2022-03-03 22:35:43 +00:00
|
|
|
// SPDX-License-Identifier: GPL-2.0+
|
|
|
|
/*
|
|
|
|
* Copyright (C) 2021 Sean Anderson <sean.anderson@seco.com>
|
|
|
|
*
|
|
|
|
* Limitations:
|
|
|
|
* - When changing both duty cycle and period, we may end up with one cycle
|
|
|
|
* with the old duty cycle and the new period. This is because the counters
|
|
|
|
* may only be reloaded by first stopping them, or by letting them be
|
|
|
|
* automatically reloaded at the end of a cycle. If this automatic reload
|
|
|
|
* happens after we set TLR0 but before we set TLR1 then we will have a
|
|
|
|
* bad cycle. This could probably be fixed by reading TCR0 just before
|
|
|
|
* reprogramming, but I think it would add complexity for little gain.
|
|
|
|
* - Cannot produce 100% duty cycle by configuring the TLRs. This might be
|
|
|
|
* possible by stopping the counters at an appropriate point in the cycle,
|
|
|
|
* but this is not (yet) implemented.
|
|
|
|
* - Only produces "normal" output.
|
|
|
|
* - Always produces low output if disabled.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <clocksource/timer-xilinx.h>
|
|
|
|
#include <linux/clk.h>
|
|
|
|
#include <linux/clk-provider.h>
|
|
|
|
#include <linux/device.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/of.h>
|
|
|
|
#include <linux/platform_device.h>
|
|
|
|
#include <linux/pwm.h>
|
|
|
|
#include <linux/regmap.h>
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The following functions are "common" to drivers for this device, and may be
|
|
|
|
* exported at a future date.
|
|
|
|
*/
|
|
|
|
u32 xilinx_timer_tlr_cycles(struct xilinx_timer_priv *priv, u32 tcsr,
|
|
|
|
u64 cycles)
|
|
|
|
{
|
|
|
|
WARN_ON(cycles < 2 || cycles - 2 > priv->max);
|
|
|
|
|
|
|
|
if (tcsr & TCSR_UDT)
|
|
|
|
return cycles - 2;
|
|
|
|
return priv->max - cycles + 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned int xilinx_timer_get_period(struct xilinx_timer_priv *priv,
|
|
|
|
u32 tlr, u32 tcsr)
|
|
|
|
{
|
|
|
|
u64 cycles;
|
|
|
|
|
|
|
|
if (tcsr & TCSR_UDT)
|
|
|
|
cycles = tlr + 2;
|
|
|
|
else
|
|
|
|
cycles = (u64)priv->max - tlr + 2;
|
|
|
|
|
|
|
|
/* cycles has a max of 2^32 + 2, so we can't overflow */
|
|
|
|
return DIV64_U64_ROUND_UP(cycles * NSEC_PER_SEC,
|
|
|
|
clk_get_rate(priv->clk));
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The idea here is to capture whether the PWM is actually running (e.g.
|
|
|
|
* because we or the bootloader set it up) and we need to be careful to ensure
|
|
|
|
* we don't cause a glitch. According to the data sheet, to enable the PWM we
|
|
|
|
* need to
|
|
|
|
*
|
|
|
|
* - Set both timers to generate mode (MDT=1)
|
|
|
|
* - Set both timers to PWM mode (PWMA=1)
|
|
|
|
* - Enable the generate out signals (GENT=1)
|
|
|
|
*
|
|
|
|
* In addition,
|
|
|
|
*
|
|
|
|
* - The timer must be running (ENT=1)
|
|
|
|
* - The timer must auto-reload TLR into TCR (ARHT=1)
|
|
|
|
* - We must not be in the process of loading TLR into TCR (LOAD=0)
|
|
|
|
* - Cascade mode must be disabled (CASC=0)
|
|
|
|
*
|
|
|
|
* If any of these differ from usual, then the PWM is either disabled, or is
|
|
|
|
* running in a mode that this driver does not support.
