linux/drivers/net/wireless/ath/ath9k/eeprom_9287.c

1187 lines
34 KiB
C
Raw Normal View History

/*
* Copyright (c) 2008-2009 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "hw.h"
#include "ar9002_phy.h"
#define NUM_EEP_WORDS (sizeof(struct ar9287_eeprom) / sizeof(u16))
static int ath9k_hw_ar9287_get_eeprom_ver(struct ath_hw *ah)
{
return (ah->eeprom.map9287.baseEepHeader.version >> 12) & 0xF;
}
static int ath9k_hw_ar9287_get_eeprom_rev(struct ath_hw *ah)
{
return (ah->eeprom.map9287.baseEepHeader.version) & 0xFFF;
}
static bool ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
{
struct ar9287_eeprom *eep = &ah->eeprom.map9287;
struct ath_common *common = ath9k_hw_common(ah);
u16 *eep_data;
int addr, eep_start_loc;
eep_data = (u16 *)eep;
if (common->bus_ops->ath_bus_type == ATH_USB)
eep_start_loc = AR9287_HTC_EEP_START_LOC;
else
eep_start_loc = AR9287_EEP_START_LOC;
if (!ath9k_hw_use_flash(ah)) {
ath_dbg(common, ATH_DBG_EEPROM,
"Reading from EEPROM, not flash\n");
}
for (addr = 0; addr < NUM_EEP_WORDS; addr++) {
if (!ath9k_hw_nvram_read(common, addr + eep_start_loc,
eep_data)) {
ath_dbg(common, ATH_DBG_EEPROM,
"Unable to read eeprom region\n");
return false;
}
eep_data++;
}
return true;
}
static int ath9k_hw_ar9287_check_eeprom(struct ath_hw *ah)
{
u32 sum = 0, el, integer;
u16 temp, word, magic, magic2, *eepdata;
int i, addr;
bool need_swap = false;
struct ar9287_eeprom *eep = &ah->eeprom.map9287;
struct ath_common *common = ath9k_hw_common(ah);
if (!ath9k_hw_use_flash(ah)) {
if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET,
&magic)) {
ath_err(common, "Reading Magic # failed\n");
return false;
}
ath_dbg(common, ATH_DBG_EEPROM,
"Read Magic = 0x%04X\n", magic);
if (magic != AR5416_EEPROM_MAGIC) {
magic2 = swab16(magic);
if (magic2 == AR5416_EEPROM_MAGIC) {
need_swap = true;
eepdata = (u16 *)(&ah->eeprom);
for (addr = 0; addr < NUM_EEP_WORDS; addr++) {
temp = swab16(*eepdata);
*eepdata = temp;
eepdata++;
}
} else {
ath_err(common,
"Invalid EEPROM Magic. Endianness mismatch.\n");
return -EINVAL;
}
}
}
ath_dbg(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
need_swap ? "True" : "False");
if (need_swap)
el = swab16(ah->eeprom.map9287.baseEepHeader.length);
else
el = ah->eeprom.map9287.baseEepHeader.length;
if (el > sizeof(struct ar9287_eeprom))
el = sizeof(struct ar9287_eeprom) / sizeof(u16);
else
el = el / sizeof(u16);
eepdata = (u16 *)(&ah->eeprom);
for (i = 0; i < el; i++)
sum ^= *eepdata++;
if (need_swap) {
word = swab16(eep->baseEepHeader.length);
eep->baseEepHeader.length = word;
word = swab16(eep->baseEepHeader.checksum);
eep->baseEepHeader.checksum = word;
word = swab16(eep->baseEepHeader.version);
eep->baseEepHeader.version = word;
word = swab16(eep->baseEepHeader.regDmn[0]);
eep->baseEepHeader.regDmn[0] = word;
word = swab16(eep->baseEepHeader.regDmn[1]);
eep->baseEepHeader.regDmn[1] = word;
word = swab16(eep->baseEepHeader.rfSilent);
eep->baseEepHeader.rfSilent = word;
word = swab16(eep->baseEepHeader.blueToothOptions);
eep->baseEepHeader.blueToothOptions = word;
word = swab16(eep->baseEepHeader.deviceCap);
eep->baseEepHeader.deviceCap = word;
integer = swab32(eep->modalHeader.antCtrlCommon);
eep->modalHeader.antCtrlCommon = integer;
for (i = 0; i < AR9287_MAX_CHAINS; i++) {
integer = swab32(eep->modalHeader.antCtrlChain[i]);
eep->modalHeader.antCtrlChain[i] = integer;
}
for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
word = swab16(eep->modalHeader.spurChans[i].spurChan);
eep->modalHeader.spurChans[i].spurChan = word;
}
}
if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR9287_EEP_VER
|| ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
sum, ah->eep_ops->get_eeprom_ver(ah));
return -EINVAL;
}
return 0;
}
static u32 ath9k_hw_ar9287_get_eeprom(struct ath_hw *ah,
enum eeprom_param param)
{
struct ar9287_eeprom *eep = &ah->eeprom.map9287;
struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
u16 ver_minor;
ver_minor = pBase->version & AR9287_EEP_VER_MINOR_MASK;
