local_lock and vmstat conversion work and the order
simply reflects the timing of when different series were implemented.
Finally, there are places where we conflate IRQs being disabled for the
PCP with the IRQ-safe zone spinlock. The remainder of the series reduces
the scope of what is protected by disabled IRQs on !PREEMPT_RT kernels.
By the end of the series, page_alloc.c does not call local_irq_save so the
locking scope is a bit clearer. The one exception is that modifying
NR_FREE_PAGES still happens in places where it's known the IRQs are
disabled as it's harmless for PREEMPT_RT and would be expensive to split
the locking there.
No performance data is included because despite the overhead of the stats,
it's within the noise for most workloads on !PREEMPT_RT. However, Jesper
Dangaard Brouer ran a page allocation microbenchmark on a E5-1650 v4 @
3.60GHz CPU on the first version of this series. Focusing on the array
variant of the bulk page allocator reveals the following.
(CPU: Intel(R) Xeon(R) CPU E5-1650 v4 @ 3.60GHz)
ARRAY variant: time_bulk_page_alloc_free_array: step=bulk size
Baseline Patched
1 56.383 54.225 (+3.83%)
2 40.047 35.492 (+11.38%)
3 37.339 32.643 (+12.58%)
4 35.578 30.992 (+12.89%)
8 33.592 29.606 (+11.87%)
16 32.362 28.532 (+11.85%)
32 31.476 27.728 (+11.91%)
64 30.633 27.252 (+11.04%)
128 30.596 27.090 (+11.46%)
While this is a positive outcome, the series is more likely to be
interesting to the RT people in terms of getting parts of the PREEMPT_RT
tree into mainline.
This patch (of 9):
The per-cpu page allocator lists and the per-cpu vmstat deltas are stored
in the same struct per_cpu_pages even though vmstats have no direct impact
on the per-cpu page lists. This is inconsistent because the vmstats for a
node are stored on a dedicated structure. The bigger issue is that the
per_cpu_pages structure is not cache-aligned and stat updates either cache
conflict with adjacent per-cpu lists incurring a runtime cost or padding
is required incurring a memory cost.
This patch splits the per-cpu pagelists and the vmstat deltas into
separate structures. It's mostly a mechanical conversion but some
variable renaming is done to clearly distinguish the per-cpu pages
structure (pcp) from the vmstats (pzstats).
Superficially, this appears to increase the size of the per_cpu_pages
structure but the movement of expire fills a structure hole so there is no
impact overall.
[mgorman@techsingularity.net: make it W=1 cleaner]
Link: https://lkml.kernel.org/r/20210514144622.GA3735@techsingularity.net
[mgorman@techsingularity.net: make it W=1 even cleaner]
Link: https://lkml.kernel.org/r/20210516140705.GB3735@techsingularity.net
[lkp@intel.com: check struct per_cpu_zonestat has a non-zero size]
[vbabka@suse.cz: Init zone->per_cpu_zonestats properly]
Link: https://lkml.kernel.org/r/20210512095458.30632-1-mgorman@techsingularity.net
Link: https://lkml.kernel.org/r/20210512095458.30632-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 02:41:38 +00:00
|
|
|
static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
|
|
|
|
static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
|
2010-01-05 06:34:51 +00:00
|
|
|
|
mm, page_alloc: remove stop_machine from build_all_zonelists
build_all_zonelists has been (ab)using stop_machine to make sure that
zonelists do not change while somebody is looking at them. This is is
just a gross hack because a) it complicates the context from which we
can call build_all_zonelists (see 3f906ba23689 ("mm/memory-hotplug:
switch locking to a percpu rwsem")) and b) is is not really necessary
especially after "mm, page_alloc: simplify zonelist initialization" and
c) it doesn't really provide the protection it claims (see below).
Updates of the zonelists happen very seldom, basically only when a zone
becomes populated during memory online or when it loses all the memory
during offline. A racing iteration over zonelists could either miss a
zone or try to work on one zone twice. Both of these are something we
can live with occasionally because there will always be at least one
zone visible so we are not likely to fail allocation too easily for
example.
Please note that the original stop_machine approach doesn't really
provide a better exclusion because the iteration might be interrupted
half way (unless the whole iteration is preempt disabled which is not
the case in most cases) so the some zones could still be seen twice or a
zone missed.
I have run the pathological online/offline of the single memblock in the
movable zone while stressing the same small node with some memory
pressure.
Node 1, zone DMA
pages free 0
min 0
low 0
high 0
spanned 0
present 0
managed 0
protection: (0, 943, 943, 943)
Node 1, zone DMA32
pages free 227310
min 8294
low 10367
high 12440
spanned 262112
present 262112
managed 241436
protection: (0, 0, 0, 0)
Node 1, zone Normal
pages free 0
min 0
low 0
high 0
spanned 0
present 0
managed 0
protection: (0, 0, 0, 1024)
Node 1, zone Movable
pages free 32722
min 85
low 117
high 149
spanned 32768
present 32768
managed 32768
protection: (0, 0, 0, 0)
root@test1:/sys/devices/system/node/node1# while true
do
echo offline > memory34/state
echo online_movable > memory34/state
done
root@test1:/mnt/data/test/linux-3.7-rc5# numactl --preferred=1 make -j4
and it survived without any unexpected behavior. While this is not
really a great testing coverage it should exercise the allocation path
quite a lot.
Link: http://lkml.kernel.org/r/20170721143915.14161-8-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 23:20:34 +00:00
|
|
|
static void __build_all_zonelists(void *data)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2006-06-23 09:03:11 +00:00
|
|
|
int nid;
|
2017-09-06 23:20:17 +00:00
|
|
|
int __maybe_unused cpu;
|
2012-07-31 23:43:28 +00:00
|
|
|
pg_data_t *self = data;
|
mm/page_alloc: fix potential deadlock on zonelist_update_seq seqlock
syzbot is reporting circular locking dependency which involves
zonelist_update_seq seqlock [1], for this lock is checked by memory
allocation requests which do not need to be retried.
One deadlock scenario is kmalloc(GFP_ATOMIC) from an interrupt handler.
CPU0
----
__build_all_zonelists() {
write_seqlock(&zonelist_update_seq); // makes zonelist_update_seq.seqcount odd
// e.g. timer interrupt handler runs at this moment
some_timer_func() {
kmalloc(GFP_ATOMIC) {
__alloc_pages_slowpath() {
read_seqbegin(&zonelist_update_seq) {
// spins forever because zonelist_update_seq.seqcount is odd
}
}
}
}
// e.g. timer interrupt handler finishes
write_sequnlock(&zonelist_update_seq); // makes zonelist_update_seq.seqcount even
}
This deadlock scenario can be easily eliminated by not calling
read_seqbegin(&zonelist_update_seq) from !__GFP_DIRECT_RECLAIM allocation
requests, for retry is applicable to only __GFP_DIRECT_RECLAIM allocation
requests. But Michal Hocko does not know whether we should go with this
approach.
Another deadlock scenario which syzbot is reporting is a race between
kmalloc(GFP_ATOMIC) from tty_insert_flip_string_and_push_buffer() with
port->lock held and printk() from __build_all_zonelists() with
zonelist_update_seq held.
CPU0 CPU1
---- ----
pty_write() {
tty_insert_flip_string_and_push_buffer() {
__build_all_zonelists() {
write_seqlock(&zonelist_update_seq);
build_zonelists() {
printk() {
vprintk() {
vprintk_default() {
vprintk_emit() {
console_unlock() {
console_flush_all() {
console_emit_next_record() {
con->write() = serial8250_console_write() {
spin_lock_irqsave(&port->lock, flags);
tty_insert_flip_string() {
tty_insert_flip_string_fixed_flag() {
__tty_buffer_request_room() {
tty_buffer_alloc() {
kmalloc(GFP_ATOMIC | __GFP_NOWARN) {
__alloc_pages_slowpath() {
zonelist_iter_begin() {
read_seqbegin(&zonelist_update_seq); // spins forever because zonelist_update_seq.seqcount is odd
spin_lock_irqsave(&port->lock, flags); // spins forever because port->lock is held
}
}
}
}
}
}
}
}
spin_unlock_irqrestore(&port->lock, flags);
// message is printed to console
spin_unlock_irqrestore(&port->lock, flags);
}
}
}
}
}
}
}
}
}
write_sequnlock(&zonelist_update_seq);
}
}
}
This deadlock scenario can be eliminated by
preventing interrupt context from calling kmalloc(GFP_ATOMIC)
and
preventing printk() from calling console_flush_all()
while zonelist_update_seq.seqcount is odd.
Since Petr Mladek thinks that __build_all_zonelists() can become a
candidate for deferring printk() [2], let's address this problem by
disabling local interrupts in order to avoid kmalloc(GFP_ATOMIC)
and
disabling synchronous printk() in order to avoid console_flush_all()
.
As a side effect of minimizing duration of zonelist_update_seq.seqcount
being odd by disabling synchronous printk(), latency at
read_seqbegin(&zonelist_update_seq) for both !__GFP_DIRECT_RECLAIM and
__GFP_DIRECT_RECLAIM allocation requests will be reduced. Although, from
lockdep perspective, not calling read_seqbegin(&zonelist_update_seq) (i.e.
do not record unnecessary locking dependency) from interrupt context is
still preferable, even if we don't allow calling kmalloc(GFP_ATOMIC)
inside
write_seqlock(&zonelist_update_seq)/write_sequnlock(&zonelist_update_seq)
section...
Link: https://lkml.kernel.org/r/8796b95c-3da3-5885-fddd-6ef55f30e4d3@I-love.SAKURA.ne.jp
Fixes: 3d36424b3b58 ("mm/page_alloc: fix race condition between build_all_zonelists and page allocation")
Link: https://lkml.kernel.org/r/ZCrs+1cDqPWTDFNM@alley [2]
Reported-by: syzbot <syzbot+223c7461c58c58a4cb10@syzkaller.appspotmail.com>
Link: https://syzkaller.appspot.com/bug?extid=223c7461c58c58a4cb10 [1]
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Petr Mladek <pmladek@suse.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Cc: John Ogness <john.ogness@linutronix.de>
Cc: Patrick Daly <quic_pdaly@quicinc.com>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-04 14:31:58 +00:00
|
|
|
unsigned long flags;
|
2017-09-06 23:20:37 +00:00
|
|
|
|
mm/page_alloc: fix potential deadlock on zonelist_update_seq seqlock
syzbot is reporting circular locking dependency which involves
zonelist_update_seq seqlock [1], for this lock is checked by memory
allocation requests which do not need to be retried.
One deadlock scenario is kmalloc(GFP_ATOMIC) from an interrupt handler.
CPU0
----
__build_all_zonelists() {
write_seqlock(&zonelist_update_seq); // makes zonelist_update_seq.seqcount odd
// e.g. timer interrupt handler runs at this moment
some_timer_func() {
kmalloc(GFP_ATOMIC) {
__alloc_pages_slowpath() {
read_seqbegin(&zonelist_update_seq) {
// spins forever because zonelist_update_seq.seqcount is odd
}
}
}
}
// e.g. timer interrupt handler finishes
write_sequnlock(&zonelist_update_seq); // makes zonelist_update_seq.seqcount even
}
This deadlock scenario can be easily eliminated by not calling
read_seqbegin(&zonelist_update_seq) from !__GFP_DIRECT_RECLAIM allocation
requests, for retry is applicable to only __GFP_DIRECT_RECLAIM allocation
requests. But Michal Hocko does not know whether we should go with this
approach.
Another deadlock scenario which syzbot is reporting is a race between
kmalloc(GFP_ATOMIC) from tty_insert_flip_string_and_push_buffer() with
port->lock held and printk() from __build_all_zonelists() with
zonelist_update_seq held.
CPU0 CPU1
---- ----
pty_write() {
tty_insert_flip_string_and_push_buffer() {
__build_all_zonelists() {
write_seqlock(&zonelist_update_seq);
build_zonelists() {
printk() {
vprintk() {
vprintk_default() {
vprintk_emit() {
console_unlock() {
console_flush_all() {
console_emit_next_record() {
con->write() = serial8250_console_write() {
spin_lock_irqsave(&port->lock, flags);
tty_insert_flip_string() {
tty_insert_flip_string_fixed_flag() {
__tty_buffer_request_room() {
tty_buffer_alloc() {
kmalloc(GFP_ATOMIC | __GFP_NOWARN) {
__alloc_pages_slowpath() {
zonelist_iter_begin() {
read_seqbegin(&zonelist_update_seq); // spins forever because zonelist_update_seq.seqcount is odd
spin_lock_irqsave(&port->lock, flags); // spins forever because port->lock is held
}
}
}
}
}
}
}
}
spin_unlock_irqrestore(&port->lock, flags);
// message is printed to console
spin_unlock_irqrestore(&port->lock, flags);
}
}
}
}
}
}
}
}
}
write_sequnlock(&zonelist_update_seq);
}
}
}
This deadlock scenario can be eliminated by
preventing interrupt context from calling kmalloc(GFP_ATOMIC)
and
preventing printk() from calling console_flush_all()
while zonelist_update_seq.seqcount is odd.
Since Petr Mladek thinks that __build_all_zonelists() can become a
candidate for deferring printk() [2], let's address this problem by
disabling local interrupts in order to avoid kmalloc(GFP_ATOMIC)
and
disabling synchronous printk() in order to avoid console_flush_all()
.
As a side effect of minimizing duration of zonelist_update_seq.seqcount
being odd by disabling synchronous printk(), latency at
read_seqbegin(&zonelist_update_seq) for both !__GFP_DIRECT_RECLAIM and
__GFP_DIRECT_RECLAIM allocation requests will be reduced. Although, from
lockdep perspective, not calling read_seqbegin(&zonelist_update_seq) (i.e.
do not record unnecessary locking dependency) from interrupt context is
still preferable, even if we don't allow calling kmalloc(GFP_ATOMIC)
inside
write_seqlock(&zonelist_update_seq)/write_sequnlock(&zonelist_update_seq)
section...
Link: https://lkml.kernel.org/r/8796b95c-3da3-5885-fddd-6ef55f30e4d3@I-love.SAKURA.ne.jp
Fixes: 3d36424b3b58 ("mm/page_alloc: fix race condition between build_all_zonelists and page allocation")
Link: https://lkml.kernel.org/r/ZCrs+1cDqPWTDFNM@alley [2]
Reported-by: syzbot <syzbot+223c7461c58c58a4cb10@syzkaller.appspotmail.com>
Link: https://syzkaller.appspot.com/bug?extid=223c7461c58c58a4cb10 [1]
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Petr Mladek <pmladek@suse.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Cc: John Ogness <john.ogness@linutronix.de>
Cc: Patrick Daly <quic_pdaly@quicinc.com>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-04 14:31:58 +00:00
|
|
|
/*
|
|
|
|
* Explicitly disable this CPU's interrupts before taking seqlock
|
|
|
|
* to prevent any IRQ handler from calling into the page allocator
|
|
|
|
* (e.g. GFP_ATOMIC) that could hit zonelist_iter_begin and livelock.
|
|
|
|
*/
|
|
|
|
local_irq_save(flags);
|
|
|
|
/*
|
|
|
|
* Explicitly disable this CPU's synchronous printk() before taking
|
|
|
|
* seqlock to prevent any printk() from trying to hold port->lock, for
|
|
|
|
* tty_insert_flip_string_and_push_buffer() on other CPU might be
|
|
|
|
* calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
|
|
|
|
*/
|
|
|
|
printk_deferred_enter();
|
mm/page_alloc: fix race condition between build_all_zonelists and page allocation
Patrick Daly reported the following problem;
NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK] - before offline operation
[0] - ZONE_MOVABLE
[1] - ZONE_NORMAL
[2] - NULL
For a GFP_KERNEL allocation, alloc_pages_slowpath() will save the
offset of ZONE_NORMAL in ac->preferred_zoneref. If a concurrent
memory_offline operation removes the last page from ZONE_MOVABLE,
build_all_zonelists() & build_zonerefs_node() will update
node_zonelists as shown below. Only populated zones are added.
NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK] - after offline operation
[0] - ZONE_NORMAL
[1] - NULL
[2] - NULL
The race is simple -- page allocation could be in progress when a memory
hot-remove operation triggers a zonelist rebuild that removes zones. The
allocation request will still have a valid ac->preferred_zoneref that is
now pointing to NULL and triggers an OOM kill.
This problem probably always existed but may be slightly easier to trigger
due to 6aa303defb74 ("mm, vmscan: only allocate and reclaim from zones
with pages managed by the buddy allocator") which distinguishes between
zones that are completely unpopulated versus zones that have valid pages
not managed by the buddy allocator (e.g. reserved, memblock, ballooning
etc). Memory hotplug had multiple stages with timing considerations
around managed/present page updates, the zonelist rebuild and the zone
span updates. As David Hildenbrand puts it
memory offlining adjusts managed+present pages of the zone
essentially in one go. If after the adjustments, the zone is no
longer populated (present==0), we rebuild the zone lists.
Once that's done, we try shrinking the zone (start+spanned
pages) -- which results in zone_start_pfn == 0 if there are no
more pages. That happens *after* rebuilding the zonelists via
remove_pfn_range_from_zone().
The only requirement to fix the race is that a page allocation request
identifies when a zonelist rebuild has happened since the allocation
request started and no page has yet been allocated. Use a seqlock_t to
track zonelist updates with a lockless read-side of the zonelist and
protecting the rebuild and update of the counter with a spinlock.
[akpm@linux-foundation.org: make zonelist_update_seq static]
Link: https://lkml.kernel.org/r/20220824110900.vh674ltxmzb3proq@techsingularity.net
Fixes: 6aa303defb74 ("mm, vmscan: only allocate and reclaim from zones with pages managed by the buddy allocator")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Patrick Daly <quic_pdaly@quicinc.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: <stable@vger.kernel.org> [4.9+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-24 11:14:50 +00:00
|
|
|
write_seqlock(&zonelist_update_seq);
|
[PATCH] memory page_alloc zonelist caching speedup
Optimize the critical zonelist scanning for free pages in the kernel memory
allocator by caching the zones that were found to be full recently, and
skipping them.
Remembers the zones in a zonelist that were short of free memory in the
last second. And it stashes a zone-to-node table in the zonelist struct,
to optimize that conversion (minimize its cache footprint.)
Recent changes:
This differs in a significant way from a similar patch that I
posted a week ago. Now, instead of having a nodemask_t of
recently full nodes, I have a bitmask of recently full zones.
This solves a problem that last weeks patch had, which on
systems with multiple zones per node (such as DMA zone) would
take seeing any of these zones full as meaning that all zones
on that node were full.
Also I changed names - from "zonelist faster" to "zonelist cache",
as that seemed to better convey what we're doing here - caching
some of the key zonelist state (for faster access.)
See below for some performance benchmark results. After all that
discussion with David on why I didn't need them, I went and got
some ;). I wanted to verify that I had not hurt the normal case
of memory allocation noticeably. At least for my one little
microbenchmark, I found (1) the normal case wasn't affected, and
(2) workloads that forced scanning across multiple nodes for
memory improved up to 10% fewer System CPU cycles and lower
elapsed clock time ('sys' and 'real'). Good. See details, below.
I didn't have the logic in get_page_from_freelist() for various
full nodes and zone reclaim failures correct. That should be
fixed up now - notice the new goto labels zonelist_scan,
this_zone_full, and try_next_zone, in get_page_from_freelist().
There are two reasons I persued this alternative, over some earlier
proposals that would have focused on optimizing the fake numa
emulation case by caching the last useful zone:
1) Contrary to what I said before, we (SGI, on large ia64 sn2 systems)
have seen real customer loads where the cost to scan the zonelist
was a problem, due to many nodes being full of memory before
we got to a node we could use. Or at least, I think we have.
This was related to me by another engineer, based on experiences
from some time past. So this is not guaranteed. Most likely, though.
The following approach should help such real numa systems just as
much as it helps fake numa systems, or any combination thereof.
2) The effort to distinguish fake from real numa, using node_distance,
so that we could cache a fake numa node and optimize choosing
it over equivalent distance fake nodes, while continuing to
properly scan all real nodes in distance order, was going to
require a nasty blob of zonelist and node distance munging.
The following approach has no new dependency on node distances or
zone sorting.
See comment in the patch below for a description of what it actually does.
Technical details of note (or controversy):
- See the use of "zlc_active" and "did_zlc_setup" below, to delay
adding any work for this new mechanism until we've looked at the
first zone in zonelist. I figured the odds of the first zone
having the memory we needed were high enough that we should just
look there, first, then get fancy only if we need to keep looking.
- Some odd hackery was needed to add items to struct zonelist, while
not tripping up the custom zonelists built by the mm/mempolicy.c
code for MPOL_BIND. My usual wordy comments below explain this.
Search for "MPOL_BIND".
- Some per-node data in the struct zonelist is now modified frequently,
with no locking. Multiple CPU cores on a node could hit and mangle
this data. The theory is that this is just performance hint data,
and the memory allocator will work just fine despite any such mangling.
The fields at risk are the struct 'zonelist_cache' fields 'fullzones'
(a bitmask) and 'last_full_zap' (unsigned long jiffies). It should
all be self correcting after at most a one second delay.
- This still does a linear scan of the same lengths as before. All
I've optimized is making the scan faster, not algorithmically
shorter. It is now able to scan a compact array of 'unsigned
short' in the case of many full nodes, so one cache line should
cover quite a few nodes, rather than each node hitting another
one or two new and distinct cache lines.
- If both Andi and Nick don't find this too complicated, I will be
(pleasantly) flabbergasted.
- I removed the comment claiming we only use one cachline's worth of
zonelist. We seem, at least in the fake numa case, to have put the
lie to that claim.
- I pay no attention to the various watermarks and such in this performance
hint. A node could be marked full for one watermark, and then skipped
over when searching for a page using a different watermark. I think
that's actually quite ok, as it will tend to slightly increase the
spreading of memory over other nodes, away from a memory stressed node.
===============
Performance - some benchmark results and analysis:
This benchmark runs a memory hog program that uses multiple
threads to touch alot of memory as quickly as it can.
Multiple runs were made, touching 12, 38, 64 or 90 GBytes out of
the total 96 GBytes on the system, and using 1, 19, 37, or 55
threads (on a 56 CPU system.) System, user and real (elapsed)
timings were recorded for each run, shown in units of seconds,
in the table below.
Two kernels were tested - 2.6.18-mm3 and the same kernel with
this zonelist caching patch added. The table also shows the
percentage improvement the zonelist caching sys time is over
(lower than) the stock *-mm kernel.
number 2.6.18-mm3 zonelist-cache delta (< 0 good) percent
GBs N ------------ -------------- ---------------- systime
mem threads sys user real sys user real sys user real better
12 1 153 24 177 151 24 176 -2 0 -1 1%
12 19 99 22 8 99 22 8 0 0 0 0%
12 37 111 25 6 112 25 6 1 0 0 -0%
12 55 115 25 5 110 23 5 -5 -2 0 4%
38 1 502 74 576 497 73 570 -5 -1 -6 0%
38 19 426 78 48 373 76 39 -53 -2 -9 12%
38 37 544 83 36 547 82 36 3 -1 0 -0%
38 55 501 77 23 511 80 24 10 3 1 -1%
64 1 917 125 1042 890 124 1014 -27 -1 -28 2%
64 19 1118 138 119 965 141 103 -153 3 -16 13%
64 37 1202 151 94 1136 150 81 -66 -1 -13 5%
64 55 1118 141 61 1072 140 58 -46 -1 -3 4%
90 1 1342 177 1519 1275 174 1450 -67 -3 -69 4%
90 19 2392 199 192 2116 189 176 -276 -10 -16 11%
90 37 3313 238 175 2972 225 145 -341 -13 -30 10%
90 55 1948 210 104 1843 213 100 -105 3 -4 5%
Notes:
1) This test ran a memory hog program that started a specified number N of
threads, and had each thread allocate and touch 1/N'th of
the total memory to be used in the test run in a single loop,
writing a constant word to memory, one store every 4096 bytes.
Watching this test during some earlier trial runs, I would see
each of these threads sit down on one CPU and stay there, for
the remainder of the pass, a different CPU for each thread.
2) The 'real' column is not comparable to the 'sys' or 'user' columns.
The 'real' column is seconds wall clock time elapsed, from beginning
to end of that test pass. The 'sys' and 'user' columns are total
CPU seconds spent on that test pass. For a 19 thread test run,
for example, the sum of 'sys' and 'user' could be up to 19 times the
number of 'real' elapsed wall clock seconds.