|
|
|
|
*/
|
|
|
|
#define TCSR_PWM_SET (TCSR_GENT | TCSR_ARHT | TCSR_ENT | TCSR_PWMA)
|
|
|
|
#define TCSR_PWM_CLEAR (TCSR_MDT | TCSR_LOAD)
|
|
|
|
#define TCSR_PWM_MASK (TCSR_PWM_SET | TCSR_PWM_CLEAR)
|
|
|
|
|
|
|
|
struct xilinx_pwm_device {
|
|
|
|
struct pwm_chip chip;
|
|
|
|
struct xilinx_timer_priv priv;
|
|
|
|
};
|
|
|
|
|
|
|
|
static inline struct xilinx_timer_priv
|
|
|
|
*xilinx_pwm_chip_to_priv(struct pwm_chip *chip)
|
|
|
|
{
|
|
|
|
return &container_of(chip, struct xilinx_pwm_device, chip)->priv;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool xilinx_timer_pwm_enabled(u32 tcsr0, u32 tcsr1)
|
|
|
|
{
|
|
|
|
return ((TCSR_PWM_MASK | TCSR_CASC) & tcsr0) == TCSR_PWM_SET &&
|
|
|
|
(TCSR_PWM_MASK & tcsr1) == TCSR_PWM_SET;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int xilinx_pwm_apply(struct pwm_chip *chip, struct pwm_device *unused,
|
|
|
|
const struct pwm_state *state)
|
|
|
|
{
|
|
|
|
struct xilinx_timer_priv *priv = xilinx_pwm_chip_to_priv(chip);
|
|
|
|
u32 tlr0, tlr1, tcsr0, tcsr1;
|
|
|
|
u64 period_cycles, duty_cycles;
|
|
|
|
unsigned long rate;
|
|
|
|
|
|
|
|
if (state->polarity != PWM_POLARITY_NORMAL)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* To be representable by TLR, cycles must be between 2 and
|
|
|
|
* priv->max + 2. To enforce this we can reduce the cycles, but we may
|
|
|
|
* not increase them. Caveat emptor: while this does result in more
|
|
|
|
* predictable rounding, it may also result in a completely different
|
|
|
|
* duty cycle (% high time) than what was requested.
|
|
|
|
*/
|
|
|
|
rate = clk_get_rate(priv->clk);
|
|
|
|
/* Avoid overflow */
|
|
|
|
period_cycles = min_t(u64, state->period, U32_MAX * NSEC_PER_SEC);
|
|
|
|
period_cycles = mul_u64_u32_div(period_cycles, rate, NSEC_PER_SEC);
|
|
|
|
period_cycles = min_t(u64, period_cycles, priv->max + 2);
|
|
|
|
if (period_cycles < 2)
|
|
|
|
return -ERANGE;
|
|
|
|
|
|
|
|
/* Same thing for duty cycles */
|
|
|
|
duty_cycles = min_t(u64, state->duty_cycle, U32_MAX * NSEC_PER_SEC);
|
|
|
|
duty_cycles = mul_u64_u32_div(duty_cycles, rate, NSEC_PER_SEC);
|
|
|
|
duty_cycles = min_t(u64, duty_cycles, priv->max + 2);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If we specify 100% duty cycle, we will get 0% instead, so decrease
|
|
|
|
* the duty cycle count by one.
|
|
|
|
*/
|
|
|
|
if (duty_cycles >= period_cycles)
|
|
|
|
duty_cycles = period_cycles - 1;
|
|
|
|
|
|
|
|
/* Round down to 0% duty cycle for unrepresentable duty cycles */
|
|
|
|
if (duty_cycles < 2)
|
|
|
|
duty_cycles = period_cycles;
|
|
|
|
|
|
|
|
regmap_read(priv->map, TCSR0, &tcsr0);
|
|
|
|
regmap_read(priv->map, TCSR1, &tcsr1);
|
|
|
|
tlr0 = xilinx_timer_tlr_cycles(priv, tcsr0, period_cycles);
|
|
|
|
tlr1 = xilinx_timer_tlr_cycles(priv, tcsr1, duty_cycles);
|
|
|
|
regmap_write(priv->map, TLR0, tlr0);
|
|
|
|
regmap_write(priv->map, TLR1, tlr1);
|
|
|
|
|
|
|
|
if (state->enabled) {
|
|
|
|
/*
|
|
|
|
* If the PWM is already running, then the counters will be
|
|
|
|
* reloaded at the end of the current cycle.
