linux/drivers/clk/renesas/r9a06g032-clocks.c

1398 lines
46 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* R9A06G032 clock driver
*
* Copyright (C) 2018 Renesas Electronics Europe Limited
*
* Michel Pollet <michel.pollet@bp.renesas.com>, <buserror@gmail.com>
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/init.h>
clk: Remove io.h from clk-provider.h Now that we've gotten rid of clk_readl() we can remove io.h from the clk-provider header and push out the io.h include to any code that isn't already including the io.h header but using things like readl/writel, etc. Found with this grep: git grep -l clk-provider.h | grep '.c$' | xargs git grep -L 'linux/io.h' | \ xargs git grep -l \ -e '\<__iowrite32_copy\>' --or \ -e '\<__ioread32_copy\>' --or \ -e '\<__iowrite64_copy\>' --or \ -e '\<ioremap_page_range\>' --or \ -e '\<ioremap_huge_init\>' --or \ -e '\<arch_ioremap_pud_supported\>' --or \ -e '\<arch_ioremap_pmd_supported\>' --or \ -e '\<devm_ioport_map\>' --or \ -e '\<devm_ioport_unmap\>' --or \ -e '\<IOMEM_ERR_PTR\>' --or \ -e '\<devm_ioremap\>' --or \ -e '\<devm_ioremap_nocache\>' --or \ -e '\<devm_ioremap_wc\>' --or \ -e '\<devm_iounmap\>' --or \ -e '\<devm_ioremap_release\>' --or \ -e '\<devm_memremap\>' --or \ -e '\<devm_memunmap\>' --or \ -e '\<__devm_memremap_pages\>' --or \ -e '\<pci_remap_cfgspace\>' --or \ -e '\<arch_has_dev_port\>' --or \ -e '\<arch_phys_wc_add\>' --or \ -e '\<arch_phys_wc_del\>' --or \ -e '\<memremap\>' --or \ -e '\<memunmap\>' --or \ -e '\<arch_io_reserve_memtype_wc\>' --or \ -e '\<arch_io_free_memtype_wc\>' --or \ -e '\<__io_aw\>' --or \ -e '\<__io_pbw\>' --or \ -e '\<__io_paw\>' --or \ -e '\<__io_pbr\>' --or \ -e '\<__io_par\>' --or \ -e '\<__raw_readb\>' --or \ -e '\<__raw_readw\>' --or \ -e '\<__raw_readl\>' --or \ -e '\<__raw_readq\>' --or \ -e '\<__raw_writeb\>' --or \ -e '\<__raw_writew\>' --or \ -e '\<__raw_writel\>' --or \ -e '\<__raw_writeq\>' --or \ -e '\<readb\>' --or \ -e '\<readw\>' --or \ -e '\<readl\>' --or \ -e '\<readq\>' --or \ -e '\<writeb\>' --or \ -e '\<writew\>' --or \ -e '\<writel\>' --or \ -e '\<writeq\>' --or \ -e '\<readb_relaxed\>' --or \ -e '\<readw_relaxed\>' --or \ -e '\<readl_relaxed\>' --or \ -e '\<readq_relaxed\>' --or \ -e '\<writeb_relaxed\>' --or \ -e '\<writew_relaxed\>' --or \ -e '\<writel_relaxed\>' --or \ -e '\<writeq_relaxed\>' --or \ -e '\<readsb\>' --or \ -e '\<readsw\>' --or \ -e '\<readsl\>' --or \ -e '\<readsq\>' --or \ -e '\<writesb\>' --or \ -e '\<writesw\>' --or \ -e '\<writesl\>' --or \ -e '\<writesq\>' --or \ -e '\<inb\>' --or \ -e '\<inw\>' --or \ -e '\<inl\>' --or \ -e '\<outb\>' --or \ -e '\<outw\>' --or \ -e '\<outl\>' --or \ -e '\<inb_p\>' --or \ -e '\<inw_p\>' --or \ -e '\<inl_p\>' --or \ -e '\<outb_p\>' --or \ -e '\<outw_p\>' --or \ -e '\<outl_p\>' --or \ -e '\<insb\>' --or \ -e '\<insw\>' --or \ -e '\<insl\>' --or \ -e '\<outsb\>' --or \ -e '\<outsw\>' --or \ -e '\<outsl\>' --or \ -e '\<insb_p\>' --or \ -e '\<insw_p\>' --or \ -e '\<insl_p\>' --or \ -e '\<outsb_p\>' --or \ -e '\<outsw_p\>' --or \ -e '\<outsl_p\>' --or \ -e '\<ioread8\>' --or \ -e '\<ioread16\>' --or \ -e '\<ioread32\>' --or \ -e '\<ioread64\>' --or \ -e '\<iowrite8\>' --or \ -e '\<iowrite16\>' --or \ -e '\<iowrite32\>' --or \ -e '\<iowrite64\>' --or \ -e '\<ioread16be\>' --or \ -e '\<ioread32be\>' --or \ -e '\<ioread64be\>' --or \ -e '\<iowrite16be\>' --or \ -e '\<iowrite32be\>' --or \ -e '\<iowrite64be\>' --or \ -e '\<ioread8_rep\>' --or \ -e '\<ioread16_rep\>' --or \ -e '\<ioread32_rep\>' --or \ -e '\<ioread64_rep\>' --or \ -e '\<iowrite8_rep\>' --or \ -e '\<iowrite16_rep\>' --or \ -e '\<iowrite32_rep\>' --or \ -e '\<iowrite64_rep\>' --or \ -e '\<__io_virt\>' --or \ -e '\<pci_iounmap\>' --or \ -e '\<virt_to_phys\>' --or \ -e '\<phys_to_virt\>' --or \ -e '\<ioremap_uc\>' --or \ -e '\<ioremap\>' --or \ -e '\<__ioremap\>' --or \ -e '\<iounmap\>' --or \ -e '\<ioremap\>' --or \ -e '\<ioremap_nocache\>' --or \ -e '\<ioremap_uc\>' --or \ -e '\<ioremap_wc\>' --or \ -e '\<ioremap_wc\>' --or \ -e '\<ioremap_wt\>' --or \ -e '\<ioport_map\>' --or \ -e '\<ioport_unmap\>' --or \ -e '\<ioport_map\>' --or \ -e '\<ioport_unmap\>' --or \ -e '\<xlate_dev_kmem_ptr\>' --or \ -e '\<xlate_dev_mem_ptr\>' --or \ -e '\<unxlate_dev_mem_ptr\>' --or \ -e '\<virt_to_bus\>' --or \ -e '\<bus_to_virt\>' --or \ -e '\<memset_io\>' --or \ -e '\<memcpy_fromio\>' --or \ -e '\<memcpy_toio\>' I also reordered a couple includes when they weren't alphabetical and removed clk.h from kona, replacing it with clk-provider.h because that driver doesn't use clk consumer APIs. Acked-by: Geert Uytterhoeven <geert+renesas@glider.be> Cc: Chen-Yu Tsai <wens@csie.org> Acked-by: Maxime Ripard <maxime.ripard@bootlin.com> Acked-by: Tero Kristo <t-kristo@ti.com> Acked-by: Sekhar Nori <nsekhar@ti.com> Cc: Krzysztof Kozlowski <krzk@kernel.org> Acked-by: Mark Brown <broonie@kernel.org> Cc: Chris Zankel <chris@zankel.net> Acked-by: Max Filippov <jcmvbkbc@gmail.com> Acked-by: John Crispin <john@phrozen.org> Acked-by: Heiko Stuebner <heiko@sntech.de> Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2019-04-18 22:20:22 +00:00
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/math64.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/pm_clock.h>
#include <linux/pm_domain.h>
#include <linux/slab.h>
#include <linux/soc/renesas/r9a06g032-sysctrl.h>
#include <linux/spinlock.h>
#include <dt-bindings/clock/r9a06g032-sysctrl.h>
#define R9A06G032_SYSCTRL_USB 0x00
#define R9A06G032_SYSCTRL_USB_H2MODE (1<<1)
#define R9A06G032_SYSCTRL_DMAMUX 0xA0
/**
* struct regbit - describe one bit in a register
* @reg: offset of register relative to base address,
* expressed in units of 32-bit words (not bytes),
* @bit: which bit (0 to 31) in the register
*
* This structure is used to compactly encode the location
* of a single bit in a register. Five bits are needed to
* encode the bit number. With uint16_t data type, this
* leaves 11 bits to encode a register offset up to 2047.