3) Tests were run on a fresh, single-user boot, to minimize the amount
of memory already in use at the start of the test, and to minimize
the amount of background activity that might interfere.
4) Tests were done on a 56 CPU, 28 Node system with 96 GBytes of RAM.
5) Notice that the 'real' time gets large for the single thread runs, even
though the measured 'sys' and 'user' times are modest. I'm not sure what
that means - probably something to do with it being slow for one thread to
be accessing memory along ways away. Perhaps the fake numa system, running
ostensibly the same workload, would not show this substantial degradation
of 'real' time for one thread on many nodes -- lets hope not.
6) The high thread count passes (one thread per CPU - on 55 of 56 CPUs)
ran quite efficiently, as one might expect. Each pair of threads needed
to allocate and touch the memory on the node the two threads shared, a
pleasantly parallizable workload.
7) The intermediate thread count passes, when asking for alot of memory forcing
them to go to a few neighboring nodes, improved the most with this zonelist
caching patch.
Conclusions:
* This zonelist cache patch probably makes little difference one way or the
other for most workloads on real numa hardware, if those workloads avoid
heavy off node allocations.
* For memory intensive workloads requiring substantial off-node allocations
on real numa hardware, this patch improves both kernel and elapsed timings
up to ten per-cent.
* For fake numa systems, I'm optimistic, but will have to leave that up to
Rohit Seth to actually test (once I get him a 2.6.18 backport.)
Signed-off-by: Paul Jackson <pj@sgi.com>
Cc: Rohit Seth <rohitseth@google.com>
Cc: Christoph Lameter <clameter@engr.sgi.com>
Cc: David Rientjes <rientjes@cs.washington.edu>
Cc: Paul Menage <menage@google.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 04:31:48 +00:00
|
|
|
|
2009-08-18 21:11:19 +00:00
|
|
|
#ifdef CONFIG_NUMA
|
|
|
|
memset(node_load, 0, sizeof(node_load));
|
|
|
|
#endif
|
2012-07-31 23:43:28 +00:00
|
|
|
|
2017-09-06 23:19:33 +00:00
|
|
|
/*
|
|
|
|
* This node is hotadded and no memory is yet present. So just
|
|
|
|
* building zonelists is fine - no need to touch other nodes.
|
|
|
|
*/
|
2012-07-31 23:43:28 +00:00
|
|
|
if (self && !node_online(self->node_id)) {
|
|
|
|
build_zonelists(self);
|
2017-09-06 23:19:33 +00:00
|
|
|
} else {
|
2022-03-22 21:46:54 +00:00
|
|
|
/*
|
|
|
|
* All possible nodes have pgdat preallocated
|
|
|
|
* in free_area_init
|
|
|
|
*/
|
|
|
|
for_each_node(nid) {
|
2017-09-06 23:19:33 +00:00
|
|
|
pg_data_t *pgdat = NODE_DATA(nid);
|
2007-10-16 08:25:29 +00:00
|
|
|
|
2017-09-06 23:19:33 +00:00
|
|
|
build_zonelists(pgdat);
|
|
|
|
}
|
2010-01-05 06:34:51 +00:00
|
|
|
|
2010-05-26 21:45:00 +00:00
|
|
|
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
|
|
|
|
/*
|
|
|
|
* We now know the "local memory node" for each node--
|
|
|
|
* i.e., the node of the first zone in the generic zonelist.
|
|
|
|
* Set up numa_mem percpu variable for on-line cpus. During
|
|
|
|
* boot, only the boot cpu should be on-line; we'll init the
|
|
|
|
* secondary cpus' numa_mem as they come on-line. During
|
|
|
|
* node/memory hotplug, we'll fixup all on-line cpus.
|
|
|
|
*/
|
2017-09-06 23:20:20 +00:00
|
|
|
for_each_online_cpu(cpu)
|
2010-05-26 21:45:00 +00:00
|
|
|
set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
|
2017-09-06 23:20:17 +00:00
|
|
|
#endif
|
2017-09-06 23:20:20 +00:00
|
|
|
}
|
2017-09-06 23:20:37 +00:00
|
|
|
|
mm/page_alloc: fix race condition between build_all_zonelists and page allocation
Patrick Daly reported the following problem;
NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK] - before offline operation
[0] - ZONE_MOVABLE
[1] - ZONE_NORMAL
[2] - NULL
For a GFP_KERNEL allocation, alloc_pages_slowpath() will save the
offset of ZONE_NORMAL in ac->preferred_zoneref. If a concurrent
memory_offline operation removes the last page from ZONE_MOVABLE,
build_all_zonelists() & build_zonerefs_node() will update
node_zonelists as shown below. Only populated zones are added.
NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK] - after offline operation
[0] - ZONE_NORMAL
[1] - NULL
[2] - NULL
The race is simple -- page allocation could be in progress when a memory
hot-remove operation triggers a zonelist rebuild that removes zones. The
allocation request will still have a valid ac->preferred_zoneref that is
now pointing to NULL and triggers an OOM kill.
This problem probably always existed but may be slightly easier to trigger
due to 6aa303defb74 ("mm, vmscan: only allocate and reclaim from zones
with pages managed by the buddy allocator") which distinguishes between
zones that are completely unpopulated versus zones that have valid pages
not managed by the buddy allocator (e.g. reserved, memblock, ballooning
etc). Memory hotplug had multiple stages with timing considerations
around managed/present page updates, the zonelist rebuild and the zone
span updates. As David Hildenbrand puts it
memory offlining adjusts managed+present pages of the zone
essentially in one go. If after the adjustments, the zone is no
longer populated (present==0), we rebuild the zone lists.
Once that's done, we try shrinking the zone (start+spanned
pages) -- which results in zone_start_pfn == 0 if there are no
more pages. That happens *after* rebuilding the zonelists via
remove_pfn_range_from_zone().
The only requirement to fix the race is that a page allocation request
identifies when a zonelist rebuild has happened since the allocation
request started and no page has yet been allocated. Use a seqlock_t to
track zonelist updates with a lockless read-side of the zonelist and
protecting the rebuild and update of the counter with a spinlock.
[akpm@linux-foundation.org: make zonelist_update_seq static]
Link: https://lkml.kernel.org/r/20220824110900.vh674ltxmzb3proq@techsingularity.net
Fixes: 6aa303defb74 ("mm, vmscan: only allocate and reclaim from zones with pages managed by the buddy allocator")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Patrick Daly <quic_pdaly@quicinc.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: <stable@vger.kernel.org> [4.9+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-24 11:14:50 +00:00
|
|
|
write_sequnlock(&zonelist_update_seq);
|
mm/page_alloc: fix potential deadlock on zonelist_update_seq seqlock
syzbot is reporting circular locking dependency which involves
zonelist_update_seq seqlock [1], for this lock is checked by memory
allocation requests which do not need to be retried.
One deadlock scenario is kmalloc(GFP_ATOMIC) from an interrupt handler.
CPU0
----
__build_all_zonelists() {
write_seqlock(&zonelist_update_seq); // makes zonelist_update_seq.seqcount odd
// e.g. timer interrupt handler runs at this moment
some_timer_func() {
kmalloc(GFP_ATOMIC) {
__alloc_pages_slowpath() {
read_seqbegin(&zonelist_update_seq) {
// spins forever because zonelist_update_seq.seqcount is odd
}
}
}
}
// e.g. timer interrupt handler finishes
write_sequnlock(&zonelist_update_seq); // makes zonelist_update_seq.seqcount even
}
This deadlock scenario can be easily eliminated by not calling
read_seqbegin(&zonelist_update_seq) from !__GFP_DIRECT_RECLAIM allocation
requests, for retry is applicable to only __GFP_DIRECT_RECLAIM allocation
requests. But Michal Hocko does not know whether we should go with this
approach.
Another deadlock scenario which syzbot is reporting is a race between
kmalloc(GFP_ATOMIC) from tty_insert_flip_string_and_push_buffer() with
port->lock held and printk() from __build_all_zonelists() with
zonelist_update_seq held.
CPU0 CPU1
---- ----
pty_write() {
tty_insert_flip_string_and_push_buffer() {
__build_all_zonelists() {
write_seqlock(&zonelist_update_seq);
build_zonelists() {
printk() {
vprintk() {
vprintk_default() {
vprintk_emit() {
console_unlock() {
console_flush_all() {
console_emit_next_record() {
con->write() = serial8250_console_write() {
spin_lock_irqsave(&port->lock, flags);
tty_insert_flip_string() {
tty_insert_flip_string_fixed_flag() {
__tty_buffer_request_room() {
tty_buffer_alloc() {
kmalloc(GFP_ATOMIC | __GFP_NOWARN) {
__alloc_pages_slowpath() {
zonelist_iter_begin() {
read_seqbegin(&zonelist_update_seq); // spins forever because zonelist_update_seq.seqcount is odd
spin_lock_irqsave(&port->lock, flags); // spins forever because port->lock is held
}
}
}
}
}
}
}
}
spin_unlock_irqrestore(&port->lock, flags);
// message is printed to console
spin_unlock_irqrestore(&port->lock, flags);
}
}
}
}
}
}
}
}
}
write_sequnlock(&zonelist_update_seq);
}
}
}
This deadlock scenario can be eliminated by
preventing interrupt context from calling kmalloc(GFP_ATOMIC)
and
preventing printk() from calling console_flush_all()
while zonelist_update_seq.seqcount is odd.
Since Petr Mladek thinks that __build_all_zonelists() can become a
candidate for deferring printk() [2], let's address this problem by
disabling local interrupts in order to avoid kmalloc(GFP_ATOMIC)
and
disabling synchronous printk() in order to avoid console_flush_all()
.
As a side effect of minimizing duration of zonelist_update_seq.seqcount
being odd by disabling synchronous printk(), latency at
read_seqbegin(&zonelist_update_seq) for both !__GFP_DIRECT_RECLAIM and
__GFP_DIRECT_RECLAIM allocation requests will be reduced. Although, from
lockdep perspective, not calling read_seqbegin(&zonelist_update_seq) (i.e.
do not record unnecessary locking dependency) from interrupt context is
still preferable, even if we don't allow calling kmalloc(GFP_ATOMIC)
inside
write_seqlock(&zonelist_update_seq)/write_sequnlock(&zonelist_update_seq)
section...
Link: https://lkml.kernel.org/r/8796b95c-3da3-5885-fddd-6ef55f30e4d3@I-love.SAKURA.ne.jp
Fixes: 3d36424b3b58 ("mm/page_alloc: fix race condition between build_all_zonelists and page allocation")
Link: https://lkml.kernel.org/r/ZCrs+1cDqPWTDFNM@alley [2]
Reported-by: syzbot <syzbot+223c7461c58c58a4cb10@syzkaller.appspotmail.com>
Link: https://syzkaller.appspot.com/bug?extid=223c7461c58c58a4cb10 [1]
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Petr Mladek <pmladek@suse.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Cc: John Ogness <john.ogness@linutronix.de>
Cc: Patrick Daly <quic_pdaly@quicinc.com>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-04 14:31:58 +00:00
|
|
|
printk_deferred_exit();
|
|
|
|
local_irq_restore(flags);
|
2006-06-23 09:03:11 +00:00
|
|
|
}
|
|
|
|
|
2015-02-12 23:00:06 +00:00
|
|
|
static noinline void __init
|
|
|
|
build_all_zonelists_init(void)
|
|
|
|
{
|
2017-09-06 23:20:17 +00:00
|
|
|
int cpu;
|
|
|
|
|
2015-02-12 23:00:06 +00:00
|
|
|
__build_all_zonelists(NULL);
|
2017-09-06 23:20:17 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Initialize the boot_pagesets that are going to be used
|
|
|
|
* for bootstrapping processors. The real pagesets for
|
|
|
|
* each zone will be allocated later when the per cpu
|
|
|
|
* allocator is available.
|
|
|
|
*
|
|
|
|
* boot_pagesets are used also for bootstrapping offline
|
|
|
|
* cpus if the system is already booted because the pagesets
|
|
|
|
* are needed to initialize allocators on a specific cpu too.
|
|
|
|
* F.e. the percpu allocator needs the page allocator which
|
|
|
|
* needs the percpu allocator in order to allocate its pagesets
|
|
|
|
* (a chicken-egg dilemma).
|
|
|
|
*/
|
|
|
|
for_each_possible_cpu(cpu)
|
mm/page_alloc: split per cpu page lists and zone stats
The PCP (per-cpu page allocator in page_alloc.c) shares locking
requirements with vmstat and the zone lock which is inconvenient and
causes some issues. For example, the PCP list and vmstat share the same
per-cpu space meaning that it's possible that vmstat updates dirty cache
lines holding per-cpu lists across CPUs unless padding is used. Second,
PREEMPT_RT does not want to disable IRQs for too long in the page
allocator.
This series splits the locking requirements and uses locks types more
suitable for PREEMPT_RT, reduces the time when special locking is required
for stats and reduces the time when IRQs need to be disabled on
!PREEMPT_RT kernels.
Why local_lock? PREEMPT_RT considers the following sequence to be unsafe
as documented in Documentation/locking/locktypes.rst
local_irq_disable();
spin_lock(&lock);
The pcp allocator has this sequence for rmqueue_pcplist (local_irq_save)
-> __rmqueue_pcplist -> rmqueue_bulk (spin_lock). While it's possible to
separate this out, it generally means there are points where we enable
IRQs and reenable them again immediately. To prevent a migration and the
per-cpu pointer going stale, migrate_disable is also needed. That is a
custom lock that is similar, but worse, than local_lock. Furthermore, on
PREEMPT_RT, it's undesirable to leave IRQs disabled for too long. By
converting to local_lock which disables migration on PREEMPT_RT, the
locking requirements can be separated and start moving the protections for
PCP, stats and the zone lock to PREEMPT_RT-safe equivalent locking. As a
bonus, local_lock also means that PROVE_LOCKING does something useful.
After that, it's obvious that zone_statistics incurs too much overhead and
leaves IRQs disabled for longer than necessary on !PREEMPT_RT kernels.
zone_statistics uses perfectly accurate counters requiring IRQs be
disabled for parallel RMW sequences when inaccurate ones like vm_events
would do. The series makes the NUMA statistics (NUMA_HIT and friends)
inaccurate counters that then require no special protection on
!PREEMPT_RT.
The bulk page allocator can then do stat updates in bulk with IRQs enabled
which should improve the efficiency. Technically, this could have been
done without the local_lock and vmstat conversion work and the order
simply reflects the timing of when different series were implemented.
Finally, there are places where we conflate IRQs being disabled for the
PCP with the IRQ-safe zone spinlock. The remainder of the series reduces
the scope of what is protected by disabled IRQs on !PREEMPT_RT kernels.
By the end of the series, page_alloc.c does not call local_irq_save so the
locking scope is a bit clearer. The one exception is that modifying
NR_FREE_PAGES still happens in places where it's known the IRQs are
disabled as it's harmless for PREEMPT_RT and would be expensive to split
the locking there.
No performance data is included because despite the overhead of the stats,
it's within the noise for most workloads on !PREEMPT_RT. However, Jesper
Dangaard Brouer ran a page allocation microbenchmark on a E5-1650 v4 @
3.60GHz CPU on the first version of this series. Focusing on the array
variant of the bulk page allocator reveals the following.
(CPU: Intel(R) Xeon(R) CPU E5-1650 v4 @ 3.60GHz)
ARRAY variant: time_bulk_page_alloc_free_array: step=bulk size
Baseline Patched
1 56.383 54.225 (+3.83%)
2 40.047 35.492 (+11.38%)
3 37.339 32.643 (+12.58%)
4 35.578 30.992 (+12.89%)
8 33.592 29.606 (+11.87%)
16 32.362 28.532 (+11.85%)
32 31.476 27.728 (+11.91%)
64 30.633 27.252 (+11.04%)
128 30.596 27.090 (+11.46%)
While this is a positive outcome, the series is more likely to be
interesting to the RT people in terms of getting parts of the PREEMPT_RT
tree into mainline.
This patch (of 9):
The per-cpu page allocator lists and the per-cpu vmstat deltas are stored
in the same struct per_cpu_pages even though vmstats have no direct impact
on the per-cpu page lists. This is inconsistent because the vmstats for a
node are stored on a dedicated structure. The bigger issue is that the
per_cpu_pages structure is not cache-aligned and stat updates either cache
conflict with adjacent per-cpu lists incurring a runtime cost or padding
is required incurring a memory cost.
This patch splits the per-cpu pagelists and the vmstat deltas into
separate structures. It's mostly a mechanical conversion but some
variable renaming is done to clearly distinguish the per-cpu pages
structure (pcp) from the vmstats (pzstats).
Superficially, this appears to increase the size of the per_cpu_pages
structure but the movement of expire fills a structure hole so there is no
impact overall.
[mgorman@techsingularity.net: make it W=1 cleaner]
Link: https://lkml.kernel.org/r/20210514144622.GA3735@techsingularity.net
[mgorman@techsingularity.net: make it W=1 even cleaner]
Link: https://lkml.kernel.org/r/20210516140705.GB3735@techsingularity.net
[lkp@intel.com: check struct per_cpu_zonestat has a non-zero size]
[vbabka@suse.cz: Init zone->per_cpu_zonestats properly]
Link: https://lkml.kernel.org/r/20210512095458.30632-1-mgorman@techsingularity.net
Link: https://lkml.kernel.org/r/20210512095458.30632-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 02:41:38 +00:00
|
|
|
per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
|
2017-09-06 23:20:17 +00:00
|
|
|
|
2015-02-12 23:00:06 +00:00
|
|
|
mminit_verify_zonelist();
|
|
|
|
cpuset_init_current_mems_allowed();
|
|
|
|
}
|
|
|
|
|
2010-05-24 21:32:52 +00:00
|
|
|
/*
|
|
|
|
* unless system_state == SYSTEM_BOOTING.
|
2015-02-12 23:00:06 +00:00
|
|
|
*
|
2017-09-06 23:20:24 +00:00
|
|
|
* __ref due to call of __init annotated helper build_all_zonelists_init
|
2015-02-12 23:00:06 +00:00
|
|
|
* [protected by SYSTEM_BOOTING].
|
2010-05-24 21:32:52 +00:00
|
|
|
*/
|
2017-09-06 23:20:24 +00:00
|
|
|
void __ref build_all_zonelists(pg_data_t *pgdat)
|
2006-06-23 09:03:11 +00:00
|
|
|
{
|
2020-08-07 06:25:27 +00:00
|
|
|
unsigned long vm_total_pages;
|
|
|
|
|
2006-06-23 09:03:11 +00:00
|
|
|
if (system_state == SYSTEM_BOOTING) {
|
2015-02-12 23:00:06 +00:00
|
|
|
build_all_zonelists_init();
|
2006-06-23 09:03:11 +00:00
|
|
|
} else {
|
mm, page_alloc: remove stop_machine from build_all_zonelists
build_all_zonelists has been (ab)using stop_machine to make sure that
zonelists do not change while somebody is looking at them. This is is
just a gross hack because a) it complicates the context from which we
can call build_all_zonelists (see 3f906ba23689 ("mm/memory-hotplug:
switch locking to a percpu rwsem")) and b) is is not really necessary
especially after "mm, page_alloc: simplify zonelist initialization" and
c) it doesn't really provide the protection it claims (see below).
Updates of the zonelists happen very seldom, basically only when a zone
becomes populated during memory online or when it loses all the memory
during offline. A racing iteration over zonelists could either miss a
zone or try to work on one zone twice. Both of these are something we
can live with occasionally because there will always be at least one
zone visible so we are not likely to fail allocation too easily for
example.
Please note that the original stop_machine approach doesn't really
provide a better exclusion because the iteration might be interrupted
half way (unless the whole iteration is preempt disabled which is not
the case in most cases) so the some zones could still be seen twice or a
zone missed.
I have run the pathological online/offline of the single memblock in the
movable zone while stressing the same small node with some memory
pressure.
Node 1, zone DMA
pages free 0
min 0
low 0
high 0
spanned 0
present 0
managed 0
protection: (0, 943, 943, 943)
Node 1, zone DMA32
pages free 227310
min 8294
low 10367
high 12440
spanned 262112
present 262112
managed 241436
protection: (0, 0, 0, 0)
Node 1, zone Normal
pages free 0
min 0
low 0
high 0
spanned 0
present 0
managed 0
protection: (0, 0, 0, 1024)
Node 1, zone Movable
pages free 32722
min 85
low 117
high 149
spanned 32768
present 32768
managed 32768
protection: (0, 0, 0, 0)
root@test1:/sys/devices/system/node/node1# while true
do
echo offline > memory34/state
echo online_movable > memory34/state
done
root@test1:/mnt/data/test/linux-3.7-rc5# numactl --preferred=1 make -j4
and it survived without any unexpected behavior. While this is not
really a great testing coverage it should exercise the allocation path
quite a lot.
Link: http://lkml.kernel.org/r/20170721143915.14161-8-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 23:20:34 +00:00
|
|
|
__build_all_zonelists(pgdat);
|
2006-06-23 09:03:11 +00:00
|
|
|
/* cpuset refresh routine should be here */
|
|
|
|
}
|
2020-08-07 06:25:30 +00:00
|
|
|
/* Get the number of free pages beyond high watermark in all zones. */
|
|
|
|
vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
|
2007-10-16 08:25:54 +00:00
|
|
|
/*
|
|
|
|
* Disable grouping by mobility if the number of pages in the
|
|
|
|
* system is too low to allow the mechanism to work. It would be
|
|
|
|
* more accurate, but expensive to check per-zone. This check is
|
|
|
|
* made on memory-hotadd so a system can start with mobility
|
|
|
|
* disabled and enable it later
|
|
|
|
*/
|
2007-10-16 08:26:01 +00:00
|
|
|
if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
|
2007-10-16 08:25:54 +00:00
|
|
|
page_group_by_mobility_disabled = 1;
|
|
|
|
else
|
|
|
|
page_group_by_mobility_disabled = 0;
|
|
|
|
|
2019-03-05 23:48:29 +00:00
|
|
|
pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
|
2016-03-17 21:19:47 +00:00
|
|
|
nr_online_nodes,
|
|
|
|
page_group_by_mobility_disabled ? "off" : "on",
|
|
|
|
vm_total_pages);
|
2007-07-16 06:38:01 +00:00
|
|
|
#ifdef CONFIG_NUMA
|
2014-12-10 23:42:53 +00:00
|
|
|
pr_info("Policy zone: %s\n", zone_names[policy_zone]);
|
2007-07-16 06:38:01 +00:00
|
|
|
#endif
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2023-03-21 17:05:02 +00:00
|
|
|
static int zone_batchsize(struct zone *zone)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2023-03-21 17:05:02 +00:00
|
|
|
#ifdef CONFIG_MMU
|
|
|
|
int batch;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2023-03-21 17:05:02 +00:00
|
|
|
/*
|
|
|
|
* The number of pages to batch allocate is either ~0.1%
|
|
|
|
* of the zone or 1MB, whichever is smaller. The batch
|
|
|
|
* size is striking a balance between allocation latency
|
|
|
|
* and zone lock contention.
|
|
|
|
*/
|
|
|
|
batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
|
|
|
|
batch /= 4; /* We effectively *= 4 below */
|
|
|
|
if (batch < 1)
|
|
|
|
batch = 1;
|
2009-01-06 22:40:09 +00:00
|
|
|
|
2016-01-16 00:56:22 +00:00
|
|
|
/*
|
2023-03-21 17:05:02 +00:00
|
|
|
* Clamp the batch to a 2^n - 1 value. Having a power
|
|
|
|
* of 2 value was found to be more likely to have
|
|
|
|
* suboptimal cache aliasing properties in some cases.
|
|
|
|
*
|
|
|
|
* For example if 2 tasks are alternately allocating
|
|
|
|
* batches of pages, one task can end up with a lot
|
|
|
|
* of pages of one half of the possible page colors
|
|
|
|
* and the other with pages of the other colors.
|
2016-01-16 00:56:22 +00:00
|
|
|
*/
|
2023-03-21 17:05:02 +00:00
|
|
|
batch = rounddown_pow_of_two(batch + batch/2) - 1;
|
2018-10-26 22:07:52 +00:00
|
|
|
|
2023-03-21 17:05:02 +00:00
|
|
|
return batch;
|
nommu: clamp zone_batchsize() to 0 under NOMMU conditions
Clamp zone_batchsize() to 0 under NOMMU conditions to stop
free_hot_cold_page() from queueing and batching frees.
The problem is that under NOMMU conditions it is really important to be
able to allocate large contiguous chunks of memory, but when munmap() or
exit_mmap() releases big stretches of memory, return of these to the buddy
allocator can be deferred, and when it does finally happen, it can be in
small chunks.