switch (param) {
case EEP_NFTHRESH_2:
return pModal->noiseFloorThreshCh[0];
case EEP_MAC_LSW:
return pBase->macAddr[0] << 8 | pBase->macAddr[1];
case EEP_MAC_MID:
return pBase->macAddr[2] << 8 | pBase->macAddr[3];
case EEP_MAC_MSW:
return pBase->macAddr[4] << 8 | pBase->macAddr[5];
case EEP_REG_0:
return pBase->regDmn[0];
case EEP_REG_1:
return pBase->regDmn[1];
case EEP_OP_CAP:
return pBase->deviceCap;
case EEP_OP_MODE:
return pBase->opCapFlags;
case EEP_RF_SILENT:
return pBase->rfSilent;
case EEP_MINOR_REV:
return ver_minor;
case EEP_TX_MASK:
return pBase->txMask;
case EEP_RX_MASK:
return pBase->rxMask;
case EEP_DEV_TYPE:
return pBase->deviceType;
case EEP_OL_PWRCTRL:
return pBase->openLoopPwrCntl;
case EEP_TEMPSENSE_SLOPE:
if (ver_minor >= AR9287_EEP_MINOR_VER_2)
return pBase->tempSensSlope;
else
return 0;
case EEP_TEMPSENSE_SLOPE_PAL_ON:
if (ver_minor >= AR9287_EEP_MINOR_VER_3)
return pBase->tempSensSlopePalOn;
else
return 0;
default:
return 0;
}
}
static void ath9k_hw_get_ar9287_gain_boundaries_pdadcs(struct ath_hw *ah,
struct ath9k_channel *chan,
struct cal_data_per_freq_ar9287 *pRawDataSet,
u8 *bChans, u16 availPiers,
u16 tPdGainOverlap,
u16 *pPdGainBoundaries,
u8 *pPDADCValues,
u16 numXpdGains)
{
#define TMP_VAL_VPD_TABLE \
((vpdTableI[i][sizeCurrVpdTable - 1] + (ss - maxIndex + 1) * vpdStep));
int i, j, k;
int16_t ss;
u16 idxL = 0, idxR = 0, numPiers;
u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
u8 minPwrT4[AR5416_NUM_PD_GAINS];
u8 maxPwrT4[AR5416_NUM_PD_GAINS];
int16_t vpdStep;
int16_t tmpVal;
u16 sizeCurrVpdTable, maxIndex, tgtIndex;
bool match;
int16_t minDelta = 0;
struct chan_centers centers;
static u8 vpdTableL[AR5416_EEP4K_NUM_PD_GAINS]
[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
static u8 vpdTableR[AR5416_EEP4K_NUM_PD_GAINS]
[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
static u8 vpdTableI[AR5416_EEP4K_NUM_PD_GAINS]
[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS);
ath9k_hw_get_channel_centers(ah, chan, &centers);
for (numPiers = 0; numPiers < availPiers; numPiers++) {
if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
break;
}
match = ath9k_hw_get_lower_upper_index(
(u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
bChans, numPiers, &idxL, &idxR);
if (match) {
for (i = 0; i < numXpdGains; i++) {
minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
pRawDataSet[idxL].pwrPdg[i],
pRawDataSet[idxL].vpdPdg[i],
AR9287_PD_GAIN_ICEPTS,
vpdTableI[i]);
}
} else {
for (i = 0; i < numXpdGains; i++) {
pVpdL = pRawDataSet[idxL].vpdPdg[i];
pPwrL = pRawDataSet[idxL].pwrPdg[i];
pVpdR = pRawDataSet[idxR].vpdPdg[i];
pPwrR = pRawDataSet[idxR].pwrPdg[i];
minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
maxPwrT4[i] = min(pPwrL[AR9287_PD_GAIN_ICEPTS - 1],
pPwrR[AR9287_PD_GAIN_ICEPTS - 1]);
ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
pPwrL, pVpdL,
AR9287_PD_GAIN_ICEPTS,
vpdTableL[i]);
ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
pPwrR, pVpdR,
AR9287_PD_GAIN_ICEPTS,
vpdTableR[i]);
for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
vpdTableI[i][j] = (u8)(ath9k_hw_interpolate(
(u16)FREQ2FBIN(centers. synth_center,
IS_CHAN_2GHZ(chan)),
bChans[idxL], bChans[idxR],
vpdTableL[i][j], vpdTableR[i][j]));
}
}
}
k = 0;
for (i = 0; i < numXpdGains; i++) {
if (i == (numXpdGains - 1))
pPdGainBoundaries[i] =
(u16)(maxPwrT4[i] / 2);
else
pPdGainBoundaries[i] =
(u16)((maxPwrT4[i] + minPwrT4[i+1]) / 4);
pPdGainBoundaries[i] = min((u16)MAX_RATE_POWER,
pPdGainBoundaries[i]);
minDelta = 0;
if (i == 0) {
if (AR_SREV_9280_20_OR_LATER(ah))
ss = (int16_t)(0 - (minPwrT4[i] / 2));
else
ss = 0;
} else {
ss = (int16_t)((pPdGainBoundaries[i-1] -
(minPwrT4[i] / 2)) -
tPdGainOverlap + 1 + minDelta);
}
vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
ss++;
}
sizeCurrVpdTable = (u8)((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
tgtIndex = (u8)(pPdGainBoundaries[i] +
tPdGainOverlap - (minPwrT4[i] / 2));
maxIndex = (tgtIndex < sizeCurrVpdTable) ?
