linux/mm/swapfile.c

2955 lines
77 KiB
C
Raw Normal View History

/*
* linux/mm/swapfile.c
*
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
* Swap reorganised 29.12.95, Stephen Tweedie
*/
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/mman.h>
#include <linux/slab.h>
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/namei.h>
#include <linux/shmem_fs.h>
#include <linux/blkdev.h>
#include <linux/random.h>
#include <linux/writeback.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/init.h>
ksm: let shared pages be swappable Initial implementation for swapping out KSM's shared pages: add page_referenced_ksm() and try_to_unmap_ksm(), which rmap.c calls when faced with a PageKsm page. Most of what's needed can be got from the rmap_items listed from the stable_node of the ksm page, without discovering the actual vma: so in this patch just fake up a struct vma for page_referenced_one() or try_to_unmap_one(), then refine that in the next patch. Add VM_NONLINEAR to ksm_madvise()'s list of exclusions: it has always been implicit there (being only set with VM_SHARED, already excluded), but let's make it explicit, to help justify the lack of nonlinear unmap. Rely on the page lock to protect against concurrent modifications to that page's node of the stable tree. The awkward part is not swapout but swapin: do_swap_page() and page_add_anon_rmap() now have to allow for new possibilities - perhaps a ksm page still in swapcache, perhaps a swapcache page associated with one location in one anon_vma now needed for another location or anon_vma. (And the vma might even be no longer VM_MERGEABLE when that happens.) ksm_might_need_to_copy() checks for that case, and supplies a duplicate page when necessary, simply leaving it to a subsequent pass of ksmd to rediscover the identity and merge them back into one ksm page. Disappointingly primitive: but the alternative would have to accumulate unswappable info about the swapped out ksm pages, limiting swappability. Remove page_add_ksm_rmap(): page_add_anon_rmap() now has to allow for the particular case it was handling, so just use it instead. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Izik Eidus <ieidus@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Chris Wright <chrisw@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 01:59:24 +00:00
#include <linux/ksm.h>
#include <linux/rmap.h>
#include <linux/security.h>
#include <linux/backing-dev.h>
#include <linux/mutex.h>
#include <linux/capability.h>
#include <linux/syscalls.h>
Memory controller: memory accounting Add the accounting hooks. The accounting is carried out for RSS and Page Cache (unmapped) pages. There is now a common limit and accounting for both. The RSS accounting is accounted at page_add_*_rmap() and page_remove_rmap() time. Page cache is accounted at add_to_page_cache(), __delete_from_page_cache(). Swap cache is also accounted for. Each page's page_cgroup is protected with the last bit of the page_cgroup pointer, this makes handling of race conditions involving simultaneous mappings of a page easier. A reference count is kept in the page_cgroup to deal with cases where a page might be unmapped from the RSS of all tasks, but still lives in the page cache. Credits go to Vaidyanathan Srinivasan for helping with reference counting work of the page cgroup. Almost all of the page cache accounting code has help from Vaidyanathan Srinivasan. [hugh@veritas.com: fix swapoff breakage] [akpm@linux-foundation.org: fix locking] Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Paul Menage <menage@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Kirill Korotaev <dev@sw.ru> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: David Rientjes <rientjes@google.com> Cc: <Valdis.Kletnieks@vt.edu> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 08:13:53 +00:00
#include <linux/memcontrol.h>
#include <linux/poll.h>
#include <linux/oom.h>
mm: frontswap: core swap subsystem hooks and headers This patch, 2of4, contains the changes to the core swap subsystem. This includes: (1) makes available core swap data structures (swap_lock, swap_list and swap_info) that are needed by frontswap.c but we don't need to expose them to the dozens of files that include swap.h so we create a new swapfile.h just to extern-ify these and modify their declarations to non-static (2) adds frontswap-related elements to swap_info_struct. Frontswap_map points to vzalloc'ed one-bit-per-swap-page metadata that indicates whether the swap page is in frontswap or in the device and frontswap_pages counts how many pages are in frontswap. (3) adds hooks in the swap subsystem and extends try_to_unuse so that frontswap_shrink can do a "partial swapoff". Note that a failed frontswap_map allocation is safe... failure is noted by lack of "FS" in the subsequent printk. --- [v14: rebase to 3.4-rc2] [v10: no change] [v9: akpm@linux-foundation.org: mark some statics __read_mostly] [v9: akpm@linux-foundation.org: add clarifying comments] [v9: akpm@linux-foundation.org: no need to loop repeating try_to_unuse] [v9: error27@gmail.com: remove superfluous check for NULL] [v8: rebase to 3.0-rc4] [v8: kamezawa.hiroyu@jp.fujitsu.com: change counter to atomic_t to avoid races] [v8: kamezawa.hiroyu@jp.fujitsu.com: comment to clarify informational counters] [v7: rebase to 3.0-rc3] [v7: JBeulich@novell.com: add new swap struct elements only if config'd] [v6: rebase to 3.0-rc1] [v6: lliubbo@gmail.com: fix null pointer deref if vzalloc fails] [v6: konrad.wilk@oracl.com: various checks and code clarifications/comments] [v5: no change from v4] [v4: rebase to 2.6.39] Signed-off-by: Dan Magenheimer <dan.magenheimer@oracle.com> Reviewed-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Jan Beulich <JBeulich@novell.com> Acked-by: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Matthew Wilcox <matthew@wil.cx> Cc: Chris Mason <chris.mason@oracle.com> Cc: Rik Riel <riel@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> [v11: Rebased, fixed mm/swapfile.c context change] Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2012-04-09 23:08:06 +00:00
#include <linux/frontswap.h>
#include <linux/swapfile.h>
#include <linux/export.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include <linux/swapops.h>
#include <linux/swap_cgroup.h>
swap_info: swap count continuations Swap is duplicated (reference count incremented by one) whenever the same swap page is inserted into another mm (when forking finds a swap entry in place of a pte, or when reclaim unmaps a pte to insert the swap entry). swap_info_struct's vmalloc'ed swap_map is the array of these reference counts: but what happens when the unsigned short (or unsigned char since the preceding patch) is full? (and its high bit is kept for a cache flag) We then lose track of it, never freeing, leaving it in use until swapoff: at which point we _hope_ that a single pass will have found all instances, assume there are no more, and will lose user data if we're wrong. Swapping of KSM pages has not yet been enabled; but it is implemented, and makes it very easy for a user to overflow the maximum swap count: possible with ordinary process pages, but unlikely, even when pid_max has been raised from PID_MAX_DEFAULT. This patch implements swap count continuations: when the count overflows, a continuation page is allocated and linked to the original vmalloc'ed map page, and this used to hold the continuation counts for that entry and its neighbours. These continuation pages are seldom referenced: the common paths all work on the original swap_map, only referring to a continuation page when the low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 01:58:46 +00:00
static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
unsigned char);
static void free_swap_count_continuations(struct swap_info_struct *);
static sector_t map_swap_entry(swp_entry_t, struct block_device**);
swap_info: swap count continuations Swap is duplicated (reference count incremented by one) whenever the same swap page is inserted into another mm (when forking finds a swap entry in place of a pte, or when reclaim unmaps a pte to insert the swap entry). swap_info_struct's vmalloc'ed swap_map is the array of these reference counts: but what happens when the unsigned short (or unsigned char since the preceding patch) is full? (and its high bit is kept for a cache flag) We then lose track of it, never freeing, leaving it in use until swapoff: at which point we _hope_ that a single pass will have found all instances, assume there are no more, and will lose user data if we're wrong. Swapping of KSM pages has not yet been enabled; but it is implemented, and makes it very easy for a user to overflow the maximum swap count: possible with ordinary process pages, but unlikely, even when pid_max has been raised from PID_MAX_DEFAULT. This patch implements swap count continuations: when the count overflows, a continuation page is allocated and linked to the original vmalloc'ed map page, and this used to hold the continuation counts for that entry and its neighbours. These continuation pages are seldom referenced: the common paths all work on the original swap_map, only referring to a continuation page when the low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 01:58:46 +00:00
mm: frontswap: core swap subsystem hooks and headers This patch, 2of4, contains the changes to the core swap subsystem. This includes: (1) makes available core swap data structures (swap_lock, swap_list and swap_info) that are needed by frontswap.c but we don't need to expose them to the dozens of files that include swap.h so we create a new swapfile.h just to extern-ify these and modify their declarations to non-static (2) adds frontswap-related elements to swap_info_struct. Frontswap_map points to vzalloc'ed one-bit-per-swap-page metadata that indicates whether the swap page is in frontswap or in the device and frontswap_pages counts how many pages are in frontswap. (3) adds hooks in the swap subsystem and extends try_to_unuse so that frontswap_shrink can do a "partial swapoff". Note that a failed frontswap_map allocation is safe... failure is noted by lack of "FS" in the subsequent printk. --- [v14: rebase to 3.4-rc2] [v10: no change] [v9: akpm@linux-foundation.org: mark some statics __read_mostly] [v9: akpm@linux-foundation.org: add clarifying comments] [v9: akpm@linux-foundation.org: no need to loop repeating try_to_unuse] [v9: error27@gmail.com: remove superfluous check for NULL] [v8: rebase to 3.0-rc4] [v8: kamezawa.hiroyu@jp.fujitsu.com: change counter to atomic_t to avoid races] [v8: kamezawa.hiroyu@jp.fujitsu.com: comment to clarify informational counters] [v7: rebase to 3.0-rc3] [v7: JBeulich@novell.com: add new swap struct elements only if config'd] [v6: rebase to 3.0-rc1] [v6: lliubbo@gmail.com: fix null pointer deref if vzalloc fails] [v6: konrad.wilk@oracl.com: various checks and code clarifications/comments] [v5: no change from v4] [v4: rebase to 2.6.39] Signed-off-by: Dan Magenheimer <dan.magenheimer@oracle.com> Reviewed-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Jan Beulich <JBeulich@novell.com> Acked-by: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Matthew Wilcox <matthew@wil.cx> Cc: Chris Mason <chris.mason@oracle.com> Cc: Rik Riel <riel@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> [v11: Rebased, fixed mm/swapfile.c context change] Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2012-04-09 23:08:06 +00:00
DEFINE_SPINLOCK(swap_lock);
static unsigned int nr_swapfiles;
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
atomic_long_t nr_swap_pages;
/*
* Some modules use swappable objects and may try to swap them out under
* memory pressure (via the shrinker). Before doing so, they may wish to
* check to see if any swap space is available.
*/
EXPORT_SYMBOL_GPL(nr_swap_pages);
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
long total_swap_pages;
static int least_priority;
static const char Bad_file[] = "Bad swap file entry ";
static const char Unused_file[] = "Unused swap file entry ";
static const char Bad_offset[] = "Bad swap offset entry ";
static const char Unused_offset[] = "Unused swap offset entry ";
swap: change swap_info singly-linked list to list_head The logic controlling the singly-linked list of swap_info_struct entries for all active, i.e. swapon'ed, swap targets is rather complex, because: - it stores the entries in priority order - there is a pointer to the highest priority entry - there is a pointer to the highest priority not-full entry - there is a highest_priority_index variable set outside the swap_lock - swap entries of equal priority should be used equally this complexity leads to bugs such as: https://lkml.org/lkml/2014/2/13/181 where different priority swap targets are incorrectly used equally. That bug probably could be solved with the existing singly-linked lists, but I think it would only add more complexity to the already difficult to understand get_swap_page() swap_list iteration logic. The first patch changes from a singly-linked list to a doubly-linked list using list_heads; the highest_priority_index and related code are removed and get_swap_page() starts each iteration at the highest priority swap_info entry, even if it's full. While this does introduce unnecessary list iteration (i.e. Schlemiel the painter's algorithm) in the case where one or more of the highest priority entries are full, the iteration and manipulation code is much simpler and behaves correctly re: the above bug; and the fourth patch removes the unnecessary iteration. The second patch adds some minor plist helper functions; nothing new really, just functions to match existing regular list functions. These are used by the next two patches. The third patch adds plist_requeue(), which is used by get_swap_page() in the next patch - it performs the requeueing of same-priority entries (which moves the entry to the end of its priority in the plist), so that all equal-priority swap_info_structs get used equally. The fourth patch converts the main list into a plist, and adds a new plist that contains only swap_info entries that are both active and not full. As Mel suggested using plists allows removing all the ordering code from swap - plists handle ordering automatically. The list naming is also clarified now that there are two lists, with the original list changed from swap_list_head to swap_active_head and the new list named swap_avail_head. A new spinlock is also added for the new list, so swap_info entries can be added or removed from the new list immediately as they become full or not full. This patch (of 4): Replace the singly-linked list tracking active, i.e. swapon'ed, swap_info_struct entries with a doubly-linked list using struct list_heads. Simplify the logic iterating and manipulating the list of entries, especially get_swap_page(), by using standard list_head functions, and removing the highest priority iteration logic. The change fixes the bug: https://lkml.org/lkml/2014/2/13/181 in which different priority swap entries after the highest priority entry are incorrectly used equally in pairs. The swap behavior is now as advertised, i.e. different priority swap entries are used in order, and equal priority swap targets are used concurrently. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> Cc: Weijie Yang <weijieut@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Bob Liu <bob.liu@oracle.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 23:09:53 +00:00
/*
* all active swap_info_structs
* protected with swap_lock, and ordered by priority.
*/
swap: change swap_list_head to plist, add swap_avail_head Originally get_swap_page() started iterating through the singly-linked list of swap_info_structs using swap_list.next or highest_priority_index, which both were intended to point to the highest priority active swap target that was not full. The first patch in this series changed the singly-linked list to a doubly-linked list, and removed the logic to start at the highest priority non-full entry; it starts scanning at the highest priority entry each time, even if the entry is full. Replace the manually ordered swap_list_head with a plist, swap_active_head. Add a new plist, swap_avail_head. The original swap_active_head plist contains all active swap_info_structs, as before, while the new swap_avail_head plist contains only swap_info_structs that are active and available, i.e. not full. Add a new spinlock, swap_avail_lock, to protect the swap_avail_head list. Mel Gorman suggested using plists since they internally handle ordering the list entries based on priority, which is exactly what swap was doing manually. All the ordering code is now removed, and swap_info_struct entries and simply added to their corresponding plist and automatically ordered correctly. Using a new plist for available swap_info_structs simplifies and optimizes get_swap_page(), which no longer has to iterate over full swap_info_structs. Using a new spinlock for swap_avail_head plist allows each swap_info_struct to add or remove themselves from the plist when they become full or not-full; previously they could not do so because the swap_info_struct->lock is held when they change from full<->not-full, and the swap_lock protecting the main swap_active_head must be ordered before any swap_info_struct->lock. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Shaohua Li <shli@fusionio.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> Cc: Weijie Yang <weijieut@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Bob Liu <bob.liu@oracle.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 23:09:59 +00:00
PLIST_HEAD(swap_active_head);
/*
* all available (active, not full) swap_info_structs
* protected with swap_avail_lock, ordered by priority.
* This is used by get_swap_page() instead of swap_active_head
* because swap_active_head includes all swap_info_structs,
* but get_swap_page() doesn't need to look at full ones.
* This uses its own lock instead of swap_lock because when a
* swap_info_struct changes between not-full/full, it needs to
* add/remove itself to/from this list, but the swap_info_struct->lock
* is held and the locking order requires swap_lock to be taken
* before any swap_info_struct->lock.
*/
static PLIST_HEAD(swap_avail_head);
static DEFINE_SPINLOCK(swap_avail_lock);
mm: frontswap: core swap subsystem hooks and headers This patch, 2of4, contains the changes to the core swap subsystem. This includes: (1) makes available core swap data structures (swap_lock, swap_list and swap_info) that are needed by frontswap.c but we don't need to expose them to the dozens of files that include swap.h so we create a new swapfile.h just to extern-ify these and modify their declarations to non-static (2) adds frontswap-related elements to swap_info_struct. Frontswap_map points to vzalloc'ed one-bit-per-swap-page metadata that indicates whether the swap page is in frontswap or in the device and frontswap_pages counts how many pages are in frontswap. (3) adds hooks in the swap subsystem and extends try_to_unuse so that frontswap_shrink can do a "partial swapoff". Note that a failed frontswap_map allocation is safe... failure is noted by lack of "FS" in the subsequent printk. --- [v14: rebase to 3.4-rc2] [v10: no change] [v9: akpm@linux-foundation.org: mark some statics __read_mostly] [v9: akpm@linux-foundation.org: add clarifying comments] [v9: akpm@linux-foundation.org: no need to loop repeating try_to_unuse] [v9: error27@gmail.com: remove superfluous check for NULL] [v8: rebase to 3.0-rc4] [v8: kamezawa.hiroyu@jp.fujitsu.com: change counter to atomic_t to avoid races] [v8: kamezawa.hiroyu@jp.fujitsu.com: comment to clarify informational counters] [v7: rebase to 3.0-rc3] [v7: JBeulich@novell.com: add new swap struct elements only if config'd] [v6: rebase to 3.0-rc1] [v6: lliubbo@gmail.com: fix null pointer deref if vzalloc fails] [v6: konrad.wilk@oracl.com: various checks and code clarifications/comments] [v5: no change from v4] [v4: rebase to 2.6.39] Signed-off-by: Dan Magenheimer <dan.magenheimer@oracle.com> Reviewed-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Jan Beulich <JBeulich@novell.com> Acked-by: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Matthew Wilcox <matthew@wil.cx> Cc: Chris Mason <chris.mason@oracle.com> Cc: Rik Riel <riel@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> [v11: Rebased, fixed mm/swapfile.c context change] Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2012-04-09 23:08:06 +00:00
struct swap_info_struct *swap_info[MAX_SWAPFILES];
static DEFINE_MUTEX(swapon_mutex);
static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
/* Activity counter to indicate that a swapon or swapoff has occurred */
static atomic_t proc_poll_event = ATOMIC_INIT(0);
static inline unsigned char swap_count(unsigned char ent)
{
swap_info: swap count continuations Swap is duplicated (reference count incremented by one) whenever the same swap page is inserted into another mm (when forking finds a swap entry in place of a pte, or when reclaim unmaps a pte to insert the swap entry). swap_info_struct's vmalloc'ed swap_map is the array of these reference counts: but what happens when the unsigned short (or unsigned char since the preceding patch) is full? (and its high bit is kept for a cache flag) We then lose track of it, never freeing, leaving it in use until swapoff: at which point we _hope_ that a single pass will have found all instances, assume there are no more, and will lose user data if we're wrong. Swapping of KSM pages has not yet been enabled; but it is implemented, and makes it very easy for a user to overflow the maximum swap count: possible with ordinary process pages, but unlikely, even when pid_max has been raised from PID_MAX_DEFAULT. This patch implements swap count continuations: when the count overflows, a continuation page is allocated and linked to the original vmalloc'ed map page, and this used to hold the continuation counts for that entry and its neighbours. These continuation pages are seldom referenced: the common paths all work on the original swap_map, only referring to a continuation page when the low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 01:58:46 +00:00
return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
}
/* returns 1 if swap entry is freed */
static int
__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
{
swp_entry_t entry = swp_entry(si->type, offset);
struct page *page;
int ret = 0;
mm, swap: use offset of swap entry as key of swap cache This patch is to improve the performance of swap cache operations when the type of the swap device is not 0. Originally, the whole swap entry value is used as the key of the swap cache, even though there is one radix tree for each swap device. If the type of the swap device is not 0, the height of the radix tree of the swap cache will be increased unnecessary, especially on 64bit architecture. For example, for a 1GB swap device on the x86_64 architecture, the height of the radix tree of the swap cache is 11. But if the offset of the swap entry is used as the key of the swap cache, the height of the radix tree of the swap cache is 4. The increased height causes unnecessary radix tree descending and increased cache footprint. This patch reduces the height of the radix tree of the swap cache via using the offset of the swap entry instead of the whole swap entry value as the key of the swap cache. In 32 processes sequential swap out test case on a Xeon E5 v3 system with RAM disk as swap, the lock contention for the spinlock of the swap cache is reduced from 20.15% to 12.19%, when the type of the swap device is 1. Use the whole swap entry as key, perf-profile.calltrace.cycles-pp._raw_spin_lock_irq.__add_to_swap_cache.add_to_swap_cache.add_to_swap.shrink_page_list: 10.37, perf-profile.calltrace.cycles-pp._raw_spin_lock_irqsave.__remove_mapping.shrink_page_list.shrink_inactive_list.shrink_node_memcg: 9.78, Use the swap offset as key, perf-profile.calltrace.cycles-pp._raw_spin_lock_irq.__add_to_swap_cache.add_to_swap_cache.add_to_swap.shrink_page_list: 6.25, perf-profile.calltrace.cycles-pp._raw_spin_lock_irqsave.__remove_mapping.shrink_page_list.shrink_inactive_list.shrink_node_memcg: 5.94, Link: http://lkml.kernel.org/r/1473270649-27229-1-git-send-email-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Aaron Lu <aaron.lu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-08 00:00:21 +00:00
page = find_get_page(swap_address_space(entry), swp_offset(entry));
if (!page)
return 0;
/*
* This function is called from scan_swap_map() and it's called
* by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
* We have to use trylock for avoiding deadlock. This is a special
* case and you should use try_to_free_swap() with explicit lock_page()
* in usual operations.
*/
if (trylock_page(page)) {
ret = try_to_free_swap(page);
unlock_page(page);
}
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 12:29:47 +00:00
put_page(page);
return ret;
}
/*
* swapon tell device that all the old swap contents can be discarded,
* to allow the swap device to optimize its wear-levelling.
*/
static int discard_swap(struct swap_info_struct *si)
{
struct swap_extent *se;
sector_t start_block;
sector_t nr_blocks;
int err = 0;
/* Do not discard the swap header page! */
se = &si->first_swap_extent;
start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
if (nr_blocks) {
err = blkdev_issue_discard(si->bdev, start_block,
nr_blocks, GFP_KERNEL, 0);
if (err)
return err;
cond_resched();
}
list_for_each_entry(se, &si->first_swap_extent.list, list) {
start_block = se->start_block << (PAGE_SHIFT - 9);
nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
err = blkdev_issue_discard(si->bdev, start_block,
nr_blocks, GFP_KERNEL, 0);
if (err)
break;
cond_resched();
}
return err; /* That will often be -EOPNOTSUPP */
}
/*
* swap allocation tell device that a cluster of swap can now be discarded,
* to allow the swap device to optimize its wear-levelling.
*/
static void discard_swap_cluster(struct swap_info_struct *si,
pgoff_t start_page, pgoff_t nr_pages)
{
struct swap_extent *se = si->curr_swap_extent;
int found_extent = 0;
while (nr_pages) {
if (se->start_page <= start_page &&
start_page < se->start_page + se->nr_pages) {
pgoff_t offset = start_page - se->start_page;
sector_t start_block = se->start_block + offset;
sector_t nr_blocks = se->nr_pages - offset;
if (nr_blocks > nr_pages)
nr_blocks = nr_pages;
start_page += nr_blocks;
nr_pages -= nr_blocks;
if (!found_extent++)
si->curr_swap_extent = se;
start_block <<= PAGE_SHIFT - 9;
nr_blocks <<= PAGE_SHIFT - 9;
if (blkdev_issue_discard(si->bdev, start_block,
nr_blocks, GFP_NOIO, 0))
break;
}
se = list_next_entry(se, list);
}
}
#define SWAPFILE_CLUSTER 256
#define LATENCY_LIMIT 256
swap: change block allocation algorithm for SSD I'm using a fast SSD to do swap. scan_swap_map() sometimes uses up to 20~30% CPU time (when cluster is hard to find, the CPU time can be up to 80%), which becomes a bottleneck. scan_swap_map() scans a byte array to search a 256 page cluster, which is very slow. Here I introduced a simple algorithm to search cluster. Since we only care about 256 pages cluster, we can just use a counter to track if a cluster is free. Every 256 pages use one int to store the counter. If the counter of a cluster is 0, the cluster is free. All free clusters will be added to a list, so searching cluster is very efficient. With this, scap_swap_map() overhead disappears. This might help low end SD card swap too. Because if the cluster is aligned, SD firmware can do flash erase more efficiently. We only enable the algorithm for SSD. Hard disk swap isn't fast enough and has downside with the algorithm which might introduce regression (see below). The patch slightly changes which cluster is choosen. It always adds free cluster to list tail. This can help wear leveling for low end SSD too. And if no cluster found, the scan_swap_map() will do search from the end of last cluster. So if no cluster found, the scan_swap_map() will do search from the end of last free cluster, which is random. For SSD, this isn't a problem at all. Another downside is the cluster must be aligned to 256 pages, which will reduce the chance to find a cluster. I would expect this isn't a big problem for SSD because of the non-seek penality. (And this is the reason I only enable the algorithm for SSD). Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:28 +00:00
static inline void cluster_set_flag(struct swap_cluster_info *info,
unsigned int flag)
{
info->flags = flag;
}
static inline unsigned int cluster_count(struct swap_cluster_info *info)
{
return info->data;
}
static inline void cluster_set_count(struct swap_cluster_info *info,
unsigned int c)
{
info->data = c;
}
static inline void cluster_set_count_flag(struct swap_cluster_info *info,
unsigned int c, unsigned int f)
{
info->flags = f;
info->data = c;
}
static inline unsigned int cluster_next(struct swap_cluster_info *info)
{
return info->data;
}
static inline void cluster_set_next(struct swap_cluster_info *info,
unsigned int n)
{
info->data = n;
}
static inline void cluster_set_next_flag(struct swap_cluster_info *info,
unsigned int n, unsigned int f)
{
info->flags = f;
info->data = n;
}
static inline bool cluster_is_free(struct swap_cluster_info *info)
{
return info->flags & CLUSTER_FLAG_FREE;
}
static inline bool cluster_is_null(struct swap_cluster_info *info)
{
return info->flags & CLUSTER_FLAG_NEXT_NULL;
}
static inline void cluster_set_null(struct swap_cluster_info *info)
{
info->flags = CLUSTER_FLAG_NEXT_NULL;
info->data = 0;
}
static inline bool cluster_list_empty(struct swap_cluster_list *list)
{
return cluster_is_null(&list->head);
}
static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
{
return cluster_next(&list->head);
}
static void cluster_list_init(struct swap_cluster_list *list)
{
cluster_set_null(&list->head);
cluster_set_null(&list->tail);
}
static void cluster_list_add_tail(struct swap_cluster_list *list,
struct swap_cluster_info *ci,
unsigned int idx)
{
if (cluster_list_empty(list)) {
cluster_set_next_flag(&list->head, idx, 0);
cluster_set_next_flag(&list->tail, idx, 0);
} else {
unsigned int tail = cluster_next(&list->tail);
cluster_set_next(&ci[tail], idx);
cluster_set_next_flag(&list->tail, idx, 0);
}
}
static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
struct swap_cluster_info *ci)
{
unsigned int idx;
idx = cluster_next(&list->head);
if (cluster_next(&list->tail) == idx) {
cluster_set_null(&list->head);
cluster_set_null(&list->tail);
} else
cluster_set_next_flag(&list->head,
cluster_next(&ci[idx]), 0);
return idx;
}
swap: make swap discard async swap can do cluster discard for SSD, which is good, but there are some problems here: 1. swap do the discard just before page reclaim gets a swap entry and writes the disk sectors. This is useless for high end SSD, because an overwrite to a sector implies a discard to original sector too. A discard + overwrite == overwrite. 2. the purpose of doing discard is to improve SSD firmware garbage collection. Idealy we should send discard as early as possible, so firmware can do something smart. Sending discard just after swap entry is freed is considered early compared to sending discard before write. Of course, if workload is already bound to gc speed, sending discard earlier or later doesn't make 3. block discard is a sync API, which will delay scan_swap_map() significantly. 4. Write and discard command can be executed parallel in PCIe SSD. Making swap discard async can make execution more efficiently. This patch makes swap discard async and moves discard to where swap entry is freed. Discard and write have no dependence now, so above issues can be avoided. Idealy we should do discard for any freed sectors, but some SSD discard is very slow. This patch still does discard for a whole cluster. My test does a several round of 'mmap, write, unmap', which will trigger a lot of swap discard. In a fusionio card, with this patch, the test runtime is reduced to 18% of the time without it, so around 5.5x faster. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:30 +00:00
/* Add a cluster to discard list and schedule it to do discard */
static void swap_cluster_schedule_discard(struct swap_info_struct *si,
unsigned int idx)
{
/*
* If scan_swap_map() can't find a free cluster, it will check
* si->swap_map directly. To make sure the discarding cluster isn't
* taken by scan_swap_map(), mark the swap entries bad (occupied). It
* will be cleared after discard
*/
memset(si->swap_map + idx * SWAPFILE_CLUSTER,
SWAP_MAP_BAD, SWAPFILE_CLUSTER);
cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
swap: make swap discard async swap can do cluster discard for SSD, which is good, but there are some problems here: 1. swap do the discard just before page reclaim gets a swap entry and writes the disk sectors. This is useless for high end SSD, because an overwrite to a sector implies a discard to original sector too. A discard + overwrite == overwrite. 2. the purpose of doing discard is to improve SSD firmware garbage collection. Idealy we should send discard as early as possible, so firmware can do something smart. Sending discard just after swap entry is freed is considered early compared to sending discard before write. Of course, if workload is already bound to gc speed, sending discard earlier or later doesn't make 3. block discard is a sync API, which will delay scan_swap_map() significantly. 4. Write and discard command can be executed parallel in PCIe SSD. Making swap discard async can make execution more efficiently. This patch makes swap discard async and moves discard to where swap entry is freed. Discard and write have no dependence now, so above issues can be avoided. Idealy we should do discard for any freed sectors, but some SSD discard is very slow. This patch still does discard for a whole cluster. My test does a several round of 'mmap, write, unmap', which will trigger a lot of swap discard. In a fusionio card, with this patch, the test runtime is reduced to 18% of the time without it, so around 5.5x faster. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:30 +00:00
schedule_work(&si->discard_work);
}
/*
* Doing discard actually. After a cluster discard is finished, the cluster
* will be added to free cluster list. caller should hold si->lock.
*/
static void swap_do_scheduled_discard(struct swap_info_struct *si)
{
struct swap_cluster_info *info;
unsigned int idx;
info = si->cluster_info;
while (!cluster_list_empty(&si->discard_clusters)) {
idx = cluster_list_del_first(&si->discard_clusters, info);
swap: make swap discard async swap can do cluster discard for SSD, which is good, but there are some problems here: 1. swap do the discard just before page reclaim gets a swap entry and writes the disk sectors. This is useless for high end SSD, because an overwrite to a sector implies a discard to original sector too. A discard + overwrite == overwrite. 2. the purpose of doing discard is to improve SSD firmware garbage collection. Idealy we should send discard as early as possible, so firmware can do something smart. Sending discard just after swap entry is freed is considered early compared to sending discard before write. Of course, if workload is already bound to gc speed, sending discard earlier or later doesn't make 3. block discard is a sync API, which will delay scan_swap_map() significantly. 4. Write and discard command can be executed parallel in PCIe SSD. Making swap discard async can make execution more efficiently. This patch makes swap discard async and moves discard to where swap entry is freed. Discard and write have no dependence now, so above issues can be avoided. Idealy we should do discard for any freed sectors, but some SSD discard is very slow. This patch still does discard for a whole cluster. My test does a several round of 'mmap, write, unmap', which will trigger a lot of swap discard. In a fusionio card, with this patch, the test runtime is reduced to 18% of the time without it, so around 5.5x faster. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:30 +00:00
spin_unlock(&si->lock);
discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
SWAPFILE_CLUSTER);
spin_lock(&si->lock);
cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
cluster_list_add_tail(&si->free_clusters, info, idx);
swap: make swap discard async swap can do cluster discard for SSD, which is good, but there are some problems here: 1. swap do the discard just before page reclaim gets a swap entry and writes the disk sectors. This is useless for high end SSD, because an overwrite to a sector implies a discard to original sector too. A discard + overwrite == overwrite. 2. the purpose of doing discard is to improve SSD firmware garbage collection. Idealy we should send discard as early as possible, so firmware can do something smart. Sending discard just after swap entry is freed is considered early compared to sending discard before write. Of course, if workload is already bound to gc speed, sending discard earlier or later doesn't make 3. block discard is a sync API, which will delay scan_swap_map() significantly. 4. Write and discard command can be executed parallel in PCIe SSD. Making swap discard async can make execution more efficiently. This patch makes swap discard async and moves discard to where swap entry is freed. Discard and write have no dependence now, so above issues can be avoided. Idealy we should do discard for any freed sectors, but some SSD discard is very slow. This patch still does discard for a whole cluster. My test does a several round of 'mmap, write, unmap', which will trigger a lot of swap discard. In a fusionio card, with this patch, the test runtime is reduced to 18% of the time without it, so around 5.5x faster. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:30 +00:00
memset(si->swap_map + idx * SWAPFILE_CLUSTER,
0, SWAPFILE_CLUSTER);
}
}
static void swap_discard_work(struct work_struct *work)
{
struct swap_info_struct *si;
si = container_of(work, struct swap_info_struct, discard_work);
spin_lock(&si->lock);
swap_do_scheduled_discard(si);
spin_unlock(&si->lock);
}
swap: change block allocation algorithm for SSD I'm using a fast SSD to do swap. scan_swap_map() sometimes uses up to 20~30% CPU time (when cluster is hard to find, the CPU time can be up to 80%), which becomes a bottleneck. scan_swap_map() scans a byte array to search a 256 page cluster, which is very slow. Here I introduced a simple algorithm to search cluster. Since we only care about 256 pages cluster, we can just use a counter to track if a cluster is free. Every 256 pages use one int to store the counter. If the counter of a cluster is 0, the cluster is free. All free clusters will be added to a list, so searching cluster is very efficient. With this, scap_swap_map() overhead disappears. This might help low end SD card swap too. Because if the cluster is aligned, SD firmware can do flash erase more efficiently. We only enable the algorithm for SSD. Hard disk swap isn't fast enough and has downside with the algorithm which might introduce regression (see below). The patch slightly changes which cluster is choosen. It always adds free cluster to list tail. This can help wear leveling for low end SSD too. And if no cluster found, the scan_swap_map() will do search from the end of last cluster. So if no cluster found, the scan_swap_map() will do search from the end of last free cluster, which is random. For SSD, this isn't a problem at all. Another downside is the cluster must be aligned to 256 pages, which will reduce the chance to find a cluster. I would expect this isn't a big problem for SSD because of the non-seek penality. (And this is the reason I only enable the algorithm for SSD). Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:28 +00:00
/*
* The cluster corresponding to page_nr will be used. The cluster will be
* removed from free cluster list and its usage counter will be increased.
*/
static void inc_cluster_info_page(struct swap_info_struct *p,
struct swap_cluster_info *cluster_info, unsigned long page_nr)
{
unsigned long idx = page_nr / SWAPFILE_CLUSTER;
if (!cluster_info)
return;
if (cluster_is_free(&cluster_info[idx])) {
VM_BUG_ON(cluster_list_first(&p->free_clusters) != idx);
cluster_list_del_first(&p->free_clusters, cluster_info);
swap: change block allocation algorithm for SSD I'm using a fast SSD to do swap. scan_swap_map() sometimes uses up to 20~30% CPU time (when cluster is hard to find, the CPU time can be up to 80%), which becomes a bottleneck. scan_swap_map() scans a byte array to search a 256 page cluster, which is very slow. Here I introduced a simple algorithm to search cluster. Since we only care about 256 pages cluster, we can just use a counter to track if a cluster is free. Every 256 pages use one int to store the counter. If the counter of a cluster is 0, the cluster is free. All free clusters will be added to a list, so searching cluster is very efficient. With this, scap_swap_map() overhead disappears. This might help low end SD card swap too. Because if the cluster is aligned, SD firmware can do flash erase more efficiently. We only enable the algorithm for SSD. Hard disk swap isn't fast enough and has downside with the algorithm which might introduce regression (see below). The patch slightly changes which cluster is choosen. It always adds free cluster to list tail. This can help wear leveling for low end SSD too. And if no cluster found, the scan_swap_map() will do search from the end of last cluster. So if no cluster found, the scan_swap_map() will do search from the end of last free cluster, which is random. For SSD, this isn't a problem at all. Another downside is the cluster must be aligned to 256 pages, which will reduce the chance to find a cluster. I would expect this isn't a big problem for SSD because of the non-seek penality. (And this is the reason I only enable the algorithm for SSD). Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:28 +00:00
cluster_set_count_flag(&cluster_info[idx], 0, 0);
}
VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
cluster_set_count(&cluster_info[idx],
cluster_count(&cluster_info[idx]) + 1);
}
/*
* The cluster corresponding to page_nr decreases one usage. If the usage
* counter becomes 0, which means no page in the cluster is in using, we can
* optionally discard the cluster and add it to free cluster list.
*/
static void dec_cluster_info_page(struct swap_info_struct *p,
struct swap_cluster_info *cluster_info, unsigned long page_nr)
{
unsigned long idx = page_nr / SWAPFILE_CLUSTER;
if (!cluster_info)
return;
VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
cluster_set_count(&cluster_info[idx],
cluster_count(&cluster_info[idx]) - 1);
if (cluster_count(&cluster_info[idx]) == 0) {
swap: make swap discard async swap can do cluster discard for SSD, which is good, but there are some problems here: 1. swap do the discard just before page reclaim gets a swap entry and writes the disk sectors. This is useless for high end SSD, because an overwrite to a sector implies a discard to original sector too. A discard + overwrite == overwrite. 2. the purpose of doing discard is to improve SSD firmware garbage collection. Idealy we should send discard as early as possible, so firmware can do something smart. Sending discard just after swap entry is freed is considered early compared to sending discard before write. Of course, if workload is already bound to gc speed, sending discard earlier or later doesn't make 3. block discard is a sync API, which will delay scan_swap_map() significantly. 4. Write and discard command can be executed parallel in PCIe SSD. Making swap discard async can make execution more efficiently. This patch makes swap discard async and moves discard to where swap entry is freed. Discard and write have no dependence now, so above issues can be avoided. Idealy we should do discard for any freed sectors, but some SSD discard is very slow. This patch still does discard for a whole cluster. My test does a several round of 'mmap, write, unmap', which will trigger a lot of swap discard. In a fusionio card, with this patch, the test runtime is reduced to 18% of the time without it, so around 5.5x faster. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:30 +00:00
/*
* If the swap is discardable, prepare discard the cluster
* instead of free it immediately. The cluster will be freed
* after discard.
*/
swap: fix races exposed by swap discard The previous patch can expose races, according to Hugh: swapoff was sometimes failing with "Cannot allocate memory", coming from try_to_unuse()'s -ENOMEM: it needs to allow for swap_duplicate() failing on a free entry temporarily SWAP_MAP_BAD while being discarded. We should use ACCESS_ONCE() there, and whenever accessing swap_map locklessly; but rather than peppering it throughout try_to_unuse(), just declare *swap_map with volatile. try_to_unuse() is accustomed to *swap_map going down racily, but not necessarily to it jumping up from 0 to SWAP_MAP_BAD: we'll be safer to prevent that transition once SWP_WRITEOK is switched off, when it's a waste of time to issue discards anyway (swapon can do a whole discard). Another issue is: In swapin_readahead(), read_swap_cache_async() can read a bad swap entry, because we don't check if readahead swap entry is bad. This doesn't break anything but such swapin page is wasteful and can only be freed at page reclaim. We should avoid read such swap entry. And in discard, we mark swap entry SWAP_MAP_BAD and then switch it to normal when discard is finished. If readahead reads such swap entry, we have the same issue, so we much check if swap entry is bad too. Thanks Hugh to inspire swapin_readahead could use bad swap entry. [include Hugh's patch 'swap: fix swapoff ENOMEMs from discard'] Signed-off-by: Shaohua Li <shli@fusionio.com> Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:31 +00:00
if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
(SWP_WRITEOK | SWP_PAGE_DISCARD)) {
swap: make swap discard async swap can do cluster discard for SSD, which is good, but there are some problems here: 1. swap do the discard just before page reclaim gets a swap entry and writes the disk sectors. This is useless for high end SSD, because an overwrite to a sector implies a discard to original sector too. A discard + overwrite == overwrite. 2. the purpose of doing discard is to improve SSD firmware garbage collection. Idealy we should send discard as early as possible, so firmware can do something smart. Sending discard just after swap entry is freed is considered early compared to sending discard before write. Of course, if workload is already bound to gc speed, sending discard earlier or later doesn't make 3. block discard is a sync API, which will delay scan_swap_map() significantly. 4. Write and discard command can be executed parallel in PCIe SSD. Making swap discard async can make execution more efficiently. This patch makes swap discard async and moves discard to where swap entry is freed. Discard and write have no dependence now, so above issues can be avoided. Idealy we should do discard for any freed sectors, but some SSD discard is very slow. This patch still does discard for a whole cluster. My test does a several round of 'mmap, write, unmap', which will trigger a lot of swap discard. In a fusionio card, with this patch, the test runtime is reduced to 18% of the time without it, so around 5.5x faster. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:30 +00:00
swap_cluster_schedule_discard(p, idx);
return;
}
swap: change block allocation algorithm for SSD I'm using a fast SSD to do swap. scan_swap_map() sometimes uses up to 20~30% CPU time (when cluster is hard to find, the CPU time can be up to 80%), which becomes a bottleneck. scan_swap_map() scans a byte array to search a 256 page cluster, which is very slow. Here I introduced a simple algorithm to search cluster. Since we only care about 256 pages cluster, we can just use a counter to track if a cluster is free. Every 256 pages use one int to store the counter. If the counter of a cluster is 0, the cluster is free. All free clusters will be added to a list, so searching cluster is very efficient. With this, scap_swap_map() overhead disappears. This might help low end SD card swap too. Because if the cluster is aligned, SD firmware can do flash erase more efficiently. We only enable the algorithm for SSD. Hard disk swap isn't fast enough and has downside with the algorithm which might introduce regression (see below). The patch slightly changes which cluster is choosen. It always adds free cluster to list tail. This can help wear leveling for low end SSD too. And if no cluster found, the scan_swap_map() will do search from the end of last cluster. So if no cluster found, the scan_swap_map() will do search from the end of last free cluster, which is random. For SSD, this isn't a problem at all. Another downside is the cluster must be aligned to 256 pages, which will reduce the chance to find a cluster. I would expect this isn't a big problem for SSD because of the non-seek penality. (And this is the reason I only enable the algorithm for SSD). Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:28 +00:00
cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
cluster_list_add_tail(&p->free_clusters, cluster_info, idx);
swap: change block allocation algorithm for SSD I'm using a fast SSD to do swap. scan_swap_map() sometimes uses up to 20~30% CPU time (when cluster is hard to find, the CPU time can be up to 80%), which becomes a bottleneck. scan_swap_map() scans a byte array to search a 256 page cluster, which is very slow. Here I introduced a simple algorithm to search cluster. Since we only care about 256 pages cluster, we can just use a counter to track if a cluster is free. Every 256 pages use one int to store the counter. If the counter of a cluster is 0, the cluster is free. All free clusters will be added to a list, so searching cluster is very efficient. With this, scap_swap_map() overhead disappears. This might help low end SD card swap too. Because if the cluster is aligned, SD firmware can do flash erase more efficiently. We only enable the algorithm for SSD. Hard disk swap isn't fast enough and has downside with the algorithm which might introduce regression (see below). The patch slightly changes which cluster is choosen. It always adds free cluster to list tail. This can help wear leveling for low end SSD too. And if no cluster found, the scan_swap_map() will do search from the end of last cluster. So if no cluster found, the scan_swap_map() will do search from the end of last free cluster, which is random. For SSD, this isn't a problem at all. Another downside is the cluster must be aligned to 256 pages, which will reduce the chance to find a cluster. I would expect this isn't a big problem for SSD because of the non-seek penality. (And this is the reason I only enable the algorithm for SSD). Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:28 +00:00
}
}
/*
* It's possible scan_swap_map() uses a free cluster in the middle of free
* cluster list. Avoiding such abuse to avoid list corruption.
*/
swap: make cluster allocation per-cpu swap cluster allocation is to get better request merge to improve performance. But the cluster is shared globally, if multiple tasks are doing swap, this will cause interleave disk access. While multiple tasks swap is quite common, for example, each numa node has a kswapd thread doing swap and multiple threads/processes doing direct page reclaim. ioscheduler can't help too much here, because tasks don't send swapout IO down to block layer in the meantime. Block layer does merge some IOs, but a lot not, depending on how many tasks are doing swapout concurrently. In practice, I've seen a lot of small size IO in swapout workloads. We makes the cluster allocation per-cpu here. The interleave disk access issue goes away. All tasks swapout to their own cluster, so swapout will become sequential, which can be easily merged to big size IO. If one CPU can't get its per-cpu cluster (for example, there is no free cluster anymore in the swap), it will fallback to scan swap_map. The CPU can still continue swap. We don't need recycle free swap entries of other CPUs. In my test (swap to a 2-disk raid0 partition), this improves around 10% swapout throughput, and request size is increased significantly. How does this impact swap readahead is uncertain though. On one side, page reclaim always isolates and swaps several adjancent pages, this will make page reclaim write the pages sequentially and benefit readahead. On the other side, several CPU write pages interleave means the pages don't live _sequentially_ but relatively _near_. In the per-cpu allocation case, if adjancent pages are written by different cpus, they will live relatively _far_. So how this impacts swap readahead depends on how many pages page reclaim isolates and swaps one time. If the number is big, this patch will benefit swap readahead. Of course, this is about sequential access pattern. The patch has no impact for random access pattern, because the new cluster allocation algorithm is just for SSD. Alternative solution is organizing swap layout to be per-mm instead of this per-cpu approach. In the per-mm layout, we allocate a disk range for each mm, so pages of one mm live in swap disk adjacently. per-mm layout has potential issues of lock contention if multiple reclaimers are swap pages from one mm. For a sequential workload, per-mm layout is better to implement swap readahead, because pages from the mm are adjacent in disk. But per-cpu layout isn't very bad in this workload, as page reclaim always isolates and swaps several pages one time, such pages will still live in disk sequentially and readahead can utilize this. For a random workload, per-mm layout isn't beneficial of request merge, because it's quite possible pages from different mm are swapout in the meantime and IO can't be merged in per-mm layout. while with per-cpu layout we can merge requests from any mm. Considering random workload is more popular in workloads with swap (and per-cpu approach isn't too bad for sequential workload too), I'm choosing per-cpu layout. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:32 +00:00
static bool
scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
swap: change block allocation algorithm for SSD I'm using a fast SSD to do swap. scan_swap_map() sometimes uses up to 20~30% CPU time (when cluster is hard to find, the CPU time can be up to 80%), which becomes a bottleneck. scan_swap_map() scans a byte array to search a 256 page cluster, which is very slow. Here I introduced a simple algorithm to search cluster. Since we only care about 256 pages cluster, we can just use a counter to track if a cluster is free. Every 256 pages use one int to store the counter. If the counter of a cluster is 0, the cluster is free. All free clusters will be added to a list, so searching cluster is very efficient. With this, scap_swap_map() overhead disappears. This might help low end SD card swap too. Because if the cluster is aligned, SD firmware can do flash erase more efficiently. We only enable the algorithm for SSD. Hard disk swap isn't fast enough and has downside with the algorithm which might introduce regression (see below). The patch slightly changes which cluster is choosen. It always adds free cluster to list tail. This can help wear leveling for low end SSD too. And if no cluster found, the scan_swap_map() will do search from the end of last cluster. So if no cluster found, the scan_swap_map() will do search from the end of last free cluster, which is random. For SSD, this isn't a problem at all. Another downside is the cluster must be aligned to 256 pages, which will reduce the chance to find a cluster. I would expect this isn't a big problem for SSD because of the non-seek penality. (And this is the reason I only enable the algorithm for SSD). Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:28 +00:00
unsigned long offset)
{
swap: make cluster allocation per-cpu swap cluster allocation is to get better request merge to improve performance. But the cluster is shared globally, if multiple tasks are doing swap, this will cause interleave disk access. While multiple tasks swap is quite common, for example, each numa node has a kswapd thread doing swap and multiple threads/processes doing direct page reclaim. ioscheduler can't help too much here, because tasks don't send swapout IO down to block layer in the meantime. Block layer does merge some IOs, but a lot not, depending on how many tasks are doing swapout concurrently. In practice, I've seen a lot of small size IO in swapout workloads. We makes the cluster allocation per-cpu here. The interleave disk access issue goes away. All tasks swapout to their own cluster, so swapout will become sequential, which can be easily merged to big size IO. If one CPU can't get its per-cpu cluster (for example, there is no free cluster anymore in the swap), it will fallback to scan swap_map. The CPU can still continue swap. We don't need recycle free swap entries of other CPUs. In my test (swap to a 2-disk raid0 partition), this improves around 10% swapout throughput, and request size is increased significantly. How does this impact swap readahead is uncertain though. On one side, page reclaim always isolates and swaps several adjancent pages, this will make page reclaim write the pages sequentially and benefit readahead. On the other side, several CPU write pages interleave means the pages don't live _sequentially_ but relatively _near_. In the per-cpu allocation case, if adjancent pages are written by different cpus, they will live relatively _far_. So how this impacts swap readahead depends on how many pages page reclaim isolates and swaps one time. If the number is big, this patch will benefit swap readahead. Of course, this is about sequential access pattern. The patch has no impact for random access pattern, because the new cluster allocation algorithm is just for SSD. Alternative solution is organizing swap layout to be per-mm instead of this per-cpu approach. In the per-mm layout, we allocate a disk range for each mm, so pages of one mm live in swap disk adjacently. per-mm layout has potential issues of lock contention if multiple reclaimers are swap pages from one mm. For a sequential workload, per-mm layout is better to implement swap readahead, because pages from the mm are adjacent in disk. But per-cpu layout isn't very bad in this workload, as page reclaim always isolates and swaps several pages one time, such pages will still live in disk sequentially and readahead can utilize this. For a random workload, per-mm layout isn't beneficial of request merge, because it's quite possible pages from different mm are swapout in the meantime and IO can't be merged in per-mm layout. while with per-cpu layout we can merge requests from any mm. Considering random workload is more popular in workloads with swap (and per-cpu approach isn't too bad for sequential workload too), I'm choosing per-cpu layout. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:32 +00:00
struct percpu_cluster *percpu_cluster;
bool conflict;
swap: change block allocation algorithm for SSD I'm using a fast SSD to do swap. scan_swap_map() sometimes uses up to 20~30% CPU time (when cluster is hard to find, the CPU time can be up to 80%), which becomes a bottleneck. scan_swap_map() scans a byte array to search a 256 page cluster, which is very slow. Here I introduced a simple algorithm to search cluster. Since we only care about 256 pages cluster, we can just use a counter to track if a cluster is free. Every 256 pages use one int to store the counter. If the counter of a cluster is 0, the cluster is free. All free clusters will be added to a list, so searching cluster is very efficient. With this, scap_swap_map() overhead disappears. This might help low end SD card swap too. Because if the cluster is aligned, SD firmware can do flash erase more efficiently. We only enable the algorithm for SSD. Hard disk swap isn't fast enough and has downside with the algorithm which might introduce regression (see below). The patch slightly changes which cluster is choosen. It always adds free cluster to list tail. This can help wear leveling for low end SSD too. And if no cluster found, the scan_swap_map() will do search from the end of last cluster. So if no cluster found, the scan_swap_map() will do search from the end of last free cluster, which is random. For SSD, this isn't a problem at all. Another downside is the cluster must be aligned to 256 pages, which will reduce the chance to find a cluster. I would expect this isn't a big problem for SSD because of the non-seek penality. (And this is the reason I only enable the algorithm for SSD). Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:28 +00:00
offset /= SWAPFILE_CLUSTER;
conflict = !cluster_list_empty(&si->free_clusters) &&
offset != cluster_list_first(&si->free_clusters) &&
swap: change block allocation algorithm for SSD I'm using a fast SSD to do swap. scan_swap_map() sometimes uses up to 20~30% CPU time (when cluster is hard to find, the CPU time can be up to 80%), which becomes a bottleneck. scan_swap_map() scans a byte array to search a 256 page cluster, which is very slow. Here I introduced a simple algorithm to search cluster. Since we only care about 256 pages cluster, we can just use a counter to track if a cluster is free. Every 256 pages use one int to store the counter. If the counter of a cluster is 0, the cluster is free. All free clusters will be added to a list, so searching cluster is very efficient. With this, scap_swap_map() overhead disappears. This might help low end SD card swap too. Because if the cluster is aligned, SD firmware can do flash erase more efficiently. We only enable the algorithm for SSD. Hard disk swap isn't fast enough and has downside with the algorithm which might introduce regression (see below). The patch slightly changes which cluster is choosen. It always adds free cluster to list tail. This can help wear leveling for low end SSD too. And if no cluster found, the scan_swap_map() will do search from the end of last cluster. So if no cluster found, the scan_swap_map() will do search from the end of last free cluster, which is random. For SSD, this isn't a problem at all. Another downside is the cluster must be aligned to 256 pages, which will reduce the chance to find a cluster. I would expect this isn't a big problem for SSD because of the non-seek penality. (And this is the reason I only enable the algorithm for SSD). Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:28 +00:00
cluster_is_free(&si->cluster_info[offset]);
swap: make cluster allocation per-cpu swap cluster allocation is to get better request merge to improve performance. But the cluster is shared globally, if multiple tasks are doing swap, this will cause interleave disk access. While multiple tasks swap is quite common, for example, each numa node has a kswapd thread doing swap and multiple threads/processes doing direct page reclaim. ioscheduler can't help too much here, because tasks don't send swapout IO down to block layer in the meantime. Block layer does merge some IOs, but a lot not, depending on how many tasks are doing swapout concurrently. In practice, I've seen a lot of small size IO in swapout workloads. We makes the cluster allocation per-cpu here. The interleave disk access issue goes away. All tasks swapout to their own cluster, so swapout will become sequential, which can be easily merged to big size IO. If one CPU can't get its per-cpu cluster (for example, there is no free cluster anymore in the swap), it will fallback to scan swap_map. The CPU can still continue swap. We don't need recycle free swap entries of other CPUs. In my test (swap to a 2-disk raid0 partition), this improves around 10% swapout throughput, and request size is increased significantly. How does this impact swap readahead is uncertain though. On one side, page reclaim always isolates and swaps several adjancent pages, this will make page reclaim write the pages sequentially and benefit readahead. On the other side, several CPU write pages interleave means the pages don't live _sequentially_ but relatively _near_. In the per-cpu allocation case, if adjancent pages are written by different cpus, they will live relatively _far_. So how this impacts swap readahead depends on how many pages page reclaim isolates and swaps one time. If the number is big, this patch will benefit swap readahead. Of course, this is about sequential access pattern. The patch has no impact for random access pattern, because the new cluster allocation algorithm is just for SSD. Alternative solution is organizing swap layout to be per-mm instead of this per-cpu approach. In the per-mm layout, we allocate a disk range for each mm, so pages of one mm live in swap disk adjacently. per-mm layout has potential issues of lock contention if multiple reclaimers are swap pages from one mm. For a sequential workload, per-mm layout is better to implement swap readahead, because pages from the mm are adjacent in disk. But per-cpu layout isn't very bad in this workload, as page reclaim always isolates and swaps several pages one time, such pages will still live in disk sequentially and readahead can utilize this. For a random workload, per-mm layout isn't beneficial of request merge, because it's quite possible pages from different mm are swapout in the meantime and IO can't be merged in per-mm layout. while with per-cpu layout we can merge requests from any mm. Considering random workload is more popular in workloads with swap (and per-cpu approach isn't too bad for sequential workload too), I'm choosing per-cpu layout. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:32 +00:00
if (!conflict)
return false;
percpu_cluster = this_cpu_ptr(si->percpu_cluster);
cluster_set_null(&percpu_cluster->index);
return true;
}
/*
* Try to get a swap entry from current cpu's swap entry pool (a cluster). This
* might involve allocating a new cluster for current CPU too.