*
* Since registers are aligned on 32-bit boundaries, the
* offset will be specified in 32-bit words rather than bytes.
* This allows encoding an offset up to 0x1FFC (8188) bytes.
*
* Helper macro RB() takes care of converting the register
* offset from bytes to 32-bit words.
*/
struct regbit {
u16 bit:5;
u16 reg:11;
};
#define RB(_reg, _bit) ((struct regbit) { \
.reg = (_reg) / 4, \
.bit = (_bit) \
})
/**
* struct r9a06g032_gate - clock-related control bits
* @gate: clock enable/disable
* @reset: clock module reset (active low)
* @ready: enables NoC forwarding of read/write requests to device,
* (eg. device is ready to handle read/write requests)
* @midle: request to idle the NoC interconnect
*
* Each of these fields describes a single bit in a register,
* which controls some aspect of clock gating. The @gate field
* is mandatory, this one enables/disables the clock. The
* other fields are optional, with zero indicating "not used".
*
* In most cases there is a @reset bit which needs to be
* de-asserted to bring the module out of reset.
*
* Modules may also need to signal when they are @ready to
* handle requests (read/writes) from the NoC interconnect.
*
* Similarly, the @midle bit is used to idle the master.
*/
struct r9a06g032_gate {
struct regbit gate, reset, ready, midle;
/* Unused fields omitted to save space */
/* struct regbit scon, mirack, mistat */;
};
enum gate_type {
K_GATE = 0, /* gate which enable/disable */
K_FFC, /* fixed factor clock */
K_DIV, /* divisor */
K_BITSEL, /* special for UARTs */
K_DUALGATE /* special for UARTs */
};
/**
* struct r9a06g032_clkdesc - describe a single clock
* @name: string describing this clock
* @managed: boolean indicating if this clock should be
* started/stopped as part of power management
* @type: see enum @gate_type
* @index: the ID of this clock element
* @source: the ID+1 of the parent clock element.
* Root clock uses ID of ~0 (PARENT_ID);
* @gate: clock enable/disable
* @div_min: smallest permitted clock divider
* @div_max: largest permitted clock divider
* @reg: clock divider register offset, in 32-bit words
* @div_table: optional list of fixed clock divider values;
* must be in ascending order, zero for unused
* @div: divisor for fixed-factor clock
* @mul: multiplier for fixed-factor clock
* @group: UART group, 0=UART0/1/2, 1=UART3/4/5/6/7
* @sel: select either g1/r1 or g2/r2 as clock source
* @g1: 1st source gate (clock enable/disable)
* @r1: 1st source reset (module reset)
* @g2: 2nd source gate (clock enable/disable)
* @r2: 2nd source reset (module reset)
*
* Describes a single element in the clock tree hierarchy.
* As there are quite a large number of clock elements, this
* structure is packed tightly to conserve space.
*/
struct r9a06g032_clkdesc {
const char *name;
uint32_t managed:1;
enum gate_type type:3;
uint32_t index:8;
uint32_t source:8; /* source index + 1 (0 == none) */
union {
/* type = K_GATE */
struct r9a06g032_gate gate;
/* type = K_DIV */
struct {
unsigned int div_min:10, div_max:10, reg:10;
u16 div_table[4];
};
/* type = K_FFC */
struct {
u16 div, mul;
};
/* type = K_DUALGATE */
struct {
uint16_t group:1;
struct regbit sel, g1, r1, g2, r2;
} dual;
};
};
/*
* The last three arguments are not currently used,
* but are kept in the r9a06g032_clocks table below.
*/
#define I_GATE(_clk, _rst, _rdy, _midle, _scon, _mirack, _mistat) { \
.gate = _clk, \
.reset = _rst, \
.ready = _rdy, \
.midle = _midle, \
/* .scon = _scon, */ \
/* .mirack = _mirack, */ \
/* .mistat = _mistat */ \
}
#define D_GATE(_idx, _n, _src, ...) { \
.type = K_GATE, \
.index = R9A06G032_##_idx, \
.source = 1 + R9A06G032_##_src, \
.name = _n, \
.gate = I_GATE(__VA_ARGS__) \
}
#define D_MODULE(_idx, _n, _src, ...) { \
.type = K_GATE, \
.index = R9A06G032_##_idx, \
.source = 1 + R9A06G032_##_src, \
.name = _n, \
.managed = 1, \
.gate = I_GATE(__VA_ARGS__) \
}
#define D_ROOT(_idx, _n, _mul, _div) { \
.type = K_FFC, \
.index = R9A06G032_##_idx, \
.name = _n, \
.div = _div, \
.mul = _mul \
}
#define D_FFC(_idx, _n, _src, _div) { \
.type = K_FFC, \
.index = R9A06G032_##_idx, \
.source = 1 + R9A06G032_##_src, \
.name = _n, \
.div = _div, \
.mul = 1 \
}
#define D_DIV(_idx, _n, _src, _reg, _min, _max, ...) { \
.type = K_DIV, \
.index = R9A06G032_##_idx, \
.source = 1 + R9A06G032_##_src, \
.name = _n, \
.reg = _reg, \
.div_min = _min, \
.div_max = _max, \
.div_table = { __VA_ARGS__ } \
}
#define D_UGATE(_idx, _n, _src, _g, _g1, _r1, _g2, _r2) { \
.type = K_DUALGATE, \
.index = R9A06G032_##_idx, \
.source = 1 + R9A06G032_##_src, \
.name = _n, \
.dual = { \
.group = _g, \
.g1 = _g1, \
.r1 = _r1, \
.g2 = _g2, \
.r2 = _r2 \
}, \
}
/* Internal clock IDs */
#define R9A06G032_CLKOUT 0
#define R9A06G032_CLKOUT_D10 2
#define R9A06G032_CLKOUT_D16 3
#define R9A06G032_CLKOUT_D160 4
#define R9A06G032_CLKOUT_D1OR2 5
#define R9A06G032_CLKOUT_D20 6
#define R9A06G032_CLKOUT_D40 7
#define R9A06G032_CLKOUT_D5 8
#define R9A06G032_CLKOUT_D8 9
#define R9A06G032_DIV_ADC 10
#define R9A06G032_DIV_I2C 11
#define R9A06G032_DIV_NAND 12
#define R9A06G032_DIV_P1_PG 13
#define R9A06G032_DIV_P2_PG 14
#define R9A06G032_DIV_P3_PG 15
#define R9A06G032_DIV_P4_PG 16
#define R9A06G032_DIV_P5_PG 17
#define R9A06G032_DIV_P6_PG 18
#define R9A06G032_DIV_QSPI0 19
#define R9A06G032_DIV_QSPI1 20
#define R9A06G032_DIV_REF_SYNC 21
#define R9A06G032_DIV_SDIO0 22
#define R9A06G032_DIV_SDIO1 23
#define R9A06G032_DIV_SWITCH 24
#define R9A06G032_DIV_UART 25
#define R9A06G032_DIV_MOTOR 64
#define R9A06G032_CLK_DDRPHY_PLLCLK_D4 78
#define R9A06G032_CLK_ECAT100_D4 79
#define R9A06G032_CLK_HSR100_D2 80
#define R9A06G032_CLK_REF_SYNC_D4 81
#define R9A06G032_CLK_REF_SYNC_D8 82