Whilst the fragmentation this incurs isn't so much of a problem under MMU
conditions as userspace VM is glued together from individual pages with
the aid of the MMU, it is a real problem if there isn't an MMU.
By clamping the page freeing queue size to 0, pages are returned to the
allocator immediately, and the buddy detector is more likely to be able to
glue them together into large chunks immediately, and fragmentation is
less likely to occur.
By disabling batching of frees, and by turning off the trimming of excess
space during boot, Coldfire can manage to boot.
Reported-by: Lanttor Guo <lanttor.guo@freescale.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Lanttor Guo <lanttor.guo@freescale.com>
Cc: Greg Ungerer <gerg@snapgear.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-05-06 23:03:03 +00:00
|
|
|
|
|
|
|
#else
|
|
|
|
/* The deferral and batching of frees should be suppressed under NOMMU
|
|
|
|
* conditions.
|
|
|
|
*
|
|
|
|
* The problem is that NOMMU needs to be able to allocate large chunks
|
|
|
|
* of contiguous memory as there's no hardware page translation to
|
|
|
|
* assemble apparent contiguous memory from discontiguous pages.
|
|
|
|
*
|
|
|
|
* Queueing large contiguous runs of pages for batching, however,
|
|
|
|
* causes the pages to actually be freed in smaller chunks. As there
|
|
|
|
* can be a significant delay between the individual batches being
|
|
|
|
* recycled, this leads to the once large chunks of space being
|
|
|
|
* fragmented and becoming unavailable for high-order allocations.
|
|
|
|
*/
|
|
|
|
return 0;
|
|
|
|
#endif
|
2005-06-22 00:14:47 +00:00
|
|
|
}
|
|
|
|
|
2021-06-29 02:42:15 +00:00
|
|
|
static int zone_highsize(struct zone *zone, int batch, int cpu_online)
|
2021-06-29 02:42:12 +00:00
|
|
|
{
|
2023-03-21 17:05:02 +00:00
|
|
|
#ifdef CONFIG_MMU
|
|
|
|
int high;
|
|
|
|
int nr_split_cpus;
|
|
|
|
unsigned long total_pages;
|
2011-07-12 08:46:30 +00:00
|
|
|
|
2023-03-21 17:05:02 +00:00
|
|
|
if (!percpu_pagelist_high_fraction) {
|
2007-07-17 11:03:12 +00:00
|
|
|
/*
|
2023-03-21 17:05:02 +00:00
|
|
|
* By default, the high value of the pcp is based on the zone
|
|
|
|
* low watermark so that if they are full then background
|
|
|
|
* reclaim will not be started prematurely.
|
2007-07-17 11:03:12 +00:00
|
|
|
*/
|
2023-03-21 17:05:02 +00:00
|
|
|
total_pages = low_wmark_pages(zone);
|
|
|
|
} else {
|
2007-07-17 11:03:12 +00:00
|
|
|
/*
|
2023-03-21 17:05:02 +00:00
|
|
|
* If percpu_pagelist_high_fraction is configured, the high
|
|
|
|
* value is based on a fraction of the managed pages in the
|
|
|
|
* zone.
|
2007-07-17 11:03:12 +00:00
|
|
|
*/
|
2023-03-21 17:05:02 +00:00
|
|
|
total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
|
2007-07-17 11:03:12 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2023-03-21 17:05:02 +00:00
|
|
|
* Split the high value across all online CPUs local to the zone. Note
|
|
|
|
* that early in boot that CPUs may not be online yet and that during
|
|
|
|
* CPU hotplug that the cpumask is not yet updated when a CPU is being
|
|
|
|
* onlined. For memory nodes that have no CPUs, split pcp->high across
|
|
|
|
* all online CPUs to mitigate the risk that reclaim is triggered
|
|
|
|
* prematurely due to pages stored on pcp lists.
|
2007-07-17 11:03:12 +00:00
|
|
|
*/
|
2023-03-21 17:05:02 +00:00
|
|
|
nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
|
|
|
|
if (!nr_split_cpus)
|
|
|
|
nr_split_cpus = num_online_cpus();
|
|
|
|
high = total_pages / nr_split_cpus;
|
2007-07-17 11:03:12 +00:00
|
|
|
|
2023-03-21 17:05:02 +00:00
|
|
|
/*
|
|
|
|
* Ensure high is at least batch*4. The multiple is based on the
|
|
|
|
* historical relationship between high and batch.
|
|
|
|
*/
|
|
|
|
high = max(high, batch << 2);
|
2007-10-16 08:25:39 +00:00
|
|
|
|
2023-03-21 17:05:02 +00:00
|
|
|
return high;
|
|
|
|
#else
|
|
|
|
return 0;
|
|
|
|
#endif
|
2007-10-16 08:25:39 +00:00
|
|
|
}
|
|
|
|
|
2020-06-03 22:58:03 +00:00
|
|
|
/*
|
2023-03-21 17:05:02 +00:00
|
|
|
* pcp->high and pcp->batch values are related and generally batch is lower
|
|
|
|
* than high. They are also related to pcp->count such that count is lower
|
|
|
|
* than high, and as soon as it reaches high, the pcplist is flushed.
|
|
|
|
*
|
|
|
|
* However, guaranteeing these relations at all times would require e.g. write
|
|
|
|
* barriers here but also careful usage of read barriers at the read side, and
|
|
|
|
* thus be prone to error and bad for performance. Thus the update only prevents
|
|
|
|
* store tearing. Any new users of pcp->batch and pcp->high should ensure they
|
|
|
|
* can cope with those fields changing asynchronously, and fully trust only the
|
|
|
|
* pcp->count field on the local CPU with interrupts disabled.
|
|
|
|
*
|
|
|
|
* mutex_is_locked(&pcp_batch_high_lock) required when calling this function
|
|
|
|
* outside of boot time (or some other assurance that no concurrent updaters
|
|
|
|
* exist).
|
2020-06-03 22:58:03 +00:00
|
|
|
*/
|
2023-03-21 17:05:02 +00:00
|
|
|
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
|
|
|
|
unsigned long batch)
|
2020-06-03 22:58:03 +00:00
|
|
|
{
|
2023-03-21 17:05:02 +00:00
|
|
|
WRITE_ONCE(pcp->batch, batch);
|
|
|
|
WRITE_ONCE(pcp->high, high);
|
2020-06-03 22:58:03 +00:00
|
|
|
}
|
|
|
|
|
2023-03-21 17:05:02 +00:00
|
|
|
static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
|
[PATCH] Introduce mechanism for registering active regions of memory
At a basic level, architectures define structures to record where active
ranges of page frames are located. Once located, the code to calculate zone
sizes and holes in each architecture is very similar. Some of this zone and
hole sizing code is difficult to read for no good reason. This set of patches
eliminates the similar-looking architecture-specific code.
The patches introduce a mechanism where architectures register where the
active ranges of page frames are with add_active_range(). When all areas have
been discovered, free_area_init_nodes() is called to initialise the pgdat and
zones. The zone sizes and holes are then calculated in an architecture
independent manner.
Patch 1 introduces the mechanism for registering and initialising PFN ranges
Patch 2 changes ppc to use the mechanism - 139 arch-specific LOC removed
Patch 3 changes x86 to use the mechanism - 136 arch-specific LOC removed
Patch 4 changes x86_64 to use the mechanism - 74 arch-specific LOC removed
Patch 5 changes ia64 to use the mechanism - 52 arch-specific LOC removed
Patch 6 accounts for mem_map as a memory hole as the pages are not reclaimable.
It adjusts the watermarks slightly
Tony Luck has successfully tested for ia64 on Itanium with tiger_defconfig,
gensparse_defconfig and defconfig. Bob Picco has also tested and debugged on
IA64. Jack Steiner successfully boot tested on a mammoth SGI IA64-based
machine. These were on patches against 2.6.17-rc1 and release 3 of these
patches but there have been no ia64-changes since release 3.
There are differences in the zone sizes for x86_64 as the arch-specific code
for x86_64 accounts the kernel image and the starting mem_maps as memory holes
but the architecture-independent code accounts the memory as present.
The big benefit of this set of patches is a sizable reduction of
architecture-specific code, some of which is very hairy. There should be a
greater reduction when other architectures use the same mechanisms for zone
and hole sizing but I lack the hardware to test on.
Additional credit;
Dave Hansen for the initial suggestion and comments on early patches
Andy Whitcroft for reviewing early versions and catching numerous
errors
Tony Luck for testing and debugging on IA64
Bob Picco for fixing bugs related to pfn registration, reviewing a
number of patch revisions, providing a number of suggestions
on future direction and testing heavily
Jack Steiner and Robin Holt for testing on IA64 and clarifying
issues related to memory holes
Yasunori for testing on IA64
Andi Kleen for reviewing and feeding back about x86_64
Christian Kujau for providing valuable information related to ACPI
problems on x86_64 and testing potential fixes
This patch:
Define the structure to represent an active range of page frames within a node
in an architecture independent manner. Architectures are expected to register
active ranges of PFNs using add_active_range(nid, start_pfn, end_pfn) and call
free_area_init_nodes() passing the PFNs of the end of each zone.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Bob Picco <bob.picco@hp.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Andi Kleen <ak@muc.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: "Keith Mannthey" <kmannth@gmail.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-27 08:49:43 +00:00
|
|
|
{
|
2023-03-21 17:05:02 +00:00
|
|
|
int pindex;
|
2016-07-26 22:22:17 +00:00
|
|
|
|
2023-03-21 17:05:02 +00:00
|
|
|
memset(pcp, 0, sizeof(*pcp));
|
|
|
|
memset(pzstats, 0, sizeof(*pzstats));
|
2016-07-26 22:22:17 +00:00
|
|
|
|
2023-03-21 17:05:02 +00:00
|
|
|
spin_lock_init(&pcp->lock);
|
|
|
|
for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
|
|
|
|
INIT_LIST_HEAD(&pcp->lists[pindex]);
|
2007-07-17 11:03:12 +00:00
|
|
|
|
2023-03-21 17:05:02 +00:00
|
|
|
/*
|
|
|
|
* Set batch and high values safe for a boot pageset. A true percpu
|
|
|
|
* pageset's initialization will update them subsequently. Here we don't
|
|
|
|
* need to be as careful as pageset_update() as nobody can access the
|
|
|
|
* pageset yet.
|
|
|
|
*/
|
|
|
|
pcp->high = BOOT_PAGESET_HIGH;
|
|
|
|
pcp->batch = BOOT_PAGESET_BATCH;
|
|
|
|
pcp->free_factor = 0;
|
|
|
|
}
|
[PATCH] Introduce mechanism for registering active regions of memory
At a basic level, architectures define structures to record where active
ranges of page frames are located. Once located, the code to calculate zone
sizes and holes in each architecture is very similar. Some of this zone and
hole sizing code is difficult to read for no good reason. This set of patches
eliminates the similar-looking architecture-specific code.
The patches introduce a mechanism where architectures register where the
active ranges of page frames are with add_active_range(). When all areas have
been discovered, free_area_init_nodes() is called to initialise the pgdat and
zones. The zone sizes and holes are then calculated in an architecture
independent manner.
Patch 1 introduces the mechanism for registering and initialising PFN ranges
Patch 2 changes ppc to use the mechanism - 139 arch-specific LOC removed
Patch 3 changes x86 to use the mechanism - 136 arch-specific LOC removed
Patch 4 changes x86_64 to use the mechanism - 74 arch-specific LOC removed
Patch 5 changes ia64 to use the mechanism - 52 arch-specific LOC removed
Patch 6 accounts for mem_map as a memory hole as the pages are not reclaimable.
It adjusts the watermarks slightly
Tony Luck has successfully tested for ia64 on Itanium with tiger_defconfig,
gensparse_defconfig and defconfig. Bob Picco has also tested and debugged on
IA64. Jack Steiner successfully boot tested on a mammoth SGI IA64-based
machine. These were on patches against 2.6.17-rc1 and release 3 of these
patches but there have been no ia64-changes since release 3.
There are differences in the zone sizes for x86_64 as the arch-specific code
for x86_64 accounts the kernel image and the starting mem_maps as memory holes
but the architecture-independent code accounts the memory as present.
The big benefit of this set of patches is a sizable reduction of
architecture-specific code, some of which is very hairy. There should be a
greater reduction when other architectures use the same mechanisms for zone
and hole sizing but I lack the hardware to test on.
Additional credit;
Dave Hansen for the initial suggestion and comments on early patches
Andy Whitcroft for reviewing early versions and catching numerous
errors
Tony Luck for testing and debugging on IA64
Bob Picco for fixing bugs related to pfn registration, reviewing a
number of patch revisions, providing a number of suggestions
on future direction and testing heavily
Jack Steiner and Robin Holt for testing on IA64 and clarifying
issues related to memory holes
Yasunori for testing on IA64
Andi Kleen for reviewing and feeding back about x86_64
Christian Kujau for providing valuable information related to ACPI
problems on x86_64 and testing potential fixes
This patch:
Define the structure to represent an active range of page frames within a node
in an architecture independent manner. Architectures are expected to register
active ranges of PFNs using add_active_range(nid, start_pfn, end_pfn) and call
free_area_init_nodes() passing the PFNs of the end of each zone.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Bob Picco <bob.picco@hp.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Andi Kleen <ak@muc.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: "Keith Mannthey" <kmannth@gmail.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-27 08:49:43 +00:00
|
|
|
|
2023-03-21 17:05:02 +00:00
|
|
|
static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
|
|
|
|
unsigned long batch)
|
|
|
|
{
|
|
|
|
struct per_cpu_pages *pcp;
|
|
|
|
int cpu;
|
2007-07-17 11:03:12 +00:00
|
|
|
|
2023-03-21 17:05:02 +00:00
|
|
|
for_each_possible_cpu(cpu) {
|
|
|
|
pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
|
|
|
|
pageset_update(pcp, high, batch);
|
2007-07-17 11:03:12 +00:00
|
|
|
}
|
2023-03-21 17:05:02 +00:00
|
|
|
}
|
[PATCH] Introduce mechanism for registering active regions of memory
At a basic level, architectures define structures to record where active
ranges of page frames are located. Once located, the code to calculate zone
sizes and holes in each architecture is very similar. Some of this zone and
hole sizing code is difficult to read for no good reason. This set of patches
eliminates the similar-looking architecture-specific code.
The patches introduce a mechanism where architectures register where the
active ranges of page frames are with add_active_range(). When all areas have
been discovered, free_area_init_nodes() is called to initialise the pgdat and
zones. The zone sizes and holes are then calculated in an architecture
independent manner.
Patch 1 introduces the mechanism for registering and initialising PFN ranges
Patch 2 changes ppc to use the mechanism - 139 arch-specific LOC removed
Patch 3 changes x86 to use the mechanism - 136 arch-specific LOC removed
Patch 4 changes x86_64 to use the mechanism - 74 arch-specific LOC removed
Patch 5 changes ia64 to use the mechanism - 52 arch-specific LOC removed
Patch 6 accounts for mem_map as a memory hole as the pages are not reclaimable.
It adjusts the watermarks slightly
Tony Luck has successfully tested for ia64 on Itanium with tiger_defconfig,
gensparse_defconfig and defconfig. Bob Picco has also tested and debugged on
IA64. Jack Steiner successfully boot tested on a mammoth SGI IA64-based
machine. These were on patches against 2.6.17-rc1 and release 3 of these
patches but there have been no ia64-changes since release 3.
There are differences in the zone sizes for x86_64 as the arch-specific code
for x86_64 accounts the kernel image and the starting mem_maps as memory holes
but the architecture-independent code accounts the memory as present.
The big benefit of this set of patches is a sizable reduction of
architecture-specific code, some of which is very hairy. There should be a
greater reduction when other architectures use the same mechanisms for zone
and hole sizing but I lack the hardware to test on.
Additional credit;
Dave Hansen for the initial suggestion and comments on early patches
Andy Whitcroft for reviewing early versions and catching numerous
errors
Tony Luck for testing and debugging on IA64
Bob Picco for fixing bugs related to pfn registration, reviewing a
number of patch revisions, providing a number of suggestions
on future direction and testing heavily
Jack Steiner and Robin Holt for testing on IA64 and clarifying
issues related to memory holes
Yasunori for testing on IA64
Andi Kleen for reviewing and feeding back about x86_64
Christian Kujau for providing valuable information related to ACPI
problems on x86_64 and testing potential fixes
This patch:
Define the structure to represent an active range of page frames within a node
in an architecture independent manner. Architectures are expected to register
active ranges of PFNs using add_active_range(nid, start_pfn, end_pfn) and call
free_area_init_nodes() passing the PFNs of the end of each zone.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Bob Picco <bob.picco@hp.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Andi Kleen <ak@muc.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: "Keith Mannthey" <kmannth@gmail.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-27 08:49:43 +00:00
|
|
|
|
2023-03-21 17:05:02 +00:00
|
|
|
/*
|
|
|
|
* Calculate and set new high and batch values for all per-cpu pagesets of a
|
|
|
|
* zone based on the zone's size.
|
|
|
|
*/
|
|
|
|
static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
|
|
|
|
{
|
|
|
|
int new_high, new_batch;
|
2022-03-22 21:46:54 +00:00
|
|
|
|
2023-03-21 17:05:02 +00:00
|
|
|
new_batch = max(1, zone_batchsize(zone));
|
|
|
|
new_high = zone_highsize(zone, new_batch, cpu_online);
|
2022-03-22 21:46:54 +00:00
|
|
|
|
2023-03-21 17:05:02 +00:00
|
|
|
if (zone->pageset_high == new_high &&
|
|
|
|
zone->pageset_batch == new_batch)
|
|
|
|
return;
|
2007-10-16 08:25:39 +00:00
|
|
|
|
2023-03-21 17:05:02 +00:00
|
|
|
zone->pageset_high = new_high;
|
|
|
|
zone->pageset_batch = new_batch;
|
2021-06-29 02:33:26 +00:00
|
|
|
|
2023-03-21 17:05:02 +00:00
|
|
|
__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
|
[PATCH] Introduce mechanism for registering active regions of memory
At a basic level, architectures define structures to record where active
ranges of page frames are located. Once located, the code to calculate zone
sizes and holes in each architecture is very similar. Some of this zone and
hole sizing code is difficult to read for no good reason. This set of patches
eliminates the similar-looking architecture-specific code.
The patches introduce a mechanism where architectures register where the
active ranges of page frames are with add_active_range(). When all areas have
been discovered, free_area_init_nodes() is called to initialise the pgdat and
zones. The zone sizes and holes are then calculated in an architecture
independent manner.
Patch 1 introduces the mechanism for registering and initialising PFN ranges
Patch 2 changes ppc to use the mechanism - 139 arch-specific LOC removed
Patch 3 changes x86 to use the mechanism - 136 arch-specific LOC removed
Patch 4 changes x86_64 to use the mechanism - 74 arch-specific LOC removed
Patch 5 changes ia64 to use the mechanism - 52 arch-specific LOC removed
Patch 6 accounts for mem_map as a memory hole as the pages are not reclaimable.
It adjusts the watermarks slightly
Tony Luck has successfully tested for ia64 on Itanium with tiger_defconfig,
gensparse_defconfig and defconfig. Bob Picco has also tested and debugged on
IA64. Jack Steiner successfully boot tested on a mammoth SGI IA64-based
machine. These were on patches against 2.6.17-rc1 and release 3 of these
patches but there have been no ia64-changes since release 3.
There are differences in the zone sizes for x86_64 as the arch-specific code
for x86_64 accounts the kernel image and the starting mem_maps as memory holes
but the architecture-independent code accounts the memory as present.
The big benefit of this set of patches is a sizable reduction of
architecture-specific code, some of which is very hairy. There should be a
greater reduction when other architectures use the same mechanisms for zone
and hole sizing but I lack the hardware to test on.
Additional credit;
Dave Hansen for the initial suggestion and comments on early patches
Andy Whitcroft for reviewing early versions and catching numerous
errors
Tony Luck for testing and debugging on IA64
Bob Picco for fixing bugs related to pfn registration, reviewing a
number of patch revisions, providing a number of suggestions
on future direction and testing heavily
Jack Steiner and Robin Holt for testing on IA64 and clarifying
issues related to memory holes
Yasunori for testing on IA64
Andi Kleen for reviewing and feeding back about x86_64
Christian Kujau for providing valuable information related to ACPI
problems on x86_64 and testing potential fixes
This patch:
Define the structure to represent an active range of page frames within a node
in an architecture independent manner. Architectures are expected to register
active ranges of PFNs using add_active_range(nid, start_pfn, end_pfn) and call
free_area_init_nodes() passing the PFNs of the end of each zone.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Bob Picco <bob.picco@hp.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Andi Kleen <ak@muc.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: "Keith Mannthey" <kmannth@gmail.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-27 08:49:43 +00:00
|
|
|
}
|
2007-07-17 11:03:12 +00:00
|
|
|
|
2023-03-21 17:05:02 +00:00
|
|
|
void __meminit setup_zone_pageset(struct zone *zone)
|
2007-07-17 11:03:12 +00:00
|
|
|
{
|
2023-03-21 17:05:02 +00:00
|
|
|
int cpu;
|
2007-07-17 11:03:12 +00:00
|
|
|
|
2023-03-21 17:05:02 +00:00
|
|
|
/* Size may be 0 on !SMP && !NUMA */
|
|
|
|
if (sizeof(struct per_cpu_zonestat) > 0)
|
|
|
|
zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
|
2007-07-17 11:03:12 +00:00
|
|
|
|
2023-03-21 17:05:02 +00:00
|
|
|
zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
|
|
struct per_cpu_pages *pcp;
|
|
|
|
struct per_cpu_zonestat *pzstats;
|
2007-07-17 11:03:12 +00:00
|
|
|
|
2023-03-21 17:05:02 +00:00
|
|
|
pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
|
|
|
|
pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
|
|
|
|
per_cpu_pages_init(pcp, pzstats);
|
mm, page_alloc: extend kernelcore and movablecore for percent
Both kernelcore= and movablecore= can be used to define the amount of
ZONE_NORMAL and ZONE_MOVABLE on a system, respectively. This requires
the system memory capacity to be known when specifying the command line,
however.
This introduces the ability to define both kernelcore= and movablecore=
as a percentage of total system memory. This is convenient for systems
software that wants to define the amount of ZONE_MOVABLE, for example,
as a proportion of a system's memory rather than a hardcoded byte value.
To define the percentage, the final character of the parameter should be
a '%'.
mhocko: "why is anyone using these options nowadays?"
rientjes:
:
: Fragmentation of non-__GFP_MOVABLE pages due to low on memory
: situations can pollute most pageblocks on the system, as much as 1GB of
: slab being fragmented over 128GB of memory, for example. When the
: amount of kernel memory is well bounded for certain systems, it is
: better to aggressively reclaim from existing MIGRATE_UNMOVABLE
: pageblocks rather than eagerly fallback to others.
:
: We have additional patches that help with this fragmentation if you're
: interested, specifically kcompactd compaction of MIGRATE_UNMOVABLE
: pageblocks triggered by fallback of non-__GFP_MOVABLE allocations and
: draining of pcp lists back to the zone free area to prevent stranding.