*/
static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
unsigned long *offset, unsigned long *scan_base)
{
struct percpu_cluster *cluster;
bool found_free;
unsigned long tmp;
new_cluster:
cluster = this_cpu_ptr(si->percpu_cluster);
if (cluster_is_null(&cluster->index)) {
if (!cluster_list_empty(&si->free_clusters)) {
cluster->index = si->free_clusters.head;
swap: make cluster allocation per-cpu swap cluster allocation is to get better request merge to improve performance. But the cluster is shared globally, if multiple tasks are doing swap, this will cause interleave disk access. While multiple tasks swap is quite common, for example, each numa node has a kswapd thread doing swap and multiple threads/processes doing direct page reclaim. ioscheduler can't help too much here, because tasks don't send swapout IO down to block layer in the meantime. Block layer does merge some IOs, but a lot not, depending on how many tasks are doing swapout concurrently. In practice, I've seen a lot of small size IO in swapout workloads. We makes the cluster allocation per-cpu here. The interleave disk access issue goes away. All tasks swapout to their own cluster, so swapout will become sequential, which can be easily merged to big size IO. If one CPU can't get its per-cpu cluster (for example, there is no free cluster anymore in the swap), it will fallback to scan swap_map. The CPU can still continue swap. We don't need recycle free swap entries of other CPUs. In my test (swap to a 2-disk raid0 partition), this improves around 10% swapout throughput, and request size is increased significantly. How does this impact swap readahead is uncertain though. On one side, page reclaim always isolates and swaps several adjancent pages, this will make page reclaim write the pages sequentially and benefit readahead. On the other side, several CPU write pages interleave means the pages don't live _sequentially_ but relatively _near_. In the per-cpu allocation case, if adjancent pages are written by different cpus, they will live relatively _far_. So how this impacts swap readahead depends on how many pages page reclaim isolates and swaps one time. If the number is big, this patch will benefit swap readahead. Of course, this is about sequential access pattern. The patch has no impact for random access pattern, because the new cluster allocation algorithm is just for SSD. Alternative solution is organizing swap layout to be per-mm instead of this per-cpu approach. In the per-mm layout, we allocate a disk range for each mm, so pages of one mm live in swap disk adjacently. per-mm layout has potential issues of lock contention if multiple reclaimers are swap pages from one mm. For a sequential workload, per-mm layout is better to implement swap readahead, because pages from the mm are adjacent in disk. But per-cpu layout isn't very bad in this workload, as page reclaim always isolates and swaps several pages one time, such pages will still live in disk sequentially and readahead can utilize this. For a random workload, per-mm layout isn't beneficial of request merge, because it's quite possible pages from different mm are swapout in the meantime and IO can't be merged in per-mm layout. while with per-cpu layout we can merge requests from any mm. Considering random workload is more popular in workloads with swap (and per-cpu approach isn't too bad for sequential workload too), I'm choosing per-cpu layout. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:32 +00:00
cluster->next = cluster_next(&cluster->index) *
SWAPFILE_CLUSTER;
} else if (!cluster_list_empty(&si->discard_clusters)) {
swap: make cluster allocation per-cpu swap cluster allocation is to get better request merge to improve performance. But the cluster is shared globally, if multiple tasks are doing swap, this will cause interleave disk access. While multiple tasks swap is quite common, for example, each numa node has a kswapd thread doing swap and multiple threads/processes doing direct page reclaim. ioscheduler can't help too much here, because tasks don't send swapout IO down to block layer in the meantime. Block layer does merge some IOs, but a lot not, depending on how many tasks are doing swapout concurrently. In practice, I've seen a lot of small size IO in swapout workloads. We makes the cluster allocation per-cpu here. The interleave disk access issue goes away. All tasks swapout to their own cluster, so swapout will become sequential, which can be easily merged to big size IO. If one CPU can't get its per-cpu cluster (for example, there is no free cluster anymore in the swap), it will fallback to scan swap_map. The CPU can still continue swap. We don't need recycle free swap entries of other CPUs. In my test (swap to a 2-disk raid0 partition), this improves around 10% swapout throughput, and request size is increased significantly. How does this impact swap readahead is uncertain though. On one side, page reclaim always isolates and swaps several adjancent pages, this will make page reclaim write the pages sequentially and benefit readahead. On the other side, several CPU write pages interleave means the pages don't live _sequentially_ but relatively _near_. In the per-cpu allocation case, if adjancent pages are written by different cpus, they will live relatively _far_. So how this impacts swap readahead depends on how many pages page reclaim isolates and swaps one time. If the number is big, this patch will benefit swap readahead. Of course, this is about sequential access pattern. The patch has no impact for random access pattern, because the new cluster allocation algorithm is just for SSD. Alternative solution is organizing swap layout to be per-mm instead of this per-cpu approach. In the per-mm layout, we allocate a disk range for each mm, so pages of one mm live in swap disk adjacently. per-mm layout has potential issues of lock contention if multiple reclaimers are swap pages from one mm. For a sequential workload, per-mm layout is better to implement swap readahead, because pages from the mm are adjacent in disk. But per-cpu layout isn't very bad in this workload, as page reclaim always isolates and swaps several pages one time, such pages will still live in disk sequentially and readahead can utilize this. For a random workload, per-mm layout isn't beneficial of request merge, because it's quite possible pages from different mm are swapout in the meantime and IO can't be merged in per-mm layout. while with per-cpu layout we can merge requests from any mm. Considering random workload is more popular in workloads with swap (and per-cpu approach isn't too bad for sequential workload too), I'm choosing per-cpu layout. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:32 +00:00
/*
* we don't have free cluster but have some clusters in
* discarding, do discard now and reclaim them
*/
swap_do_scheduled_discard(si);
*scan_base = *offset = si->cluster_next;
goto new_cluster;
} else
return;
}
found_free = false;
/*
* Other CPUs can use our cluster if they can't find a free cluster,
* check if there is still free entry in the cluster
*/
tmp = cluster->next;
while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
SWAPFILE_CLUSTER) {
if (!si->swap_map[tmp]) {
found_free = true;
break;
}
tmp++;
}
if (!found_free) {
cluster_set_null(&cluster->index);
goto new_cluster;
}
cluster->next = tmp + 1;
*offset = tmp;
*scan_base = tmp;
swap: change block allocation algorithm for SSD I'm using a fast SSD to do swap. scan_swap_map() sometimes uses up to 20~30% CPU time (when cluster is hard to find, the CPU time can be up to 80%), which becomes a bottleneck. scan_swap_map() scans a byte array to search a 256 page cluster, which is very slow. Here I introduced a simple algorithm to search cluster. Since we only care about 256 pages cluster, we can just use a counter to track if a cluster is free. Every 256 pages use one int to store the counter. If the counter of a cluster is 0, the cluster is free. All free clusters will be added to a list, so searching cluster is very efficient. With this, scap_swap_map() overhead disappears. This might help low end SD card swap too. Because if the cluster is aligned, SD firmware can do flash erase more efficiently. We only enable the algorithm for SSD. Hard disk swap isn't fast enough and has downside with the algorithm which might introduce regression (see below). The patch slightly changes which cluster is choosen. It always adds free cluster to list tail. This can help wear leveling for low end SSD too. And if no cluster found, the scan_swap_map() will do search from the end of last cluster. So if no cluster found, the scan_swap_map() will do search from the end of last free cluster, which is random. For SSD, this isn't a problem at all. Another downside is the cluster must be aligned to 256 pages, which will reduce the chance to find a cluster. I would expect this isn't a big problem for SSD because of the non-seek penality. (And this is the reason I only enable the algorithm for SSD). Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:28 +00:00
}
static unsigned long scan_swap_map(struct swap_info_struct *si,
unsigned char usage)
{
unsigned long offset;
unsigned long scan_base;
unsigned long last_in_cluster = 0;
int latency_ration = LATENCY_LIMIT;
/*
* We try to cluster swap pages by allocating them sequentially
* in swap. Once we've allocated SWAPFILE_CLUSTER pages this
* way, however, we resort to first-free allocation, starting
* a new cluster. This prevents us from scattering swap pages
* all over the entire swap partition, so that we reduce
* overall disk seek times between swap pages. -- sct
* But we do now try to find an empty cluster. -Andrea
* And we let swap pages go all over an SSD partition. Hugh
*/
si->flags += SWP_SCANNING;
scan_base = offset = si->cluster_next;
swap: make cluster allocation per-cpu swap cluster allocation is to get better request merge to improve performance. But the cluster is shared globally, if multiple tasks are doing swap, this will cause interleave disk access. While multiple tasks swap is quite common, for example, each numa node has a kswapd thread doing swap and multiple threads/processes doing direct page reclaim. ioscheduler can't help too much here, because tasks don't send swapout IO down to block layer in the meantime. Block layer does merge some IOs, but a lot not, depending on how many tasks are doing swapout concurrently. In practice, I've seen a lot of small size IO in swapout workloads. We makes the cluster allocation per-cpu here. The interleave disk access issue goes away. All tasks swapout to their own cluster, so swapout will become sequential, which can be easily merged to big size IO. If one CPU can't get its per-cpu cluster (for example, there is no free cluster anymore in the swap), it will fallback to scan swap_map. The CPU can still continue swap. We don't need recycle free swap entries of other CPUs. In my test (swap to a 2-disk raid0 partition), this improves around 10% swapout throughput, and request size is increased significantly. How does this impact swap readahead is uncertain though. On one side, page reclaim always isolates and swaps several adjancent pages, this will make page reclaim write the pages sequentially and benefit readahead. On the other side, several CPU write pages interleave means the pages don't live _sequentially_ but relatively _near_. In the per-cpu allocation case, if adjancent pages are written by different cpus, they will live relatively _far_. So how this impacts swap readahead depends on how many pages page reclaim isolates and swaps one time. If the number is big, this patch will benefit swap readahead. Of course, this is about sequential access pattern. The patch has no impact for random access pattern, because the new cluster allocation algorithm is just for SSD. Alternative solution is organizing swap layout to be per-mm instead of this per-cpu approach. In the per-mm layout, we allocate a disk range for each mm, so pages of one mm live in swap disk adjacently. per-mm layout has potential issues of lock contention if multiple reclaimers are swap pages from one mm. For a sequential workload, per-mm layout is better to implement swap readahead, because pages from the mm are adjacent in disk. But per-cpu layout isn't very bad in this workload, as page reclaim always isolates and swaps several pages one time, such pages will still live in disk sequentially and readahead can utilize this. For a random workload, per-mm layout isn't beneficial of request merge, because it's quite possible pages from different mm are swapout in the meantime and IO can't be merged in per-mm layout. while with per-cpu layout we can merge requests from any mm. Considering random workload is more popular in workloads with swap (and per-cpu approach isn't too bad for sequential workload too), I'm choosing per-cpu layout. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:32 +00:00
/* SSD algorithm */
if (si->cluster_info) {
scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
goto checks;
}
if (unlikely(!si->cluster_nr--)) {
if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
si->cluster_nr = SWAPFILE_CLUSTER - 1;
goto checks;
}
swap: change block allocation algorithm for SSD I'm using a fast SSD to do swap. scan_swap_map() sometimes uses up to 20~30% CPU time (when cluster is hard to find, the CPU time can be up to 80%), which becomes a bottleneck. scan_swap_map() scans a byte array to search a 256 page cluster, which is very slow. Here I introduced a simple algorithm to search cluster. Since we only care about 256 pages cluster, we can just use a counter to track if a cluster is free. Every 256 pages use one int to store the counter. If the counter of a cluster is 0, the cluster is free. All free clusters will be added to a list, so searching cluster is very efficient. With this, scap_swap_map() overhead disappears. This might help low end SD card swap too. Because if the cluster is aligned, SD firmware can do flash erase more efficiently. We only enable the algorithm for SSD. Hard disk swap isn't fast enough and has downside with the algorithm which might introduce regression (see below). The patch slightly changes which cluster is choosen. It always adds free cluster to list tail. This can help wear leveling for low end SSD too. And if no cluster found, the scan_swap_map() will do search from the end of last cluster. So if no cluster found, the scan_swap_map() will do search from the end of last free cluster, which is random. For SSD, this isn't a problem at all. Another downside is the cluster must be aligned to 256 pages, which will reduce the chance to find a cluster. I would expect this isn't a big problem for SSD because of the non-seek penality. (And this is the reason I only enable the algorithm for SSD). Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:28 +00:00
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
spin_unlock(&si->lock);
/*
* If seek is expensive, start searching for new cluster from
* start of partition, to minimize the span of allocated swap.
* If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
* case, just handled by scan_swap_map_try_ssd_cluster() above.
*/
scan_base = offset = si->lowest_bit;
last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
/* Locate the first empty (unaligned) cluster */
for (; last_in_cluster <= si->highest_bit; offset++) {
if (si->swap_map[offset])
last_in_cluster = offset + SWAPFILE_CLUSTER;
else if (offset == last_in_cluster) {
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
spin_lock(&si->lock);
offset -= SWAPFILE_CLUSTER - 1;
si->cluster_next = offset;
si->cluster_nr = SWAPFILE_CLUSTER - 1;
goto checks;
}
if (unlikely(--latency_ration < 0)) {
cond_resched();
latency_ration = LATENCY_LIMIT;
}
}
offset = scan_base;
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
spin_lock(&si->lock);
si->cluster_nr = SWAPFILE_CLUSTER - 1;
}
checks:
swap: make cluster allocation per-cpu swap cluster allocation is to get better request merge to improve performance. But the cluster is shared globally, if multiple tasks are doing swap, this will cause interleave disk access. While multiple tasks swap is quite common, for example, each numa node has a kswapd thread doing swap and multiple threads/processes doing direct page reclaim. ioscheduler can't help too much here, because tasks don't send swapout IO down to block layer in the meantime. Block layer does merge some IOs, but a lot not, depending on how many tasks are doing swapout concurrently. In practice, I've seen a lot of small size IO in swapout workloads. We makes the cluster allocation per-cpu here. The interleave disk access issue goes away. All tasks swapout to their own cluster, so swapout will become sequential, which can be easily merged to big size IO. If one CPU can't get its per-cpu cluster (for example, there is no free cluster anymore in the swap), it will fallback to scan swap_map. The CPU can still continue swap. We don't need recycle free swap entries of other CPUs. In my test (swap to a 2-disk raid0 partition), this improves around 10% swapout throughput, and request size is increased significantly. How does this impact swap readahead is uncertain though. On one side, page reclaim always isolates and swaps several adjancent pages, this will make page reclaim write the pages sequentially and benefit readahead. On the other side, several CPU write pages interleave means the pages don't live _sequentially_ but relatively _near_. In the per-cpu allocation case, if adjancent pages are written by different cpus, they will live relatively _far_. So how this impacts swap readahead depends on how many pages page reclaim isolates and swaps one time. If the number is big, this patch will benefit swap readahead. Of course, this is about sequential access pattern. The patch has no impact for random access pattern, because the new cluster allocation algorithm is just for SSD. Alternative solution is organizing swap layout to be per-mm instead of this per-cpu approach. In the per-mm layout, we allocate a disk range for each mm, so pages of one mm live in swap disk adjacently. per-mm layout has potential issues of lock contention if multiple reclaimers are swap pages from one mm. For a sequential workload, per-mm layout is better to implement swap readahead, because pages from the mm are adjacent in disk. But per-cpu layout isn't very bad in this workload, as page reclaim always isolates and swaps several pages one time, such pages will still live in disk sequentially and readahead can utilize this. For a random workload, per-mm layout isn't beneficial of request merge, because it's quite possible pages from different mm are swapout in the meantime and IO can't be merged in per-mm layout. while with per-cpu layout we can merge requests from any mm. Considering random workload is more popular in workloads with swap (and per-cpu approach isn't too bad for sequential workload too), I'm choosing per-cpu layout. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:32 +00:00
if (si->cluster_info) {
while (scan_swap_map_ssd_cluster_conflict(si, offset))
scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
}
if (!(si->flags & SWP_WRITEOK))
goto no_page;
if (!si->highest_bit)
goto no_page;
if (offset > si->highest_bit)
scan_base = offset = si->lowest_bit;
/* reuse swap entry of cache-only swap if not busy. */
if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
int swap_was_freed;
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
spin_unlock(&si->lock);
swap_was_freed = __try_to_reclaim_swap(si, offset);
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
spin_lock(&si->lock);
/* entry was freed successfully, try to use this again */
if (swap_was_freed)
goto checks;
goto scan; /* check next one */
}
if (si->swap_map[offset])
goto scan;
if (offset == si->lowest_bit)
si->lowest_bit++;
if (offset == si->highest_bit)
si->highest_bit--;
si->inuse_pages++;
if (si->inuse_pages == si->pages) {
si->lowest_bit = si->max;
si->highest_bit = 0;
swap: change swap_list_head to plist, add swap_avail_head Originally get_swap_page() started iterating through the singly-linked list of swap_info_structs using swap_list.next or highest_priority_index, which both were intended to point to the highest priority active swap target that was not full. The first patch in this series changed the singly-linked list to a doubly-linked list, and removed the logic to start at the highest priority non-full entry; it starts scanning at the highest priority entry each time, even if the entry is full. Replace the manually ordered swap_list_head with a plist, swap_active_head. Add a new plist, swap_avail_head. The original swap_active_head plist contains all active swap_info_structs, as before, while the new swap_avail_head plist contains only swap_info_structs that are active and available, i.e. not full. Add a new spinlock, swap_avail_lock, to protect the swap_avail_head list. Mel Gorman suggested using plists since they internally handle ordering the list entries based on priority, which is exactly what swap was doing manually. All the ordering code is now removed, and swap_info_struct entries and simply added to their corresponding plist and automatically ordered correctly. Using a new plist for available swap_info_structs simplifies and optimizes get_swap_page(), which no longer has to iterate over full swap_info_structs. Using a new spinlock for swap_avail_head plist allows each swap_info_struct to add or remove themselves from the plist when they become full or not-full; previously they could not do so because the swap_info_struct->lock is held when they change from full<->not-full, and the swap_lock protecting the main swap_active_head must be ordered before any swap_info_struct->lock. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Shaohua Li <shli@fusionio.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> Cc: Weijie Yang <weijieut@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Bob Liu <bob.liu@oracle.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 23:09:59 +00:00
spin_lock(&swap_avail_lock);
plist_del(&si->avail_list, &swap_avail_head);
spin_unlock(&swap_avail_lock);
}
si->swap_map[offset] = usage;
swap: change block allocation algorithm for SSD I'm using a fast SSD to do swap. scan_swap_map() sometimes uses up to 20~30% CPU time (when cluster is hard to find, the CPU time can be up to 80%), which becomes a bottleneck. scan_swap_map() scans a byte array to search a 256 page cluster, which is very slow. Here I introduced a simple algorithm to search cluster. Since we only care about 256 pages cluster, we can just use a counter to track if a cluster is free. Every 256 pages use one int to store the counter. If the counter of a cluster is 0, the cluster is free. All free clusters will be added to a list, so searching cluster is very efficient. With this, scap_swap_map() overhead disappears. This might help low end SD card swap too. Because if the cluster is aligned, SD firmware can do flash erase more efficiently. We only enable the algorithm for SSD. Hard disk swap isn't fast enough and has downside with the algorithm which might introduce regression (see below). The patch slightly changes which cluster is choosen. It always adds free cluster to list tail. This can help wear leveling for low end SSD too. And if no cluster found, the scan_swap_map() will do search from the end of last cluster. So if no cluster found, the scan_swap_map() will do search from the end of last free cluster, which is random. For SSD, this isn't a problem at all. Another downside is the cluster must be aligned to 256 pages, which will reduce the chance to find a cluster. I would expect this isn't a big problem for SSD because of the non-seek penality. (And this is the reason I only enable the algorithm for SSD). Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:28 +00:00
inc_cluster_info_page(si, si->cluster_info, offset);
si->cluster_next = offset + 1;
si->flags -= SWP_SCANNING;
return offset;
scan:
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
spin_unlock(&si->lock);
while (++offset <= si->highest_bit) {
if (!si->swap_map[offset]) {
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
spin_lock(&si->lock);
goto checks;
}
if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
spin_lock(&si->lock);
goto checks;
}
if (unlikely(--latency_ration < 0)) {
cond_resched();
latency_ration = LATENCY_LIMIT;
}
}
offset = si->lowest_bit;
while (offset < scan_base) {
if (!si->swap_map[offset]) {
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
spin_lock(&si->lock);
goto checks;
}
if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
spin_lock(&si->lock);
goto checks;
}
if (unlikely(--latency_ration < 0)) {
cond_resched();
latency_ration = LATENCY_LIMIT;
}
offset++;
}
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
spin_lock(&si->lock);
no_page:
si->flags -= SWP_SCANNING;
return 0;
}
swp_entry_t get_swap_page(void)
{
swap: change swap_info singly-linked list to list_head The logic controlling the singly-linked list of swap_info_struct entries for all active, i.e. swapon'ed, swap targets is rather complex, because: - it stores the entries in priority order - there is a pointer to the highest priority entry - there is a pointer to the highest priority not-full entry - there is a highest_priority_index variable set outside the swap_lock - swap entries of equal priority should be used equally this complexity leads to bugs such as: https://lkml.org/lkml/2014/2/13/181 where different priority swap targets are incorrectly used equally. That bug probably could be solved with the existing singly-linked lists, but I think it would only add more complexity to the already difficult to understand get_swap_page() swap_list iteration logic. The first patch changes from a singly-linked list to a doubly-linked list using list_heads; the highest_priority_index and related code are removed and get_swap_page() starts each iteration at the highest priority swap_info entry, even if it's full. While this does introduce unnecessary list iteration (i.e. Schlemiel the painter's algorithm) in the case where one or more of the highest priority entries are full, the iteration and manipulation code is much simpler and behaves correctly re: the above bug; and the fourth patch removes the unnecessary iteration. The second patch adds some minor plist helper functions; nothing new really, just functions to match existing regular list functions. These are used by the next two patches. The third patch adds plist_requeue(), which is used by get_swap_page() in the next patch - it performs the requeueing of same-priority entries (which moves the entry to the end of its priority in the plist), so that all equal-priority swap_info_structs get used equally. The fourth patch converts the main list into a plist, and adds a new plist that contains only swap_info entries that are both active and not full. As Mel suggested using plists allows removing all the ordering code from swap - plists handle ordering automatically. The list naming is also clarified now that there are two lists, with the original list changed from swap_list_head to swap_active_head and the new list named swap_avail_head. A new spinlock is also added for the new list, so swap_info entries can be added or removed from the new list immediately as they become full or not full. This patch (of 4): Replace the singly-linked list tracking active, i.e. swapon'ed, swap_info_struct entries with a doubly-linked list using struct list_heads. Simplify the logic iterating and manipulating the list of entries, especially get_swap_page(), by using standard list_head functions, and removing the highest priority iteration logic. The change fixes the bug: https://lkml.org/lkml/2014/2/13/181 in which different priority swap entries after the highest priority entry are incorrectly used equally in pairs. The swap behavior is now as advertised, i.e. different priority swap entries are used in order, and equal priority swap targets are used concurrently. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> Cc: Weijie Yang <weijieut@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Bob Liu <bob.liu@oracle.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 23:09:53 +00:00
struct swap_info_struct *si, *next;
pgoff_t offset;
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
if (atomic_long_read(&nr_swap_pages) <= 0)
goto noswap;
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
atomic_long_dec(&nr_swap_pages);
swap: change swap_list_head to plist, add swap_avail_head Originally get_swap_page() started iterating through the singly-linked list of swap_info_structs using swap_list.next or highest_priority_index, which both were intended to point to the highest priority active swap target that was not full. The first patch in this series changed the singly-linked list to a doubly-linked list, and removed the logic to start at the highest priority non-full entry; it starts scanning at the highest priority entry each time, even if the entry is full. Replace the manually ordered swap_list_head with a plist, swap_active_head. Add a new plist, swap_avail_head. The original swap_active_head plist contains all active swap_info_structs, as before, while the new swap_avail_head plist contains only swap_info_structs that are active and available, i.e. not full. Add a new spinlock, swap_avail_lock, to protect the swap_avail_head list. Mel Gorman suggested using plists since they internally handle ordering the list entries based on priority, which is exactly what swap was doing manually. All the ordering code is now removed, and swap_info_struct entries and simply added to their corresponding plist and automatically ordered correctly. Using a new plist for available swap_info_structs simplifies and optimizes get_swap_page(), which no longer has to iterate over full swap_info_structs. Using a new spinlock for swap_avail_head plist allows each swap_info_struct to add or remove themselves from the plist when they become full or not-full; previously they could not do so because the swap_info_struct->lock is held when they change from full<->not-full, and the swap_lock protecting the main swap_active_head must be ordered before any swap_info_struct->lock. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Shaohua Li <shli@fusionio.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> Cc: Weijie Yang <weijieut@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Bob Liu <bob.liu@oracle.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 23:09:59 +00:00
spin_lock(&swap_avail_lock);
start_over:
plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
/* requeue si to after same-priority siblings */
plist_requeue(&si->avail_list, &swap_avail_head);
spin_unlock(&swap_avail_lock);
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
spin_lock(&si->lock);
swap: change swap_info singly-linked list to list_head The logic controlling the singly-linked list of swap_info_struct entries for all active, i.e. swapon'ed, swap targets is rather complex, because: - it stores the entries in priority order - there is a pointer to the highest priority entry - there is a pointer to the highest priority not-full entry - there is a highest_priority_index variable set outside the swap_lock - swap entries of equal priority should be used equally this complexity leads to bugs such as: https://lkml.org/lkml/2014/2/13/181 where different priority swap targets are incorrectly used equally. That bug probably could be solved with the existing singly-linked lists, but I think it would only add more complexity to the already difficult to understand get_swap_page() swap_list iteration logic. The first patch changes from a singly-linked list to a doubly-linked list using list_heads; the highest_priority_index and related code are removed and get_swap_page() starts each iteration at the highest priority swap_info entry, even if it's full. While this does introduce unnecessary list iteration (i.e. Schlemiel the painter's algorithm) in the case where one or more of the highest priority entries are full, the iteration and manipulation code is much simpler and behaves correctly re: the above bug; and the fourth patch removes the unnecessary iteration. The second patch adds some minor plist helper functions; nothing new really, just functions to match existing regular list functions. These are used by the next two patches. The third patch adds plist_requeue(), which is used by get_swap_page() in the next patch - it performs the requeueing of same-priority entries (which moves the entry to the end of its priority in the plist), so that all equal-priority swap_info_structs get used equally. The fourth patch converts the main list into a plist, and adds a new plist that contains only swap_info entries that are both active and not full. As Mel suggested using plists allows removing all the ordering code from swap - plists handle ordering automatically. The list naming is also clarified now that there are two lists, with the original list changed from swap_list_head to swap_active_head and the new list named swap_avail_head. A new spinlock is also added for the new list, so swap_info entries can be added or removed from the new list immediately as they become full or not full. This patch (of 4): Replace the singly-linked list tracking active, i.e. swapon'ed, swap_info_struct entries with a doubly-linked list using struct list_heads. Simplify the logic iterating and manipulating the list of entries, especially get_swap_page(), by using standard list_head functions, and removing the highest priority iteration logic. The change fixes the bug: https://lkml.org/lkml/2014/2/13/181 in which different priority swap entries after the highest priority entry are incorrectly used equally in pairs. The swap behavior is now as advertised, i.e. different priority swap entries are used in order, and equal priority swap targets are used concurrently. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> Cc: Weijie Yang <weijieut@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Bob Liu <bob.liu@oracle.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 23:09:53 +00:00
if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
swap: change swap_list_head to plist, add swap_avail_head Originally get_swap_page() started iterating through the singly-linked list of swap_info_structs using swap_list.next or highest_priority_index, which both were intended to point to the highest priority active swap target that was not full. The first patch in this series changed the singly-linked list to a doubly-linked list, and removed the logic to start at the highest priority non-full entry; it starts scanning at the highest priority entry each time, even if the entry is full. Replace the manually ordered swap_list_head with a plist, swap_active_head. Add a new plist, swap_avail_head. The original swap_active_head plist contains all active swap_info_structs, as before, while the new swap_avail_head plist contains only swap_info_structs that are active and available, i.e. not full. Add a new spinlock, swap_avail_lock, to protect the swap_avail_head list. Mel Gorman suggested using plists since they internally handle ordering the list entries based on priority, which is exactly what swap was doing manually. All the ordering code is now removed, and swap_info_struct entries and simply added to their corresponding plist and automatically ordered correctly. Using a new plist for available swap_info_structs simplifies and optimizes get_swap_page(), which no longer has to iterate over full swap_info_structs. Using a new spinlock for swap_avail_head plist allows each swap_info_struct to add or remove themselves from the plist when they become full or not-full; previously they could not do so because the swap_info_struct->lock is held when they change from full<->not-full, and the swap_lock protecting the main swap_active_head must be ordered before any swap_info_struct->lock. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Shaohua Li <shli@fusionio.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> Cc: Weijie Yang <weijieut@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Bob Liu <bob.liu@oracle.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 23:09:59 +00:00
spin_lock(&swap_avail_lock);
if (plist_node_empty(&si->avail_list)) {
spin_unlock(&si->lock);
goto nextsi;
}
WARN(!si->highest_bit,
"swap_info %d in list but !highest_bit\n",
si->type);
WARN(!(si->flags & SWP_WRITEOK),
"swap_info %d in list but !SWP_WRITEOK\n",
si->type);
plist_del(&si->avail_list, &swap_avail_head);
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
spin_unlock(&si->lock);
swap: change swap_list_head to plist, add swap_avail_head Originally get_swap_page() started iterating through the singly-linked list of swap_info_structs using swap_list.next or highest_priority_index, which both were intended to point to the highest priority active swap target that was not full. The first patch in this series changed the singly-linked list to a doubly-linked list, and removed the logic to start at the highest priority non-full entry; it starts scanning at the highest priority entry each time, even if the entry is full. Replace the manually ordered swap_list_head with a plist, swap_active_head. Add a new plist, swap_avail_head. The original swap_active_head plist contains all active swap_info_structs, as before, while the new swap_avail_head plist contains only swap_info_structs that are active and available, i.e. not full. Add a new spinlock, swap_avail_lock, to protect the swap_avail_head list. Mel Gorman suggested using plists since they internally handle ordering the list entries based on priority, which is exactly what swap was doing manually. All the ordering code is now removed, and swap_info_struct entries and simply added to their corresponding plist and automatically ordered correctly. Using a new plist for available swap_info_structs simplifies and optimizes get_swap_page(), which no longer has to iterate over full swap_info_structs. Using a new spinlock for swap_avail_head plist allows each swap_info_struct to add or remove themselves from the plist when they become full or not-full; previously they could not do so because the swap_info_struct->lock is held when they change from full<->not-full, and the swap_lock protecting the main swap_active_head must be ordered before any swap_info_struct->lock. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Shaohua Li <shli@fusionio.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> Cc: Weijie Yang <weijieut@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Bob Liu <bob.liu@oracle.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 23:09:59 +00:00
goto nextsi;
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
}
/* This is called for allocating swap entry for cache */
offset = scan_swap_map(si, SWAP_HAS_CACHE);
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
spin_unlock(&si->lock);
if (offset)
swap: change swap_info singly-linked list to list_head The logic controlling the singly-linked list of swap_info_struct entries for all active, i.e. swapon'ed, swap targets is rather complex, because: - it stores the entries in priority order - there is a pointer to the highest priority entry - there is a pointer to the highest priority not-full entry - there is a highest_priority_index variable set outside the swap_lock - swap entries of equal priority should be used equally this complexity leads to bugs such as: https://lkml.org/lkml/2014/2/13/181 where different priority swap targets are incorrectly used equally. That bug probably could be solved with the existing singly-linked lists, but I think it would only add more complexity to the already difficult to understand get_swap_page() swap_list iteration logic. The first patch changes from a singly-linked list to a doubly-linked list using list_heads; the highest_priority_index and related code are removed and get_swap_page() starts each iteration at the highest priority swap_info entry, even if it's full. While this does introduce unnecessary list iteration (i.e. Schlemiel the painter's algorithm) in the case where one or more of the highest priority entries are full, the iteration and manipulation code is much simpler and behaves correctly re: the above bug; and the fourth patch removes the unnecessary iteration. The second patch adds some minor plist helper functions; nothing new really, just functions to match existing regular list functions. These are used by the next two patches. The third patch adds plist_requeue(), which is used by get_swap_page() in the next patch - it performs the requeueing of same-priority entries (which moves the entry to the end of its priority in the plist), so that all equal-priority swap_info_structs get used equally. The fourth patch converts the main list into a plist, and adds a new plist that contains only swap_info entries that are both active and not full. As Mel suggested using plists allows removing all the ordering code from swap - plists handle ordering automatically. The list naming is also clarified now that there are two lists, with the original list changed from swap_list_head to swap_active_head and the new list named swap_avail_head. A new spinlock is also added for the new list, so swap_info entries can be added or removed from the new list immediately as they become full or not full. This patch (of 4): Replace the singly-linked list tracking active, i.e. swapon'ed, swap_info_struct entries with a doubly-linked list using struct list_heads. Simplify the logic iterating and manipulating the list of entries, especially get_swap_page(), by using standard list_head functions, and removing the highest priority iteration logic. The change fixes the bug: https://lkml.org/lkml/2014/2/13/181 in which different priority swap entries after the highest priority entry are incorrectly used equally in pairs. The swap behavior is now as advertised, i.e. different priority swap entries are used in order, and equal priority swap targets are used concurrently. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> Cc: Weijie Yang <weijieut@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Bob Liu <bob.liu@oracle.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 23:09:53 +00:00
return swp_entry(si->type, offset);
swap: change swap_list_head to plist, add swap_avail_head Originally get_swap_page() started iterating through the singly-linked list of swap_info_structs using swap_list.next or highest_priority_index, which both were intended to point to the highest priority active swap target that was not full. The first patch in this series changed the singly-linked list to a doubly-linked list, and removed the logic to start at the highest priority non-full entry; it starts scanning at the highest priority entry each time, even if the entry is full. Replace the manually ordered swap_list_head with a plist, swap_active_head. Add a new plist, swap_avail_head. The original swap_active_head plist contains all active swap_info_structs, as before, while the new swap_avail_head plist contains only swap_info_structs that are active and available, i.e. not full. Add a new spinlock, swap_avail_lock, to protect the swap_avail_head list. Mel Gorman suggested using plists since they internally handle ordering the list entries based on priority, which is exactly what swap was doing manually. All the ordering code is now removed, and swap_info_struct entries and simply added to their corresponding plist and automatically ordered correctly. Using a new plist for available swap_info_structs simplifies and optimizes get_swap_page(), which no longer has to iterate over full swap_info_structs. Using a new spinlock for swap_avail_head plist allows each swap_info_struct to add or remove themselves from the plist when they become full or not-full; previously they could not do so because the swap_info_struct->lock is held when they change from full<->not-full, and the swap_lock protecting the main swap_active_head must be ordered before any swap_info_struct->lock. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Shaohua Li <shli@fusionio.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> Cc: Weijie Yang <weijieut@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Bob Liu <bob.liu@oracle.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 23:09:59 +00:00
pr_debug("scan_swap_map of si %d failed to find offset\n",
si->type);
spin_lock(&swap_avail_lock);
nextsi:
swap: change swap_info singly-linked list to list_head The logic controlling the singly-linked list of swap_info_struct entries for all active, i.e. swapon'ed, swap targets is rather complex, because: - it stores the entries in priority order - there is a pointer to the highest priority entry - there is a pointer to the highest priority not-full entry - there is a highest_priority_index variable set outside the swap_lock - swap entries of equal priority should be used equally this complexity leads to bugs such as: https://lkml.org/lkml/2014/2/13/181 where different priority swap targets are incorrectly used equally. That bug probably could be solved with the existing singly-linked lists, but I think it would only add more complexity to the already difficult to understand get_swap_page() swap_list iteration logic. The first patch changes from a singly-linked list to a doubly-linked list using list_heads; the highest_priority_index and related code are removed and get_swap_page() starts each iteration at the highest priority swap_info entry, even if it's full. While this does introduce unnecessary list iteration (i.e. Schlemiel the painter's algorithm) in the case where one or more of the highest priority entries are full, the iteration and manipulation code is much simpler and behaves correctly re: the above bug; and the fourth patch removes the unnecessary iteration. The second patch adds some minor plist helper functions; nothing new really, just functions to match existing regular list functions. These are used by the next two patches. The third patch adds plist_requeue(), which is used by get_swap_page() in the next patch - it performs the requeueing of same-priority entries (which moves the entry to the end of its priority in the plist), so that all equal-priority swap_info_structs get used equally. The fourth patch converts the main list into a plist, and adds a new plist that contains only swap_info entries that are both active and not full. As Mel suggested using plists allows removing all the ordering code from swap - plists handle ordering automatically. The list naming is also clarified now that there are two lists, with the original list changed from swap_list_head to swap_active_head and the new list named swap_avail_head. A new spinlock is also added for the new list, so swap_info entries can be added or removed from the new list immediately as they become full or not full. This patch (of 4): Replace the singly-linked list tracking active, i.e. swapon'ed, swap_info_struct entries with a doubly-linked list using struct list_heads. Simplify the logic iterating and manipulating the list of entries, especially get_swap_page(), by using standard list_head functions, and removing the highest priority iteration logic. The change fixes the bug: https://lkml.org/lkml/2014/2/13/181 in which different priority swap entries after the highest priority entry are incorrectly used equally in pairs. The swap behavior is now as advertised, i.e. different priority swap entries are used in order, and equal priority swap targets are used concurrently. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> Cc: Weijie Yang <weijieut@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Bob Liu <bob.liu@oracle.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 23:09:53 +00:00
/*
* if we got here, it's likely that si was almost full before,
* and since scan_swap_map() can drop the si->lock, multiple
* callers probably all tried to get a page from the same si
swap: change swap_list_head to plist, add swap_avail_head Originally get_swap_page() started iterating through the singly-linked list of swap_info_structs using swap_list.next or highest_priority_index, which both were intended to point to the highest priority active swap target that was not full. The first patch in this series changed the singly-linked list to a doubly-linked list, and removed the logic to start at the highest priority non-full entry; it starts scanning at the highest priority entry each time, even if the entry is full. Replace the manually ordered swap_list_head with a plist, swap_active_head. Add a new plist, swap_avail_head. The original swap_active_head plist contains all active swap_info_structs, as before, while the new swap_avail_head plist contains only swap_info_structs that are active and available, i.e. not full. Add a new spinlock, swap_avail_lock, to protect the swap_avail_head list. Mel Gorman suggested using plists since they internally handle ordering the list entries based on priority, which is exactly what swap was doing manually. All the ordering code is now removed, and swap_info_struct entries and simply added to their corresponding plist and automatically ordered correctly. Using a new plist for available swap_info_structs simplifies and optimizes get_swap_page(), which no longer has to iterate over full swap_info_structs. Using a new spinlock for swap_avail_head plist allows each swap_info_struct to add or remove themselves from the plist when they become full or not-full; previously they could not do so because the swap_info_struct->lock is held when they change from full<->not-full, and the swap_lock protecting the main swap_active_head must be ordered before any swap_info_struct->lock. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Shaohua Li <shli@fusionio.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> Cc: Weijie Yang <weijieut@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Bob Liu <bob.liu@oracle.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 23:09:59 +00:00
* and it filled up before we could get one; or, the si filled
* up between us dropping swap_avail_lock and taking si->lock.
* Since we dropped the swap_avail_lock, the swap_avail_head
* list may have been modified; so if next is still in the
* swap_avail_head list then try it, otherwise start over.
swap: change swap_info singly-linked list to list_head The logic controlling the singly-linked list of swap_info_struct entries for all active, i.e. swapon'ed, swap targets is rather complex, because: - it stores the entries in priority order - there is a pointer to the highest priority entry - there is a pointer to the highest priority not-full entry - there is a highest_priority_index variable set outside the swap_lock - swap entries of equal priority should be used equally this complexity leads to bugs such as: https://lkml.org/lkml/2014/2/13/181 where different priority swap targets are incorrectly used equally. That bug probably could be solved with the existing singly-linked lists, but I think it would only add more complexity to the already difficult to understand get_swap_page() swap_list iteration logic. The first patch changes from a singly-linked list to a doubly-linked list using list_heads; the highest_priority_index and related code are removed and get_swap_page() starts each iteration at the highest priority swap_info entry, even if it's full. While this does introduce unnecessary list iteration (i.e. Schlemiel the painter's algorithm) in the case where one or more of the highest priority entries are full, the iteration and manipulation code is much simpler and behaves correctly re: the above bug; and the fourth patch removes the unnecessary iteration. The second patch adds some minor plist helper functions; nothing new really, just functions to match existing regular list functions. These are used by the next two patches. The third patch adds plist_requeue(), which is used by get_swap_page() in the next patch - it performs the requeueing of same-priority entries (which moves the entry to the end of its priority in the plist), so that all equal-priority swap_info_structs get used equally. The fourth patch converts the main list into a plist, and adds a new plist that contains only swap_info entries that are both active and not full. As Mel suggested using plists allows removing all the ordering code from swap - plists handle ordering automatically. The list naming is also clarified now that there are two lists, with the original list changed from swap_list_head to swap_active_head and the new list named swap_avail_head. A new spinlock is also added for the new list, so swap_info entries can be added or removed from the new list immediately as they become full or not full. This patch (of 4): Replace the singly-linked list tracking active, i.e. swapon'ed, swap_info_struct entries with a doubly-linked list using struct list_heads. Simplify the logic iterating and manipulating the list of entries, especially get_swap_page(), by using standard list_head functions, and removing the highest priority iteration logic. The change fixes the bug: https://lkml.org/lkml/2014/2/13/181 in which different priority swap entries after the highest priority entry are incorrectly used equally in pairs. The swap behavior is now as advertised, i.e. different priority swap entries are used in order, and equal priority swap targets are used concurrently. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> Cc: Weijie Yang <weijieut@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Bob Liu <bob.liu@oracle.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 23:09:53 +00:00
*/
swap: change swap_list_head to plist, add swap_avail_head Originally get_swap_page() started iterating through the singly-linked list of swap_info_structs using swap_list.next or highest_priority_index, which both were intended to point to the highest priority active swap target that was not full. The first patch in this series changed the singly-linked list to a doubly-linked list, and removed the logic to start at the highest priority non-full entry; it starts scanning at the highest priority entry each time, even if the entry is full. Replace the manually ordered swap_list_head with a plist, swap_active_head. Add a new plist, swap_avail_head. The original swap_active_head plist contains all active swap_info_structs, as before, while the new swap_avail_head plist contains only swap_info_structs that are active and available, i.e. not full. Add a new spinlock, swap_avail_lock, to protect the swap_avail_head list. Mel Gorman suggested using plists since they internally handle ordering the list entries based on priority, which is exactly what swap was doing manually. All the ordering code is now removed, and swap_info_struct entries and simply added to their corresponding plist and automatically ordered correctly. Using a new plist for available swap_info_structs simplifies and optimizes get_swap_page(), which no longer has to iterate over full swap_info_structs. Using a new spinlock for swap_avail_head plist allows each swap_info_struct to add or remove themselves from the plist when they become full or not-full; previously they could not do so because the swap_info_struct->lock is held when they change from full<->not-full, and the swap_lock protecting the main swap_active_head must be ordered before any swap_info_struct->lock. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Shaohua Li <shli@fusionio.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> Cc: Weijie Yang <weijieut@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Bob Liu <bob.liu@oracle.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 23:09:59 +00:00
if (plist_node_empty(&next->avail_list))
goto start_over;
}
swap: change swap_list_head to plist, add swap_avail_head Originally get_swap_page() started iterating through the singly-linked list of swap_info_structs using swap_list.next or highest_priority_index, which both were intended to point to the highest priority active swap target that was not full. The first patch in this series changed the singly-linked list to a doubly-linked list, and removed the logic to start at the highest priority non-full entry; it starts scanning at the highest priority entry each time, even if the entry is full. Replace the manually ordered swap_list_head with a plist, swap_active_head. Add a new plist, swap_avail_head. The original swap_active_head plist contains all active swap_info_structs, as before, while the new swap_avail_head plist contains only swap_info_structs that are active and available, i.e. not full. Add a new spinlock, swap_avail_lock, to protect the swap_avail_head list. Mel Gorman suggested using plists since they internally handle ordering the list entries based on priority, which is exactly what swap was doing manually. All the ordering code is now removed, and swap_info_struct entries and simply added to their corresponding plist and automatically ordered correctly. Using a new plist for available swap_info_structs simplifies and optimizes get_swap_page(), which no longer has to iterate over full swap_info_structs. Using a new spinlock for swap_avail_head plist allows each swap_info_struct to add or remove themselves from the plist when they become full or not-full; previously they could not do so because the swap_info_struct->lock is held when they change from full<->not-full, and the swap_lock protecting the main swap_active_head must be ordered before any swap_info_struct->lock. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Shaohua Li <shli@fusionio.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> Cc: Weijie Yang <weijieut@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Bob Liu <bob.liu@oracle.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 23:09:59 +00:00
spin_unlock(&swap_avail_lock);
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
atomic_long_inc(&nr_swap_pages);
noswap:
return (swp_entry_t) {0};
}
/* The only caller of this function is now suspend routine */
swp_entry_t get_swap_page_of_type(int type)
{
struct swap_info_struct *si;
pgoff_t offset;
si = swap_info[type];
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
spin_lock(&si->lock);
if (si && (si->flags & SWP_WRITEOK)) {
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
atomic_long_dec(&nr_swap_pages);
/* This is called for allocating swap entry, not cache */
offset = scan_swap_map(si, 1);
if (offset) {
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
spin_unlock(&si->lock);
return swp_entry(type, offset);
}
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
atomic_long_inc(&nr_swap_pages);
}
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
spin_unlock(&si->lock);
return (swp_entry_t) {0};
}
static struct swap_info_struct *swap_info_get(swp_entry_t entry)
{
struct swap_info_struct *p;
unsigned long offset, type;
if (!entry.val)
goto out;
type = swp_type(entry);
if (type >= nr_swapfiles)
goto bad_nofile;
p = swap_info[type];
if (!(p->flags & SWP_USED))
goto bad_device;
offset = swp_offset(entry);
if (offset >= p->max)
goto bad_offset;
if (!p->swap_map[offset])
goto bad_free;
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
spin_lock(&p->lock);
return p;
bad_free:
pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
goto out;
bad_offset:
pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
goto out;
bad_device:
pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
goto out;
bad_nofile:
pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
out:
return NULL;
}
static unsigned char swap_entry_free(struct swap_info_struct *p,
swp_entry_t entry, unsigned char usage)
{
unsigned long offset = swp_offset(entry);
unsigned char count;
unsigned char has_cache;
count = p->swap_map[offset];
has_cache = count & SWAP_HAS_CACHE;
count &= ~SWAP_HAS_CACHE;
if (usage == SWAP_HAS_CACHE) {
VM_BUG_ON(!has_cache);
has_cache = 0;
} else if (count == SWAP_MAP_SHMEM) {
/*
* Or we could insist on shmem.c using a special
* swap_shmem_free() and free_shmem_swap_and_cache()...
*/
count = 0;
swap_info: swap count continuations Swap is duplicated (reference count incremented by one) whenever the same swap page is inserted into another mm (when forking finds a swap entry in place of a pte, or when reclaim unmaps a pte to insert the swap entry). swap_info_struct's vmalloc'ed swap_map is the array of these reference counts: but what happens when the unsigned short (or unsigned char since the preceding patch) is full? (and its high bit is kept for a cache flag) We then lose track of it, never freeing, leaving it in use until swapoff: at which point we _hope_ that a single pass will have found all instances, assume there are no more, and will lose user data if we're wrong. Swapping of KSM pages has not yet been enabled; but it is implemented, and makes it very easy for a user to overflow the maximum swap count: possible with ordinary process pages, but unlikely, even when pid_max has been raised from PID_MAX_DEFAULT. This patch implements swap count continuations: when the count overflows, a continuation page is allocated and linked to the original vmalloc'ed map page, and this used to hold the continuation counts for that entry and its neighbours. These continuation pages are seldom referenced: the common paths all work on the original swap_map, only referring to a continuation page when the low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 01:58:46 +00:00
} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
if (count == COUNT_CONTINUED) {
if (swap_count_continued(p, offset, count))
count = SWAP_MAP_MAX | COUNT_CONTINUED;
else
count = SWAP_MAP_MAX;
} else
count--;
}
usage = count | has_cache;
p->swap_map[offset] = usage;
/* free if no reference */
if (!usage) {
mm: memcontrol: charge swap to cgroup2 This patchset introduces swap accounting to cgroup2. This patch (of 7): In the legacy hierarchy we charge memsw, which is dubious, because: - memsw.limit must be >= memory.limit, so it is impossible to limit swap usage less than memory usage. Taking into account the fact that the primary limiting mechanism in the unified hierarchy is memory.high while memory.limit is either left unset or set to a very large value, moving memsw.limit knob to the unified hierarchy would effectively make it impossible to limit swap usage according to the user preference. - memsw.usage != memory.usage + swap.usage, because a page occupying both swap entry and a swap cache page is charged only once to memsw counter. As a result, it is possible to effectively eat up to memory.limit of memory pages *and* memsw.limit of swap entries, which looks unexpected. That said, we should provide a different swap limiting mechanism for cgroup2. This patch adds mem_cgroup->swap counter, which charges the actual number of swap entries used by a cgroup. It is only charged in the unified hierarchy, while the legacy hierarchy memsw logic is left intact. The swap usage can be monitored using new memory.swap.current file and limited using memory.swap.max. Note, to charge swap resource properly in the unified hierarchy, we have to make swap_entry_free uncharge swap only when ->usage reaches zero, not just ->count, i.e. when all references to a swap entry, including the one taken by swap cache, are gone. This is necessary, because otherwise swap-in could result in uncharging swap even if the page is still in swap cache and hence still occupies a swap entry. At the same time, this shouldn't break memsw counter logic, where a page is never charged twice for using both memory and swap, because in case of legacy hierarchy we uncharge swap on commit (see mem_cgroup_commit_charge). Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-20 23:02:56 +00:00
mem_cgroup_uncharge_swap(entry);
swap: change block allocation algorithm for SSD I'm using a fast SSD to do swap. scan_swap_map() sometimes uses up to 20~30% CPU time (when cluster is hard to find, the CPU time can be up to 80%), which becomes a bottleneck. scan_swap_map() scans a byte array to search a 256 page cluster, which is very slow. Here I introduced a simple algorithm to search cluster. Since we only care about 256 pages cluster, we can just use a counter to track if a cluster is free. Every 256 pages use one int to store the counter. If the counter of a cluster is 0, the cluster is free. All free clusters will be added to a list, so searching cluster is very efficient. With this, scap_swap_map() overhead disappears. This might help low end SD card swap too. Because if the cluster is aligned, SD firmware can do flash erase more efficiently. We only enable the algorithm for SSD. Hard disk swap isn't fast enough and has downside with the algorithm which might introduce regression (see below). The patch slightly changes which cluster is choosen. It always adds free cluster to list tail. This can help wear leveling for low end SSD too. And if no cluster found, the scan_swap_map() will do search from the end of last cluster. So if no cluster found, the scan_swap_map() will do search from the end of last free cluster, which is random. For SSD, this isn't a problem at all. Another downside is the cluster must be aligned to 256 pages, which will reduce the chance to find a cluster. I would expect this isn't a big problem for SSD because of the non-seek penality. (And this is the reason I only enable the algorithm for SSD). Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:28 +00:00
dec_cluster_info_page(p, p->cluster_info, offset);
if (offset < p->lowest_bit)
p->lowest_bit = offset;
swap: change swap_list_head to plist, add swap_avail_head Originally get_swap_page() started iterating through the singly-linked list of swap_info_structs using swap_list.next or highest_priority_index, which both were intended to point to the highest priority active swap target that was not full. The first patch in this series changed the singly-linked list to a doubly-linked list, and removed the logic to start at the highest priority non-full entry; it starts scanning at the highest priority entry each time, even if the entry is full. Replace the manually ordered swap_list_head with a plist, swap_active_head. Add a new plist, swap_avail_head. The original swap_active_head plist contains all active swap_info_structs, as before, while the new swap_avail_head plist contains only swap_info_structs that are active and available, i.e. not full. Add a new spinlock, swap_avail_lock, to protect the swap_avail_head list. Mel Gorman suggested using plists since they internally handle ordering the list entries based on priority, which is exactly what swap was doing manually. All the ordering code is now removed, and swap_info_struct entries and simply added to their corresponding plist and automatically ordered correctly. Using a new plist for available swap_info_structs simplifies and optimizes get_swap_page(), which no longer has to iterate over full swap_info_structs. Using a new spinlock for swap_avail_head plist allows each swap_info_struct to add or remove themselves from the plist when they become full or not-full; previously they could not do so because the swap_info_struct->lock is held when they change from full<->not-full, and the swap_lock protecting the main swap_active_head must be ordered before any swap_info_struct->lock. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Shaohua Li <shli@fusionio.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> Cc: Weijie Yang <weijieut@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Bob Liu <bob.liu@oracle.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 23:09:59 +00:00
if (offset > p->highest_bit) {
bool was_full = !p->highest_bit;
p->highest_bit = offset;
swap: change swap_list_head to plist, add swap_avail_head Originally get_swap_page() started iterating through the singly-linked list of swap_info_structs using swap_list.next or highest_priority_index, which both were intended to point to the highest priority active swap target that was not full. The first patch in this series changed the singly-linked list to a doubly-linked list, and removed the logic to start at the highest priority non-full entry; it starts scanning at the highest priority entry each time, even if the entry is full. Replace the manually ordered swap_list_head with a plist, swap_active_head. Add a new plist, swap_avail_head. The original swap_active_head plist contains all active swap_info_structs, as before, while the new swap_avail_head plist contains only swap_info_structs that are active and available, i.e. not full. Add a new spinlock, swap_avail_lock, to protect the swap_avail_head list. Mel Gorman suggested using plists since they internally handle ordering the list entries based on priority, which is exactly what swap was doing manually. All the ordering code is now removed, and swap_info_struct entries and simply added to their corresponding plist and automatically ordered correctly. Using a new plist for available swap_info_structs simplifies and optimizes get_swap_page(), which no longer has to iterate over full swap_info_structs. Using a new spinlock for swap_avail_head plist allows each swap_info_struct to add or remove themselves from the plist when they become full or not-full; previously they could not do so because the swap_info_struct->lock is held when they change from full<->not-full, and the swap_lock protecting the main swap_active_head must be ordered before any swap_info_struct->lock. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Shaohua Li <shli@fusionio.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> Cc: Weijie Yang <weijieut@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Bob Liu <bob.liu@oracle.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 23:09:59 +00:00
if (was_full && (p->flags & SWP_WRITEOK)) {
spin_lock(&swap_avail_lock);
WARN_ON(!plist_node_empty(&p->avail_list));
if (plist_node_empty(&p->avail_list))
plist_add(&p->avail_list,
&swap_avail_head);
spin_unlock(&swap_avail_lock);
}
}
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
atomic_long_inc(&nr_swap_pages);
p->inuse_pages--;
mm: frontswap: core swap subsystem hooks and headers This patch, 2of4, contains the changes to the core swap subsystem. This includes: (1) makes available core swap data structures (swap_lock, swap_list and swap_info) that are needed by frontswap.c but we don't need to expose them to the dozens of files that include swap.h so we create a new swapfile.h just to extern-ify these and modify their declarations to non-static (2) adds frontswap-related elements to swap_info_struct. Frontswap_map points to vzalloc'ed one-bit-per-swap-page metadata that indicates whether the swap page is in frontswap or in the device and frontswap_pages counts how many pages are in frontswap. (3) adds hooks in the swap subsystem and extends try_to_unuse so that frontswap_shrink can do a "partial swapoff". Note that a failed frontswap_map allocation is safe... failure is noted by lack of "FS" in the subsequent printk. --- [v14: rebase to 3.4-rc2] [v10: no change] [v9: akpm@linux-foundation.org: mark some statics __read_mostly] [v9: akpm@linux-foundation.org: add clarifying comments] [v9: akpm@linux-foundation.org: no need to loop repeating try_to_unuse] [v9: error27@gmail.com: remove superfluous check for NULL] [v8: rebase to 3.0-rc4] [v8: kamezawa.hiroyu@jp.fujitsu.com: change counter to atomic_t to avoid races] [v8: kamezawa.hiroyu@jp.fujitsu.com: comment to clarify informational counters] [v7: rebase to 3.0-rc3] [v7: JBeulich@novell.com: add new swap struct elements only if config'd] [v6: rebase to 3.0-rc1] [v6: lliubbo@gmail.com: fix null pointer deref if vzalloc fails] [v6: konrad.wilk@oracl.com: various checks and code clarifications/comments] [v5: no change from v4] [v4: rebase to 2.6.39] Signed-off-by: Dan Magenheimer <dan.magenheimer@oracle.com> Reviewed-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Jan Beulich <JBeulich@novell.com> Acked-by: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Matthew Wilcox <matthew@wil.cx> Cc: Chris Mason <chris.mason@oracle.com> Cc: Rik Riel <riel@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> [v11: Rebased, fixed mm/swapfile.c context change] Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2012-04-09 23:08:06 +00:00
frontswap_invalidate_page(p->type, offset);
if (p->flags & SWP_BLKDEV) {
struct gendisk *disk = p->bdev->bd_disk;
if (disk->fops->swap_slot_free_notify)
disk->fops->swap_slot_free_notify(p->bdev,
offset);
}
}
return usage;
}
/*
* Caller has made sure that the swap device corresponding to entry
* is still around or has not been recycled.
