2009-05-12 20:47:03 +00:00
|
|
|
/*
|
|
|
|
* Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
|
|
|
|
* Copyright © 2004 Micron Technology Inc.
|
|
|
|
* Copyright © 2004 David Brownell
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
|
|
* published by the Free Software Foundation.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/platform_device.h>
|
2012-04-24 23:16:00 +00:00
|
|
|
#include <linux/dmaengine.h>
|
2009-05-12 20:47:03 +00:00
|
|
|
#include <linux/dma-mapping.h>
|
|
|
|
#include <linux/delay.h>
|
2011-07-03 19:17:31 +00:00
|
|
|
#include <linux/module.h>
|
2011-01-28 10:12:06 +00:00
|
|
|
#include <linux/interrupt.h>
|
2009-06-27 05:37:06 +00:00
|
|
|
#include <linux/jiffies.h>
|
|
|
|
#include <linux/sched.h>
|
2009-05-12 20:47:03 +00:00
|
|
|
#include <linux/mtd/mtd.h>
|
|
|
|
#include <linux/mtd/nand.h>
|
|
|
|
#include <linux/mtd/partitions.h>
|
2012-04-24 23:16:00 +00:00
|
|
|
#include <linux/omap-dma.h>
|
2009-05-12 20:47:03 +00:00
|
|
|
#include <linux/io.h>
|
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
|
|
|
#include <linux/slab.h>
|
2013-01-04 07:56:51 +00:00
|
|
|
#include <linux/of.h>
|
|
|
|
#include <linux/of_device.h>
|
2009-05-12 20:47:03 +00:00
|
|
|
|
2013-10-24 12:50:23 +00:00
|
|
|
#include <linux/mtd/nand_bch.h>
|
2013-01-04 07:56:51 +00:00
|
|
|
#include <linux/platform_data/elm.h>
|
2012-04-30 10:17:18 +00:00
|
|
|
|
2012-08-24 13:21:06 +00:00
|
|
|
#include <linux/platform_data/mtd-nand-omap2.h>
|
2009-05-12 20:47:03 +00:00
|
|
|
|
|
|
|
#define DRIVER_NAME "omap2-nand"
|
2011-01-28 10:12:06 +00:00
|
|
|
#define OMAP_NAND_TIMEOUT_MS 5000
|
2009-05-12 20:47:03 +00:00
|
|
|
|
|
|
|
#define NAND_Ecc_P1e (1 << 0)
|
|
|
|
#define NAND_Ecc_P2e (1 << 1)
|
|
|
|
#define NAND_Ecc_P4e (1 << 2)
|
|
|
|
#define NAND_Ecc_P8e (1 << 3)
|
|
|
|
#define NAND_Ecc_P16e (1 << 4)
|
|
|
|
#define NAND_Ecc_P32e (1 << 5)
|
|
|
|
#define NAND_Ecc_P64e (1 << 6)
|
|
|
|
#define NAND_Ecc_P128e (1 << 7)
|
|
|
|
#define NAND_Ecc_P256e (1 << 8)
|
|
|
|
#define NAND_Ecc_P512e (1 << 9)
|
|
|
|
#define NAND_Ecc_P1024e (1 << 10)
|
|
|
|
#define NAND_Ecc_P2048e (1 << 11)
|
|
|
|
|
|
|
|
#define NAND_Ecc_P1o (1 << 16)
|
|
|
|
#define NAND_Ecc_P2o (1 << 17)
|
|
|
|
#define NAND_Ecc_P4o (1 << 18)
|
|
|
|
#define NAND_Ecc_P8o (1 << 19)
|
|
|
|
#define NAND_Ecc_P16o (1 << 20)
|
|
|
|
#define NAND_Ecc_P32o (1 << 21)
|
|
|
|
#define NAND_Ecc_P64o (1 << 22)
|
|
|
|
#define NAND_Ecc_P128o (1 << 23)
|
|
|
|
#define NAND_Ecc_P256o (1 << 24)
|
|
|
|
#define NAND_Ecc_P512o (1 << 25)
|
|
|
|
#define NAND_Ecc_P1024o (1 << 26)
|
|
|
|
#define NAND_Ecc_P2048o (1 << 27)
|
|
|
|
|
|
|
|
#define TF(value) (value ? 1 : 0)
|
|
|
|
|
|
|
|
#define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
|
|
|
|
#define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
|
|
|
|
#define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
|
|
|
|
#define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
|
|
|
|
#define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
|
|
|
|
#define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
|
|
|
|
#define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
|
|
|
|
#define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
|
|
|
|
|
|
|
|
#define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
|
|
|
|
#define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
|
|
|
|
#define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
|
|
|
|
#define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
|
|
|
|
#define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
|
|
|
|
#define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
|
|
|
|
#define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
|
|
|
|
#define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
|
|
|
|
|
|
|
|
#define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
|
|
|
|
#define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
|
|
|
|
#define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
|
|
|
|
#define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
|
|
|
|