[rientjes@google.com: updates]
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1802131700160.71590@chino.kir.corp.google.com
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1802121622470.179479@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 23:23:09 +00:00
|
|
|
}
|
2023-03-21 17:05:02 +00:00
|
|
|
|
|
|
|
zone_set_pageset_high_and_batch(zone, 0);
|
2007-07-17 11:03:12 +00:00
|
|
|
}
|
2007-07-17 11:03:14 +00:00
|
|
|
|
2007-07-17 11:03:15 +00:00
|
|
|
/*
|
2023-03-21 17:05:02 +00:00
|
|
|
* The zone indicated has a new number of managed_pages; batch sizes and percpu
|
|
|
|
* page high values need to be recalculated.
|
2007-07-17 11:03:15 +00:00
|
|
|
*/
|
2023-03-21 17:05:02 +00:00
|
|
|
static void zone_pcp_update(struct zone *zone, int cpu_online)
|
2007-07-17 11:03:15 +00:00
|
|
|
{
|
2023-03-21 17:05:02 +00:00
|
|
|
mutex_lock(&pcp_batch_high_lock);
|
|
|
|
zone_set_pageset_high_and_batch(zone, cpu_online);
|
|
|
|
mutex_unlock(&pcp_batch_high_lock);
|
2007-07-17 11:03:15 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2023-03-21 17:05:02 +00:00
|
|
|
* Allocate per cpu pagesets and initialize them.
|
|
|
|
* Before this call only boot pagesets were available.
|
2007-07-17 11:03:15 +00:00
|
|
|
*/
|
2023-03-21 17:05:02 +00:00
|
|
|
void __init setup_per_cpu_pageset(void)
|
2007-07-17 11:03:15 +00:00
|
|
|
{
|
2023-03-21 17:05:02 +00:00
|
|
|
struct pglist_data *pgdat;
|
|
|
|
struct zone *zone;
|
|
|
|
int __maybe_unused cpu;
|
|
|
|
|
|
|
|
for_each_populated_zone(zone)
|
|
|
|
setup_zone_pageset(zone);
|
|
|
|
|
|
|
|
#ifdef CONFIG_NUMA
|
|
|
|
/*
|
|
|
|
* Unpopulated zones continue using the boot pagesets.
|
|
|
|
* The numa stats for these pagesets need to be reset.
|
|
|
|
* Otherwise, they will end up skewing the stats of
|
|
|
|
* the nodes these zones are associated with.
|
|
|
|
*/
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
|
|
struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
|
|
|
|
memset(pzstats->vm_numa_event, 0,
|
|
|
|
sizeof(pzstats->vm_numa_event));
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
for_each_online_pgdat(pgdat)
|
|
|
|
pgdat->per_cpu_nodestats =
|
|
|
|
alloc_percpu(struct per_cpu_nodestat);
|
2007-07-17 11:03:15 +00:00
|
|
|
}
|
|
|
|
|
2023-03-21 17:05:02 +00:00
|
|
|
__meminit void zone_pcp_init(struct zone *zone)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* per cpu subsystem is not up at this point. The following code
|
|
|
|
* relies on the ability of the linker to provide the
|
|
|
|
* offset of a (static) per cpu variable into the per cpu area.
|
|
|
|
*/
|
|
|
|
zone->per_cpu_pageset = &boot_pageset;
|
|
|
|
zone->per_cpu_zonestats = &boot_zonestats;
|
|
|
|
zone->pageset_high = BOOT_PAGESET_HIGH;
|
|
|
|
zone->pageset_batch = BOOT_PAGESET_BATCH;
|
|
|
|
|
|
|
|
if (populated_zone(zone))
|
|
|
|
pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
|
|
|
|
zone->present_pages, zone_batchsize(zone));
|
|
|
|
}
|
2007-07-17 11:03:14 +00:00
|
|
|
|
2013-07-03 22:03:14 +00:00
|
|
|
void adjust_managed_page_count(struct page *page, long count)
|
|
|
|
{
|
2018-12-28 08:34:24 +00:00
|
|
|
atomic_long_add(count, &page_zone(page)->managed_pages);
|
2018-12-28 08:34:29 +00:00
|
|
|
totalram_pages_add(count);
|
2013-07-03 22:03:21 +00:00
|
|
|
#ifdef CONFIG_HIGHMEM
|
|
|
|
if (PageHighMem(page))
|
2018-12-28 08:34:29 +00:00
|
|
|
totalhigh_pages_add(count);
|
2013-07-03 22:03:21 +00:00
|
|
|
#endif
|
2013-07-03 22:03:14 +00:00
|
|
|
}
|
2013-07-03 22:03:21 +00:00
|
|
|
EXPORT_SYMBOL(adjust_managed_page_count);
|
2013-07-03 22:03:14 +00:00
|
|
|
|
2018-12-28 08:36:03 +00:00
|
|
|
unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
|
2013-04-29 22:06:21 +00:00
|
|
|
{
|
mm: change signature of free_reserved_area() to fix building warnings
Change signature of free_reserved_area() according to Russell King's
suggestion to fix following build warnings:
arch/arm/mm/init.c: In function 'mem_init':
arch/arm/mm/init.c:603:2: warning: passing argument 1 of 'free_reserved_area' makes integer from pointer without a cast [enabled by default]
free_reserved_area(__va(PHYS_PFN_OFFSET), swapper_pg_dir, 0, NULL);
^
In file included from include/linux/mman.h:4:0,
from arch/arm/mm/init.c:15:
include/linux/mm.h:1301:22: note: expected 'long unsigned int' but argument is of type 'void *'
extern unsigned long free_reserved_area(unsigned long start, unsigned long end,
mm/page_alloc.c: In function 'free_reserved_area':
>> mm/page_alloc.c:5134:3: warning: passing argument 1 of 'virt_to_phys' makes pointer from integer without a cast [enabled by default]
In file included from arch/mips/include/asm/page.h:49:0,
from include/linux/mmzone.h:20,
from include/linux/gfp.h:4,
from include/linux/mm.h:8,
from mm/page_alloc.c:18:
arch/mips/include/asm/io.h:119:29: note: expected 'const volatile void *' but argument is of type 'long unsigned int'
mm/page_alloc.c: In function 'free_area_init_nodes':
mm/page_alloc.c:5030:34: warning: array subscript is below array bounds [-Warray-bounds]
Also address some minor code review comments.
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Reported-by: Arnd Bergmann <arnd@arndb.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: <sworddragon2@aol.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Jianguo Wu <wujianguo@huawei.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michel Lespinasse <walken@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03 22:02:48 +00:00
|
|
|
void *pos;
|
|
|
|
unsigned long pages = 0;
|
2013-04-29 22:06:21 +00:00
|
|
|
|
mm: change signature of free_reserved_area() to fix building warnings
Change signature of free_reserved_area() according to Russell King's
suggestion to fix following build warnings:
arch/arm/mm/init.c: In function 'mem_init':
arch/arm/mm/init.c:603:2: warning: passing argument 1 of 'free_reserved_area' makes integer from pointer without a cast [enabled by default]
free_reserved_area(__va(PHYS_PFN_OFFSET), swapper_pg_dir, 0, NULL);
^
In file included from include/linux/mman.h:4:0,
from arch/arm/mm/init.c:15:
include/linux/mm.h:1301:22: note: expected 'long unsigned int' but argument is of type 'void *'
extern unsigned long free_reserved_area(unsigned long start, unsigned long end,
mm/page_alloc.c: In function 'free_reserved_area':
>> mm/page_alloc.c:5134:3: warning: passing argument 1 of 'virt_to_phys' makes pointer from integer without a cast [enabled by default]
In file included from arch/mips/include/asm/page.h:49:0,
from include/linux/mmzone.h:20,
from include/linux/gfp.h:4,
from include/linux/mm.h:8,
from mm/page_alloc.c:18:
arch/mips/include/asm/io.h:119:29: note: expected 'const volatile void *' but argument is of type 'long unsigned int'
mm/page_alloc.c: In function 'free_area_init_nodes':
mm/page_alloc.c:5030:34: warning: array subscript is below array bounds [-Warray-bounds]
Also address some minor code review comments.
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Reported-by: Arnd Bergmann <arnd@arndb.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: <sworddragon2@aol.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Jianguo Wu <wujianguo@huawei.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michel Lespinasse <walken@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03 22:02:48 +00:00
|
|
|
start = (void *)PAGE_ALIGN((unsigned long)start);
|
|
|
|
end = (void *)((unsigned long)end & PAGE_MASK);
|
|
|
|
for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
|
2018-08-02 22:58:26 +00:00
|
|
|
struct page *page = virt_to_page(pos);
|
|
|
|
void *direct_map_addr;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* 'direct_map_addr' might be different from 'pos'
|
|
|
|
* because some architectures' virt_to_page()
|
|
|
|
* work with aliases. Getting the direct map
|
|
|
|
* address ensures that we get a _writeable_
|
|
|
|
* alias for the memset().
|
|
|
|
*/
|
|
|
|
direct_map_addr = page_address(page);
|
2020-12-22 20:01:49 +00:00
|
|
|
/*
|
|
|
|
* Perform a kasan-unchecked memset() since this memory
|
|
|
|
* has not been initialized.
|
|
|
|
*/
|
|
|
|
direct_map_addr = kasan_reset_tag(direct_map_addr);
|
2013-07-03 22:02:51 +00:00
|
|
|
if ((unsigned int)poison <= 0xFF)
|
2018-08-02 22:58:26 +00:00
|
|
|
memset(direct_map_addr, poison, PAGE_SIZE);
|
|
|
|
|
|
|
|
free_reserved_page(page);
|
2013-04-29 22:06:21 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if (pages && s)
|
2021-11-05 20:40:05 +00:00
|
|
|
pr_info("Freeing %s memory: %ldK\n", s, K(pages));
|
2013-04-29 22:06:21 +00:00
|
|
|
|
|
|
|
return pages;
|
|
|
|
}
|
|
|
|
|
2016-11-03 14:50:02 +00:00
|
|
|
static int page_alloc_cpu_dead(unsigned int cpu)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2021-06-29 02:42:15 +00:00
|
|
|
struct zone *zone;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2016-11-03 14:50:02 +00:00
|
|
|
lru_add_drain_cpu(cpu);
|
2023-01-12 12:39:31 +00:00
|
|
|
mlock_drain_remote(cpu);
|
2016-11-03 14:50:02 +00:00
|
|
|
drain_pages(cpu);
|
2008-02-05 06:29:11 +00:00
|
|
|
|
2016-11-03 14:50:02 +00:00
|
|
|
/*
|
|
|
|
* Spill the event counters of the dead processor
|
|
|
|
* into the current processors event counters.
|
|
|
|
* This artificially elevates the count of the current
|
|
|
|
* processor.
|
|
|
|
*/
|
|
|
|
vm_events_fold_cpu(cpu);
|
2008-02-05 06:29:11 +00:00
|
|
|
|
2016-11-03 14:50:02 +00:00
|
|
|
/*
|
|
|
|
* Zero the differential counters of the dead processor
|
|
|
|
* so that the vm statistics are consistent.
|
|
|
|
*
|
|
|
|
* This is only okay since the processor is dead and cannot
|
|
|
|
* race with what we are doing.
|
|
|
|
*/
|
|
|
|
cpu_vm_stats_fold(cpu);
|
2021-06-29 02:42:15 +00:00
|
|
|
|
|
|
|
for_each_populated_zone(zone)
|
|
|
|
zone_pcp_update(zone, 0);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int page_alloc_cpu_online(unsigned int cpu)
|
|
|
|
{
|
|
|
|
struct zone *zone;
|
|
|
|
|
|
|
|
for_each_populated_zone(zone)
|
|
|
|
zone_pcp_update(zone, 1);
|
2016-11-03 14:50:02 +00:00
|
|
|
return 0;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2023-03-21 17:05:04 +00:00
|
|
|
void __init page_alloc_init_cpuhp(void)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2016-11-03 14:50:02 +00:00
|
|
|
int ret;
|
|
|
|
|
2021-06-29 02:42:15 +00:00
|
|
|
ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
|
|
|
|
"mm/page_alloc:pcp",
|
|
|
|
page_alloc_cpu_online,
|
2016-11-03 14:50:02 +00:00
|
|
|
page_alloc_cpu_dead);
|
|
|
|
WARN_ON(ret < 0);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2006-04-11 05:52:59 +00:00
|
|
|
/*
|
2015-09-08 22:04:13 +00:00
|
|
|
* calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
|
2006-04-11 05:52:59 +00:00
|
|
|
* or min_free_kbytes changes.
|
|
|
|
*/
|
|
|
|
static void calculate_totalreserve_pages(void)
|
|
|
|
{
|
|
|
|
struct pglist_data *pgdat;
|
|
|
|
unsigned long reserve_pages = 0;
|
2006-09-26 06:31:18 +00:00
|
|
|
enum zone_type i, j;
|
2006-04-11 05:52:59 +00:00
|
|
|
|
|
|
|
for_each_online_pgdat(pgdat) {
|
2016-07-28 22:46:11 +00:00
|
|
|
|
|
|
|
pgdat->totalreserve_pages = 0;
|
|
|
|
|
2006-04-11 05:52:59 +00:00
|
|
|
for (i = 0; i < MAX_NR_ZONES; i++) {
|
|
|
|
struct zone *zone = pgdat->node_zones + i;
|
2014-08-06 23:07:14 +00:00
|
|
|
long max = 0;
|
2018-12-28 08:34:24 +00:00
|
|
|
unsigned long managed_pages = zone_managed_pages(zone);
|
2006-04-11 05:52:59 +00:00
|
|
|
|
|
|
|
/* Find valid and maximum lowmem_reserve in the zone */
|
|
|
|
for (j = i; j < MAX_NR_ZONES; j++) {
|
|
|
|
if (zone->lowmem_reserve[j] > max)
|
|
|
|
max = zone->lowmem_reserve[j];
|
|
|
|
}
|
|
|
|
|
2009-06-16 22:32:12 +00:00
|
|
|
/* we treat the high watermark as reserved pages. */
|
|
|
|
max += high_wmark_pages(zone);
|
2006-04-11 05:52:59 +00:00
|
|
|
|
2018-12-28 08:34:20 +00:00
|
|
|
if (max > managed_pages)
|
|
|
|
max = managed_pages;
|
2016-01-14 23:20:15 +00:00
|
|
|
|
2016-07-28 22:46:11 +00:00
|
|
|
pgdat->totalreserve_pages += max;
|
2016-01-14 23:20:15 +00:00
|
|
|
|
2006-04-11 05:52:59 +00:00
|
|
|
reserve_pages += max;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
totalreserve_pages = reserve_pages;
|
|
|
|
}
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* setup_per_zone_lowmem_reserve - called whenever
|
2015-09-08 22:04:13 +00:00
|
|
|
* sysctl_lowmem_reserve_ratio changes. Ensures that each zone
|
2005-04-16 22:20:36 +00:00
|
|
|
* has a correct pages reserved value, so an adequate number of
|
|
|
|
* pages are left in the zone after a successful __alloc_pages().
|
|
|
|
*/
|
|
|
|
static void setup_per_zone_lowmem_reserve(void)
|
|
|
|
{
|
|
|
|
struct pglist_data *pgdat;
|
2020-12-15 03:11:22 +00:00
|
|
|
enum zone_type i, j;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2006-03-27 09:15:59 +00:00
|
|
|
for_each_online_pgdat(pgdat) {
|
2020-12-15 03:11:22 +00:00
|
|
|
for (i = 0; i < MAX_NR_ZONES - 1; i++) {
|
|
|
|
struct zone *zone = &pgdat->node_zones[i];
|
|
|
|
int ratio = sysctl_lowmem_reserve_ratio[i];
|
|
|
|
bool clear = !ratio || !zone_managed_pages(zone);
|
|
|
|
unsigned long managed_pages = 0;
|
|
|
|
|
|
|
|
for (j = i + 1; j < MAX_NR_ZONES; j++) {
|
2021-06-29 02:42:33 +00:00
|
|
|
struct zone *upper_zone = &pgdat->node_zones[j];
|
|
|
|
|
|
|
|
managed_pages += zone_managed_pages(upper_zone);
|
2020-12-15 03:11:22 +00:00
|
|
|
|
2021-06-29 02:42:33 +00:00
|
|
|
if (clear)
|
|
|
|
zone->lowmem_reserve[j] = 0;
|
|
|
|
else
|
2020-12-15 03:11:22 +00:00
|
|
|
zone->lowmem_reserve[j] = managed_pages / ratio;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2006-04-11 05:52:59 +00:00
|
|
|
|
|
|
|
/* update totalreserve_pages */
|
|
|
|
calculate_totalreserve_pages();
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2011-04-25 21:36:42 +00:00
|
|
|
static void __setup_per_zone_wmarks(void)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
|
|
|
|
unsigned long lowmem_pages = 0;
|
|
|
|
struct zone *zone;
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
/* Calculate total number of !ZONE_HIGHMEM pages */
|
|
|
|
for_each_zone(zone) {
|
|
|
|
if (!is_highmem(zone))
|
2018-12-28 08:34:24 +00:00
|
|
|
lowmem_pages += zone_managed_pages(zone);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
for_each_zone(zone) {
|
2006-05-15 16:43:59 +00:00
|
|
|
u64 tmp;
|
|
|
|
|
2008-10-19 03:27:11 +00:00
|
|
|
spin_lock_irqsave(&zone->lock, flags);
|
2018-12-28 08:34:24 +00:00
|
|
|
tmp = (u64)pages_min * zone_managed_pages(zone);
|
2006-05-15 16:43:59 +00:00
|
|
|
do_div(tmp, lowmem_pages);
|
2005-04-16 22:20:36 +00:00
|
|
|
if (is_highmem(zone)) {
|
|
|
|
/*
|
2005-11-14 00:06:45 +00:00
|
|
|
* __GFP_HIGH and PF_MEMALLOC allocations usually don't
|
|
|
|
* need highmem pages, so cap pages_min to a small
|
|
|
|
* value here.
|
|
|
|
*
|
2009-06-16 22:32:12 +00:00
|
|
|
* The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
|
2019-03-05 23:46:22 +00:00
|
|
|
* deltas control async page reclaim, and so should
|
2005-11-14 00:06:45 +00:00
|
|
|
* not be capped for highmem.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
2013-02-23 00:32:22 +00:00
|
|
|
unsigned long min_pages;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2018-12-28 08:34:24 +00:00
|
|
|
min_pages = zone_managed_pages(zone) / 1024;
|
2013-02-23 00:32:22 +00:00
|
|
|
min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
|
2018-12-28 08:35:44 +00:00
|
|
|
zone->_watermark[WMARK_MIN] = min_pages;
|
2005-04-16 22:20:36 +00:00
|
|
|
} else {
|
2005-11-14 00:06:45 +00:00
|
|
|
/*
|
|
|
|
* If it's a lowmem zone, reserve a number of pages
|
2005-04-16 22:20:36 +00:00
|
|
|
* proportionate to the zone's size.
|
|
|
|
*/
|
2018-12-28 08:35:44 +00:00
|
|
|
zone->_watermark[WMARK_MIN] = tmp;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2016-03-17 21:19:14 +00:00
|
|
|
/*
|
|
|
|
* Set the kswapd watermarks distance according to the
|
|
|
|
* scale factor in proportion to available memory, but
|
|
|
|
* ensure a minimum size on small systems.
|
|
|
|
*/
|
|
|
|
tmp = max_t(u64, tmp >> 2,
|
2018-12-28 08:34:24 +00:00
|
|
|
mult_frac(zone_managed_pages(zone),
|
2016-03-17 21:19:14 +00:00
|
|
|
watermark_scale_factor, 10000));
|
|
|
|
|
mm, page_alloc: reset the zone->watermark_boost early
Updating the zone watermarks by any means, like min_free_kbytes,
water_mark_scale_factor etc, when ->watermark_boost is set will result in
higher low and high watermarks than the user asked.
Below are the steps to reproduce the problem on system setup of Android
kernel running on Snapdragon hardware.
1) Default settings of the system are as below:
#cat /proc/sys/vm/min_free_kbytes = 5162
#cat /proc/zoneinfo | grep -e boost -e low -e "high " -e min -e Node
Node 0, zone Normal
min 797
low 8340
high 8539
2) Monitor the zone->watermark_boost(by adding a debug print in the
kernel) and whenever it is greater than zero value, write the same
value of min_free_kbytes obtained from step 1.
#echo 5162 > /proc/sys/vm/min_free_kbytes
3) Then read the zone watermarks in the system while the
->watermark_boost is zero. This should show the same values of
watermarks as step 1 but shown a higher values than asked.
#cat /proc/zoneinfo | grep -e boost -e low -e "high " -e min -e Node
Node 0, zone Normal
min 797
low 21148
high 21347
These higher values are because of updating the zone watermarks using the
macro min_wmark_pages(zone) which also adds the zone->watermark_boost.
#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] +
z->watermark_boost)
So the steps that lead to the issue are:
1) On the extfrag event, watermarks are boosted by storing the required
value in ->watermark_boost.
2) User tries to update the zone watermarks level in the system through
min_free_kbytes or watermark_scale_factor.
3) Later, when kswapd woke up, it resets the zone->watermark_boost to
zero.
In step 2), we use the min_wmark_pages() macro to store the watermarks
in the zone structure thus the values are always offsetted by
->watermark_boost value. This can be avoided by resetting the
->watermark_boost to zero before it is used.
Signed-off-by: Charan Teja Reddy <charante@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Link: http://lkml.kernel.org/r/1589457511-4255-1-git-send-email-charante@codeaurora.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 22:59:14 +00:00
|
|
|
zone->watermark_boost = 0;
|
2018-12-28 08:35:44 +00:00
|
|
|
zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
|
NUMA balancing: optimize page placement for memory tiering system
With the advent of various new memory types, some machines will have
multiple types of memory, e.g. DRAM and PMEM (persistent memory). The
memory subsystem of these machines can be called memory tiering system,
because the performance of the different types of memory are usually
different.
In such system, because of the memory accessing pattern changing etc,
some pages in the slow memory may become hot globally. So in this
patch, the NUMA balancing mechanism is enhanced to optimize the page
placement among the different memory types according to hot/cold
dynamically.
In a typical memory tiering system, there are CPUs, fast memory and slow
memory in each physical NUMA node. The CPUs and the fast memory will be
put in one logical node (called fast memory node), while the slow memory
will be put in another (faked) logical node (called slow memory node).
That is, the fast memory is regarded as local while the slow memory is
regarded as remote. So it's possible for the recently accessed pages in
the slow memory node to be promoted to the fast memory node via the
existing NUMA balancing mechanism.
The original NUMA balancing mechanism will stop to migrate pages if the
free memory of the target node becomes below the high watermark. This
is a reasonable policy if there's only one memory type. But this makes
the original NUMA balancing mechanism almost do not work to optimize
page placement among different memory types. Details are as follows.
It's the common cases that the working-set size of the workload is
larger than the size of the fast memory nodes. Otherwise, it's
unnecessary to use the slow memory at all. So, there are almost always
no enough free pages in the fast memory nodes, so that the globally hot
pages in the slow memory node cannot be promoted to the fast memory
node. To solve the issue, we have 2 choices as follows,
a. Ignore the free pages watermark checking when promoting hot pages
from the slow memory node to the fast memory node. This will
create some memory pressure in the fast memory node, thus trigger
the memory reclaiming. So that, the cold pages in the fast memory
node will be demoted to the slow memory node.
b. Define a new watermark called wmark_promo which is higher than
wmark_high, and have kswapd reclaiming pages until free pages reach
such watermark. The scenario is as follows: when we want to promote
hot-pages from a slow memory to a fast memory, but fast memory's free
pages would go lower than high watermark with such promotion, we wake
up kswapd with wmark_promo watermark in order to demote cold pages and
free us up some space. So, next time we want to promote hot-pages we
might have a chance of doing so.
The choice "a" may create high memory pressure in the fast memory node.
If the memory pressure of the workload is high, the memory pressure
may become so high that the memory allocation latency of the workload
is influenced, e.g. the direct reclaiming may be triggered.
The choice "b" works much better at this aspect. If the memory
pressure of the workload is high, the hot pages promotion will stop
earlier because its allocation watermark is higher than that of the
normal memory allocation. So in this patch, choice "b" is implemented.
A new zone watermark (WMARK_PROMO) is added. Which is larger than the
high watermark and can be controlled via watermark_scale_factor.
In addition to the original page placement optimization among sockets,
the NUMA balancing mechanism is extended to be used to optimize page
placement according to hot/cold among different memory types. So the
sysctl user space interface (numa_balancing) is extended in a backward
compatible way as follow, so that the users can enable/disable these
functionality individually.
The sysctl is converted from a Boolean value to a bits field. The
definition of the flags is,
- 0: NUMA_BALANCING_DISABLED
- 1: NUMA_BALANCING_NORMAL
- 2: NUMA_BALANCING_MEMORY_TIERING
We have tested the patch with the pmbench memory accessing benchmark
with the 80:20 read/write ratio and the Gauss access address
distribution on a 2 socket Intel server with Optane DC Persistent
Memory Model. The test results shows that the pmbench score can
improve up to 95.9%.
Thanks Andrew Morton to help fix the document format error.