*/
void swap_free(swp_entry_t entry)
{
struct swap_info_struct *p;
p = swap_info_get(entry);
if (p) {
swap_entry_free(p, entry, 1);
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
spin_unlock(&p->lock);
}
}
/*
* Called after dropping swapcache to decrease refcnt to swap entries.
*/
mm: memcontrol: rewrite uncharge API The memcg uncharging code that is involved towards the end of a page's lifetime - truncation, reclaim, swapout, migration - is impressively complicated and fragile. Because anonymous and file pages were always charged before they had their page->mapping established, uncharges had to happen when the page type could still be known from the context; as in unmap for anonymous, page cache removal for file and shmem pages, and swap cache truncation for swap pages. However, these operations happen well before the page is actually freed, and so a lot of synchronization is necessary: - Charging, uncharging, page migration, and charge migration all need to take a per-page bit spinlock as they could race with uncharging. - Swap cache truncation happens during both swap-in and swap-out, and possibly repeatedly before the page is actually freed. This means that the memcg swapout code is called from many contexts that make no sense and it has to figure out the direction from page state to make sure memory and memory+swap are always correctly charged. - On page migration, the old page might be unmapped but then reused, so memcg code has to prevent untimely uncharging in that case. Because this code - which should be a simple charge transfer - is so special-cased, it is not reusable for replace_page_cache(). But now that charged pages always have a page->mapping, introduce mem_cgroup_uncharge(), which is called after the final put_page(), when we know for sure that nobody is looking at the page anymore. For page migration, introduce mem_cgroup_migrate(), which is called after the migration is successful and the new page is fully rmapped. Because the old page is no longer uncharged after migration, prevent double charges by decoupling the page's memcg association (PCG_USED and pc->mem_cgroup) from the page holding an actual charge. The new bits PCG_MEM and PCG_MEMSW represent the respective charges and are transferred to the new page during migration. mem_cgroup_migrate() is suitable for replace_page_cache() as well, which gets rid of mem_cgroup_replace_page_cache(). However, care needs to be taken because both the source and the target page can already be charged and on the LRU when fuse is splicing: grab the page lock on the charge moving side to prevent changing pc->mem_cgroup of a page under migration. Also, the lruvecs of both pages change as we uncharge the old and charge the new during migration, and putback may race with us, so grab the lru lock and isolate the pages iff on LRU to prevent races and ensure the pages are on the right lruvec afterward. Swap accounting is massively simplified: because the page is no longer uncharged as early as swap cache deletion, a new mem_cgroup_swapout() can transfer the page's memory+swap charge (PCG_MEMSW) to the swap entry before the final put_page() in page reclaim. Finally, page_cgroup changes are now protected by whatever protection the page itself offers: anonymous pages are charged under the page table lock, whereas page cache insertions, swapin, and migration hold the page lock. Uncharging happens under full exclusion with no outstanding references. Charging and uncharging also ensure that the page is off-LRU, which serializes against charge migration. Remove the very costly page_cgroup lock and set pc->flags non-atomically. [mhocko@suse.cz: mem_cgroup_charge_statistics needs preempt_disable] [vdavydov@parallels.com: fix flags definition] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Hugh Dickins <hughd@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Tested-by: Jet Chen <jet.chen@intel.com> Acked-by: Michal Hocko <mhocko@suse.cz> Tested-by: Felipe Balbi <balbi@ti.com> Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-08 21:19:22 +00:00
void swapcache_free(swp_entry_t entry)
{
struct swap_info_struct *p;
p = swap_info_get(entry);
if (p) {
mm: memcontrol: rewrite uncharge API The memcg uncharging code that is involved towards the end of a page's lifetime - truncation, reclaim, swapout, migration - is impressively complicated and fragile. Because anonymous and file pages were always charged before they had their page->mapping established, uncharges had to happen when the page type could still be known from the context; as in unmap for anonymous, page cache removal for file and shmem pages, and swap cache truncation for swap pages. However, these operations happen well before the page is actually freed, and so a lot of synchronization is necessary: - Charging, uncharging, page migration, and charge migration all need to take a per-page bit spinlock as they could race with uncharging. - Swap cache truncation happens during both swap-in and swap-out, and possibly repeatedly before the page is actually freed. This means that the memcg swapout code is called from many contexts that make no sense and it has to figure out the direction from page state to make sure memory and memory+swap are always correctly charged. - On page migration, the old page might be unmapped but then reused, so memcg code has to prevent untimely uncharging in that case. Because this code - which should be a simple charge transfer - is so special-cased, it is not reusable for replace_page_cache(). But now that charged pages always have a page->mapping, introduce mem_cgroup_uncharge(), which is called after the final put_page(), when we know for sure that nobody is looking at the page anymore. For page migration, introduce mem_cgroup_migrate(), which is called after the migration is successful and the new page is fully rmapped. Because the old page is no longer uncharged after migration, prevent double charges by decoupling the page's memcg association (PCG_USED and pc->mem_cgroup) from the page holding an actual charge. The new bits PCG_MEM and PCG_MEMSW represent the respective charges and are transferred to the new page during migration. mem_cgroup_migrate() is suitable for replace_page_cache() as well, which gets rid of mem_cgroup_replace_page_cache(). However, care needs to be taken because both the source and the target page can already be charged and on the LRU when fuse is splicing: grab the page lock on the charge moving side to prevent changing pc->mem_cgroup of a page under migration. Also, the lruvecs of both pages change as we uncharge the old and charge the new during migration, and putback may race with us, so grab the lru lock and isolate the pages iff on LRU to prevent races and ensure the pages are on the right lruvec afterward. Swap accounting is massively simplified: because the page is no longer uncharged as early as swap cache deletion, a new mem_cgroup_swapout() can transfer the page's memory+swap charge (PCG_MEMSW) to the swap entry before the final put_page() in page reclaim. Finally, page_cgroup changes are now protected by whatever protection the page itself offers: anonymous pages are charged under the page table lock, whereas page cache insertions, swapin, and migration hold the page lock. Uncharging happens under full exclusion with no outstanding references. Charging and uncharging also ensure that the page is off-LRU, which serializes against charge migration. Remove the very costly page_cgroup lock and set pc->flags non-atomically. [mhocko@suse.cz: mem_cgroup_charge_statistics needs preempt_disable] [vdavydov@parallels.com: fix flags definition] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Hugh Dickins <hughd@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Tested-by: Jet Chen <jet.chen@intel.com> Acked-by: Michal Hocko <mhocko@suse.cz> Tested-by: Felipe Balbi <balbi@ti.com> Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-08 21:19:22 +00:00
swap_entry_free(p, entry, SWAP_HAS_CACHE);
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
spin_unlock(&p->lock);
}
}
/*
* How many references to page are currently swapped out?
swap_info: swap count continuations Swap is duplicated (reference count incremented by one) whenever the same swap page is inserted into another mm (when forking finds a swap entry in place of a pte, or when reclaim unmaps a pte to insert the swap entry). swap_info_struct's vmalloc'ed swap_map is the array of these reference counts: but what happens when the unsigned short (or unsigned char since the preceding patch) is full? (and its high bit is kept for a cache flag) We then lose track of it, never freeing, leaving it in use until swapoff: at which point we _hope_ that a single pass will have found all instances, assume there are no more, and will lose user data if we're wrong. Swapping of KSM pages has not yet been enabled; but it is implemented, and makes it very easy for a user to overflow the maximum swap count: possible with ordinary process pages, but unlikely, even when pid_max has been raised from PID_MAX_DEFAULT. This patch implements swap count continuations: when the count overflows, a continuation page is allocated and linked to the original vmalloc'ed map page, and this used to hold the continuation counts for that entry and its neighbours. These continuation pages are seldom referenced: the common paths all work on the original swap_map, only referring to a continuation page when the low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 01:58:46 +00:00
* This does not give an exact answer when swap count is continued,
* but does include the high COUNT_CONTINUED flag to allow for that.
*/
shmem: replace page if mapping excludes its zone The GMA500 GPU driver uses GEM shmem objects, but with a new twist: the backing RAM has to be below 4GB. Not a problem while the boards supported only 4GB: but now Intel's D2700MUD boards support 8GB, and their GMA3600 is managed by the GMA500 driver. shmem/tmpfs has never pretended to support hardware restrictions on the backing memory, but it might have appeared to do so before v3.1, and even now it works fine until a page is swapped out then back in. When read_cache_page_gfp() supplied a freshly allocated page for copy, that compensated for whatever choice might have been made by earlier swapin readahead; but swapoff was likely to destroy the illusion. We'd like to continue to support GMA500, so now add a new shmem_should_replace_page() check on the zone when about to move a page from swapcache to filecache (in swapin and swapoff cases), with shmem_replace_page() to allocate and substitute a suitable page (given gma500/gem.c's mapping_set_gfp_mask GFP_KERNEL | __GFP_DMA32). This does involve a minor extension to mem_cgroup_replace_page_cache() (the page may or may not have already been charged); and I've removed a comment and call to mem_cgroup_uncharge_cache_page(), which in fact is always a no-op while PageSwapCache. Also removed optimization of an unlikely path in shmem_getpage_gfp(), now that we need to check PageSwapCache more carefully (a racing caller might already have made the copy). And at one point shmem_unuse_inode() needs to use the hitherto private page_swapcount(), to guard against racing with inode eviction. It would make sense to extend shmem_should_replace_page(), to cover cpuset and NUMA mempolicy restrictions too, but set that aside for now: needs a cleanup of shmem mempolicy handling, and more testing, and ought to handle swap faults in do_swap_page() as well as shmem. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Christoph Hellwig <hch@infradead.org> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Alan Cox <alan@lxorguk.ukuu.org.uk> Cc: Stephane Marchesin <marcheu@chromium.org> Cc: Andi Kleen <andi@firstfloor.org> Cc: Dave Airlie <airlied@gmail.com> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Rob Clark <rob.clark@linaro.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29 22:06:38 +00:00
int page_swapcount(struct page *page)
{
int count = 0;
struct swap_info_struct *p;
swp_entry_t entry;
[PATCH] mm: split page table lock Christoph Lameter demonstrated very poor scalability on the SGI 512-way, with a many-threaded application which concurrently initializes different parts of a large anonymous area. This patch corrects that, by using a separate spinlock per page table page, to guard the page table entries in that page, instead of using the mm's single page_table_lock. (But even then, page_table_lock is still used to guard page table allocation, and anon_vma allocation.) In this implementation, the spinlock is tucked inside the struct page of the page table page: with a BUILD_BUG_ON in case it overflows - which it would in the case of 32-bit PA-RISC with spinlock debugging enabled. Splitting the lock is not quite for free: another cacheline access. Ideally, I suppose we would use split ptlock only for multi-threaded processes on multi-cpu machines; but deciding that dynamically would have its own costs. So for now enable it by config, at some number of cpus - since the Kconfig language doesn't support inequalities, let preprocessor compare that with NR_CPUS. But I don't think it's worth being user-configurable: for good testing of both split and unsplit configs, split now at 4 cpus, and perhaps change that to 8 later. There is a benefit even for singly threaded processes: kswapd can be attacking one part of the mm while another part is busy faulting. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 01:16:40 +00:00
entry.val = page_private(page);
p = swap_info_get(entry);
if (p) {
count = swap_count(p->swap_map[swp_offset(entry)]);
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
spin_unlock(&p->lock);
}
return count;
}
mm: /proc/pid/smaps:: show proportional swap share of the mapping We want to know per-process workingset size for smart memory management on userland and we use swap(ex, zram) heavily to maximize memory efficiency so workingset includes swap as well as RSS. On such system, if there are lots of shared anonymous pages, it's really hard to figure out exactly how many each process consumes memory(ie, rss + wap) if the system has lots of shared anonymous memory(e.g, android). This patch introduces SwapPss field on /proc/<pid>/smaps so we can get more exact workingset size per process. Bongkyu tested it. Result is below. 1. 50M used swap SwapTotal: 461976 kB SwapFree: 411192 kB $ adb shell cat /proc/*/smaps | grep "SwapPss:" | awk '{sum += $2} END {print sum}'; 48236 $ adb shell cat /proc/*/smaps | grep "Swap:" | awk '{sum += $2} END {print sum}'; 141184 2. 240M used swap SwapTotal: 461976 kB SwapFree: 216808 kB $ adb shell cat /proc/*/smaps | grep "SwapPss:" | awk '{sum += $2} END {print sum}'; 230315 $ adb shell cat /proc/*/smaps | grep "Swap:" | awk '{sum += $2} END {print sum}'; 1387744 [akpm@linux-foundation.org: simplify kunmap_atomic() call] Signed-off-by: Minchan Kim <minchan@kernel.org> Reported-by: Bongkyu Kim <bongkyu.kim@lge.com> Tested-by: Bongkyu Kim <bongkyu.kim@lge.com> Cc: Hugh Dickins <hughd@google.com> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Jerome Marchand <jmarchan@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 22:00:24 +00:00
/*
* How many references to @entry are currently swapped out?
* This considers COUNT_CONTINUED so it returns exact answer.
*/
int swp_swapcount(swp_entry_t entry)
{
int count, tmp_count, n;
struct swap_info_struct *p;
struct page *page;
pgoff_t offset;
unsigned char *map;
p = swap_info_get(entry);
if (!p)
return 0;
count = swap_count(p->swap_map[swp_offset(entry)]);
if (!(count & COUNT_CONTINUED))
goto out;
count &= ~COUNT_CONTINUED;
n = SWAP_MAP_MAX + 1;
offset = swp_offset(entry);
page = vmalloc_to_page(p->swap_map + offset);
offset &= ~PAGE_MASK;
VM_BUG_ON(page_private(page) != SWP_CONTINUED);
do {
page = list_next_entry(page, lru);
mm: /proc/pid/smaps:: show proportional swap share of the mapping We want to know per-process workingset size for smart memory management on userland and we use swap(ex, zram) heavily to maximize memory efficiency so workingset includes swap as well as RSS. On such system, if there are lots of shared anonymous pages, it's really hard to figure out exactly how many each process consumes memory(ie, rss + wap) if the system has lots of shared anonymous memory(e.g, android). This patch introduces SwapPss field on /proc/<pid>/smaps so we can get more exact workingset size per process. Bongkyu tested it. Result is below. 1. 50M used swap SwapTotal: 461976 kB SwapFree: 411192 kB $ adb shell cat /proc/*/smaps | grep "SwapPss:" | awk '{sum += $2} END {print sum}'; 48236 $ adb shell cat /proc/*/smaps | grep "Swap:" | awk '{sum += $2} END {print sum}'; 141184 2. 240M used swap SwapTotal: 461976 kB SwapFree: 216808 kB $ adb shell cat /proc/*/smaps | grep "SwapPss:" | awk '{sum += $2} END {print sum}'; 230315 $ adb shell cat /proc/*/smaps | grep "Swap:" | awk '{sum += $2} END {print sum}'; 1387744 [akpm@linux-foundation.org: simplify kunmap_atomic() call] Signed-off-by: Minchan Kim <minchan@kernel.org> Reported-by: Bongkyu Kim <bongkyu.kim@lge.com> Tested-by: Bongkyu Kim <bongkyu.kim@lge.com> Cc: Hugh Dickins <hughd@google.com> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Jerome Marchand <jmarchan@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 22:00:24 +00:00
map = kmap_atomic(page);
tmp_count = map[offset];
kunmap_atomic(map);
count += (tmp_count & ~COUNT_CONTINUED) * n;
n *= (SWAP_CONT_MAX + 1);
} while (tmp_count & COUNT_CONTINUED);
out:
spin_unlock(&p->lock);
return count;
}
/*
* We can write to an anon page without COW if there are no other references
* to it. And as a side-effect, free up its swap: because the old content
* on disk will never be read, and seeking back there to write new content
* later would only waste time away from clustering.
mm: thp: calculate the mapcount correctly for THP pages during WP faults This will provide fully accuracy to the mapcount calculation in the write protect faults, so page pinning will not get broken by false positive copy-on-writes. total_mapcount() isn't the right calculation needed in reuse_swap_page(), so this introduces a page_trans_huge_mapcount() that is effectively the full accurate return value for page_mapcount() if dealing with Transparent Hugepages, however we only use the page_trans_huge_mapcount() during COW faults where it strictly needed, due to its higher runtime cost. This also provide at practical zero cost the total_mapcount information which is needed to know if we can still relocate the page anon_vma to the local vma. If page_trans_huge_mapcount() returns 1 we can reuse the page no matter if it's a pte or a pmd_trans_huge triggering the fault, but we can only relocate the page anon_vma to the local vma->anon_vma if we're sure it's only this "vma" mapping the whole THP physical range. Kirill A. Shutemov discovered the problem with moving the page anon_vma to the local vma->anon_vma in a previous version of this patch and another problem in the way page_move_anon_rmap() was called. Andrew Morton discovered that CONFIG_SWAP=n wouldn't build in a previous version, because reuse_swap_page must be a macro to call page_trans_huge_mapcount from swap.h, so this uses a macro again instead of an inline function. With this change at least it's a less dangerous usage than it was before, because "page" is used only once now, while with the previous code reuse_swap_page(page++) would have called page_mapcount on page+1 and it would have increased page twice instead of just once. Dean Luick noticed an uninitialized variable that could result in a rmap inefficiency for the non-THP case in a previous version. Mike Marciniszyn said: : Our RDMA tests are seeing an issue with memory locking that bisects to : commit 61f5d698cc97 ("mm: re-enable THP") : : The test program registers two rather large MRs (512M) and RDMA : writes data to a passive peer using the first and RDMA reads it back : into the second MR and compares that data. The sizes are chosen randomly : between 0 and 1024 bytes. : : The test will get through a few (<= 4 iterations) and then gets a : compare error. : : Tracing indicates the kernel logical addresses associated with the individual : pages at registration ARE correct , the data in the "RDMA read response only" : packets ARE correct. : : The "corruption" occurs when the packet crosse two pages that are not physically : contiguous. The second page reads back as zero in the program. : : It looks like the user VA at the point of the compare error no longer points to : the same physical address as was registered. : : This patch totally resolves the issue! Link: http://lkml.kernel.org/r/1462547040-1737-2-git-send-email-aarcange@redhat.com Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: "Kirill A. Shutemov" <kirill@shutemov.name> Reviewed-by: Dean Luick <dean.luick@intel.com> Tested-by: Alex Williamson <alex.williamson@redhat.com> Tested-by: Mike Marciniszyn <mike.marciniszyn@intel.com> Tested-by: Josh Collier <josh.d.collier@intel.com> Cc: Marc Haber <mh+linux-kernel@zugschlus.de> Cc: <stable@vger.kernel.org> [4.5] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-12 22:42:25 +00:00
*
* NOTE: total_mapcount should not be relied upon by the caller if
* reuse_swap_page() returns false, but it may be always overwritten
* (see the other implementation for CONFIG_SWAP=n).
*/
mm: thp: calculate the mapcount correctly for THP pages during WP faults This will provide fully accuracy to the mapcount calculation in the write protect faults, so page pinning will not get broken by false positive copy-on-writes. total_mapcount() isn't the right calculation needed in reuse_swap_page(), so this introduces a page_trans_huge_mapcount() that is effectively the full accurate return value for page_mapcount() if dealing with Transparent Hugepages, however we only use the page_trans_huge_mapcount() during COW faults where it strictly needed, due to its higher runtime cost. This also provide at practical zero cost the total_mapcount information which is needed to know if we can still relocate the page anon_vma to the local vma. If page_trans_huge_mapcount() returns 1 we can reuse the page no matter if it's a pte or a pmd_trans_huge triggering the fault, but we can only relocate the page anon_vma to the local vma->anon_vma if we're sure it's only this "vma" mapping the whole THP physical range. Kirill A. Shutemov discovered the problem with moving the page anon_vma to the local vma->anon_vma in a previous version of this patch and another problem in the way page_move_anon_rmap() was called. Andrew Morton discovered that CONFIG_SWAP=n wouldn't build in a previous version, because reuse_swap_page must be a macro to call page_trans_huge_mapcount from swap.h, so this uses a macro again instead of an inline function. With this change at least it's a less dangerous usage than it was before, because "page" is used only once now, while with the previous code reuse_swap_page(page++) would have called page_mapcount on page+1 and it would have increased page twice instead of just once. Dean Luick noticed an uninitialized variable that could result in a rmap inefficiency for the non-THP case in a previous version. Mike Marciniszyn said: : Our RDMA tests are seeing an issue with memory locking that bisects to : commit 61f5d698cc97 ("mm: re-enable THP") : : The test program registers two rather large MRs (512M) and RDMA : writes data to a passive peer using the first and RDMA reads it back : into the second MR and compares that data. The sizes are chosen randomly : between 0 and 1024 bytes. : : The test will get through a few (<= 4 iterations) and then gets a : compare error. : : Tracing indicates the kernel logical addresses associated with the individual : pages at registration ARE correct , the data in the "RDMA read response only" : packets ARE correct. : : The "corruption" occurs when the packet crosse two pages that are not physically : contiguous. The second page reads back as zero in the program. : : It looks like the user VA at the point of the compare error no longer points to : the same physical address as was registered. : : This patch totally resolves the issue! Link: http://lkml.kernel.org/r/1462547040-1737-2-git-send-email-aarcange@redhat.com Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: "Kirill A. Shutemov" <kirill@shutemov.name> Reviewed-by: Dean Luick <dean.luick@intel.com> Tested-by: Alex Williamson <alex.williamson@redhat.com> Tested-by: Mike Marciniszyn <mike.marciniszyn@intel.com> Tested-by: Josh Collier <josh.d.collier@intel.com> Cc: Marc Haber <mh+linux-kernel@zugschlus.de> Cc: <stable@vger.kernel.org> [4.5] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-12 22:42:25 +00:00
bool reuse_swap_page(struct page *page, int *total_mapcount)
{
int count;
VM_BUG_ON_PAGE(!PageLocked(page), page);
ksm: let shared pages be swappable Initial implementation for swapping out KSM's shared pages: add page_referenced_ksm() and try_to_unmap_ksm(), which rmap.c calls when faced with a PageKsm page. Most of what's needed can be got from the rmap_items listed from the stable_node of the ksm page, without discovering the actual vma: so in this patch just fake up a struct vma for page_referenced_one() or try_to_unmap_one(), then refine that in the next patch. Add VM_NONLINEAR to ksm_madvise()'s list of exclusions: it has always been implicit there (being only set with VM_SHARED, already excluded), but let's make it explicit, to help justify the lack of nonlinear unmap. Rely on the page lock to protect against concurrent modifications to that page's node of the stable tree. The awkward part is not swapout but swapin: do_swap_page() and page_add_anon_rmap() now have to allow for new possibilities - perhaps a ksm page still in swapcache, perhaps a swapcache page associated with one location in one anon_vma now needed for another location or anon_vma. (And the vma might even be no longer VM_MERGEABLE when that happens.) ksm_might_need_to_copy() checks for that case, and supplies a duplicate page when necessary, simply leaving it to a subsequent pass of ksmd to rediscover the identity and merge them back into one ksm page. Disappointingly primitive: but the alternative would have to accumulate unswappable info about the swapped out ksm pages, limiting swappability. Remove page_add_ksm_rmap(): page_add_anon_rmap() now has to allow for the particular case it was handling, so just use it instead. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Izik Eidus <ieidus@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Chris Wright <chrisw@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 01:59:24 +00:00
if (unlikely(PageKsm(page)))
mm: thp: calculate the mapcount correctly for THP pages during WP faults This will provide fully accuracy to the mapcount calculation in the write protect faults, so page pinning will not get broken by false positive copy-on-writes. total_mapcount() isn't the right calculation needed in reuse_swap_page(), so this introduces a page_trans_huge_mapcount() that is effectively the full accurate return value for page_mapcount() if dealing with Transparent Hugepages, however we only use the page_trans_huge_mapcount() during COW faults where it strictly needed, due to its higher runtime cost. This also provide at practical zero cost the total_mapcount information which is needed to know if we can still relocate the page anon_vma to the local vma. If page_trans_huge_mapcount() returns 1 we can reuse the page no matter if it's a pte or a pmd_trans_huge triggering the fault, but we can only relocate the page anon_vma to the local vma->anon_vma if we're sure it's only this "vma" mapping the whole THP physical range. Kirill A. Shutemov discovered the problem with moving the page anon_vma to the local vma->anon_vma in a previous version of this patch and another problem in the way page_move_anon_rmap() was called. Andrew Morton discovered that CONFIG_SWAP=n wouldn't build in a previous version, because reuse_swap_page must be a macro to call page_trans_huge_mapcount from swap.h, so this uses a macro again instead of an inline function. With this change at least it's a less dangerous usage than it was before, because "page" is used only once now, while with the previous code reuse_swap_page(page++) would have called page_mapcount on page+1 and it would have increased page twice instead of just once. Dean Luick noticed an uninitialized variable that could result in a rmap inefficiency for the non-THP case in a previous version. Mike Marciniszyn said: : Our RDMA tests are seeing an issue with memory locking that bisects to : commit 61f5d698cc97 ("mm: re-enable THP") : : The test program registers two rather large MRs (512M) and RDMA : writes data to a passive peer using the first and RDMA reads it back : into the second MR and compares that data. The sizes are chosen randomly : between 0 and 1024 bytes. : : The test will get through a few (<= 4 iterations) and then gets a : compare error. : : Tracing indicates the kernel logical addresses associated with the individual : pages at registration ARE correct , the data in the "RDMA read response only" : packets ARE correct. : : The "corruption" occurs when the packet crosse two pages that are not physically : contiguous. The second page reads back as zero in the program. : : It looks like the user VA at the point of the compare error no longer points to : the same physical address as was registered. : : This patch totally resolves the issue! Link: http://lkml.kernel.org/r/1462547040-1737-2-git-send-email-aarcange@redhat.com Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: "Kirill A. Shutemov" <kirill@shutemov.name> Reviewed-by: Dean Luick <dean.luick@intel.com> Tested-by: Alex Williamson <alex.williamson@redhat.com> Tested-by: Mike Marciniszyn <mike.marciniszyn@intel.com> Tested-by: Josh Collier <josh.d.collier@intel.com> Cc: Marc Haber <mh+linux-kernel@zugschlus.de> Cc: <stable@vger.kernel.org> [4.5] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-12 22:42:25 +00:00
return false;
count = page_trans_huge_mapcount(page, total_mapcount);
if (count <= 1 && PageSwapCache(page)) {
count += page_swapcount(page);
if (count == 1 && !PageWriteback(page)) {
delete_from_swap_cache(page);
SetPageDirty(page);
}
}
ksm: let shared pages be swappable Initial implementation for swapping out KSM's shared pages: add page_referenced_ksm() and try_to_unmap_ksm(), which rmap.c calls when faced with a PageKsm page. Most of what's needed can be got from the rmap_items listed from the stable_node of the ksm page, without discovering the actual vma: so in this patch just fake up a struct vma for page_referenced_one() or try_to_unmap_one(), then refine that in the next patch. Add VM_NONLINEAR to ksm_madvise()'s list of exclusions: it has always been implicit there (being only set with VM_SHARED, already excluded), but let's make it explicit, to help justify the lack of nonlinear unmap. Rely on the page lock to protect against concurrent modifications to that page's node of the stable tree. The awkward part is not swapout but swapin: do_swap_page() and page_add_anon_rmap() now have to allow for new possibilities - perhaps a ksm page still in swapcache, perhaps a swapcache page associated with one location in one anon_vma now needed for another location or anon_vma. (And the vma might even be no longer VM_MERGEABLE when that happens.) ksm_might_need_to_copy() checks for that case, and supplies a duplicate page when necessary, simply leaving it to a subsequent pass of ksmd to rediscover the identity and merge them back into one ksm page. Disappointingly primitive: but the alternative would have to accumulate unswappable info about the swapped out ksm pages, limiting swappability. Remove page_add_ksm_rmap(): page_add_anon_rmap() now has to allow for the particular case it was handling, so just use it instead. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Izik Eidus <ieidus@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Chris Wright <chrisw@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 01:59:24 +00:00
return count <= 1;
}
/*
mm: try_to_free_swap replaces remove_exclusive_swap_page remove_exclusive_swap_page(): its problem is in living up to its name. It doesn't matter if someone else has a reference to the page (raised page_count); it doesn't matter if the page is mapped into userspace (raised page_mapcount - though that hints it may be worth keeping the swap): all that matters is that there be no more references to the swap (and no writeback in progress). swapoff (try_to_unuse) has been removing pages from swapcache for years, with no concern for page count or page mapcount, and we used to have a comment in lookup_swap_cache() recognizing that: if you go for a page of swapcache, you'll get the right page, but it could have been removed from swapcache by the time you get page lock. So, give up asking for exclusivity: get rid of remove_exclusive_swap_page(), and remove_exclusive_swap_page_ref() and remove_exclusive_swap_page_count() which were spawned for the recent LRU work: replace them by the simpler try_to_free_swap() which just checks page_swapcount(). Similarly, remove the page_count limitation from free_swap_and_count(), but assume that it's worth holding on to the swap if page is mapped and swap nowhere near full. Add a vm_swap_full() test in free_swap_cache()? It would be consistent, but I think we probably have enough for now. Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Rik van Riel <riel@redhat.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Robin Holt <holt@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 22:39:36 +00:00
* If swap is getting full, or if there are no more mappings of this page,
* then try_to_free_swap is called to free its swap space.
*/
mm: try_to_free_swap replaces remove_exclusive_swap_page remove_exclusive_swap_page(): its problem is in living up to its name. It doesn't matter if someone else has a reference to the page (raised page_count); it doesn't matter if the page is mapped into userspace (raised page_mapcount - though that hints it may be worth keeping the swap): all that matters is that there be no more references to the swap (and no writeback in progress). swapoff (try_to_unuse) has been removing pages from swapcache for years, with no concern for page count or page mapcount, and we used to have a comment in lookup_swap_cache() recognizing that: if you go for a page of swapcache, you'll get the right page, but it could have been removed from swapcache by the time you get page lock. So, give up asking for exclusivity: get rid of remove_exclusive_swap_page(), and remove_exclusive_swap_page_ref() and remove_exclusive_swap_page_count() which were spawned for the recent LRU work: replace them by the simpler try_to_free_swap() which just checks page_swapcount(). Similarly, remove the page_count limitation from free_swap_and_count(), but assume that it's worth holding on to the swap if page is mapped and swap nowhere near full. Add a vm_swap_full() test in free_swap_cache()? It would be consistent, but I think we probably have enough for now. Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Rik van Riel <riel@redhat.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Robin Holt <holt@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 22:39:36 +00:00
int try_to_free_swap(struct page *page)
{
VM_BUG_ON_PAGE(!PageLocked(page), page);
if (!PageSwapCache(page))
return 0;
if (PageWriteback(page))
return 0;
mm: try_to_free_swap replaces remove_exclusive_swap_page remove_exclusive_swap_page(): its problem is in living up to its name. It doesn't matter if someone else has a reference to the page (raised page_count); it doesn't matter if the page is mapped into userspace (raised page_mapcount - though that hints it may be worth keeping the swap): all that matters is that there be no more references to the swap (and no writeback in progress). swapoff (try_to_unuse) has been removing pages from swapcache for years, with no concern for page count or page mapcount, and we used to have a comment in lookup_swap_cache() recognizing that: if you go for a page of swapcache, you'll get the right page, but it could have been removed from swapcache by the time you get page lock. So, give up asking for exclusivity: get rid of remove_exclusive_swap_page(), and remove_exclusive_swap_page_ref() and remove_exclusive_swap_page_count() which were spawned for the recent LRU work: replace them by the simpler try_to_free_swap() which just checks page_swapcount(). Similarly, remove the page_count limitation from free_swap_and_count(), but assume that it's worth holding on to the swap if page is mapped and swap nowhere near full. Add a vm_swap_full() test in free_swap_cache()? It would be consistent, but I think we probably have enough for now. Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Rik van Riel <riel@redhat.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Robin Holt <holt@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 22:39:36 +00:00
if (page_swapcount(page))
return 0;
/*
* Once hibernation has begun to create its image of memory,
* there's a danger that one of the calls to try_to_free_swap()
* - most probably a call from __try_to_reclaim_swap() while
* hibernation is allocating its own swap pages for the image,
* but conceivably even a call from memory reclaim - will free
* the swap from a page which has already been recorded in the
* image as a clean swapcache page, and then reuse its swap for
* another page of the image. On waking from hibernation, the
* original page might be freed under memory pressure, then
* later read back in from swap, now with the wrong data.
*
* Hibernation suspends storage while it is writing the image
mm: avoid livelock on !__GFP_FS allocations Colin Cross reported; Under the following conditions, __alloc_pages_slowpath can loop forever: gfp_mask & __GFP_WAIT is true gfp_mask & __GFP_FS is false reclaim and compaction make no progress order <= PAGE_ALLOC_COSTLY_ORDER These conditions happen very often during suspend and resume, when pm_restrict_gfp_mask() effectively converts all GFP_KERNEL allocations into __GFP_WAIT. The oom killer is not run because gfp_mask & __GFP_FS is false, but should_alloc_retry will always return true when order is less than PAGE_ALLOC_COSTLY_ORDER. In his fix, he avoided retrying the allocation if reclaim made no progress and __GFP_FS was not set. The problem is that this would result in GFP_NOIO allocations failing that previously succeeded which would be very unfortunate. The big difference between GFP_NOIO and suspend converting GFP_KERNEL to behave like GFP_NOIO is that normally flushers will be cleaning pages and kswapd reclaims pages allowing GFP_NOIO to succeed after a short delay. The same does not necessarily apply during suspend as the storage device may be suspended. This patch special cases the suspend case to fail the page allocation if reclaim cannot make progress and adds some documentation on how gfp_allowed_mask is currently used. Failing allocations like this may cause suspend to abort but that is better than a livelock. [mgorman@suse.de: Rework fix to be suspend specific] [rientjes@google.com: Move suspended device check to should_alloc_retry] Reported-by: Colin Cross <ccross@android.com> Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: David Rientjes <rientjes@google.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10 23:07:15 +00:00
* to disk so check that here.
*/
mm: avoid livelock on !__GFP_FS allocations Colin Cross reported; Under the following conditions, __alloc_pages_slowpath can loop forever: gfp_mask & __GFP_WAIT is true gfp_mask & __GFP_FS is false reclaim and compaction make no progress order <= PAGE_ALLOC_COSTLY_ORDER These conditions happen very often during suspend and resume, when pm_restrict_gfp_mask() effectively converts all GFP_KERNEL allocations into __GFP_WAIT. The oom killer is not run because gfp_mask & __GFP_FS is false, but should_alloc_retry will always return true when order is less than PAGE_ALLOC_COSTLY_ORDER. In his fix, he avoided retrying the allocation if reclaim made no progress and __GFP_FS was not set. The problem is that this would result in GFP_NOIO allocations failing that previously succeeded which would be very unfortunate. The big difference between GFP_NOIO and suspend converting GFP_KERNEL to behave like GFP_NOIO is that normally flushers will be cleaning pages and kswapd reclaims pages allowing GFP_NOIO to succeed after a short delay. The same does not necessarily apply during suspend as the storage device may be suspended. This patch special cases the suspend case to fail the page allocation if reclaim cannot make progress and adds some documentation on how gfp_allowed_mask is currently used. Failing allocations like this may cause suspend to abort but that is better than a livelock. [mgorman@suse.de: Rework fix to be suspend specific] [rientjes@google.com: Move suspended device check to should_alloc_retry] Reported-by: Colin Cross <ccross@android.com> Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: David Rientjes <rientjes@google.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10 23:07:15 +00:00
if (pm_suspended_storage())
return 0;
mm: try_to_free_swap replaces remove_exclusive_swap_page remove_exclusive_swap_page(): its problem is in living up to its name. It doesn't matter if someone else has a reference to the page (raised page_count); it doesn't matter if the page is mapped into userspace (raised page_mapcount - though that hints it may be worth keeping the swap): all that matters is that there be no more references to the swap (and no writeback in progress). swapoff (try_to_unuse) has been removing pages from swapcache for years, with no concern for page count or page mapcount, and we used to have a comment in lookup_swap_cache() recognizing that: if you go for a page of swapcache, you'll get the right page, but it could have been removed from swapcache by the time you get page lock. So, give up asking for exclusivity: get rid of remove_exclusive_swap_page(), and remove_exclusive_swap_page_ref() and remove_exclusive_swap_page_count() which were spawned for the recent LRU work: replace them by the simpler try_to_free_swap() which just checks page_swapcount(). Similarly, remove the page_count limitation from free_swap_and_count(), but assume that it's worth holding on to the swap if page is mapped and swap nowhere near full. Add a vm_swap_full() test in free_swap_cache()? It would be consistent, but I think we probably have enough for now. Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Rik van Riel <riel@redhat.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Robin Holt <holt@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 22:39:36 +00:00
delete_from_swap_cache(page);
SetPageDirty(page);
return 1;
}
/*
* Free the swap entry like above, but also try to
* free the page cache entry if it is the last user.
*/
int free_swap_and_cache(swp_entry_t entry)
{
struct swap_info_struct *p;
struct page *page = NULL;
if (non_swap_entry(entry))
return 1;
[PATCH] Swapless page migration: add R/W migration entries Implement read/write migration ptes We take the upper two swapfiles for the two types of migration ptes and define a series of macros in swapops.h. The VM is modified to handle the migration entries. migration entries can only be encountered when the page they are pointing to is locked. This limits the number of places one has to fix. We also check in copy_pte_range and in mprotect_pte_range() for migration ptes. We check for migration ptes in do_swap_cache and call a function that will then wait on the page lock. This allows us to effectively stop all accesses to apge. Migration entries are created by try_to_unmap if called for migration and removed by local functions in migrate.c From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration (I've no NUMA, just hacking it up to migrate recklessly while running load), I've hit the BUG_ON(!PageLocked(p)) in migration_entry_to_page. This comes from an orphaned migration entry, unrelated to the current correctly locked migration, but hit by remove_anon_migration_ptes as it checks an address in each vma of the anon_vma list. Such an orphan may be left behind if an earlier migration raced with fork: copy_one_pte can duplicate a migration entry from parent to child, after remove_anon_migration_ptes has checked the child vma, but before it has removed it from the parent vma. (If the process were later to fault on this orphaned entry, it would hit the same BUG from migration_entry_wait.) This could be fixed by locking anon_vma in copy_one_pte, but we'd rather not. There's no such problem with file pages, because vma_prio_tree_add adds child vma after parent vma, and the page table locking at each end is enough to serialize. Follow that example with anon_vma: add new vmas to the tail instead of the head. (There's no corresponding problem when inserting migration entries, because a missed pte will leave the page count and mapcount high, which is allowed for. And there's no corresponding problem when migrating via swap, because a leftover swap entry will be correctly faulted. But the swapless method has no refcounting of its entries.) From: Ingo Molnar <mingo@elte.hu> pte_unmap_unlock() takes the pte pointer as an argument. From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration, gcc has tried to exec a pointer instead of a string: smells like COW mappings are not being properly write-protected on fork. The protection in copy_one_pte looks very convincing, until at last you realize that the second arg to make_migration_entry is a boolean "write", and SWP_MIGRATION_READ is 30. Anyway, it's better done like in change_pte_range, using is_write_migration_entry and make_migration_entry_read. From: Hugh Dickins <hugh@veritas.com> Remove unnecessary obfuscation from sys_swapon's range check on swap type, which blew up causing memory corruption once swapless migration made MAX_SWAPFILES no longer 2 ^ MAX_SWAPFILES_SHIFT. Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> From: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 09:03:35 +00:00
p = swap_info_get(entry);
if (p) {
if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
page = find_get_page(swap_address_space(entry),
mm, swap: use offset of swap entry as key of swap cache This patch is to improve the performance of swap cache operations when the type of the swap device is not 0. Originally, the whole swap entry value is used as the key of the swap cache, even though there is one radix tree for each swap device. If the type of the swap device is not 0, the height of the radix tree of the swap cache will be increased unnecessary, especially on 64bit architecture. For example, for a 1GB swap device on the x86_64 architecture, the height of the radix tree of the swap cache is 11. But if the offset of the swap entry is used as the key of the swap cache, the height of the radix tree of the swap cache is 4. The increased height causes unnecessary radix tree descending and increased cache footprint. This patch reduces the height of the radix tree of the swap cache via using the offset of the swap entry instead of the whole swap entry value as the key of the swap cache. In 32 processes sequential swap out test case on a Xeon E5 v3 system with RAM disk as swap, the lock contention for the spinlock of the swap cache is reduced from 20.15% to 12.19%, when the type of the swap device is 1. Use the whole swap entry as key, perf-profile.calltrace.cycles-pp._raw_spin_lock_irq.__add_to_swap_cache.add_to_swap_cache.add_to_swap.shrink_page_list: 10.37, perf-profile.calltrace.cycles-pp._raw_spin_lock_irqsave.__remove_mapping.shrink_page_list.shrink_inactive_list.shrink_node_memcg: 9.78, Use the swap offset as key, perf-profile.calltrace.cycles-pp._raw_spin_lock_irq.__add_to_swap_cache.add_to_swap_cache.add_to_swap.shrink_page_list: 6.25, perf-profile.calltrace.cycles-pp._raw_spin_lock_irqsave.__remove_mapping.shrink_page_list.shrink_inactive_list.shrink_node_memcg: 5.94, Link: http://lkml.kernel.org/r/1473270649-27229-1-git-send-email-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Aaron Lu <aaron.lu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-08 00:00:21 +00:00
swp_offset(entry));
if (page && !trylock_page(page)) {
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 12:29:47 +00:00
put_page(page);
page = NULL;
}
}
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
spin_unlock(&p->lock);
}
if (page) {
mm: try_to_free_swap replaces remove_exclusive_swap_page remove_exclusive_swap_page(): its problem is in living up to its name. It doesn't matter if someone else has a reference to the page (raised page_count); it doesn't matter if the page is mapped into userspace (raised page_mapcount - though that hints it may be worth keeping the swap): all that matters is that there be no more references to the swap (and no writeback in progress). swapoff (try_to_unuse) has been removing pages from swapcache for years, with no concern for page count or page mapcount, and we used to have a comment in lookup_swap_cache() recognizing that: if you go for a page of swapcache, you'll get the right page, but it could have been removed from swapcache by the time you get page lock. So, give up asking for exclusivity: get rid of remove_exclusive_swap_page(), and remove_exclusive_swap_page_ref() and remove_exclusive_swap_page_count() which were spawned for the recent LRU work: replace them by the simpler try_to_free_swap() which just checks page_swapcount(). Similarly, remove the page_count limitation from free_swap_and_count(), but assume that it's worth holding on to the swap if page is mapped and swap nowhere near full. Add a vm_swap_full() test in free_swap_cache()? It would be consistent, but I think we probably have enough for now. Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Rik van Riel <riel@redhat.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Robin Holt <holt@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 22:39:36 +00:00
/*
* Not mapped elsewhere, or swap space full? Free it!
* Also recheck PageSwapCache now page is locked (above).
*/
if (PageSwapCache(page) && !PageWriteback(page) &&
(!page_mapped(page) || mem_cgroup_swap_full(page))) {
delete_from_swap_cache(page);
SetPageDirty(page);
}
unlock_page(page);
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 12:29:47 +00:00
put_page(page);
}
return p != NULL;
}
#ifdef CONFIG_HIBERNATION
/*
2006-12-07 04:34:07 +00:00
* Find the swap type that corresponds to given device (if any).
*
2006-12-07 04:34:07 +00:00
* @offset - number of the PAGE_SIZE-sized block of the device, starting
* from 0, in which the swap header is expected to be located.
*
* This is needed for the suspend to disk (aka swsusp).
*/
int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
{
2006-12-07 04:34:07 +00:00
struct block_device *bdev = NULL;
int type;
2006-12-07 04:34:07 +00:00
if (device)
bdev = bdget(device);
spin_lock(&swap_lock);
for (type = 0; type < nr_swapfiles; type++) {
struct swap_info_struct *sis = swap_info[type];
2006-12-07 04:34:07 +00:00
if (!(sis->flags & SWP_WRITEOK))
continue;
2006-12-07 04:34:07 +00:00
if (!bdev) {
if (bdev_p)
*bdev_p = bdgrab(sis->bdev);
spin_unlock(&swap_lock);
return type;
}
2006-12-07 04:34:07 +00:00
if (bdev == sis->bdev) {
struct swap_extent *se = &sis->first_swap_extent;
2006-12-07 04:34:07 +00:00
if (se->start_block == offset) {
if (bdev_p)
*bdev_p = bdgrab(sis->bdev);
2006-12-07 04:34:07 +00:00
spin_unlock(&swap_lock);
bdput(bdev);
return type;
2006-12-07 04:34:07 +00:00
}
}
}
spin_unlock(&swap_lock);
2006-12-07 04:34:07 +00:00
if (bdev)
bdput(bdev);
return -ENODEV;
}
/*
* Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
* corresponding to given index in swap_info (swap type).
*/
sector_t swapdev_block(int type, pgoff_t offset)
{
struct block_device *bdev;
if ((unsigned int)type >= nr_swapfiles)
return 0;
if (!(swap_info[type]->flags & SWP_WRITEOK))
return 0;
return map_swap_entry(swp_entry(type, offset), &bdev);
}
/*
* Return either the total number of swap pages of given type, or the number
* of free pages of that type (depending on @free)
*
* This is needed for software suspend
*/
unsigned int count_swap_pages(int type, int free)
{
unsigned int n = 0;
spin_lock(&swap_lock);
if ((unsigned int)type < nr_swapfiles) {
struct swap_info_struct *sis = swap_info[type];
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
spin_lock(&sis->lock);
if (sis->flags & SWP_WRITEOK) {
n = sis->pages;
if (free)
n -= sis->inuse_pages;
}
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
spin_unlock(&sis->lock);
}
spin_unlock(&swap_lock);
return n;
}
#endif /* CONFIG_HIBERNATION */
static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
{
return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
}
/*
* No need to decide whether this PTE shares the swap entry with others,
* just let do_wp_page work it out if a write is requested later - to
* force COW, vm_page_prot omits write permission from any private vma.