#define R9A06G032_CLK_SERCOS100_D2 83
#define R9A06G032_DIV_CA7 84
#define R9A06G032_UART_GROUP_012 154
#define R9A06G032_UART_GROUP_34567 155
#define R9A06G032_CLOCK_COUNT (R9A06G032_UART_GROUP_34567 + 1)
static const struct r9a06g032_clkdesc r9a06g032_clocks[] = {
D_ROOT(CLKOUT, "clkout", 25, 1),
D_ROOT(CLK_PLL_USB, "clk_pll_usb", 12, 10),
D_FFC(CLKOUT_D10, "clkout_d10", CLKOUT, 10),
D_FFC(CLKOUT_D16, "clkout_d16", CLKOUT, 16),
D_FFC(CLKOUT_D160, "clkout_d160", CLKOUT, 160),
D_DIV(CLKOUT_D1OR2, "clkout_d1or2", CLKOUT, 0, 1, 2),
D_FFC(CLKOUT_D20, "clkout_d20", CLKOUT, 20),
D_FFC(CLKOUT_D40, "clkout_d40", CLKOUT, 40),
D_FFC(CLKOUT_D5, "clkout_d5", CLKOUT, 5),
D_FFC(CLKOUT_D8, "clkout_d8", CLKOUT, 8),
D_DIV(DIV_ADC, "div_adc", CLKOUT, 77, 50, 250),
D_DIV(DIV_I2C, "div_i2c", CLKOUT, 78, 12, 16),
D_DIV(DIV_NAND, "div_nand", CLKOUT, 82, 12, 32),
D_DIV(DIV_P1_PG, "div_p1_pg", CLKOUT, 68, 12, 200),
D_DIV(DIV_P2_PG, "div_p2_pg", CLKOUT, 62, 12, 128),
D_DIV(DIV_P3_PG, "div_p3_pg", CLKOUT, 64, 8, 128),
D_DIV(DIV_P4_PG, "div_p4_pg", CLKOUT, 66, 8, 128),
D_DIV(DIV_P5_PG, "div_p5_pg", CLKOUT, 71, 10, 40),
D_DIV(DIV_P6_PG, "div_p6_pg", CLKOUT, 18, 12, 64),
D_DIV(DIV_QSPI0, "div_qspi0", CLKOUT, 73, 3, 7),
D_DIV(DIV_QSPI1, "div_qspi1", CLKOUT, 25, 3, 7),
D_DIV(DIV_REF_SYNC, "div_ref_sync", CLKOUT, 56, 2, 16, 2, 4, 8, 16),
D_DIV(DIV_SDIO0, "div_sdio0", CLKOUT, 74, 20, 128),
D_DIV(DIV_SDIO1, "div_sdio1", CLKOUT, 75, 20, 128),
D_DIV(DIV_SWITCH, "div_switch", CLKOUT, 37, 5, 40),
D_DIV(DIV_UART, "div_uart", CLKOUT, 79, 12, 128),
D_GATE(CLK_25_PG4, "clk_25_pg4", CLKOUT_D40, RB(0xe8, 9),
RB(0xe8, 10), RB(0xe8, 11), RB(0x00, 0),
RB(0x15c, 3), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_25_PG5, "clk_25_pg5", CLKOUT_D40, RB(0xe8, 12),
RB(0xe8, 13), RB(0xe8, 14), RB(0x00, 0),
RB(0x15c, 4), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_25_PG6, "clk_25_pg6", CLKOUT_D40, RB(0xe8, 15),
RB(0xe8, 16), RB(0xe8, 17), RB(0x00, 0),
RB(0x15c, 5), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_25_PG7, "clk_25_pg7", CLKOUT_D40, RB(0xe8, 18),
RB(0xe8, 19), RB(0xe8, 20), RB(0x00, 0),
RB(0x15c, 6), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_25_PG8, "clk_25_pg8", CLKOUT_D40, RB(0xe8, 21),
RB(0xe8, 22), RB(0xe8, 23), RB(0x00, 0),
RB(0x15c, 7), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_ADC, "clk_adc", DIV_ADC, RB(0x3c, 10),
RB(0x3c, 11), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_ECAT100, "clk_ecat100", CLKOUT_D10, RB(0x80, 5),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_HSR100, "clk_hsr100", CLKOUT_D10, RB(0x90, 3),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_I2C0, "clk_i2c0", DIV_I2C, RB(0x3c, 6),
RB(0x3c, 7), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_I2C1, "clk_i2c1", DIV_I2C, RB(0x3c, 8),
RB(0x3c, 9), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_MII_REF, "clk_mii_ref", CLKOUT_D40, RB(0x68, 2),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_NAND, "clk_nand", DIV_NAND, RB(0x50, 4),
RB(0x50, 5), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_NOUSBP2_PG6, "clk_nousbp2_pg6", DIV_P2_PG, RB(0xec, 20),
RB(0xec, 21), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_P1_PG2, "clk_p1_pg2", DIV_P1_PG, RB(0x10c, 2),
RB(0x10c, 3), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_P1_PG3, "clk_p1_pg3", DIV_P1_PG, RB(0x10c, 4),
RB(0x10c, 5), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_P1_PG4, "clk_p1_pg4", DIV_P1_PG, RB(0x10c, 6),
RB(0x10c, 7), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_P4_PG3, "clk_p4_pg3", DIV_P4_PG, RB(0x104, 4),
RB(0x104, 5), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_P4_PG4, "clk_p4_pg4", DIV_P4_PG, RB(0x104, 6),
RB(0x104, 7), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_P6_PG1, "clk_p6_pg1", DIV_P6_PG, RB(0x114, 0),
RB(0x114, 1), RB(0x114, 2), RB(0x00, 0),
RB(0x16c, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_P6_PG2, "clk_p6_pg2", DIV_P6_PG, RB(0x114, 3),
RB(0x114, 4), RB(0x114, 5), RB(0x00, 0),
RB(0x16c, 1), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_P6_PG3, "clk_p6_pg3", DIV_P6_PG, RB(0x114, 6),
RB(0x114, 7), RB(0x114, 8), RB(0x00, 0),
RB(0x16c, 2), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_P6_PG4, "clk_p6_pg4", DIV_P6_PG, RB(0x114, 9),
RB(0x114, 10), RB(0x114, 11), RB(0x00, 0),
RB(0x16c, 3), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(CLK_PCI_USB, "clk_pci_usb", CLKOUT_D40, RB(0x1c, 6),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_QSPI0, "clk_qspi0", DIV_QSPI0, RB(0x54, 4),
RB(0x54, 5), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_QSPI1, "clk_qspi1", DIV_QSPI1, RB(0x90, 4),
RB(0x90, 5), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_RGMII_REF, "clk_rgmii_ref", CLKOUT_D8, RB(0x68, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_RMII_REF, "clk_rmii_ref", CLKOUT_D20, RB(0x68, 1),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_SDIO0, "clk_sdio0", DIV_SDIO0, RB(0x0c, 4),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_SDIO1, "clk_sdio1", DIV_SDIO1, RB(0xc8, 4),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_SERCOS100, "clk_sercos100", CLKOUT_D10, RB(0x84, 5),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_SLCD, "clk_slcd", DIV_P1_PG, RB(0x10c, 0),
RB(0x10c, 1), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_SPI0, "clk_spi0", DIV_P3_PG, RB(0xfc, 0),
RB(0xfc, 1), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_SPI1, "clk_spi1", DIV_P3_PG, RB(0xfc, 2),
RB(0xfc, 3), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_SPI2, "clk_spi2", DIV_P3_PG, RB(0xfc, 4),
RB(0xfc, 5), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_SPI3, "clk_spi3", DIV_P3_PG, RB(0xfc, 6),