Link: https://lkml.kernel.org/r/20220221084529.1052339-3-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Wei Xu <weixugc@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Feng Tang <feng.tang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 21:46:23 +00:00
|
|
|
zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
|
|
|
|
zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
|
2012-01-25 11:49:24 +00:00
|
|
|
|
2008-10-19 03:27:11 +00:00
|
|
|
spin_unlock_irqrestore(&zone->lock, flags);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
2006-04-11 05:52:59 +00:00
|
|
|
|
|
|
|
/* update totalreserve_pages */
|
|
|
|
calculate_totalreserve_pages();
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2011-04-25 21:36:42 +00:00
|
|
|
/**
|
|
|
|
* setup_per_zone_wmarks - called when min_free_kbytes changes
|
|
|
|
* or when memory is hot-{added|removed}
|
|
|
|
*
|
|
|
|
* Ensures that the watermark[min,low,high] values for each zone are set
|
|
|
|
* correctly with respect to min_free_kbytes.
|
|
|
|
*/
|
|
|
|
void setup_per_zone_wmarks(void)
|
|
|
|
{
|
2021-06-29 02:42:12 +00:00
|
|
|
struct zone *zone;
|
2017-09-06 23:20:37 +00:00
|
|
|
static DEFINE_SPINLOCK(lock);
|
|
|
|
|
|
|
|
spin_lock(&lock);
|
2011-04-25 21:36:42 +00:00
|
|
|
__setup_per_zone_wmarks();
|
2017-09-06 23:20:37 +00:00
|
|
|
spin_unlock(&lock);
|
2021-06-29 02:42:12 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* The watermark size have changed so update the pcpu batch
|
|
|
|
* and high limits or the limits may be inappropriate.
|
|
|
|
*/
|
|
|
|
for_each_zone(zone)
|
2021-06-29 02:42:15 +00:00
|
|
|
zone_pcp_update(zone, 0);
|
2011-04-25 21:36:42 +00:00
|
|
|
}
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* Initialise min_free_kbytes.
|
|
|
|
*
|
|
|
|
* For small machines we want it small (128k min). For large machines
|
2020-07-03 22:15:30 +00:00
|
|
|
* we want it large (256MB max). But it is not linear, because network
|
2005-04-16 22:20:36 +00:00
|
|
|
* bandwidth does not increase linearly with machine size. We use
|
|
|
|
*
|
2013-09-11 21:20:34 +00:00
|
|
|
* min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
|
2005-04-16 22:20:36 +00:00
|
|
|
* min_free_kbytes = sqrt(lowmem_kbytes * 16)
|
|
|
|
*
|
|
|
|
* which yields
|
|
|
|
*
|
|
|
|
* 16MB: 512k
|
|
|
|
* 32MB: 724k
|
|
|
|
* 64MB: 1024k
|
|
|
|
* 128MB: 1448k
|
|
|
|
* 256MB: 2048k
|
|
|
|
* 512MB: 2896k
|
|
|
|
* 1024MB: 4096k
|
|
|
|
* 2048MB: 5792k
|
|
|
|
* 4096MB: 8192k
|
|
|
|
* 8192MB: 11584k
|
|
|
|
* 16384MB: 16384k
|
|
|
|
*/
|
2021-11-05 20:41:36 +00:00
|
|
|
void calculate_min_free_kbytes(void)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
unsigned long lowmem_kbytes;
|
2013-07-08 23:00:40 +00:00
|
|
|
int new_min_free_kbytes;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
|
2013-07-08 23:00:40 +00:00
|
|
|
new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
|
|
|
|
|
2021-11-05 20:40:55 +00:00
|
|
|
if (new_min_free_kbytes > user_min_free_kbytes)
|
|
|
|
min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
|
|
|
|
else
|
2013-07-08 23:00:40 +00:00
|
|
|
pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
|
|
|
|
new_min_free_kbytes, user_min_free_kbytes);
|
2021-11-05 20:40:55 +00:00
|
|
|
|
2021-11-05 20:41:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int __meminit init_per_zone_wmark_min(void)
|
|
|
|
{
|
|
|
|
calculate_min_free_kbytes();
|
2009-06-16 22:32:48 +00:00
|
|
|
setup_per_zone_wmarks();
|
2011-05-25 00:11:33 +00:00
|
|
|
refresh_zone_stat_thresholds();
|
2005-04-16 22:20:36 +00:00
|
|
|
setup_per_zone_lowmem_reserve();
|
2016-08-10 23:27:49 +00:00
|
|
|
|
|
|
|
#ifdef CONFIG_NUMA
|
|
|
|
setup_min_unmapped_ratio();
|
|
|
|
setup_min_slab_ratio();
|
|
|
|
#endif
|
|
|
|
|
2020-10-11 06:16:40 +00:00
|
|
|
khugepaged_min_free_kbytes_update();
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
return 0;
|
|
|
|
}
|
2020-08-21 00:42:24 +00:00
|
|
|
postcore_initcall(init_per_zone_wmark_min)
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/*
|
2013-09-11 21:20:34 +00:00
|
|
|
* min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
|
2005-04-16 22:20:36 +00:00
|
|
|
* that we can call two helper functions whenever min_free_kbytes
|
|
|
|
* changes.
|
|
|
|
*/
|
2014-06-06 21:38:09 +00:00
|
|
|
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
|
2020-04-24 06:43:38 +00:00
|
|
|
void *buffer, size_t *length, loff_t *ppos)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2014-01-23 23:53:17 +00:00
|
|
|
int rc;
|
|
|
|
|
|
|
|
rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
|
|
|
|
if (rc)
|
|
|
|
return rc;
|
|
|
|
|
2013-07-08 23:00:40 +00:00
|
|
|
if (write) {
|
|
|
|
user_min_free_kbytes = min_free_kbytes;
|
2009-06-16 22:32:48 +00:00
|
|
|
setup_per_zone_wmarks();
|
2013-07-08 23:00:40 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2016-03-17 21:19:14 +00:00
|
|
|
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
|
2020-04-24 06:43:38 +00:00
|
|
|
void *buffer, size_t *length, loff_t *ppos)
|
2016-03-17 21:19:14 +00:00
|
|
|
{
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
|
|
|
|
if (rc)
|
|
|
|
return rc;
|
|
|
|
|
|
|
|
if (write)
|
|
|
|
setup_per_zone_wmarks();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2006-07-03 07:24:13 +00:00
|
|
|
#ifdef CONFIG_NUMA
|
2016-08-10 23:27:49 +00:00
|
|
|
static void setup_min_unmapped_ratio(void)
|
2006-07-03 07:24:13 +00:00
|
|
|
{
|
2016-08-10 23:27:49 +00:00
|
|
|
pg_data_t *pgdat;
|
2006-07-03 07:24:13 +00:00
|
|
|
struct zone *zone;
|
|
|
|
|
2016-07-28 22:46:32 +00:00
|
|
|
for_each_online_pgdat(pgdat)
|
2016-08-10 23:27:46 +00:00
|
|
|
pgdat->min_unmapped_pages = 0;
|
2016-07-28 22:46:32 +00:00
|
|
|
|
2006-07-03 07:24:13 +00:00
|
|
|
for_each_zone(zone)
|
2018-12-28 08:34:24 +00:00
|
|
|
zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
|
|
|
|
sysctl_min_unmapped_ratio) / 100;
|
2006-07-03 07:24:13 +00:00
|
|
|
}
|
2006-09-26 06:31:52 +00:00
|
|
|
|
2016-08-10 23:27:49 +00:00
|
|
|
|
|
|
|
int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
|
2020-04-24 06:43:38 +00:00
|
|
|
void *buffer, size_t *length, loff_t *ppos)
|
2006-09-26 06:31:52 +00:00
|
|
|
{
|
|
|
|
int rc;
|
|
|
|
|
2009-09-23 22:57:19 +00:00
|
|
|
rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
|
2006-09-26 06:31:52 +00:00
|
|
|
if (rc)
|
|
|
|
return rc;
|
|
|
|
|
2016-08-10 23:27:49 +00:00
|
|
|
setup_min_unmapped_ratio();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void setup_min_slab_ratio(void)
|
|
|
|
{
|
|
|
|
pg_data_t *pgdat;
|
|
|
|
struct zone *zone;
|
|
|
|
|
2016-07-28 22:46:32 +00:00
|
|
|
for_each_online_pgdat(pgdat)
|
|
|
|
pgdat->min_slab_pages = 0;
|
|
|
|
|
2006-09-26 06:31:52 +00:00
|
|
|
for_each_zone(zone)
|
2018-12-28 08:34:24 +00:00
|
|
|
zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
|
|
|
|
sysctl_min_slab_ratio) / 100;
|
2016-08-10 23:27:49 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
|
2020-04-24 06:43:38 +00:00
|
|
|
void *buffer, size_t *length, loff_t *ppos)
|
2016-08-10 23:27:49 +00:00
|
|
|
{
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
|
|
|
|
if (rc)
|
|
|
|
return rc;
|
|
|
|
|
|
|
|
setup_min_slab_ratio();
|
|
|
|
|
2006-09-26 06:31:52 +00:00
|
|
|
return 0;
|
|
|
|
}
|
2006-07-03 07:24:13 +00:00
|
|
|
#endif
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* lowmem_reserve_ratio_sysctl_handler - just a wrapper around
|
|
|
|
* proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
|
|
|
|
* whenever sysctl_lowmem_reserve_ratio changes.
|
|
|
|
*
|
|
|
|
* The reserve ratio obviously has absolutely no relation with the
|
2009-06-16 22:32:12 +00:00
|
|
|
* minimum watermarks. The lowmem reserve ratio can only make sense
|
2005-04-16 22:20:36 +00:00
|
|
|
* if in function of the boot time zone sizes.
|
|
|
|
*/
|
2014-06-06 21:38:09 +00:00
|
|
|
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
|
2020-04-24 06:43:38 +00:00
|
|
|
void *buffer, size_t *length, loff_t *ppos)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2020-06-03 22:58:48 +00:00
|
|
|
int i;
|
|
|
|
|
2009-09-23 22:57:19 +00:00
|
|
|
proc_dointvec_minmax(table, write, buffer, length, ppos);
|
2020-06-03 22:58:48 +00:00
|
|
|
|
|
|
|
for (i = 0; i < MAX_NR_ZONES; i++) {
|
|
|
|
if (sysctl_lowmem_reserve_ratio[i] < 1)
|
|
|
|
sysctl_lowmem_reserve_ratio[i] = 0;
|
|
|
|
}
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
setup_per_zone_lowmem_reserve();
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2006-01-08 09:00:40 +00:00
|
|
|
/*
|
2021-06-29 02:42:24 +00:00
|
|
|
* percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
|
|
|
|
* cpu. It is the fraction of total pages in each zone that a hot per cpu
|
2013-09-11 21:20:34 +00:00
|
|
|
* pagelist can have before it gets flushed back to buddy allocator.
|
2006-01-08 09:00:40 +00:00
|
|
|
*/
|
2021-06-29 02:42:24 +00:00
|
|
|
int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
|
|
|
|
int write, void *buffer, size_t *length, loff_t *ppos)
|
2006-01-08 09:00:40 +00:00
|
|
|
{
|
|
|
|
struct zone *zone;
|
2021-06-29 02:42:24 +00:00
|
|
|
int old_percpu_pagelist_high_fraction;
|
2006-01-08 09:00:40 +00:00
|
|
|
int ret;
|
|
|
|
|
2014-06-23 20:22:04 +00:00
|
|
|
mutex_lock(&pcp_batch_high_lock);
|
2021-06-29 02:42:24 +00:00
|
|
|
old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
|
2014-06-23 20:22:04 +00:00
|
|
|
|
2009-09-23 22:57:19 +00:00
|
|
|
ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
|
2014-06-23 20:22:04 +00:00
|
|
|
if (!write || ret < 0)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
/* Sanity checking to avoid pcp imbalance */
|
2021-06-29 02:42:24 +00:00
|
|
|
if (percpu_pagelist_high_fraction &&
|
|
|
|
percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
|
|
|
|
percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
|
2014-06-23 20:22:04 +00:00
|
|
|
ret = -EINVAL;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* No change? */
|
2021-06-29 02:42:24 +00:00
|
|
|
if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
|
2014-06-23 20:22:04 +00:00
|
|
|
goto out;
|
2013-07-03 22:01:29 +00:00
|
|
|
|
2019-12-01 01:55:11 +00:00
|
|
|
for_each_populated_zone(zone)
|
2021-06-29 02:42:24 +00:00
|
|
|
zone_set_pageset_high_and_batch(zone, 0);
|
2014-06-23 20:22:04 +00:00
|
|
|
out:
|
2013-07-03 22:01:29 +00:00
|
|
|
mutex_unlock(&pcp_batch_high_lock);
|
2014-06-23 20:22:04 +00:00
|
|
|
return ret;
|
2006-01-08 09:00:40 +00:00
|
|
|
}
|
|
|
|
|
2019-05-14 00:19:00 +00:00
|
|
|
#ifdef CONFIG_CONTIG_ALLOC
|
2021-04-30 06:01:30 +00:00
|
|
|
#if defined(CONFIG_DYNAMIC_DEBUG) || \
|
|
|
|
(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
|
|
|
|
/* Usage: See admin-guide/dynamic-debug-howto.rst */
|
|
|
|
static void alloc_contig_dump_pages(struct list_head *page_list)
|
|
|
|
{
|
|
|
|
DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
|
|
|
|
|
|
|
|
if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
|
|
|
|
struct page *page;
|
|
|
|
|
|
|
|
dump_stack();
|
|
|
|
list_for_each_entry(page, page_list, lru)
|
|
|
|
dump_page(page, "migration failure");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
static inline void alloc_contig_dump_pages(struct list_head *page_list)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2011-12-29 12:09:50 +00:00
|
|
|
/* [start, end) must belong to a single zone. */
|
2022-05-13 03:22:58 +00:00
|
|
|
int __alloc_contig_migrate_range(struct compact_control *cc,
|
2012-10-08 23:32:41 +00:00
|
|
|
unsigned long start, unsigned long end)
|
2011-12-29 12:09:50 +00:00
|
|
|
{
|
|
|
|
/* This function is based on compact_zone() from compaction.c. */
|
2020-06-03 23:01:18 +00:00
|
|
|
unsigned int nr_reclaimed;
|
2011-12-29 12:09:50 +00:00
|
|
|
unsigned long pfn = start;
|
|
|
|
unsigned int tries = 0;
|
|
|
|
int ret = 0;
|
2020-08-12 01:37:31 +00:00
|
|
|
struct migration_target_control mtc = {
|
|
|
|
.nid = zone_to_nid(cc->zone),
|
|
|
|
.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
|
|
|
|
};
|
2011-12-29 12:09:50 +00:00
|
|
|
|
2021-05-05 01:36:57 +00:00
|
|
|
lru_cache_disable();
|
2011-12-29 12:09:50 +00:00
|
|
|
|
2012-10-08 23:32:41 +00:00
|
|
|
while (pfn < end || !list_empty(&cc->migratepages)) {
|
2011-12-29 12:09:50 +00:00
|
|
|
if (fatal_signal_pending(current)) {
|
|
|
|
ret = -EINTR;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2012-10-08 23:32:41 +00:00
|
|
|
if (list_empty(&cc->migratepages)) {
|
|
|
|
cc->nr_migratepages = 0;
|
2021-05-05 01:35:17 +00:00
|
|
|
ret = isolate_migratepages_range(cc, pfn, end);
|
|
|
|
if (ret && ret != -EAGAIN)
|
2011-12-29 12:09:50 +00:00
|
|
|
break;
|
2021-05-05 01:35:17 +00:00
|
|
|
pfn = cc->migrate_pfn;
|
2011-12-29 12:09:50 +00:00
|
|
|
tries = 0;
|
|
|
|
} else if (++tries == 5) {
|
mm,page_alloc: bail out earlier on -ENOMEM in alloc_contig_migrate_range
Patch series "Make alloc_contig_range handle Hugetlb pages", v10.
alloc_contig_range lacks the ability to handle HugeTLB pages. This can
be problematic for some users, e.g: CMA and virtio-mem, where those
users will fail the call if alloc_contig_range ever sees a HugeTLB page,
even when those pages lay in ZONE_MOVABLE and are free. That problem
can be easily solved by replacing the page in the free hugepage pool.
In-use HugeTLB are no exception though, as those can be isolated and
migrated as any other LRU or Movable page.
This aims to improve alloc_contig_range->isolate_migratepages_block, so
that HugeTLB pages can be recognized and handled.
Since we also need to start reporting errors down the chain (e.g:
-ENOMEM due to not be able to allocate a new hugetlb page),
isolate_migratepages_{range,block} interfaces need to change to start
reporting error codes instead of the pfn == 0 vs pfn != 0 scheme it is
using right now. From now on, isolate_migratepages_block will not
return the next pfn to be scanned anymore, but -EINTR, -ENOMEM or 0, so
we the next pfn to be scanned will be recorded in cc->migrate_pfn field
(as it is already done in isolate_migratepages_range()).
Below is an insight from David (thanks), where the problem can clearly be
seen:
"Start a VM with 4G. Hotplug 1G via virtio-mem and online it to
ZONE_MOVABLE. Allocate 512 huge pages.
[root@localhost ~]# cat /proc/meminfo
MemTotal: 5061512 kB
MemFree: 3319396 kB
MemAvailable: 3457144 kB
...
HugePages_Total: 512
HugePages_Free: 512
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
The huge pages get partially allocate from ZONE_MOVABLE. Try unplugging
1G via virtio-mem (remember, all ZONE_MOVABLE). Inside the guest:
[ 180.058992] alloc_contig_range: [1b8000, 1c0000) PFNs busy
[ 180.060531] alloc_contig_range: [1b8000, 1c0000) PFNs busy
[ 180.061972] alloc_contig_range: [1b8000, 1c0000) PFNs busy
[ 180.063413] alloc_contig_range: [1b8000, 1c0000) PFNs busy
[ 180.064838] alloc_contig_range: [1b8000, 1c0000) PFNs busy
[ 180.065848] alloc_contig_range: [1bfc00, 1c0000) PFNs busy
[ 180.066794] alloc_contig_range: [1bfc00, 1c0000) PFNs busy
[ 180.067738] alloc_contig_range: [1bfc00, 1c0000) PFNs busy
[ 180.068669] alloc_contig_range: [1bfc00, 1c0000) PFNs busy
[ 180.069598] alloc_contig_range: [1bfc00, 1c0000) PFNs busy"
And then with this patchset running:
"Same experiment with ZONE_MOVABLE:
a) Free huge pages: all memory can get unplugged again.
b) Allocated/populated but idle huge pages: all memory can get unplugged
again.
c) Allocated/populated but all 512 huge pages are read/written in a
loop: all memory can get unplugged again, but I get a single
[ 121.192345] alloc_contig_range: [180000, 188000) PFNs busy
Most probably because it happened to try migrating a huge page
while it was busy. As virtio-mem retries on ZONE_MOVABLE a couple of
times, it can deal with this temporary failure.
Last but not least, I did something extreme:
# cat /proc/meminfo
MemTotal: 5061568 kB
MemFree: 186560 kB
MemAvailable: 354524 kB
...
HugePages_Total: 2048
HugePages_Free: 2048
HugePages_Rsvd: 0
HugePages_Surp: 0
Triggering unplug would require to dissolve+alloc - which now fails
when trying to allocate an additional ~512 huge pages (1G).
As expected, I can properly see memory unplug not fully succeeding. +
I get a fairly continuous stream of
[ 226.611584] alloc_contig_range: [19f400, 19f800) PFNs busy
...
But more importantly, the hugepage count remains stable, as configured
by the admin (me):
HugePages_Total: 2048
HugePages_Free: 2048
HugePages_Rsvd: 0
HugePages_Surp: 0"
This patch (of 7):
Currently, __alloc_contig_migrate_range can generate -EINTR, -ENOMEM or
-EBUSY, and report them down the chain. The problem is that when
migrate_pages() reports -ENOMEM, we keep going till we exhaust all the
try-attempts (5 at the moment) instead of bailing out.
migrate_pages() bails out right away on -ENOMEM because it is considered a
fatal error. Do the same here instead of keep going and retrying. Note
that this is not fixing a real issue, just a cosmetic change. Although we
can save some cycles by backing off ealier
Link: https://lkml.kernel.org/r/20210419075413.1064-1-osalvador@suse.de
Link: https://lkml.kernel.org/r/20210419075413.1064-2-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05 01:35:14 +00:00
|
|
|
ret = -EBUSY;
|
2011-12-29 12:09:50 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2012-10-08 23:33:51 +00:00
|
|
|
nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
|
|
|
|
&cc->migratepages);
|
|
|
|
cc->nr_migratepages -= nr_reclaimed;
|
2012-10-08 23:31:55 +00:00
|
|
|
|
2020-08-12 01:37:31 +00:00
|
|
|
ret = migrate_pages(&cc->migratepages, alloc_migration_target,
|
2021-09-02 21:59:13 +00:00
|
|
|
NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
|
mm,page_alloc: bail out earlier on -ENOMEM in alloc_contig_migrate_range
Patch series "Make alloc_contig_range handle Hugetlb pages", v10.
alloc_contig_range lacks the ability to handle HugeTLB pages. This can
be problematic for some users, e.g: CMA and virtio-mem, where those
users will fail the call if alloc_contig_range ever sees a HugeTLB page,
even when those pages lay in ZONE_MOVABLE and are free. That problem
can be easily solved by replacing the page in the free hugepage pool.
In-use HugeTLB are no exception though, as those can be isolated and
migrated as any other LRU or Movable page.
This aims to improve alloc_contig_range->isolate_migratepages_block, so
that HugeTLB pages can be recognized and handled.
Since we also need to start reporting errors down the chain (e.g:
-ENOMEM due to not be able to allocate a new hugetlb page),
isolate_migratepages_{range,block} interfaces need to change to start
reporting error codes instead of the pfn == 0 vs pfn != 0 scheme it is
using right now. From now on, isolate_migratepages_block will not
return the next pfn to be scanned anymore, but -EINTR, -ENOMEM or 0, so
we the next pfn to be scanned will be recorded in cc->migrate_pfn field
(as it is already done in isolate_migratepages_range()).
Below is an insight from David (thanks), where the problem can clearly be
seen:
"Start a VM with 4G. Hotplug 1G via virtio-mem and online it to
ZONE_MOVABLE. Allocate 512 huge pages.
[root@localhost ~]# cat /proc/meminfo
MemTotal: 5061512 kB
MemFree: 3319396 kB
MemAvailable: 3457144 kB
...
HugePages_Total: 512
HugePages_Free: 512
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
The huge pages get partially allocate from ZONE_MOVABLE. Try unplugging
1G via virtio-mem (remember, all ZONE_MOVABLE). Inside the guest:
[ 180.058992] alloc_contig_range: [1b8000, 1c0000) PFNs busy
[ 180.060531] alloc_contig_range: [1b8000, 1c0000) PFNs busy
[ 180.061972] alloc_contig_range: [1b8000, 1c0000) PFNs busy
[ 180.063413] alloc_contig_range: [1b8000, 1c0000) PFNs busy
[ 180.064838] alloc_contig_range: [1b8000, 1c0000) PFNs busy
[ 180.065848] alloc_contig_range: [1bfc00, 1c0000) PFNs busy
[ 180.066794] alloc_contig_range: [1bfc00, 1c0000) PFNs busy
[ 180.067738] alloc_contig_range: [1bfc00, 1c0000) PFNs busy
[ 180.068669] alloc_contig_range: [1bfc00, 1c0000) PFNs busy
[ 180.069598] alloc_contig_range: [1bfc00, 1c0000) PFNs busy"
And then with this patchset running:
"Same experiment with ZONE_MOVABLE:
a) Free huge pages: all memory can get unplugged again.
b) Allocated/populated but idle huge pages: all memory can get unplugged
again.
c) Allocated/populated but all 512 huge pages are read/written in a
loop: all memory can get unplugged again, but I get a single
[ 121.192345] alloc_contig_range: [180000, 188000) PFNs busy
Most probably because it happened to try migrating a huge page
while it was busy. As virtio-mem retries on ZONE_MOVABLE a couple of
times, it can deal with this temporary failure.
Last but not least, I did something extreme:
# cat /proc/meminfo
MemTotal: 5061568 kB
MemFree: 186560 kB
MemAvailable: 354524 kB
...
HugePages_Total: 2048
HugePages_Free: 2048
HugePages_Rsvd: 0
HugePages_Surp: 0
Triggering unplug would require to dissolve+alloc - which now fails
when trying to allocate an additional ~512 huge pages (1G).
As expected, I can properly see memory unplug not fully succeeding. +
I get a fairly continuous stream of
[ 226.611584] alloc_contig_range: [19f400, 19f800) PFNs busy
...