*/
static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
unsigned long addr, swp_entry_t entry, struct page *page)
{
struct page *swapcache;
struct mem_cgroup *memcg;
spinlock_t *ptl;
pte_t *pte;
int ret = 1;
swapcache = page;
page = ksm_might_need_to_copy(page, vma, addr);
if (unlikely(!page))
return -ENOMEM;
memcg: adjust to support new THP refcounting As with rmap, with new refcounting we cannot rely on PageTransHuge() to check if we need to charge size of huge page form the cgroup. We need to get information from caller to know whether it was mapped with PMD or PTE. We do uncharge when last reference on the page gone. At that point if we see PageTransHuge() it means we need to unchange whole huge page. The tricky part is partial unmap -- when we try to unmap part of huge page. We don't do a special handing of this situation, meaning we don't uncharge the part of huge page unless last user is gone or split_huge_page() is triggered. In case of cgroup memory pressure happens the partial unmapped page will be split through shrinker. This should be good enough. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 00:52:20 +00:00
if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
&memcg, false)) {
ret = -ENOMEM;
goto out_nolock;
}
pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
memcg: adjust to support new THP refcounting As with rmap, with new refcounting we cannot rely on PageTransHuge() to check if we need to charge size of huge page form the cgroup. We need to get information from caller to know whether it was mapped with PMD or PTE. We do uncharge when last reference on the page gone. At that point if we see PageTransHuge() it means we need to unchange whole huge page. The tricky part is partial unmap -- when we try to unmap part of huge page. We don't do a special handing of this situation, meaning we don't uncharge the part of huge page unless last user is gone or split_huge_page() is triggered. In case of cgroup memory pressure happens the partial unmapped page will be split through shrinker. This should be good enough. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 00:52:20 +00:00
mem_cgroup_cancel_charge(page, memcg, false);
ret = 0;
goto out;
}
Memory controller: memory accounting Add the accounting hooks. The accounting is carried out for RSS and Page Cache (unmapped) pages. There is now a common limit and accounting for both. The RSS accounting is accounted at page_add_*_rmap() and page_remove_rmap() time. Page cache is accounted at add_to_page_cache(), __delete_from_page_cache(). Swap cache is also accounted for. Each page's page_cgroup is protected with the last bit of the page_cgroup pointer, this makes handling of race conditions involving simultaneous mappings of a page easier. A reference count is kept in the page_cgroup to deal with cases where a page might be unmapped from the RSS of all tasks, but still lives in the page cache. Credits go to Vaidyanathan Srinivasan for helping with reference counting work of the page cgroup. Almost all of the page cache accounting code has help from Vaidyanathan Srinivasan. [hugh@veritas.com: fix swapoff breakage] [akpm@linux-foundation.org: fix locking] Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Paul Menage <menage@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Kirill Korotaev <dev@sw.ru> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: David Rientjes <rientjes@google.com> Cc: <Valdis.Kletnieks@vt.edu> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 08:13:53 +00:00
dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
get_page(page);
set_pte_at(vma->vm_mm, addr, pte,
pte_mkold(mk_pte(page, vma->vm_page_prot)));
mm: memcontrol: rewrite charge API These patches rework memcg charge lifetime to integrate more naturally with the lifetime of user pages. This drastically simplifies the code and reduces charging and uncharging overhead. The most expensive part of charging and uncharging is the page_cgroup bit spinlock, which is removed entirely after this series. Here are the top-10 profile entries of a stress test that reads a 128G sparse file on a freshly booted box, without even a dedicated cgroup (i.e. executing in the root memcg). Before: 15.36% cat [kernel.kallsyms] [k] copy_user_generic_string 13.31% cat [kernel.kallsyms] [k] memset 11.48% cat [kernel.kallsyms] [k] do_mpage_readpage 4.23% cat [kernel.kallsyms] [k] get_page_from_freelist 2.38% cat [kernel.kallsyms] [k] put_page 2.32% cat [kernel.kallsyms] [k] __mem_cgroup_commit_charge 2.18% kswapd0 [kernel.kallsyms] [k] __mem_cgroup_uncharge_common 1.92% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.86% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.62% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn After: 15.67% cat [kernel.kallsyms] [k] copy_user_generic_string 13.48% cat [kernel.kallsyms] [k] memset 11.42% cat [kernel.kallsyms] [k] do_mpage_readpage 3.98% cat [kernel.kallsyms] [k] get_page_from_freelist 2.46% cat [kernel.kallsyms] [k] put_page 2.13% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.88% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.67% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn 1.39% kswapd0 [kernel.kallsyms] [k] free_pcppages_bulk 1.30% cat [kernel.kallsyms] [k] kfree As you can see, the memcg footprint has shrunk quite a bit. text data bss dec hex filename 37970 9892 400 48262 bc86 mm/memcontrol.o.old 35239 9892 400 45531 b1db mm/memcontrol.o This patch (of 4): The memcg charge API charges pages before they are rmapped - i.e. have an actual "type" - and so every callsite needs its own set of charge and uncharge functions to know what type is being operated on. Worse, uncharge has to happen from a context that is still type-specific, rather than at the end of the page's lifetime with exclusive access, and so requires a lot of synchronization. Rewrite the charge API to provide a generic set of try_charge(), commit_charge() and cancel_charge() transaction operations, much like what's currently done for swap-in: mem_cgroup_try_charge() attempts to reserve a charge, reclaiming pages from the memcg if necessary. mem_cgroup_commit_charge() commits the page to the charge once it has a valid page->mapping and PageAnon() reliably tells the type. mem_cgroup_cancel_charge() aborts the transaction. This reduces the charge API and enables subsequent patches to drastically simplify uncharging. As pages need to be committed after rmap is established but before they are added to the LRU, page_add_new_anon_rmap() must stop doing LRU additions again. Revive lru_cache_add_active_or_unevictable(). [hughd@google.com: fix shmem_unuse] [hughd@google.com: Add comments on the private use of -EAGAIN] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-08 21:19:20 +00:00
if (page == swapcache) {
page_add_anon_rmap(page, vma, addr, false);
memcg: adjust to support new THP refcounting As with rmap, with new refcounting we cannot rely on PageTransHuge() to check if we need to charge size of huge page form the cgroup. We need to get information from caller to know whether it was mapped with PMD or PTE. We do uncharge when last reference on the page gone. At that point if we see PageTransHuge() it means we need to unchange whole huge page. The tricky part is partial unmap -- when we try to unmap part of huge page. We don't do a special handing of this situation, meaning we don't uncharge the part of huge page unless last user is gone or split_huge_page() is triggered. In case of cgroup memory pressure happens the partial unmapped page will be split through shrinker. This should be good enough. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 00:52:20 +00:00
mem_cgroup_commit_charge(page, memcg, true, false);
mm: memcontrol: rewrite charge API These patches rework memcg charge lifetime to integrate more naturally with the lifetime of user pages. This drastically simplifies the code and reduces charging and uncharging overhead. The most expensive part of charging and uncharging is the page_cgroup bit spinlock, which is removed entirely after this series. Here are the top-10 profile entries of a stress test that reads a 128G sparse file on a freshly booted box, without even a dedicated cgroup (i.e. executing in the root memcg). Before: 15.36% cat [kernel.kallsyms] [k] copy_user_generic_string 13.31% cat [kernel.kallsyms] [k] memset 11.48% cat [kernel.kallsyms] [k] do_mpage_readpage 4.23% cat [kernel.kallsyms] [k] get_page_from_freelist 2.38% cat [kernel.kallsyms] [k] put_page 2.32% cat [kernel.kallsyms] [k] __mem_cgroup_commit_charge 2.18% kswapd0 [kernel.kallsyms] [k] __mem_cgroup_uncharge_common 1.92% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.86% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.62% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn After: 15.67% cat [kernel.kallsyms] [k] copy_user_generic_string 13.48% cat [kernel.kallsyms] [k] memset 11.42% cat [kernel.kallsyms] [k] do_mpage_readpage 3.98% cat [kernel.kallsyms] [k] get_page_from_freelist 2.46% cat [kernel.kallsyms] [k] put_page 2.13% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.88% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.67% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn 1.39% kswapd0 [kernel.kallsyms] [k] free_pcppages_bulk 1.30% cat [kernel.kallsyms] [k] kfree As you can see, the memcg footprint has shrunk quite a bit. text data bss dec hex filename 37970 9892 400 48262 bc86 mm/memcontrol.o.old 35239 9892 400 45531 b1db mm/memcontrol.o This patch (of 4): The memcg charge API charges pages before they are rmapped - i.e. have an actual "type" - and so every callsite needs its own set of charge and uncharge functions to know what type is being operated on. Worse, uncharge has to happen from a context that is still type-specific, rather than at the end of the page's lifetime with exclusive access, and so requires a lot of synchronization. Rewrite the charge API to provide a generic set of try_charge(), commit_charge() and cancel_charge() transaction operations, much like what's currently done for swap-in: mem_cgroup_try_charge() attempts to reserve a charge, reclaiming pages from the memcg if necessary. mem_cgroup_commit_charge() commits the page to the charge once it has a valid page->mapping and PageAnon() reliably tells the type. mem_cgroup_cancel_charge() aborts the transaction. This reduces the charge API and enables subsequent patches to drastically simplify uncharging. As pages need to be committed after rmap is established but before they are added to the LRU, page_add_new_anon_rmap() must stop doing LRU additions again. Revive lru_cache_add_active_or_unevictable(). [hughd@google.com: fix shmem_unuse] [hughd@google.com: Add comments on the private use of -EAGAIN] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-08 21:19:20 +00:00
} else { /* ksm created a completely new copy */
page_add_new_anon_rmap(page, vma, addr, false);
memcg: adjust to support new THP refcounting As with rmap, with new refcounting we cannot rely on PageTransHuge() to check if we need to charge size of huge page form the cgroup. We need to get information from caller to know whether it was mapped with PMD or PTE. We do uncharge when last reference on the page gone. At that point if we see PageTransHuge() it means we need to unchange whole huge page. The tricky part is partial unmap -- when we try to unmap part of huge page. We don't do a special handing of this situation, meaning we don't uncharge the part of huge page unless last user is gone or split_huge_page() is triggered. In case of cgroup memory pressure happens the partial unmapped page will be split through shrinker. This should be good enough. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-16 00:52:20 +00:00
mem_cgroup_commit_charge(page, memcg, false, false);
mm: memcontrol: rewrite charge API These patches rework memcg charge lifetime to integrate more naturally with the lifetime of user pages. This drastically simplifies the code and reduces charging and uncharging overhead. The most expensive part of charging and uncharging is the page_cgroup bit spinlock, which is removed entirely after this series. Here are the top-10 profile entries of a stress test that reads a 128G sparse file on a freshly booted box, without even a dedicated cgroup (i.e. executing in the root memcg). Before: 15.36% cat [kernel.kallsyms] [k] copy_user_generic_string 13.31% cat [kernel.kallsyms] [k] memset 11.48% cat [kernel.kallsyms] [k] do_mpage_readpage 4.23% cat [kernel.kallsyms] [k] get_page_from_freelist 2.38% cat [kernel.kallsyms] [k] put_page 2.32% cat [kernel.kallsyms] [k] __mem_cgroup_commit_charge 2.18% kswapd0 [kernel.kallsyms] [k] __mem_cgroup_uncharge_common 1.92% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.86% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.62% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn After: 15.67% cat [kernel.kallsyms] [k] copy_user_generic_string 13.48% cat [kernel.kallsyms] [k] memset 11.42% cat [kernel.kallsyms] [k] do_mpage_readpage 3.98% cat [kernel.kallsyms] [k] get_page_from_freelist 2.46% cat [kernel.kallsyms] [k] put_page 2.13% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.88% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.67% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn 1.39% kswapd0 [kernel.kallsyms] [k] free_pcppages_bulk 1.30% cat [kernel.kallsyms] [k] kfree As you can see, the memcg footprint has shrunk quite a bit. text data bss dec hex filename 37970 9892 400 48262 bc86 mm/memcontrol.o.old 35239 9892 400 45531 b1db mm/memcontrol.o This patch (of 4): The memcg charge API charges pages before they are rmapped - i.e. have an actual "type" - and so every callsite needs its own set of charge and uncharge functions to know what type is being operated on. Worse, uncharge has to happen from a context that is still type-specific, rather than at the end of the page's lifetime with exclusive access, and so requires a lot of synchronization. Rewrite the charge API to provide a generic set of try_charge(), commit_charge() and cancel_charge() transaction operations, much like what's currently done for swap-in: mem_cgroup_try_charge() attempts to reserve a charge, reclaiming pages from the memcg if necessary. mem_cgroup_commit_charge() commits the page to the charge once it has a valid page->mapping and PageAnon() reliably tells the type. mem_cgroup_cancel_charge() aborts the transaction. This reduces the charge API and enables subsequent patches to drastically simplify uncharging. As pages need to be committed after rmap is established but before they are added to the LRU, page_add_new_anon_rmap() must stop doing LRU additions again. Revive lru_cache_add_active_or_unevictable(). [hughd@google.com: fix shmem_unuse] [hughd@google.com: Add comments on the private use of -EAGAIN] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-08 21:19:20 +00:00
lru_cache_add_active_or_unevictable(page, vma);
}
swap_free(entry);
/*
* Move the page to the active list so it is not
* immediately swapped out again after swapon.
*/
activate_page(page);
out:
pte_unmap_unlock(pte, ptl);
out_nolock:
if (page != swapcache) {
unlock_page(page);
put_page(page);
}
return ret;
}
static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
unsigned long addr, unsigned long end,
swp_entry_t entry, struct page *page)
{
pte_t swp_pte = swp_entry_to_pte(entry);
pte_t *pte;
Memory controller: memory accounting Add the accounting hooks. The accounting is carried out for RSS and Page Cache (unmapped) pages. There is now a common limit and accounting for both. The RSS accounting is accounted at page_add_*_rmap() and page_remove_rmap() time. Page cache is accounted at add_to_page_cache(), __delete_from_page_cache(). Swap cache is also accounted for. Each page's page_cgroup is protected with the last bit of the page_cgroup pointer, this makes handling of race conditions involving simultaneous mappings of a page easier. A reference count is kept in the page_cgroup to deal with cases where a page might be unmapped from the RSS of all tasks, but still lives in the page cache. Credits go to Vaidyanathan Srinivasan for helping with reference counting work of the page cgroup. Almost all of the page cache accounting code has help from Vaidyanathan Srinivasan. [hugh@veritas.com: fix swapoff breakage] [akpm@linux-foundation.org: fix locking] Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Paul Menage <menage@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Kirill Korotaev <dev@sw.ru> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: David Rientjes <rientjes@google.com> Cc: <Valdis.Kletnieks@vt.edu> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 08:13:53 +00:00
int ret = 0;
/*
* We don't actually need pte lock while scanning for swp_pte: since
* we hold page lock and mmap_sem, swp_pte cannot be inserted into the
* page table while we're scanning; though it could get zapped, and on
* some architectures (e.g. x86_32 with PAE) we might catch a glimpse
* of unmatched parts which look like swp_pte, so unuse_pte must
* recheck under pte lock. Scanning without pte lock lets it be
* preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
*/
pte = pte_offset_map(pmd, addr);
do {
/*
* swapoff spends a _lot_ of time in this loop!
* Test inline before going to call unuse_pte.
*/
if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
pte_unmap(pte);
ret = unuse_pte(vma, pmd, addr, entry, page);
if (ret)
goto out;
pte = pte_offset_map(pmd, addr);
}
} while (pte++, addr += PAGE_SIZE, addr != end);
pte_unmap(pte - 1);
out:
Memory controller: memory accounting Add the accounting hooks. The accounting is carried out for RSS and Page Cache (unmapped) pages. There is now a common limit and accounting for both. The RSS accounting is accounted at page_add_*_rmap() and page_remove_rmap() time. Page cache is accounted at add_to_page_cache(), __delete_from_page_cache(). Swap cache is also accounted for. Each page's page_cgroup is protected with the last bit of the page_cgroup pointer, this makes handling of race conditions involving simultaneous mappings of a page easier. A reference count is kept in the page_cgroup to deal with cases where a page might be unmapped from the RSS of all tasks, but still lives in the page cache. Credits go to Vaidyanathan Srinivasan for helping with reference counting work of the page cgroup. Almost all of the page cache accounting code has help from Vaidyanathan Srinivasan. [hugh@veritas.com: fix swapoff breakage] [akpm@linux-foundation.org: fix locking] Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Paul Menage <menage@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Kirill Korotaev <dev@sw.ru> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: David Rientjes <rientjes@google.com> Cc: <Valdis.Kletnieks@vt.edu> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 08:13:53 +00:00
return ret;
}
static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
unsigned long addr, unsigned long end,
swp_entry_t entry, struct page *page)
{
pmd_t *pmd;
unsigned long next;
Memory controller: memory accounting Add the accounting hooks. The accounting is carried out for RSS and Page Cache (unmapped) pages. There is now a common limit and accounting for both. The RSS accounting is accounted at page_add_*_rmap() and page_remove_rmap() time. Page cache is accounted at add_to_page_cache(), __delete_from_page_cache(). Swap cache is also accounted for. Each page's page_cgroup is protected with the last bit of the page_cgroup pointer, this makes handling of race conditions involving simultaneous mappings of a page easier. A reference count is kept in the page_cgroup to deal with cases where a page might be unmapped from the RSS of all tasks, but still lives in the page cache. Credits go to Vaidyanathan Srinivasan for helping with reference counting work of the page cgroup. Almost all of the page cache accounting code has help from Vaidyanathan Srinivasan. [hugh@veritas.com: fix swapoff breakage] [akpm@linux-foundation.org: fix locking] Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Paul Menage <menage@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Kirill Korotaev <dev@sw.ru> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: David Rientjes <rientjes@google.com> Cc: <Valdis.Kletnieks@vt.edu> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 08:13:53 +00:00
int ret;
pmd = pmd_offset(pud, addr);
do {
next = pmd_addr_end(addr, end);
mm: thp: fix pmd_bad() triggering in code paths holding mmap_sem read mode In some cases it may happen that pmd_none_or_clear_bad() is called with the mmap_sem hold in read mode. In those cases the huge page faults can allocate hugepmds under pmd_none_or_clear_bad() and that can trigger a false positive from pmd_bad() that will not like to see a pmd materializing as trans huge. It's not khugepaged causing the problem, khugepaged holds the mmap_sem in write mode (and all those sites must hold the mmap_sem in read mode to prevent pagetables to go away from under them, during code review it seems vm86 mode on 32bit kernels requires that too unless it's restricted to 1 thread per process or UP builds). The race is only with the huge pagefaults that can convert a pmd_none() into a pmd_trans_huge(). Effectively all these pmd_none_or_clear_bad() sites running with mmap_sem in read mode are somewhat speculative with the page faults, and the result is always undefined when they run simultaneously. This is probably why it wasn't common to run into this. For example if the madvise(MADV_DONTNEED) runs zap_page_range() shortly before the page fault, the hugepage will not be zapped, if the page fault runs first it will be zapped. Altering pmd_bad() not to error out if it finds hugepmds won't be enough to fix this, because zap_pmd_range would then proceed to call zap_pte_range (which would be incorrect if the pmd become a pmd_trans_huge()). The simplest way to fix this is to read the pmd in the local stack (regardless of what we read, no need of actual CPU barriers, only compiler barrier needed), and be sure it is not changing under the code that computes its value. Even if the real pmd is changing under the value we hold on the stack, we don't care. If we actually end up in zap_pte_range it means the pmd was not none already and it was not huge, and it can't become huge from under us (khugepaged locking explained above). All we need is to enforce that there is no way anymore that in a code path like below, pmd_trans_huge can be false, but pmd_none_or_clear_bad can run into a hugepmd. The overhead of a barrier() is just a compiler tweak and should not be measurable (I only added it for THP builds). I don't exclude different compiler versions may have prevented the race too by caching the value of *pmd on the stack (that hasn't been verified, but it wouldn't be impossible considering pmd_none_or_clear_bad, pmd_bad, pmd_trans_huge, pmd_none are all inlines and there's no external function called in between pmd_trans_huge and pmd_none_or_clear_bad). if (pmd_trans_huge(*pmd)) { if (next-addr != HPAGE_PMD_SIZE) { VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem)); split_huge_page_pmd(vma->vm_mm, pmd); } else if (zap_huge_pmd(tlb, vma, pmd, addr)) continue; /* fall through */ } if (pmd_none_or_clear_bad(pmd)) Because this race condition could be exercised without special privileges this was reported in CVE-2012-1179. The race was identified and fully explained by Ulrich who debugged it. I'm quoting his accurate explanation below, for reference. ====== start quote ======= mapcount 0 page_mapcount 1 kernel BUG at mm/huge_memory.c:1384! At some point prior to the panic, a "bad pmd ..." message similar to the following is logged on the console: mm/memory.c:145: bad pmd ffff8800376e1f98(80000000314000e7). The "bad pmd ..." message is logged by pmd_clear_bad() before it clears the page's PMD table entry. 143 void pmd_clear_bad(pmd_t *pmd) 144 { -> 145 pmd_ERROR(*pmd); 146 pmd_clear(pmd); 147 } After the PMD table entry has been cleared, there is an inconsistency between the actual number of PMD table entries that are mapping the page and the page's map count (_mapcount field in struct page). When the page is subsequently reclaimed, __split_huge_page() detects this inconsistency. 1381 if (mapcount != page_mapcount(page)) 1382 printk(KERN_ERR "mapcount %d page_mapcount %d\n", 1383 mapcount, page_mapcount(page)); -> 1384 BUG_ON(mapcount != page_mapcount(page)); The root cause of the problem is a race of two threads in a multithreaded process. Thread B incurs a page fault on a virtual address that has never been accessed (PMD entry is zero) while Thread A is executing an madvise() system call on a virtual address within the same 2 MB (huge page) range. virtual address space .---------------------. | | | | .-|---------------------| | | | | | |<-- B(fault) | | | 2 MB | |/////////////////////|-. huge < |/////////////////////| > A(range) page | |/////////////////////|-' | | | | | | '-|---------------------| | | | | '---------------------' - Thread A is executing an madvise(..., MADV_DONTNEED) system call on the virtual address range "A(range)" shown in the picture. sys_madvise // Acquire the semaphore in shared mode. down_read(&current->mm->mmap_sem) ... madvise_vma switch (behavior) case MADV_DONTNEED: madvise_dontneed zap_page_range unmap_vmas unmap_page_range zap_pud_range zap_pmd_range // // Assume that this huge page has never been accessed. // I.e. content of the PMD entry is zero (not mapped). // if (pmd_trans_huge(*pmd)) { // We don't get here due to the above assumption. } // // Assume that Thread B incurred a page fault and .---------> // sneaks in here as shown below. | // | if (pmd_none_or_clear_bad(pmd)) | { | if (unlikely(pmd_bad(*pmd))) | pmd_clear_bad | { | pmd_ERROR | // Log "bad pmd ..." message here. | pmd_clear | // Clear the page's PMD entry. | // Thread B incremented the map count | // in page_add_new_anon_rmap(), but | // now the page is no longer mapped | // by a PMD entry (-> inconsistency). | } | } | v - Thread B is handling a page fault on virtual address "B(fault)" shown in the picture. ... do_page_fault __do_page_fault // Acquire the semaphore in shared mode. down_read_trylock(&mm->mmap_sem) ... handle_mm_fault if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) // We get here due to the above assumption (PMD entry is zero). do_huge_pmd_anonymous_page alloc_hugepage_vma // Allocate a new transparent huge page here. ... __do_huge_pmd_anonymous_page ... spin_lock(&mm->page_table_lock) ... page_add_new_anon_rmap // Here we increment the page's map count (starts at -1). atomic_set(&page->_mapcount, 0) set_pmd_at // Here we set the page's PMD entry which will be cleared // when Thread A calls pmd_clear_bad(). ... spin_unlock(&mm->page_table_lock) The mmap_sem does not prevent the race because both threads are acquiring it in shared mode (down_read). Thread B holds the page_table_lock while the page's map count and PMD table entry are updated. However, Thread A does not synchronize on that lock. ====== end quote ======= [akpm@linux-foundation.org: checkpatch fixes] Reported-by: Ulrich Obergfell <uobergfe@redhat.com> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Jones <davej@redhat.com> Acked-by: Larry Woodman <lwoodman@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: <stable@vger.kernel.org> [2.6.38+] Cc: Mark Salter <msalter@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 23:33:42 +00:00
if (pmd_none_or_trans_huge_or_clear_bad(pmd))
continue;
Memory controller: memory accounting Add the accounting hooks. The accounting is carried out for RSS and Page Cache (unmapped) pages. There is now a common limit and accounting for both. The RSS accounting is accounted at page_add_*_rmap() and page_remove_rmap() time. Page cache is accounted at add_to_page_cache(), __delete_from_page_cache(). Swap cache is also accounted for. Each page's page_cgroup is protected with the last bit of the page_cgroup pointer, this makes handling of race conditions involving simultaneous mappings of a page easier. A reference count is kept in the page_cgroup to deal with cases where a page might be unmapped from the RSS of all tasks, but still lives in the page cache. Credits go to Vaidyanathan Srinivasan for helping with reference counting work of the page cgroup. Almost all of the page cache accounting code has help from Vaidyanathan Srinivasan. [hugh@veritas.com: fix swapoff breakage] [akpm@linux-foundation.org: fix locking] Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Paul Menage <menage@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Kirill Korotaev <dev@sw.ru> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: David Rientjes <rientjes@google.com> Cc: <Valdis.Kletnieks@vt.edu> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 08:13:53 +00:00
ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
if (ret)
return ret;
} while (pmd++, addr = next, addr != end);
return 0;
}
static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
unsigned long addr, unsigned long end,
swp_entry_t entry, struct page *page)
{
pud_t *pud;
unsigned long next;
Memory controller: memory accounting Add the accounting hooks. The accounting is carried out for RSS and Page Cache (unmapped) pages. There is now a common limit and accounting for both. The RSS accounting is accounted at page_add_*_rmap() and page_remove_rmap() time. Page cache is accounted at add_to_page_cache(), __delete_from_page_cache(). Swap cache is also accounted for. Each page's page_cgroup is protected with the last bit of the page_cgroup pointer, this makes handling of race conditions involving simultaneous mappings of a page easier. A reference count is kept in the page_cgroup to deal with cases where a page might be unmapped from the RSS of all tasks, but still lives in the page cache. Credits go to Vaidyanathan Srinivasan for helping with reference counting work of the page cgroup. Almost all of the page cache accounting code has help from Vaidyanathan Srinivasan. [hugh@veritas.com: fix swapoff breakage] [akpm@linux-foundation.org: fix locking] Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Paul Menage <menage@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Kirill Korotaev <dev@sw.ru> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: David Rientjes <rientjes@google.com> Cc: <Valdis.Kletnieks@vt.edu> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 08:13:53 +00:00
int ret;
pud = pud_offset(pgd, addr);
do {
next = pud_addr_end(addr, end);
if (pud_none_or_clear_bad(pud))
continue;
Memory controller: memory accounting Add the accounting hooks. The accounting is carried out for RSS and Page Cache (unmapped) pages. There is now a common limit and accounting for both. The RSS accounting is accounted at page_add_*_rmap() and page_remove_rmap() time. Page cache is accounted at add_to_page_cache(), __delete_from_page_cache(). Swap cache is also accounted for. Each page's page_cgroup is protected with the last bit of the page_cgroup pointer, this makes handling of race conditions involving simultaneous mappings of a page easier. A reference count is kept in the page_cgroup to deal with cases where a page might be unmapped from the RSS of all tasks, but still lives in the page cache. Credits go to Vaidyanathan Srinivasan for helping with reference counting work of the page cgroup. Almost all of the page cache accounting code has help from Vaidyanathan Srinivasan. [hugh@veritas.com: fix swapoff breakage] [akpm@linux-foundation.org: fix locking] Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Paul Menage <menage@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Kirill Korotaev <dev@sw.ru> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: David Rientjes <rientjes@google.com> Cc: <Valdis.Kletnieks@vt.edu> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 08:13:53 +00:00
ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
if (ret)
return ret;
} while (pud++, addr = next, addr != end);
return 0;
}
static int unuse_vma(struct vm_area_struct *vma,
swp_entry_t entry, struct page *page)
{
pgd_t *pgd;
unsigned long addr, end, next;
Memory controller: memory accounting Add the accounting hooks. The accounting is carried out for RSS and Page Cache (unmapped) pages. There is now a common limit and accounting for both. The RSS accounting is accounted at page_add_*_rmap() and page_remove_rmap() time. Page cache is accounted at add_to_page_cache(), __delete_from_page_cache(). Swap cache is also accounted for. Each page's page_cgroup is protected with the last bit of the page_cgroup pointer, this makes handling of race conditions involving simultaneous mappings of a page easier. A reference count is kept in the page_cgroup to deal with cases where a page might be unmapped from the RSS of all tasks, but still lives in the page cache. Credits go to Vaidyanathan Srinivasan for helping with reference counting work of the page cgroup. Almost all of the page cache accounting code has help from Vaidyanathan Srinivasan. [hugh@veritas.com: fix swapoff breakage] [akpm@linux-foundation.org: fix locking] Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Paul Menage <menage@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Kirill Korotaev <dev@sw.ru> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: David Rientjes <rientjes@google.com> Cc: <Valdis.Kletnieks@vt.edu> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 08:13:53 +00:00
int ret;
if (page_anon_vma(page)) {
addr = page_address_in_vma(page, vma);
if (addr == -EFAULT)
return 0;
else
end = addr + PAGE_SIZE;
} else {
addr = vma->vm_start;
end = vma->vm_end;
}
pgd = pgd_offset(vma->vm_mm, addr);
do {
next = pgd_addr_end(addr, end);
if (pgd_none_or_clear_bad(pgd))
continue;
Memory controller: memory accounting Add the accounting hooks. The accounting is carried out for RSS and Page Cache (unmapped) pages. There is now a common limit and accounting for both. The RSS accounting is accounted at page_add_*_rmap() and page_remove_rmap() time. Page cache is accounted at add_to_page_cache(), __delete_from_page_cache(). Swap cache is also accounted for. Each page's page_cgroup is protected with the last bit of the page_cgroup pointer, this makes handling of race conditions involving simultaneous mappings of a page easier. A reference count is kept in the page_cgroup to deal with cases where a page might be unmapped from the RSS of all tasks, but still lives in the page cache. Credits go to Vaidyanathan Srinivasan for helping with reference counting work of the page cgroup. Almost all of the page cache accounting code has help from Vaidyanathan Srinivasan. [hugh@veritas.com: fix swapoff breakage] [akpm@linux-foundation.org: fix locking] Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Paul Menage <menage@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Kirill Korotaev <dev@sw.ru> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: David Rientjes <rientjes@google.com> Cc: <Valdis.Kletnieks@vt.edu> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 08:13:53 +00:00
ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
if (ret)
return ret;
} while (pgd++, addr = next, addr != end);
return 0;
}
static int unuse_mm(struct mm_struct *mm,
swp_entry_t entry, struct page *page)
{
struct vm_area_struct *vma;
Memory controller: memory accounting Add the accounting hooks. The accounting is carried out for RSS and Page Cache (unmapped) pages. There is now a common limit and accounting for both. The RSS accounting is accounted at page_add_*_rmap() and page_remove_rmap() time. Page cache is accounted at add_to_page_cache(), __delete_from_page_cache(). Swap cache is also accounted for. Each page's page_cgroup is protected with the last bit of the page_cgroup pointer, this makes handling of race conditions involving simultaneous mappings of a page easier. A reference count is kept in the page_cgroup to deal with cases where a page might be unmapped from the RSS of all tasks, but still lives in the page cache. Credits go to Vaidyanathan Srinivasan for helping with reference counting work of the page cgroup. Almost all of the page cache accounting code has help from Vaidyanathan Srinivasan. [hugh@veritas.com: fix swapoff breakage] [akpm@linux-foundation.org: fix locking] Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Paul Menage <menage@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Kirill Korotaev <dev@sw.ru> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: David Rientjes <rientjes@google.com> Cc: <Valdis.Kletnieks@vt.edu> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 08:13:53 +00:00
int ret = 0;
if (!down_read_trylock(&mm->mmap_sem)) {
/*
* Activate page so shrink_inactive_list is unlikely to unmap
* its ptes while lock is dropped, so swapoff can make progress.
*/
activate_page(page);
unlock_page(page);
down_read(&mm->mmap_sem);
lock_page(page);
}
for (vma = mm->mmap; vma; vma = vma->vm_next) {
Memory controller: memory accounting Add the accounting hooks. The accounting is carried out for RSS and Page Cache (unmapped) pages. There is now a common limit and accounting for both. The RSS accounting is accounted at page_add_*_rmap() and page_remove_rmap() time. Page cache is accounted at add_to_page_cache(), __delete_from_page_cache(). Swap cache is also accounted for. Each page's page_cgroup is protected with the last bit of the page_cgroup pointer, this makes handling of race conditions involving simultaneous mappings of a page easier. A reference count is kept in the page_cgroup to deal with cases where a page might be unmapped from the RSS of all tasks, but still lives in the page cache. Credits go to Vaidyanathan Srinivasan for helping with reference counting work of the page cgroup. Almost all of the page cache accounting code has help from Vaidyanathan Srinivasan. [hugh@veritas.com: fix swapoff breakage] [akpm@linux-foundation.org: fix locking] Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Paul Menage <menage@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Kirill Korotaev <dev@sw.ru> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: David Rientjes <rientjes@google.com> Cc: <Valdis.Kletnieks@vt.edu> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 08:13:53 +00:00
if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
break;
}
up_read(&mm->mmap_sem);
Memory controller: memory accounting Add the accounting hooks. The accounting is carried out for RSS and Page Cache (unmapped) pages. There is now a common limit and accounting for both. The RSS accounting is accounted at page_add_*_rmap() and page_remove_rmap() time. Page cache is accounted at add_to_page_cache(), __delete_from_page_cache(). Swap cache is also accounted for. Each page's page_cgroup is protected with the last bit of the page_cgroup pointer, this makes handling of race conditions involving simultaneous mappings of a page easier. A reference count is kept in the page_cgroup to deal with cases where a page might be unmapped from the RSS of all tasks, but still lives in the page cache. Credits go to Vaidyanathan Srinivasan for helping with reference counting work of the page cgroup. Almost all of the page cache accounting code has help from Vaidyanathan Srinivasan. [hugh@veritas.com: fix swapoff breakage] [akpm@linux-foundation.org: fix locking] Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Paul Menage <menage@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Kirill Korotaev <dev@sw.ru> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: David Rientjes <rientjes@google.com> Cc: <Valdis.Kletnieks@vt.edu> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 08:13:53 +00:00
return (ret < 0)? ret: 0;
}
/*
mm: frontswap: core swap subsystem hooks and headers This patch, 2of4, contains the changes to the core swap subsystem. This includes: (1) makes available core swap data structures (swap_lock, swap_list and swap_info) that are needed by frontswap.c but we don't need to expose them to the dozens of files that include swap.h so we create a new swapfile.h just to extern-ify these and modify their declarations to non-static (2) adds frontswap-related elements to swap_info_struct. Frontswap_map points to vzalloc'ed one-bit-per-swap-page metadata that indicates whether the swap page is in frontswap or in the device and frontswap_pages counts how many pages are in frontswap. (3) adds hooks in the swap subsystem and extends try_to_unuse so that frontswap_shrink can do a "partial swapoff". Note that a failed frontswap_map allocation is safe... failure is noted by lack of "FS" in the subsequent printk. --- [v14: rebase to 3.4-rc2] [v10: no change] [v9: akpm@linux-foundation.org: mark some statics __read_mostly] [v9: akpm@linux-foundation.org: add clarifying comments] [v9: akpm@linux-foundation.org: no need to loop repeating try_to_unuse] [v9: error27@gmail.com: remove superfluous check for NULL] [v8: rebase to 3.0-rc4] [v8: kamezawa.hiroyu@jp.fujitsu.com: change counter to atomic_t to avoid races] [v8: kamezawa.hiroyu@jp.fujitsu.com: comment to clarify informational counters] [v7: rebase to 3.0-rc3] [v7: JBeulich@novell.com: add new swap struct elements only if config'd] [v6: rebase to 3.0-rc1] [v6: lliubbo@gmail.com: fix null pointer deref if vzalloc fails] [v6: konrad.wilk@oracl.com: various checks and code clarifications/comments] [v5: no change from v4] [v4: rebase to 2.6.39] Signed-off-by: Dan Magenheimer <dan.magenheimer@oracle.com> Reviewed-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Jan Beulich <JBeulich@novell.com> Acked-by: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Matthew Wilcox <matthew@wil.cx> Cc: Chris Mason <chris.mason@oracle.com> Cc: Rik Riel <riel@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> [v11: Rebased, fixed mm/swapfile.c context change] Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2012-04-09 23:08:06 +00:00
* Scan swap_map (or frontswap_map if frontswap parameter is true)
* from current position to next entry still in use.
* Recycle to start on reaching the end, returning 0 when empty.
*/
static unsigned int find_next_to_unuse(struct swap_info_struct *si,
mm: frontswap: core swap subsystem hooks and headers This patch, 2of4, contains the changes to the core swap subsystem. This includes: (1) makes available core swap data structures (swap_lock, swap_list and swap_info) that are needed by frontswap.c but we don't need to expose them to the dozens of files that include swap.h so we create a new swapfile.h just to extern-ify these and modify their declarations to non-static (2) adds frontswap-related elements to swap_info_struct. Frontswap_map points to vzalloc'ed one-bit-per-swap-page metadata that indicates whether the swap page is in frontswap or in the device and frontswap_pages counts how many pages are in frontswap. (3) adds hooks in the swap subsystem and extends try_to_unuse so that frontswap_shrink can do a "partial swapoff". Note that a failed frontswap_map allocation is safe... failure is noted by lack of "FS" in the subsequent printk. --- [v14: rebase to 3.4-rc2] [v10: no change] [v9: akpm@linux-foundation.org: mark some statics __read_mostly] [v9: akpm@linux-foundation.org: add clarifying comments] [v9: akpm@linux-foundation.org: no need to loop repeating try_to_unuse] [v9: error27@gmail.com: remove superfluous check for NULL] [v8: rebase to 3.0-rc4] [v8: kamezawa.hiroyu@jp.fujitsu.com: change counter to atomic_t to avoid races] [v8: kamezawa.hiroyu@jp.fujitsu.com: comment to clarify informational counters] [v7: rebase to 3.0-rc3] [v7: JBeulich@novell.com: add new swap struct elements only if config'd] [v6: rebase to 3.0-rc1] [v6: lliubbo@gmail.com: fix null pointer deref if vzalloc fails] [v6: konrad.wilk@oracl.com: various checks and code clarifications/comments] [v5: no change from v4] [v4: rebase to 2.6.39] Signed-off-by: Dan Magenheimer <dan.magenheimer@oracle.com> Reviewed-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Jan Beulich <JBeulich@novell.com> Acked-by: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Matthew Wilcox <matthew@wil.cx> Cc: Chris Mason <chris.mason@oracle.com> Cc: Rik Riel <riel@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> [v11: Rebased, fixed mm/swapfile.c context change] Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2012-04-09 23:08:06 +00:00
unsigned int prev, bool frontswap)
{
unsigned int max = si->max;
unsigned int i = prev;
unsigned char count;
/*
* No need for swap_lock here: we're just looking
* for whether an entry is in use, not modifying it; false
* hits are okay, and sys_swapoff() has already prevented new
* allocations from this area (while holding swap_lock).
*/
for (;;) {
if (++i >= max) {
if (!prev) {
i = 0;
break;
}
/*
* No entries in use at top of swap_map,
* loop back to start and recheck there.
*/
max = prev + 1;
prev = 0;
i = 1;
}
mm: frontswap: core swap subsystem hooks and headers This patch, 2of4, contains the changes to the core swap subsystem. This includes: (1) makes available core swap data structures (swap_lock, swap_list and swap_info) that are needed by frontswap.c but we don't need to expose them to the dozens of files that include swap.h so we create a new swapfile.h just to extern-ify these and modify their declarations to non-static (2) adds frontswap-related elements to swap_info_struct. Frontswap_map points to vzalloc'ed one-bit-per-swap-page metadata that indicates whether the swap page is in frontswap or in the device and frontswap_pages counts how many pages are in frontswap. (3) adds hooks in the swap subsystem and extends try_to_unuse so that frontswap_shrink can do a "partial swapoff". Note that a failed frontswap_map allocation is safe... failure is noted by lack of "FS" in the subsequent printk. --- [v14: rebase to 3.4-rc2] [v10: no change] [v9: akpm@linux-foundation.org: mark some statics __read_mostly] [v9: akpm@linux-foundation.org: add clarifying comments] [v9: akpm@linux-foundation.org: no need to loop repeating try_to_unuse] [v9: error27@gmail.com: remove superfluous check for NULL] [v8: rebase to 3.0-rc4] [v8: kamezawa.hiroyu@jp.fujitsu.com: change counter to atomic_t to avoid races] [v8: kamezawa.hiroyu@jp.fujitsu.com: comment to clarify informational counters] [v7: rebase to 3.0-rc3] [v7: JBeulich@novell.com: add new swap struct elements only if config'd] [v6: rebase to 3.0-rc1] [v6: lliubbo@gmail.com: fix null pointer deref if vzalloc fails] [v6: konrad.wilk@oracl.com: various checks and code clarifications/comments] [v5: no change from v4] [v4: rebase to 2.6.39] Signed-off-by: Dan Magenheimer <dan.magenheimer@oracle.com> Reviewed-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Jan Beulich <JBeulich@novell.com> Acked-by: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Matthew Wilcox <matthew@wil.cx> Cc: Chris Mason <chris.mason@oracle.com> Cc: Rik Riel <riel@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> [v11: Rebased, fixed mm/swapfile.c context change] Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2012-04-09 23:08:06 +00:00
if (frontswap) {
if (frontswap_test(si, i))
break;
else
continue;
}
count = READ_ONCE(si->swap_map[i]);
if (count && swap_count(count) != SWAP_MAP_BAD)
break;
}
return i;
}
/*
* We completely avoid races by reading each swap page in advance,
* and then search for the process using it. All the necessary
* page table adjustments can then be made atomically.
mm: frontswap: core swap subsystem hooks and headers This patch, 2of4, contains the changes to the core swap subsystem. This includes: (1) makes available core swap data structures (swap_lock, swap_list and swap_info) that are needed by frontswap.c but we don't need to expose them to the dozens of files that include swap.h so we create a new swapfile.h just to extern-ify these and modify their declarations to non-static (2) adds frontswap-related elements to swap_info_struct. Frontswap_map points to vzalloc'ed one-bit-per-swap-page metadata that indicates whether the swap page is in frontswap or in the device and frontswap_pages counts how many pages are in frontswap. (3) adds hooks in the swap subsystem and extends try_to_unuse so that frontswap_shrink can do a "partial swapoff". Note that a failed frontswap_map allocation is safe... failure is noted by lack of "FS" in the subsequent printk. --- [v14: rebase to 3.4-rc2] [v10: no change] [v9: akpm@linux-foundation.org: mark some statics __read_mostly] [v9: akpm@linux-foundation.org: add clarifying comments] [v9: akpm@linux-foundation.org: no need to loop repeating try_to_unuse] [v9: error27@gmail.com: remove superfluous check for NULL] [v8: rebase to 3.0-rc4] [v8: kamezawa.hiroyu@jp.fujitsu.com: change counter to atomic_t to avoid races] [v8: kamezawa.hiroyu@jp.fujitsu.com: comment to clarify informational counters] [v7: rebase to 3.0-rc3] [v7: JBeulich@novell.com: add new swap struct elements only if config'd] [v6: rebase to 3.0-rc1] [v6: lliubbo@gmail.com: fix null pointer deref if vzalloc fails] [v6: konrad.wilk@oracl.com: various checks and code clarifications/comments] [v5: no change from v4] [v4: rebase to 2.6.39] Signed-off-by: Dan Magenheimer <dan.magenheimer@oracle.com> Reviewed-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Jan Beulich <JBeulich@novell.com> Acked-by: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Matthew Wilcox <matthew@wil.cx> Cc: Chris Mason <chris.mason@oracle.com> Cc: Rik Riel <riel@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> [v11: Rebased, fixed mm/swapfile.c context change] Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2012-04-09 23:08:06 +00:00
*
* if the boolean frontswap is true, only unuse pages_to_unuse pages;
* pages_to_unuse==0 means all pages; ignored if frontswap is false
*/
mm: frontswap: core swap subsystem hooks and headers This patch, 2of4, contains the changes to the core swap subsystem. This includes: (1) makes available core swap data structures (swap_lock, swap_list and swap_info) that are needed by frontswap.c but we don't need to expose them to the dozens of files that include swap.h so we create a new swapfile.h just to extern-ify these and modify their declarations to non-static (2) adds frontswap-related elements to swap_info_struct. Frontswap_map points to vzalloc'ed one-bit-per-swap-page metadata that indicates whether the swap page is in frontswap or in the device and frontswap_pages counts how many pages are in frontswap. (3) adds hooks in the swap subsystem and extends try_to_unuse so that frontswap_shrink can do a "partial swapoff". Note that a failed frontswap_map allocation is safe... failure is noted by lack of "FS" in the subsequent printk. --- [v14: rebase to 3.4-rc2] [v10: no change] [v9: akpm@linux-foundation.org: mark some statics __read_mostly] [v9: akpm@linux-foundation.org: add clarifying comments] [v9: akpm@linux-foundation.org: no need to loop repeating try_to_unuse] [v9: error27@gmail.com: remove superfluous check for NULL] [v8: rebase to 3.0-rc4] [v8: kamezawa.hiroyu@jp.fujitsu.com: change counter to atomic_t to avoid races] [v8: kamezawa.hiroyu@jp.fujitsu.com: comment to clarify informational counters] [v7: rebase to 3.0-rc3] [v7: JBeulich@novell.com: add new swap struct elements only if config'd] [v6: rebase to 3.0-rc1] [v6: lliubbo@gmail.com: fix null pointer deref if vzalloc fails] [v6: konrad.wilk@oracl.com: various checks and code clarifications/comments] [v5: no change from v4] [v4: rebase to 2.6.39] Signed-off-by: Dan Magenheimer <dan.magenheimer@oracle.com> Reviewed-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Jan Beulich <JBeulich@novell.com> Acked-by: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Matthew Wilcox <matthew@wil.cx> Cc: Chris Mason <chris.mason@oracle.com> Cc: Rik Riel <riel@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> [v11: Rebased, fixed mm/swapfile.c context change] Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2012-04-09 23:08:06 +00:00
int try_to_unuse(unsigned int type, bool frontswap,
unsigned long pages_to_unuse)
{
struct swap_info_struct *si = swap_info[type];
struct mm_struct *start_mm;
swap: fix races exposed by swap discard The previous patch can expose races, according to Hugh: swapoff was sometimes failing with "Cannot allocate memory", coming from try_to_unuse()'s -ENOMEM: it needs to allow for swap_duplicate() failing on a free entry temporarily SWAP_MAP_BAD while being discarded. We should use ACCESS_ONCE() there, and whenever accessing swap_map locklessly; but rather than peppering it throughout try_to_unuse(), just declare *swap_map with volatile. try_to_unuse() is accustomed to *swap_map going down racily, but not necessarily to it jumping up from 0 to SWAP_MAP_BAD: we'll be safer to prevent that transition once SWP_WRITEOK is switched off, when it's a waste of time to issue discards anyway (swapon can do a whole discard). Another issue is: In swapin_readahead(), read_swap_cache_async() can read a bad swap entry, because we don't check if readahead swap entry is bad. This doesn't break anything but such swapin page is wasteful and can only be freed at page reclaim. We should avoid read such swap entry. And in discard, we mark swap entry SWAP_MAP_BAD and then switch it to normal when discard is finished. If readahead reads such swap entry, we have the same issue, so we much check if swap entry is bad too. Thanks Hugh to inspire swapin_readahead could use bad swap entry. [include Hugh's patch 'swap: fix swapoff ENOMEMs from discard'] Signed-off-by: Shaohua Li <shli@fusionio.com> Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:31 +00:00
volatile unsigned char *swap_map; /* swap_map is accessed without
* locking. Mark it as volatile
* to prevent compiler doing
* something odd.
*/
unsigned char swcount;
struct page *page;
swp_entry_t entry;
unsigned int i = 0;
int retval = 0;
/*
* When searching mms for an entry, a good strategy is to
* start at the first mm we freed the previous entry from
* (though actually we don't notice whether we or coincidence
* freed the entry). Initialize this start_mm with a hold.
*
* A simpler strategy would be to start at the last mm we
* freed the previous entry from; but that would take less
* advantage of mmlist ordering, which clusters forked mms
* together, child after parent. If we race with dup_mmap(), we
* prefer to resolve parent before child, lest we miss entries
* duplicated after we scanned child: using last mm would invert
swap_info: swap count continuations Swap is duplicated (reference count incremented by one) whenever the same swap page is inserted into another mm (when forking finds a swap entry in place of a pte, or when reclaim unmaps a pte to insert the swap entry). swap_info_struct's vmalloc'ed swap_map is the array of these reference counts: but what happens when the unsigned short (or unsigned char since the preceding patch) is full? (and its high bit is kept for a cache flag) We then lose track of it, never freeing, leaving it in use until swapoff: at which point we _hope_ that a single pass will have found all instances, assume there are no more, and will lose user data if we're wrong. Swapping of KSM pages has not yet been enabled; but it is implemented, and makes it very easy for a user to overflow the maximum swap count: possible with ordinary process pages, but unlikely, even when pid_max has been raised from PID_MAX_DEFAULT. This patch implements swap count continuations: when the count overflows, a continuation page is allocated and linked to the original vmalloc'ed map page, and this used to hold the continuation counts for that entry and its neighbours. These continuation pages are seldom referenced: the common paths all work on the original swap_map, only referring to a continuation page when the low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 01:58:46 +00:00
* that.
*/
start_mm = &init_mm;
atomic_inc(&init_mm.mm_users);
/*
* Keep on scanning until all entries have gone. Usually,
* one pass through swap_map is enough, but not necessarily:
* there are races when an instance of an entry might be missed.
*/
mm: frontswap: core swap subsystem hooks and headers This patch, 2of4, contains the changes to the core swap subsystem. This includes: (1) makes available core swap data structures (swap_lock, swap_list and swap_info) that are needed by frontswap.c but we don't need to expose them to the dozens of files that include swap.h so we create a new swapfile.h just to extern-ify these and modify their declarations to non-static (2) adds frontswap-related elements to swap_info_struct. Frontswap_map points to vzalloc'ed one-bit-per-swap-page metadata that indicates whether the swap page is in frontswap or in the device and frontswap_pages counts how many pages are in frontswap. (3) adds hooks in the swap subsystem and extends try_to_unuse so that frontswap_shrink can do a "partial swapoff". Note that a failed frontswap_map allocation is safe... failure is noted by lack of "FS" in the subsequent printk. --- [v14: rebase to 3.4-rc2] [v10: no change] [v9: akpm@linux-foundation.org: mark some statics __read_mostly] [v9: akpm@linux-foundation.org: add clarifying comments] [v9: akpm@linux-foundation.org: no need to loop repeating try_to_unuse] [v9: error27@gmail.com: remove superfluous check for NULL] [v8: rebase to 3.0-rc4] [v8: kamezawa.hiroyu@jp.fujitsu.com: change counter to atomic_t to avoid races] [v8: kamezawa.hiroyu@jp.fujitsu.com: comment to clarify informational counters] [v7: rebase to 3.0-rc3] [v7: JBeulich@novell.com: add new swap struct elements only if config'd] [v6: rebase to 3.0-rc1] [v6: lliubbo@gmail.com: fix null pointer deref if vzalloc fails] [v6: konrad.wilk@oracl.com: various checks and code clarifications/comments] [v5: no change from v4] [v4: rebase to 2.6.39] Signed-off-by: Dan Magenheimer <dan.magenheimer@oracle.com> Reviewed-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Jan Beulich <JBeulich@novell.com> Acked-by: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Matthew Wilcox <matthew@wil.cx> Cc: Chris Mason <chris.mason@oracle.com> Cc: Rik Riel <riel@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> [v11: Rebased, fixed mm/swapfile.c context change] Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2012-04-09 23:08:06 +00:00
while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
if (signal_pending(current)) {
retval = -EINTR;
break;
}
/*
* Get a page for the entry, using the existing swap
* cache page if there is one. Otherwise, get a clean
* page and read the swap into it.
*/
swap_map = &si->swap_map[i];
entry = swp_entry(type, i);
page = read_swap_cache_async(entry,
GFP_HIGHUSER_MOVABLE, NULL, 0);
if (!page) {
/*
* Either swap_duplicate() failed because entry
* has been freed independently, and will not be
* reused since sys_swapoff() already disabled
* allocation from here, or alloc_page() failed.
*/
swap: fix races exposed by swap discard The previous patch can expose races, according to Hugh: swapoff was sometimes failing with "Cannot allocate memory", coming from try_to_unuse()'s -ENOMEM: it needs to allow for swap_duplicate() failing on a free entry temporarily SWAP_MAP_BAD while being discarded. We should use ACCESS_ONCE() there, and whenever accessing swap_map locklessly; but rather than peppering it throughout try_to_unuse(), just declare *swap_map with volatile. try_to_unuse() is accustomed to *swap_map going down racily, but not necessarily to it jumping up from 0 to SWAP_MAP_BAD: we'll be safer to prevent that transition once SWP_WRITEOK is switched off, when it's a waste of time to issue discards anyway (swapon can do a whole discard). Another issue is: In swapin_readahead(), read_swap_cache_async() can read a bad swap entry, because we don't check if readahead swap entry is bad. This doesn't break anything but such swapin page is wasteful and can only be freed at page reclaim. We should avoid read such swap entry. And in discard, we mark swap entry SWAP_MAP_BAD and then switch it to normal when discard is finished. If readahead reads such swap entry, we have the same issue, so we much check if swap entry is bad too. Thanks Hugh to inspire swapin_readahead could use bad swap entry. [include Hugh's patch 'swap: fix swapoff ENOMEMs from discard'] Signed-off-by: Shaohua Li <shli@fusionio.com> Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:31 +00:00
swcount = *swap_map;
/*
* We don't hold lock here, so the swap entry could be
* SWAP_MAP_BAD (when the cluster is discarding).
* Instead of fail out, We can just skip the swap
* entry because swapoff will wait for discarding
* finish anyway.
*/
if (!swcount || swcount == SWAP_MAP_BAD)
continue;
retval = -ENOMEM;
break;
}
/*
* Don't hold on to start_mm if it looks like exiting.
*/
if (atomic_read(&start_mm->mm_users) == 1) {
mmput(start_mm);
start_mm = &init_mm;
atomic_inc(&init_mm.mm_users);
}
/*
* Wait for and lock page. When do_swap_page races with
* try_to_unuse, do_swap_page can handle the fault much
* faster than try_to_unuse can locate the entry. This
* apparently redundant "wait_on_page_locked" lets try_to_unuse
* defer to do_swap_page in such a case - in some tests,
* do_swap_page and try_to_unuse repeatedly compete.
*/
wait_on_page_locked(page);
wait_on_page_writeback(page);
lock_page(page);
wait_on_page_writeback(page);
/*
* Remove all references to entry.
*/
swcount = *swap_map;
if (swap_count(swcount) == SWAP_MAP_SHMEM) {
retval = shmem_unuse(entry, page);
/* page has already been unlocked and released */
if (retval < 0)
break;
continue;
}
if (swap_count(swcount) && start_mm != &init_mm)
retval = unuse_mm(start_mm, entry, page);
if (swap_count(*swap_map)) {
int set_start_mm = (*swap_map >= swcount);
struct list_head *p = &start_mm->mmlist;
struct mm_struct *new_start_mm = start_mm;
struct mm_struct *prev_mm = start_mm;
struct mm_struct *mm;
atomic_inc(&new_start_mm->mm_users);
atomic_inc(&prev_mm->mm_users);
spin_lock(&mmlist_lock);
while (swap_count(*swap_map) && !retval &&
(p = p->next) != &start_mm->mmlist) {
mm = list_entry(p, struct mm_struct, mmlist);
if (!atomic_inc_not_zero(&mm->mm_users))
continue;
spin_unlock(&mmlist_lock);
mmput(prev_mm);
prev_mm = mm;
cond_resched();
swcount = *swap_map;
if (!swap_count(swcount)) /* any usage ? */
;
else if (mm == &init_mm)
set_start_mm = 1;
else
retval = unuse_mm(mm, entry, page);
if (set_start_mm && *swap_map < swcount) {
mmput(new_start_mm);
atomic_inc(&mm->mm_users);
new_start_mm = mm;
set_start_mm = 0;
}
spin_lock(&mmlist_lock);
}
spin_unlock(&mmlist_lock);
mmput(prev_mm);
mmput(start_mm);
start_mm = new_start_mm;
}
if (retval) {
unlock_page(page);
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 12:29:47 +00:00
put_page(page);
break;
}
/*
* If a reference remains (rare), we would like to leave
* the page in the swap cache; but try_to_unmap could
* then re-duplicate the entry once we drop page lock,
* so we might loop indefinitely; also, that page could
* not be swapped out to other storage meanwhile. So:
* delete from cache even if there's another reference,
* after ensuring that the data has been saved to disk -
* since if the reference remains (rarer), it will be
* read from disk into another page. Splitting into two
* pages would be incorrect if swap supported "shared
* private" pages, but they are handled by tmpfs files.
ksm: let shared pages be swappable Initial implementation for swapping out KSM's shared pages: add page_referenced_ksm() and try_to_unmap_ksm(), which rmap.c calls when faced with a PageKsm page. Most of what's needed can be got from the rmap_items listed from the stable_node of the ksm page, without discovering the actual vma: so in this patch just fake up a struct vma for page_referenced_one() or try_to_unmap_one(), then refine that in the next patch. Add VM_NONLINEAR to ksm_madvise()'s list of exclusions: it has always been implicit there (being only set with VM_SHARED, already excluded), but let's make it explicit, to help justify the lack of nonlinear unmap. Rely on the page lock to protect against concurrent modifications to that page's node of the stable tree. The awkward part is not swapout but swapin: do_swap_page() and page_add_anon_rmap() now have to allow for new possibilities - perhaps a ksm page still in swapcache, perhaps a swapcache page associated with one location in one anon_vma now needed for another location or anon_vma. (And the vma might even be no longer VM_MERGEABLE when that happens.) ksm_might_need_to_copy() checks for that case, and supplies a duplicate page when necessary, simply leaving it to a subsequent pass of ksmd to rediscover the identity and merge them back into one ksm page. Disappointingly primitive: but the alternative would have to accumulate unswappable info about the swapped out ksm pages, limiting swappability. Remove page_add_ksm_rmap(): page_add_anon_rmap() now has to allow for the particular case it was handling, so just use it instead. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Izik Eidus <ieidus@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Chris Wright <chrisw@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 01:59:24 +00:00
*
* Given how unuse_vma() targets one particular offset
* in an anon_vma, once the anon_vma has been determined,
* this splitting happens to be just what is needed to
* handle where KSM pages have been swapped out: re-reading
* is unnecessarily slow, but we can fix that later on.