|
|
|
|
*/
|
|
|
|
if (!xilinx_timer_pwm_enabled(tcsr0, tcsr1)) {
|
|
|
|
/* Load TLR into TCR */
|
|
|
|
regmap_write(priv->map, TCSR0, tcsr0 | TCSR_LOAD);
|
|
|
|
regmap_write(priv->map, TCSR1, tcsr1 | TCSR_LOAD);
|
|
|
|
/* Enable timers all at once with ENALL */
|
|
|
|
tcsr0 = (TCSR_PWM_SET & ~TCSR_ENT) | (tcsr0 & TCSR_UDT);
|
|
|
|
tcsr1 = TCSR_PWM_SET | TCSR_ENALL | (tcsr1 & TCSR_UDT);
|
|
|
|
regmap_write(priv->map, TCSR0, tcsr0);
|
|
|
|
regmap_write(priv->map, TCSR1, tcsr1);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
regmap_write(priv->map, TCSR0, 0);
|
|
|
|
regmap_write(priv->map, TCSR1, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2022-12-02 18:35:26 +00:00
|
|
|
static int xilinx_pwm_get_state(struct pwm_chip *chip,
|
|
|
|
struct pwm_device *unused,
|
|
|
|
struct pwm_state *state)
|
2022-03-03 22:35:43 +00:00
|
|
|
{
|
|
|
|
struct xilinx_timer_priv *priv = xilinx_pwm_chip_to_priv(chip);
|
|
|
|
u32 tlr0, tlr1, tcsr0, tcsr1;
|
|
|
|
|
|
|
|
regmap_read(priv->map, TLR0, &tlr0);
|
|
|
|
regmap_read(priv->map, TLR1, &tlr1);
|
|
|
|
regmap_read(priv->map, TCSR0, &tcsr0);
|
|
|
|
regmap_read(priv->map, TCSR1, &tcsr1);
|
|
|
|
state->period = xilinx_timer_get_period(priv, tlr0, tcsr0);
|
|
|
|
state->duty_cycle = xilinx_timer_get_period(priv, tlr1, tcsr1);
|
|
|
|
state->enabled = xilinx_timer_pwm_enabled(tcsr0, tcsr1);
|
|
|
|
state->polarity = PWM_POLARITY_NORMAL;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* 100% duty cycle results in constant low output. This may be (very)
|
|
|
|
* wrong if rate > 1 GHz, so fix this if you have such hardware :)
|
|
|
|
*/
|
|
|
|
if (state->period == state->duty_cycle)
|
|
|
|
state->duty_cycle = 0;
|
2022-12-02 18:35:26 +00:00
|
|
|
|
|
|
|
return 0;
|
2022-03-03 22:35:43 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static const struct pwm_ops xilinx_pwm_ops = {
|
|
|
|
.apply = xilinx_pwm_apply,
|
|
|
|
.get_state = xilinx_pwm_get_state,
|
|
|
|
.owner = THIS_MODULE,
|
|
|
|
};
|
|
|
|
|
|
|
|
static const struct regmap_config xilinx_pwm_regmap_config = {
|
|
|
|
.reg_bits = 32,
|
|
|
|
.reg_stride = 4,
|
|
|
|
.val_bits = 32,
|
|
|
|
.val_format_endian = REGMAP_ENDIAN_LITTLE,
|
|
|
|
.max_register = TCR1,
|
|
|
|
};
|
|
|
|
|
|
|
|
static int xilinx_pwm_probe(struct platform_device *pdev)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
struct device *dev = &pdev->dev;
|
|
|
|
struct device_node *np = dev->of_node;
|
|
|
|
struct xilinx_timer_priv *priv;
|
|
|
|
struct xilinx_pwm_device *xilinx_pwm;
|
|
|
|
u32 pwm_cells, one_timer, width;
|
|
|
|
void __iomem *regs;
|
|
|
|
|
|
|
|
/* If there are no PWM cells, this binding is for a timer */
|
|
|
|
ret = of_property_read_u32(np, "#pwm-cells", &pwm_cells);
|
|
|
|
if (ret == -EINVAL)
|
|
|
|
return -ENODEV;
|
|
|
|
if (ret)
|
|
|
|
return dev_err_probe(dev, ret, "could not read #pwm-cells\n");
|
|
|
|
|
|
|
|
xilinx_pwm = devm_kzalloc(dev, sizeof(*xilinx_pwm), GFP_KERNEL);
|
|
|
|
if (!xilinx_pwm)
|
|
|
|
return -ENOMEM;
|
|
|
|
platform_set_drvdata(pdev, xilinx_pwm);
|
|
|
|
priv = &xilinx_pwm->priv;
|
|
|
|