tgtIndex : sizeCurrVpdTable;
while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1)))
pPDADCValues[k++] = vpdTableI[i][ss++];
vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
vpdTableI[i][sizeCurrVpdTable - 2]);
vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
if (tgtIndex > maxIndex) {
while ((ss <= tgtIndex) &&
(k < (AR5416_NUM_PDADC_VALUES - 1))) {
tmpVal = (int16_t) TMP_VAL_VPD_TABLE;
pPDADCValues[k++] =
(u8)((tmpVal > 255) ? 255 : tmpVal);
ss++;
}
}
}
while (i < AR5416_PD_GAINS_IN_MASK) {
pPdGainBoundaries[i] = pPdGainBoundaries[i-1];
i++;
}
while (k < AR5416_NUM_PDADC_VALUES) {
pPDADCValues[k] = pPDADCValues[k-1];
k++;
}
#undef TMP_VAL_VPD_TABLE
}
static void ar9287_eeprom_get_tx_gain_index(struct ath_hw *ah,
struct ath9k_channel *chan,
struct cal_data_op_loop_ar9287 *pRawDatasetOpLoop,
u8 *pCalChans, u16 availPiers, int8_t *pPwr)
{
u16 idxL = 0, idxR = 0, numPiers;
bool match;
struct chan_centers centers;
ath9k_hw_get_channel_centers(ah, chan, &centers);
for (numPiers = 0; numPiers < availPiers; numPiers++) {
if (pCalChans[numPiers] == AR5416_BCHAN_UNUSED)
break;
}
match = ath9k_hw_get_lower_upper_index(
(u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
pCalChans, numPiers, &idxL, &idxR);
if (match) {
*pPwr = (int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0];
} else {
*pPwr = ((int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0] +
(int8_t) pRawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
}
}
static void ar9287_eeprom_olpc_set_pdadcs(struct ath_hw *ah,
int32_t txPower, u16 chain)
{
u32 tmpVal;
u32 a;
/* Enable OLPC for chain 0 */
tmpVal = REG_READ(ah, 0xa270);
tmpVal = tmpVal & 0xFCFFFFFF;
tmpVal = tmpVal | (0x3 << 24);
REG_WRITE(ah, 0xa270, tmpVal);
/* Enable OLPC for chain 1 */
tmpVal = REG_READ(ah, 0xb270);
tmpVal = tmpVal & 0xFCFFFFFF;
tmpVal = tmpVal | (0x3 << 24);
REG_WRITE(ah, 0xb270, tmpVal);
/* Write the OLPC ref power for chain 0 */
if (chain == 0) {
tmpVal = REG_READ(ah, 0xa398);
tmpVal = tmpVal & 0xff00ffff;
a = (txPower)&0xff;
tmpVal = tmpVal | (a << 16);
REG_WRITE(ah, 0xa398, tmpVal);
}
/* Write the OLPC ref power for chain 1 */
if (chain == 1) {
tmpVal = REG_READ(ah, 0xb398);
tmpVal = tmpVal & 0xff00ffff;
a = (txPower)&0xff;
tmpVal = tmpVal | (a << 16);
REG_WRITE(ah, 0xb398, tmpVal);
}
}
static void ath9k_hw_set_ar9287_power_cal_table(struct ath_hw *ah,
struct ath9k_channel *chan,
int16_t *pTxPowerIndexOffset)
{
struct cal_data_per_freq_ar9287 *pRawDataset;
struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
u8 *pCalBChans = NULL;
u16 pdGainOverlap_t2;
u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
u16 numPiers = 0, i, j;
u16 numXpdGain, xpdMask;
u16 xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
u32 reg32, regOffset, regChainOffset, regval;
int16_t modalIdx, diff = 0;
struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
xpdMask = pEepData->modalHeader.xpdGain;
if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
AR9287_EEP_MINOR_VER_2)
pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
else
pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
if (IS_CHAN_2GHZ(chan)) {
pCalBChans = pEepData->calFreqPier2G;
numPiers = AR9287_NUM_2G_CAL_PIERS;
if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
pRawDatasetOpenLoop =
(struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
ah->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
}
}
numXpdGain = 0;
/* Calculate the value of xpdgains from the xpdGain Mask */