RB(0xfc, 7), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_SPI4, "clk_spi4", DIV_P4_PG, RB(0x104, 0),
RB(0x104, 1), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_SPI5, "clk_spi5", DIV_P4_PG, RB(0x104, 2),
RB(0x104, 3), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_SWITCH, "clk_switch", DIV_SWITCH, RB(0x130, 2),
RB(0x130, 3), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_DIV(DIV_MOTOR, "div_motor", CLKOUT_D5, 84, 2, 8),
D_MODULE(HCLK_ECAT125, "hclk_ecat125", CLKOUT_D8, RB(0x80, 0),
RB(0x80, 1), RB(0x00, 0), RB(0x80, 2),
RB(0x00, 0), RB(0x88, 0), RB(0x88, 1)),
D_MODULE(HCLK_PINCONFIG, "hclk_pinconfig", CLKOUT_D40, RB(0xe8, 0),
RB(0xe8, 1), RB(0xe8, 2), RB(0x00, 0),
RB(0x15c, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_SERCOS, "hclk_sercos", CLKOUT_D10, RB(0x84, 0),
RB(0x84, 2), RB(0x00, 0), RB(0x84, 1),
RB(0x00, 0), RB(0x8c, 0), RB(0x8c, 1)),
D_MODULE(HCLK_SGPIO2, "hclk_sgpio2", DIV_P5_PG, RB(0x118, 3),
RB(0x118, 4), RB(0x118, 5), RB(0x00, 0),
RB(0x168, 1), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_SGPIO3, "hclk_sgpio3", DIV_P5_PG, RB(0x118, 6),
RB(0x118, 7), RB(0x118, 8), RB(0x00, 0),
RB(0x168, 2), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_SGPIO4, "hclk_sgpio4", DIV_P5_PG, RB(0x118, 9),
RB(0x118, 10), RB(0x118, 11), RB(0x00, 0),
RB(0x168, 3), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_TIMER0, "hclk_timer0", CLKOUT_D40, RB(0xe8, 3),
RB(0xe8, 4), RB(0xe8, 5), RB(0x00, 0),
RB(0x15c, 1), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_TIMER1, "hclk_timer1", CLKOUT_D40, RB(0xe8, 6),
RB(0xe8, 7), RB(0xe8, 8), RB(0x00, 0),
RB(0x15c, 2), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_USBF, "hclk_usbf", CLKOUT_D8, RB(0x1c, 3),
RB(0x00, 0), RB(0x00, 0), RB(0x1c, 4),
RB(0x00, 0), RB(0x20, 2), RB(0x20, 3)),
D_MODULE(HCLK_USBH, "hclk_usbh", CLKOUT_D8, RB(0x1c, 0),
RB(0x1c, 1), RB(0x00, 0), RB(0x1c, 2),
RB(0x00, 0), RB(0x20, 0), RB(0x20, 1)),
D_MODULE(HCLK_USBPM, "hclk_usbpm", CLKOUT_D8, RB(0x1c, 5),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_48_PG_F, "clk_48_pg_f", CLK_48, RB(0xf0, 12),
RB(0xf0, 13), RB(0x00, 0), RB(0xf0, 14),
RB(0x00, 0), RB(0x160, 4), RB(0x160, 5)),
D_GATE(CLK_48_PG4, "clk_48_pg4", CLK_48, RB(0xf0, 9),
RB(0xf0, 10), RB(0xf0, 11), RB(0x00, 0),
RB(0x160, 3), RB(0x00, 0), RB(0x00, 0)),
D_FFC(CLK_DDRPHY_PLLCLK_D4, "clk_ddrphy_pllclk_d4", CLK_DDRPHY_PLLCLK, 4),
D_FFC(CLK_ECAT100_D4, "clk_ecat100_d4", CLK_ECAT100, 4),
D_FFC(CLK_HSR100_D2, "clk_hsr100_d2", CLK_HSR100, 2),
D_FFC(CLK_REF_SYNC_D4, "clk_ref_sync_d4", CLK_REF_SYNC, 4),
D_FFC(CLK_REF_SYNC_D8, "clk_ref_sync_d8", CLK_REF_SYNC, 8),
D_FFC(CLK_SERCOS100_D2, "clk_sercos100_d2", CLK_SERCOS100, 2),
D_DIV(DIV_CA7, "div_ca7", CLK_REF_SYNC, 57, 1, 4, 1, 2, 4),
D_MODULE(HCLK_CAN0, "hclk_can0", CLK_48, RB(0xf0, 3),
RB(0xf0, 4), RB(0xf0, 5), RB(0x00, 0),
RB(0x160, 1), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_CAN1, "hclk_can1", CLK_48, RB(0xf0, 6),
RB(0xf0, 7), RB(0xf0, 8), RB(0x00, 0),
RB(0x160, 2), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_DELTASIGMA, "hclk_deltasigma", DIV_MOTOR, RB(0x3c, 15),
RB(0x3c, 16), RB(0x3c, 17), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_PWMPTO, "hclk_pwmpto", DIV_MOTOR, RB(0x3c, 12),
RB(0x3c, 13), RB(0x3c, 14), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_RSV, "hclk_rsv", CLK_48, RB(0xf0, 0),
RB(0xf0, 1), RB(0xf0, 2), RB(0x00, 0),
RB(0x160, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_SGPIO0, "hclk_sgpio0", DIV_MOTOR, RB(0x3c, 0),
RB(0x3c, 1), RB(0x3c, 2), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_SGPIO1, "hclk_sgpio1", DIV_MOTOR, RB(0x3c, 3),
RB(0x3c, 4), RB(0x3c, 5), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_DIV(RTOS_MDC, "rtos_mdc", CLK_REF_SYNC, 100, 80, 640, 80, 160, 320, 640),
D_GATE(CLK_CM3, "clk_cm3", CLK_REF_SYNC_D4, RB(0x174, 0),
RB(0x174, 1), RB(0x00, 0), RB(0x174, 2),
RB(0x00, 0), RB(0x178, 0), RB(0x178, 1)),
D_GATE(CLK_DDRC, "clk_ddrc", CLK_DDRPHY_PLLCLK_D4, RB(0x64, 3),
RB(0x64, 4), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_ECAT25, "clk_ecat25", CLK_ECAT100_D4, RB(0x80, 3),
RB(0x80, 4), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_HSR50, "clk_hsr50", CLK_HSR100_D2, RB(0x90, 4),
RB(0x90, 5), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_HW_RTOS, "clk_hw_rtos", CLK_REF_SYNC_D4, RB(0x18c, 0),
RB(0x18c, 1), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_SERCOS50, "clk_sercos50", CLK_SERCOS100_D2, RB(0x84, 4),
RB(0x84, 3), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_ADC, "hclk_adc", CLK_REF_SYNC_D8, RB(0x34, 15),
RB(0x34, 16), RB(0x34, 17), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_CM3, "hclk_cm3", CLK_REF_SYNC_D4, RB(0x184, 0),
RB(0x184, 1), RB(0x184, 2), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_CRYPTO_EIP150, "hclk_crypto_eip150", CLK_REF_SYNC_D4, RB(0x24, 3),
RB(0x24, 4), RB(0x24, 5), RB(0x00, 0),
RB(0x28, 2), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_CRYPTO_EIP93, "hclk_crypto_eip93", CLK_REF_SYNC_D4, RB(0x24, 0),
RB(0x24, 1), RB(0x00, 0), RB(0x24, 2),
RB(0x00, 0), RB(0x28, 0), RB(0x28, 1)),
D_MODULE(HCLK_DDRC, "hclk_ddrc", CLK_REF_SYNC_D4, RB(0x64, 0),
RB(0x64, 2), RB(0x00, 0), RB(0x64, 1),
RB(0x00, 0), RB(0x74, 0), RB(0x74, 1)),
D_MODULE(HCLK_DMA0, "hclk_dma0", CLK_REF_SYNC_D4, RB(0x4c, 0),
RB(0x4c, 1), RB(0x4c, 2), RB(0x4c, 3),
RB(0x58, 0), RB(0x58, 1), RB(0x58, 2)),
D_MODULE(HCLK_DMA1, "hclk_dma1", CLK_REF_SYNC_D4, RB(0x4c, 4),
RB(0x4c, 5), RB(0x4c, 6), RB(0x4c, 7),
RB(0x58, 3), RB(0x58, 4), RB(0x58, 5)),
D_MODULE(HCLK_GMAC0, "hclk_gmac0", CLK_REF_SYNC_D4, RB(0x6c, 0),
RB(0x6c, 1), RB(0x6c, 2), RB(0x6c, 3),