But more importantly, the hugepage count remains stable, as configured
by the admin (me):
HugePages_Total: 2048
HugePages_Free: 2048
HugePages_Rsvd: 0
HugePages_Surp: 0"
This patch (of 7):
Currently, __alloc_contig_migrate_range can generate -EINTR, -ENOMEM or
-EBUSY, and report them down the chain. The problem is that when
migrate_pages() reports -ENOMEM, we keep going till we exhaust all the
try-attempts (5 at the moment) instead of bailing out.
migrate_pages() bails out right away on -ENOMEM because it is considered a
fatal error. Do the same here instead of keep going and retrying. Note
that this is not fixing a real issue, just a cosmetic change. Although we
can save some cycles by backing off ealier
Link: https://lkml.kernel.org/r/20210419075413.1064-1-osalvador@suse.de
Link: https://lkml.kernel.org/r/20210419075413.1064-2-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05 01:35:14 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* On -ENOMEM, migrate_pages() bails out right away. It is pointless
|
|
|
|
* to retry again over this error, so do the same here.
|
|
|
|
*/
|
|
|
|
if (ret == -ENOMEM)
|
|
|
|
break;
|
2011-12-29 12:09:50 +00:00
|
|
|
}
|
mm: disable LRU pagevec during the migration temporarily
LRU pagevec holds refcount of pages until the pagevec are drained. It
could prevent migration since the refcount of the page is greater than
the expection in migration logic. To mitigate the issue, callers of
migrate_pages drains LRU pagevec via migrate_prep or lru_add_drain_all
before migrate_pages call.
However, it's not enough because pages coming into pagevec after the
draining call still could stay at the pagevec so it could keep
preventing page migration. Since some callers of migrate_pages have
retrial logic with LRU draining, the page would migrate at next trail
but it is still fragile in that it doesn't close the fundamental race
between upcoming LRU pages into pagvec and migration so the migration
failure could cause contiguous memory allocation failure in the end.
To close the race, this patch disables lru caches(i.e, pagevec) during
ongoing migration until migrate is done.
Since it's really hard to reproduce, I measured how many times
migrate_pages retried with force mode(it is about a fallback to a sync
migration) with below debug code.
int migrate_pages(struct list_head *from, new_page_t get_new_page,
..
..
if (rc && reason == MR_CONTIG_RANGE && pass > 2) {
printk(KERN_ERR, "pfn 0x%lx reason %d", page_to_pfn(page), rc);
dump_page(page, "fail to migrate");
}
The test was repeating android apps launching with cma allocation in
background every five seconds. Total cma allocation count was about 500
during the testing. With this patch, the dump_page count was reduced
from 400 to 30.
The new interface is also useful for memory hotplug which currently
drains lru pcp caches after each migration failure. This is rather
suboptimal as it has to disrupt others running during the operation.
With the new interface the operation happens only once. This is also in
line with pcp allocator cache which are disabled for the offlining as
well.
Link: https://lkml.kernel.org/r/20210319175127.886124-1-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Chris Goldsworthy <cgoldswo@codeaurora.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: John Dias <joaodias@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Oliver Sang <oliver.sang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05 01:36:54 +00:00
|
|
|
|
2021-05-05 01:36:57 +00:00
|
|
|
lru_cache_enable();
|
2013-02-23 00:32:09 +00:00
|
|
|
if (ret < 0) {
|
2022-05-19 21:08:55 +00:00
|
|
|
if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
|
2021-06-29 02:42:06 +00:00
|
|
|
alloc_contig_dump_pages(&cc->migratepages);
|
2013-02-23 00:32:09 +00:00
|
|
|
putback_movable_pages(&cc->migratepages);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
return 0;
|
2011-12-29 12:09:50 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* alloc_contig_range() -- tries to allocate given range of pages
|
|
|
|
* @start: start PFN to allocate
|
|
|
|
* @end: one-past-the-last PFN to allocate
|
2021-05-07 01:06:47 +00:00
|
|
|
* @migratetype: migratetype of the underlying pageblocks (either
|
2012-04-03 13:06:15 +00:00
|
|
|
* #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
|
|
|
|
* in range must have the same migratetype and it must
|
|
|
|
* be either of the two.
|
2017-02-24 22:58:37 +00:00
|
|
|
* @gfp_mask: GFP mask to use during compaction
|
2011-12-29 12:09:50 +00:00
|
|
|
*
|
2022-05-13 03:22:58 +00:00
|
|
|
* The PFN range does not have to be pageblock aligned. The PFN range must
|
|
|
|
* belong to a single zone.
|
2011-12-29 12:09:50 +00:00
|
|
|
*
|
2018-04-05 23:25:26 +00:00
|
|
|
* The first thing this routine does is attempt to MIGRATE_ISOLATE all
|
|
|
|
* pageblocks in the range. Once isolated, the pageblocks should not
|
|
|
|
* be modified by others.
|
2011-12-29 12:09:50 +00:00
|
|
|
*
|
2019-03-05 23:48:42 +00:00
|
|
|
* Return: zero on success or negative error code. On success all
|
2011-12-29 12:09:50 +00:00
|
|
|
* pages which PFN is in [start, end) are allocated for the caller and
|
|
|
|
* need to be freed with free_contig_range().
|
|
|
|
*/
|
2012-04-03 13:06:15 +00:00
|
|
|
int alloc_contig_range(unsigned long start, unsigned long end,
|
2017-02-24 22:58:37 +00:00
|
|
|
unsigned migratetype, gfp_t gfp_mask)
|
2011-12-29 12:09:50 +00:00
|
|
|
{
|
|
|
|
unsigned long outer_start, outer_end;
|
2022-05-13 03:22:58 +00:00
|
|
|
int order;
|
2015-11-07 00:29:57 +00:00
|
|
|
int ret = 0;
|
2011-12-29 12:09:50 +00:00
|
|
|
|
2012-10-08 23:32:41 +00:00
|
|
|
struct compact_control cc = {
|
|
|
|
.nr_migratepages = 0,
|
|
|
|
.order = -1,
|
|
|
|
.zone = page_zone(pfn_to_page(start)),
|
2014-06-04 23:08:28 +00:00
|
|
|
.mode = MIGRATE_SYNC,
|
2012-10-08 23:32:41 +00:00
|
|
|
.ignore_skip_hint = true,
|
2017-11-17 23:26:38 +00:00
|
|
|
.no_set_skip_hint = true,
|
mm: introduce memalloc_nofs_{save,restore} API
GFP_NOFS context is used for the following 5 reasons currently:
- to prevent from deadlocks when the lock held by the allocation
context would be needed during the memory reclaim
- to prevent from stack overflows during the reclaim because the
allocation is performed from a deep context already
- to prevent lockups when the allocation context depends on other
reclaimers to make a forward progress indirectly
- just in case because this would be safe from the fs POV
- silence lockdep false positives
Unfortunately overuse of this allocation context brings some problems to
the MM. Memory reclaim is much weaker (especially during heavy FS
metadata workloads), OOM killer cannot be invoked because the MM layer
doesn't have enough information about how much memory is freeable by the
FS layer.
In many cases it is far from clear why the weaker context is even used
and so it might be used unnecessarily. We would like to get rid of
those as much as possible. One way to do that is to use the flag in
scopes rather than isolated cases. Such a scope is declared when really
necessary, tracked per task and all the allocation requests from within
the context will simply inherit the GFP_NOFS semantic.
Not only this is easier to understand and maintain because there are
much less problematic contexts than specific allocation requests, this
also helps code paths where FS layer interacts with other layers (e.g.
crypto, security modules, MM etc...) and there is no easy way to convey
the allocation context between the layers.
Introduce memalloc_nofs_{save,restore} API to control the scope of
GFP_NOFS allocation context. This is basically copying
memalloc_noio_{save,restore} API we have for other restricted allocation
context GFP_NOIO. The PF_MEMALLOC_NOFS flag already exists and it is
just an alias for PF_FSTRANS which has been xfs specific until recently.
There are no more PF_FSTRANS users anymore so let's just drop it.
PF_MEMALLOC_NOFS is now checked in the MM layer and drops __GFP_FS
implicitly same as PF_MEMALLOC_NOIO drops __GFP_IO. memalloc_noio_flags
is renamed to current_gfp_context because it now cares about both
PF_MEMALLOC_NOFS and PF_MEMALLOC_NOIO contexts. Xfs code paths preserve
their semantic. kmem_flags_convert() doesn't need to evaluate the flag
anymore.
This patch shouldn't introduce any functional changes.
Let's hope that filesystems will drop direct GFP_NOFS (resp. ~__GFP_FS)
usage as much as possible and only use a properly documented
memalloc_nofs_{save,restore} checkpoints where they are appropriate.
[akpm@linux-foundation.org: fix comment typo, reflow comment]
Link: http://lkml.kernel.org/r/20170306131408.9828-5-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Chris Mason <clm@fb.com>
Cc: David Sterba <dsterba@suse.cz>
Cc: Jan Kara <jack@suse.cz>
Cc: Brian Foster <bfoster@redhat.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Nikolay Borisov <nborisov@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 21:53:15 +00:00
|
|
|
.gfp_mask = current_gfp_context(gfp_mask),
|
2020-04-02 04:10:28 +00:00
|
|
|
.alloc_contig = true,
|
2012-10-08 23:32:41 +00:00
|
|
|
};
|
|
|
|
INIT_LIST_HEAD(&cc.migratepages);
|
|
|
|
|
2011-12-29 12:09:50 +00:00
|
|
|
/*
|
|
|
|
* What we do here is we mark all pageblocks in range as
|
|
|
|
* MIGRATE_ISOLATE. Because pageblock and max order pages may
|
|
|
|
* have different sizes, and due to the way page allocator
|
2022-05-13 03:22:58 +00:00
|
|
|
* work, start_isolate_page_range() has special handlings for this.
|
2011-12-29 12:09:50 +00:00
|
|
|
*
|
|
|
|
* Once the pageblocks are marked as MIGRATE_ISOLATE, we
|
|
|
|
* migrate the pages from an unaligned range (ie. pages that
|
2022-05-13 03:22:58 +00:00
|
|
|
* we are interested in). This will put all the pages in
|
2011-12-29 12:09:50 +00:00
|
|
|
* range back to page allocator as MIGRATE_ISOLATE.
|
|
|
|
*
|
|
|
|
* When this is done, we take the pages in range from page
|
|
|
|
* allocator removing them from the buddy system. This way
|
|
|
|
* page allocator will never consider using them.
|
|
|
|
*
|
|
|
|
* This lets us mark the pageblocks back as
|
|
|
|
* MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
|
|
|
|
* aligned range but not in the unaligned, original range are
|
|
|
|
* put back to page allocator so that buddy can use them.
|
|
|
|
*/
|
|
|
|
|
2022-05-13 03:22:58 +00:00
|
|
|
ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
|
2020-10-16 03:08:07 +00:00
|
|
|
if (ret)
|
2022-05-13 03:22:58 +00:00
|
|
|
goto done;
|
2011-12-29 12:09:50 +00:00
|
|
|
|
2020-12-15 03:10:56 +00:00
|
|
|
drain_all_pages(cc.zone);
|
|
|
|
|
mm/cma: always check which page caused allocation failure
Now, we have tracepoint in test_pages_isolated() to notify pfn which
cannot be isolated. But, in alloc_contig_range(), some error path
doesn't call test_pages_isolated() so it's still hard to know exact pfn
that causes allocation failure.
This patch change this situation by calling test_pages_isolated() in
almost error path. In allocation failure case, some overhead is added
by this change, but, allocation failure is really rare event so it would
not matter.
In fatal signal pending case, we don't call test_pages_isolated()
because this failure is intentional one.
There was a bogus outer_start problem due to unchecked buddy order and
this patch also fix it. Before this patch, it didn't matter, because
end result is same thing. But, after this patch, tracepoint will report
failed pfn so it should be accurate.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 23:18:45 +00:00
|
|
|
/*
|
|
|
|
* In case of -EBUSY, we'd like to know which page causes problem.
|
2017-11-30 00:10:01 +00:00
|
|
|
* So, just fall through. test_pages_isolated() has a tracepoint
|
|
|
|
* which will report the busy page.
|
|
|
|
*
|
|
|
|
* It is possible that busy pages could become available before
|
|
|
|
* the call to test_pages_isolated, and the range will actually be
|
|
|
|
* allocated. So, if we fall through be sure to clear ret so that
|
|
|
|
* -EBUSY is not accidentally used or returned to caller.
|
mm/cma: always check which page caused allocation failure
Now, we have tracepoint in test_pages_isolated() to notify pfn which
cannot be isolated. But, in alloc_contig_range(), some error path
doesn't call test_pages_isolated() so it's still hard to know exact pfn
that causes allocation failure.
This patch change this situation by calling test_pages_isolated() in
almost error path. In allocation failure case, some overhead is added
by this change, but, allocation failure is really rare event so it would
not matter.
In fatal signal pending case, we don't call test_pages_isolated()
because this failure is intentional one.
There was a bogus outer_start problem due to unchecked buddy order and
this patch also fix it. Before this patch, it didn't matter, because
end result is same thing. But, after this patch, tracepoint will report
failed pfn so it should be accurate.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 23:18:45 +00:00
|
|
|
*/
|
2012-10-08 23:32:41 +00:00
|
|
|
ret = __alloc_contig_migrate_range(&cc, start, end);
|
mm/cma: always check which page caused allocation failure
Now, we have tracepoint in test_pages_isolated() to notify pfn which
cannot be isolated. But, in alloc_contig_range(), some error path
doesn't call test_pages_isolated() so it's still hard to know exact pfn
that causes allocation failure.
This patch change this situation by calling test_pages_isolated() in
almost error path. In allocation failure case, some overhead is added
by this change, but, allocation failure is really rare event so it would
not matter.
In fatal signal pending case, we don't call test_pages_isolated()
because this failure is intentional one.
There was a bogus outer_start problem due to unchecked buddy order and
this patch also fix it. Before this patch, it didn't matter, because
end result is same thing. But, after this patch, tracepoint will report
failed pfn so it should be accurate.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 23:18:45 +00:00
|
|
|
if (ret && ret != -EBUSY)
|
2011-12-29 12:09:50 +00:00
|
|
|
goto done;
|
2021-05-05 01:40:12 +00:00
|
|
|
ret = 0;
|
2011-12-29 12:09:50 +00:00
|
|
|
|
|
|
|
/*
|
2022-05-13 03:22:58 +00:00
|
|
|
* Pages from [start, end) are within a pageblock_nr_pages
|
2011-12-29 12:09:50 +00:00
|
|
|
* aligned blocks that are marked as MIGRATE_ISOLATE. What's
|
|
|
|
* more, all pages in [start, end) are free in page allocator.
|
|
|
|
* What we are going to do is to allocate all pages from
|
|
|
|
* [start, end) (that is remove them from page allocator).
|
|
|
|
*
|
|
|
|
* The only problem is that pages at the beginning and at the
|
|
|
|
* end of interesting range may be not aligned with pages that
|
|
|
|
* page allocator holds, ie. they can be part of higher order
|
|
|
|
* pages. Because of this, we reserve the bigger range and
|
|
|
|
* once this is done free the pages we are not interested in.
|
|
|
|
*
|
|
|
|
* We don't have to hold zone->lock here because the pages are
|
|
|
|
* isolated thus they won't get removed from buddy.
|
|
|
|
*/
|
|
|
|
|
|
|
|
order = 0;
|
|
|
|
outer_start = start;
|
|
|
|
while (!PageBuddy(pfn_to_page(outer_start))) {
|
2023-03-15 11:31:33 +00:00
|
|
|
if (++order > MAX_ORDER) {
|
mm/cma: always check which page caused allocation failure
Now, we have tracepoint in test_pages_isolated() to notify pfn which
cannot be isolated. But, in alloc_contig_range(), some error path
doesn't call test_pages_isolated() so it's still hard to know exact pfn
that causes allocation failure.
This patch change this situation by calling test_pages_isolated() in
almost error path. In allocation failure case, some overhead is added
by this change, but, allocation failure is really rare event so it would
not matter.
In fatal signal pending case, we don't call test_pages_isolated()
because this failure is intentional one.
There was a bogus outer_start problem due to unchecked buddy order and
this patch also fix it. Before this patch, it didn't matter, because
end result is same thing. But, after this patch, tracepoint will report
failed pfn so it should be accurate.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 23:18:45 +00:00
|
|
|
outer_start = start;
|
|
|
|
break;
|
2011-12-29 12:09:50 +00:00
|
|
|
}
|
|
|
|
outer_start &= ~0UL << order;
|
|
|
|
}
|
|
|
|
|
mm/cma: always check which page caused allocation failure
Now, we have tracepoint in test_pages_isolated() to notify pfn which
cannot be isolated. But, in alloc_contig_range(), some error path
doesn't call test_pages_isolated() so it's still hard to know exact pfn
that causes allocation failure.
This patch change this situation by calling test_pages_isolated() in
almost error path. In allocation failure case, some overhead is added
by this change, but, allocation failure is really rare event so it would
not matter.
In fatal signal pending case, we don't call test_pages_isolated()
because this failure is intentional one.
There was a bogus outer_start problem due to unchecked buddy order and
this patch also fix it. Before this patch, it didn't matter, because
end result is same thing. But, after this patch, tracepoint will report
failed pfn so it should be accurate.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 23:18:45 +00:00
|
|
|
if (outer_start != start) {
|
2020-10-16 03:10:15 +00:00
|
|
|
order = buddy_order(pfn_to_page(outer_start));
|
mm/cma: always check which page caused allocation failure
Now, we have tracepoint in test_pages_isolated() to notify pfn which
cannot be isolated. But, in alloc_contig_range(), some error path
doesn't call test_pages_isolated() so it's still hard to know exact pfn
that causes allocation failure.
This patch change this situation by calling test_pages_isolated() in
almost error path. In allocation failure case, some overhead is added
by this change, but, allocation failure is really rare event so it would
not matter.
In fatal signal pending case, we don't call test_pages_isolated()
because this failure is intentional one.
There was a bogus outer_start problem due to unchecked buddy order and
this patch also fix it. Before this patch, it didn't matter, because
end result is same thing. But, after this patch, tracepoint will report
failed pfn so it should be accurate.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 23:18:45 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* outer_start page could be small order buddy page and
|
|
|
|
* it doesn't include start page. Adjust outer_start
|
|
|
|
* in this case to report failed page properly
|
|
|
|
* on tracepoint in test_pages_isolated()
|
|
|
|
*/
|
|
|
|
if (outer_start + (1UL << order) <= start)
|
|
|
|
outer_start = start;
|
|
|
|
}
|
|
|
|
|
2011-12-29 12:09:50 +00:00
|
|
|
/* Make sure the range is really isolated. */
|
2019-12-01 01:54:07 +00:00
|
|
|
if (test_pages_isolated(outer_start, end, 0)) {
|
2011-12-29 12:09:50 +00:00
|
|
|
ret = -EBUSY;
|
|
|
|
goto done;
|
|
|
|
}
|
|
|
|
|
2012-01-25 11:49:24 +00:00
|
|
|
/* Grab isolated pages from freelists. */
|
2012-10-08 23:32:41 +00:00
|
|
|
outer_end = isolate_freepages_range(&cc, outer_start, end);
|
2011-12-29 12:09:50 +00:00
|
|
|
if (!outer_end) {
|
|
|
|
ret = -EBUSY;
|
|
|
|
goto done;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Free head and tail (if any) */
|
|
|
|
if (start != outer_start)
|
|
|
|
free_contig_range(outer_start, start - outer_start);
|
|
|
|
if (end != outer_end)
|
|
|
|
free_contig_range(end, outer_end - end);
|
|
|
|
|
|
|
|
done:
|
2022-05-13 03:22:58 +00:00
|
|
|
undo_isolate_page_range(start, end, migratetype);
|
2011-12-29 12:09:50 +00:00
|
|
|
return ret;
|
|
|
|
}
|
virtio-mem: Paravirtualized memory hotunplug part 2
We also want to unplug online memory (contained in online memory blocks
and, therefore, managed by the buddy), and eventually replug it later.
When requested to unplug memory, we use alloc_contig_range() to allocate
subblocks in online memory blocks (so we are the owner) and send them to
our hypervisor. When requested to plug memory, we can replug such memory
using free_contig_range() after asking our hypervisor.
We also want to mark all allocated pages PG_offline, so nobody will
touch them. To differentiate pages that were never onlined when
onlining the memory block from pages allocated via alloc_contig_range(), we
use PageDirty(). Based on this flag, virtio_mem_fake_online() can either
online the pages for the first time or use free_contig_range().
It is worth noting that there are no guarantees on how much memory can
actually get unplugged again. All device memory might completely be
fragmented with unmovable data, such that no subblock can get unplugged.
We are not touching the ZONE_MOVABLE. If memory is onlined to the
ZONE_MOVABLE, it can only get unplugged after that memory was offlined
manually by user space. In normal operation, virtio-mem memory is
suggested to be onlined to ZONE_NORMAL. In the future, we will try to
make unplug more likely to succeed.
Add a module parameter to control if online memory shall be touched.
As we want to access alloc_contig_range()/free_contig_range() from
kernel module context, export the symbols.
Note: Whenever virtio-mem uses alloc_contig_range(), all affected pages
are on the same node, in the same zone, and contain no holes.
Acked-by: Michal Hocko <mhocko@suse.com> # to export contig range allocator API
Tested-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Stefan Hajnoczi <stefanha@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Alexander Potapenko <glider@google.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Link: https://lore.kernel.org/r/20200507140139.17083-6-david@redhat.com
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2020-05-07 14:01:29 +00:00
|
|
|
EXPORT_SYMBOL(alloc_contig_range);
|
2019-12-01 01:55:06 +00:00
|
|
|
|
|
|
|
static int __alloc_contig_pages(unsigned long start_pfn,
|
|
|
|
unsigned long nr_pages, gfp_t gfp_mask)
|
|
|
|
{
|
|
|
|
unsigned long end_pfn = start_pfn + nr_pages;
|
|
|
|
|
|
|
|
return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
|
|
|
|
gfp_mask);
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
|
|
|
|
unsigned long nr_pages)
|
|
|
|
{
|
|
|
|
unsigned long i, end_pfn = start_pfn + nr_pages;
|
|
|
|
struct page *page;
|
|
|
|
|
|
|
|
for (i = start_pfn; i < end_pfn; i++) {
|
|
|
|
page = pfn_to_online_page(i);
|
|
|
|
if (!page)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (page_zone(page) != z)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (PageReserved(page))
|
2023-04-14 14:14:29 +00:00
|
|
|
return false;
|
|
|
|
|
|
|
|
if (PageHuge(page))
|
2019-12-01 01:55:06 +00:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool zone_spans_last_pfn(const struct zone *zone,
|
|
|
|
unsigned long start_pfn, unsigned long nr_pages)
|
|
|
|
{
|
|
|
|
unsigned long last_pfn = start_pfn + nr_pages - 1;
|
|
|
|
|
|
|
|
return zone_spans_pfn(zone, last_pfn);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* alloc_contig_pages() -- tries to find and allocate contiguous range of pages
|
|
|
|
* @nr_pages: Number of contiguous pages to allocate
|
|
|
|
* @gfp_mask: GFP mask to limit search and used during compaction
|
|
|
|
* @nid: Target node
|
|
|
|
* @nodemask: Mask for other possible nodes
|
|
|
|
*
|
|
|
|
* This routine is a wrapper around alloc_contig_range(). It scans over zones
|
|
|
|
* on an applicable zonelist to find a contiguous pfn range which can then be
|
|
|
|
* tried for allocation with alloc_contig_range(). This routine is intended
|
|
|
|
* for allocation requests which can not be fulfilled with the buddy allocator.
|
|
|
|
*
|
|
|
|
* The allocated memory is always aligned to a page boundary. If nr_pages is a
|
2022-01-14 22:07:33 +00:00
|
|
|
* power of two, then allocated range is also guaranteed to be aligned to same
|
|
|
|
* nr_pages (e.g. 1GB request would be aligned to 1GB).
|
2019-12-01 01:55:06 +00:00
|
|
|
*
|
|
|
|
* Allocated pages can be freed with free_contig_range() or by manually calling
|
|
|
|
* __free_page() on each allocated page.
|
|
|
|
*
|
|
|
|
* Return: pointer to contiguous pages on success, or NULL if not successful.
|
|
|
|
*/
|
|
|
|
struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
|
|
|
|
int nid, nodemask_t *nodemask)
|
|
|
|
{
|
|
|
|
unsigned long ret, pfn, flags;
|
|
|
|
struct zonelist *zonelist;
|
|
|
|
struct zone *zone;
|
|
|
|
struct zoneref *z;
|
|
|
|
|
|
|
|
zonelist = node_zonelist(nid, gfp_mask);
|
|
|
|
for_each_zone_zonelist_nodemask(zone, z, zonelist,
|
|
|
|
gfp_zone(gfp_mask), nodemask) {
|
|
|
|
spin_lock_irqsave(&zone->lock, flags);
|
|
|
|
|
|
|
|
pfn = ALIGN(zone->zone_start_pfn, nr_pages);
|
|
|
|
while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
|
|
|
|
if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
|
|
|
|
/*
|
|
|
|
* We release the zone lock here because
|
|
|
|
* alloc_contig_range() will also lock the zone
|
|
|
|
* at some point. If there's an allocation
|
|
|
|
* spinning on this lock, it may win the race
|
|
|
|
* and cause alloc_contig_range() to fail...
|
|
|
|
*/
|
|
|
|
spin_unlock_irqrestore(&zone->lock, flags);
|
|
|
|
ret = __alloc_contig_pages(pfn, nr_pages,
|
|
|
|
gfp_mask);
|
|
|
|
if (!ret)
|
|
|
|
return pfn_to_page(pfn);
|
|
|
|
spin_lock_irqsave(&zone->lock, flags);
|
|
|
|
}
|
|
|
|
pfn += nr_pages;
|
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(&zone->lock, flags);
|
|
|
|
}
|
|
|
|
return NULL;
|
|
|
|
}
|
2019-05-14 00:19:04 +00:00
|
|
|
#endif /* CONFIG_CONTIG_ALLOC */
|
2011-12-29 12:09:50 +00:00
|
|
|
|
2021-05-05 01:37:34 +00:00
|
|
|
void free_contig_range(unsigned long pfn, unsigned long nr_pages)
|
2011-12-29 12:09:50 +00:00
|
|
|
{
|
2021-05-05 01:37:34 +00:00
|
|
|
unsigned long count = 0;
|
2012-12-20 23:05:18 +00:00
|
|
|
|
|
|
|
for (; nr_pages--; pfn++) {
|
|
|
|
struct page *page = pfn_to_page(pfn);
|
|
|
|
|
|
|
|
count += page_count(page) != 1;
|
|
|
|
__free_page(page);
|
|
|
|
}
|
2021-05-05 01:37:34 +00:00
|
|
|
WARN(count != 0, "%lu pages are still in use!\n", count);
|
2011-12-29 12:09:50 +00:00
|
|
|
}
|
virtio-mem: Paravirtualized memory hotunplug part 2
We also want to unplug online memory (contained in online memory blocks
and, therefore, managed by the buddy), and eventually replug it later.