for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
if (numXpdGain >= AR5416_NUM_PD_GAINS)
break;
xpdGainValues[numXpdGain] =
(u16)(AR5416_PD_GAINS_IN_MASK-i);
numXpdGain++;
}
}
REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
(numXpdGain - 1) & 0x3);
REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
xpdGainValues[0]);
REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
xpdGainValues[1]);
REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
xpdGainValues[2]);
for (i = 0; i < AR9287_MAX_CHAINS; i++) {
regChainOffset = i * 0x1000;
if (pEepData->baseEepHeader.txMask & (1 << i)) {
pRawDatasetOpenLoop =
(struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
int8_t txPower;
ar9287_eeprom_get_tx_gain_index(ah, chan,
pRawDatasetOpenLoop,
pCalBChans, numPiers,
&txPower);
ar9287_eeprom_olpc_set_pdadcs(ah, txPower, i);
} else {
pRawDataset =
(struct cal_data_per_freq_ar9287 *)
pEepData->calPierData2G[i];
ath9k_hw_get_ar9287_gain_boundaries_pdadcs(ah, chan,
pRawDataset,
pCalBChans, numPiers,
pdGainOverlap_t2,
gainBoundaries,
pdadcValues,
numXpdGain);
}
if (i == 0) {
if (!ath9k_hw_ar9287_get_eeprom(ah,
EEP_OL_PWRCTRL)) {
regval = SM(pdGainOverlap_t2,
AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
| SM(gainBoundaries[0],
AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
| SM(gainBoundaries[1],
AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
| SM(gainBoundaries[2],
AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
| SM(gainBoundaries[3],
AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4);
REG_WRITE(ah,
AR_PHY_TPCRG5 + regChainOffset,
regval);
}
}
if ((int32_t)AR9287_PWR_TABLE_OFFSET_DB !=
pEepData->baseEepHeader.pwrTableOffset) {
diff = (u16)(pEepData->baseEepHeader.pwrTableOffset -
(int32_t)AR9287_PWR_TABLE_OFFSET_DB);
diff *= 2;
for (j = 0; j < ((u16)AR5416_NUM_PDADC_VALUES-diff); j++)
pdadcValues[j] = pdadcValues[j+diff];
for (j = (u16)(AR5416_NUM_PDADC_VALUES-diff);
j < AR5416_NUM_PDADC_VALUES; j++)
pdadcValues[j] =
pdadcValues[AR5416_NUM_PDADC_VALUES-diff];
}
if (!ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
regOffset = AR_PHY_BASE +
(672 << 2) + regChainOffset;
for (j = 0; j < 32; j++) {
reg32 = ((pdadcValues[4*j + 0] & 0xFF) << 0)
| ((pdadcValues[4*j + 1] & 0xFF) << 8)
| ((pdadcValues[4*j + 2] & 0xFF) << 16)
| ((pdadcValues[4*j + 3] & 0xFF) << 24);
REG_WRITE(ah, regOffset, reg32);
regOffset += 4;
}
}
}
}
*pTxPowerIndexOffset = 0;
}
static void ath9k_hw_set_ar9287_power_per_rate_table(struct ath_hw *ah,
struct ath9k_channel *chan,
int16_t *ratesArray,
u16 cfgCtl,
u16 AntennaReduction,
u16 twiceMaxRegulatoryPower,
u16 powerLimit)
{
#define CMP_CTL \
(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
pEepData->ctlIndex[i])
#define CMP_NO_CTL \
(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
#define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6
#define REDUCE_SCALED_POWER_BY_THREE_CHAIN 10
struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
u16 twiceMaxEdgePower = MAX_RATE_POWER;
static const u16 tpScaleReductionTable[5] =
{ 0, 3, 6, 9, MAX_RATE_POWER };
int i;
int16_t twiceLargestAntenna;
struct cal_ctl_data_ar9287 *rep;
struct cal_target_power_leg targetPowerOfdm = {0, {0, 0, 0, 0} },
targetPowerCck = {0, {0, 0, 0, 0} };
struct cal_target_power_leg targetPowerOfdmExt = {0, {0, 0, 0, 0} },
targetPowerCckExt = {0, {0, 0, 0, 0} };
struct cal_target_power_ht targetPowerHt20,
targetPowerHt40 = {0, {0, 0, 0, 0} };
u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