*/
if (swap_count(*swap_map) &&
PageDirty(page) && PageSwapCache(page)) {
struct writeback_control wbc = {
.sync_mode = WB_SYNC_NONE,
};
swap_writepage(page, &wbc);
lock_page(page);
wait_on_page_writeback(page);
}
mm: try_to_unuse check removing right swap There's a possible race in try_to_unuse() which Nick Piggin led me to two years ago. Where it does lock_page() after read_swap_cache_async(), what if another task removed that page from swapcache just before we locked it? It would sail though the (*swap_map > 1) tests doing nothing (because it could not have been removed from swapcache before its swap references were gone), until it reaches the delete_from_swap_cache(page) near the bottom. Now imagine that this page has been allocated to swap on a different swap area while we dropped page lock (perhaps at the top, perhaps in unuse_mm): we could wrongly remove from swap cache before the page has been written to swap, so a subsequent do_swap_page() would read in stale data from swap. I think this case could not happen before: remove_exclusive_swap_page() refused while page count was raised. But now with reuse_swap_page() and try_to_free_swap() removing from swap cache without minding page count, I think it could happen - the previous patch argued that it was safe because try_to_unuse() already ignored page count, but overlooked that it might be breaking the assumptions in try_to_unuse() itself. Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Rik van Riel <riel@redhat.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Robin Holt <holt@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 22:39:37 +00:00
/*
* It is conceivable that a racing task removed this page from
* swap cache just before we acquired the page lock at the top,
* or while we dropped it in unuse_mm(). The page might even
* be back in swap cache on another swap area: that we must not
* delete, since it may not have been written out to swap yet.
*/
if (PageSwapCache(page) &&
likely(page_private(page) == entry.val))
delete_from_swap_cache(page);
/*
* So we could skip searching mms once swap count went
* to 1, we did not mark any present ptes as dirty: must
* mark page dirty so shrink_page_list will preserve it.
*/
SetPageDirty(page);
unlock_page(page);
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 12:29:47 +00:00
put_page(page);
/*
* Make sure that we aren't completely killing
* interactive performance.
*/
cond_resched();
mm: frontswap: core swap subsystem hooks and headers This patch, 2of4, contains the changes to the core swap subsystem. This includes: (1) makes available core swap data structures (swap_lock, swap_list and swap_info) that are needed by frontswap.c but we don't need to expose them to the dozens of files that include swap.h so we create a new swapfile.h just to extern-ify these and modify their declarations to non-static (2) adds frontswap-related elements to swap_info_struct. Frontswap_map points to vzalloc'ed one-bit-per-swap-page metadata that indicates whether the swap page is in frontswap or in the device and frontswap_pages counts how many pages are in frontswap. (3) adds hooks in the swap subsystem and extends try_to_unuse so that frontswap_shrink can do a "partial swapoff". Note that a failed frontswap_map allocation is safe... failure is noted by lack of "FS" in the subsequent printk. --- [v14: rebase to 3.4-rc2] [v10: no change] [v9: akpm@linux-foundation.org: mark some statics __read_mostly] [v9: akpm@linux-foundation.org: add clarifying comments] [v9: akpm@linux-foundation.org: no need to loop repeating try_to_unuse] [v9: error27@gmail.com: remove superfluous check for NULL] [v8: rebase to 3.0-rc4] [v8: kamezawa.hiroyu@jp.fujitsu.com: change counter to atomic_t to avoid races] [v8: kamezawa.hiroyu@jp.fujitsu.com: comment to clarify informational counters] [v7: rebase to 3.0-rc3] [v7: JBeulich@novell.com: add new swap struct elements only if config'd] [v6: rebase to 3.0-rc1] [v6: lliubbo@gmail.com: fix null pointer deref if vzalloc fails] [v6: konrad.wilk@oracl.com: various checks and code clarifications/comments] [v5: no change from v4] [v4: rebase to 2.6.39] Signed-off-by: Dan Magenheimer <dan.magenheimer@oracle.com> Reviewed-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Jan Beulich <JBeulich@novell.com> Acked-by: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Matthew Wilcox <matthew@wil.cx> Cc: Chris Mason <chris.mason@oracle.com> Cc: Rik Riel <riel@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> [v11: Rebased, fixed mm/swapfile.c context change] Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2012-04-09 23:08:06 +00:00
if (frontswap && pages_to_unuse > 0) {
if (!--pages_to_unuse)
break;
}
}
mmput(start_mm);
return retval;
}
/*
* After a successful try_to_unuse, if no swap is now in use, we know
* we can empty the mmlist. swap_lock must be held on entry and exit.
* Note that mmlist_lock nests inside swap_lock, and an mm must be
* added to the mmlist just after page_duplicate - before would be racy.
*/
static void drain_mmlist(void)
{
struct list_head *p, *next;
unsigned int type;
for (type = 0; type < nr_swapfiles; type++)
if (swap_info[type]->inuse_pages)
return;
spin_lock(&mmlist_lock);
list_for_each_safe(p, next, &init_mm.mmlist)
list_del_init(p);
spin_unlock(&mmlist_lock);
}
/*
* Use this swapdev's extent info to locate the (PAGE_SIZE) block which
* corresponds to page offset for the specified swap entry.
* Note that the type of this function is sector_t, but it returns page offset
* into the bdev, not sector offset.
*/
static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
{
struct swap_info_struct *sis;
struct swap_extent *start_se;
struct swap_extent *se;
pgoff_t offset;
sis = swap_info[swp_type(entry)];
*bdev = sis->bdev;
offset = swp_offset(entry);
start_se = sis->curr_swap_extent;
se = start_se;
for ( ; ; ) {
if (se->start_page <= offset &&
offset < (se->start_page + se->nr_pages)) {
return se->start_block + (offset - se->start_page);
}
se = list_next_entry(se, list);
sis->curr_swap_extent = se;
BUG_ON(se == start_se); /* It *must* be present */
}
}
/*
* Returns the page offset into bdev for the specified page's swap entry.
*/
sector_t map_swap_page(struct page *page, struct block_device **bdev)
{
swp_entry_t entry;
entry.val = page_private(page);
return map_swap_entry(entry, bdev);
}
/*
* Free all of a swapdev's extent information
*/
static void destroy_swap_extents(struct swap_info_struct *sis)
{
while (!list_empty(&sis->first_swap_extent.list)) {
struct swap_extent *se;
se = list_first_entry(&sis->first_swap_extent.list,
struct swap_extent, list);
list_del(&se->list);
kfree(se);
}
mm: add support for a filesystem to activate swap files and use direct_IO for writing swap pages Currently swapfiles are managed entirely by the core VM by using ->bmap to allocate space and write to the blocks directly. This effectively ensures that the underlying blocks are allocated and avoids the need for the swap subsystem to locate what physical blocks store offsets within a file. If the swap subsystem is to use the filesystem information to locate the blocks, it is critical that information such as block groups, block bitmaps and the block descriptor table that map the swap file were resident in memory. This patch adds address_space_operations that the VM can call when activating or deactivating swap backed by a file. int swap_activate(struct file *); int swap_deactivate(struct file *); The ->swap_activate() method is used to communicate to the file that the VM relies on it, and the address_space should take adequate measures such as reserving space in the underlying device, reserving memory for mempools and pinning information such as the block descriptor table in memory. The ->swap_deactivate() method is called on sys_swapoff() if ->swap_activate() returned success. After a successful swapfile ->swap_activate, the swapfile is marked SWP_FILE and swapper_space.a_ops will proxy to sis->swap_file->f_mappings->a_ops using ->direct_io to write swapcache pages and ->readpage to read. It is perfectly possible that direct_IO be used to read the swap pages but it is an unnecessary complication. Similarly, it is possible that ->writepage be used instead of direct_io to write the pages but filesystem developers have stated that calling writepage from the VM is undesirable for a variety of reasons and using direct_IO opens up the possibility of writing back batches of swap pages in the future. [a.p.zijlstra@chello.nl: Original patch] Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Paris <eparis@redhat.com> Cc: James Morris <jmorris@namei.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Neil Brown <neilb@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: Xiaotian Feng <dfeng@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-31 23:44:55 +00:00
if (sis->flags & SWP_FILE) {
struct file *swap_file = sis->swap_file;
struct address_space *mapping = swap_file->f_mapping;
sis->flags &= ~SWP_FILE;
mapping->a_ops->swap_deactivate(swap_file);
}
}
/*
* Add a block range (and the corresponding page range) into this swapdev's
* extent list. The extent list is kept sorted in page order.
*
* This function rather assumes that it is called in ascending page order.
*/
int
add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
unsigned long nr_pages, sector_t start_block)
{
struct swap_extent *se;
struct swap_extent *new_se;
struct list_head *lh;
if (start_page == 0) {
se = &sis->first_swap_extent;
sis->curr_swap_extent = se;
se->start_page = 0;
se->nr_pages = nr_pages;
se->start_block = start_block;
return 1;
} else {
lh = sis->first_swap_extent.list.prev; /* Highest extent */
se = list_entry(lh, struct swap_extent, list);
BUG_ON(se->start_page + se->nr_pages != start_page);
if (se->start_block + se->nr_pages == start_block) {
/* Merge it */
se->nr_pages += nr_pages;
return 0;
}
}
/*
* No merge. Insert a new extent, preserving ordering.
*/
new_se = kmalloc(sizeof(*se), GFP_KERNEL);
if (new_se == NULL)
return -ENOMEM;
new_se->start_page = start_page;
new_se->nr_pages = nr_pages;
new_se->start_block = start_block;
list_add_tail(&new_se->list, &sis->first_swap_extent.list);
return 1;
}
/*
* A `swap extent' is a simple thing which maps a contiguous range of pages
* onto a contiguous range of disk blocks. An ordered list of swap extents
* is built at swapon time and is then used at swap_writepage/swap_readpage
* time for locating where on disk a page belongs.
*
* If the swapfile is an S_ISBLK block device, a single extent is installed.
* This is done so that the main operating code can treat S_ISBLK and S_ISREG
* swap files identically.
*
* Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
* extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
* swapfiles are handled *identically* after swapon time.
*
* For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
* and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
* some stray blocks are found which do not fall within the PAGE_SIZE alignment
* requirements, they are simply tossed out - we will never use those blocks
* for swapping.
*
* For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
* prevents root from shooting her foot off by ftruncating an in-use swapfile,
* which will scribble on the fs.
*
* The amount of disk space which a single swap extent represents varies.
* Typically it is in the 1-4 megabyte range. So we can have hundreds of
* extents in the list. To avoid much list walking, we cache the previous
* search location in `curr_swap_extent', and start new searches from there.
* This is extremely effective. The average number of iterations in
* map_swap_page() has been measured at about 0.3 per page. - akpm.
*/
static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
{
mm: add support for a filesystem to activate swap files and use direct_IO for writing swap pages Currently swapfiles are managed entirely by the core VM by using ->bmap to allocate space and write to the blocks directly. This effectively ensures that the underlying blocks are allocated and avoids the need for the swap subsystem to locate what physical blocks store offsets within a file. If the swap subsystem is to use the filesystem information to locate the blocks, it is critical that information such as block groups, block bitmaps and the block descriptor table that map the swap file were resident in memory. This patch adds address_space_operations that the VM can call when activating or deactivating swap backed by a file. int swap_activate(struct file *); int swap_deactivate(struct file *); The ->swap_activate() method is used to communicate to the file that the VM relies on it, and the address_space should take adequate measures such as reserving space in the underlying device, reserving memory for mempools and pinning information such as the block descriptor table in memory. The ->swap_deactivate() method is called on sys_swapoff() if ->swap_activate() returned success. After a successful swapfile ->swap_activate, the swapfile is marked SWP_FILE and swapper_space.a_ops will proxy to sis->swap_file->f_mappings->a_ops using ->direct_io to write swapcache pages and ->readpage to read. It is perfectly possible that direct_IO be used to read the swap pages but it is an unnecessary complication. Similarly, it is possible that ->writepage be used instead of direct_io to write the pages but filesystem developers have stated that calling writepage from the VM is undesirable for a variety of reasons and using direct_IO opens up the possibility of writing back batches of swap pages in the future. [a.p.zijlstra@chello.nl: Original patch] Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Paris <eparis@redhat.com> Cc: James Morris <jmorris@namei.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Neil Brown <neilb@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: Xiaotian Feng <dfeng@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-31 23:44:55 +00:00
struct file *swap_file = sis->swap_file;
struct address_space *mapping = swap_file->f_mapping;
struct inode *inode = mapping->host;
int ret;
if (S_ISBLK(inode->i_mode)) {
ret = add_swap_extent(sis, 0, sis->max, 0);
*span = sis->pages;
return ret;
}
mm: add support for a filesystem to activate swap files and use direct_IO for writing swap pages Currently swapfiles are managed entirely by the core VM by using ->bmap to allocate space and write to the blocks directly. This effectively ensures that the underlying blocks are allocated and avoids the need for the swap subsystem to locate what physical blocks store offsets within a file. If the swap subsystem is to use the filesystem information to locate the blocks, it is critical that information such as block groups, block bitmaps and the block descriptor table that map the swap file were resident in memory. This patch adds address_space_operations that the VM can call when activating or deactivating swap backed by a file. int swap_activate(struct file *); int swap_deactivate(struct file *); The ->swap_activate() method is used to communicate to the file that the VM relies on it, and the address_space should take adequate measures such as reserving space in the underlying device, reserving memory for mempools and pinning information such as the block descriptor table in memory. The ->swap_deactivate() method is called on sys_swapoff() if ->swap_activate() returned success. After a successful swapfile ->swap_activate, the swapfile is marked SWP_FILE and swapper_space.a_ops will proxy to sis->swap_file->f_mappings->a_ops using ->direct_io to write swapcache pages and ->readpage to read. It is perfectly possible that direct_IO be used to read the swap pages but it is an unnecessary complication. Similarly, it is possible that ->writepage be used instead of direct_io to write the pages but filesystem developers have stated that calling writepage from the VM is undesirable for a variety of reasons and using direct_IO opens up the possibility of writing back batches of swap pages in the future. [a.p.zijlstra@chello.nl: Original patch] Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Paris <eparis@redhat.com> Cc: James Morris <jmorris@namei.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Neil Brown <neilb@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: Xiaotian Feng <dfeng@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-31 23:44:55 +00:00
if (mapping->a_ops->swap_activate) {
ret = mapping->a_ops->swap_activate(sis, swap_file, span);
mm: add support for a filesystem to activate swap files and use direct_IO for writing swap pages Currently swapfiles are managed entirely by the core VM by using ->bmap to allocate space and write to the blocks directly. This effectively ensures that the underlying blocks are allocated and avoids the need for the swap subsystem to locate what physical blocks store offsets within a file. If the swap subsystem is to use the filesystem information to locate the blocks, it is critical that information such as block groups, block bitmaps and the block descriptor table that map the swap file were resident in memory. This patch adds address_space_operations that the VM can call when activating or deactivating swap backed by a file. int swap_activate(struct file *); int swap_deactivate(struct file *); The ->swap_activate() method is used to communicate to the file that the VM relies on it, and the address_space should take adequate measures such as reserving space in the underlying device, reserving memory for mempools and pinning information such as the block descriptor table in memory. The ->swap_deactivate() method is called on sys_swapoff() if ->swap_activate() returned success. After a successful swapfile ->swap_activate, the swapfile is marked SWP_FILE and swapper_space.a_ops will proxy to sis->swap_file->f_mappings->a_ops using ->direct_io to write swapcache pages and ->readpage to read. It is perfectly possible that direct_IO be used to read the swap pages but it is an unnecessary complication. Similarly, it is possible that ->writepage be used instead of direct_io to write the pages but filesystem developers have stated that calling writepage from the VM is undesirable for a variety of reasons and using direct_IO opens up the possibility of writing back batches of swap pages in the future. [a.p.zijlstra@chello.nl: Original patch] Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Paris <eparis@redhat.com> Cc: James Morris <jmorris@namei.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Neil Brown <neilb@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: Xiaotian Feng <dfeng@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-31 23:44:55 +00:00
if (!ret) {
sis->flags |= SWP_FILE;
ret = add_swap_extent(sis, 0, sis->max, 0);
*span = sis->pages;
}
return ret;
mm: add support for a filesystem to activate swap files and use direct_IO for writing swap pages Currently swapfiles are managed entirely by the core VM by using ->bmap to allocate space and write to the blocks directly. This effectively ensures that the underlying blocks are allocated and avoids the need for the swap subsystem to locate what physical blocks store offsets within a file. If the swap subsystem is to use the filesystem information to locate the blocks, it is critical that information such as block groups, block bitmaps and the block descriptor table that map the swap file were resident in memory. This patch adds address_space_operations that the VM can call when activating or deactivating swap backed by a file. int swap_activate(struct file *); int swap_deactivate(struct file *); The ->swap_activate() method is used to communicate to the file that the VM relies on it, and the address_space should take adequate measures such as reserving space in the underlying device, reserving memory for mempools and pinning information such as the block descriptor table in memory. The ->swap_deactivate() method is called on sys_swapoff() if ->swap_activate() returned success. After a successful swapfile ->swap_activate, the swapfile is marked SWP_FILE and swapper_space.a_ops will proxy to sis->swap_file->f_mappings->a_ops using ->direct_io to write swapcache pages and ->readpage to read. It is perfectly possible that direct_IO be used to read the swap pages but it is an unnecessary complication. Similarly, it is possible that ->writepage be used instead of direct_io to write the pages but filesystem developers have stated that calling writepage from the VM is undesirable for a variety of reasons and using direct_IO opens up the possibility of writing back batches of swap pages in the future. [a.p.zijlstra@chello.nl: Original patch] Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Paris <eparis@redhat.com> Cc: James Morris <jmorris@namei.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Neil Brown <neilb@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: Xiaotian Feng <dfeng@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-31 23:44:55 +00:00
}
return generic_swapfile_activate(sis, swap_file, span);
}
static void _enable_swap_info(struct swap_info_struct *p, int prio,
swap: change block allocation algorithm for SSD I'm using a fast SSD to do swap. scan_swap_map() sometimes uses up to 20~30% CPU time (when cluster is hard to find, the CPU time can be up to 80%), which becomes a bottleneck. scan_swap_map() scans a byte array to search a 256 page cluster, which is very slow. Here I introduced a simple algorithm to search cluster. Since we only care about 256 pages cluster, we can just use a counter to track if a cluster is free. Every 256 pages use one int to store the counter. If the counter of a cluster is 0, the cluster is free. All free clusters will be added to a list, so searching cluster is very efficient. With this, scap_swap_map() overhead disappears. This might help low end SD card swap too. Because if the cluster is aligned, SD firmware can do flash erase more efficiently. We only enable the algorithm for SSD. Hard disk swap isn't fast enough and has downside with the algorithm which might introduce regression (see below). The patch slightly changes which cluster is choosen. It always adds free cluster to list tail. This can help wear leveling for low end SSD too. And if no cluster found, the scan_swap_map() will do search from the end of last cluster. So if no cluster found, the scan_swap_map() will do search from the end of last free cluster, which is random. For SSD, this isn't a problem at all. Another downside is the cluster must be aligned to 256 pages, which will reduce the chance to find a cluster. I would expect this isn't a big problem for SSD because of the non-seek penality. (And this is the reason I only enable the algorithm for SSD). Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:28 +00:00
unsigned char *swap_map,
struct swap_cluster_info *cluster_info)
{
if (prio >= 0)
p->prio = prio;
else
p->prio = --least_priority;
swap: change swap_list_head to plist, add swap_avail_head Originally get_swap_page() started iterating through the singly-linked list of swap_info_structs using swap_list.next or highest_priority_index, which both were intended to point to the highest priority active swap target that was not full. The first patch in this series changed the singly-linked list to a doubly-linked list, and removed the logic to start at the highest priority non-full entry; it starts scanning at the highest priority entry each time, even if the entry is full. Replace the manually ordered swap_list_head with a plist, swap_active_head. Add a new plist, swap_avail_head. The original swap_active_head plist contains all active swap_info_structs, as before, while the new swap_avail_head plist contains only swap_info_structs that are active and available, i.e. not full. Add a new spinlock, swap_avail_lock, to protect the swap_avail_head list. Mel Gorman suggested using plists since they internally handle ordering the list entries based on priority, which is exactly what swap was doing manually. All the ordering code is now removed, and swap_info_struct entries and simply added to their corresponding plist and automatically ordered correctly. Using a new plist for available swap_info_structs simplifies and optimizes get_swap_page(), which no longer has to iterate over full swap_info_structs. Using a new spinlock for swap_avail_head plist allows each swap_info_struct to add or remove themselves from the plist when they become full or not-full; previously they could not do so because the swap_info_struct->lock is held when they change from full<->not-full, and the swap_lock protecting the main swap_active_head must be ordered before any swap_info_struct->lock. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Shaohua Li <shli@fusionio.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> Cc: Weijie Yang <weijieut@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Bob Liu <bob.liu@oracle.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 23:09:59 +00:00
/*
* the plist prio is negated because plist ordering is
* low-to-high, while swap ordering is high-to-low
*/
p->list.prio = -p->prio;
p->avail_list.prio = -p->prio;
p->swap_map = swap_map;
swap: change block allocation algorithm for SSD I'm using a fast SSD to do swap. scan_swap_map() sometimes uses up to 20~30% CPU time (when cluster is hard to find, the CPU time can be up to 80%), which becomes a bottleneck. scan_swap_map() scans a byte array to search a 256 page cluster, which is very slow. Here I introduced a simple algorithm to search cluster. Since we only care about 256 pages cluster, we can just use a counter to track if a cluster is free. Every 256 pages use one int to store the counter. If the counter of a cluster is 0, the cluster is free. All free clusters will be added to a list, so searching cluster is very efficient. With this, scap_swap_map() overhead disappears. This might help low end SD card swap too. Because if the cluster is aligned, SD firmware can do flash erase more efficiently. We only enable the algorithm for SSD. Hard disk swap isn't fast enough and has downside with the algorithm which might introduce regression (see below). The patch slightly changes which cluster is choosen. It always adds free cluster to list tail. This can help wear leveling for low end SSD too. And if no cluster found, the scan_swap_map() will do search from the end of last cluster. So if no cluster found, the scan_swap_map() will do search from the end of last free cluster, which is random. For SSD, this isn't a problem at all. Another downside is the cluster must be aligned to 256 pages, which will reduce the chance to find a cluster. I would expect this isn't a big problem for SSD because of the non-seek penality. (And this is the reason I only enable the algorithm for SSD). Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:28 +00:00
p->cluster_info = cluster_info;
p->flags |= SWP_WRITEOK;
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
atomic_long_add(p->pages, &nr_swap_pages);
total_swap_pages += p->pages;
swap: change swap_info singly-linked list to list_head The logic controlling the singly-linked list of swap_info_struct entries for all active, i.e. swapon'ed, swap targets is rather complex, because: - it stores the entries in priority order - there is a pointer to the highest priority entry - there is a pointer to the highest priority not-full entry - there is a highest_priority_index variable set outside the swap_lock - swap entries of equal priority should be used equally this complexity leads to bugs such as: https://lkml.org/lkml/2014/2/13/181 where different priority swap targets are incorrectly used equally. That bug probably could be solved with the existing singly-linked lists, but I think it would only add more complexity to the already difficult to understand get_swap_page() swap_list iteration logic. The first patch changes from a singly-linked list to a doubly-linked list using list_heads; the highest_priority_index and related code are removed and get_swap_page() starts each iteration at the highest priority swap_info entry, even if it's full. While this does introduce unnecessary list iteration (i.e. Schlemiel the painter's algorithm) in the case where one or more of the highest priority entries are full, the iteration and manipulation code is much simpler and behaves correctly re: the above bug; and the fourth patch removes the unnecessary iteration. The second patch adds some minor plist helper functions; nothing new really, just functions to match existing regular list functions. These are used by the next two patches. The third patch adds plist_requeue(), which is used by get_swap_page() in the next patch - it performs the requeueing of same-priority entries (which moves the entry to the end of its priority in the plist), so that all equal-priority swap_info_structs get used equally. The fourth patch converts the main list into a plist, and adds a new plist that contains only swap_info entries that are both active and not full. As Mel suggested using plists allows removing all the ordering code from swap - plists handle ordering automatically. The list naming is also clarified now that there are two lists, with the original list changed from swap_list_head to swap_active_head and the new list named swap_avail_head. A new spinlock is also added for the new list, so swap_info entries can be added or removed from the new list immediately as they become full or not full. This patch (of 4): Replace the singly-linked list tracking active, i.e. swapon'ed, swap_info_struct entries with a doubly-linked list using struct list_heads. Simplify the logic iterating and manipulating the list of entries, especially get_swap_page(), by using standard list_head functions, and removing the highest priority iteration logic. The change fixes the bug: https://lkml.org/lkml/2014/2/13/181 in which different priority swap entries after the highest priority entry are incorrectly used equally in pairs. The swap behavior is now as advertised, i.e. different priority swap entries are used in order, and equal priority swap targets are used concurrently. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> Cc: Weijie Yang <weijieut@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Bob Liu <bob.liu@oracle.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 23:09:53 +00:00
assert_spin_locked(&swap_lock);
/*
swap: change swap_list_head to plist, add swap_avail_head Originally get_swap_page() started iterating through the singly-linked list of swap_info_structs using swap_list.next or highest_priority_index, which both were intended to point to the highest priority active swap target that was not full. The first patch in this series changed the singly-linked list to a doubly-linked list, and removed the logic to start at the highest priority non-full entry; it starts scanning at the highest priority entry each time, even if the entry is full. Replace the manually ordered swap_list_head with a plist, swap_active_head. Add a new plist, swap_avail_head. The original swap_active_head plist contains all active swap_info_structs, as before, while the new swap_avail_head plist contains only swap_info_structs that are active and available, i.e. not full. Add a new spinlock, swap_avail_lock, to protect the swap_avail_head list. Mel Gorman suggested using plists since they internally handle ordering the list entries based on priority, which is exactly what swap was doing manually. All the ordering code is now removed, and swap_info_struct entries and simply added to their corresponding plist and automatically ordered correctly. Using a new plist for available swap_info_structs simplifies and optimizes get_swap_page(), which no longer has to iterate over full swap_info_structs. Using a new spinlock for swap_avail_head plist allows each swap_info_struct to add or remove themselves from the plist when they become full or not-full; previously they could not do so because the swap_info_struct->lock is held when they change from full<->not-full, and the swap_lock protecting the main swap_active_head must be ordered before any swap_info_struct->lock. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Shaohua Li <shli@fusionio.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> Cc: Weijie Yang <weijieut@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Bob Liu <bob.liu@oracle.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 23:09:59 +00:00
* both lists are plists, and thus priority ordered.
* swap_active_head needs to be priority ordered for swapoff(),
* which on removal of any swap_info_struct with an auto-assigned
* (i.e. negative) priority increments the auto-assigned priority
* of any lower-priority swap_info_structs.
* swap_avail_head needs to be priority ordered for get_swap_page(),
* which allocates swap pages from the highest available priority
* swap_info_struct.
swap: change swap_info singly-linked list to list_head The logic controlling the singly-linked list of swap_info_struct entries for all active, i.e. swapon'ed, swap targets is rather complex, because: - it stores the entries in priority order - there is a pointer to the highest priority entry - there is a pointer to the highest priority not-full entry - there is a highest_priority_index variable set outside the swap_lock - swap entries of equal priority should be used equally this complexity leads to bugs such as: https://lkml.org/lkml/2014/2/13/181 where different priority swap targets are incorrectly used equally. That bug probably could be solved with the existing singly-linked lists, but I think it would only add more complexity to the already difficult to understand get_swap_page() swap_list iteration logic. The first patch changes from a singly-linked list to a doubly-linked list using list_heads; the highest_priority_index and related code are removed and get_swap_page() starts each iteration at the highest priority swap_info entry, even if it's full. While this does introduce unnecessary list iteration (i.e. Schlemiel the painter's algorithm) in the case where one or more of the highest priority entries are full, the iteration and manipulation code is much simpler and behaves correctly re: the above bug; and the fourth patch removes the unnecessary iteration. The second patch adds some minor plist helper functions; nothing new really, just functions to match existing regular list functions. These are used by the next two patches. The third patch adds plist_requeue(), which is used by get_swap_page() in the next patch - it performs the requeueing of same-priority entries (which moves the entry to the end of its priority in the plist), so that all equal-priority swap_info_structs get used equally. The fourth patch converts the main list into a plist, and adds a new plist that contains only swap_info entries that are both active and not full. As Mel suggested using plists allows removing all the ordering code from swap - plists handle ordering automatically. The list naming is also clarified now that there are two lists, with the original list changed from swap_list_head to swap_active_head and the new list named swap_avail_head. A new spinlock is also added for the new list, so swap_info entries can be added or removed from the new list immediately as they become full or not full. This patch (of 4): Replace the singly-linked list tracking active, i.e. swapon'ed, swap_info_struct entries with a doubly-linked list using struct list_heads. Simplify the logic iterating and manipulating the list of entries, especially get_swap_page(), by using standard list_head functions, and removing the highest priority iteration logic. The change fixes the bug: https://lkml.org/lkml/2014/2/13/181 in which different priority swap entries after the highest priority entry are incorrectly used equally in pairs. The swap behavior is now as advertised, i.e. different priority swap entries are used in order, and equal priority swap targets are used concurrently. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> Cc: Weijie Yang <weijieut@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Bob Liu <bob.liu@oracle.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 23:09:53 +00:00
*/
swap: change swap_list_head to plist, add swap_avail_head Originally get_swap_page() started iterating through the singly-linked list of swap_info_structs using swap_list.next or highest_priority_index, which both were intended to point to the highest priority active swap target that was not full. The first patch in this series changed the singly-linked list to a doubly-linked list, and removed the logic to start at the highest priority non-full entry; it starts scanning at the highest priority entry each time, even if the entry is full. Replace the manually ordered swap_list_head with a plist, swap_active_head. Add a new plist, swap_avail_head. The original swap_active_head plist contains all active swap_info_structs, as before, while the new swap_avail_head plist contains only swap_info_structs that are active and available, i.e. not full. Add a new spinlock, swap_avail_lock, to protect the swap_avail_head list. Mel Gorman suggested using plists since they internally handle ordering the list entries based on priority, which is exactly what swap was doing manually. All the ordering code is now removed, and swap_info_struct entries and simply added to their corresponding plist and automatically ordered correctly. Using a new plist for available swap_info_structs simplifies and optimizes get_swap_page(), which no longer has to iterate over full swap_info_structs. Using a new spinlock for swap_avail_head plist allows each swap_info_struct to add or remove themselves from the plist when they become full or not-full; previously they could not do so because the swap_info_struct->lock is held when they change from full<->not-full, and the swap_lock protecting the main swap_active_head must be ordered before any swap_info_struct->lock. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Shaohua Li <shli@fusionio.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> Cc: Weijie Yang <weijieut@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Bob Liu <bob.liu@oracle.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 23:09:59 +00:00
plist_add(&p->list, &swap_active_head);
spin_lock(&swap_avail_lock);
plist_add(&p->avail_list, &swap_avail_head);
spin_unlock(&swap_avail_lock);
}
static void enable_swap_info(struct swap_info_struct *p, int prio,
unsigned char *swap_map,
swap: change block allocation algorithm for SSD I'm using a fast SSD to do swap. scan_swap_map() sometimes uses up to 20~30% CPU time (when cluster is hard to find, the CPU time can be up to 80%), which becomes a bottleneck. scan_swap_map() scans a byte array to search a 256 page cluster, which is very slow. Here I introduced a simple algorithm to search cluster. Since we only care about 256 pages cluster, we can just use a counter to track if a cluster is free. Every 256 pages use one int to store the counter. If the counter of a cluster is 0, the cluster is free. All free clusters will be added to a list, so searching cluster is very efficient. With this, scap_swap_map() overhead disappears. This might help low end SD card swap too. Because if the cluster is aligned, SD firmware can do flash erase more efficiently. We only enable the algorithm for SSD. Hard disk swap isn't fast enough and has downside with the algorithm which might introduce regression (see below). The patch slightly changes which cluster is choosen. It always adds free cluster to list tail. This can help wear leveling for low end SSD too. And if no cluster found, the scan_swap_map() will do search from the end of last cluster. So if no cluster found, the scan_swap_map() will do search from the end of last free cluster, which is random. For SSD, this isn't a problem at all. Another downside is the cluster must be aligned to 256 pages, which will reduce the chance to find a cluster. I would expect this isn't a big problem for SSD because of the non-seek penality. (And this is the reason I only enable the algorithm for SSD). Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:28 +00:00
struct swap_cluster_info *cluster_info,
unsigned long *frontswap_map)
{
frontswap_init(p->type, frontswap_map);
spin_lock(&swap_lock);
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
spin_lock(&p->lock);
swap: change block allocation algorithm for SSD I'm using a fast SSD to do swap. scan_swap_map() sometimes uses up to 20~30% CPU time (when cluster is hard to find, the CPU time can be up to 80%), which becomes a bottleneck. scan_swap_map() scans a byte array to search a 256 page cluster, which is very slow. Here I introduced a simple algorithm to search cluster. Since we only care about 256 pages cluster, we can just use a counter to track if a cluster is free. Every 256 pages use one int to store the counter. If the counter of a cluster is 0, the cluster is free. All free clusters will be added to a list, so searching cluster is very efficient. With this, scap_swap_map() overhead disappears. This might help low end SD card swap too. Because if the cluster is aligned, SD firmware can do flash erase more efficiently. We only enable the algorithm for SSD. Hard disk swap isn't fast enough and has downside with the algorithm which might introduce regression (see below). The patch slightly changes which cluster is choosen. It always adds free cluster to list tail. This can help wear leveling for low end SSD too. And if no cluster found, the scan_swap_map() will do search from the end of last cluster. So if no cluster found, the scan_swap_map() will do search from the end of last free cluster, which is random. For SSD, this isn't a problem at all. Another downside is the cluster must be aligned to 256 pages, which will reduce the chance to find a cluster. I would expect this isn't a big problem for SSD because of the non-seek penality. (And this is the reason I only enable the algorithm for SSD). Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:28 +00:00
_enable_swap_info(p, prio, swap_map, cluster_info);
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
spin_unlock(&p->lock);
spin_unlock(&swap_lock);
}
static void reinsert_swap_info(struct swap_info_struct *p)
{
spin_lock(&swap_lock);
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
spin_lock(&p->lock);
swap: change block allocation algorithm for SSD I'm using a fast SSD to do swap. scan_swap_map() sometimes uses up to 20~30% CPU time (when cluster is hard to find, the CPU time can be up to 80%), which becomes a bottleneck. scan_swap_map() scans a byte array to search a 256 page cluster, which is very slow. Here I introduced a simple algorithm to search cluster. Since we only care about 256 pages cluster, we can just use a counter to track if a cluster is free. Every 256 pages use one int to store the counter. If the counter of a cluster is 0, the cluster is free. All free clusters will be added to a list, so searching cluster is very efficient. With this, scap_swap_map() overhead disappears. This might help low end SD card swap too. Because if the cluster is aligned, SD firmware can do flash erase more efficiently. We only enable the algorithm for SSD. Hard disk swap isn't fast enough and has downside with the algorithm which might introduce regression (see below). The patch slightly changes which cluster is choosen. It always adds free cluster to list tail. This can help wear leveling for low end SSD too. And if no cluster found, the scan_swap_map() will do search from the end of last cluster. So if no cluster found, the scan_swap_map() will do search from the end of last free cluster, which is random. For SSD, this isn't a problem at all. Another downside is the cluster must be aligned to 256 pages, which will reduce the chance to find a cluster. I would expect this isn't a big problem for SSD because of the non-seek penality. (And this is the reason I only enable the algorithm for SSD). Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:28 +00:00
_enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
spin_unlock(&p->lock);
spin_unlock(&swap_lock);
}
SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
{
struct swap_info_struct *p = NULL;
unsigned char *swap_map;
swap: change block allocation algorithm for SSD I'm using a fast SSD to do swap. scan_swap_map() sometimes uses up to 20~30% CPU time (when cluster is hard to find, the CPU time can be up to 80%), which becomes a bottleneck. scan_swap_map() scans a byte array to search a 256 page cluster, which is very slow. Here I introduced a simple algorithm to search cluster. Since we only care about 256 pages cluster, we can just use a counter to track if a cluster is free. Every 256 pages use one int to store the counter. If the counter of a cluster is 0, the cluster is free. All free clusters will be added to a list, so searching cluster is very efficient. With this, scap_swap_map() overhead disappears. This might help low end SD card swap too. Because if the cluster is aligned, SD firmware can do flash erase more efficiently. We only enable the algorithm for SSD. Hard disk swap isn't fast enough and has downside with the algorithm which might introduce regression (see below). The patch slightly changes which cluster is choosen. It always adds free cluster to list tail. This can help wear leveling for low end SSD too. And if no cluster found, the scan_swap_map() will do search from the end of last cluster. So if no cluster found, the scan_swap_map() will do search from the end of last free cluster, which is random. For SSD, this isn't a problem at all. Another downside is the cluster must be aligned to 256 pages, which will reduce the chance to find a cluster. I would expect this isn't a big problem for SSD because of the non-seek penality. (And this is the reason I only enable the algorithm for SSD). Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:28 +00:00
struct swap_cluster_info *cluster_info;
unsigned long *frontswap_map;
struct file *swap_file, *victim;
struct address_space *mapping;
struct inode *inode;
struct filename *pathname;
swap: change swap_info singly-linked list to list_head The logic controlling the singly-linked list of swap_info_struct entries for all active, i.e. swapon'ed, swap targets is rather complex, because: - it stores the entries in priority order - there is a pointer to the highest priority entry - there is a pointer to the highest priority not-full entry - there is a highest_priority_index variable set outside the swap_lock - swap entries of equal priority should be used equally this complexity leads to bugs such as: https://lkml.org/lkml/2014/2/13/181 where different priority swap targets are incorrectly used equally. That bug probably could be solved with the existing singly-linked lists, but I think it would only add more complexity to the already difficult to understand get_swap_page() swap_list iteration logic. The first patch changes from a singly-linked list to a doubly-linked list using list_heads; the highest_priority_index and related code are removed and get_swap_page() starts each iteration at the highest priority swap_info entry, even if it's full. While this does introduce unnecessary list iteration (i.e. Schlemiel the painter's algorithm) in the case where one or more of the highest priority entries are full, the iteration and manipulation code is much simpler and behaves correctly re: the above bug; and the fourth patch removes the unnecessary iteration. The second patch adds some minor plist helper functions; nothing new really, just functions to match existing regular list functions. These are used by the next two patches. The third patch adds plist_requeue(), which is used by get_swap_page() in the next patch - it performs the requeueing of same-priority entries (which moves the entry to the end of its priority in the plist), so that all equal-priority swap_info_structs get used equally. The fourth patch converts the main list into a plist, and adds a new plist that contains only swap_info entries that are both active and not full. As Mel suggested using plists allows removing all the ordering code from swap - plists handle ordering automatically. The list naming is also clarified now that there are two lists, with the original list changed from swap_list_head to swap_active_head and the new list named swap_avail_head. A new spinlock is also added for the new list, so swap_info entries can be added or removed from the new list immediately as they become full or not full. This patch (of 4): Replace the singly-linked list tracking active, i.e. swapon'ed, swap_info_struct entries with a doubly-linked list using struct list_heads. Simplify the logic iterating and manipulating the list of entries, especially get_swap_page(), by using standard list_head functions, and removing the highest priority iteration logic. The change fixes the bug: https://lkml.org/lkml/2014/2/13/181 in which different priority swap entries after the highest priority entry are incorrectly used equally in pairs. The swap behavior is now as advertised, i.e. different priority swap entries are used in order, and equal priority swap targets are used concurrently. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> Cc: Weijie Yang <weijieut@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Bob Liu <bob.liu@oracle.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 23:09:53 +00:00
int err, found = 0;
swap: fix set_blocksize race during swapon/swapoff Fix race between swapoff and swapon. Swapoff used old_block_size from swap_info outside of swapon_mutex so it could be overwritten by concurrent swapon. The race has visible effect only if more than one swap block device exists with different block sizes (e.g. /dev/sda1 with block size 4096 and /dev/sdb1 with 512). In such case it leads to setting the blocksize of swapped off device with wrong blocksize. The bug can be triggered with multiple concurrent swapoff and swapon: 0. Swap for some device is on. 1. swapoff: First the swapoff is called on this device and "struct swap_info_struct *p" is assigned. This is done under swap_lock however this lock is released for the call try_to_unuse(). 2. swapon: After the assignment above (and before acquiring swapon_mutex & swap_lock by swapoff) the swapon is called on the same device. The p->old_block_size is assigned to the value of block_size the device. This block size should be the same as previous but sometimes it is not. The swapon ends successfully. 3. swapoff: Swapoff resumes, grabs the locks and mutex and continues to disable this swap device. Now it sets the block size to value taken from swap_info which was overwritten by swapon in 2. Signed-off-by: Krzysztof Kozlowski <k.kozlowski@samsung.com> Reported-by: Weijie Yang <weijie.yang.kh@gmail.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Shaohua Li <shli@fusionio.com> Cc: Minchan Kim <minchan@kernel.org> Acked-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-10-16 20:47:06 +00:00
unsigned int old_block_size;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
BUG_ON(!current->mm);
pathname = getname(specialfile);
if (IS_ERR(pathname))
return PTR_ERR(pathname);
victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
err = PTR_ERR(victim);
if (IS_ERR(victim))
goto out;
mapping = victim->f_mapping;
spin_lock(&swap_lock);
swap: change swap_list_head to plist, add swap_avail_head Originally get_swap_page() started iterating through the singly-linked list of swap_info_structs using swap_list.next or highest_priority_index, which both were intended to point to the highest priority active swap target that was not full. The first patch in this series changed the singly-linked list to a doubly-linked list, and removed the logic to start at the highest priority non-full entry; it starts scanning at the highest priority entry each time, even if the entry is full. Replace the manually ordered swap_list_head with a plist, swap_active_head. Add a new plist, swap_avail_head. The original swap_active_head plist contains all active swap_info_structs, as before, while the new swap_avail_head plist contains only swap_info_structs that are active and available, i.e. not full. Add a new spinlock, swap_avail_lock, to protect the swap_avail_head list. Mel Gorman suggested using plists since they internally handle ordering the list entries based on priority, which is exactly what swap was doing manually. All the ordering code is now removed, and swap_info_struct entries and simply added to their corresponding plist and automatically ordered correctly. Using a new plist for available swap_info_structs simplifies and optimizes get_swap_page(), which no longer has to iterate over full swap_info_structs. Using a new spinlock for swap_avail_head plist allows each swap_info_struct to add or remove themselves from the plist when they become full or not-full; previously they could not do so because the swap_info_struct->lock is held when they change from full<->not-full, and the swap_lock protecting the main swap_active_head must be ordered before any swap_info_struct->lock. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Shaohua Li <shli@fusionio.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> Cc: Weijie Yang <weijieut@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Bob Liu <bob.liu@oracle.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 23:09:59 +00:00
plist_for_each_entry(p, &swap_active_head, list) {
if (p->flags & SWP_WRITEOK) {
swap: change swap_info singly-linked list to list_head The logic controlling the singly-linked list of swap_info_struct entries for all active, i.e. swapon'ed, swap targets is rather complex, because: - it stores the entries in priority order - there is a pointer to the highest priority entry - there is a pointer to the highest priority not-full entry - there is a highest_priority_index variable set outside the swap_lock - swap entries of equal priority should be used equally this complexity leads to bugs such as: https://lkml.org/lkml/2014/2/13/181 where different priority swap targets are incorrectly used equally. That bug probably could be solved with the existing singly-linked lists, but I think it would only add more complexity to the already difficult to understand get_swap_page() swap_list iteration logic. The first patch changes from a singly-linked list to a doubly-linked list using list_heads; the highest_priority_index and related code are removed and get_swap_page() starts each iteration at the highest priority swap_info entry, even if it's full. While this does introduce unnecessary list iteration (i.e. Schlemiel the painter's algorithm) in the case where one or more of the highest priority entries are full, the iteration and manipulation code is much simpler and behaves correctly re: the above bug; and the fourth patch removes the unnecessary iteration. The second patch adds some minor plist helper functions; nothing new really, just functions to match existing regular list functions. These are used by the next two patches. The third patch adds plist_requeue(), which is used by get_swap_page() in the next patch - it performs the requeueing of same-priority entries (which moves the entry to the end of its priority in the plist), so that all equal-priority swap_info_structs get used equally. The fourth patch converts the main list into a plist, and adds a new plist that contains only swap_info entries that are both active and not full. As Mel suggested using plists allows removing all the ordering code from swap - plists handle ordering automatically. The list naming is also clarified now that there are two lists, with the original list changed from swap_list_head to swap_active_head and the new list named swap_avail_head. A new spinlock is also added for the new list, so swap_info entries can be added or removed from the new list immediately as they become full or not full. This patch (of 4): Replace the singly-linked list tracking active, i.e. swapon'ed, swap_info_struct entries with a doubly-linked list using struct list_heads. Simplify the logic iterating and manipulating the list of entries, especially get_swap_page(), by using standard list_head functions, and removing the highest priority iteration logic. The change fixes the bug: https://lkml.org/lkml/2014/2/13/181 in which different priority swap entries after the highest priority entry are incorrectly used equally in pairs. The swap behavior is now as advertised, i.e. different priority swap entries are used in order, and equal priority swap targets are used concurrently. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> Cc: Weijie Yang <weijieut@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Bob Liu <bob.liu@oracle.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 23:09:53 +00:00
if (p->swap_file->f_mapping == mapping) {
found = 1;
break;
swap: change swap_info singly-linked list to list_head The logic controlling the singly-linked list of swap_info_struct entries for all active, i.e. swapon'ed, swap targets is rather complex, because: - it stores the entries in priority order - there is a pointer to the highest priority entry - there is a pointer to the highest priority not-full entry - there is a highest_priority_index variable set outside the swap_lock - swap entries of equal priority should be used equally this complexity leads to bugs such as: https://lkml.org/lkml/2014/2/13/181 where different priority swap targets are incorrectly used equally. That bug probably could be solved with the existing singly-linked lists, but I think it would only add more complexity to the already difficult to understand get_swap_page() swap_list iteration logic. The first patch changes from a singly-linked list to a doubly-linked list using list_heads; the highest_priority_index and related code are removed and get_swap_page() starts each iteration at the highest priority swap_info entry, even if it's full. While this does introduce unnecessary list iteration (i.e. Schlemiel the painter's algorithm) in the case where one or more of the highest priority entries are full, the iteration and manipulation code is much simpler and behaves correctly re: the above bug; and the fourth patch removes the unnecessary iteration. The second patch adds some minor plist helper functions; nothing new really, just functions to match existing regular list functions. These are used by the next two patches. The third patch adds plist_requeue(), which is used by get_swap_page() in the next patch - it performs the requeueing of same-priority entries (which moves the entry to the end of its priority in the plist), so that all equal-priority swap_info_structs get used equally. The fourth patch converts the main list into a plist, and adds a new plist that contains only swap_info entries that are both active and not full. As Mel suggested using plists allows removing all the ordering code from swap - plists handle ordering automatically. The list naming is also clarified now that there are two lists, with the original list changed from swap_list_head to swap_active_head and the new list named swap_avail_head. A new spinlock is also added for the new list, so swap_info entries can be added or removed from the new list immediately as they become full or not full. This patch (of 4): Replace the singly-linked list tracking active, i.e. swapon'ed, swap_info_struct entries with a doubly-linked list using struct list_heads. Simplify the logic iterating and manipulating the list of entries, especially get_swap_page(), by using standard list_head functions, and removing the highest priority iteration logic. The change fixes the bug: https://lkml.org/lkml/2014/2/13/181 in which different priority swap entries after the highest priority entry are incorrectly used equally in pairs. The swap behavior is now as advertised, i.e. different priority swap entries are used in order, and equal priority swap targets are used concurrently. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> Cc: Weijie Yang <weijieut@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Bob Liu <bob.liu@oracle.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 23:09:53 +00:00
}
}
}
swap: change swap_info singly-linked list to list_head The logic controlling the singly-linked list of swap_info_struct entries for all active, i.e. swapon'ed, swap targets is rather complex, because: - it stores the entries in priority order - there is a pointer to the highest priority entry - there is a pointer to the highest priority not-full entry - there is a highest_priority_index variable set outside the swap_lock - swap entries of equal priority should be used equally this complexity leads to bugs such as: https://lkml.org/lkml/2014/2/13/181 where different priority swap targets are incorrectly used equally. That bug probably could be solved with the existing singly-linked lists, but I think it would only add more complexity to the already difficult to understand get_swap_page() swap_list iteration logic. The first patch changes from a singly-linked list to a doubly-linked list using list_heads; the highest_priority_index and related code are removed and get_swap_page() starts each iteration at the highest priority swap_info entry, even if it's full. While this does introduce unnecessary list iteration (i.e. Schlemiel the painter's algorithm) in the case where one or more of the highest priority entries are full, the iteration and manipulation code is much simpler and behaves correctly re: the above bug; and the fourth patch removes the unnecessary iteration. The second patch adds some minor plist helper functions; nothing new really, just functions to match existing regular list functions. These are used by the next two patches. The third patch adds plist_requeue(), which is used by get_swap_page() in the next patch - it performs the requeueing of same-priority entries (which moves the entry to the end of its priority in the plist), so that all equal-priority swap_info_structs get used equally. The fourth patch converts the main list into a plist, and adds a new plist that contains only swap_info entries that are both active and not full. As Mel suggested using plists allows removing all the ordering code from swap - plists handle ordering automatically. The list naming is also clarified now that there are two lists, with the original list changed from swap_list_head to swap_active_head and the new list named swap_avail_head. A new spinlock is also added for the new list, so swap_info entries can be added or removed from the new list immediately as they become full or not full. This patch (of 4): Replace the singly-linked list tracking active, i.e. swapon'ed, swap_info_struct entries with a doubly-linked list using struct list_heads. Simplify the logic iterating and manipulating the list of entries, especially get_swap_page(), by using standard list_head functions, and removing the highest priority iteration logic. The change fixes the bug: https://lkml.org/lkml/2014/2/13/181 in which different priority swap entries after the highest priority entry are incorrectly used equally in pairs. The swap behavior is now as advertised, i.e. different priority swap entries are used in order, and equal priority swap targets are used concurrently. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> Cc: Weijie Yang <weijieut@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Bob Liu <bob.liu@oracle.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 23:09:53 +00:00
if (!found) {
err = -EINVAL;
spin_unlock(&swap_lock);
goto out_dput;
}
if (!security_vm_enough_memory_mm(current->mm, p->pages))
vm_unacct_memory(p->pages);
else {
err = -ENOMEM;
spin_unlock(&swap_lock);
goto out_dput;
}
swap: change swap_list_head to plist, add swap_avail_head Originally get_swap_page() started iterating through the singly-linked list of swap_info_structs using swap_list.next or highest_priority_index, which both were intended to point to the highest priority active swap target that was not full. The first patch in this series changed the singly-linked list to a doubly-linked list, and removed the logic to start at the highest priority non-full entry; it starts scanning at the highest priority entry each time, even if the entry is full. Replace the manually ordered swap_list_head with a plist, swap_active_head. Add a new plist, swap_avail_head. The original swap_active_head plist contains all active swap_info_structs, as before, while the new swap_avail_head plist contains only swap_info_structs that are active and available, i.e. not full. Add a new spinlock, swap_avail_lock, to protect the swap_avail_head list. Mel Gorman suggested using plists since they internally handle ordering the list entries based on priority, which is exactly what swap was doing manually. All the ordering code is now removed, and swap_info_struct entries and simply added to their corresponding plist and automatically ordered correctly. Using a new plist for available swap_info_structs simplifies and optimizes get_swap_page(), which no longer has to iterate over full swap_info_structs. Using a new spinlock for swap_avail_head plist allows each swap_info_struct to add or remove themselves from the plist when they become full or not-full; previously they could not do so because the swap_info_struct->lock is held when they change from full<->not-full, and the swap_lock protecting the main swap_active_head must be ordered before any swap_info_struct->lock. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Shaohua Li <shli@fusionio.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> Cc: Weijie Yang <weijieut@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Bob Liu <bob.liu@oracle.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 23:09:59 +00:00
spin_lock(&swap_avail_lock);
plist_del(&p->avail_list, &swap_avail_head);
spin_unlock(&swap_avail_lock);
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
spin_lock(&p->lock);
if (p->prio < 0) {
swap: change swap_info singly-linked list to list_head The logic controlling the singly-linked list of swap_info_struct entries for all active, i.e. swapon'ed, swap targets is rather complex, because: - it stores the entries in priority order - there is a pointer to the highest priority entry - there is a pointer to the highest priority not-full entry - there is a highest_priority_index variable set outside the swap_lock - swap entries of equal priority should be used equally this complexity leads to bugs such as: https://lkml.org/lkml/2014/2/13/181 where different priority swap targets are incorrectly used equally. That bug probably could be solved with the existing singly-linked lists, but I think it would only add more complexity to the already difficult to understand get_swap_page() swap_list iteration logic. The first patch changes from a singly-linked list to a doubly-linked list using list_heads; the highest_priority_index and related code are removed and get_swap_page() starts each iteration at the highest priority swap_info entry, even if it's full. While this does introduce unnecessary list iteration (i.e. Schlemiel the painter's algorithm) in the case where one or more of the highest priority entries are full, the iteration and manipulation code is much simpler and behaves correctly re: the above bug; and the fourth patch removes the unnecessary iteration. The second patch adds some minor plist helper functions; nothing new really, just functions to match existing regular list functions. These are used by the next two patches. The third patch adds plist_requeue(), which is used by get_swap_page() in the next patch - it performs the requeueing of same-priority entries (which moves the entry to the end of its priority in the plist), so that all equal-priority swap_info_structs get used equally. The fourth patch converts the main list into a plist, and adds a new plist that contains only swap_info entries that are both active and not full. As Mel suggested using plists allows removing all the ordering code from swap - plists handle ordering automatically. The list naming is also clarified now that there are two lists, with the original list changed from swap_list_head to swap_active_head and the new list named swap_avail_head. A new spinlock is also added for the new list, so swap_info entries can be added or removed from the new list immediately as they become full or not full. This patch (of 4): Replace the singly-linked list tracking active, i.e. swapon'ed, swap_info_struct entries with a doubly-linked list using struct list_heads. Simplify the logic iterating and manipulating the list of entries, especially get_swap_page(), by using standard list_head functions, and removing the highest priority iteration logic. The change fixes the bug: https://lkml.org/lkml/2014/2/13/181 in which different priority swap entries after the highest priority entry are incorrectly used equally in pairs. The swap behavior is now as advertised, i.e. different priority swap entries are used in order, and equal priority swap targets are used concurrently. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> Cc: Weijie Yang <weijieut@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Bob Liu <bob.liu@oracle.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 23:09:53 +00:00