RB(0x78, 0), RB(0x78, 1), RB(0x78, 2)),
D_MODULE(HCLK_GMAC1, "hclk_gmac1", CLK_REF_SYNC_D4, RB(0x70, 0),
RB(0x70, 1), RB(0x70, 2), RB(0x70, 3),
RB(0x7c, 0), RB(0x7c, 1), RB(0x7c, 2)),
D_MODULE(HCLK_GPIO0, "hclk_gpio0", CLK_REF_SYNC_D4, RB(0x40, 18),
RB(0x40, 19), RB(0x40, 20), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_GPIO1, "hclk_gpio1", CLK_REF_SYNC_D4, RB(0x40, 21),
RB(0x40, 22), RB(0x40, 23), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_GPIO2, "hclk_gpio2", CLK_REF_SYNC_D4, RB(0x44, 9),
RB(0x44, 10), RB(0x44, 11), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_HSR, "hclk_hsr", CLK_HSR100_D2, RB(0x90, 0),
RB(0x90, 2), RB(0x00, 0), RB(0x90, 1),
RB(0x00, 0), RB(0x98, 0), RB(0x98, 1)),
D_MODULE(HCLK_I2C0, "hclk_i2c0", CLK_REF_SYNC_D8, RB(0x34, 9),
RB(0x34, 10), RB(0x34, 11), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_I2C1, "hclk_i2c1", CLK_REF_SYNC_D8, RB(0x34, 12),
RB(0x34, 13), RB(0x34, 14), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_LCD, "hclk_lcd", CLK_REF_SYNC_D4, RB(0xf4, 0),
RB(0xf4, 1), RB(0xf4, 2), RB(0x00, 0),
RB(0x164, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_MSEBI_M, "hclk_msebi_m", CLK_REF_SYNC_D4, RB(0x2c, 4),
RB(0x2c, 5), RB(0x2c, 6), RB(0x00, 0),
RB(0x30, 3), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_MSEBI_S, "hclk_msebi_s", CLK_REF_SYNC_D4, RB(0x2c, 0),
RB(0x2c, 1), RB(0x2c, 2), RB(0x2c, 3),
RB(0x30, 0), RB(0x30, 1), RB(0x30, 2)),
D_MODULE(HCLK_NAND, "hclk_nand", CLK_REF_SYNC_D4, RB(0x50, 0),
RB(0x50, 1), RB(0x50, 2), RB(0x50, 3),
RB(0x5c, 0), RB(0x5c, 1), RB(0x5c, 2)),
D_MODULE(HCLK_PG_I, "hclk_pg_i", CLK_REF_SYNC_D4, RB(0xf4, 12),
RB(0xf4, 13), RB(0x00, 0), RB(0xf4, 14),
RB(0x00, 0), RB(0x164, 4), RB(0x164, 5)),
D_MODULE(HCLK_PG19, "hclk_pg19", CLK_REF_SYNC_D4, RB(0x44, 12),
RB(0x44, 13), RB(0x44, 14), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_PG20, "hclk_pg20", CLK_REF_SYNC_D4, RB(0x44, 15),
RB(0x44, 16), RB(0x44, 17), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_PG3, "hclk_pg3", CLK_REF_SYNC_D4, RB(0xf4, 6),
RB(0xf4, 7), RB(0xf4, 8), RB(0x00, 0),
RB(0x164, 2), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_PG4, "hclk_pg4", CLK_REF_SYNC_D4, RB(0xf4, 9),
RB(0xf4, 10), RB(0xf4, 11), RB(0x00, 0),
RB(0x164, 3), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_QSPI0, "hclk_qspi0", CLK_REF_SYNC_D4, RB(0x54, 0),
RB(0x54, 1), RB(0x54, 2), RB(0x54, 3),
RB(0x60, 0), RB(0x60, 1), RB(0x60, 2)),
D_MODULE(HCLK_QSPI1, "hclk_qspi1", CLK_REF_SYNC_D4, RB(0x90, 0),
RB(0x90, 1), RB(0x90, 2), RB(0x90, 3),
RB(0x98, 0), RB(0x98, 1), RB(0x98, 2)),
D_MODULE(HCLK_ROM, "hclk_rom", CLK_REF_SYNC_D4, RB(0x154, 0),
RB(0x154, 1), RB(0x154, 2), RB(0x00, 0),
RB(0x170, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_RTC, "hclk_rtc", CLK_REF_SYNC_D8, RB(0x140, 0),
RB(0x140, 3), RB(0x00, 0), RB(0x140, 2),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_SDIO0, "hclk_sdio0", CLK_REF_SYNC_D4, RB(0x0c, 0),
RB(0x0c, 1), RB(0x0c, 2), RB(0x0c, 3),
RB(0x10, 0), RB(0x10, 1), RB(0x10, 2)),
D_MODULE(HCLK_SDIO1, "hclk_sdio1", CLK_REF_SYNC_D4, RB(0xc8, 0),
RB(0xc8, 1), RB(0xc8, 2), RB(0xc8, 3),
RB(0xcc, 0), RB(0xcc, 1), RB(0xcc, 2)),
D_MODULE(HCLK_SEMAP, "hclk_semap", CLK_REF_SYNC_D4, RB(0xf4, 3),
RB(0xf4, 4), RB(0xf4, 5), RB(0x00, 0),
RB(0x164, 1), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_SPI0, "hclk_spi0", CLK_REF_SYNC_D4, RB(0x40, 0),
RB(0x40, 1), RB(0x40, 2), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_SPI1, "hclk_spi1", CLK_REF_SYNC_D4, RB(0x40, 3),
RB(0x40, 4), RB(0x40, 5), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_SPI2, "hclk_spi2", CLK_REF_SYNC_D4, RB(0x40, 6),
RB(0x40, 7), RB(0x40, 8), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_SPI3, "hclk_spi3", CLK_REF_SYNC_D4, RB(0x40, 9),
RB(0x40, 10), RB(0x40, 11), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_SPI4, "hclk_spi4", CLK_REF_SYNC_D4, RB(0x40, 12),
RB(0x40, 13), RB(0x40, 14), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_SPI5, "hclk_spi5", CLK_REF_SYNC_D4, RB(0x40, 15),
RB(0x40, 16), RB(0x40, 17), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_SWITCH, "hclk_switch", CLK_REF_SYNC_D4, RB(0x130, 0),
RB(0x00, 0), RB(0x130, 1), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_SWITCH_RG, "hclk_switch_rg", CLK_REF_SYNC_D4, RB(0x188, 0),
RB(0x188, 1), RB(0x188, 2), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_UART0, "hclk_uart0", CLK_REF_SYNC_D8, RB(0x34, 0),
RB(0x34, 1), RB(0x34, 2), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_UART1, "hclk_uart1", CLK_REF_SYNC_D8, RB(0x34, 3),
RB(0x34, 4), RB(0x34, 5), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_UART2, "hclk_uart2", CLK_REF_SYNC_D8, RB(0x34, 6),
RB(0x34, 7), RB(0x34, 8), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_UART3, "hclk_uart3", CLK_REF_SYNC_D4, RB(0x40, 24),
RB(0x40, 25), RB(0x40, 26), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_UART4, "hclk_uart4", CLK_REF_SYNC_D4, RB(0x40, 27),
RB(0x40, 28), RB(0x40, 29), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_UART5, "hclk_uart5", CLK_REF_SYNC_D4, RB(0x44, 0),
RB(0x44, 1), RB(0x44, 2), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_UART6, "hclk_uart6", CLK_REF_SYNC_D4, RB(0x44, 3),
RB(0x44, 4), RB(0x44, 5), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_UART7, "hclk_uart7", CLK_REF_SYNC_D4, RB(0x44, 6),
RB(0x44, 7), RB(0x44, 8), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
/*
* These are not hardware clocks, but are needed to handle the special
* case where we have a 'selector bit' that doesn't just change the
* parent for a clock, but also the gate it's supposed to use.