When requested to unplug memory, we use alloc_contig_range() to allocate
subblocks in online memory blocks (so we are the owner) and send them to
our hypervisor. When requested to plug memory, we can replug such memory
using free_contig_range() after asking our hypervisor.
We also want to mark all allocated pages PG_offline, so nobody will
touch them. To differentiate pages that were never onlined when
onlining the memory block from pages allocated via alloc_contig_range(), we
use PageDirty(). Based on this flag, virtio_mem_fake_online() can either
online the pages for the first time or use free_contig_range().
It is worth noting that there are no guarantees on how much memory can
actually get unplugged again. All device memory might completely be
fragmented with unmovable data, such that no subblock can get unplugged.
We are not touching the ZONE_MOVABLE. If memory is onlined to the
ZONE_MOVABLE, it can only get unplugged after that memory was offlined
manually by user space. In normal operation, virtio-mem memory is
suggested to be onlined to ZONE_NORMAL. In the future, we will try to
make unplug more likely to succeed.
Add a module parameter to control if online memory shall be touched.
As we want to access alloc_contig_range()/free_contig_range() from
kernel module context, export the symbols.
Note: Whenever virtio-mem uses alloc_contig_range(), all affected pages
are on the same node, in the same zone, and contain no holes.
Acked-by: Michal Hocko <mhocko@suse.com> # to export contig range allocator API
Tested-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Stefan Hajnoczi <stefanha@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Alexander Potapenko <glider@google.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Link: https://lore.kernel.org/r/20200507140139.17083-6-david@redhat.com
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2020-05-07 14:01:29 +00:00
|
|
|
EXPORT_SYMBOL(free_contig_range);
|
2011-12-29 12:09:50 +00:00
|
|
|
|
mm, page_alloc: disable pcplists during memory offline
Memory offlining relies on page isolation to guarantee a forward progress
because pages cannot be reused while they are isolated. But the page
isolation itself doesn't prevent from races while freed pages are stored
on pcp lists and thus can be reused. This can be worked around by
repeated draining of pcplists, as done by commit 968318261221
("mm/memory_hotplug: drain per-cpu pages again during memory offline").
David and Michal would prefer that this race was closed in a way that
callers of page isolation who need stronger guarantees don't need to
repeatedly drain. David suggested disabling pcplists usage completely
during page isolation, instead of repeatedly draining them.
To achieve this without adding special cases in alloc/free fastpath, we
can use the same approach as boot pagesets - when pcp->high is 0, any
pcplist addition will be immediately flushed.
The race can thus be closed by setting pcp->high to 0 and draining
pcplists once, before calling start_isolate_page_range(). The draining
will serialize after processes that already disabled interrupts and read
the old value of pcp->high in free_unref_page_commit(), and processes that
have not yet disabled interrupts, will observe pcp->high == 0 when they
are rescheduled, and skip pcplists. This guarantees no stray pages on
pcplists in zones where isolation happens.
This patch thus adds zone_pcp_disable() and zone_pcp_enable() functions
that page isolation users can call before start_isolate_page_range() and
after unisolating (or offlining) the isolated pages.
Also, drain_all_pages() is optimized to only execute on cpus where
pcplists are not empty. The check can however race with a free to pcplist
that has not yet increased the pcp->count from 0 to 1. Thus make the
drain optionally skip the racy check and drain on all cpus, and use this
option in zone_pcp_disable().
As we have to avoid external updates to high and batch while pcplists are
disabled, we take pcp_batch_high_lock in zone_pcp_disable() and release it
in zone_pcp_enable(). This also synchronizes multiple users of
zone_pcp_disable()/enable().
Currently the only user of this functionality is offline_pages().
[vbabka@suse.cz: add comment, per David]
Link: https://lkml.kernel.org/r/527480ef-ed72-e1c1-52a0-1c5b0113df45@suse.cz
Link: https://lkml.kernel.org/r/20201111092812.11329-8-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Suggested-by: David Hildenbrand <david@redhat.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 03:10:59 +00:00
|
|
|
/*
|
|
|
|
* Effectively disable pcplists for the zone by setting the high limit to 0
|
|
|
|
* and draining all cpus. A concurrent page freeing on another CPU that's about
|
|
|
|
* to put the page on pcplist will either finish before the drain and the page
|
|
|
|
* will be drained, or observe the new high limit and skip the pcplist.
|
|
|
|
*
|
|
|
|
* Must be paired with a call to zone_pcp_enable().
|
|
|
|
*/
|
|
|
|
void zone_pcp_disable(struct zone *zone)
|
|
|
|
{
|
|
|
|
mutex_lock(&pcp_batch_high_lock);
|
|
|
|
__zone_set_pageset_high_and_batch(zone, 0, 1);
|
|
|
|
__drain_all_pages(zone, true);
|
|
|
|
}
|
|
|
|
|
|
|
|
void zone_pcp_enable(struct zone *zone)
|
|
|
|
{
|
|
|
|
__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
|
|
|
|
mutex_unlock(&pcp_batch_high_lock);
|
|
|
|
}
|
|
|
|
|
2012-07-31 23:43:32 +00:00
|
|
|
void zone_pcp_reset(struct zone *zone)
|
|
|
|
{
|
2012-10-08 23:33:39 +00:00
|
|
|
int cpu;
|
mm/page_alloc: split per cpu page lists and zone stats
The PCP (per-cpu page allocator in page_alloc.c) shares locking
requirements with vmstat and the zone lock which is inconvenient and
causes some issues. For example, the PCP list and vmstat share the same
per-cpu space meaning that it's possible that vmstat updates dirty cache
lines holding per-cpu lists across CPUs unless padding is used. Second,
PREEMPT_RT does not want to disable IRQs for too long in the page
allocator.
This series splits the locking requirements and uses locks types more
suitable for PREEMPT_RT, reduces the time when special locking is required
for stats and reduces the time when IRQs need to be disabled on
!PREEMPT_RT kernels.
Why local_lock? PREEMPT_RT considers the following sequence to be unsafe
as documented in Documentation/locking/locktypes.rst
local_irq_disable();
spin_lock(&lock);
The pcp allocator has this sequence for rmqueue_pcplist (local_irq_save)
-> __rmqueue_pcplist -> rmqueue_bulk (spin_lock). While it's possible to
separate this out, it generally means there are points where we enable
IRQs and reenable them again immediately. To prevent a migration and the
per-cpu pointer going stale, migrate_disable is also needed. That is a
custom lock that is similar, but worse, than local_lock. Furthermore, on
PREEMPT_RT, it's undesirable to leave IRQs disabled for too long. By
converting to local_lock which disables migration on PREEMPT_RT, the
locking requirements can be separated and start moving the protections for
PCP, stats and the zone lock to PREEMPT_RT-safe equivalent locking. As a
bonus, local_lock also means that PROVE_LOCKING does something useful.
After that, it's obvious that zone_statistics incurs too much overhead and
leaves IRQs disabled for longer than necessary on !PREEMPT_RT kernels.
zone_statistics uses perfectly accurate counters requiring IRQs be
disabled for parallel RMW sequences when inaccurate ones like vm_events
would do. The series makes the NUMA statistics (NUMA_HIT and friends)
inaccurate counters that then require no special protection on
!PREEMPT_RT.
The bulk page allocator can then do stat updates in bulk with IRQs enabled
which should improve the efficiency. Technically, this could have been
done without the local_lock and vmstat conversion work and the order
simply reflects the timing of when different series were implemented.
Finally, there are places where we conflate IRQs being disabled for the
PCP with the IRQ-safe zone spinlock. The remainder of the series reduces
the scope of what is protected by disabled IRQs on !PREEMPT_RT kernels.
By the end of the series, page_alloc.c does not call local_irq_save so the
locking scope is a bit clearer. The one exception is that modifying
NR_FREE_PAGES still happens in places where it's known the IRQs are
disabled as it's harmless for PREEMPT_RT and would be expensive to split
the locking there.
No performance data is included because despite the overhead of the stats,
it's within the noise for most workloads on !PREEMPT_RT. However, Jesper
Dangaard Brouer ran a page allocation microbenchmark on a E5-1650 v4 @
3.60GHz CPU on the first version of this series. Focusing on the array
variant of the bulk page allocator reveals the following.
(CPU: Intel(R) Xeon(R) CPU E5-1650 v4 @ 3.60GHz)
ARRAY variant: time_bulk_page_alloc_free_array: step=bulk size
Baseline Patched
1 56.383 54.225 (+3.83%)
2 40.047 35.492 (+11.38%)
3 37.339 32.643 (+12.58%)
4 35.578 30.992 (+12.89%)
8 33.592 29.606 (+11.87%)
16 32.362 28.532 (+11.85%)
32 31.476 27.728 (+11.91%)
64 30.633 27.252 (+11.04%)
128 30.596 27.090 (+11.46%)
While this is a positive outcome, the series is more likely to be
interesting to the RT people in terms of getting parts of the PREEMPT_RT
tree into mainline.
This patch (of 9):
The per-cpu page allocator lists and the per-cpu vmstat deltas are stored
in the same struct per_cpu_pages even though vmstats have no direct impact
on the per-cpu page lists. This is inconsistent because the vmstats for a
node are stored on a dedicated structure. The bigger issue is that the
per_cpu_pages structure is not cache-aligned and stat updates either cache
conflict with adjacent per-cpu lists incurring a runtime cost or padding
is required incurring a memory cost.
This patch splits the per-cpu pagelists and the vmstat deltas into
separate structures. It's mostly a mechanical conversion but some
variable renaming is done to clearly distinguish the per-cpu pages
structure (pcp) from the vmstats (pzstats).
Superficially, this appears to increase the size of the per_cpu_pages
structure but the movement of expire fills a structure hole so there is no
impact overall.
[mgorman@techsingularity.net: make it W=1 cleaner]
Link: https://lkml.kernel.org/r/20210514144622.GA3735@techsingularity.net
[mgorman@techsingularity.net: make it W=1 even cleaner]
Link: https://lkml.kernel.org/r/20210516140705.GB3735@techsingularity.net
[lkp@intel.com: check struct per_cpu_zonestat has a non-zero size]
[vbabka@suse.cz: Init zone->per_cpu_zonestats properly]
Link: https://lkml.kernel.org/r/20210512095458.30632-1-mgorman@techsingularity.net
Link: https://lkml.kernel.org/r/20210512095458.30632-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 02:41:38 +00:00
|
|
|
struct per_cpu_zonestat *pzstats;
|
2012-07-31 23:43:32 +00:00
|
|
|
|
mm/page_alloc: split per cpu page lists and zone stats
The PCP (per-cpu page allocator in page_alloc.c) shares locking
requirements with vmstat and the zone lock which is inconvenient and
causes some issues. For example, the PCP list and vmstat share the same
per-cpu space meaning that it's possible that vmstat updates dirty cache
lines holding per-cpu lists across CPUs unless padding is used. Second,
PREEMPT_RT does not want to disable IRQs for too long in the page
allocator.
This series splits the locking requirements and uses locks types more
suitable for PREEMPT_RT, reduces the time when special locking is required
for stats and reduces the time when IRQs need to be disabled on
!PREEMPT_RT kernels.
Why local_lock? PREEMPT_RT considers the following sequence to be unsafe
as documented in Documentation/locking/locktypes.rst
local_irq_disable();
spin_lock(&lock);
The pcp allocator has this sequence for rmqueue_pcplist (local_irq_save)
-> __rmqueue_pcplist -> rmqueue_bulk (spin_lock). While it's possible to
separate this out, it generally means there are points where we enable
IRQs and reenable them again immediately. To prevent a migration and the
per-cpu pointer going stale, migrate_disable is also needed. That is a
custom lock that is similar, but worse, than local_lock. Furthermore, on
PREEMPT_RT, it's undesirable to leave IRQs disabled for too long. By
converting to local_lock which disables migration on PREEMPT_RT, the
locking requirements can be separated and start moving the protections for
PCP, stats and the zone lock to PREEMPT_RT-safe equivalent locking. As a
bonus, local_lock also means that PROVE_LOCKING does something useful.
After that, it's obvious that zone_statistics incurs too much overhead and
leaves IRQs disabled for longer than necessary on !PREEMPT_RT kernels.
zone_statistics uses perfectly accurate counters requiring IRQs be
disabled for parallel RMW sequences when inaccurate ones like vm_events
would do. The series makes the NUMA statistics (NUMA_HIT and friends)
inaccurate counters that then require no special protection on
!PREEMPT_RT.
The bulk page allocator can then do stat updates in bulk with IRQs enabled
which should improve the efficiency. Technically, this could have been
done without the local_lock and vmstat conversion work and the order
simply reflects the timing of when different series were implemented.
Finally, there are places where we conflate IRQs being disabled for the
PCP with the IRQ-safe zone spinlock. The remainder of the series reduces
the scope of what is protected by disabled IRQs on !PREEMPT_RT kernels.
By the end of the series, page_alloc.c does not call local_irq_save so the
locking scope is a bit clearer. The one exception is that modifying
NR_FREE_PAGES still happens in places where it's known the IRQs are
disabled as it's harmless for PREEMPT_RT and would be expensive to split
the locking there.
No performance data is included because despite the overhead of the stats,
it's within the noise for most workloads on !PREEMPT_RT. However, Jesper
Dangaard Brouer ran a page allocation microbenchmark on a E5-1650 v4 @
3.60GHz CPU on the first version of this series. Focusing on the array
variant of the bulk page allocator reveals the following.
(CPU: Intel(R) Xeon(R) CPU E5-1650 v4 @ 3.60GHz)
ARRAY variant: time_bulk_page_alloc_free_array: step=bulk size
Baseline Patched
1 56.383 54.225 (+3.83%)
2 40.047 35.492 (+11.38%)
3 37.339 32.643 (+12.58%)
4 35.578 30.992 (+12.89%)
8 33.592 29.606 (+11.87%)
16 32.362 28.532 (+11.85%)
32 31.476 27.728 (+11.91%)
64 30.633 27.252 (+11.04%)
128 30.596 27.090 (+11.46%)
While this is a positive outcome, the series is more likely to be
interesting to the RT people in terms of getting parts of the PREEMPT_RT
tree into mainline.
This patch (of 9):
The per-cpu page allocator lists and the per-cpu vmstat deltas are stored
in the same struct per_cpu_pages even though vmstats have no direct impact
on the per-cpu page lists. This is inconsistent because the vmstats for a
node are stored on a dedicated structure. The bigger issue is that the
per_cpu_pages structure is not cache-aligned and stat updates either cache
conflict with adjacent per-cpu lists incurring a runtime cost or padding
is required incurring a memory cost.
This patch splits the per-cpu pagelists and the vmstat deltas into
separate structures. It's mostly a mechanical conversion but some
variable renaming is done to clearly distinguish the per-cpu pages
structure (pcp) from the vmstats (pzstats).
Superficially, this appears to increase the size of the per_cpu_pages
structure but the movement of expire fills a structure hole so there is no
impact overall.
[mgorman@techsingularity.net: make it W=1 cleaner]
Link: https://lkml.kernel.org/r/20210514144622.GA3735@techsingularity.net
[mgorman@techsingularity.net: make it W=1 even cleaner]
Link: https://lkml.kernel.org/r/20210516140705.GB3735@techsingularity.net
[lkp@intel.com: check struct per_cpu_zonestat has a non-zero size]
[vbabka@suse.cz: Init zone->per_cpu_zonestats properly]
Link: https://lkml.kernel.org/r/20210512095458.30632-1-mgorman@techsingularity.net
Link: https://lkml.kernel.org/r/20210512095458.30632-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 02:41:38 +00:00
|
|
|
if (zone->per_cpu_pageset != &boot_pageset) {
|
2012-10-08 23:33:39 +00:00
|
|
|
for_each_online_cpu(cpu) {
|
mm/page_alloc: split per cpu page lists and zone stats
The PCP (per-cpu page allocator in page_alloc.c) shares locking
requirements with vmstat and the zone lock which is inconvenient and
causes some issues. For example, the PCP list and vmstat share the same
per-cpu space meaning that it's possible that vmstat updates dirty cache
lines holding per-cpu lists across CPUs unless padding is used. Second,
PREEMPT_RT does not want to disable IRQs for too long in the page
allocator.
This series splits the locking requirements and uses locks types more
suitable for PREEMPT_RT, reduces the time when special locking is required
for stats and reduces the time when IRQs need to be disabled on
!PREEMPT_RT kernels.
Why local_lock? PREEMPT_RT considers the following sequence to be unsafe
as documented in Documentation/locking/locktypes.rst
local_irq_disable();
spin_lock(&lock);
The pcp allocator has this sequence for rmqueue_pcplist (local_irq_save)
-> __rmqueue_pcplist -> rmqueue_bulk (spin_lock). While it's possible to
separate this out, it generally means there are points where we enable
IRQs and reenable them again immediately. To prevent a migration and the
per-cpu pointer going stale, migrate_disable is also needed. That is a
custom lock that is similar, but worse, than local_lock. Furthermore, on
PREEMPT_RT, it's undesirable to leave IRQs disabled for too long. By
converting to local_lock which disables migration on PREEMPT_RT, the
locking requirements can be separated and start moving the protections for
PCP, stats and the zone lock to PREEMPT_RT-safe equivalent locking. As a
bonus, local_lock also means that PROVE_LOCKING does something useful.
After that, it's obvious that zone_statistics incurs too much overhead and
leaves IRQs disabled for longer than necessary on !PREEMPT_RT kernels.
zone_statistics uses perfectly accurate counters requiring IRQs be
disabled for parallel RMW sequences when inaccurate ones like vm_events
would do. The series makes the NUMA statistics (NUMA_HIT and friends)
inaccurate counters that then require no special protection on
!PREEMPT_RT.
The bulk page allocator can then do stat updates in bulk with IRQs enabled
which should improve the efficiency. Technically, this could have been
done without the local_lock and vmstat conversion work and the order
simply reflects the timing of when different series were implemented.
Finally, there are places where we conflate IRQs being disabled for the
PCP with the IRQ-safe zone spinlock. The remainder of the series reduces
the scope of what is protected by disabled IRQs on !PREEMPT_RT kernels.
By the end of the series, page_alloc.c does not call local_irq_save so the
locking scope is a bit clearer. The one exception is that modifying
NR_FREE_PAGES still happens in places where it's known the IRQs are
disabled as it's harmless for PREEMPT_RT and would be expensive to split
the locking there.
No performance data is included because despite the overhead of the stats,
it's within the noise for most workloads on !PREEMPT_RT. However, Jesper
Dangaard Brouer ran a page allocation microbenchmark on a E5-1650 v4 @
3.60GHz CPU on the first version of this series. Focusing on the array
variant of the bulk page allocator reveals the following.
(CPU: Intel(R) Xeon(R) CPU E5-1650 v4 @ 3.60GHz)
ARRAY variant: time_bulk_page_alloc_free_array: step=bulk size
Baseline Patched
1 56.383 54.225 (+3.83%)
2 40.047 35.492 (+11.38%)
3 37.339 32.643 (+12.58%)
4 35.578 30.992 (+12.89%)
8 33.592 29.606 (+11.87%)
16 32.362 28.532 (+11.85%)
32 31.476 27.728 (+11.91%)
64 30.633 27.252 (+11.04%)
128 30.596 27.090 (+11.46%)
While this is a positive outcome, the series is more likely to be
interesting to the RT people in terms of getting parts of the PREEMPT_RT
tree into mainline.
This patch (of 9):
The per-cpu page allocator lists and the per-cpu vmstat deltas are stored
in the same struct per_cpu_pages even though vmstats have no direct impact
on the per-cpu page lists. This is inconsistent because the vmstats for a
node are stored on a dedicated structure. The bigger issue is that the
per_cpu_pages structure is not cache-aligned and stat updates either cache
conflict with adjacent per-cpu lists incurring a runtime cost or padding
is required incurring a memory cost.
This patch splits the per-cpu pagelists and the vmstat deltas into
separate structures. It's mostly a mechanical conversion but some
variable renaming is done to clearly distinguish the per-cpu pages
structure (pcp) from the vmstats (pzstats).
Superficially, this appears to increase the size of the per_cpu_pages
structure but the movement of expire fills a structure hole so there is no
impact overall.
[mgorman@techsingularity.net: make it W=1 cleaner]
Link: https://lkml.kernel.org/r/20210514144622.GA3735@techsingularity.net
[mgorman@techsingularity.net: make it W=1 even cleaner]
Link: https://lkml.kernel.org/r/20210516140705.GB3735@techsingularity.net
[lkp@intel.com: check struct per_cpu_zonestat has a non-zero size]
[vbabka@suse.cz: Init zone->per_cpu_zonestats properly]
Link: https://lkml.kernel.org/r/20210512095458.30632-1-mgorman@techsingularity.net
Link: https://lkml.kernel.org/r/20210512095458.30632-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 02:41:38 +00:00
|
|
|
pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
|
|
|
|
drain_zonestat(zone, pzstats);
|
2012-10-08 23:33:39 +00:00
|
|
|
}
|
mm/page_alloc: split per cpu page lists and zone stats
The PCP (per-cpu page allocator in page_alloc.c) shares locking
requirements with vmstat and the zone lock which is inconvenient and
causes some issues. For example, the PCP list and vmstat share the same
per-cpu space meaning that it's possible that vmstat updates dirty cache
lines holding per-cpu lists across CPUs unless padding is used. Second,
PREEMPT_RT does not want to disable IRQs for too long in the page
allocator.
This series splits the locking requirements and uses locks types more
suitable for PREEMPT_RT, reduces the time when special locking is required
for stats and reduces the time when IRQs need to be disabled on
!PREEMPT_RT kernels.
Why local_lock? PREEMPT_RT considers the following sequence to be unsafe
as documented in Documentation/locking/locktypes.rst
local_irq_disable();
spin_lock(&lock);
The pcp allocator has this sequence for rmqueue_pcplist (local_irq_save)
-> __rmqueue_pcplist -> rmqueue_bulk (spin_lock). While it's possible to
separate this out, it generally means there are points where we enable
IRQs and reenable them again immediately. To prevent a migration and the
per-cpu pointer going stale, migrate_disable is also needed. That is a
custom lock that is similar, but worse, than local_lock. Furthermore, on
PREEMPT_RT, it's undesirable to leave IRQs disabled for too long. By
converting to local_lock which disables migration on PREEMPT_RT, the
locking requirements can be separated and start moving the protections for
PCP, stats and the zone lock to PREEMPT_RT-safe equivalent locking. As a
bonus, local_lock also means that PROVE_LOCKING does something useful.