struct swap_info_struct *si = p;
swap: change swap_list_head to plist, add swap_avail_head Originally get_swap_page() started iterating through the singly-linked list of swap_info_structs using swap_list.next or highest_priority_index, which both were intended to point to the highest priority active swap target that was not full. The first patch in this series changed the singly-linked list to a doubly-linked list, and removed the logic to start at the highest priority non-full entry; it starts scanning at the highest priority entry each time, even if the entry is full. Replace the manually ordered swap_list_head with a plist, swap_active_head. Add a new plist, swap_avail_head. The original swap_active_head plist contains all active swap_info_structs, as before, while the new swap_avail_head plist contains only swap_info_structs that are active and available, i.e. not full. Add a new spinlock, swap_avail_lock, to protect the swap_avail_head list. Mel Gorman suggested using plists since they internally handle ordering the list entries based on priority, which is exactly what swap was doing manually. All the ordering code is now removed, and swap_info_struct entries and simply added to their corresponding plist and automatically ordered correctly. Using a new plist for available swap_info_structs simplifies and optimizes get_swap_page(), which no longer has to iterate over full swap_info_structs. Using a new spinlock for swap_avail_head plist allows each swap_info_struct to add or remove themselves from the plist when they become full or not-full; previously they could not do so because the swap_info_struct->lock is held when they change from full<->not-full, and the swap_lock protecting the main swap_active_head must be ordered before any swap_info_struct->lock. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Shaohua Li <shli@fusionio.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> Cc: Weijie Yang <weijieut@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Bob Liu <bob.liu@oracle.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 23:09:59 +00:00
plist_for_each_entry_continue(si, &swap_active_head, list) {
swap: change swap_info singly-linked list to list_head The logic controlling the singly-linked list of swap_info_struct entries for all active, i.e. swapon'ed, swap targets is rather complex, because: - it stores the entries in priority order - there is a pointer to the highest priority entry - there is a pointer to the highest priority not-full entry - there is a highest_priority_index variable set outside the swap_lock - swap entries of equal priority should be used equally this complexity leads to bugs such as: https://lkml.org/lkml/2014/2/13/181 where different priority swap targets are incorrectly used equally. That bug probably could be solved with the existing singly-linked lists, but I think it would only add more complexity to the already difficult to understand get_swap_page() swap_list iteration logic. The first patch changes from a singly-linked list to a doubly-linked list using list_heads; the highest_priority_index and related code are removed and get_swap_page() starts each iteration at the highest priority swap_info entry, even if it's full. While this does introduce unnecessary list iteration (i.e. Schlemiel the painter's algorithm) in the case where one or more of the highest priority entries are full, the iteration and manipulation code is much simpler and behaves correctly re: the above bug; and the fourth patch removes the unnecessary iteration. The second patch adds some minor plist helper functions; nothing new really, just functions to match existing regular list functions. These are used by the next two patches. The third patch adds plist_requeue(), which is used by get_swap_page() in the next patch - it performs the requeueing of same-priority entries (which moves the entry to the end of its priority in the plist), so that all equal-priority swap_info_structs get used equally. The fourth patch converts the main list into a plist, and adds a new plist that contains only swap_info entries that are both active and not full. As Mel suggested using plists allows removing all the ordering code from swap - plists handle ordering automatically. The list naming is also clarified now that there are two lists, with the original list changed from swap_list_head to swap_active_head and the new list named swap_avail_head. A new spinlock is also added for the new list, so swap_info entries can be added or removed from the new list immediately as they become full or not full. This patch (of 4): Replace the singly-linked list tracking active, i.e. swapon'ed, swap_info_struct entries with a doubly-linked list using struct list_heads. Simplify the logic iterating and manipulating the list of entries, especially get_swap_page(), by using standard list_head functions, and removing the highest priority iteration logic. The change fixes the bug: https://lkml.org/lkml/2014/2/13/181 in which different priority swap entries after the highest priority entry are incorrectly used equally in pairs. The swap behavior is now as advertised, i.e. different priority swap entries are used in order, and equal priority swap targets are used concurrently. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> Cc: Weijie Yang <weijieut@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Bob Liu <bob.liu@oracle.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 23:09:53 +00:00
si->prio++;
swap: change swap_list_head to plist, add swap_avail_head Originally get_swap_page() started iterating through the singly-linked list of swap_info_structs using swap_list.next or highest_priority_index, which both were intended to point to the highest priority active swap target that was not full. The first patch in this series changed the singly-linked list to a doubly-linked list, and removed the logic to start at the highest priority non-full entry; it starts scanning at the highest priority entry each time, even if the entry is full. Replace the manually ordered swap_list_head with a plist, swap_active_head. Add a new plist, swap_avail_head. The original swap_active_head plist contains all active swap_info_structs, as before, while the new swap_avail_head plist contains only swap_info_structs that are active and available, i.e. not full. Add a new spinlock, swap_avail_lock, to protect the swap_avail_head list. Mel Gorman suggested using plists since they internally handle ordering the list entries based on priority, which is exactly what swap was doing manually. All the ordering code is now removed, and swap_info_struct entries and simply added to their corresponding plist and automatically ordered correctly. Using a new plist for available swap_info_structs simplifies and optimizes get_swap_page(), which no longer has to iterate over full swap_info_structs. Using a new spinlock for swap_avail_head plist allows each swap_info_struct to add or remove themselves from the plist when they become full or not-full; previously they could not do so because the swap_info_struct->lock is held when they change from full<->not-full, and the swap_lock protecting the main swap_active_head must be ordered before any swap_info_struct->lock. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Shaohua Li <shli@fusionio.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> Cc: Weijie Yang <weijieut@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Bob Liu <bob.liu@oracle.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 23:09:59 +00:00
si->list.prio--;
si->avail_list.prio--;
swap: change swap_info singly-linked list to list_head The logic controlling the singly-linked list of swap_info_struct entries for all active, i.e. swapon'ed, swap targets is rather complex, because: - it stores the entries in priority order - there is a pointer to the highest priority entry - there is a pointer to the highest priority not-full entry - there is a highest_priority_index variable set outside the swap_lock - swap entries of equal priority should be used equally this complexity leads to bugs such as: https://lkml.org/lkml/2014/2/13/181 where different priority swap targets are incorrectly used equally. That bug probably could be solved with the existing singly-linked lists, but I think it would only add more complexity to the already difficult to understand get_swap_page() swap_list iteration logic. The first patch changes from a singly-linked list to a doubly-linked list using list_heads; the highest_priority_index and related code are removed and get_swap_page() starts each iteration at the highest priority swap_info entry, even if it's full. While this does introduce unnecessary list iteration (i.e. Schlemiel the painter's algorithm) in the case where one or more of the highest priority entries are full, the iteration and manipulation code is much simpler and behaves correctly re: the above bug; and the fourth patch removes the unnecessary iteration. The second patch adds some minor plist helper functions; nothing new really, just functions to match existing regular list functions. These are used by the next two patches. The third patch adds plist_requeue(), which is used by get_swap_page() in the next patch - it performs the requeueing of same-priority entries (which moves the entry to the end of its priority in the plist), so that all equal-priority swap_info_structs get used equally. The fourth patch converts the main list into a plist, and adds a new plist that contains only swap_info entries that are both active and not full. As Mel suggested using plists allows removing all the ordering code from swap - plists handle ordering automatically. The list naming is also clarified now that there are two lists, with the original list changed from swap_list_head to swap_active_head and the new list named swap_avail_head. A new spinlock is also added for the new list, so swap_info entries can be added or removed from the new list immediately as they become full or not full. This patch (of 4): Replace the singly-linked list tracking active, i.e. swapon'ed, swap_info_struct entries with a doubly-linked list using struct list_heads. Simplify the logic iterating and manipulating the list of entries, especially get_swap_page(), by using standard list_head functions, and removing the highest priority iteration logic. The change fixes the bug: https://lkml.org/lkml/2014/2/13/181 in which different priority swap entries after the highest priority entry are incorrectly used equally in pairs. The swap behavior is now as advertised, i.e. different priority swap entries are used in order, and equal priority swap targets are used concurrently. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> Cc: Weijie Yang <weijieut@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Bob Liu <bob.liu@oracle.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 23:09:53 +00:00
}
least_priority++;
}
swap: change swap_list_head to plist, add swap_avail_head Originally get_swap_page() started iterating through the singly-linked list of swap_info_structs using swap_list.next or highest_priority_index, which both were intended to point to the highest priority active swap target that was not full. The first patch in this series changed the singly-linked list to a doubly-linked list, and removed the logic to start at the highest priority non-full entry; it starts scanning at the highest priority entry each time, even if the entry is full. Replace the manually ordered swap_list_head with a plist, swap_active_head. Add a new plist, swap_avail_head. The original swap_active_head plist contains all active swap_info_structs, as before, while the new swap_avail_head plist contains only swap_info_structs that are active and available, i.e. not full. Add a new spinlock, swap_avail_lock, to protect the swap_avail_head list. Mel Gorman suggested using plists since they internally handle ordering the list entries based on priority, which is exactly what swap was doing manually. All the ordering code is now removed, and swap_info_struct entries and simply added to their corresponding plist and automatically ordered correctly. Using a new plist for available swap_info_structs simplifies and optimizes get_swap_page(), which no longer has to iterate over full swap_info_structs. Using a new spinlock for swap_avail_head plist allows each swap_info_struct to add or remove themselves from the plist when they become full or not-full; previously they could not do so because the swap_info_struct->lock is held when they change from full<->not-full, and the swap_lock protecting the main swap_active_head must be ordered before any swap_info_struct->lock. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Shaohua Li <shli@fusionio.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> Cc: Weijie Yang <weijieut@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Bob Liu <bob.liu@oracle.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 23:09:59 +00:00
plist_del(&p->list, &swap_active_head);
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
atomic_long_sub(p->pages, &nr_swap_pages);
total_swap_pages -= p->pages;
p->flags &= ~SWP_WRITEOK;
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
spin_unlock(&p->lock);
spin_unlock(&swap_lock);
mm, oom: fix race when specifying a thread as the oom origin test_set_oom_score_adj() and compare_swap_oom_score_adj() are used to specify that current should be killed first if an oom condition occurs in between the two calls. The usage is short oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX); ... compare_swap_oom_score_adj(OOM_SCORE_ADJ_MAX, oom_score_adj); to store the thread's oom_score_adj, temporarily change it to the maximum score possible, and then restore the old value if it is still the same. This happens to still be racy, however, if the user writes OOM_SCORE_ADJ_MAX to /proc/pid/oom_score_adj in between the two calls. The compare_swap_oom_score_adj() will then incorrectly reset the old value prior to the write of OOM_SCORE_ADJ_MAX. To fix this, introduce a new oom_flags_t member in struct signal_struct that will be used for per-thread oom killer flags. KSM and swapoff can now use a bit in this member to specify that threads should be killed first in oom conditions without playing around with oom_score_adj. This also allows the correct oom_score_adj to always be shown when reading /proc/pid/oom_score. Signed-off-by: David Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: Anton Vorontsov <anton.vorontsov@linaro.org> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 00:02:56 +00:00
set_current_oom_origin();
swap: change swap_info singly-linked list to list_head The logic controlling the singly-linked list of swap_info_struct entries for all active, i.e. swapon'ed, swap targets is rather complex, because: - it stores the entries in priority order - there is a pointer to the highest priority entry - there is a pointer to the highest priority not-full entry - there is a highest_priority_index variable set outside the swap_lock - swap entries of equal priority should be used equally this complexity leads to bugs such as: https://lkml.org/lkml/2014/2/13/181 where different priority swap targets are incorrectly used equally. That bug probably could be solved with the existing singly-linked lists, but I think it would only add more complexity to the already difficult to understand get_swap_page() swap_list iteration logic. The first patch changes from a singly-linked list to a doubly-linked list using list_heads; the highest_priority_index and related code are removed and get_swap_page() starts each iteration at the highest priority swap_info entry, even if it's full. While this does introduce unnecessary list iteration (i.e. Schlemiel the painter's algorithm) in the case where one or more of the highest priority entries are full, the iteration and manipulation code is much simpler and behaves correctly re: the above bug; and the fourth patch removes the unnecessary iteration. The second patch adds some minor plist helper functions; nothing new really, just functions to match existing regular list functions. These are used by the next two patches. The third patch adds plist_requeue(), which is used by get_swap_page() in the next patch - it performs the requeueing of same-priority entries (which moves the entry to the end of its priority in the plist), so that all equal-priority swap_info_structs get used equally. The fourth patch converts the main list into a plist, and adds a new plist that contains only swap_info entries that are both active and not full. As Mel suggested using plists allows removing all the ordering code from swap - plists handle ordering automatically. The list naming is also clarified now that there are two lists, with the original list changed from swap_list_head to swap_active_head and the new list named swap_avail_head. A new spinlock is also added for the new list, so swap_info entries can be added or removed from the new list immediately as they become full or not full. This patch (of 4): Replace the singly-linked list tracking active, i.e. swapon'ed, swap_info_struct entries with a doubly-linked list using struct list_heads. Simplify the logic iterating and manipulating the list of entries, especially get_swap_page(), by using standard list_head functions, and removing the highest priority iteration logic. The change fixes the bug: https://lkml.org/lkml/2014/2/13/181 in which different priority swap entries after the highest priority entry are incorrectly used equally in pairs. The swap behavior is now as advertised, i.e. different priority swap entries are used in order, and equal priority swap targets are used concurrently. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> Cc: Weijie Yang <weijieut@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Bob Liu <bob.liu@oracle.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 23:09:53 +00:00
err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
mm, oom: fix race when specifying a thread as the oom origin test_set_oom_score_adj() and compare_swap_oom_score_adj() are used to specify that current should be killed first if an oom condition occurs in between the two calls. The usage is short oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX); ... compare_swap_oom_score_adj(OOM_SCORE_ADJ_MAX, oom_score_adj); to store the thread's oom_score_adj, temporarily change it to the maximum score possible, and then restore the old value if it is still the same. This happens to still be racy, however, if the user writes OOM_SCORE_ADJ_MAX to /proc/pid/oom_score_adj in between the two calls. The compare_swap_oom_score_adj() will then incorrectly reset the old value prior to the write of OOM_SCORE_ADJ_MAX. To fix this, introduce a new oom_flags_t member in struct signal_struct that will be used for per-thread oom killer flags. KSM and swapoff can now use a bit in this member to specify that threads should be killed first in oom conditions without playing around with oom_score_adj. This also allows the correct oom_score_adj to always be shown when reading /proc/pid/oom_score. Signed-off-by: David Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: Anton Vorontsov <anton.vorontsov@linaro.org> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 00:02:56 +00:00
clear_current_oom_origin();
if (err) {
/* re-insert swap space back into swap_list */
reinsert_swap_info(p);
goto out_dput;
}
swap: make swap discard async swap can do cluster discard for SSD, which is good, but there are some problems here: 1. swap do the discard just before page reclaim gets a swap entry and writes the disk sectors. This is useless for high end SSD, because an overwrite to a sector implies a discard to original sector too. A discard + overwrite == overwrite. 2. the purpose of doing discard is to improve SSD firmware garbage collection. Idealy we should send discard as early as possible, so firmware can do something smart. Sending discard just after swap entry is freed is considered early compared to sending discard before write. Of course, if workload is already bound to gc speed, sending discard earlier or later doesn't make 3. block discard is a sync API, which will delay scan_swap_map() significantly. 4. Write and discard command can be executed parallel in PCIe SSD. Making swap discard async can make execution more efficiently. This patch makes swap discard async and moves discard to where swap entry is freed. Discard and write have no dependence now, so above issues can be avoided. Idealy we should do discard for any freed sectors, but some SSD discard is very slow. This patch still does discard for a whole cluster. My test does a several round of 'mmap, write, unmap', which will trigger a lot of swap discard. In a fusionio card, with this patch, the test runtime is reduced to 18% of the time without it, so around 5.5x faster. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:30 +00:00
flush_work(&p->discard_work);
destroy_swap_extents(p);
swap_info: swap count continuations Swap is duplicated (reference count incremented by one) whenever the same swap page is inserted into another mm (when forking finds a swap entry in place of a pte, or when reclaim unmaps a pte to insert the swap entry). swap_info_struct's vmalloc'ed swap_map is the array of these reference counts: but what happens when the unsigned short (or unsigned char since the preceding patch) is full? (and its high bit is kept for a cache flag) We then lose track of it, never freeing, leaving it in use until swapoff: at which point we _hope_ that a single pass will have found all instances, assume there are no more, and will lose user data if we're wrong. Swapping of KSM pages has not yet been enabled; but it is implemented, and makes it very easy for a user to overflow the maximum swap count: possible with ordinary process pages, but unlikely, even when pid_max has been raised from PID_MAX_DEFAULT. This patch implements swap count continuations: when the count overflows, a continuation page is allocated and linked to the original vmalloc'ed map page, and this used to hold the continuation counts for that entry and its neighbours. These continuation pages are seldom referenced: the common paths all work on the original swap_map, only referring to a continuation page when the low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 01:58:46 +00:00
if (p->flags & SWP_CONTINUED)
free_swap_count_continuations(p);
mutex_lock(&swapon_mutex);
spin_lock(&swap_lock);
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
spin_lock(&p->lock);
drain_mmlist();
/* wait for anyone still in scan_swap_map */
p->highest_bit = 0; /* cuts scans short */
while (p->flags >= SWP_SCANNING) {
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
spin_unlock(&p->lock);
spin_unlock(&swap_lock);
schedule_timeout_uninterruptible(1);
spin_lock(&swap_lock);
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
spin_lock(&p->lock);
}
swap_file = p->swap_file;
swap: fix set_blocksize race during swapon/swapoff Fix race between swapoff and swapon. Swapoff used old_block_size from swap_info outside of swapon_mutex so it could be overwritten by concurrent swapon. The race has visible effect only if more than one swap block device exists with different block sizes (e.g. /dev/sda1 with block size 4096 and /dev/sdb1 with 512). In such case it leads to setting the blocksize of swapped off device with wrong blocksize. The bug can be triggered with multiple concurrent swapoff and swapon: 0. Swap for some device is on. 1. swapoff: First the swapoff is called on this device and "struct swap_info_struct *p" is assigned. This is done under swap_lock however this lock is released for the call try_to_unuse(). 2. swapon: After the assignment above (and before acquiring swapon_mutex & swap_lock by swapoff) the swapon is called on the same device. The p->old_block_size is assigned to the value of block_size the device. This block size should be the same as previous but sometimes it is not. The swapon ends successfully. 3. swapoff: Swapoff resumes, grabs the locks and mutex and continues to disable this swap device. Now it sets the block size to value taken from swap_info which was overwritten by swapon in 2. Signed-off-by: Krzysztof Kozlowski <k.kozlowski@samsung.com> Reported-by: Weijie Yang <weijie.yang.kh@gmail.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Shaohua Li <shli@fusionio.com> Cc: Minchan Kim <minchan@kernel.org> Acked-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-10-16 20:47:06 +00:00
old_block_size = p->old_block_size;
p->swap_file = NULL;
p->max = 0;
swap_map = p->swap_map;
p->swap_map = NULL;
swap: change block allocation algorithm for SSD I'm using a fast SSD to do swap. scan_swap_map() sometimes uses up to 20~30% CPU time (when cluster is hard to find, the CPU time can be up to 80%), which becomes a bottleneck. scan_swap_map() scans a byte array to search a 256 page cluster, which is very slow. Here I introduced a simple algorithm to search cluster. Since we only care about 256 pages cluster, we can just use a counter to track if a cluster is free. Every 256 pages use one int to store the counter. If the counter of a cluster is 0, the cluster is free. All free clusters will be added to a list, so searching cluster is very efficient. With this, scap_swap_map() overhead disappears. This might help low end SD card swap too. Because if the cluster is aligned, SD firmware can do flash erase more efficiently. We only enable the algorithm for SSD. Hard disk swap isn't fast enough and has downside with the algorithm which might introduce regression (see below). The patch slightly changes which cluster is choosen. It always adds free cluster to list tail. This can help wear leveling for low end SSD too. And if no cluster found, the scan_swap_map() will do search from the end of last cluster. So if no cluster found, the scan_swap_map() will do search from the end of last free cluster, which is random. For SSD, this isn't a problem at all. Another downside is the cluster must be aligned to 256 pages, which will reduce the chance to find a cluster. I would expect this isn't a big problem for SSD because of the non-seek penality. (And this is the reason I only enable the algorithm for SSD). Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:28 +00:00
cluster_info = p->cluster_info;
p->cluster_info = NULL;
frontswap_map = frontswap_map_get(p);
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
spin_unlock(&p->lock);
spin_unlock(&swap_lock);
swap: change swap_info singly-linked list to list_head The logic controlling the singly-linked list of swap_info_struct entries for all active, i.e. swapon'ed, swap targets is rather complex, because: - it stores the entries in priority order - there is a pointer to the highest priority entry - there is a pointer to the highest priority not-full entry - there is a highest_priority_index variable set outside the swap_lock - swap entries of equal priority should be used equally this complexity leads to bugs such as: https://lkml.org/lkml/2014/2/13/181 where different priority swap targets are incorrectly used equally. That bug probably could be solved with the existing singly-linked lists, but I think it would only add more complexity to the already difficult to understand get_swap_page() swap_list iteration logic. The first patch changes from a singly-linked list to a doubly-linked list using list_heads; the highest_priority_index and related code are removed and get_swap_page() starts each iteration at the highest priority swap_info entry, even if it's full. While this does introduce unnecessary list iteration (i.e. Schlemiel the painter's algorithm) in the case where one or more of the highest priority entries are full, the iteration and manipulation code is much simpler and behaves correctly re: the above bug; and the fourth patch removes the unnecessary iteration. The second patch adds some minor plist helper functions; nothing new really, just functions to match existing regular list functions. These are used by the next two patches. The third patch adds plist_requeue(), which is used by get_swap_page() in the next patch - it performs the requeueing of same-priority entries (which moves the entry to the end of its priority in the plist), so that all equal-priority swap_info_structs get used equally. The fourth patch converts the main list into a plist, and adds a new plist that contains only swap_info entries that are both active and not full. As Mel suggested using plists allows removing all the ordering code from swap - plists handle ordering automatically. The list naming is also clarified now that there are two lists, with the original list changed from swap_list_head to swap_active_head and the new list named swap_avail_head. A new spinlock is also added for the new list, so swap_info entries can be added or removed from the new list immediately as they become full or not full. This patch (of 4): Replace the singly-linked list tracking active, i.e. swapon'ed, swap_info_struct entries with a doubly-linked list using struct list_heads. Simplify the logic iterating and manipulating the list of entries, especially get_swap_page(), by using standard list_head functions, and removing the highest priority iteration logic. The change fixes the bug: https://lkml.org/lkml/2014/2/13/181 in which different priority swap entries after the highest priority entry are incorrectly used equally in pairs. The swap behavior is now as advertised, i.e. different priority swap entries are used in order, and equal priority swap targets are used concurrently. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> Cc: Weijie Yang <weijieut@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Bob Liu <bob.liu@oracle.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 23:09:53 +00:00
frontswap_invalidate_area(p->type);
frontswap_map_set(p, NULL);
mutex_unlock(&swapon_mutex);
swap: make cluster allocation per-cpu swap cluster allocation is to get better request merge to improve performance. But the cluster is shared globally, if multiple tasks are doing swap, this will cause interleave disk access. While multiple tasks swap is quite common, for example, each numa node has a kswapd thread doing swap and multiple threads/processes doing direct page reclaim. ioscheduler can't help too much here, because tasks don't send swapout IO down to block layer in the meantime. Block layer does merge some IOs, but a lot not, depending on how many tasks are doing swapout concurrently. In practice, I've seen a lot of small size IO in swapout workloads. We makes the cluster allocation per-cpu here. The interleave disk access issue goes away. All tasks swapout to their own cluster, so swapout will become sequential, which can be easily merged to big size IO. If one CPU can't get its per-cpu cluster (for example, there is no free cluster anymore in the swap), it will fallback to scan swap_map. The CPU can still continue swap. We don't need recycle free swap entries of other CPUs. In my test (swap to a 2-disk raid0 partition), this improves around 10% swapout throughput, and request size is increased significantly. How does this impact swap readahead is uncertain though. On one side, page reclaim always isolates and swaps several adjancent pages, this will make page reclaim write the pages sequentially and benefit readahead. On the other side, several CPU write pages interleave means the pages don't live _sequentially_ but relatively _near_. In the per-cpu allocation case, if adjancent pages are written by different cpus, they will live relatively _far_. So how this impacts swap readahead depends on how many pages page reclaim isolates and swaps one time. If the number is big, this patch will benefit swap readahead. Of course, this is about sequential access pattern. The patch has no impact for random access pattern, because the new cluster allocation algorithm is just for SSD. Alternative solution is organizing swap layout to be per-mm instead of this per-cpu approach. In the per-mm layout, we allocate a disk range for each mm, so pages of one mm live in swap disk adjacently. per-mm layout has potential issues of lock contention if multiple reclaimers are swap pages from one mm. For a sequential workload, per-mm layout is better to implement swap readahead, because pages from the mm are adjacent in disk. But per-cpu layout isn't very bad in this workload, as page reclaim always isolates and swaps several pages one time, such pages will still live in disk sequentially and readahead can utilize this. For a random workload, per-mm layout isn't beneficial of request merge, because it's quite possible pages from different mm are swapout in the meantime and IO can't be merged in per-mm layout. while with per-cpu layout we can merge requests from any mm. Considering random workload is more popular in workloads with swap (and per-cpu approach isn't too bad for sequential workload too), I'm choosing per-cpu layout. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:32 +00:00
free_percpu(p->percpu_cluster);
p->percpu_cluster = NULL;
vfree(swap_map);
swap: change block allocation algorithm for SSD I'm using a fast SSD to do swap. scan_swap_map() sometimes uses up to 20~30% CPU time (when cluster is hard to find, the CPU time can be up to 80%), which becomes a bottleneck. scan_swap_map() scans a byte array to search a 256 page cluster, which is very slow. Here I introduced a simple algorithm to search cluster. Since we only care about 256 pages cluster, we can just use a counter to track if a cluster is free. Every 256 pages use one int to store the counter. If the counter of a cluster is 0, the cluster is free. All free clusters will be added to a list, so searching cluster is very efficient. With this, scap_swap_map() overhead disappears. This might help low end SD card swap too. Because if the cluster is aligned, SD firmware can do flash erase more efficiently. We only enable the algorithm for SSD. Hard disk swap isn't fast enough and has downside with the algorithm which might introduce regression (see below). The patch slightly changes which cluster is choosen. It always adds free cluster to list tail. This can help wear leveling for low end SSD too. And if no cluster found, the scan_swap_map() will do search from the end of last cluster. So if no cluster found, the scan_swap_map() will do search from the end of last free cluster, which is random. For SSD, this isn't a problem at all. Another downside is the cluster must be aligned to 256 pages, which will reduce the chance to find a cluster. I would expect this isn't a big problem for SSD because of the non-seek penality. (And this is the reason I only enable the algorithm for SSD). Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:28 +00:00
vfree(cluster_info);
vfree(frontswap_map);
/* Destroy swap account information */
swap: change swap_info singly-linked list to list_head The logic controlling the singly-linked list of swap_info_struct entries for all active, i.e. swapon'ed, swap targets is rather complex, because: - it stores the entries in priority order - there is a pointer to the highest priority entry - there is a pointer to the highest priority not-full entry - there is a highest_priority_index variable set outside the swap_lock - swap entries of equal priority should be used equally this complexity leads to bugs such as: https://lkml.org/lkml/2014/2/13/181 where different priority swap targets are incorrectly used equally. That bug probably could be solved with the existing singly-linked lists, but I think it would only add more complexity to the already difficult to understand get_swap_page() swap_list iteration logic. The first patch changes from a singly-linked list to a doubly-linked list using list_heads; the highest_priority_index and related code are removed and get_swap_page() starts each iteration at the highest priority swap_info entry, even if it's full. While this does introduce unnecessary list iteration (i.e. Schlemiel the painter's algorithm) in the case where one or more of the highest priority entries are full, the iteration and manipulation code is much simpler and behaves correctly re: the above bug; and the fourth patch removes the unnecessary iteration. The second patch adds some minor plist helper functions; nothing new really, just functions to match existing regular list functions. These are used by the next two patches. The third patch adds plist_requeue(), which is used by get_swap_page() in the next patch - it performs the requeueing of same-priority entries (which moves the entry to the end of its priority in the plist), so that all equal-priority swap_info_structs get used equally. The fourth patch converts the main list into a plist, and adds a new plist that contains only swap_info entries that are both active and not full. As Mel suggested using plists allows removing all the ordering code from swap - plists handle ordering automatically. The list naming is also clarified now that there are two lists, with the original list changed from swap_list_head to swap_active_head and the new list named swap_avail_head. A new spinlock is also added for the new list, so swap_info entries can be added or removed from the new list immediately as they become full or not full. This patch (of 4): Replace the singly-linked list tracking active, i.e. swapon'ed, swap_info_struct entries with a doubly-linked list using struct list_heads. Simplify the logic iterating and manipulating the list of entries, especially get_swap_page(), by using standard list_head functions, and removing the highest priority iteration logic. The change fixes the bug: https://lkml.org/lkml/2014/2/13/181 in which different priority swap entries after the highest priority entry are incorrectly used equally in pairs. The swap behavior is now as advertised, i.e. different priority swap entries are used in order, and equal priority swap targets are used concurrently. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> Cc: Weijie Yang <weijieut@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Bob Liu <bob.liu@oracle.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 23:09:53 +00:00
swap_cgroup_swapoff(p->type);
memcg: swap cgroup for remembering usage For accounting swap, we need a record per swap entry, at least. This patch adds following function. - swap_cgroup_swapon() .... called from swapon - swap_cgroup_swapoff() ... called at the end of swapoff. - swap_cgroup_record() .... record information of swap entry. - swap_cgroup_lookup() .... lookup information of swap entry. This patch just implements "how to record information". No actual method for limit the usage of swap. These routine uses flat table to record and lookup. "wise" lookup system like radix-tree requires requires memory allocation at new records but swap-out is usually called under memory shortage (or memcg hits limit.) So, I used static allocation. (maybe dynamic allocation is not very hard but it adds additional memory allocation in memory shortage path.) Note1: In this, we use pointer to record information and this means 8bytes per swap entry. I think we can reduce this when we create "id of cgroup" in the range of 0-65535 or 0-255. Reported-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Tested-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Reported-by: Hugh Dickins <hugh@veritas.com> Reported-by: Balbir Singh <balbir@linux.vnet.ibm.com> Reported-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Li Zefan <lizf@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08 02:07:58 +00:00
inode = mapping->host;
if (S_ISBLK(inode->i_mode)) {
struct block_device *bdev = I_BDEV(inode);
swap: fix set_blocksize race during swapon/swapoff Fix race between swapoff and swapon. Swapoff used old_block_size from swap_info outside of swapon_mutex so it could be overwritten by concurrent swapon. The race has visible effect only if more than one swap block device exists with different block sizes (e.g. /dev/sda1 with block size 4096 and /dev/sdb1 with 512). In such case it leads to setting the blocksize of swapped off device with wrong blocksize. The bug can be triggered with multiple concurrent swapoff and swapon: 0. Swap for some device is on. 1. swapoff: First the swapoff is called on this device and "struct swap_info_struct *p" is assigned. This is done under swap_lock however this lock is released for the call try_to_unuse(). 2. swapon: After the assignment above (and before acquiring swapon_mutex & swap_lock by swapoff) the swapon is called on the same device. The p->old_block_size is assigned to the value of block_size the device. This block size should be the same as previous but sometimes it is not. The swapon ends successfully. 3. swapoff: Swapoff resumes, grabs the locks and mutex and continues to disable this swap device. Now it sets the block size to value taken from swap_info which was overwritten by swapon in 2. Signed-off-by: Krzysztof Kozlowski <k.kozlowski@samsung.com> Reported-by: Weijie Yang <weijie.yang.kh@gmail.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Shaohua Li <shli@fusionio.com> Cc: Minchan Kim <minchan@kernel.org> Acked-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-10-16 20:47:06 +00:00
set_blocksize(bdev, old_block_size);
block: make blkdev_get/put() handle exclusive access Over time, block layer has accumulated a set of APIs dealing with bdev open, close, claim and release. * blkdev_get/put() are the primary open and close functions. * bd_claim/release() deal with exclusive open. * open/close_bdev_exclusive() are combination of open and claim and the other way around, respectively. * bd_link/unlink_disk_holder() to create and remove holder/slave symlinks. * open_by_devnum() wraps bdget() + blkdev_get(). The interface is a bit confusing and the decoupling of open and claim makes it impossible to properly guarantee exclusive access as in-kernel open + claim sequence can disturb the existing exclusive open even before the block layer knows the current open if for another exclusive access. Reorganize the interface such that, * blkdev_get() is extended to include exclusive access management. @holder argument is added and, if is @FMODE_EXCL specified, it will gain exclusive access atomically w.r.t. other exclusive accesses. * blkdev_put() is similarly extended. It now takes @mode argument and if @FMODE_EXCL is set, it releases an exclusive access. Also, when the last exclusive claim is released, the holder/slave symlinks are removed automatically. * bd_claim/release() and close_bdev_exclusive() are no longer necessary and either made static or removed. * bd_link_disk_holder() remains the same but bd_unlink_disk_holder() is no longer necessary and removed. * open_bdev_exclusive() becomes a simple wrapper around lookup_bdev() and blkdev_get(). It also has an unexpected extra bdev_read_only() test which probably should be moved into blkdev_get(). * open_by_devnum() is modified to take @holder argument and pass it to blkdev_get(). Most of bdev open/close operations are unified into blkdev_get/put() and most exclusive accesses are tested atomically at the open time (as it should). This cleans up code and removes some, both valid and invalid, but unnecessary all the same, corner cases. open_bdev_exclusive() and open_by_devnum() can use further cleanup - rename to blkdev_get_by_path() and blkdev_get_by_devt() and drop special features. Well, let's leave them for another day. Most conversions are straight-forward. drbd conversion is a bit more involved as there was some reordering, but the logic should stay the same. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Neil Brown <neilb@suse.de> Acked-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Acked-by: Mike Snitzer <snitzer@redhat.com> Acked-by: Philipp Reisner <philipp.reisner@linbit.com> Cc: Peter Osterlund <petero2@telia.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Jan Kara <jack@suse.cz> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <joel.becker@oracle.com> Cc: Alex Elder <aelder@sgi.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: dm-devel@redhat.com Cc: drbd-dev@lists.linbit.com Cc: Leo Chen <leochen@broadcom.com> Cc: Scott Branden <sbranden@broadcom.com> Cc: Chris Mason <chris.mason@oracle.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Dave Kleikamp <shaggy@linux.vnet.ibm.com> Cc: Joern Engel <joern@logfs.org> Cc: reiserfs-devel@vger.kernel.org Cc: Alexander Viro <viro@zeniv.linux.org.uk>
2010-11-13 10:55:17 +00:00
blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
} else {
inode_lock(inode);
inode->i_flags &= ~S_SWAPFILE;
inode_unlock(inode);
}
filp_close(swap_file, NULL);
/*
* Clear the SWP_USED flag after all resources are freed so that swapon
* can reuse this swap_info in alloc_swap_info() safely. It is ok to
* not hold p->lock after we cleared its SWP_WRITEOK.
*/
spin_lock(&swap_lock);
p->flags = 0;
spin_unlock(&swap_lock);
err = 0;
atomic_inc(&proc_poll_event);
wake_up_interruptible(&proc_poll_wait);
out_dput:
filp_close(victim, NULL);
out:
putname(pathname);
return err;
}
#ifdef CONFIG_PROC_FS
static unsigned swaps_poll(struct file *file, poll_table *wait)
{
struct seq_file *seq = file->private_data;
poll_wait(file, &proc_poll_wait, wait);
if (seq->poll_event != atomic_read(&proc_poll_event)) {
seq->poll_event = atomic_read(&proc_poll_event);
return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
}
return POLLIN | POLLRDNORM;
}
/* iterator */
static void *swap_start(struct seq_file *swap, loff_t *pos)
{
struct swap_info_struct *si;
int type;
loff_t l = *pos;
mutex_lock(&swapon_mutex);
if (!l)
return SEQ_START_TOKEN;
for (type = 0; type < nr_swapfiles; type++) {
smp_rmb(); /* read nr_swapfiles before swap_info[type] */
si = swap_info[type];
if (!(si->flags & SWP_USED) || !si->swap_map)
continue;
if (!--l)
return si;
}
return NULL;
}
static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
{
struct swap_info_struct *si = v;
int type;
if (v == SEQ_START_TOKEN)
type = 0;
else
type = si->type + 1;
for (; type < nr_swapfiles; type++) {
smp_rmb(); /* read nr_swapfiles before swap_info[type] */
si = swap_info[type];
if (!(si->flags & SWP_USED) || !si->swap_map)
continue;
++*pos;
return si;
}
return NULL;
}
static void swap_stop(struct seq_file *swap, void *v)
{
mutex_unlock(&swapon_mutex);
}
static int swap_show(struct seq_file *swap, void *v)
{
struct swap_info_struct *si = v;
struct file *file;
int len;
if (si == SEQ_START_TOKEN) {
seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
return 0;
}
file = si->swap_file;
len = seq_file_path(swap, file, " \t\n\\");
seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
len < 40 ? 40 - len : 1, " ",
S_ISBLK(file_inode(file)->i_mode) ?
"partition" : "file\t",
si->pages << (PAGE_SHIFT - 10),
si->inuse_pages << (PAGE_SHIFT - 10),
si->prio);
return 0;
}
static const struct seq_operations swaps_op = {
.start = swap_start,
.next = swap_next,
.stop = swap_stop,
.show = swap_show
};
static int swaps_open(struct inode *inode, struct file *file)
{
struct seq_file *seq;
int ret;
ret = seq_open(file, &swaps_op);
if (ret)
return ret;
seq = file->private_data;
seq->poll_event = atomic_read(&proc_poll_event);
return 0;
}
static const struct file_operations proc_swaps_operations = {
.open = swaps_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
.poll = swaps_poll,
};
static int __init procswaps_init(void)
{
proc_create("swaps", 0, NULL, &proc_swaps_operations);
return 0;
}
__initcall(procswaps_init);
#endif /* CONFIG_PROC_FS */
#ifdef MAX_SWAPFILES_CHECK
static int __init max_swapfiles_check(void)
{
MAX_SWAPFILES_CHECK();
return 0;
}
late_initcall(max_swapfiles_check);
#endif
static struct swap_info_struct *alloc_swap_info(void)
{
struct swap_info_struct *p;
unsigned int type;
p = kzalloc(sizeof(*p), GFP_KERNEL);
if (!p)
return ERR_PTR(-ENOMEM);
spin_lock(&swap_lock);
for (type = 0; type < nr_swapfiles; type++) {
if (!(swap_info[type]->flags & SWP_USED))
break;
}
[PATCH] Swapless page migration: add R/W migration entries Implement read/write migration ptes We take the upper two swapfiles for the two types of migration ptes and define a series of macros in swapops.h. The VM is modified to handle the migration entries. migration entries can only be encountered when the page they are pointing to is locked. This limits the number of places one has to fix. We also check in copy_pte_range and in mprotect_pte_range() for migration ptes. We check for migration ptes in do_swap_cache and call a function that will then wait on the page lock. This allows us to effectively stop all accesses to apge. Migration entries are created by try_to_unmap if called for migration and removed by local functions in migrate.c From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration (I've no NUMA, just hacking it up to migrate recklessly while running load), I've hit the BUG_ON(!PageLocked(p)) in migration_entry_to_page. This comes from an orphaned migration entry, unrelated to the current correctly locked migration, but hit by remove_anon_migration_ptes as it checks an address in each vma of the anon_vma list. Such an orphan may be left behind if an earlier migration raced with fork: copy_one_pte can duplicate a migration entry from parent to child, after remove_anon_migration_ptes has checked the child vma, but before it has removed it from the parent vma. (If the process were later to fault on this orphaned entry, it would hit the same BUG from migration_entry_wait.) This could be fixed by locking anon_vma in copy_one_pte, but we'd rather not. There's no such problem with file pages, because vma_prio_tree_add adds child vma after parent vma, and the page table locking at each end is enough to serialize. Follow that example with anon_vma: add new vmas to the tail instead of the head. (There's no corresponding problem when inserting migration entries, because a missed pte will leave the page count and mapcount high, which is allowed for. And there's no corresponding problem when migrating via swap, because a leftover swap entry will be correctly faulted. But the swapless method has no refcounting of its entries.) From: Ingo Molnar <mingo@elte.hu> pte_unmap_unlock() takes the pte pointer as an argument. From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration, gcc has tried to exec a pointer instead of a string: smells like COW mappings are not being properly write-protected on fork. The protection in copy_one_pte looks very convincing, until at last you realize that the second arg to make_migration_entry is a boolean "write", and SWP_MIGRATION_READ is 30. Anyway, it's better done like in change_pte_range, using is_write_migration_entry and make_migration_entry_read. From: Hugh Dickins <hugh@veritas.com> Remove unnecessary obfuscation from sys_swapon's range check on swap type, which blew up causing memory corruption once swapless migration made MAX_SWAPFILES no longer 2 ^ MAX_SWAPFILES_SHIFT. Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> From: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 09:03:35 +00:00
if (type >= MAX_SWAPFILES) {
spin_unlock(&swap_lock);
kfree(p);
return ERR_PTR(-EPERM);
}
if (type >= nr_swapfiles) {
p->type = type;
swap_info[type] = p;
/*
* Write swap_info[type] before nr_swapfiles, in case a
* racing procfs swap_start() or swap_next() is reading them.
* (We never shrink nr_swapfiles, we never free this entry.)
*/
smp_wmb();
nr_swapfiles++;
} else {
kfree(p);
p = swap_info[type];
/*
* Do not memset this entry: a racing procfs swap_next()
* would be relying on p->type to remain valid.
*/
}
INIT_LIST_HEAD(&p->first_swap_extent.list);
swap: change swap_list_head to plist, add swap_avail_head Originally get_swap_page() started iterating through the singly-linked list of swap_info_structs using swap_list.next or highest_priority_index, which both were intended to point to the highest priority active swap target that was not full. The first patch in this series changed the singly-linked list to a doubly-linked list, and removed the logic to start at the highest priority non-full entry; it starts scanning at the highest priority entry each time, even if the entry is full. Replace the manually ordered swap_list_head with a plist, swap_active_head. Add a new plist, swap_avail_head. The original swap_active_head plist contains all active swap_info_structs, as before, while the new swap_avail_head plist contains only swap_info_structs that are active and available, i.e. not full. Add a new spinlock, swap_avail_lock, to protect the swap_avail_head list. Mel Gorman suggested using plists since they internally handle ordering the list entries based on priority, which is exactly what swap was doing manually. All the ordering code is now removed, and swap_info_struct entries and simply added to their corresponding plist and automatically ordered correctly. Using a new plist for available swap_info_structs simplifies and optimizes get_swap_page(), which no longer has to iterate over full swap_info_structs. Using a new spinlock for swap_avail_head plist allows each swap_info_struct to add or remove themselves from the plist when they become full or not-full; previously they could not do so because the swap_info_struct->lock is held when they change from full<->not-full, and the swap_lock protecting the main swap_active_head must be ordered before any swap_info_struct->lock. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Shaohua Li <shli@fusionio.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> Cc: Weijie Yang <weijieut@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Bob Liu <bob.liu@oracle.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 23:09:59 +00:00
plist_node_init(&p->list, 0);
plist_node_init(&p->avail_list, 0);
p->flags = SWP_USED;
spin_unlock(&swap_lock);
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
spin_lock_init(&p->lock);
return p;
}
static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
{
int error;
if (S_ISBLK(inode->i_mode)) {
p->bdev = bdgrab(I_BDEV(inode));
error = blkdev_get(p->bdev,
FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
if (error < 0) {
p->bdev = NULL;
return error;
}
p->old_block_size = block_size(p->bdev);
error = set_blocksize(p->bdev, PAGE_SIZE);
if (error < 0)
return error;
p->flags |= SWP_BLKDEV;
} else if (S_ISREG(inode->i_mode)) {
p->bdev = inode->i_sb->s_bdev;
inode_lock(inode);
if (IS_SWAPFILE(inode))
return -EBUSY;
} else
return -EINVAL;
return 0;
}
static unsigned long read_swap_header(struct swap_info_struct *p,
union swap_header *swap_header,
struct inode *inode)
{
int i;
unsigned long maxpages;
unsigned long swapfilepages;
unsigned long last_page;
if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
pr_err("Unable to find swap-space signature\n");
return 0;
}
/* swap partition endianess hack... */
if (swab32(swap_header->info.version) == 1) {
swab32s(&swap_header->info.version);
swab32s(&swap_header->info.last_page);
swab32s(&swap_header->info.nr_badpages);
for (i = 0; i < swap_header->info.nr_badpages; i++)
swab32s(&swap_header->info.badpages[i]);
}
/* Check the swap header's sub-version */
if (swap_header->info.version != 1) {
pr_warn("Unable to handle swap header version %d\n",
swap_header->info.version);
return 0;
}
p->lowest_bit = 1;
p->cluster_next = 1;
p->cluster_nr = 0;
/*
* Find out how many pages are allowed for a single swap
swap: fix shmem swapping when more than 8 areas Minchan Kim reports that when a system has many swap areas, and tmpfs swaps out to the ninth or more, shmem_getpage_gfp()'s attempts to read back the page cannot locate it, and the read fails with -ENOMEM. Whoops. Yes, I blindly followed read_swap_header()'s pte_to_swp_entry( swp_entry_to_pte()) technique for determining maximum usable swap offset, without stopping to realize that that actually depends upon the pte swap encoding shifting swap offset to the higher bits and truncating it there. Whereas our radix_tree swap encoding leaves offset in the lower bits: it's swap "type" (that is, index of swap area) that was truncated. Fix it by reducing the SWP_TYPE_SHIFT() in swapops.h, and removing the broken radix_to_swp_entry(swp_to_radix_entry()) from read_swap_header(). This does not reduce the usable size of a swap area any further, it leaves it as claimed when making the original commit: no change from 3.0 on x86_64, nor on i386 without PAE; but 3.0's 512GB is reduced to 128GB per swapfile on i386 with PAE. It's not a change I would have risked five years ago, but with x86_64 supported for ten years, I believe it's appropriate now. Hmm, and what if some architecture implements its swap pte with offset encoded below type? That would equally break the maximum usable swap offset check. Happily, they all follow the same tradition of encoding offset above type, but I'll prepare a check on that for next. Reported-and-Reviewed-and-Tested-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Hugh Dickins <hughd@google.com> Cc: stable@vger.kernel.org [3.1, 3.2, 3.3, 3.4] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-06-16 00:55:50 +00:00
* device. There are two limiting factors: 1) the number
mm: let swap use exceptional entries If swap entries are to be stored along with struct page pointers in a radix tree, they need to be distinguished as exceptional entries. Most of the handling of swap entries in radix tree will be contained in shmem.c, but a few functions in filemap.c's common code need to check for their appearance: find_get_page(), find_lock_page(), find_get_pages() and find_get_pages_contig(). So as not to slow their fast paths, tuck those checks inside the existing checks for unlikely radix_tree_deref_slot(); except for find_lock_page(), where it is an added test. And make it a BUG in find_get_pages_tag(), which is not applied to tmpfs files. A part of the reason for eliminating shmem_readpage() earlier, was to minimize the places where common code would need to allow for swap entries. The swp_entry_t known to swapfile.c must be massaged into a slightly different form when stored in the radix tree, just as it gets massaged into a pte_t when stored in page tables. In an i386 kernel this limits its information (type and page offset) to 30 bits: given 32 "types" of swapfile and 4kB pagesize, that's a maximum swapfile size of 128GB. Which is less than the 512GB we previously allowed with X86_PAE (where the swap entry can occupy the entire upper 32 bits of a pte_t), but not a new limitation on 32-bit without PAE; and there's not a new limitation on 64-bit (where swap filesize is already limited to 16TB by a 32-bit page offset). Thirty areas of 128GB is probably still enough swap for a 64GB 32-bit machine. Provide swp_to_radix_entry() and radix_to_swp_entry() conversions, and enforce filesize limit in read_swap_header(), just as for ptes. Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-08-03 23:21:19 +00:00
* of bits for the swap offset in the swp_entry_t type, and
* 2) the number of bits in the swap pte as defined by the
swap: fix shmem swapping when more than 8 areas Minchan Kim reports that when a system has many swap areas, and tmpfs swaps out to the ninth or more, shmem_getpage_gfp()'s attempts to read back the page cannot locate it, and the read fails with -ENOMEM. Whoops. Yes, I blindly followed read_swap_header()'s pte_to_swp_entry( swp_entry_to_pte()) technique for determining maximum usable swap offset, without stopping to realize that that actually depends upon the pte swap encoding shifting swap offset to the higher bits and truncating it there. Whereas our radix_tree swap encoding leaves offset in the lower bits: it's swap "type" (that is, index of swap area) that was truncated. Fix it by reducing the SWP_TYPE_SHIFT() in swapops.h, and removing the broken radix_to_swp_entry(swp_to_radix_entry()) from read_swap_header(). This does not reduce the usable size of a swap area any further, it leaves it as claimed when making the original commit: no change from 3.0 on x86_64, nor on i386 without PAE; but 3.0's 512GB is reduced to 128GB per swapfile on i386 with PAE. It's not a change I would have risked five years ago, but with x86_64 supported for ten years, I believe it's appropriate now. Hmm, and what if some architecture implements its swap pte with offset encoded below type? That would equally break the maximum usable swap offset check. Happily, they all follow the same tradition of encoding offset above type, but I'll prepare a check on that for next. Reported-and-Reviewed-and-Tested-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Hugh Dickins <hughd@google.com> Cc: stable@vger.kernel.org [3.1, 3.2, 3.3, 3.4] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-06-16 00:55:50 +00:00
* different architectures. In order to find the
mm: let swap use exceptional entries If swap entries are to be stored along with struct page pointers in a radix tree, they need to be distinguished as exceptional entries. Most of the handling of swap entries in radix tree will be contained in shmem.c, but a few functions in filemap.c's common code need to check for their appearance: find_get_page(), find_lock_page(), find_get_pages() and find_get_pages_contig(). So as not to slow their fast paths, tuck those checks inside the existing checks for unlikely radix_tree_deref_slot(); except for find_lock_page(), where it is an added test. And make it a BUG in find_get_pages_tag(), which is not applied to tmpfs files. A part of the reason for eliminating shmem_readpage() earlier, was to minimize the places where common code would need to allow for swap entries. The swp_entry_t known to swapfile.c must be massaged into a slightly different form when stored in the radix tree, just as it gets massaged into a pte_t when stored in page tables. In an i386 kernel this limits its information (type and page offset) to 30 bits: given 32 "types" of swapfile and 4kB pagesize, that's a maximum swapfile size of 128GB. Which is less than the 512GB we previously allowed with X86_PAE (where the swap entry can occupy the entire upper 32 bits of a pte_t), but not a new limitation on 32-bit without PAE; and there's not a new limitation on 64-bit (where swap filesize is already limited to 16TB by a 32-bit page offset). Thirty areas of 128GB is probably still enough swap for a 64GB 32-bit machine. Provide swp_to_radix_entry() and radix_to_swp_entry() conversions, and enforce filesize limit in read_swap_header(), just as for ptes. Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-08-03 23:21:19 +00:00
* largest possible bit mask, a swap entry with swap type 0
* and swap offset ~0UL is created, encoded to a swap pte,
mm: let swap use exceptional entries If swap entries are to be stored along with struct page pointers in a radix tree, they need to be distinguished as exceptional entries. Most of the handling of swap entries in radix tree will be contained in shmem.c, but a few functions in filemap.c's common code need to check for their appearance: find_get_page(), find_lock_page(), find_get_pages() and find_get_pages_contig(). So as not to slow their fast paths, tuck those checks inside the existing checks for unlikely radix_tree_deref_slot(); except for find_lock_page(), where it is an added test. And make it a BUG in find_get_pages_tag(), which is not applied to tmpfs files. A part of the reason for eliminating shmem_readpage() earlier, was to minimize the places where common code would need to allow for swap entries. The swp_entry_t known to swapfile.c must be massaged into a slightly different form when stored in the radix tree, just as it gets massaged into a pte_t when stored in page tables. In an i386 kernel this limits its information (type and page offset) to 30 bits: given 32 "types" of swapfile and 4kB pagesize, that's a maximum swapfile size of 128GB. Which is less than the 512GB we previously allowed with X86_PAE (where the swap entry can occupy the entire upper 32 bits of a pte_t), but not a new limitation on 32-bit without PAE; and there's not a new limitation on 64-bit (where swap filesize is already limited to 16TB by a 32-bit page offset). Thirty areas of 128GB is probably still enough swap for a 64GB 32-bit machine. Provide swp_to_radix_entry() and radix_to_swp_entry() conversions, and enforce filesize limit in read_swap_header(), just as for ptes. Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-08-03 23:21:19 +00:00
* decoded to a swp_entry_t again, and finally the swap
* offset is extracted. This will mask all the bits from
* the initial ~0UL mask that can't be encoded in either
* the swp_entry_t or the architecture definition of a
swap: fix shmem swapping when more than 8 areas Minchan Kim reports that when a system has many swap areas, and tmpfs swaps out to the ninth or more, shmem_getpage_gfp()'s attempts to read back the page cannot locate it, and the read fails with -ENOMEM. Whoops. Yes, I blindly followed read_swap_header()'s pte_to_swp_entry( swp_entry_to_pte()) technique for determining maximum usable swap offset, without stopping to realize that that actually depends upon the pte swap encoding shifting swap offset to the higher bits and truncating it there. Whereas our radix_tree swap encoding leaves offset in the lower bits: it's swap "type" (that is, index of swap area) that was truncated. Fix it by reducing the SWP_TYPE_SHIFT() in swapops.h, and removing the broken radix_to_swp_entry(swp_to_radix_entry()) from read_swap_header(). This does not reduce the usable size of a swap area any further, it leaves it as claimed when making the original commit: no change from 3.0 on x86_64, nor on i386 without PAE; but 3.0's 512GB is reduced to 128GB per swapfile on i386 with PAE. It's not a change I would have risked five years ago, but with x86_64 supported for ten years, I believe it's appropriate now. Hmm, and what if some architecture implements its swap pte with offset encoded below type? That would equally break the maximum usable swap offset check. Happily, they all follow the same tradition of encoding offset above type, but I'll prepare a check on that for next. Reported-and-Reviewed-and-Tested-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Hugh Dickins <hughd@google.com> Cc: stable@vger.kernel.org [3.1, 3.2, 3.3, 3.4] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-06-16 00:55:50 +00:00
* swap pte.