ath9k: Use static const Using static const generally increases object text and decreases data size. It also generally decreases overall object size. text data bss dec hex filename 11161 56 2136 13353 3429 drivers/net/wireless/ath/ath9k/ar9003_paprd.o.new 11167 56 2136 13359 342f drivers/net/wireless/ath/ath9k/ar9003_paprd.o.old 15428 56 3056 18540 486c drivers/net/wireless/ath/ath9k/eeprom_4k.o.old 15451 56 3056 18563 4883 drivers/net/wireless/ath/ath9k/eeprom_4k.o.new 14087 56 2560 16703 413f drivers/net/wireless/ath/ath9k/eeprom_9287.o.old 14036 56 2560 16652 410c drivers/net/wireless/ath/ath9k/eeprom_9287.o.new 10041 56 2384 12481 30c1 drivers/net/wireless/ath/ath9k/ani.o.new 10088 56 2384 12528 30f0 drivers/net/wireless/ath/ath9k/ani.o.old 9316 1580 2304 13200 3390 drivers/net/wireless/ath/ath9k/htc_drv_init.o.new 9316 1580 2304 13200 3390 drivers/net/wireless/ath/ath9k/htc_drv_init.o.old 16483 56 3432 19971 4e03 drivers/net/wireless/ath/ath9k/ar9003_phy.o.new 16517 56 3432 20005 4e25 drivers/net/wireless/ath/ath9k/ar9003_phy.o.old 18221 104 2960 21285 5325 drivers/net/wireless/ath/ath9k/rc.o.old 18203 104 2960 21267 5313 drivers/net/wireless/ath/ath9k/rc.o.new 19985 56 4288 24329 5f09 drivers/net/wireless/ath/ath9k/eeprom_def.o.new 20040 56 4288 24384 5f40 drivers/net/wireless/ath/ath9k/eeprom_def.o.old 23997 56 4984 29037 716d drivers/net/wireless/ath/ath9k/ar5008_phy.o.old 23846 56 4984 28886 70d6 drivers/net/wireless/ath/ath9k/ar5008_phy.o.new 24285 56 3184 27525 6b85 drivers/net/wireless/ath/ath9k/ar9003_eeprom.o.old 24101 56 3184 27341 6acd drivers/net/wireless/ath/ath9k/ar9003_eeprom.o.new 6834 56 1032 7922 1ef2 drivers/net/wireless/ath/ath9k/ar9002_phy.o.old 6780 56 1032 7868 1ebc drivers/net/wireless/ath/ath9k/ar9002_phy.o.new 36211 64 8624 44899 af63 drivers/net/wireless/ath/ath9k/hw.o.new 36401 64 8624 45089 b021 drivers/net/wireless/ath/ath9k/hw.o.old 9281 56 1496 10833 2a51 drivers/net/wireless/ath/ath9k/ar9003_calib.o.old 9150 56 1496 10702 29ce drivers/net/wireless/ath/ath9k/ar9003_calib.o.new Use ARRAY_SIZE instead of a magic number. Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-11-21 02:38:53 +00:00
static const u16 ctlModesFor11g[] = {
CTL_11B, CTL_11G, CTL_2GHT20,
CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
};
u16 numCtlModes = 0;
const u16 *pCtlMode = NULL;
u16 ctlMode, freq;
struct chan_centers centers;
int tx_chainmask;
u16 twiceMinEdgePower;
struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
tx_chainmask = ah->txchainmask;
ath9k_hw_get_channel_centers(ah, chan, &centers);
/* Compute TxPower reduction due to Antenna Gain */
twiceLargestAntenna = max(pEepData->modalHeader.antennaGainCh[0],
pEepData->modalHeader.antennaGainCh[1]);
twiceLargestAntenna = (int16_t)min((AntennaReduction) -
twiceLargestAntenna, 0);
/*
* scaledPower is the minimum of the user input power level
* and the regulatory allowed power level.
*/
maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX)
maxRegAllowedPower -=
(tpScaleReductionTable[(regulatory->tp_scale)] * 2);
scaledPower = min(powerLimit, maxRegAllowedPower);
/*
* Reduce scaled Power by number of chains active
* to get the per chain tx power level.
*/
switch (ar5416_get_ntxchains(tx_chainmask)) {
case 1:
break;
case 2:
scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
break;
case 3:
scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
break;
}
scaledPower = max((u16)0, scaledPower);
/*
* Get TX power from EEPROM.