*/
{
.index = R9A06G032_UART_GROUP_012,
.name = "uart_group_012",
.type = K_BITSEL,
.source = 1 + R9A06G032_DIV_UART,
/* R9A06G032_SYSCTRL_REG_PWRCTRL_PG0_0 */
.dual.sel = RB(0x34, 30),
.dual.group = 0,
},
{
.index = R9A06G032_UART_GROUP_34567,
.name = "uart_group_34567",
.type = K_BITSEL,
.source = 1 + R9A06G032_DIV_P2_PG,
/* R9A06G032_SYSCTRL_REG_PWRCTRL_PG1_PR2 */
.dual.sel = RB(0xec, 24),
.dual.group = 1,
},
D_UGATE(CLK_UART0, "clk_uart0", UART_GROUP_012, 0,
RB(0x34, 18), RB(0x34, 19), RB(0x34, 20), RB(0x34, 21)),
D_UGATE(CLK_UART1, "clk_uart1", UART_GROUP_012, 0,
RB(0x34, 22), RB(0x34, 23), RB(0x34, 24), RB(0x34, 25)),
D_UGATE(CLK_UART2, "clk_uart2", UART_GROUP_012, 0,
RB(0x34, 26), RB(0x34, 27), RB(0x34, 28), RB(0x34, 29)),
D_UGATE(CLK_UART3, "clk_uart3", UART_GROUP_34567, 1,
RB(0xec, 0), RB(0xec, 1), RB(0xec, 2), RB(0xec, 3)),
D_UGATE(CLK_UART4, "clk_uart4", UART_GROUP_34567, 1,
RB(0xec, 4), RB(0xec, 5), RB(0xec, 6), RB(0xec, 7)),
D_UGATE(CLK_UART5, "clk_uart5", UART_GROUP_34567, 1,
RB(0xec, 8), RB(0xec, 9), RB(0xec, 10), RB(0xec, 11)),
D_UGATE(CLK_UART6, "clk_uart6", UART_GROUP_34567, 1,
RB(0xec, 12), RB(0xec, 13), RB(0xec, 14), RB(0xec, 15)),
D_UGATE(CLK_UART7, "clk_uart7", UART_GROUP_34567, 1,
RB(0xec, 16), RB(0xec, 17), RB(0xec, 18), RB(0xec, 19)),
};
struct r9a06g032_priv {
struct clk_onecell_data data;
spinlock_t lock; /* protects concurrent access to gates */
void __iomem *reg;
};
static struct r9a06g032_priv *sysctrl_priv;
/* Exported helper to access the DMAMUX register */
int r9a06g032_sysctrl_set_dmamux(u32 mask, u32 val)
{
unsigned long flags;
u32 dmamux;
if (!sysctrl_priv)
return -EPROBE_DEFER;
spin_lock_irqsave(&sysctrl_priv->lock, flags);
dmamux = readl(sysctrl_priv->reg + R9A06G032_SYSCTRL_DMAMUX);
dmamux &= ~mask;
dmamux |= val & mask;
writel(dmamux, sysctrl_priv->reg + R9A06G032_SYSCTRL_DMAMUX);
spin_unlock_irqrestore(&sysctrl_priv->lock, flags);
return 0;
}
EXPORT_SYMBOL_GPL(r9a06g032_sysctrl_set_dmamux);
static void clk_rdesc_set(struct r9a06g032_priv *clocks,
struct regbit rb, unsigned int on)
{
u32 __iomem *reg = clocks->reg + (rb.reg * 4);
u32 val;
if (!rb.reg && !rb.bit)
return;
val = readl(reg);
val = (val & ~BIT(rb.bit)) | ((!!on) << rb.bit);
writel(val, reg);
}
static int clk_rdesc_get(struct r9a06g032_priv *clocks, struct regbit rb)
{
u32 __iomem *reg = clocks->reg + (rb.reg * 4);
u32 val = readl(reg);
return !!(val & BIT(rb.bit));
}
/*
* This implements the R9A06G032 clock gate 'driver'. We cannot use the system's
* clock gate framework as the gates on the R9A06G032 have a special enabling
* sequence, therefore we use this little proxy.
*/
struct r9a06g032_clk_gate {
struct clk_hw hw;
struct r9a06g032_priv *clocks;
u16 index;
struct r9a06g032_gate gate;
};
#define to_r9a06g032_gate(_hw) container_of(_hw, struct r9a06g032_clk_gate, hw)
static int create_add_module_clock(struct of_phandle_args *clkspec,
struct device *dev)
{
struct clk *clk;
int error;
clk = of_clk_get_from_provider(clkspec);
if (IS_ERR(clk))
return PTR_ERR(clk);
error = pm_clk_create(dev);
if (error) {
clk_put(clk);
return error;
}
error = pm_clk_add_clk(dev, clk);
if (error) {
pm_clk_destroy(dev);
clk_put(clk);
}
return error;
}
static int r9a06g032_attach_dev(struct generic_pm_domain *pd,
struct device *dev)
{
struct device_node *np = dev->of_node;
struct of_phandle_args clkspec;
int i = 0;
int error;
int index;
while (!of_parse_phandle_with_args(np, "clocks", "#clock-cells", i++,
&clkspec)) {
if (clkspec.np != pd->dev.of_node)
continue;
index = clkspec.args[0];
if (index < R9A06G032_CLOCK_COUNT &&
r9a06g032_clocks[index].managed) {
error = create_add_module_clock(&clkspec, dev);
of_node_put(clkspec.np);
if (error)
return error;
}
}
return 0;
}
static void r9a06g032_detach_dev(struct generic_pm_domain *unused, struct device *dev)
{
if (!pm_clk_no_clocks(dev))
pm_clk_destroy(dev);
}
static int r9a06g032_add_clk_domain(struct device *dev)
{
struct device_node *np = dev->of_node;
struct generic_pm_domain *pd;
pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
if (!pd)
return -ENOMEM;
pd->name = np->name;
pd->flags = GENPD_FLAG_PM_CLK | GENPD_FLAG_ALWAYS_ON |
GENPD_FLAG_ACTIVE_WAKEUP;
pd->attach_dev = r9a06g032_attach_dev;
pd->detach_dev = r9a06g032_detach_dev;
pm_genpd_init(pd, &pm_domain_always_on_gov, false);
of_genpd_add_provider_simple(np, pd);
return 0;
}
static void
r9a06g032_clk_gate_set(struct r9a06g032_priv *clocks,
struct r9a06g032_gate *g, int on)
{
unsigned long flags;
WARN_ON(!g->gate.reg && !g->gate.bit);
spin_lock_irqsave(&clocks->lock, flags);
clk_rdesc_set(clocks, g->gate, on);
/* De-assert reset */
clk_rdesc_set(clocks, g->reset, 1);
spin_unlock_irqrestore(&clocks->lock, flags);
/* Hardware manual recommends 5us delay after enabling clock & reset */
udelay(5);
/* If the peripheral is memory mapped (i.e. an AXI slave), there is an
* associated SLVRDY bit in the System Controller that needs to be set
* so that the FlexWAY bus fabric passes on the read/write requests.
*/
spin_lock_irqsave(&clocks->lock, flags);
clk_rdesc_set(clocks, g->ready, on);
/* Clear 'Master Idle Request' bit */
clk_rdesc_set(clocks, g->midle, !on);
spin_unlock_irqrestore(&clocks->lock, flags);
/* Note: We don't wait for FlexWAY Socket Connection signal */
}
static int r9a06g032_clk_gate_enable(struct clk_hw *hw)
{
struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
r9a06g032_clk_gate_set(g->clocks, &g->gate, 1);
return 0;
}
static void r9a06g032_clk_gate_disable(struct clk_hw *hw)
{
struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
r9a06g032_clk_gate_set(g->clocks, &g->gate, 0);
}
static int r9a06g032_clk_gate_is_enabled(struct clk_hw *hw)
{
struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
/* if clock is in reset, the gate might be on, and still not 'be' on */
if (g->gate.reset.reg && !clk_rdesc_get(g->clocks, g->gate.reset))
return 0;
return clk_rdesc_get(g->clocks, g->gate.gate);
}
static const struct clk_ops r9a06g032_clk_gate_ops = {
.enable = r9a06g032_clk_gate_enable,
.disable = r9a06g032_clk_gate_disable,
.is_enabled = r9a06g032_clk_gate_is_enabled,
};
static struct clk *
r9a06g032_register_gate(struct r9a06g032_priv *clocks,
const char *parent_name,
const struct r9a06g032_clkdesc *desc)
{
struct clk *clk;
struct r9a06g032_clk_gate *g;
struct clk_init_data init = {};
g = kzalloc(sizeof(*g), GFP_KERNEL);
if (!g)
return NULL;
init.name = desc->name;
init.ops = &r9a06g032_clk_gate_ops;
init.flags = CLK_SET_RATE_PARENT;
init.parent_names = parent_name ? &parent_name : NULL;
init.num_parents = parent_name ? 1 : 0;
g->clocks = clocks;
g->index = desc->index;
g->gate = desc->gate;
g->hw.init = &init;
/*
* important here, some clocks are already in use by the CM3, we
* have to assume they are not Linux's to play with and try to disable
* at the end of the boot!