*/
maxpages = swp_offset(pte_to_swp_entry(
swap: fix shmem swapping when more than 8 areas Minchan Kim reports that when a system has many swap areas, and tmpfs swaps out to the ninth or more, shmem_getpage_gfp()'s attempts to read back the page cannot locate it, and the read fails with -ENOMEM. Whoops. Yes, I blindly followed read_swap_header()'s pte_to_swp_entry( swp_entry_to_pte()) technique for determining maximum usable swap offset, without stopping to realize that that actually depends upon the pte swap encoding shifting swap offset to the higher bits and truncating it there. Whereas our radix_tree swap encoding leaves offset in the lower bits: it's swap "type" (that is, index of swap area) that was truncated. Fix it by reducing the SWP_TYPE_SHIFT() in swapops.h, and removing the broken radix_to_swp_entry(swp_to_radix_entry()) from read_swap_header(). This does not reduce the usable size of a swap area any further, it leaves it as claimed when making the original commit: no change from 3.0 on x86_64, nor on i386 without PAE; but 3.0's 512GB is reduced to 128GB per swapfile on i386 with PAE. It's not a change I would have risked five years ago, but with x86_64 supported for ten years, I believe it's appropriate now. Hmm, and what if some architecture implements its swap pte with offset encoded below type? That would equally break the maximum usable swap offset check. Happily, they all follow the same tradition of encoding offset above type, but I'll prepare a check on that for next. Reported-and-Reviewed-and-Tested-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Hugh Dickins <hughd@google.com> Cc: stable@vger.kernel.org [3.1, 3.2, 3.3, 3.4] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-06-16 00:55:50 +00:00
swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
last_page = swap_header->info.last_page;
if (last_page > maxpages) {
pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
maxpages << (PAGE_SHIFT - 10),
last_page << (PAGE_SHIFT - 10));
}
if (maxpages > last_page) {
maxpages = last_page + 1;
/* p->max is an unsigned int: don't overflow it */
if ((unsigned int)maxpages == 0)
maxpages = UINT_MAX;
}
p->highest_bit = maxpages - 1;
if (!maxpages)
return 0;
swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
if (swapfilepages && maxpages > swapfilepages) {
pr_warn("Swap area shorter than signature indicates\n");
return 0;
}
if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
return 0;
if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
return 0;
return maxpages;
}
static int setup_swap_map_and_extents(struct swap_info_struct *p,
union swap_header *swap_header,
unsigned char *swap_map,
swap: change block allocation algorithm for SSD I'm using a fast SSD to do swap. scan_swap_map() sometimes uses up to 20~30% CPU time (when cluster is hard to find, the CPU time can be up to 80%), which becomes a bottleneck. scan_swap_map() scans a byte array to search a 256 page cluster, which is very slow. Here I introduced a simple algorithm to search cluster. Since we only care about 256 pages cluster, we can just use a counter to track if a cluster is free. Every 256 pages use one int to store the counter. If the counter of a cluster is 0, the cluster is free. All free clusters will be added to a list, so searching cluster is very efficient. With this, scap_swap_map() overhead disappears. This might help low end SD card swap too. Because if the cluster is aligned, SD firmware can do flash erase more efficiently. We only enable the algorithm for SSD. Hard disk swap isn't fast enough and has downside with the algorithm which might introduce regression (see below). The patch slightly changes which cluster is choosen. It always adds free cluster to list tail. This can help wear leveling for low end SSD too. And if no cluster found, the scan_swap_map() will do search from the end of last cluster. So if no cluster found, the scan_swap_map() will do search from the end of last free cluster, which is random. For SSD, this isn't a problem at all. Another downside is the cluster must be aligned to 256 pages, which will reduce the chance to find a cluster. I would expect this isn't a big problem for SSD because of the non-seek penality. (And this is the reason I only enable the algorithm for SSD). Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:28 +00:00
struct swap_cluster_info *cluster_info,
unsigned long maxpages,
sector_t *span)
{
int i;
unsigned int nr_good_pages;
int nr_extents;
swap: change block allocation algorithm for SSD I'm using a fast SSD to do swap. scan_swap_map() sometimes uses up to 20~30% CPU time (when cluster is hard to find, the CPU time can be up to 80%), which becomes a bottleneck. scan_swap_map() scans a byte array to search a 256 page cluster, which is very slow. Here I introduced a simple algorithm to search cluster. Since we only care about 256 pages cluster, we can just use a counter to track if a cluster is free. Every 256 pages use one int to store the counter. If the counter of a cluster is 0, the cluster is free. All free clusters will be added to a list, so searching cluster is very efficient. With this, scap_swap_map() overhead disappears. This might help low end SD card swap too. Because if the cluster is aligned, SD firmware can do flash erase more efficiently. We only enable the algorithm for SSD. Hard disk swap isn't fast enough and has downside with the algorithm which might introduce regression (see below). The patch slightly changes which cluster is choosen. It always adds free cluster to list tail. This can help wear leveling for low end SSD too. And if no cluster found, the scan_swap_map() will do search from the end of last cluster. So if no cluster found, the scan_swap_map() will do search from the end of last free cluster, which is random. For SSD, this isn't a problem at all. Another downside is the cluster must be aligned to 256 pages, which will reduce the chance to find a cluster. I would expect this isn't a big problem for SSD because of the non-seek penality. (And this is the reason I only enable the algorithm for SSD). Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:28 +00:00
unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
nr_good_pages = maxpages - 1; /* omit header page */
cluster_list_init(&p->free_clusters);
cluster_list_init(&p->discard_clusters);
swap: change block allocation algorithm for SSD I'm using a fast SSD to do swap. scan_swap_map() sometimes uses up to 20~30% CPU time (when cluster is hard to find, the CPU time can be up to 80%), which becomes a bottleneck. scan_swap_map() scans a byte array to search a 256 page cluster, which is very slow. Here I introduced a simple algorithm to search cluster. Since we only care about 256 pages cluster, we can just use a counter to track if a cluster is free. Every 256 pages use one int to store the counter. If the counter of a cluster is 0, the cluster is free. All free clusters will be added to a list, so searching cluster is very efficient. With this, scap_swap_map() overhead disappears. This might help low end SD card swap too. Because if the cluster is aligned, SD firmware can do flash erase more efficiently. We only enable the algorithm for SSD. Hard disk swap isn't fast enough and has downside with the algorithm which might introduce regression (see below). The patch slightly changes which cluster is choosen. It always adds free cluster to list tail. This can help wear leveling for low end SSD too. And if no cluster found, the scan_swap_map() will do search from the end of last cluster. So if no cluster found, the scan_swap_map() will do search from the end of last free cluster, which is random. For SSD, this isn't a problem at all. Another downside is the cluster must be aligned to 256 pages, which will reduce the chance to find a cluster. I would expect this isn't a big problem for SSD because of the non-seek penality. (And this is the reason I only enable the algorithm for SSD). Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:28 +00:00
for (i = 0; i < swap_header->info.nr_badpages; i++) {
unsigned int page_nr = swap_header->info.badpages[i];
if (page_nr == 0 || page_nr > swap_header->info.last_page)
return -EINVAL;
if (page_nr < maxpages) {
swap_map[page_nr] = SWAP_MAP_BAD;
nr_good_pages--;
swap: change block allocation algorithm for SSD I'm using a fast SSD to do swap. scan_swap_map() sometimes uses up to 20~30% CPU time (when cluster is hard to find, the CPU time can be up to 80%), which becomes a bottleneck. scan_swap_map() scans a byte array to search a 256 page cluster, which is very slow. Here I introduced a simple algorithm to search cluster. Since we only care about 256 pages cluster, we can just use a counter to track if a cluster is free. Every 256 pages use one int to store the counter. If the counter of a cluster is 0, the cluster is free. All free clusters will be added to a list, so searching cluster is very efficient. With this, scap_swap_map() overhead disappears. This might help low end SD card swap too. Because if the cluster is aligned, SD firmware can do flash erase more efficiently. We only enable the algorithm for SSD. Hard disk swap isn't fast enough and has downside with the algorithm which might introduce regression (see below). The patch slightly changes which cluster is choosen. It always adds free cluster to list tail. This can help wear leveling for low end SSD too. And if no cluster found, the scan_swap_map() will do search from the end of last cluster. So if no cluster found, the scan_swap_map() will do search from the end of last free cluster, which is random. For SSD, this isn't a problem at all. Another downside is the cluster must be aligned to 256 pages, which will reduce the chance to find a cluster. I would expect this isn't a big problem for SSD because of the non-seek penality. (And this is the reason I only enable the algorithm for SSD). Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:28 +00:00
/*
* Haven't marked the cluster free yet, no list
* operation involved
*/
inc_cluster_info_page(p, cluster_info, page_nr);
}
}
swap: change block allocation algorithm for SSD I'm using a fast SSD to do swap. scan_swap_map() sometimes uses up to 20~30% CPU time (when cluster is hard to find, the CPU time can be up to 80%), which becomes a bottleneck. scan_swap_map() scans a byte array to search a 256 page cluster, which is very slow. Here I introduced a simple algorithm to search cluster. Since we only care about 256 pages cluster, we can just use a counter to track if a cluster is free. Every 256 pages use one int to store the counter. If the counter of a cluster is 0, the cluster is free. All free clusters will be added to a list, so searching cluster is very efficient. With this, scap_swap_map() overhead disappears. This might help low end SD card swap too. Because if the cluster is aligned, SD firmware can do flash erase more efficiently. We only enable the algorithm for SSD. Hard disk swap isn't fast enough and has downside with the algorithm which might introduce regression (see below). The patch slightly changes which cluster is choosen. It always adds free cluster to list tail. This can help wear leveling for low end SSD too. And if no cluster found, the scan_swap_map() will do search from the end of last cluster. So if no cluster found, the scan_swap_map() will do search from the end of last free cluster, which is random. For SSD, this isn't a problem at all. Another downside is the cluster must be aligned to 256 pages, which will reduce the chance to find a cluster. I would expect this isn't a big problem for SSD because of the non-seek penality. (And this is the reason I only enable the algorithm for SSD). Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:28 +00:00
/* Haven't marked the cluster free yet, no list operation involved */
for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
inc_cluster_info_page(p, cluster_info, i);
if (nr_good_pages) {
swap_map[0] = SWAP_MAP_BAD;
swap: change block allocation algorithm for SSD I'm using a fast SSD to do swap. scan_swap_map() sometimes uses up to 20~30% CPU time (when cluster is hard to find, the CPU time can be up to 80%), which becomes a bottleneck. scan_swap_map() scans a byte array to search a 256 page cluster, which is very slow. Here I introduced a simple algorithm to search cluster. Since we only care about 256 pages cluster, we can just use a counter to track if a cluster is free. Every 256 pages use one int to store the counter. If the counter of a cluster is 0, the cluster is free. All free clusters will be added to a list, so searching cluster is very efficient. With this, scap_swap_map() overhead disappears. This might help low end SD card swap too. Because if the cluster is aligned, SD firmware can do flash erase more efficiently. We only enable the algorithm for SSD. Hard disk swap isn't fast enough and has downside with the algorithm which might introduce regression (see below). The patch slightly changes which cluster is choosen. It always adds free cluster to list tail. This can help wear leveling for low end SSD too. And if no cluster found, the scan_swap_map() will do search from the end of last cluster. So if no cluster found, the scan_swap_map() will do search from the end of last free cluster, which is random. For SSD, this isn't a problem at all. Another downside is the cluster must be aligned to 256 pages, which will reduce the chance to find a cluster. I would expect this isn't a big problem for SSD because of the non-seek penality. (And this is the reason I only enable the algorithm for SSD). Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:28 +00:00
/*
* Not mark the cluster free yet, no list
* operation involved
*/
inc_cluster_info_page(p, cluster_info, 0);
p->max = maxpages;
p->pages = nr_good_pages;
nr_extents = setup_swap_extents(p, span);
if (nr_extents < 0)
return nr_extents;
nr_good_pages = p->pages;
}
if (!nr_good_pages) {
pr_warn("Empty swap-file\n");
return -EINVAL;
}
swap: change block allocation algorithm for SSD I'm using a fast SSD to do swap. scan_swap_map() sometimes uses up to 20~30% CPU time (when cluster is hard to find, the CPU time can be up to 80%), which becomes a bottleneck. scan_swap_map() scans a byte array to search a 256 page cluster, which is very slow. Here I introduced a simple algorithm to search cluster. Since we only care about 256 pages cluster, we can just use a counter to track if a cluster is free. Every 256 pages use one int to store the counter. If the counter of a cluster is 0, the cluster is free. All free clusters will be added to a list, so searching cluster is very efficient. With this, scap_swap_map() overhead disappears. This might help low end SD card swap too. Because if the cluster is aligned, SD firmware can do flash erase more efficiently. We only enable the algorithm for SSD. Hard disk swap isn't fast enough and has downside with the algorithm which might introduce regression (see below). The patch slightly changes which cluster is choosen. It always adds free cluster to list tail. This can help wear leveling for low end SSD too. And if no cluster found, the scan_swap_map() will do search from the end of last cluster. So if no cluster found, the scan_swap_map() will do search from the end of last free cluster, which is random. For SSD, this isn't a problem at all. Another downside is the cluster must be aligned to 256 pages, which will reduce the chance to find a cluster. I would expect this isn't a big problem for SSD because of the non-seek penality. (And this is the reason I only enable the algorithm for SSD). Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:28 +00:00
if (!cluster_info)
return nr_extents;
for (i = 0; i < nr_clusters; i++) {
if (!cluster_count(&cluster_info[idx])) {
cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
cluster_list_add_tail(&p->free_clusters, cluster_info,
idx);
swap: change block allocation algorithm for SSD I'm using a fast SSD to do swap. scan_swap_map() sometimes uses up to 20~30% CPU time (when cluster is hard to find, the CPU time can be up to 80%), which becomes a bottleneck. scan_swap_map() scans a byte array to search a 256 page cluster, which is very slow. Here I introduced a simple algorithm to search cluster. Since we only care about 256 pages cluster, we can just use a counter to track if a cluster is free. Every 256 pages use one int to store the counter. If the counter of a cluster is 0, the cluster is free. All free clusters will be added to a list, so searching cluster is very efficient. With this, scap_swap_map() overhead disappears. This might help low end SD card swap too. Because if the cluster is aligned, SD firmware can do flash erase more efficiently. We only enable the algorithm for SSD. Hard disk swap isn't fast enough and has downside with the algorithm which might introduce regression (see below). The patch slightly changes which cluster is choosen. It always adds free cluster to list tail. This can help wear leveling for low end SSD too. And if no cluster found, the scan_swap_map() will do search from the end of last cluster. So if no cluster found, the scan_swap_map() will do search from the end of last free cluster, which is random. For SSD, this isn't a problem at all. Another downside is the cluster must be aligned to 256 pages, which will reduce the chance to find a cluster. I would expect this isn't a big problem for SSD because of the non-seek penality. (And this is the reason I only enable the algorithm for SSD). Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:28 +00:00
}
idx++;
if (idx == nr_clusters)
idx = 0;
}
return nr_extents;
}
swap: discard while swapping only if SWAP_FLAG_DISCARD_PAGES Considering the use cases where the swap device supports discard: a) and can do it quickly; b) but it's slow to do in small granularities (or concurrent with other I/O); c) but the implementation is so horrendous that you don't even want to send one down; And assuming that the sysadmin considers it useful to send the discards down at all, we would (probably) want the following solutions: i. do the fine-grained discards for freed swap pages, if device is capable of doing so optimally; ii. do single-time (batched) swap area discards, either at swapon or via something like fstrim (not implemented yet); iii. allow doing both single-time and fine-grained discards; or iv. turn it off completely (default behavior) As implemented today, one can only enable/disable discards for swap, but one cannot select, for instance, solution (ii) on a swap device like (b) even though the single-time discard is regarded to be interesting, or necessary to the workload because it would imply (1), and the device is not capable of performing it optimally. This patch addresses the scenario depicted above by introducing a way to ensure the (probably) wanted solutions (i, ii, iii and iv) can be flexibly flagged through swapon(8) to allow a sysadmin to select the best suitable swap discard policy accordingly to system constraints. This patch introduces SWAP_FLAG_DISCARD_PAGES and SWAP_FLAG_DISCARD_ONCE new flags to allow more flexibe swap discard policies being flagged through swapon(8). The default behavior is to keep both single-time, or batched, area discards (SWAP_FLAG_DISCARD_ONCE) and fine-grained discards for page-clusters (SWAP_FLAG_DISCARD_PAGES) enabled, in order to keep consistentcy with older kernel behavior, as well as maintain compatibility with older swapon(8). However, through the new introduced flags the best suitable discard policy can be selected accordingly to any given swap device constraint. [akpm@linux-foundation.org: tweak comments] Signed-off-by: Rafael Aquini <aquini@redhat.com> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shaohua Li <shli@kernel.org> Cc: Karel Zak <kzak@redhat.com> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03 22:02:46 +00:00
/*
* Helper to sys_swapon determining if a given swap
* backing device queue supports DISCARD operations.
*/
static bool swap_discardable(struct swap_info_struct *si)
{
struct request_queue *q = bdev_get_queue(si->bdev);
if (!q || !blk_queue_discard(q))
return false;
return true;
}
SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
{
struct swap_info_struct *p;
struct filename *name;
struct file *swap_file = NULL;
struct address_space *mapping;
int prio;
int error;
union swap_header *swap_header;
int nr_extents;
sector_t span;
unsigned long maxpages;
unsigned char *swap_map = NULL;
swap: change block allocation algorithm for SSD I'm using a fast SSD to do swap. scan_swap_map() sometimes uses up to 20~30% CPU time (when cluster is hard to find, the CPU time can be up to 80%), which becomes a bottleneck. scan_swap_map() scans a byte array to search a 256 page cluster, which is very slow. Here I introduced a simple algorithm to search cluster. Since we only care about 256 pages cluster, we can just use a counter to track if a cluster is free. Every 256 pages use one int to store the counter. If the counter of a cluster is 0, the cluster is free. All free clusters will be added to a list, so searching cluster is very efficient. With this, scap_swap_map() overhead disappears. This might help low end SD card swap too. Because if the cluster is aligned, SD firmware can do flash erase more efficiently. We only enable the algorithm for SSD. Hard disk swap isn't fast enough and has downside with the algorithm which might introduce regression (see below). The patch slightly changes which cluster is choosen. It always adds free cluster to list tail. This can help wear leveling for low end SSD too. And if no cluster found, the scan_swap_map() will do search from the end of last cluster. So if no cluster found, the scan_swap_map() will do search from the end of last free cluster, which is random. For SSD, this isn't a problem at all. Another downside is the cluster must be aligned to 256 pages, which will reduce the chance to find a cluster. I would expect this isn't a big problem for SSD because of the non-seek penality. (And this is the reason I only enable the algorithm for SSD). Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:28 +00:00
struct swap_cluster_info *cluster_info = NULL;
mm: frontswap: core swap subsystem hooks and headers This patch, 2of4, contains the changes to the core swap subsystem. This includes: (1) makes available core swap data structures (swap_lock, swap_list and swap_info) that are needed by frontswap.c but we don't need to expose them to the dozens of files that include swap.h so we create a new swapfile.h just to extern-ify these and modify their declarations to non-static (2) adds frontswap-related elements to swap_info_struct. Frontswap_map points to vzalloc'ed one-bit-per-swap-page metadata that indicates whether the swap page is in frontswap or in the device and frontswap_pages counts how many pages are in frontswap. (3) adds hooks in the swap subsystem and extends try_to_unuse so that frontswap_shrink can do a "partial swapoff". Note that a failed frontswap_map allocation is safe... failure is noted by lack of "FS" in the subsequent printk. --- [v14: rebase to 3.4-rc2] [v10: no change] [v9: akpm@linux-foundation.org: mark some statics __read_mostly] [v9: akpm@linux-foundation.org: add clarifying comments] [v9: akpm@linux-foundation.org: no need to loop repeating try_to_unuse] [v9: error27@gmail.com: remove superfluous check for NULL] [v8: rebase to 3.0-rc4] [v8: kamezawa.hiroyu@jp.fujitsu.com: change counter to atomic_t to avoid races] [v8: kamezawa.hiroyu@jp.fujitsu.com: comment to clarify informational counters] [v7: rebase to 3.0-rc3] [v7: JBeulich@novell.com: add new swap struct elements only if config'd] [v6: rebase to 3.0-rc1] [v6: lliubbo@gmail.com: fix null pointer deref if vzalloc fails] [v6: konrad.wilk@oracl.com: various checks and code clarifications/comments] [v5: no change from v4] [v4: rebase to 2.6.39] Signed-off-by: Dan Magenheimer <dan.magenheimer@oracle.com> Reviewed-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Jan Beulich <JBeulich@novell.com> Acked-by: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Matthew Wilcox <matthew@wil.cx> Cc: Chris Mason <chris.mason@oracle.com> Cc: Rik Riel <riel@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> [v11: Rebased, fixed mm/swapfile.c context change] Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2012-04-09 23:08:06 +00:00
unsigned long *frontswap_map = NULL;
struct page *page = NULL;
struct inode *inode = NULL;
if (swap_flags & ~SWAP_FLAGS_VALID)
return -EINVAL;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
p = alloc_swap_info();
if (IS_ERR(p))
return PTR_ERR(p);
swap: make swap discard async swap can do cluster discard for SSD, which is good, but there are some problems here: 1. swap do the discard just before page reclaim gets a swap entry and writes the disk sectors. This is useless for high end SSD, because an overwrite to a sector implies a discard to original sector too. A discard + overwrite == overwrite. 2. the purpose of doing discard is to improve SSD firmware garbage collection. Idealy we should send discard as early as possible, so firmware can do something smart. Sending discard just after swap entry is freed is considered early compared to sending discard before write. Of course, if workload is already bound to gc speed, sending discard earlier or later doesn't make 3. block discard is a sync API, which will delay scan_swap_map() significantly. 4. Write and discard command can be executed parallel in PCIe SSD. Making swap discard async can make execution more efficiently. This patch makes swap discard async and moves discard to where swap entry is freed. Discard and write have no dependence now, so above issues can be avoided. Idealy we should do discard for any freed sectors, but some SSD discard is very slow. This patch still does discard for a whole cluster. My test does a several round of 'mmap, write, unmap', which will trigger a lot of swap discard. In a fusionio card, with this patch, the test runtime is reduced to 18% of the time without it, so around 5.5x faster. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:30 +00:00
INIT_WORK(&p->discard_work, swap_discard_work);
name = getname(specialfile);
if (IS_ERR(name)) {
error = PTR_ERR(name);
name = NULL;
goto bad_swap;
}
swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
if (IS_ERR(swap_file)) {
error = PTR_ERR(swap_file);
swap_file = NULL;
goto bad_swap;
}
p->swap_file = swap_file;
mapping = swap_file->f_mapping;
inode = mapping->host;
/* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
error = claim_swapfile(p, inode);
if (unlikely(error))
goto bad_swap;
/*
* Read the swap header.
*/
if (!mapping->a_ops->readpage) {
error = -EINVAL;
goto bad_swap;
}
page = read_mapping_page(mapping, 0, swap_file);
if (IS_ERR(page)) {
error = PTR_ERR(page);
goto bad_swap;
}
swap_header = kmap(page);
maxpages = read_swap_header(p, swap_header, inode);
if (unlikely(!maxpages)) {
error = -EINVAL;
goto bad_swap;
}
/* OK, set up the swap map and apply the bad block list */
swap_map = vzalloc(maxpages);
if (!swap_map) {
error = -ENOMEM;
goto bad_swap;
}
swap: change block allocation algorithm for SSD I'm using a fast SSD to do swap. scan_swap_map() sometimes uses up to 20~30% CPU time (when cluster is hard to find, the CPU time can be up to 80%), which becomes a bottleneck. scan_swap_map() scans a byte array to search a 256 page cluster, which is very slow. Here I introduced a simple algorithm to search cluster. Since we only care about 256 pages cluster, we can just use a counter to track if a cluster is free. Every 256 pages use one int to store the counter. If the counter of a cluster is 0, the cluster is free. All free clusters will be added to a list, so searching cluster is very efficient. With this, scap_swap_map() overhead disappears. This might help low end SD card swap too. Because if the cluster is aligned, SD firmware can do flash erase more efficiently. We only enable the algorithm for SSD. Hard disk swap isn't fast enough and has downside with the algorithm which might introduce regression (see below). The patch slightly changes which cluster is choosen. It always adds free cluster to list tail. This can help wear leveling for low end SSD too. And if no cluster found, the scan_swap_map() will do search from the end of last cluster. So if no cluster found, the scan_swap_map() will do search from the end of last free cluster, which is random. For SSD, this isn't a problem at all. Another downside is the cluster must be aligned to 256 pages, which will reduce the chance to find a cluster. I would expect this isn't a big problem for SSD because of the non-seek penality. (And this is the reason I only enable the algorithm for SSD). Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:28 +00:00
if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
int cpu;
swap: change block allocation algorithm for SSD I'm using a fast SSD to do swap. scan_swap_map() sometimes uses up to 20~30% CPU time (when cluster is hard to find, the CPU time can be up to 80%), which becomes a bottleneck. scan_swap_map() scans a byte array to search a 256 page cluster, which is very slow. Here I introduced a simple algorithm to search cluster. Since we only care about 256 pages cluster, we can just use a counter to track if a cluster is free. Every 256 pages use one int to store the counter. If the counter of a cluster is 0, the cluster is free. All free clusters will be added to a list, so searching cluster is very efficient. With this, scap_swap_map() overhead disappears. This might help low end SD card swap too. Because if the cluster is aligned, SD firmware can do flash erase more efficiently. We only enable the algorithm for SSD. Hard disk swap isn't fast enough and has downside with the algorithm which might introduce regression (see below). The patch slightly changes which cluster is choosen. It always adds free cluster to list tail. This can help wear leveling for low end SSD too. And if no cluster found, the scan_swap_map() will do search from the end of last cluster. So if no cluster found, the scan_swap_map() will do search from the end of last free cluster, which is random. For SSD, this isn't a problem at all. Another downside is the cluster must be aligned to 256 pages, which will reduce the chance to find a cluster. I would expect this isn't a big problem for SSD because of the non-seek penality. (And this is the reason I only enable the algorithm for SSD). Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:28 +00:00
p->flags |= SWP_SOLIDSTATE;
/*
* select a random position to start with to help wear leveling
* SSD
*/
p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
SWAPFILE_CLUSTER) * sizeof(*cluster_info));
if (!cluster_info) {
error = -ENOMEM;
goto bad_swap;
}
swap: make cluster allocation per-cpu swap cluster allocation is to get better request merge to improve performance. But the cluster is shared globally, if multiple tasks are doing swap, this will cause interleave disk access. While multiple tasks swap is quite common, for example, each numa node has a kswapd thread doing swap and multiple threads/processes doing direct page reclaim. ioscheduler can't help too much here, because tasks don't send swapout IO down to block layer in the meantime. Block layer does merge some IOs, but a lot not, depending on how many tasks are doing swapout concurrently. In practice, I've seen a lot of small size IO in swapout workloads. We makes the cluster allocation per-cpu here. The interleave disk access issue goes away. All tasks swapout to their own cluster, so swapout will become sequential, which can be easily merged to big size IO. If one CPU can't get its per-cpu cluster (for example, there is no free cluster anymore in the swap), it will fallback to scan swap_map. The CPU can still continue swap. We don't need recycle free swap entries of other CPUs. In my test (swap to a 2-disk raid0 partition), this improves around 10% swapout throughput, and request size is increased significantly. How does this impact swap readahead is uncertain though. On one side, page reclaim always isolates and swaps several adjancent pages, this will make page reclaim write the pages sequentially and benefit readahead. On the other side, several CPU write pages interleave means the pages don't live _sequentially_ but relatively _near_. In the per-cpu allocation case, if adjancent pages are written by different cpus, they will live relatively _far_. So how this impacts swap readahead depends on how many pages page reclaim isolates and swaps one time. If the number is big, this patch will benefit swap readahead. Of course, this is about sequential access pattern. The patch has no impact for random access pattern, because the new cluster allocation algorithm is just for SSD. Alternative solution is organizing swap layout to be per-mm instead of this per-cpu approach. In the per-mm layout, we allocate a disk range for each mm, so pages of one mm live in swap disk adjacently. per-mm layout has potential issues of lock contention if multiple reclaimers are swap pages from one mm. For a sequential workload, per-mm layout is better to implement swap readahead, because pages from the mm are adjacent in disk. But per-cpu layout isn't very bad in this workload, as page reclaim always isolates and swaps several pages one time, such pages will still live in disk sequentially and readahead can utilize this. For a random workload, per-mm layout isn't beneficial of request merge, because it's quite possible pages from different mm are swapout in the meantime and IO can't be merged in per-mm layout. while with per-cpu layout we can merge requests from any mm. Considering random workload is more popular in workloads with swap (and per-cpu approach isn't too bad for sequential workload too), I'm choosing per-cpu layout. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:32 +00:00
p->percpu_cluster = alloc_percpu(struct percpu_cluster);
if (!p->percpu_cluster) {
error = -ENOMEM;
goto bad_swap;
}
for_each_possible_cpu(cpu) {
swap: make cluster allocation per-cpu swap cluster allocation is to get better request merge to improve performance. But the cluster is shared globally, if multiple tasks are doing swap, this will cause interleave disk access. While multiple tasks swap is quite common, for example, each numa node has a kswapd thread doing swap and multiple threads/processes doing direct page reclaim. ioscheduler can't help too much here, because tasks don't send swapout IO down to block layer in the meantime. Block layer does merge some IOs, but a lot not, depending on how many tasks are doing swapout concurrently. In practice, I've seen a lot of small size IO in swapout workloads. We makes the cluster allocation per-cpu here. The interleave disk access issue goes away. All tasks swapout to their own cluster, so swapout will become sequential, which can be easily merged to big size IO. If one CPU can't get its per-cpu cluster (for example, there is no free cluster anymore in the swap), it will fallback to scan swap_map. The CPU can still continue swap. We don't need recycle free swap entries of other CPUs. In my test (swap to a 2-disk raid0 partition), this improves around 10% swapout throughput, and request size is increased significantly. How does this impact swap readahead is uncertain though. On one side, page reclaim always isolates and swaps several adjancent pages, this will make page reclaim write the pages sequentially and benefit readahead. On the other side, several CPU write pages interleave means the pages don't live _sequentially_ but relatively _near_. In the per-cpu allocation case, if adjancent pages are written by different cpus, they will live relatively _far_. So how this impacts swap readahead depends on how many pages page reclaim isolates and swaps one time. If the number is big, this patch will benefit swap readahead. Of course, this is about sequential access pattern. The patch has no impact for random access pattern, because the new cluster allocation algorithm is just for SSD. Alternative solution is organizing swap layout to be per-mm instead of this per-cpu approach. In the per-mm layout, we allocate a disk range for each mm, so pages of one mm live in swap disk adjacently. per-mm layout has potential issues of lock contention if multiple reclaimers are swap pages from one mm. For a sequential workload, per-mm layout is better to implement swap readahead, because pages from the mm are adjacent in disk. But per-cpu layout isn't very bad in this workload, as page reclaim always isolates and swaps several pages one time, such pages will still live in disk sequentially and readahead can utilize this. For a random workload, per-mm layout isn't beneficial of request merge, because it's quite possible pages from different mm are swapout in the meantime and IO can't be merged in per-mm layout. while with per-cpu layout we can merge requests from any mm. Considering random workload is more popular in workloads with swap (and per-cpu approach isn't too bad for sequential workload too), I'm choosing per-cpu layout. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:32 +00:00
struct percpu_cluster *cluster;
cluster = per_cpu_ptr(p->percpu_cluster, cpu);
swap: make cluster allocation per-cpu swap cluster allocation is to get better request merge to improve performance. But the cluster is shared globally, if multiple tasks are doing swap, this will cause interleave disk access. While multiple tasks swap is quite common, for example, each numa node has a kswapd thread doing swap and multiple threads/processes doing direct page reclaim. ioscheduler can't help too much here, because tasks don't send swapout IO down to block layer in the meantime. Block layer does merge some IOs, but a lot not, depending on how many tasks are doing swapout concurrently. In practice, I've seen a lot of small size IO in swapout workloads. We makes the cluster allocation per-cpu here. The interleave disk access issue goes away. All tasks swapout to their own cluster, so swapout will become sequential, which can be easily merged to big size IO. If one CPU can't get its per-cpu cluster (for example, there is no free cluster anymore in the swap), it will fallback to scan swap_map. The CPU can still continue swap. We don't need recycle free swap entries of other CPUs. In my test (swap to a 2-disk raid0 partition), this improves around 10% swapout throughput, and request size is increased significantly. How does this impact swap readahead is uncertain though. On one side, page reclaim always isolates and swaps several adjancent pages, this will make page reclaim write the pages sequentially and benefit readahead. On the other side, several CPU write pages interleave means the pages don't live _sequentially_ but relatively _near_. In the per-cpu allocation case, if adjancent pages are written by different cpus, they will live relatively _far_. So how this impacts swap readahead depends on how many pages page reclaim isolates and swaps one time. If the number is big, this patch will benefit swap readahead. Of course, this is about sequential access pattern. The patch has no impact for random access pattern, because the new cluster allocation algorithm is just for SSD. Alternative solution is organizing swap layout to be per-mm instead of this per-cpu approach. In the per-mm layout, we allocate a disk range for each mm, so pages of one mm live in swap disk adjacently. per-mm layout has potential issues of lock contention if multiple reclaimers are swap pages from one mm. For a sequential workload, per-mm layout is better to implement swap readahead, because pages from the mm are adjacent in disk. But per-cpu layout isn't very bad in this workload, as page reclaim always isolates and swaps several pages one time, such pages will still live in disk sequentially and readahead can utilize this. For a random workload, per-mm layout isn't beneficial of request merge, because it's quite possible pages from different mm are swapout in the meantime and IO can't be merged in per-mm layout. while with per-cpu layout we can merge requests from any mm. Considering random workload is more popular in workloads with swap (and per-cpu approach isn't too bad for sequential workload too), I'm choosing per-cpu layout. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:32 +00:00
cluster_set_null(&cluster->index);
}
swap: change block allocation algorithm for SSD I'm using a fast SSD to do swap. scan_swap_map() sometimes uses up to 20~30% CPU time (when cluster is hard to find, the CPU time can be up to 80%), which becomes a bottleneck. scan_swap_map() scans a byte array to search a 256 page cluster, which is very slow. Here I introduced a simple algorithm to search cluster. Since we only care about 256 pages cluster, we can just use a counter to track if a cluster is free. Every 256 pages use one int to store the counter. If the counter of a cluster is 0, the cluster is free. All free clusters will be added to a list, so searching cluster is very efficient. With this, scap_swap_map() overhead disappears. This might help low end SD card swap too. Because if the cluster is aligned, SD firmware can do flash erase more efficiently. We only enable the algorithm for SSD. Hard disk swap isn't fast enough and has downside with the algorithm which might introduce regression (see below). The patch slightly changes which cluster is choosen. It always adds free cluster to list tail. This can help wear leveling for low end SSD too. And if no cluster found, the scan_swap_map() will do search from the end of last cluster. So if no cluster found, the scan_swap_map() will do search from the end of last free cluster, which is random. For SSD, this isn't a problem at all. Another downside is the cluster must be aligned to 256 pages, which will reduce the chance to find a cluster. I would expect this isn't a big problem for SSD because of the non-seek penality. (And this is the reason I only enable the algorithm for SSD). Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:28 +00:00
}
error = swap_cgroup_swapon(p->type, maxpages);
if (error)
goto bad_swap;
nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
swap: change block allocation algorithm for SSD I'm using a fast SSD to do swap. scan_swap_map() sometimes uses up to 20~30% CPU time (when cluster is hard to find, the CPU time can be up to 80%), which becomes a bottleneck. scan_swap_map() scans a byte array to search a 256 page cluster, which is very slow. Here I introduced a simple algorithm to search cluster. Since we only care about 256 pages cluster, we can just use a counter to track if a cluster is free. Every 256 pages use one int to store the counter. If the counter of a cluster is 0, the cluster is free. All free clusters will be added to a list, so searching cluster is very efficient. With this, scap_swap_map() overhead disappears. This might help low end SD card swap too. Because if the cluster is aligned, SD firmware can do flash erase more efficiently. We only enable the algorithm for SSD. Hard disk swap isn't fast enough and has downside with the algorithm which might introduce regression (see below). The patch slightly changes which cluster is choosen. It always adds free cluster to list tail. This can help wear leveling for low end SSD too. And if no cluster found, the scan_swap_map() will do search from the end of last cluster. So if no cluster found, the scan_swap_map() will do search from the end of last free cluster, which is random. For SSD, this isn't a problem at all. Another downside is the cluster must be aligned to 256 pages, which will reduce the chance to find a cluster. I would expect this isn't a big problem for SSD because of the non-seek penality. (And this is the reason I only enable the algorithm for SSD). Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:28 +00:00
cluster_info, maxpages, &span);
if (unlikely(nr_extents < 0)) {
error = nr_extents;
goto bad_swap;
}
mm: frontswap: core swap subsystem hooks and headers This patch, 2of4, contains the changes to the core swap subsystem. This includes: (1) makes available core swap data structures (swap_lock, swap_list and swap_info) that are needed by frontswap.c but we don't need to expose them to the dozens of files that include swap.h so we create a new swapfile.h just to extern-ify these and modify their declarations to non-static (2) adds frontswap-related elements to swap_info_struct. Frontswap_map points to vzalloc'ed one-bit-per-swap-page metadata that indicates whether the swap page is in frontswap or in the device and frontswap_pages counts how many pages are in frontswap. (3) adds hooks in the swap subsystem and extends try_to_unuse so that frontswap_shrink can do a "partial swapoff". Note that a failed frontswap_map allocation is safe... failure is noted by lack of "FS" in the subsequent printk. --- [v14: rebase to 3.4-rc2] [v10: no change] [v9: akpm@linux-foundation.org: mark some statics __read_mostly] [v9: akpm@linux-foundation.org: add clarifying comments] [v9: akpm@linux-foundation.org: no need to loop repeating try_to_unuse] [v9: error27@gmail.com: remove superfluous check for NULL] [v8: rebase to 3.0-rc4] [v8: kamezawa.hiroyu@jp.fujitsu.com: change counter to atomic_t to avoid races] [v8: kamezawa.hiroyu@jp.fujitsu.com: comment to clarify informational counters] [v7: rebase to 3.0-rc3] [v7: JBeulich@novell.com: add new swap struct elements only if config'd] [v6: rebase to 3.0-rc1] [v6: lliubbo@gmail.com: fix null pointer deref if vzalloc fails] [v6: konrad.wilk@oracl.com: various checks and code clarifications/comments] [v5: no change from v4] [v4: rebase to 2.6.39] Signed-off-by: Dan Magenheimer <dan.magenheimer@oracle.com> Reviewed-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Jan Beulich <JBeulich@novell.com> Acked-by: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Matthew Wilcox <matthew@wil.cx> Cc: Chris Mason <chris.mason@oracle.com> Cc: Rik Riel <riel@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> [v11: Rebased, fixed mm/swapfile.c context change] Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2012-04-09 23:08:06 +00:00
/* frontswap enabled? set up bit-per-page map for frontswap */
mm, frontswap: convert frontswap_enabled to static key I have noticed that frontswap.h first declares "frontswap_enabled" as extern bool variable, and then overrides it with "#define frontswap_enabled (1)" for CONFIG_FRONTSWAP=Y or (0) when disabled. The bool variable isn't actually instantiated anywhere. This all looks like an unfinished attempt to make frontswap_enabled reflect whether a backend is instantiated. But in the current state, all frontswap hooks call unconditionally into frontswap.c just to check if frontswap_ops is non-NULL. This should at least be checked inline, but we can further eliminate the overhead when CONFIG_FRONTSWAP is enabled and no backend registered, using a static key that is initially disabled, and gets enabled only upon first backend registration. Thus, checks for "frontswap_enabled" are replaced with "frontswap_enabled()" wrapping the static key check. There are two exceptions: - xen's selfballoon_process() was testing frontswap_enabled in code guarded by #ifdef CONFIG_FRONTSWAP, which was effectively always true when reachable. The patch just removes this check. Using frontswap_enabled() does not sound correct here, as this can be true even without xen's own backend being registered. - in SYSCALL_DEFINE2(swapon), change the check to IS_ENABLED(CONFIG_FRONTSWAP) as it seems the bitmap allocation cannot currently be postponed until a backend is registered. This means that frontswap will still have some memory overhead by being configured, but without a backend. After the patch, we can expect that some functions in frontswap.c are called only when frontswap_ops is non-NULL. Change the checks there to VM_BUG_ONs. While at it, convert other BUG_ONs to VM_BUG_ONs as frontswap has been stable for some time. [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/1463152235-9717-1-git-send-email-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: David Vrabel <david.vrabel@citrix.com> Cc: Juergen Gross <jgross@suse.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 22:24:42 +00:00
if (IS_ENABLED(CONFIG_FRONTSWAP))
frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
swap: change block allocation algorithm for SSD I'm using a fast SSD to do swap. scan_swap_map() sometimes uses up to 20~30% CPU time (when cluster is hard to find, the CPU time can be up to 80%), which becomes a bottleneck. scan_swap_map() scans a byte array to search a 256 page cluster, which is very slow. Here I introduced a simple algorithm to search cluster. Since we only care about 256 pages cluster, we can just use a counter to track if a cluster is free. Every 256 pages use one int to store the counter. If the counter of a cluster is 0, the cluster is free. All free clusters will be added to a list, so searching cluster is very efficient. With this, scap_swap_map() overhead disappears. This might help low end SD card swap too. Because if the cluster is aligned, SD firmware can do flash erase more efficiently. We only enable the algorithm for SSD. Hard disk swap isn't fast enough and has downside with the algorithm which might introduce regression (see below). The patch slightly changes which cluster is choosen. It always adds free cluster to list tail. This can help wear leveling for low end SSD too. And if no cluster found, the scan_swap_map() will do search from the end of last cluster. So if no cluster found, the scan_swap_map() will do search from the end of last free cluster, which is random. For SSD, this isn't a problem at all. Another downside is the cluster must be aligned to 256 pages, which will reduce the chance to find a cluster. I would expect this isn't a big problem for SSD because of the non-seek penality. (And this is the reason I only enable the algorithm for SSD). Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:28 +00:00
if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
/*
* When discard is enabled for swap with no particular
* policy flagged, we set all swap discard flags here in
* order to sustain backward compatibility with older
* swapon(8) releases.
*/
p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
SWP_PAGE_DISCARD);
swap: discard while swapping only if SWAP_FLAG_DISCARD_PAGES Considering the use cases where the swap device supports discard: a) and can do it quickly; b) but it's slow to do in small granularities (or concurrent with other I/O); c) but the implementation is so horrendous that you don't even want to send one down; And assuming that the sysadmin considers it useful to send the discards down at all, we would (probably) want the following solutions: i. do the fine-grained discards for freed swap pages, if device is capable of doing so optimally; ii. do single-time (batched) swap area discards, either at swapon or via something like fstrim (not implemented yet); iii. allow doing both single-time and fine-grained discards; or iv. turn it off completely (default behavior) As implemented today, one can only enable/disable discards for swap, but one cannot select, for instance, solution (ii) on a swap device like (b) even though the single-time discard is regarded to be interesting, or necessary to the workload because it would imply (1), and the device is not capable of performing it optimally. This patch addresses the scenario depicted above by introducing a way to ensure the (probably) wanted solutions (i, ii, iii and iv) can be flexibly flagged through swapon(8) to allow a sysadmin to select the best suitable swap discard policy accordingly to system constraints. This patch introduces SWAP_FLAG_DISCARD_PAGES and SWAP_FLAG_DISCARD_ONCE new flags to allow more flexibe swap discard policies being flagged through swapon(8). The default behavior is to keep both single-time, or batched, area discards (SWAP_FLAG_DISCARD_ONCE) and fine-grained discards for page-clusters (SWAP_FLAG_DISCARD_PAGES) enabled, in order to keep consistentcy with older kernel behavior, as well as maintain compatibility with older swapon(8). However, through the new introduced flags the best suitable discard policy can be selected accordingly to any given swap device constraint. [akpm@linux-foundation.org: tweak comments] Signed-off-by: Rafael Aquini <aquini@redhat.com> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shaohua Li <shli@kernel.org> Cc: Karel Zak <kzak@redhat.com> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03 22:02:46 +00:00
swap: change block allocation algorithm for SSD I'm using a fast SSD to do swap. scan_swap_map() sometimes uses up to 20~30% CPU time (when cluster is hard to find, the CPU time can be up to 80%), which becomes a bottleneck. scan_swap_map() scans a byte array to search a 256 page cluster, which is very slow. Here I introduced a simple algorithm to search cluster. Since we only care about 256 pages cluster, we can just use a counter to track if a cluster is free. Every 256 pages use one int to store the counter. If the counter of a cluster is 0, the cluster is free. All free clusters will be added to a list, so searching cluster is very efficient. With this, scap_swap_map() overhead disappears. This might help low end SD card swap too. Because if the cluster is aligned, SD firmware can do flash erase more efficiently. We only enable the algorithm for SSD. Hard disk swap isn't fast enough and has downside with the algorithm which might introduce regression (see below). The patch slightly changes which cluster is choosen. It always adds free cluster to list tail. This can help wear leveling for low end SSD too. And if no cluster found, the scan_swap_map() will do search from the end of last cluster. So if no cluster found, the scan_swap_map() will do search from the end of last free cluster, which is random. For SSD, this isn't a problem at all. Another downside is the cluster must be aligned to 256 pages, which will reduce the chance to find a cluster. I would expect this isn't a big problem for SSD because of the non-seek penality. (And this is the reason I only enable the algorithm for SSD). Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:28 +00:00
/*
* By flagging sys_swapon, a sysadmin can tell us to
* either do single-time area discards only, or to just
* perform discards for released swap page-clusters.
* Now it's time to adjust the p->flags accordingly.