|
|
|
|
regs = devm_platform_ioremap_resource(pdev, 0);
|
|
|
|
if (IS_ERR(regs))
|
|
|
|
return PTR_ERR(regs);
|
|
|
|
|
|
|
|
priv->map = devm_regmap_init_mmio(dev, regs,
|
|
|
|
&xilinx_pwm_regmap_config);
|
|
|
|
if (IS_ERR(priv->map))
|
|
|
|
return dev_err_probe(dev, PTR_ERR(priv->map),
|
|
|
|
"Could not create regmap\n");
|
|
|
|
|
|
|
|
ret = of_property_read_u32(np, "xlnx,one-timer-only", &one_timer);
|
|
|
|
if (ret)
|
|
|
|
return dev_err_probe(dev, ret,
|
|
|
|
"Could not read xlnx,one-timer-only\n");
|
|
|
|
|
|
|
|
if (one_timer)
|
|
|
|
return dev_err_probe(dev, -EINVAL,
|
|
|
|
"Two timers required for PWM mode\n");
|
|
|
|
|
|
|
|
ret = of_property_read_u32(np, "xlnx,count-width", &width);
|
|
|
|
if (ret == -EINVAL)
|
|
|
|
width = 32;
|
|
|
|
else if (ret)
|
|
|
|
return dev_err_probe(dev, ret,
|
|
|
|
"Could not read xlnx,count-width\n");
|
|
|
|
|
|
|
|
if (width != 8 && width != 16 && width != 32)
|
|
|
|
return dev_err_probe(dev, -EINVAL,
|
|
|
|
"Invalid counter width %d\n", width);
|
|
|
|
priv->max = BIT_ULL(width) - 1;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The polarity of the Generate Out signals must be active high for PWM
|
|
|
|
* mode to work. We could determine this from the device tree, but
|
|
|
|
* alas, such properties are not allowed to be used.
|
|
|
|
*/
|
|
|
|
|
|
|
|
priv->clk = devm_clk_get(dev, "s_axi_aclk");
|
|
|
|
if (IS_ERR(priv->clk))
|
|
|
|
return dev_err_probe(dev, PTR_ERR(priv->clk),
|
|
|
|
"Could not get clock\n");
|
|
|
|
|
|
|
|
ret = clk_prepare_enable(priv->clk);
|
|
|
|
if (ret)
|
|
|
|
return dev_err_probe(dev, ret, "Clock enable failed\n");
|
|
|
|
clk_rate_exclusive_get(priv->clk);
|
|
|
|
|
|
|
|
xilinx_pwm->chip.dev = dev;
|
|
|
|
xilinx_pwm->chip.ops = &xilinx_pwm_ops;
|
|
|
|
xilinx_pwm->chip.npwm = 1;
|
|
|
|
ret = pwmchip_add(&xilinx_pwm->chip);
|
|
|
|
if (ret) {
|
|
|
|
clk_rate_exclusive_put(priv->clk);
|
|
|
|
clk_disable_unprepare(priv->clk);
|
|
|
|
return dev_err_probe(dev, ret, "Could not register PWM chip\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int xilinx_pwm_remove(struct platform_device *pdev)
|
|
|
|
{
|
|
|
|
struct xilinx_pwm_device *xilinx_pwm = platform_get_drvdata(pdev);
|
|
|
|
|
|
|
|
pwmchip_remove(&xilinx_pwm->chip);
|
|
|
|
clk_rate_exclusive_put(xilinx_pwm->priv.clk);
|
|
|
|
clk_disable_unprepare(xilinx_pwm->priv.clk);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct of_device_id xilinx_pwm_of_match[] = {
|
|
|
|
{ .compatible = "xlnx,xps-timer-1.00.a", },
|
|
|
|
{},
|
|
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(of, xilinx_pwm_of_match);
|
|
|
|
|
|
|
|
static struct platform_driver xilinx_pwm_driver = {
|
|
|
|
.probe = xilinx_pwm_probe,
|
|
|
|
.remove = xilinx_pwm_remove,
|
|
|
|
.driver = {
|
|
|
|
.name = "xilinx-pwm",
|
|
|
|
.of_match_table = of_match_ptr(xilinx_pwm_of_match),
|
|
|
|
},
|
|
|
|
};
|
|
|
|
module_platform_driver(xilinx_pwm_driver);
|
|
|
|
|
|
|
|
MODULE_ALIAS("platform:xilinx-pwm");
|
|
|
|
MODULE_DESCRIPTION("PWM driver for Xilinx LogiCORE IP AXI Timer");
|
|
|
|
MODULE_LICENSE("GPL");
|