After that, it's obvious that zone_statistics incurs too much overhead and
leaves IRQs disabled for longer than necessary on !PREEMPT_RT kernels.
zone_statistics uses perfectly accurate counters requiring IRQs be
disabled for parallel RMW sequences when inaccurate ones like vm_events
would do. The series makes the NUMA statistics (NUMA_HIT and friends)
inaccurate counters that then require no special protection on
!PREEMPT_RT.
The bulk page allocator can then do stat updates in bulk with IRQs enabled
which should improve the efficiency. Technically, this could have been
done without the local_lock and vmstat conversion work and the order
simply reflects the timing of when different series were implemented.
Finally, there are places where we conflate IRQs being disabled for the
PCP with the IRQ-safe zone spinlock. The remainder of the series reduces
the scope of what is protected by disabled IRQs on !PREEMPT_RT kernels.
By the end of the series, page_alloc.c does not call local_irq_save so the
locking scope is a bit clearer. The one exception is that modifying
NR_FREE_PAGES still happens in places where it's known the IRQs are
disabled as it's harmless for PREEMPT_RT and would be expensive to split
the locking there.
No performance data is included because despite the overhead of the stats,
it's within the noise for most workloads on !PREEMPT_RT. However, Jesper
Dangaard Brouer ran a page allocation microbenchmark on a E5-1650 v4 @
3.60GHz CPU on the first version of this series. Focusing on the array
variant of the bulk page allocator reveals the following.
(CPU: Intel(R) Xeon(R) CPU E5-1650 v4 @ 3.60GHz)
ARRAY variant: time_bulk_page_alloc_free_array: step=bulk size
Baseline Patched
1 56.383 54.225 (+3.83%)
2 40.047 35.492 (+11.38%)
3 37.339 32.643 (+12.58%)
4 35.578 30.992 (+12.89%)
8 33.592 29.606 (+11.87%)
16 32.362 28.532 (+11.85%)
32 31.476 27.728 (+11.91%)
64 30.633 27.252 (+11.04%)
128 30.596 27.090 (+11.46%)
While this is a positive outcome, the series is more likely to be
interesting to the RT people in terms of getting parts of the PREEMPT_RT
tree into mainline.
This patch (of 9):
The per-cpu page allocator lists and the per-cpu vmstat deltas are stored
in the same struct per_cpu_pages even though vmstats have no direct impact
on the per-cpu page lists. This is inconsistent because the vmstats for a
node are stored on a dedicated structure. The bigger issue is that the
per_cpu_pages structure is not cache-aligned and stat updates either cache
conflict with adjacent per-cpu lists incurring a runtime cost or padding
is required incurring a memory cost.
This patch splits the per-cpu pagelists and the vmstat deltas into
separate structures. It's mostly a mechanical conversion but some
variable renaming is done to clearly distinguish the per-cpu pages
structure (pcp) from the vmstats (pzstats).
Superficially, this appears to increase the size of the per_cpu_pages
structure but the movement of expire fills a structure hole so there is no
impact overall.
[mgorman@techsingularity.net: make it W=1 cleaner]
Link: https://lkml.kernel.org/r/20210514144622.GA3735@techsingularity.net
[mgorman@techsingularity.net: make it W=1 even cleaner]
Link: https://lkml.kernel.org/r/20210516140705.GB3735@techsingularity.net
[lkp@intel.com: check struct per_cpu_zonestat has a non-zero size]
[vbabka@suse.cz: Init zone->per_cpu_zonestats properly]
Link: https://lkml.kernel.org/r/20210512095458.30632-1-mgorman@techsingularity.net
Link: https://lkml.kernel.org/r/20210512095458.30632-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 02:41:38 +00:00
|
|
|
free_percpu(zone->per_cpu_pageset);
|
|
|
|
zone->per_cpu_pageset = &boot_pageset;
|
2022-09-16 07:22:47 +00:00
|
|
|
if (zone->per_cpu_zonestats != &boot_zonestats) {
|
|
|
|
free_percpu(zone->per_cpu_zonestats);
|
|
|
|
zone->per_cpu_zonestats = &boot_zonestats;
|
|
|
|
}
|
2012-07-31 23:43:32 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-12-12 00:01:01 +00:00
|
|
|
#ifdef CONFIG_MEMORY_HOTREMOVE
|
2007-10-16 08:26:12 +00:00
|
|
|
/*
|
2020-10-16 03:07:59 +00:00
|
|
|
* All pages in the range must be in a single zone, must not contain holes,
|
|
|
|
* must span full sections, and must be isolated before calling this function.
|
2007-10-16 08:26:12 +00:00
|
|
|
*/
|
2020-10-16 03:07:59 +00:00
|
|
|
void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
|
2007-10-16 08:26:12 +00:00
|
|
|
{
|
2020-10-16 03:07:59 +00:00
|
|
|
unsigned long pfn = start_pfn;
|
2007-10-16 08:26:12 +00:00
|
|
|
struct page *page;
|
|
|
|
struct zone *zone;
|
2019-12-01 01:54:03 +00:00
|
|
|
unsigned int order;
|
2007-10-16 08:26:12 +00:00
|
|
|
unsigned long flags;
|
2019-05-14 00:21:24 +00:00
|
|
|
|
2017-07-06 22:37:56 +00:00
|
|
|
offline_mem_sections(pfn, end_pfn);
|
2007-10-16 08:26:12 +00:00
|
|
|
zone = page_zone(pfn_to_page(pfn));
|
|
|
|
spin_lock_irqsave(&zone->lock, flags);
|
|
|
|
while (pfn < end_pfn) {
|
|
|
|
page = pfn_to_page(pfn);
|
2012-12-12 00:00:45 +00:00
|
|
|
/*
|
|
|
|
* The HWPoisoned page may be not in buddy system, and
|
|
|
|
* page_count() is not 0.
|
|
|
|
*/
|
|
|
|
if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
|
|
|
|
pfn++;
|
|
|
|
continue;
|
|
|
|
}
|
mm: Allow to offline unmovable PageOffline() pages via MEM_GOING_OFFLINE
virtio-mem wants to allow to offline memory blocks of which some parts
were unplugged (allocated via alloc_contig_range()), especially, to later
offline and remove completely unplugged memory blocks. The important part
is that PageOffline() has to remain set until the section is offline, so
these pages will never get accessed (e.g., when dumping). The pages should
not be handed back to the buddy (which would require clearing PageOffline()
and result in issues if offlining fails and the pages are suddenly in the
buddy).
Let's allow to do that by allowing to isolate any PageOffline() page
when offlining. This way, we can reach the memory hotplug notifier
MEM_GOING_OFFLINE, where the driver can signal that he is fine with
offlining this page by dropping its reference count. PageOffline() pages
with a reference count of 0 can then be skipped when offlining the
pages (like if they were free, however they are not in the buddy).
Anybody who uses PageOffline() pages and does not agree to offline them
(e.g., Hyper-V balloon, XEN balloon, VMWare balloon for 2MB pages) will not
decrement the reference count and make offlining fail when trying to
migrate such an unmovable page. So there should be no observable change.
Same applies to balloon compaction users (movable PageOffline() pages), the
pages will simply be migrated.
Note 1: If offlining fails, a driver has to increment the reference
count again in MEM_CANCEL_OFFLINE.
Note 2: A driver that makes use of this has to be aware that re-onlining
the memory block has to be handled by hooking into onlining code
(online_page_callback_t), resetting the page PageOffline() and
not giving them to the buddy.
Reviewed-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Tested-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Juergen Gross <jgross@suse.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Anthony Yznaga <anthony.yznaga@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Pingfan Liu <kernelfans@gmail.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Link: https://lore.kernel.org/r/20200507140139.17083-7-david@redhat.com
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2020-05-07 14:01:30 +00:00
|
|
|
/*
|
|
|
|
* At this point all remaining PageOffline() pages have a
|
|
|
|
* reference count of 0 and can simply be skipped.
|
|
|
|
*/
|
|
|
|
if (PageOffline(page)) {
|
|
|
|
BUG_ON(page_count(page));
|
|
|
|
BUG_ON(PageBuddy(page));
|
|
|
|
pfn++;
|
|
|
|
continue;
|
|
|
|
}
|
2012-12-12 00:00:45 +00:00
|
|
|
|
2007-10-16 08:26:12 +00:00
|
|
|
BUG_ON(page_count(page));
|
|
|
|
BUG_ON(!PageBuddy(page));
|
2020-10-16 03:10:15 +00:00
|
|
|
order = buddy_order(page);
|
2020-04-07 03:04:49 +00:00
|
|
|
del_page_from_free_list(page, zone, order);
|
2007-10-16 08:26:12 +00:00
|
|
|
pfn += (1 << order);
|
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(&zone->lock, flags);
|
|
|
|
}
|
|
|
|
#endif
|
2009-12-16 11:19:58 +00:00
|
|
|
|
2021-11-05 20:40:31 +00:00
|
|
|
/*
|
|
|
|
* This function returns a stable result only if called under zone lock.
|
|
|
|
*/
|
2009-12-16 11:19:58 +00:00
|
|
|
bool is_free_buddy_page(struct page *page)
|
|
|
|
{
|
|
|
|
unsigned long pfn = page_to_pfn(page);
|
2014-06-04 23:10:21 +00:00
|
|
|
unsigned int order;
|
2009-12-16 11:19:58 +00:00
|
|
|
|
2023-03-15 11:31:33 +00:00
|
|
|
for (order = 0; order <= MAX_ORDER; order++) {
|
2009-12-16 11:19:58 +00:00
|
|
|
struct page *page_head = page - (pfn & ((1 << order) - 1));
|
|
|
|
|
2021-11-05 20:40:31 +00:00
|
|
|
if (PageBuddy(page_head) &&
|
|
|
|
buddy_order_unsafe(page_head) >= order)
|
2009-12-16 11:19:58 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2023-03-15 11:31:33 +00:00
|
|
|
return order <= MAX_ORDER;
|
2009-12-16 11:19:58 +00:00
|
|
|
}
|
2022-03-22 21:44:35 +00:00
|
|
|
EXPORT_SYMBOL(is_free_buddy_page);
|
2018-08-24 00:00:42 +00:00
|
|
|
|
|
|
|
#ifdef CONFIG_MEMORY_FAILURE
|
|
|
|
/*
|
2020-10-16 03:07:05 +00:00
|
|
|
* Break down a higher-order page in sub-pages, and keep our target out of
|
|
|
|
* buddy allocator.
|
2018-08-24 00:00:42 +00:00
|
|
|
*/
|
2020-10-16 03:07:05 +00:00
|
|
|
static void break_down_buddy_pages(struct zone *zone, struct page *page,
|
|
|
|
struct page *target, int low, int high,
|
|
|
|
int migratetype)
|
|
|
|
{
|
|
|
|
unsigned long size = 1 << high;
|
|
|
|
struct page *current_buddy, *next_page;
|
|
|
|
|
|
|
|
while (high > low) {
|
|
|
|
high--;
|
|
|
|
size >>= 1;
|
|
|
|
|
|
|
|
if (target >= &page[size]) {
|
|
|
|
next_page = page + size;
|
|
|
|
current_buddy = page;
|
|
|
|
} else {
|
|
|
|
next_page = page;
|
|
|
|
current_buddy = page + size;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (set_page_guard(zone, current_buddy, high, migratetype))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (current_buddy != target) {
|
|
|
|
add_to_free_list(current_buddy, zone, high, migratetype);
|
2020-10-16 03:10:15 +00:00
|
|
|
set_buddy_order(current_buddy, high);
|
2020-10-16 03:07:05 +00:00
|
|
|
page = next_page;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Take a page that will be marked as poisoned off the buddy allocator.
|
|
|
|
*/
|
|
|
|
bool take_page_off_buddy(struct page *page)
|
2018-08-24 00:00:42 +00:00
|
|
|
{
|
|
|
|
struct zone *zone = page_zone(page);
|
|
|
|
unsigned long pfn = page_to_pfn(page);
|
|
|
|
unsigned long flags;
|
|
|
|
unsigned int order;
|
2020-10-16 03:07:05 +00:00
|
|
|
bool ret = false;
|
2018-08-24 00:00:42 +00:00
|
|
|
|
|
|
|
spin_lock_irqsave(&zone->lock, flags);
|
2023-03-15 11:31:33 +00:00
|
|
|
for (order = 0; order <= MAX_ORDER; order++) {
|
2018-08-24 00:00:42 +00:00
|
|
|
struct page *page_head = page - (pfn & ((1 << order) - 1));
|
2020-10-16 03:10:15 +00:00
|
|
|
int page_order = buddy_order(page_head);
|
2018-08-24 00:00:42 +00:00
|
|
|
|
2020-10-16 03:10:15 +00:00
|
|
|
if (PageBuddy(page_head) && page_order >= order) {
|
2020-10-16 03:07:05 +00:00
|
|
|
unsigned long pfn_head = page_to_pfn(page_head);
|
|
|
|
int migratetype = get_pfnblock_migratetype(page_head,
|
|
|
|
pfn_head);
|
|
|
|
|
2020-10-16 03:10:15 +00:00
|
|
|
del_page_from_free_list(page_head, zone, page_order);
|
2020-10-16 03:07:05 +00:00
|
|
|
break_down_buddy_pages(zone, page_head, page, 0,
|
2020-10-16 03:10:15 +00:00
|
|
|
page_order, migratetype);
|
mm/hwpoison: fix unpoison_memory()
After recent soft-offline rework, error pages can be taken off from
buddy allocator, but the existing unpoison_memory() does not properly
undo the operation. Moreover, due to the recent change on
__get_hwpoison_page(), get_page_unless_zero() is hardly called for
hwpoisoned pages. So __get_hwpoison_page() highly likely returns -EBUSY
(meaning to fail to grab page refcount) and unpoison just clears
PG_hwpoison without releasing a refcount. That does not lead to a
critical issue like kernel panic, but unpoisoned pages never get back to
buddy (leaked permanently), which is not good.
To (partially) fix this, we need to identify "taken off" pages from
other types of hwpoisoned pages. We can't use refcount or page flags
for this purpose, so a pseudo flag is defined by hacking ->private
field. Someone might think that put_page() is enough to cancel
taken-off pages, but the normal free path contains some operations not
suitable for the current purpose, and can fire VM_BUG_ON().
Note that unpoison_memory() is now supposed to be cancel hwpoison events
injected only by madvise() or
/sys/devices/system/memory/{hard,soft}_offline_page, not by MCE
injection, so please don't try to use unpoison when testing with MCE
injection.
[lkp@intel.com: report build failure for ARCH=i386]
Link: https://lkml.kernel.org/r/20211115084006.3728254-4-naoya.horiguchi@linux.dev
Signed-off-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Ding Hui <dinghui@sangfor.com.cn>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-14 22:09:09 +00:00
|
|
|
SetPageHWPoisonTakenOff(page);
|
mm/page_alloc: fix counting of free pages after take off from buddy
Recently we found that there is a lot MemFree left in /proc/meminfo
after do a lot of pages soft offline, it's not quite correct.
Before Oscar's rework of soft offline for free pages [1], if we soft
offline free pages, these pages are left in buddy with HWPoison flag,
and NR_FREE_PAGES is not updated immediately. So the difference between
NR_FREE_PAGES and real number of available free pages is also even big
at the beginning.
However, with the workload running, when we catch HWPoison page in any
alloc functions subsequently, we will remove it from buddy, meanwhile
update the NR_FREE_PAGES and try again, so the NR_FREE_PAGES will get
more and more closer to the real number of available free pages.
(regardless of unpoison_memory())
Now, for offline free pages, after a successful call
take_page_off_buddy(), the page is no longer belong to buddy allocator,
and will not be used any more, but we missed accounting NR_FREE_PAGES in
this situation, and there is no chance to be updated later.
Do update in take_page_off_buddy() like rmqueue() does, but avoid double
counting if some one already set_migratetype_isolate() on the page.
[1]: commit 06be6ff3d2ec ("mm,hwpoison: rework soft offline for free pages")
Link: https://lkml.kernel.org/r/20210526075247.11130-1-dinghui@sangfor.com.cn
Fixes: 06be6ff3d2ec ("mm,hwpoison: rework soft offline for free pages")
Signed-off-by: Ding Hui <dinghui@sangfor.com.cn>
Suggested-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-05 03:01:21 +00:00
|
|
|
if (!is_migrate_isolate(migratetype))
|
|
|
|
__mod_zone_freepage_state(zone, -1, migratetype);
|
2020-10-16 03:07:05 +00:00
|
|
|
ret = true;
|
2018-08-24 00:00:42 +00:00
|
|
|
break;
|
|
|
|
}
|
2020-10-16 03:07:05 +00:00
|
|
|
if (page_count(page_head) > 0)
|
|
|
|
break;
|
2018-08-24 00:00:42 +00:00
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(&zone->lock, flags);
|
2020-10-16 03:07:05 +00:00
|
|
|
return ret;
|
2018-08-24 00:00:42 +00:00
|
|
|
}
|
mm/hwpoison: fix unpoison_memory()
After recent soft-offline rework, error pages can be taken off from
buddy allocator, but the existing unpoison_memory() does not properly
undo the operation. Moreover, due to the recent change on
__get_hwpoison_page(), get_page_unless_zero() is hardly called for
hwpoisoned pages. So __get_hwpoison_page() highly likely returns -EBUSY
(meaning to fail to grab page refcount) and unpoison just clears
PG_hwpoison without releasing a refcount. That does not lead to a
critical issue like kernel panic, but unpoisoned pages never get back to
buddy (leaked permanently), which is not good.
To (partially) fix this, we need to identify "taken off" pages from
other types of hwpoisoned pages. We can't use refcount or page flags
for this purpose, so a pseudo flag is defined by hacking ->private
field. Someone might think that put_page() is enough to cancel
taken-off pages, but the normal free path contains some operations not
suitable for the current purpose, and can fire VM_BUG_ON().
Note that unpoison_memory() is now supposed to be cancel hwpoison events
injected only by madvise() or
/sys/devices/system/memory/{hard,soft}_offline_page, not by MCE
injection, so please don't try to use unpoison when testing with MCE
injection.
[lkp@intel.com: report build failure for ARCH=i386]
Link: https://lkml.kernel.org/r/20211115084006.3728254-4-naoya.horiguchi@linux.dev
Signed-off-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Ding Hui <dinghui@sangfor.com.cn>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-14 22:09:09 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Cancel takeoff done by take_page_off_buddy().
|
|
|
|
*/
|
|
|
|
bool put_page_back_buddy(struct page *page)
|
|
|
|
{
|
|
|
|
struct zone *zone = page_zone(page);
|
|
|
|
unsigned long pfn = page_to_pfn(page);
|
|
|
|
unsigned long flags;
|
|
|
|
int migratetype = get_pfnblock_migratetype(page, pfn);
|
|
|
|
bool ret = false;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&zone->lock, flags);
|
|
|
|
if (put_page_testzero(page)) {
|
|
|
|
ClearPageHWPoisonTakenOff(page);
|
|
|
|
__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
|
|
|
|
if (TestClearPageHWPoison(page)) {
|
|
|
|
ret = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(&zone->lock, flags);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
2018-08-24 00:00:42 +00:00
|
|
|
#endif
|
mm_zone: add function to check if managed dma zone exists
Patch series "Handle warning of allocation failure on DMA zone w/o
managed pages", v4.
**Problem observed:
On x86_64, when crash is triggered and entering into kdump kernel, page
allocation failure can always be seen.
---------------------------------
DMA: preallocated 128 KiB GFP_KERNEL pool for atomic allocations
swapper/0: page allocation failure: order:5, mode:0xcc1(GFP_KERNEL|GFP_DMA), nodemask=(null),cpuset=/,mems_allowed=0
CPU: 0 PID: 1 Comm: swapper/0
Call Trace:
dump_stack+0x7f/0xa1
warn_alloc.cold+0x72/0xd6
......
__alloc_pages+0x24d/0x2c0
......
dma_atomic_pool_init+0xdb/0x176
do_one_initcall+0x67/0x320
? rcu_read_lock_sched_held+0x3f/0x80
kernel_init_freeable+0x290/0x2dc
? rest_init+0x24f/0x24f
kernel_init+0xa/0x111
ret_from_fork+0x22/0x30
Mem-Info:
------------------------------------
***Root cause:
In the current kernel, it assumes that DMA zone must have managed pages
and try to request pages if CONFIG_ZONE_DMA is enabled. While this is not
always true. E.g in kdump kernel of x86_64, only low 1M is presented and
locked down at very early stage of boot, so that this low 1M won't be
added into buddy allocator to become managed pages of DMA zone. This
exception will always cause page allocation failure if page is requested
from DMA zone.
***Investigation:
This failure happens since below commit merged into linus's tree.
1a6a9044b967 x86/setup: Remove CONFIG_X86_RESERVE_LOW and reservelow= options
23721c8e92f7 x86/crash: Remove crash_reserve_low_1M()
f1d4d47c5851 x86/setup: Always reserve the first 1M of RAM
7c321eb2b843 x86/kdump: Remove the backup region handling
6f599d84231f x86/kdump: Always reserve the low 1M when the crashkernel option is specified
Before them, on x86_64, the low 640K area will be reused by kdump kernel.
So in kdump kernel, the content of low 640K area is copied into a backup
region for dumping before jumping into kdump. Then except of those firmware
reserved region in [0, 640K], the left area will be added into buddy
allocator to become available managed pages of DMA zone.
However, after above commits applied, in kdump kernel of x86_64, the low
1M is reserved by memblock, but not released to buddy allocator. So any
later page allocation requested from DMA zone will fail.
At the beginning, if crashkernel is reserved, the low 1M need be locked
down because AMD SME encrypts memory making the old backup region
mechanims impossible when switching into kdump kernel.
Later, it was also observed that there are BIOSes corrupting memory
under 1M. To solve this, in commit f1d4d47c5851, the entire region of
low 1M is always reserved after the real mode trampoline is allocated.
Besides, recently, Intel engineer mentioned their TDX (Trusted domain
extensions) which is under development in kernel also needs to lock down
the low 1M. So we can't simply revert above commits to fix the page allocation
failure from DMA zone as someone suggested.
***Solution:
Currently, only DMA atomic pool and dma-kmalloc will initialize and
request page allocation with GFP_DMA during bootup.
So only initializ DMA atomic pool when DMA zone has available managed
pages, otherwise just skip the initialization.
For dma-kmalloc(), for the time being, let's mute the warning of
allocation failure if requesting pages from DMA zone while no manged
pages. Meanwhile, change code to use dma_alloc_xx/dma_map_xx API to
replace kmalloc(GFP_DMA), or do not use GFP_DMA when calling kmalloc() if
not necessary. Christoph is posting patches to fix those under
drivers/scsi/. Finally, we can remove the need of dma-kmalloc() as people
suggested.
This patch (of 3):
In some places of the current kernel, it assumes that dma zone must have
managed pages if CONFIG_ZONE_DMA is enabled. While this is not always
true. E.g in kdump kernel of x86_64, only low 1M is presented and locked
down at very early stage of boot, so that there's no managed pages at all
in DMA zone. This exception will always cause page allocation failure if
page is requested from DMA zone.
Here add function has_managed_dma() and the relevant helper functions to
check if there's DMA zone with managed pages. It will be used in later
patches.
Link: https://lkml.kernel.org/r/20211223094435.248523-1-bhe@redhat.com
Link: https://lkml.kernel.org/r/20211223094435.248523-2-bhe@redhat.com
Fixes: 6f599d84231f ("x86/kdump: Always reserve the low 1M when the crashkernel option is specified")
Signed-off-by: Baoquan He <bhe@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: John Donnelly <john.p.donnelly@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Laight <David.Laight@ACULAB.COM>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-14 22:07:37 +00:00
|
|
|
|
|
|
|
#ifdef CONFIG_ZONE_DMA
|
|
|
|
bool has_managed_dma(void)
|
|
|
|
{
|
|
|
|
struct pglist_data *pgdat;
|
|
|
|
|
|
|
|
for_each_online_pgdat(pgdat) {
|
|
|
|
struct zone *zone = &pgdat->node_zones[ZONE_DMA];
|
|
|
|
|
|
|
|
if (managed_zone(zone))
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
#endif /* CONFIG_ZONE_DMA */
|