*/
if (r9a06g032_clk_gate_is_enabled(&g->hw)) {
init.flags |= CLK_IS_CRITICAL;
pr_debug("%s was enabled, making read-only\n", desc->name);
}
clk = clk_register(NULL, &g->hw);
if (IS_ERR(clk)) {
kfree(g);
return NULL;
}
return clk;
}
struct r9a06g032_clk_div {
struct clk_hw hw;
struct r9a06g032_priv *clocks;
u16 index;
u16 reg;
u16 min, max;
u8 table_size;
u16 table[8]; /* we know there are no more than 8 */
};
#define to_r9a06g032_div(_hw) \
container_of(_hw, struct r9a06g032_clk_div, hw)
static unsigned long
r9a06g032_div_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
u32 __iomem *reg = clk->clocks->reg + (4 * clk->reg);
u32 div = readl(reg);
if (div < clk->min)
div = clk->min;
else if (div > clk->max)
div = clk->max;
return DIV_ROUND_UP(parent_rate, div);
}
/*
* Attempts to find a value that is in range of min,max,
* and if a table of set dividers was specified for this
* register, try to find the fixed divider that is the closest
* to the target frequency
*/
static long
r9a06g032_div_clamp_div(struct r9a06g032_clk_div *clk,
unsigned long rate, unsigned long prate)
{
/* + 1 to cope with rates that have the remainder dropped */
u32 div = DIV_ROUND_UP(prate, rate + 1);
int i;
if (div <= clk->min)
return clk->min;
if (div >= clk->max)
return clk->max;
for (i = 0; clk->table_size && i < clk->table_size - 1; i++) {
if (div >= clk->table[i] && div <= clk->table[i + 1]) {
unsigned long m = rate -
DIV_ROUND_UP(prate, clk->table[i]);
unsigned long p =
DIV_ROUND_UP(prate, clk->table[i + 1]) -
rate;
/*
* select the divider that generates
* the value closest to the ideal frequency
*/
div = p >= m ? clk->table[i] : clk->table[i + 1];
return div;
}
}
return div;
}
static int
r9a06g032_div_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
{
struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
u32 div = DIV_ROUND_UP(req->best_parent_rate, req->rate);
pr_devel("%s %pC %ld (prate %ld) (wanted div %u)\n", __func__,
hw->clk, req->rate, req->best_parent_rate, div);
pr_devel(" min %d (%ld) max %d (%ld)\n",
clk->min, DIV_ROUND_UP(req->best_parent_rate, clk->min),
clk->max, DIV_ROUND_UP(req->best_parent_rate, clk->max));
div = r9a06g032_div_clamp_div(clk, req->rate, req->best_parent_rate);
/*
* this is a hack. Currently the serial driver asks for a clock rate
* that is 16 times the baud rate -- and that is wildly outside the
* range of the UART divider, somehow there is no provision for that
* case of 'let the divider as is if outside range'.
* The serial driver *shouldn't* play with these clocks anyway, there's
* several uarts attached to this divider, and changing this impacts
* everyone.
*/
if (clk->index == R9A06G032_DIV_UART ||
clk->index == R9A06G032_DIV_P2_PG) {
pr_devel("%s div uart hack!\n", __func__);
req->rate = clk_get_rate(hw->clk);
return 0;
}
req->rate = DIV_ROUND_UP(req->best_parent_rate, div);
pr_devel("%s %pC %ld / %u = %ld\n", __func__, hw->clk,
req->best_parent_rate, div, req->rate);
return 0;
}
static int
r9a06g032_div_set_rate(struct clk_hw *hw,
unsigned long rate, unsigned long parent_rate)
{
struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
/* + 1 to cope with rates that have the remainder dropped */
u32 div = DIV_ROUND_UP(parent_rate, rate + 1);
u32 __iomem *reg = clk->clocks->reg + (4 * clk->reg);
pr_devel("%s %pC rate %ld parent %ld div %d\n", __func__, hw->clk,
rate, parent_rate, div);
/*
* Need to write the bit 31 with the divider value to
* latch it. Technically we should wait until it has been
* cleared too.
* TODO: Find whether this callback is sleepable, in case
* the hardware /does/ require some sort of spinloop here.
*/
writel(div | BIT(31), reg);
return 0;
}
static const struct clk_ops r9a06g032_clk_div_ops = {
.recalc_rate = r9a06g032_div_recalc_rate,
.determine_rate = r9a06g032_div_determine_rate,
.set_rate = r9a06g032_div_set_rate,
};
static struct clk *
r9a06g032_register_div(struct r9a06g032_priv *clocks,
const char *parent_name,
const struct r9a06g032_clkdesc *desc)
{
struct r9a06g032_clk_div *div;
struct clk *clk;
struct clk_init_data init = {};
unsigned int i;
div = kzalloc(sizeof(*div), GFP_KERNEL);
if (!div)
return NULL;
init.name = desc->name;
init.ops = &r9a06g032_clk_div_ops;
init.flags = CLK_SET_RATE_PARENT;
init.parent_names = parent_name ? &parent_name : NULL;
init.num_parents = parent_name ? 1 : 0;
div->clocks = clocks;
div->index = desc->index;
div->reg = desc->reg;
div->hw.init = &init;
div->min = desc->div_min;
div->max = desc->div_max;
/* populate (optional) divider table fixed values */
for (i = 0; i < ARRAY_SIZE(div->table) &&
i < ARRAY_SIZE(desc->div_table) && desc->div_table[i]; i++) {
div->table[div->table_size++] = desc->div_table[i];
}
clk = clk_register(NULL, &div->hw);
if (IS_ERR(clk)) {
kfree(div);
return NULL;
}
return clk;
}
/*
* This clock provider handles the case of the R9A06G032 where you have
* peripherals that have two potential clock source and two gates, one for
* each of the clock source - the used clock source (for all sub clocks)
* is selected by a single bit.
* That single bit affects all sub-clocks, and therefore needs to change the
* active gate (and turn the others off) and force a recalculation of the rates.
*
* This implements two clock providers, one 'bitselect' that
* handles the switch between both parents, and another 'dualgate'
* that knows which gate to poke at, depending on the parent's bit position.
*/
struct r9a06g032_clk_bitsel {
struct clk_hw hw;
struct r9a06g032_priv *clocks;
u16 index;
struct regbit selector; /* selector register + bit */
};
#define to_clk_bitselect(_hw) \
container_of(_hw, struct r9a06g032_clk_bitsel, hw)
static u8 r9a06g032_clk_mux_get_parent(struct clk_hw *hw)
{
struct r9a06g032_clk_bitsel *set = to_clk_bitselect(hw);
return clk_rdesc_get(set->clocks, set->selector);
}
static int r9a06g032_clk_mux_set_parent(struct clk_hw *hw, u8 index)
{
struct r9a06g032_clk_bitsel *set = to_clk_bitselect(hw);
/* a single bit in the register selects one of two parent clocks */
clk_rdesc_set(set->clocks, set->selector, !!index);
return 0;
}
static const struct clk_ops clk_bitselect_ops = {
clk: renesas: r9a06g032: Add a determine_rate hook The Renesas r9a06g032 bitselect clock implements a mux with a set_parent hook, but doesn't provide a determine_rate implementation. This is a bit odd, since set_parent() is there to, as its name implies, change the parent of a clock. However, the most likely candidates to trigger that parent change are either the assigned-clock-parents device tree property or a call to clk_set_rate(), with determine_rate() figuring out which parent is the best suited for a given rate. The other trigger would be a call to clk_set_parent(), but it's far less used, and it doesn't look like there's any obvious user for that clock. Similarly, it doesn't look like the device tree using that clock driver uses any of the assigned-clock properties on that clock. So, the set_parent hook is effectively unused, possibly because of an oversight. However, it could also be an explicit decision by the original author to avoid any reparenting but through an explicit call to clk_set_parent(). The latter case would be equivalent to setting the determine_rate implementation to clk_hw_determine_rate_no_reparent(). Indeed, if no determine_rate implementation is provided, clk_round_rate() (through clk_core_round_rate_nolock()) will call itself on the parent if CLK_SET_RATE_PARENT is set, and will not change the clock rate otherwise. And if it was an oversight, then we are at least explicit about our behavior now and it can be further refined down the line. Cc: Geert Uytterhoeven <geert+renesas@glider.be> Cc: linux-renesas-soc@vger.kernel.org Reviewed-by: Geert Uytterhoeven <geert+renesas@glider.be> Reviewed-by: Miquel Raynal <miquel.raynal@bootlin.com> Signed-off-by: Maxime Ripard <maxime@cerno.tech> Link: https://lore.kernel.org/r/20221018-clk-range-checks-fixes-v4-31-971d5077e7d2@cerno.tech Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2023-05-05 11:25:33 +00:00