*/
if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
p->flags &= ~SWP_PAGE_DISCARD;
else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
p->flags &= ~SWP_AREA_DISCARD;
/* issue a swapon-time discard if it's still required */
if (p->flags & SWP_AREA_DISCARD) {
int err = discard_swap(p);
if (unlikely(err))
pr_err("swapon: discard_swap(%p): %d\n",
p, err);
swap: discard while swapping only if SWAP_FLAG_DISCARD_PAGES Considering the use cases where the swap device supports discard: a) and can do it quickly; b) but it's slow to do in small granularities (or concurrent with other I/O); c) but the implementation is so horrendous that you don't even want to send one down; And assuming that the sysadmin considers it useful to send the discards down at all, we would (probably) want the following solutions: i. do the fine-grained discards for freed swap pages, if device is capable of doing so optimally; ii. do single-time (batched) swap area discards, either at swapon or via something like fstrim (not implemented yet); iii. allow doing both single-time and fine-grained discards; or iv. turn it off completely (default behavior) As implemented today, one can only enable/disable discards for swap, but one cannot select, for instance, solution (ii) on a swap device like (b) even though the single-time discard is regarded to be interesting, or necessary to the workload because it would imply (1), and the device is not capable of performing it optimally. This patch addresses the scenario depicted above by introducing a way to ensure the (probably) wanted solutions (i, ii, iii and iv) can be flexibly flagged through swapon(8) to allow a sysadmin to select the best suitable swap discard policy accordingly to system constraints. This patch introduces SWAP_FLAG_DISCARD_PAGES and SWAP_FLAG_DISCARD_ONCE new flags to allow more flexibe swap discard policies being flagged through swapon(8). The default behavior is to keep both single-time, or batched, area discards (SWAP_FLAG_DISCARD_ONCE) and fine-grained discards for page-clusters (SWAP_FLAG_DISCARD_PAGES) enabled, in order to keep consistentcy with older kernel behavior, as well as maintain compatibility with older swapon(8). However, through the new introduced flags the best suitable discard policy can be selected accordingly to any given swap device constraint. [akpm@linux-foundation.org: tweak comments] Signed-off-by: Rafael Aquini <aquini@redhat.com> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shaohua Li <shli@kernel.org> Cc: Karel Zak <kzak@redhat.com> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03 22:02:46 +00:00
}
}
mutex_lock(&swapon_mutex);
prio = -1;
if (swap_flags & SWAP_FLAG_PREFER)
prio =
(swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
swap: change block allocation algorithm for SSD I'm using a fast SSD to do swap. scan_swap_map() sometimes uses up to 20~30% CPU time (when cluster is hard to find, the CPU time can be up to 80%), which becomes a bottleneck. scan_swap_map() scans a byte array to search a 256 page cluster, which is very slow. Here I introduced a simple algorithm to search cluster. Since we only care about 256 pages cluster, we can just use a counter to track if a cluster is free. Every 256 pages use one int to store the counter. If the counter of a cluster is 0, the cluster is free. All free clusters will be added to a list, so searching cluster is very efficient. With this, scap_swap_map() overhead disappears. This might help low end SD card swap too. Because if the cluster is aligned, SD firmware can do flash erase more efficiently. We only enable the algorithm for SSD. Hard disk swap isn't fast enough and has downside with the algorithm which might introduce regression (see below). The patch slightly changes which cluster is choosen. It always adds free cluster to list tail. This can help wear leveling for low end SSD too. And if no cluster found, the scan_swap_map() will do search from the end of last cluster. So if no cluster found, the scan_swap_map() will do search from the end of last free cluster, which is random. For SSD, this isn't a problem at all. Another downside is the cluster must be aligned to 256 pages, which will reduce the chance to find a cluster. I would expect this isn't a big problem for SSD because of the non-seek penality. (And this is the reason I only enable the algorithm for SSD). Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:28 +00:00
enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
mm: frontswap: core swap subsystem hooks and headers This patch, 2of4, contains the changes to the core swap subsystem. This includes: (1) makes available core swap data structures (swap_lock, swap_list and swap_info) that are needed by frontswap.c but we don't need to expose them to the dozens of files that include swap.h so we create a new swapfile.h just to extern-ify these and modify their declarations to non-static (2) adds frontswap-related elements to swap_info_struct. Frontswap_map points to vzalloc'ed one-bit-per-swap-page metadata that indicates whether the swap page is in frontswap or in the device and frontswap_pages counts how many pages are in frontswap. (3) adds hooks in the swap subsystem and extends try_to_unuse so that frontswap_shrink can do a "partial swapoff". Note that a failed frontswap_map allocation is safe... failure is noted by lack of "FS" in the subsequent printk. --- [v14: rebase to 3.4-rc2] [v10: no change] [v9: akpm@linux-foundation.org: mark some statics __read_mostly] [v9: akpm@linux-foundation.org: add clarifying comments] [v9: akpm@linux-foundation.org: no need to loop repeating try_to_unuse] [v9: error27@gmail.com: remove superfluous check for NULL] [v8: rebase to 3.0-rc4] [v8: kamezawa.hiroyu@jp.fujitsu.com: change counter to atomic_t to avoid races] [v8: kamezawa.hiroyu@jp.fujitsu.com: comment to clarify informational counters] [v7: rebase to 3.0-rc3] [v7: JBeulich@novell.com: add new swap struct elements only if config'd] [v6: rebase to 3.0-rc1] [v6: lliubbo@gmail.com: fix null pointer deref if vzalloc fails] [v6: konrad.wilk@oracl.com: various checks and code clarifications/comments] [v5: no change from v4] [v4: rebase to 2.6.39] Signed-off-by: Dan Magenheimer <dan.magenheimer@oracle.com> Reviewed-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Jan Beulich <JBeulich@novell.com> Acked-by: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Matthew Wilcox <matthew@wil.cx> Cc: Chris Mason <chris.mason@oracle.com> Cc: Rik Riel <riel@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> [v11: Rebased, fixed mm/swapfile.c context change] Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2012-04-09 23:08:06 +00:00
(p->flags & SWP_DISCARDABLE) ? "D" : "",
swap: discard while swapping only if SWAP_FLAG_DISCARD_PAGES Considering the use cases where the swap device supports discard: a) and can do it quickly; b) but it's slow to do in small granularities (or concurrent with other I/O); c) but the implementation is so horrendous that you don't even want to send one down; And assuming that the sysadmin considers it useful to send the discards down at all, we would (probably) want the following solutions: i. do the fine-grained discards for freed swap pages, if device is capable of doing so optimally; ii. do single-time (batched) swap area discards, either at swapon or via something like fstrim (not implemented yet); iii. allow doing both single-time and fine-grained discards; or iv. turn it off completely (default behavior) As implemented today, one can only enable/disable discards for swap, but one cannot select, for instance, solution (ii) on a swap device like (b) even though the single-time discard is regarded to be interesting, or necessary to the workload because it would imply (1), and the device is not capable of performing it optimally. This patch addresses the scenario depicted above by introducing a way to ensure the (probably) wanted solutions (i, ii, iii and iv) can be flexibly flagged through swapon(8) to allow a sysadmin to select the best suitable swap discard policy accordingly to system constraints. This patch introduces SWAP_FLAG_DISCARD_PAGES and SWAP_FLAG_DISCARD_ONCE new flags to allow more flexibe swap discard policies being flagged through swapon(8). The default behavior is to keep both single-time, or batched, area discards (SWAP_FLAG_DISCARD_ONCE) and fine-grained discards for page-clusters (SWAP_FLAG_DISCARD_PAGES) enabled, in order to keep consistentcy with older kernel behavior, as well as maintain compatibility with older swapon(8). However, through the new introduced flags the best suitable discard policy can be selected accordingly to any given swap device constraint. [akpm@linux-foundation.org: tweak comments] Signed-off-by: Rafael Aquini <aquini@redhat.com> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shaohua Li <shli@kernel.org> Cc: Karel Zak <kzak@redhat.com> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03 22:02:46 +00:00
(p->flags & SWP_AREA_DISCARD) ? "s" : "",
(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
mm: frontswap: core swap subsystem hooks and headers This patch, 2of4, contains the changes to the core swap subsystem. This includes: (1) makes available core swap data structures (swap_lock, swap_list and swap_info) that are needed by frontswap.c but we don't need to expose them to the dozens of files that include swap.h so we create a new swapfile.h just to extern-ify these and modify their declarations to non-static (2) adds frontswap-related elements to swap_info_struct. Frontswap_map points to vzalloc'ed one-bit-per-swap-page metadata that indicates whether the swap page is in frontswap or in the device and frontswap_pages counts how many pages are in frontswap. (3) adds hooks in the swap subsystem and extends try_to_unuse so that frontswap_shrink can do a "partial swapoff". Note that a failed frontswap_map allocation is safe... failure is noted by lack of "FS" in the subsequent printk. --- [v14: rebase to 3.4-rc2] [v10: no change] [v9: akpm@linux-foundation.org: mark some statics __read_mostly] [v9: akpm@linux-foundation.org: add clarifying comments] [v9: akpm@linux-foundation.org: no need to loop repeating try_to_unuse] [v9: error27@gmail.com: remove superfluous check for NULL] [v8: rebase to 3.0-rc4] [v8: kamezawa.hiroyu@jp.fujitsu.com: change counter to atomic_t to avoid races] [v8: kamezawa.hiroyu@jp.fujitsu.com: comment to clarify informational counters] [v7: rebase to 3.0-rc3] [v7: JBeulich@novell.com: add new swap struct elements only if config'd] [v6: rebase to 3.0-rc1] [v6: lliubbo@gmail.com: fix null pointer deref if vzalloc fails] [v6: konrad.wilk@oracl.com: various checks and code clarifications/comments] [v5: no change from v4] [v4: rebase to 2.6.39] Signed-off-by: Dan Magenheimer <dan.magenheimer@oracle.com> Reviewed-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Jan Beulich <JBeulich@novell.com> Acked-by: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Matthew Wilcox <matthew@wil.cx> Cc: Chris Mason <chris.mason@oracle.com> Cc: Rik Riel <riel@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> [v11: Rebased, fixed mm/swapfile.c context change] Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2012-04-09 23:08:06 +00:00
(frontswap_map) ? "FS" : "");
mutex_unlock(&swapon_mutex);
atomic_inc(&proc_poll_event);
wake_up_interruptible(&proc_poll_wait);
if (S_ISREG(inode->i_mode))
inode->i_flags |= S_SWAPFILE;
error = 0;
goto out;
bad_swap:
swap: make cluster allocation per-cpu swap cluster allocation is to get better request merge to improve performance. But the cluster is shared globally, if multiple tasks are doing swap, this will cause interleave disk access. While multiple tasks swap is quite common, for example, each numa node has a kswapd thread doing swap and multiple threads/processes doing direct page reclaim. ioscheduler can't help too much here, because tasks don't send swapout IO down to block layer in the meantime. Block layer does merge some IOs, but a lot not, depending on how many tasks are doing swapout concurrently. In practice, I've seen a lot of small size IO in swapout workloads. We makes the cluster allocation per-cpu here. The interleave disk access issue goes away. All tasks swapout to their own cluster, so swapout will become sequential, which can be easily merged to big size IO. If one CPU can't get its per-cpu cluster (for example, there is no free cluster anymore in the swap), it will fallback to scan swap_map. The CPU can still continue swap. We don't need recycle free swap entries of other CPUs. In my test (swap to a 2-disk raid0 partition), this improves around 10% swapout throughput, and request size is increased significantly. How does this impact swap readahead is uncertain though. On one side, page reclaim always isolates and swaps several adjancent pages, this will make page reclaim write the pages sequentially and benefit readahead. On the other side, several CPU write pages interleave means the pages don't live _sequentially_ but relatively _near_. In the per-cpu allocation case, if adjancent pages are written by different cpus, they will live relatively _far_. So how this impacts swap readahead depends on how many pages page reclaim isolates and swaps one time. If the number is big, this patch will benefit swap readahead. Of course, this is about sequential access pattern. The patch has no impact for random access pattern, because the new cluster allocation algorithm is just for SSD. Alternative solution is organizing swap layout to be per-mm instead of this per-cpu approach. In the per-mm layout, we allocate a disk range for each mm, so pages of one mm live in swap disk adjacently. per-mm layout has potential issues of lock contention if multiple reclaimers are swap pages from one mm. For a sequential workload, per-mm layout is better to implement swap readahead, because pages from the mm are adjacent in disk. But per-cpu layout isn't very bad in this workload, as page reclaim always isolates and swaps several pages one time, such pages will still live in disk sequentially and readahead can utilize this. For a random workload, per-mm layout isn't beneficial of request merge, because it's quite possible pages from different mm are swapout in the meantime and IO can't be merged in per-mm layout. while with per-cpu layout we can merge requests from any mm. Considering random workload is more popular in workloads with swap (and per-cpu approach isn't too bad for sequential workload too), I'm choosing per-cpu layout. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:32 +00:00
free_percpu(p->percpu_cluster);
p->percpu_cluster = NULL;
if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
set_blocksize(p->bdev, p->old_block_size);
blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
}
destroy_swap_extents(p);
swap_cgroup_swapoff(p->type);
spin_lock(&swap_lock);
p->swap_file = NULL;
p->flags = 0;
spin_unlock(&swap_lock);
vfree(swap_map);
swap: change block allocation algorithm for SSD I'm using a fast SSD to do swap. scan_swap_map() sometimes uses up to 20~30% CPU time (when cluster is hard to find, the CPU time can be up to 80%), which becomes a bottleneck. scan_swap_map() scans a byte array to search a 256 page cluster, which is very slow. Here I introduced a simple algorithm to search cluster. Since we only care about 256 pages cluster, we can just use a counter to track if a cluster is free. Every 256 pages use one int to store the counter. If the counter of a cluster is 0, the cluster is free. All free clusters will be added to a list, so searching cluster is very efficient. With this, scap_swap_map() overhead disappears. This might help low end SD card swap too. Because if the cluster is aligned, SD firmware can do flash erase more efficiently. We only enable the algorithm for SSD. Hard disk swap isn't fast enough and has downside with the algorithm which might introduce regression (see below). The patch slightly changes which cluster is choosen. It always adds free cluster to list tail. This can help wear leveling for low end SSD too. And if no cluster found, the scan_swap_map() will do search from the end of last cluster. So if no cluster found, the scan_swap_map() will do search from the end of last free cluster, which is random. For SSD, this isn't a problem at all. Another downside is the cluster must be aligned to 256 pages, which will reduce the chance to find a cluster. I would expect this isn't a big problem for SSD because of the non-seek penality. (And this is the reason I only enable the algorithm for SSD). Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:28 +00:00
vfree(cluster_info);
mm: swap: unlock swapfile inode mutex before closing file on bad swapfiles If an administrator tries to swapon a file backed by NFS, the inode mutex is taken (as it is for any swapfile) but later identified to be a bad swapfile due to the lack of bmap and tries to cleanup. During cleanup, an attempt is made to close the file but with inode->i_mutex still held. Closing an NFS file syncs it which tries to acquire the inode mutex leading to deadlock. If lockdep is enabled the following appears on the console; ============================================= [ INFO: possible recursive locking detected ] 2.6.38-rc8-autobuild #1 --------------------------------------------- swapon/2192 is trying to acquire lock: (&sb->s_type->i_mutex_key#13){+.+.+.}, at: vfs_fsync_range+0x47/0x7c but task is already holding lock: (&sb->s_type->i_mutex_key#13){+.+.+.}, at: sys_swapon+0x28d/0xae7 other info that might help us debug this: 1 lock held by swapon/2192: #0: (&sb->s_type->i_mutex_key#13){+.+.+.}, at: sys_swapon+0x28d/0xae7 stack backtrace: Pid: 2192, comm: swapon Not tainted 2.6.38-rc8-autobuild #1 Call Trace: __lock_acquire+0x2eb/0x1623 find_get_pages_tag+0x14a/0x174 pagevec_lookup_tag+0x25/0x2e vfs_fsync_range+0x47/0x7c lock_acquire+0xd3/0x100 vfs_fsync_range+0x47/0x7c nfs_flush_one+0x0/0xdf [nfs] mutex_lock_nested+0x40/0x2b1 vfs_fsync_range+0x47/0x7c vfs_fsync_range+0x47/0x7c vfs_fsync+0x1c/0x1e nfs_file_flush+0x64/0x69 [nfs] filp_close+0x43/0x72 sys_swapon+0xa39/0xae7 sysret_check+0x2e/0x69 system_call_fastpath+0x16/0x1b This patch releases the mutex if its held before calling filep_close() so swapon fails as expected without deadlock when the swapfile is backed by NFS. If accepted for 2.6.39, it should also be considered a -stable candidate for 2.6.38 and 2.6.37. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Hugh Dickins <hughd@google.com> Cc: <stable@kernel.org> [2.6.37+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-22 23:30:08 +00:00
if (swap_file) {
if (inode && S_ISREG(inode->i_mode)) {
inode_unlock(inode);
inode = NULL;
}
filp_close(swap_file, NULL);
mm: swap: unlock swapfile inode mutex before closing file on bad swapfiles If an administrator tries to swapon a file backed by NFS, the inode mutex is taken (as it is for any swapfile) but later identified to be a bad swapfile due to the lack of bmap and tries to cleanup. During cleanup, an attempt is made to close the file but with inode->i_mutex still held. Closing an NFS file syncs it which tries to acquire the inode mutex leading to deadlock. If lockdep is enabled the following appears on the console; ============================================= [ INFO: possible recursive locking detected ] 2.6.38-rc8-autobuild #1 --------------------------------------------- swapon/2192 is trying to acquire lock: (&sb->s_type->i_mutex_key#13){+.+.+.}, at: vfs_fsync_range+0x47/0x7c but task is already holding lock: (&sb->s_type->i_mutex_key#13){+.+.+.}, at: sys_swapon+0x28d/0xae7 other info that might help us debug this: 1 lock held by swapon/2192: #0: (&sb->s_type->i_mutex_key#13){+.+.+.}, at: sys_swapon+0x28d/0xae7 stack backtrace: Pid: 2192, comm: swapon Not tainted 2.6.38-rc8-autobuild #1 Call Trace: __lock_acquire+0x2eb/0x1623 find_get_pages_tag+0x14a/0x174 pagevec_lookup_tag+0x25/0x2e vfs_fsync_range+0x47/0x7c lock_acquire+0xd3/0x100 vfs_fsync_range+0x47/0x7c nfs_flush_one+0x0/0xdf [nfs] mutex_lock_nested+0x40/0x2b1 vfs_fsync_range+0x47/0x7c vfs_fsync_range+0x47/0x7c vfs_fsync+0x1c/0x1e nfs_file_flush+0x64/0x69 [nfs] filp_close+0x43/0x72 sys_swapon+0xa39/0xae7 sysret_check+0x2e/0x69 system_call_fastpath+0x16/0x1b This patch releases the mutex if its held before calling filep_close() so swapon fails as expected without deadlock when the swapfile is backed by NFS. If accepted for 2.6.39, it should also be considered a -stable candidate for 2.6.38 and 2.6.37. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Hugh Dickins <hughd@google.com> Cc: <stable@kernel.org> [2.6.37+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-22 23:30:08 +00:00
}
out:
if (page && !IS_ERR(page)) {
kunmap(page);
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 12:29:47 +00:00
put_page(page);
}
if (name)
putname(name);
if (inode && S_ISREG(inode->i_mode))
inode_unlock(inode);
return error;
}
void si_swapinfo(struct sysinfo *val)
{
unsigned int type;
unsigned long nr_to_be_unused = 0;
spin_lock(&swap_lock);
for (type = 0; type < nr_swapfiles; type++) {
struct swap_info_struct *si = swap_info[type];
if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
nr_to_be_unused += si->inuse_pages;
}
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
val->totalswap = total_swap_pages + nr_to_be_unused;
spin_unlock(&swap_lock);
}
/*
* Verify that a swap entry is valid and increment its swap map count.
*
* Returns error code in following case.
* - success -> 0
* - swp_entry is invalid -> EINVAL
* - swp_entry is migration entry -> EINVAL
* - swap-cache reference is requested but there is already one. -> EEXIST
* - swap-cache reference is requested but the entry is not used. -> ENOENT
swap_info: swap count continuations Swap is duplicated (reference count incremented by one) whenever the same swap page is inserted into another mm (when forking finds a swap entry in place of a pte, or when reclaim unmaps a pte to insert the swap entry). swap_info_struct's vmalloc'ed swap_map is the array of these reference counts: but what happens when the unsigned short (or unsigned char since the preceding patch) is full? (and its high bit is kept for a cache flag) We then lose track of it, never freeing, leaving it in use until swapoff: at which point we _hope_ that a single pass will have found all instances, assume there are no more, and will lose user data if we're wrong. Swapping of KSM pages has not yet been enabled; but it is implemented, and makes it very easy for a user to overflow the maximum swap count: possible with ordinary process pages, but unlikely, even when pid_max has been raised from PID_MAX_DEFAULT. This patch implements swap count continuations: when the count overflows, a continuation page is allocated and linked to the original vmalloc'ed map page, and this used to hold the continuation counts for that entry and its neighbours. These continuation pages are seldom referenced: the common paths all work on the original swap_map, only referring to a continuation page when the low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 01:58:46 +00:00
* - swap-mapped reference requested but needs continued swap count. -> ENOMEM
*/
static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
{
struct swap_info_struct *p;
unsigned long offset, type;
unsigned char count;
unsigned char has_cache;
int err = -EINVAL;
if (non_swap_entry(entry))
goto out;
[PATCH] Swapless page migration: add R/W migration entries Implement read/write migration ptes We take the upper two swapfiles for the two types of migration ptes and define a series of macros in swapops.h. The VM is modified to handle the migration entries. migration entries can only be encountered when the page they are pointing to is locked. This limits the number of places one has to fix. We also check in copy_pte_range and in mprotect_pte_range() for migration ptes. We check for migration ptes in do_swap_cache and call a function that will then wait on the page lock. This allows us to effectively stop all accesses to apge. Migration entries are created by try_to_unmap if called for migration and removed by local functions in migrate.c From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration (I've no NUMA, just hacking it up to migrate recklessly while running load), I've hit the BUG_ON(!PageLocked(p)) in migration_entry_to_page. This comes from an orphaned migration entry, unrelated to the current correctly locked migration, but hit by remove_anon_migration_ptes as it checks an address in each vma of the anon_vma list. Such an orphan may be left behind if an earlier migration raced with fork: copy_one_pte can duplicate a migration entry from parent to child, after remove_anon_migration_ptes has checked the child vma, but before it has removed it from the parent vma. (If the process were later to fault on this orphaned entry, it would hit the same BUG from migration_entry_wait.) This could be fixed by locking anon_vma in copy_one_pte, but we'd rather not. There's no such problem with file pages, because vma_prio_tree_add adds child vma after parent vma, and the page table locking at each end is enough to serialize. Follow that example with anon_vma: add new vmas to the tail instead of the head. (There's no corresponding problem when inserting migration entries, because a missed pte will leave the page count and mapcount high, which is allowed for. And there's no corresponding problem when migrating via swap, because a leftover swap entry will be correctly faulted. But the swapless method has no refcounting of its entries.) From: Ingo Molnar <mingo@elte.hu> pte_unmap_unlock() takes the pte pointer as an argument. From: Hugh Dickins <hugh@veritas.com> Several times while testing swapless page migration, gcc has tried to exec a pointer instead of a string: smells like COW mappings are not being properly write-protected on fork. The protection in copy_one_pte looks very convincing, until at last you realize that the second arg to make_migration_entry is a boolean "write", and SWP_MIGRATION_READ is 30. Anyway, it's better done like in change_pte_range, using is_write_migration_entry and make_migration_entry_read. From: Hugh Dickins <hugh@veritas.com> Remove unnecessary obfuscation from sys_swapon's range check on swap type, which blew up causing memory corruption once swapless migration made MAX_SWAPFILES no longer 2 ^ MAX_SWAPFILES_SHIFT. Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> From: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 09:03:35 +00:00
type = swp_type(entry);
if (type >= nr_swapfiles)
goto bad_file;
p = swap_info[type];
offset = swp_offset(entry);
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
spin_lock(&p->lock);
if (unlikely(offset >= p->max))
goto unlock_out;
count = p->swap_map[offset];
swap: fix races exposed by swap discard The previous patch can expose races, according to Hugh: swapoff was sometimes failing with "Cannot allocate memory", coming from try_to_unuse()'s -ENOMEM: it needs to allow for swap_duplicate() failing on a free entry temporarily SWAP_MAP_BAD while being discarded. We should use ACCESS_ONCE() there, and whenever accessing swap_map locklessly; but rather than peppering it throughout try_to_unuse(), just declare *swap_map with volatile. try_to_unuse() is accustomed to *swap_map going down racily, but not necessarily to it jumping up from 0 to SWAP_MAP_BAD: we'll be safer to prevent that transition once SWP_WRITEOK is switched off, when it's a waste of time to issue discards anyway (swapon can do a whole discard). Another issue is: In swapin_readahead(), read_swap_cache_async() can read a bad swap entry, because we don't check if readahead swap entry is bad. This doesn't break anything but such swapin page is wasteful and can only be freed at page reclaim. We should avoid read such swap entry. And in discard, we mark swap entry SWAP_MAP_BAD and then switch it to normal when discard is finished. If readahead reads such swap entry, we have the same issue, so we much check if swap entry is bad too. Thanks Hugh to inspire swapin_readahead could use bad swap entry. [include Hugh's patch 'swap: fix swapoff ENOMEMs from discard'] Signed-off-by: Shaohua Li <shli@fusionio.com> Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kyungmin Park <kmpark@infradead.org> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 21:20:31 +00:00
/*
* swapin_readahead() doesn't check if a swap entry is valid, so the
* swap entry could be SWAP_MAP_BAD. Check here with lock held.
*/
if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
err = -ENOENT;
goto unlock_out;
}
has_cache = count & SWAP_HAS_CACHE;
count &= ~SWAP_HAS_CACHE;
err = 0;
if (usage == SWAP_HAS_CACHE) {
/* set SWAP_HAS_CACHE if there is no cache and entry is used */
if (!has_cache && count)
has_cache = SWAP_HAS_CACHE;
else if (has_cache) /* someone else added cache */
err = -EEXIST;
else /* no users remaining */
err = -ENOENT;
} else if (count || has_cache) {
swap_info: swap count continuations Swap is duplicated (reference count incremented by one) whenever the same swap page is inserted into another mm (when forking finds a swap entry in place of a pte, or when reclaim unmaps a pte to insert the swap entry). swap_info_struct's vmalloc'ed swap_map is the array of these reference counts: but what happens when the unsigned short (or unsigned char since the preceding patch) is full? (and its high bit is kept for a cache flag) We then lose track of it, never freeing, leaving it in use until swapoff: at which point we _hope_ that a single pass will have found all instances, assume there are no more, and will lose user data if we're wrong. Swapping of KSM pages has not yet been enabled; but it is implemented, and makes it very easy for a user to overflow the maximum swap count: possible with ordinary process pages, but unlikely, even when pid_max has been raised from PID_MAX_DEFAULT. This patch implements swap count continuations: when the count overflows, a continuation page is allocated and linked to the original vmalloc'ed map page, and this used to hold the continuation counts for that entry and its neighbours. These continuation pages are seldom referenced: the common paths all work on the original swap_map, only referring to a continuation page when the low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 01:58:46 +00:00
if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
count += usage;
else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
err = -EINVAL;
swap_info: swap count continuations Swap is duplicated (reference count incremented by one) whenever the same swap page is inserted into another mm (when forking finds a swap entry in place of a pte, or when reclaim unmaps a pte to insert the swap entry). swap_info_struct's vmalloc'ed swap_map is the array of these reference counts: but what happens when the unsigned short (or unsigned char since the preceding patch) is full? (and its high bit is kept for a cache flag) We then lose track of it, never freeing, leaving it in use until swapoff: at which point we _hope_ that a single pass will have found all instances, assume there are no more, and will lose user data if we're wrong. Swapping of KSM pages has not yet been enabled; but it is implemented, and makes it very easy for a user to overflow the maximum swap count: possible with ordinary process pages, but unlikely, even when pid_max has been raised from PID_MAX_DEFAULT. This patch implements swap count continuations: when the count overflows, a continuation page is allocated and linked to the original vmalloc'ed map page, and this used to hold the continuation counts for that entry and its neighbours. These continuation pages are seldom referenced: the common paths all work on the original swap_map, only referring to a continuation page when the low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 01:58:46 +00:00
else if (swap_count_continued(p, offset, count))
count = COUNT_CONTINUED;
else
err = -ENOMEM;
} else
err = -ENOENT; /* unused swap entry */
p->swap_map[offset] = count | has_cache;
unlock_out:
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
spin_unlock(&p->lock);
out:
return err;
bad_file:
pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
goto out;
}
/*
* Help swapoff by noting that swap entry belongs to shmem/tmpfs
* (in which case its reference count is never incremented).
*/
void swap_shmem_alloc(swp_entry_t entry)
{
__swap_duplicate(entry, SWAP_MAP_SHMEM);
}
/*
* Increase reference count of swap entry by 1.
* Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
* but could not be atomically allocated. Returns 0, just as if it succeeded,
* if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
* might occur if a page table entry has got corrupted.
*/
swap_info: swap count continuations Swap is duplicated (reference count incremented by one) whenever the same swap page is inserted into another mm (when forking finds a swap entry in place of a pte, or when reclaim unmaps a pte to insert the swap entry). swap_info_struct's vmalloc'ed swap_map is the array of these reference counts: but what happens when the unsigned short (or unsigned char since the preceding patch) is full? (and its high bit is kept for a cache flag) We then lose track of it, never freeing, leaving it in use until swapoff: at which point we _hope_ that a single pass will have found all instances, assume there are no more, and will lose user data if we're wrong. Swapping of KSM pages has not yet been enabled; but it is implemented, and makes it very easy for a user to overflow the maximum swap count: possible with ordinary process pages, but unlikely, even when pid_max has been raised from PID_MAX_DEFAULT. This patch implements swap count continuations: when the count overflows, a continuation page is allocated and linked to the original vmalloc'ed map page, and this used to hold the continuation counts for that entry and its neighbours. These continuation pages are seldom referenced: the common paths all work on the original swap_map, only referring to a continuation page when the low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 01:58:46 +00:00
int swap_duplicate(swp_entry_t entry)
{
swap_info: swap count continuations Swap is duplicated (reference count incremented by one) whenever the same swap page is inserted into another mm (when forking finds a swap entry in place of a pte, or when reclaim unmaps a pte to insert the swap entry). swap_info_struct's vmalloc'ed swap_map is the array of these reference counts: but what happens when the unsigned short (or unsigned char since the preceding patch) is full? (and its high bit is kept for a cache flag) We then lose track of it, never freeing, leaving it in use until swapoff: at which point we _hope_ that a single pass will have found all instances, assume there are no more, and will lose user data if we're wrong. Swapping of KSM pages has not yet been enabled; but it is implemented, and makes it very easy for a user to overflow the maximum swap count: possible with ordinary process pages, but unlikely, even when pid_max has been raised from PID_MAX_DEFAULT. This patch implements swap count continuations: when the count overflows, a continuation page is allocated and linked to the original vmalloc'ed map page, and this used to hold the continuation counts for that entry and its neighbours. These continuation pages are seldom referenced: the common paths all work on the original swap_map, only referring to a continuation page when the low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 01:58:46 +00:00
int err = 0;
while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
err = add_swap_count_continuation(entry, GFP_ATOMIC);
return err;
}
/*
* @entry: swap entry for which we allocate swap cache.
*
* Called when allocating swap cache for existing swap entry,
* This can return error codes. Returns 0 at success.
* -EBUSY means there is a swap cache.
* Note: return code is different from swap_duplicate().
*/
int swapcache_prepare(swp_entry_t entry)
{
return __swap_duplicate(entry, SWAP_HAS_CACHE);
}
struct swap_info_struct *page_swap_info(struct page *page)
{
swp_entry_t swap = { .val = page_private(page) };
return swap_info[swp_type(swap)];
}
/*
* out-of-line __page_file_ methods to avoid include hell.
*/
struct address_space *__page_file_mapping(struct page *page)
{
VM_BUG_ON_PAGE(!PageSwapCache(page), page);
return page_swap_info(page)->swap_file->f_mapping;
}
EXPORT_SYMBOL_GPL(__page_file_mapping);
pgoff_t __page_file_index(struct page *page)
{
swp_entry_t swap = { .val = page_private(page) };
VM_BUG_ON_PAGE(!PageSwapCache(page), page);
return swp_offset(swap);
}
EXPORT_SYMBOL_GPL(__page_file_index);
swap_info: swap count continuations Swap is duplicated (reference count incremented by one) whenever the same swap page is inserted into another mm (when forking finds a swap entry in place of a pte, or when reclaim unmaps a pte to insert the swap entry). swap_info_struct's vmalloc'ed swap_map is the array of these reference counts: but what happens when the unsigned short (or unsigned char since the preceding patch) is full? (and its high bit is kept for a cache flag) We then lose track of it, never freeing, leaving it in use until swapoff: at which point we _hope_ that a single pass will have found all instances, assume there are no more, and will lose user data if we're wrong. Swapping of KSM pages has not yet been enabled; but it is implemented, and makes it very easy for a user to overflow the maximum swap count: possible with ordinary process pages, but unlikely, even when pid_max has been raised from PID_MAX_DEFAULT. This patch implements swap count continuations: when the count overflows, a continuation page is allocated and linked to the original vmalloc'ed map page, and this used to hold the continuation counts for that entry and its neighbours. These continuation pages are seldom referenced: the common paths all work on the original swap_map, only referring to a continuation page when the low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 01:58:46 +00:00
/*
* add_swap_count_continuation - called when a swap count is duplicated
* beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
* page of the original vmalloc'ed swap_map, to hold the continuation count
* (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
* again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
*
* These continuation pages are seldom referenced: the common paths all work
* on the original swap_map, only referring to a continuation page when the
* low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
*
* add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
* page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
* can be called after dropping locks.
*/
int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
{
struct swap_info_struct *si;
struct page *head;
struct page *page;
struct page *list_page;
pgoff_t offset;
unsigned char count;
/*
* When debugging, it's easier to use __GFP_ZERO here; but it's better
* for latency not to zero a page while GFP_ATOMIC and holding locks.
*/
page = alloc_page(gfp_mask | __GFP_HIGHMEM);
si = swap_info_get(entry);
if (!si) {
/*
* An acceptable race has occurred since the failing
* __swap_duplicate(): the swap entry has been freed,
* perhaps even the whole swap_map cleared for swapoff.
*/
goto outer;
}
offset = swp_offset(entry);
count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
/*
* The higher the swap count, the more likely it is that tasks
* will race to add swap count continuation: we need to avoid
* over-provisioning.
*/
goto out;
}
if (!page) {
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
spin_unlock(&si->lock);
swap_info: swap count continuations Swap is duplicated (reference count incremented by one) whenever the same swap page is inserted into another mm (when forking finds a swap entry in place of a pte, or when reclaim unmaps a pte to insert the swap entry). swap_info_struct's vmalloc'ed swap_map is the array of these reference counts: but what happens when the unsigned short (or unsigned char since the preceding patch) is full? (and its high bit is kept for a cache flag) We then lose track of it, never freeing, leaving it in use until swapoff: at which point we _hope_ that a single pass will have found all instances, assume there are no more, and will lose user data if we're wrong. Swapping of KSM pages has not yet been enabled; but it is implemented, and makes it very easy for a user to overflow the maximum swap count: possible with ordinary process pages, but unlikely, even when pid_max has been raised from PID_MAX_DEFAULT. This patch implements swap count continuations: when the count overflows, a continuation page is allocated and linked to the original vmalloc'ed map page, and this used to hold the continuation counts for that entry and its neighbours. These continuation pages are seldom referenced: the common paths all work on the original swap_map, only referring to a continuation page when the low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 01:58:46 +00:00
return -ENOMEM;
}
/*
* We are fortunate that although vmalloc_to_page uses pte_offset_map,
* no architecture is using highmem pages for kernel page tables: so it
* will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
swap_info: swap count continuations Swap is duplicated (reference count incremented by one) whenever the same swap page is inserted into another mm (when forking finds a swap entry in place of a pte, or when reclaim unmaps a pte to insert the swap entry). swap_info_struct's vmalloc'ed swap_map is the array of these reference counts: but what happens when the unsigned short (or unsigned char since the preceding patch) is full? (and its high bit is kept for a cache flag) We then lose track of it, never freeing, leaving it in use until swapoff: at which point we _hope_ that a single pass will have found all instances, assume there are no more, and will lose user data if we're wrong. Swapping of KSM pages has not yet been enabled; but it is implemented, and makes it very easy for a user to overflow the maximum swap count: possible with ordinary process pages, but unlikely, even when pid_max has been raised from PID_MAX_DEFAULT. This patch implements swap count continuations: when the count overflows, a continuation page is allocated and linked to the original vmalloc'ed map page, and this used to hold the continuation counts for that entry and its neighbours. These continuation pages are seldom referenced: the common paths all work on the original swap_map, only referring to a continuation page when the low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 01:58:46 +00:00
*/
head = vmalloc_to_page(si->swap_map + offset);
offset &= ~PAGE_MASK;
/*
* Page allocation does not initialize the page's lru field,
* but it does always reset its private field.
*/
if (!page_private(head)) {
BUG_ON(count & COUNT_CONTINUED);
INIT_LIST_HEAD(&head->lru);
set_page_private(head, SWP_CONTINUED);
si->flags |= SWP_CONTINUED;
}
list_for_each_entry(list_page, &head->lru, lru) {
unsigned char *map;
/*
* If the previous map said no continuation, but we've found
* a continuation page, free our allocation and use this one.
*/
if (!(count & COUNT_CONTINUED))
goto out;
map = kmap_atomic(list_page) + offset;
swap_info: swap count continuations Swap is duplicated (reference count incremented by one) whenever the same swap page is inserted into another mm (when forking finds a swap entry in place of a pte, or when reclaim unmaps a pte to insert the swap entry). swap_info_struct's vmalloc'ed swap_map is the array of these reference counts: but what happens when the unsigned short (or unsigned char since the preceding patch) is full? (and its high bit is kept for a cache flag) We then lose track of it, never freeing, leaving it in use until swapoff: at which point we _hope_ that a single pass will have found all instances, assume there are no more, and will lose user data if we're wrong. Swapping of KSM pages has not yet been enabled; but it is implemented, and makes it very easy for a user to overflow the maximum swap count: possible with ordinary process pages, but unlikely, even when pid_max has been raised from PID_MAX_DEFAULT. This patch implements swap count continuations: when the count overflows, a continuation page is allocated and linked to the original vmalloc'ed map page, and this used to hold the continuation counts for that entry and its neighbours. These continuation pages are seldom referenced: the common paths all work on the original swap_map, only referring to a continuation page when the low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 01:58:46 +00:00
count = *map;
kunmap_atomic(map);
swap_info: swap count continuations Swap is duplicated (reference count incremented by one) whenever the same swap page is inserted into another mm (when forking finds a swap entry in place of a pte, or when reclaim unmaps a pte to insert the swap entry). swap_info_struct's vmalloc'ed swap_map is the array of these reference counts: but what happens when the unsigned short (or unsigned char since the preceding patch) is full? (and its high bit is kept for a cache flag) We then lose track of it, never freeing, leaving it in use until swapoff: at which point we _hope_ that a single pass will have found all instances, assume there are no more, and will lose user data if we're wrong. Swapping of KSM pages has not yet been enabled; but it is implemented, and makes it very easy for a user to overflow the maximum swap count: possible with ordinary process pages, but unlikely, even when pid_max has been raised from PID_MAX_DEFAULT. This patch implements swap count continuations: when the count overflows, a continuation page is allocated and linked to the original vmalloc'ed map page, and this used to hold the continuation counts for that entry and its neighbours. These continuation pages are seldom referenced: the common paths all work on the original swap_map, only referring to a continuation page when the low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 01:58:46 +00:00
/*
* If this continuation count now has some space in it,
* free our allocation and use this one.
*/
if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
goto out;
}
list_add_tail(&page->lru, &head->lru);
page = NULL; /* now it's attached, don't free it */
out:
swap: add per-partition lock for swapfile swap_lock is heavily contended when I test swap to 3 fast SSD (even slightly slower than swap to 2 such SSD). The main contention comes from swap_info_get(). This patch tries to fix the gap with adding a new per-partition lock. Global data like nr_swapfiles, total_swap_pages, least_priority and swap_list are still protected by swap_lock. nr_swap_pages is an atomic now, it can be changed without swap_lock. In theory, it's possible get_swap_page() finds no swap pages but actually there are free swap pages. But sounds not a big problem. Accessing partition specific data (like scan_swap_map and so on) is only protected by swap_info_struct.lock. Changing swap_info_struct.flags need hold swap_lock and swap_info_struct.lock, because scan_scan_map() will check it. read the flags is ok with either the locks hold. If both swap_lock and swap_info_struct.lock must be hold, we always hold the former first to avoid deadlock. swap_entry_free() can change swap_list. To delete that code, we add a new highest_priority_index. Whenever get_swap_page() is called, we check it. If it's valid, we use it. It's a pity get_swap_page() still holds swap_lock(). But in practice, swap_lock() isn't heavily contended in my test with this patch (or I can say there are other much more heavier bottlenecks like TLB flush). And BTW, looks get_swap_page() doesn't really need the lock. We never free swap_info[] and we check SWAP_WRITEOK flag. The only risk without the lock is we could swapout to some low priority swap, but we can quickly recover after several rounds of swap, so sounds not a big deal to me. But I'd prefer to fix this if it's a real problem. "swap: make each swap partition have one address_space" improved the swapout speed from 1.7G/s to 2G/s. This patch further improves the speed to 2.3G/s, so around 15% improvement. It's a multi-process test, so TLB flush isn't the biggest bottleneck before the patches. [arnd@arndb.de: fix it for nommu] [hughd@google.com: add missing unlock] [minchan@kernel.org: get rid of lockdep whinge on sys_swapon] Signed-off-by: Shaohua Li <shli@fusionio.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 00:34:38 +00:00
spin_unlock(&si->lock);
swap_info: swap count continuations Swap is duplicated (reference count incremented by one) whenever the same swap page is inserted into another mm (when forking finds a swap entry in place of a pte, or when reclaim unmaps a pte to insert the swap entry). swap_info_struct's vmalloc'ed swap_map is the array of these reference counts: but what happens when the unsigned short (or unsigned char since the preceding patch) is full? (and its high bit is kept for a cache flag) We then lose track of it, never freeing, leaving it in use until swapoff: at which point we _hope_ that a single pass will have found all instances, assume there are no more, and will lose user data if we're wrong. Swapping of KSM pages has not yet been enabled; but it is implemented, and makes it very easy for a user to overflow the maximum swap count: possible with ordinary process pages, but unlikely, even when pid_max has been raised from PID_MAX_DEFAULT. This patch implements swap count continuations: when the count overflows, a continuation page is allocated and linked to the original vmalloc'ed map page, and this used to hold the continuation counts for that entry and its neighbours. These continuation pages are seldom referenced: the common paths all work on the original swap_map, only referring to a continuation page when the low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 01:58:46 +00:00
outer:
if (page)
__free_page(page);
return 0;
}
/*
* swap_count_continued - when the original swap_map count is incremented
* from SWAP_MAP_MAX, check if there is already a continuation page to carry
* into, carry if so, or else fail until a new continuation page is allocated;
* when the original swap_map count is decremented from 0 with continuation,
* borrow from the continuation and report whether it still holds more.
* Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
*/
static bool swap_count_continued(struct swap_info_struct *si,
pgoff_t offset, unsigned char count)
{
struct page *head;
struct page *page;
unsigned char *map;
head = vmalloc_to_page(si->swap_map + offset);
if (page_private(head) != SWP_CONTINUED) {
BUG_ON(count & COUNT_CONTINUED);
return false; /* need to add count continuation */
}
offset &= ~PAGE_MASK;
page = list_entry(head->lru.next, struct page, lru);
map = kmap_atomic(page) + offset;
swap_info: swap count continuations Swap is duplicated (reference count incremented by one) whenever the same swap page is inserted into another mm (when forking finds a swap entry in place of a pte, or when reclaim unmaps a pte to insert the swap entry). swap_info_struct's vmalloc'ed swap_map is the array of these reference counts: but what happens when the unsigned short (or unsigned char since the preceding patch) is full? (and its high bit is kept for a cache flag) We then lose track of it, never freeing, leaving it in use until swapoff: at which point we _hope_ that a single pass will have found all instances, assume there are no more, and will lose user data if we're wrong. Swapping of KSM pages has not yet been enabled; but it is implemented, and makes it very easy for a user to overflow the maximum swap count: possible with ordinary process pages, but unlikely, even when pid_max has been raised from PID_MAX_DEFAULT. This patch implements swap count continuations: when the count overflows, a continuation page is allocated and linked to the original vmalloc'ed map page, and this used to hold the continuation counts for that entry and its neighbours. These continuation pages are seldom referenced: the common paths all work on the original swap_map, only referring to a continuation page when the low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 01:58:46 +00:00
if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
goto init_map; /* jump over SWAP_CONT_MAX checks */
if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
/*
* Think of how you add 1 to 999
*/
while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
kunmap_atomic(map);
swap_info: swap count continuations Swap is duplicated (reference count incremented by one) whenever the same swap page is inserted into another mm (when forking finds a swap entry in place of a pte, or when reclaim unmaps a pte to insert the swap entry). swap_info_struct's vmalloc'ed swap_map is the array of these reference counts: but what happens when the unsigned short (or unsigned char since the preceding patch) is full? (and its high bit is kept for a cache flag) We then lose track of it, never freeing, leaving it in use until swapoff: at which point we _hope_ that a single pass will have found all instances, assume there are no more, and will lose user data if we're wrong. Swapping of KSM pages has not yet been enabled; but it is implemented, and makes it very easy for a user to overflow the maximum swap count: possible with ordinary process pages, but unlikely, even when pid_max has been raised from PID_MAX_DEFAULT. This patch implements swap count continuations: when the count overflows, a continuation page is allocated and linked to the original vmalloc'ed map page, and this used to hold the continuation counts for that entry and its neighbours. These continuation pages are seldom referenced: the common paths all work on the original swap_map, only referring to a continuation page when the low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 01:58:46 +00:00
page = list_entry(page->lru.next, struct page, lru);
BUG_ON(page == head);
map = kmap_atomic(page) + offset;
swap_info: swap count continuations Swap is duplicated (reference count incremented by one) whenever the same swap page is inserted into another mm (when forking finds a swap entry in place of a pte, or when reclaim unmaps a pte to insert the swap entry). swap_info_struct's vmalloc'ed swap_map is the array of these reference counts: but what happens when the unsigned short (or unsigned char since the preceding patch) is full? (and its high bit is kept for a cache flag) We then lose track of it, never freeing, leaving it in use until swapoff: at which point we _hope_ that a single pass will have found all instances, assume there are no more, and will lose user data if we're wrong. Swapping of KSM pages has not yet been enabled; but it is implemented, and makes it very easy for a user to overflow the maximum swap count: possible with ordinary process pages, but unlikely, even when pid_max has been raised from PID_MAX_DEFAULT. This patch implements swap count continuations: when the count overflows, a continuation page is allocated and linked to the original vmalloc'ed map page, and this used to hold the continuation counts for that entry and its neighbours. These continuation pages are seldom referenced: the common paths all work on the original swap_map, only referring to a continuation page when the low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 01:58:46 +00:00
}
if (*map == SWAP_CONT_MAX) {
kunmap_atomic(map);
swap_info: swap count continuations Swap is duplicated (reference count incremented by one) whenever the same swap page is inserted into another mm (when forking finds a swap entry in place of a pte, or when reclaim unmaps a pte to insert the swap entry). swap_info_struct's vmalloc'ed swap_map is the array of these reference counts: but what happens when the unsigned short (or unsigned char since the preceding patch) is full? (and its high bit is kept for a cache flag) We then lose track of it, never freeing, leaving it in use until swapoff: at which point we _hope_ that a single pass will have found all instances, assume there are no more, and will lose user data if we're wrong. Swapping of KSM pages has not yet been enabled; but it is implemented, and makes it very easy for a user to overflow the maximum swap count: possible with ordinary process pages, but unlikely, even when pid_max has been raised from PID_MAX_DEFAULT. This patch implements swap count continuations: when the count overflows, a continuation page is allocated and linked to the original vmalloc'ed map page, and this used to hold the continuation counts for that entry and its neighbours. These continuation pages are seldom referenced: the common paths all work on the original swap_map, only referring to a continuation page when the low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 01:58:46 +00:00
page = list_entry(page->lru.next, struct page, lru);
if (page == head)
return false; /* add count continuation */
map = kmap_atomic(page) + offset;
swap_info: swap count continuations Swap is duplicated (reference count incremented by one) whenever the same swap page is inserted into another mm (when forking finds a swap entry in place of a pte, or when reclaim unmaps a pte to insert the swap entry). swap_info_struct's vmalloc'ed swap_map is the array of these reference counts: but what happens when the unsigned short (or unsigned char since the preceding patch) is full? (and its high bit is kept for a cache flag) We then lose track of it, never freeing, leaving it in use until swapoff: at which point we _hope_ that a single pass will have found all instances, assume there are no more, and will lose user data if we're wrong. Swapping of KSM pages has not yet been enabled; but it is implemented, and makes it very easy for a user to overflow the maximum swap count: possible with ordinary process pages, but unlikely, even when pid_max has been raised from PID_MAX_DEFAULT. This patch implements swap count continuations: when the count overflows, a continuation page is allocated and linked to the original vmalloc'ed map page, and this used to hold the continuation counts for that entry and its neighbours. These continuation pages are seldom referenced: the common paths all work on the original swap_map, only referring to a continuation page when the low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 01:58:46 +00:00
init_map: *map = 0; /* we didn't zero the page */
}
*map += 1;
kunmap_atomic(map);
swap_info: swap count continuations Swap is duplicated (reference count incremented by one) whenever the same swap page is inserted into another mm (when forking finds a swap entry in place of a pte, or when reclaim unmaps a pte to insert the swap entry). swap_info_struct's vmalloc'ed swap_map is the array of these reference counts: but what happens when the unsigned short (or unsigned char since the preceding patch) is full? (and its high bit is kept for a cache flag) We then lose track of it, never freeing, leaving it in use until swapoff: at which point we _hope_ that a single pass will have found all instances, assume there are no more, and will lose user data if we're wrong. Swapping of KSM pages has not yet been enabled; but it is implemented, and makes it very easy for a user to overflow the maximum swap count: possible with ordinary process pages, but unlikely, even when pid_max has been raised from PID_MAX_DEFAULT. This patch implements swap count continuations: when the count overflows, a continuation page is allocated and linked to the original vmalloc'ed map page, and this used to hold the continuation counts for that entry and its neighbours. These continuation pages are seldom referenced: the common paths all work on the original swap_map, only referring to a continuation page when the low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 01:58:46 +00:00
page = list_entry(page->lru.prev, struct page, lru);
while (page != head) {
map = kmap_atomic(page) + offset;
swap_info: swap count continuations Swap is duplicated (reference count incremented by one) whenever the same swap page is inserted into another mm (when forking finds a swap entry in place of a pte, or when reclaim unmaps a pte to insert the swap entry). swap_info_struct's vmalloc'ed swap_map is the array of these reference counts: but what happens when the unsigned short (or unsigned char since the preceding patch) is full? (and its high bit is kept for a cache flag) We then lose track of it, never freeing, leaving it in use until swapoff: at which point we _hope_ that a single pass will have found all instances, assume there are no more, and will lose user data if we're wrong. Swapping of KSM pages has not yet been enabled; but it is implemented, and makes it very easy for a user to overflow the maximum swap count: possible with ordinary process pages, but unlikely, even when pid_max has been raised from PID_MAX_DEFAULT. This patch implements swap count continuations: when the count overflows, a continuation page is allocated and linked to the original vmalloc'ed map page, and this used to hold the continuation counts for that entry and its neighbours. These continuation pages are seldom referenced: the common paths all work on the original swap_map, only referring to a continuation page when the low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 01:58:46 +00:00
*map = COUNT_CONTINUED;
kunmap_atomic(map);
swap_info: swap count continuations Swap is duplicated (reference count incremented by one) whenever the same swap page is inserted into another mm (when forking finds a swap entry in place of a pte, or when reclaim unmaps a pte to insert the swap entry). swap_info_struct's vmalloc'ed swap_map is the array of these reference counts: but what happens when the unsigned short (or unsigned char since the preceding patch) is full? (and its high bit is kept for a cache flag) We then lose track of it, never freeing, leaving it in use until swapoff: at which point we _hope_ that a single pass will have found all instances, assume there are no more, and will lose user data if we're wrong. Swapping of KSM pages has not yet been enabled; but it is implemented, and makes it very easy for a user to overflow the maximum swap count: possible with ordinary process pages, but unlikely, even when pid_max has been raised from PID_MAX_DEFAULT. This patch implements swap count continuations: when the count overflows, a continuation page is allocated and linked to the original vmalloc'ed map page, and this used to hold the continuation counts for that entry and its neighbours. These continuation pages are seldom referenced: the common paths all work on the original swap_map, only referring to a continuation page when the low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 01:58:46 +00:00
page = list_entry(page->lru.prev, struct page, lru);
}
return true; /* incremented */
} else { /* decrementing */
/*
* Think of how you subtract 1 from 1000
*/
BUG_ON(count != COUNT_CONTINUED);
while (*map == COUNT_CONTINUED) {
kunmap_atomic(map);
swap_info: swap count continuations Swap is duplicated (reference count incremented by one) whenever the same swap page is inserted into another mm (when forking finds a swap entry in place of a pte, or when reclaim unmaps a pte to insert the swap entry). swap_info_struct's vmalloc'ed swap_map is the array of these reference counts: but what happens when the unsigned short (or unsigned char since the preceding patch) is full? (and its high bit is kept for a cache flag) We then lose track of it, never freeing, leaving it in use until swapoff: at which point we _hope_ that a single pass will have found all instances, assume there are no more, and will lose user data if we're wrong. Swapping of KSM pages has not yet been enabled; but it is implemented, and makes it very easy for a user to overflow the maximum swap count: possible with ordinary process pages, but unlikely, even when pid_max has been raised from PID_MAX_DEFAULT. This patch implements swap count continuations: when the count overflows, a continuation page is allocated and linked to the original vmalloc'ed map page, and this used to hold the continuation counts for that entry and its neighbours. These continuation pages are seldom referenced: the common paths all work on the original swap_map, only referring to a continuation page when the low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 01:58:46 +00:00
page = list_entry(page->lru.next, struct page, lru);
BUG_ON(page == head);
map = kmap_atomic(page) + offset;
swap_info: swap count continuations Swap is duplicated (reference count incremented by one) whenever the same swap page is inserted into another mm (when forking finds a swap entry in place of a pte, or when reclaim unmaps a pte to insert the swap entry). swap_info_struct's vmalloc'ed swap_map is the array of these reference counts: but what happens when the unsigned short (or unsigned char since the preceding patch) is full? (and its high bit is kept for a cache flag) We then lose track of it, never freeing, leaving it in use until swapoff: at which point we _hope_ that a single pass will have found all instances, assume there are no more, and will lose user data if we're wrong. Swapping of KSM pages has not yet been enabled; but it is implemented, and makes it very easy for a user to overflow the maximum swap count: possible with ordinary process pages, but unlikely, even when pid_max has been raised from PID_MAX_DEFAULT. This patch implements swap count continuations: when the count overflows, a continuation page is allocated and linked to the original vmalloc'ed map page, and this used to hold the continuation counts for that entry and its neighbours. These continuation pages are seldom referenced: the common paths all work on the original swap_map, only referring to a continuation page when the low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 01:58:46 +00:00
}
BUG_ON(*map == 0);
*map -= 1;
if (*map == 0)
count = 0;
kunmap_atomic(map);
swap_info: swap count continuations Swap is duplicated (reference count incremented by one) whenever the same swap page is inserted into another mm (when forking finds a swap entry in place of a pte, or when reclaim unmaps a pte to insert the swap entry). swap_info_struct's vmalloc'ed swap_map is the array of these reference counts: but what happens when the unsigned short (or unsigned char since the preceding patch) is full? (and its high bit is kept for a cache flag) We then lose track of it, never freeing, leaving it in use until swapoff: at which point we _hope_ that a single pass will have found all instances, assume there are no more, and will lose user data if we're wrong. Swapping of KSM pages has not yet been enabled; but it is implemented, and makes it very easy for a user to overflow the maximum swap count: possible with ordinary process pages, but unlikely, even when pid_max has been raised from PID_MAX_DEFAULT. This patch implements swap count continuations: when the count overflows, a continuation page is allocated and linked to the original vmalloc'ed map page, and this used to hold the continuation counts for that entry and its neighbours. These continuation pages are seldom referenced: the common paths all work on the original swap_map, only referring to a continuation page when the low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 01:58:46 +00:00
page = list_entry(page->lru.prev, struct page, lru);
while (page != head) {
map = kmap_atomic(page) + offset;
swap_info: swap count continuations Swap is duplicated (reference count incremented by one) whenever the same swap page is inserted into another mm (when forking finds a swap entry in place of a pte, or when reclaim unmaps a pte to insert the swap entry). swap_info_struct's vmalloc'ed swap_map is the array of these reference counts: but what happens when the unsigned short (or unsigned char since the preceding patch) is full? (and its high bit is kept for a cache flag) We then lose track of it, never freeing, leaving it in use until swapoff: at which point we _hope_ that a single pass will have found all instances, assume there are no more, and will lose user data if we're wrong. Swapping of KSM pages has not yet been enabled; but it is implemented, and makes it very easy for a user to overflow the maximum swap count: possible with ordinary process pages, but unlikely, even when pid_max has been raised from PID_MAX_DEFAULT. This patch implements swap count continuations: when the count overflows, a continuation page is allocated and linked to the original vmalloc'ed map page, and this used to hold the continuation counts for that entry and its neighbours. These continuation pages are seldom referenced: the common paths all work on the original swap_map, only referring to a continuation page when the low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 01:58:46 +00:00
*map = SWAP_CONT_MAX | count;
count = COUNT_CONTINUED;
kunmap_atomic(map);
swap_info: swap count continuations Swap is duplicated (reference count incremented by one) whenever the same swap page is inserted into another mm (when forking finds a swap entry in place of a pte, or when reclaim unmaps a pte to insert the swap entry). swap_info_struct's vmalloc'ed swap_map is the array of these reference counts: but what happens when the unsigned short (or unsigned char since the preceding patch) is full? (and its high bit is kept for a cache flag) We then lose track of it, never freeing, leaving it in use until swapoff: at which point we _hope_ that a single pass will have found all instances, assume there are no more, and will lose user data if we're wrong. Swapping of KSM pages has not yet been enabled; but it is implemented, and makes it very easy for a user to overflow the maximum swap count: possible with ordinary process pages, but unlikely, even when pid_max has been raised from PID_MAX_DEFAULT. This patch implements swap count continuations: when the count overflows, a continuation page is allocated and linked to the original vmalloc'ed map page, and this used to hold the continuation counts for that entry and its neighbours. These continuation pages are seldom referenced: the common paths all work on the original swap_map, only referring to a continuation page when the low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 01:58:46 +00:00
page = list_entry(page->lru.prev, struct page, lru);
}
return count == COUNT_CONTINUED;
}
}
/*
* free_swap_count_continuations - swapoff free all the continuation pages
* appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
*/
static void free_swap_count_continuations(struct swap_info_struct *si)
{
pgoff_t offset;
for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
struct page *head;
head = vmalloc_to_page(si->swap_map + offset);
if (page_private(head)) {
struct page *page, *next;
list_for_each_entry_safe(page, next, &head->lru, lru) {
list_del(&page->lru);
swap_info: swap count continuations Swap is duplicated (reference count incremented by one) whenever the same swap page is inserted into another mm (when forking finds a swap entry in place of a pte, or when reclaim unmaps a pte to insert the swap entry). swap_info_struct's vmalloc'ed swap_map is the array of these reference counts: but what happens when the unsigned short (or unsigned char since the preceding patch) is full? (and its high bit is kept for a cache flag) We then lose track of it, never freeing, leaving it in use until swapoff: at which point we _hope_ that a single pass will have found all instances, assume there are no more, and will lose user data if we're wrong. Swapping of KSM pages has not yet been enabled; but it is implemented, and makes it very easy for a user to overflow the maximum swap count: possible with ordinary process pages, but unlikely, even when pid_max has been raised from PID_MAX_DEFAULT. This patch implements swap count continuations: when the count overflows, a continuation page is allocated and linked to the original vmalloc'ed map page, and this used to hold the continuation counts for that entry and its neighbours. These continuation pages are seldom referenced: the common paths all work on the original swap_map, only referring to a continuation page when the low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 01:58:46 +00:00
__free_page(page);
}
}
}
}