*/
if (IS_CHAN_2GHZ(chan)) {
/* CTL_11B, CTL_11G, CTL_2GHT20 */
numCtlModes =
ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
pCtlMode = ctlModesFor11g;
ath9k_hw_get_legacy_target_powers(ah, chan,
pEepData->calTargetPowerCck,
AR9287_NUM_2G_CCK_TARGET_POWERS,
&targetPowerCck, 4, false);
ath9k_hw_get_legacy_target_powers(ah, chan,
pEepData->calTargetPower2G,
AR9287_NUM_2G_20_TARGET_POWERS,
&targetPowerOfdm, 4, false);
ath9k_hw_get_target_powers(ah, chan,
pEepData->calTargetPower2GHT20,
AR9287_NUM_2G_20_TARGET_POWERS,
&targetPowerHt20, 8, false);
if (IS_CHAN_HT40(chan)) {
/* All 2G CTLs */
numCtlModes = ARRAY_SIZE(ctlModesFor11g);
ath9k_hw_get_target_powers(ah, chan,
pEepData->calTargetPower2GHT40,
AR9287_NUM_2G_40_TARGET_POWERS,
&targetPowerHt40, 8, true);
ath9k_hw_get_legacy_target_powers(ah, chan,
pEepData->calTargetPowerCck,
AR9287_NUM_2G_CCK_TARGET_POWERS,
&targetPowerCckExt, 4, true);
ath9k_hw_get_legacy_target_powers(ah, chan,
pEepData->calTargetPower2G,
AR9287_NUM_2G_20_TARGET_POWERS,
&targetPowerOfdmExt, 4, true);
}
}
for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
bool isHt40CtlMode =
(pCtlMode[ctlMode] == CTL_2GHT40) ? true : false;
if (isHt40CtlMode)
freq = centers.synth_center;
else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
freq = centers.ext_center;
else
freq = centers.ctl_center;
/* Walk through the CTL indices stored in EEPROM */
for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
struct cal_ctl_edges *pRdEdgesPower;
/*
* Compare test group from regulatory channel list
* with test mode from pCtlMode list
*/
if (CMP_CTL || CMP_NO_CTL) {
rep = &(pEepData->ctlData[i]);
pRdEdgesPower =
rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1];
twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
pRdEdgesPower,
IS_CHAN_2GHZ(chan),
AR5416_NUM_BAND_EDGES);
if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
twiceMaxEdgePower = min(twiceMaxEdgePower,
twiceMinEdgePower);
} else {
twiceMaxEdgePower = twiceMinEdgePower;
break;
}
}
}
minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
/* Apply ctl mode to correct target power set */
switch (pCtlMode[ctlMode]) {
case CTL_11B:
for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
targetPowerCck.tPow2x[i] =
(u8)min((u16)targetPowerCck.tPow2x[i],
minCtlPower);
}
break;
case CTL_11A:
case CTL_11G:
for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
targetPowerOfdm.tPow2x[i] =
(u8)min((u16)targetPowerOfdm.tPow2x[i],
minCtlPower);
}
break;
case CTL_5GHT20:
case CTL_2GHT20:
for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
targetPowerHt20.tPow2x[i] =
(u8)min((u16)targetPowerHt20.tPow2x[i],
minCtlPower);
}
break;
case CTL_11B_EXT:
targetPowerCckExt.tPow2x[0] =
(u8)min((u16)targetPowerCckExt.tPow2x[0],
minCtlPower);
break;
case CTL_11A_EXT:
case CTL_11G_EXT:
targetPowerOfdmExt.tPow2x[0] =
(u8)min((u16)targetPowerOfdmExt.tPow2x[0],
minCtlPower);
break;
case CTL_5GHT40:
case CTL_2GHT40:
for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
targetPowerHt40.tPow2x[i] =
(u8)min((u16)targetPowerHt40.tPow2x[i],
minCtlPower);
}
break;
default:
break;
}
}
/* Now set the rates array */
ratesArray[rate6mb] =
ratesArray[rate9mb] =
ratesArray[rate12mb] =
ratesArray[rate18mb] =
ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
if (IS_CHAN_2GHZ(chan)) {
ratesArray[rate1l] = targetPowerCck.tPow2x[0];
ratesArray[rate2s] =
ratesArray[rate2l] = targetPowerCck.tPow2x[1];
ratesArray[rate5_5s] =
ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
ratesArray[rate11s] =
ratesArray[rate11l] = targetPowerCck.tPow2x[3];
}
if (IS_CHAN_HT40(chan)) {
for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++)
ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
if (IS_CHAN_2GHZ(chan))
ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
}
#undef CMP_CTL
#undef CMP_NO_CTL
#undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
#undef REDUCE_SCALED_POWER_BY_THREE_CHAIN
}
static void ath9k_hw_ar9287_set_txpower(struct ath_hw *ah,
struct ath9k_channel *chan, u16 cfgCtl,
u8 twiceAntennaReduction,
u8 twiceMaxRegulatoryPower,
u8 powerLimit, bool test)
{
struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
struct modal_eep_ar9287_header *pModal = &pEepData->modalHeader;
int16_t ratesArray[Ar5416RateSize];
int16_t txPowerIndexOffset = 0;
u8 ht40PowerIncForPdadc = 2;
int i;
memset(ratesArray, 0, sizeof(ratesArray));
if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
AR9287_EEP_MINOR_VER_2)
ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