.determine_rate = clk_hw_determine_rate_no_reparent,
.get_parent = r9a06g032_clk_mux_get_parent,
.set_parent = r9a06g032_clk_mux_set_parent,
};
static struct clk *
r9a06g032_register_bitsel(struct r9a06g032_priv *clocks,
const char *parent_name,
const struct r9a06g032_clkdesc *desc)
{
struct clk *clk;
struct r9a06g032_clk_bitsel *g;
struct clk_init_data init = {};
const char *names[2];
/* allocate the gate */
g = kzalloc(sizeof(*g), GFP_KERNEL);
if (!g)
return NULL;
names[0] = parent_name;
names[1] = "clk_pll_usb";
init.name = desc->name;
init.ops = &clk_bitselect_ops;
init.flags = CLK_SET_RATE_PARENT;
init.parent_names = names;
init.num_parents = 2;
g->clocks = clocks;
g->index = desc->index;
g->selector = desc->dual.sel;
g->hw.init = &init;
clk = clk_register(NULL, &g->hw);
if (IS_ERR(clk)) {
kfree(g);
return NULL;
}
return clk;
}
struct r9a06g032_clk_dualgate {
struct clk_hw hw;
struct r9a06g032_priv *clocks;
u16 index;
struct regbit selector; /* selector register + bit */
struct r9a06g032_gate gate[2];
};
#define to_clk_dualgate(_hw) \
container_of(_hw, struct r9a06g032_clk_dualgate, hw)
static int
r9a06g032_clk_dualgate_setenable(struct r9a06g032_clk_dualgate *g, int enable)
{
u8 sel_bit = clk_rdesc_get(g->clocks, g->selector);
/* we always turn off the 'other' gate, regardless */
r9a06g032_clk_gate_set(g->clocks, &g->gate[!sel_bit], 0);
r9a06g032_clk_gate_set(g->clocks, &g->gate[sel_bit], enable);
return 0;
}
static int r9a06g032_clk_dualgate_enable(struct clk_hw *hw)
{
struct r9a06g032_clk_dualgate *gate = to_clk_dualgate(hw);
r9a06g032_clk_dualgate_setenable(gate, 1);
return 0;
}
static void r9a06g032_clk_dualgate_disable(struct clk_hw *hw)
{
struct r9a06g032_clk_dualgate *gate = to_clk_dualgate(hw);
r9a06g032_clk_dualgate_setenable(gate, 0);
}
static int r9a06g032_clk_dualgate_is_enabled(struct clk_hw *hw)
{
struct r9a06g032_clk_dualgate *g = to_clk_dualgate(hw);
u8 sel_bit = clk_rdesc_get(g->clocks, g->selector);
return clk_rdesc_get(g->clocks, g->gate[sel_bit].gate);
}
static const struct clk_ops r9a06g032_clk_dualgate_ops = {
.enable = r9a06g032_clk_dualgate_enable,
.disable = r9a06g032_clk_dualgate_disable,
.is_enabled = r9a06g032_clk_dualgate_is_enabled,
};
static struct clk *
r9a06g032_register_dualgate(struct r9a06g032_priv *clocks,
const char *parent_name,
const struct r9a06g032_clkdesc *desc,
struct regbit sel)
{
struct r9a06g032_clk_dualgate *g;
struct clk *clk;
struct clk_init_data init = {};
/* allocate the gate */
g = kzalloc(sizeof(*g), GFP_KERNEL);
if (!g)
return NULL;
g->clocks = clocks;
g->index = desc->index;
g->selector = sel;
g->gate[0].gate = desc->dual.g1;
g->gate[0].reset = desc->dual.r1;
g->gate[1].gate = desc->dual.g2;
g->gate[1].reset = desc->dual.r2;
init.name = desc->name;
init.ops = &r9a06g032_clk_dualgate_ops;
init.flags = CLK_SET_RATE_PARENT;
init.parent_names = &parent_name;
init.num_parents = 1;
g->hw.init = &init;
/*
* important here, some clocks are already in use by the CM3, we
* have to assume they are not Linux's to play with and try to disable
* at the end of the boot!
*/
if (r9a06g032_clk_dualgate_is_enabled(&g->hw)) {
init.flags |= CLK_IS_CRITICAL;
pr_debug("%s was enabled, making read-only\n", desc->name);
}
clk = clk_register(NULL, &g->hw);
if (IS_ERR(clk)) {
kfree(g);
return NULL;
}
return clk;
}
static void r9a06g032_clocks_del_clk_provider(void *data)
{
of_clk_del_provider(data);
}
static void __init r9a06g032_init_h2mode(struct r9a06g032_priv *clocks)
{
struct device_node *usbf_np = NULL;
u32 usb;
while ((usbf_np = of_find_compatible_node(usbf_np, NULL,
"renesas,rzn1-usbf"))) {
if (of_device_is_available(usbf_np))
break;
}
usb = readl(clocks->reg + R9A06G032_SYSCTRL_USB);
if (usbf_np) {
/* 1 host and 1 device mode */
usb &= ~R9A06G032_SYSCTRL_USB_H2MODE;
of_node_put(usbf_np);
} else {
/* 2 hosts mode */
usb |= R9A06G032_SYSCTRL_USB_H2MODE;
}
writel(usb, clocks->reg + R9A06G032_SYSCTRL_USB);
}
static int __init r9a06g032_clocks_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct r9a06g032_priv *clocks;
struct clk **clks;
struct clk *mclk;
unsigned int i;
struct regbit uart_group_sel[2];
int error;
clocks = devm_kzalloc(dev, sizeof(*clocks), GFP_KERNEL);
clks = devm_kcalloc(dev, R9A06G032_CLOCK_COUNT, sizeof(struct clk *),
GFP_KERNEL);
if (!clocks || !clks)
return -ENOMEM;
spin_lock_init(&clocks->lock);
clocks->data.clks = clks;
clocks->data.clk_num = R9A06G032_CLOCK_COUNT;
mclk = devm_clk_get(dev, "mclk");
if (IS_ERR(mclk))
return PTR_ERR(mclk);
clocks->reg = of_iomap(np, 0);
if (WARN_ON(!clocks->reg))
return -ENOMEM;
r9a06g032_init_h2mode(clocks);
for (i = 0; i < ARRAY_SIZE(r9a06g032_clocks); ++i) {
const struct r9a06g032_clkdesc *d = &r9a06g032_clocks[i];
const char *parent_name = d->source ?
__clk_get_name(clocks->data.clks[d->source - 1]) :
__clk_get_name(mclk);
struct clk *clk = NULL;
switch (d->type) {
case K_FFC:
clk = clk_register_fixed_factor(NULL, d->name,
parent_name, 0,
d->mul, d->div);
break;
case K_GATE:
clk = r9a06g032_register_gate(clocks, parent_name, d);
break;
case K_DIV:
clk = r9a06g032_register_div(clocks, parent_name, d);
break;
case K_BITSEL:
/* keep that selector register around */
uart_group_sel[d->dual.group] = d->dual.sel;
clk = r9a06g032_register_bitsel(clocks, parent_name, d);
break;
case K_DUALGATE:
clk = r9a06g032_register_dualgate(clocks, parent_name,
d,
uart_group_sel[d->dual.group]);
break;
}
clocks->data.clks[d->index] = clk;
}
error = of_clk_add_provider(np, of_clk_src_onecell_get, &clocks->data);
if (error)
return error;
error = devm_add_action_or_reset(dev,
r9a06g032_clocks_del_clk_provider, np);
if (error)
return error;
error = r9a06g032_add_clk_domain(dev);
if (error)
return error;
sysctrl_priv = clocks;
error = of_platform_populate(np, NULL, NULL, dev);
if (error)
dev_err(dev, "Failed to populate children (%d)\n", error);
return 0;
}
static const struct of_device_id r9a06g032_match[] = {
{ .compatible = "renesas,r9a06g032-sysctrl" },
{ }
};
static struct platform_driver r9a06g032_clock_driver = {
.driver = {
.name = "renesas,r9a06g032-sysctrl",
.of_match_table = r9a06g032_match,
},
};
static int __init r9a06g032_clocks_init(void)
{
return platform_driver_probe(&r9a06g032_clock_driver,
r9a06g032_clocks_probe);
}
subsys_initcall(r9a06g032_clocks_init);