ath9k_hw_set_ar9287_power_per_rate_table(ah, chan,
&ratesArray[0], cfgCtl,
twiceAntennaReduction,
twiceMaxRegulatoryPower,
powerLimit);
ath9k_hw_set_ar9287_power_cal_table(ah, chan, &txPowerIndexOffset);
regulatory->max_power_level = 0;
for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
if (ratesArray[i] > MAX_RATE_POWER)
ratesArray[i] = MAX_RATE_POWER;
if (ratesArray[i] > regulatory->max_power_level)
regulatory->max_power_level = ratesArray[i];
}
if (test)
return;
if (IS_CHAN_2GHZ(chan))
i = rate1l;
else
i = rate6mb;
regulatory->max_power_level = ratesArray[i];
if (AR_SREV_9280_20_OR_LATER(ah)) {
for (i = 0; i < Ar5416RateSize; i++)
ratesArray[i] -= AR9287_PWR_TABLE_OFFSET_DB * 2;
}
/* OFDM power per rate */
REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
ATH9K_POW_SM(ratesArray[rate18mb], 24)
| ATH9K_POW_SM(ratesArray[rate12mb], 16)
| ATH9K_POW_SM(ratesArray[rate9mb], 8)
| ATH9K_POW_SM(ratesArray[rate6mb], 0));
REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
ATH9K_POW_SM(ratesArray[rate54mb], 24)
| ATH9K_POW_SM(ratesArray[rate48mb], 16)
| ATH9K_POW_SM(ratesArray[rate36mb], 8)
| ATH9K_POW_SM(ratesArray[rate24mb], 0));
/* CCK power per rate */
if (IS_CHAN_2GHZ(chan)) {
REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
ATH9K_POW_SM(ratesArray[rate2s], 24)
| ATH9K_POW_SM(ratesArray[rate2l], 16)
| ATH9K_POW_SM(ratesArray[rateXr], 8)
| ATH9K_POW_SM(ratesArray[rate1l], 0));
REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
ATH9K_POW_SM(ratesArray[rate11s], 24)
| ATH9K_POW_SM(ratesArray[rate11l], 16)
| ATH9K_POW_SM(ratesArray[rate5_5s], 8)
| ATH9K_POW_SM(ratesArray[rate5_5l], 0));
}
/* HT20 power per rate */
REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
| ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
| ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
| ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
| ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
| ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
| ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
/* HT40 power per rate */
if (IS_CHAN_HT40(chan)) {
if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
ATH9K_POW_SM(ratesArray[rateHt40_3], 24)
| ATH9K_POW_SM(ratesArray[rateHt40_2], 16)
| ATH9K_POW_SM(ratesArray[rateHt40_1], 8)
| ATH9K_POW_SM(ratesArray[rateHt40_0], 0));
REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
ATH9K_POW_SM(ratesArray[rateHt40_7], 24)
| ATH9K_POW_SM(ratesArray[rateHt40_6], 16)
| ATH9K_POW_SM(ratesArray[rateHt40_5], 8)
| ATH9K_POW_SM(ratesArray[rateHt40_4], 0));
} else {
REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
ATH9K_POW_SM(ratesArray[rateHt40_3] +
ht40PowerIncForPdadc, 24)
| ATH9K_POW_SM(ratesArray[rateHt40_2] +
ht40PowerIncForPdadc, 16)
| ATH9K_POW_SM(ratesArray[rateHt40_1] +
ht40PowerIncForPdadc, 8)
| ATH9K_POW_SM(ratesArray[rateHt40_0] +
ht40PowerIncForPdadc, 0));
REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
ATH9K_POW_SM(ratesArray[rateHt40_7] +
ht40PowerIncForPdadc, 24)
| ATH9K_POW_SM(ratesArray[rateHt40_6] +
ht40PowerIncForPdadc, 16)
| ATH9K_POW_SM(ratesArray[rateHt40_5] +
ht40PowerIncForPdadc, 8)
| ATH9K_POW_SM(ratesArray[rateHt40_4] +
ht40PowerIncForPdadc, 0));
}
/* Dup/Ext power per rate */
REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
| ATH9K_POW_SM(ratesArray[rateExtCck], 16)
| ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
| ATH9K_POW_SM(ratesArray[rateDupCck], 0));
}
}
static void ath9k_hw_ar9287_set_addac(struct ath_hw *ah,
struct ath9k_channel *chan)
{
}
static void ath9k_hw_ar9287_set_board_values(struct ath_hw *ah,
struct ath9k_channel *chan)
{
struct ar9287_eeprom *eep = &ah->eeprom.map9287;
struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
u16 antWrites[AR9287_ANT_16S];
u32 regChainOffset, regval;
u8 txRxAttenLocal;
int i, j, offset_num;
pModal = &eep->modalHeader;
antWrites[0] = (u16)((pModal->antCtrlCommon >> 28) & 0xF);
antWrites[1] = (u16)((pModal->antCtrlCommon >> 24) & 0xF);
antWrites[2] = (u16)((pModal->antCtrlCommon >> 20) & 0xF);
antWrites[3] = (u16)((pModal->antCtrlCommon >> 16) & 0xF);
antWrites[4] = (u16)((pModal->antCtrlCommon >> 12) & 0xF);
antWrites[5] = (u16)((pModal->antCtrlCommon >> 8) & 0xF);
antWrites[6] = (u16)((pModal->antCtrlCommon >> 4) & 0xF);
antWrites[7] = (u16)(pModal->antCtrlCommon & 0xF);
offset_num = 8;
for (i = 0, j = offset_num; i < AR9287_MAX_CHAINS; i++) {
antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 28) & 0xf);
antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 10) & 0x3);
antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 8) & 0x3);
antWrites[j++] = 0;
antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 6) & 0x3);
antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 4) & 0x3);
antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 2) & 0x3);
antWrites[j++] = (u16)(pModal->antCtrlChain[i] & 0x3);
}
REG_WRITE(ah, AR_PHY_SWITCH_COM,
ah->eep_ops->get_eeprom_antenna_cfg(ah, chan));
for (i = 0; i < AR9287_MAX_CHAINS; i++) {
regChainOffset = i * 0x1000;
REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
pModal->antCtrlChain[i]);
REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
(REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset)
& ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
SM(pModal->iqCalICh[i],
AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
SM(pModal->iqCalQCh[i],
AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
txRxAttenLocal = pModal->txRxAttenCh[i];
REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
pModal->bswMargin[i]);
REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
AR_PHY_GAIN_2GHZ_XATTEN1_DB,
pModal->bswAtten[i]);
REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
AR9280_PHY_RXGAIN_TXRX_ATTEN,
txRxAttenLocal);
REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
AR9280_PHY_RXGAIN_TXRX_MARGIN,
pModal->rxTxMarginCh[i]);
}
if (IS_CHAN_HT40(chan))
REG_RMW_FIELD(ah, AR_PHY_SETTLING,
AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
else
REG_RMW_FIELD(ah, AR_PHY_SETTLING,
AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
REG_WRITE(ah, AR_PHY_RF_CTL4,
SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
| SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
| SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
| SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
REG_RMW_FIELD(ah, AR_PHY_CCA,
AR9280_PHY_CCA_THRESH62, pModal->thresh62);
REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
regval = REG_READ(ah, AR9287_AN_RF2G3_CH0);
regval &= ~(AR9287_AN_RF2G3_DB1 |
AR9287_AN_RF2G3_DB2 |
AR9287_AN_RF2G3_OB_CCK |
AR9287_AN_RF2G3_OB_PSK |
AR9287_AN_RF2G3_OB_QAM |
AR9287_AN_RF2G3_OB_PAL_OFF);
regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH0, regval);
regval = REG_READ(ah, AR9287_AN_RF2G3_CH1);
regval &= ~(AR9287_AN_RF2G3_DB1 |
AR9287_AN_RF2G3_DB2 |
AR9287_AN_RF2G3_OB_CCK |
AR9287_AN_RF2G3_OB_PSK |
AR9287_AN_RF2G3_OB_QAM |
AR9287_AN_RF2G3_OB_PAL_OFF);
regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH1, regval);
REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
AR_PHY_TX_END_DATA_START, pModal->txFrameToDataStart);
REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
AR_PHY_TX_END_PA_ON, pModal->txFrameToPaOn);
ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TOP2,
AR9287_AN_TOP2_XPABIAS_LVL,
AR9287_AN_TOP2_XPABIAS_LVL_S,
pModal->xpaBiasLvl);
}
static u8 ath9k_hw_ar9287_get_num_ant_config(struct ath_hw *ah,
enum ath9k_hal_freq_band freq_band)
{
return 1;
}
static u32 ath9k_hw_ar9287_get_eeprom_antenna_cfg(struct ath_hw *ah,
struct ath9k_channel *chan)
{
struct ar9287_eeprom *eep = &ah->eeprom.map9287;
struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
return pModal->antCtrlCommon;
}
static u16 ath9k_hw_ar9287_get_spur_channel(struct ath_hw *ah,
u16 i, bool is2GHz)
{
#define EEP_MAP9287_SPURCHAN \
(ah->eeprom.map9287.modalHeader.spurChans[i].spurChan)
struct ath_common *common = ath9k_hw_common(ah);
u16 spur_val = AR_NO_SPUR;
ath_dbg(common, ATH_DBG_ANI,
"Getting spur idx:%d is2Ghz:%d val:%x\n",
i, is2GHz, ah->config.spurchans[i][is2GHz]);
switch (ah->config.spurmode) {
case SPUR_DISABLE:
break;
case SPUR_ENABLE_IOCTL:
spur_val = ah->config.spurchans[i][is2GHz];
ath_dbg(common, ATH_DBG_ANI,
"Getting spur val from new loc. %d\n", spur_val);
break;
case SPUR_ENABLE_EEPROM:
spur_val = EEP_MAP9287_SPURCHAN;
break;
}
return spur_val;
#undef EEP_MAP9287_SPURCHAN
}
const struct eeprom_ops eep_ar9287_ops = {
.check_eeprom = ath9k_hw_ar9287_check_eeprom,
.get_eeprom = ath9k_hw_ar9287_get_eeprom,
.fill_eeprom = ath9k_hw_ar9287_fill_eeprom,
.get_eeprom_ver = ath9k_hw_ar9287_get_eeprom_ver,
.get_eeprom_rev = ath9k_hw_ar9287_get_eeprom_rev,
.get_num_ant_config = ath9k_hw_ar9287_get_num_ant_config,
.get_eeprom_antenna_cfg = ath9k_hw_ar9287_get_eeprom_antenna_cfg,
.set_board_values = ath9k_hw_ar9287_set_board_values,
.set_addac = ath9k_hw_ar9287_set_addac,
.set_txpower = ath9k_hw_ar9287_set_txpower,
.get_spur_channel = ath9k_hw_ar9287_get_spur_channel
};