#define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
|
|
|
|
#define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
|
|
|
|
#define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
|
|
|
|
#define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
|
|
|
|
|
|
|
|
#define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
|
|
|
|
#define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
|
|
|
|
#define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
|
|
|
|
#define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
|
|
|
|
#define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
|
|
|
|
#define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
|
|
|
|
#define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
|
|
|
|
#define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
|
|
|
|
|
|
|
|
#define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
|
|
|
|
#define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
|
|
|
|
|
2012-08-30 19:53:22 +00:00
|
|
|
#define PREFETCH_CONFIG1_CS_SHIFT 24
|
|
|
|
#define ECC_CONFIG_CS_SHIFT 1
|
|
|
|
#define CS_MASK 0x7
|
|
|
|
#define ENABLE_PREFETCH (0x1 << 7)
|
|
|
|
#define DMA_MPU_MODE_SHIFT 2
|
2012-10-04 13:33:06 +00:00
|
|
|
#define ECCSIZE0_SHIFT 12
|
2012-08-30 19:53:22 +00:00
|
|
|
#define ECCSIZE1_SHIFT 22
|
|
|
|
#define ECC1RESULTSIZE 0x1
|
|
|
|
#define ECCCLEAR 0x100
|
|
|
|
#define ECC1 0x1
|
2012-09-29 12:50:11 +00:00
|
|
|
#define PREFETCH_FIFOTHRESHOLD_MAX 0x40
|
|
|
|
#define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
|
|
|
|
#define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
|
|
|
|
#define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
|
|
|
|
#define STATUS_BUFF_EMPTY 0x00000001
|
2012-08-30 19:53:22 +00:00
|
|
|
|
2012-10-15 21:03:51 +00:00
|
|
|
#define OMAP24XX_DMA_GPMC 4
|
|
|
|
|
2013-01-04 07:56:49 +00:00
|
|
|
#define BCH8_MAX_ERROR 8 /* upto 8 bit correctable */
|
|
|
|
#define BCH4_MAX_ERROR 4 /* upto 4 bit correctable */
|
|
|
|
|
2013-01-04 07:56:51 +00:00
|
|
|
#define SECTOR_BYTES 512
|
|
|
|
/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
|
|
|
|
#define BCH4_BIT_PAD 4
|
|
|
|
#define BCH8_ECC_MAX ((SECTOR_BYTES + BCH8_ECC_OOB_BYTES) * 8)
|
|
|
|
#define BCH4_ECC_MAX ((SECTOR_BYTES + BCH4_ECC_OOB_BYTES) * 8)
|
|
|
|
|
|
|
|
/* GPMC ecc engine settings for read */
|
|
|
|
#define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */
|
|
|
|
#define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */
|
|
|
|
#define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */
|
|
|
|
#define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */
|
|
|
|
#define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */
|
|
|
|
|
|
|
|
/* GPMC ecc engine settings for write */
|
|
|
|
#define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */
|
|
|
|
#define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */
|
|
|
|
#define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */
|
|
|
|
|
2013-10-24 12:50:22 +00:00
|
|
|
#define BADBLOCK_MARKER_LENGTH 2
|
2013-10-24 12:50:21 +00:00
|
|
|
|
2013-01-04 07:56:51 +00:00
|
|
|
#ifdef CONFIG_MTD_NAND_OMAP_BCH
|
|
|
|
static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
|
|
|
|
0xac, 0x6b, 0xff, 0x99, 0x7b};
|
|
|
|
static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
|
|
|
|
#endif
|
|
|
|
|
2011-01-28 10:12:09 +00:00
|
|
|
/* oob info generated runtime depending on ecc algorithm and layout selected */
|
|
|
|
static struct nand_ecclayout omap_oobinfo;
|
2009-07-13 10:56:24 +00:00
|
|
|
|
2009-05-12 20:47:03 +00:00
|
|
|
struct omap_nand_info {
|
|
|
|
struct nand_hw_control controller;
|
|
|
|
struct omap_nand_platform_data *pdata;
|
|
|
|
struct mtd_info mtd;
|
|
|
|
struct nand_chip nand;
|
|
|
|
struct platform_device *pdev;
|
|
|
|
|
|
|
|
int gpmc_cs;
|
|
|
|
unsigned long phys_base;
|
2012-08-30 19:53:23 +00:00
|
|
|
unsigned long mem_size;
|
2009-07-13 10:59:16 +00:00
|
|
|
struct completion comp;
|
2012-04-24 23:16:00 +00:00
|
|
|
struct dma_chan *dma;
|
2012-08-30 19:53:24 +00:00
|
|
|
int gpmc_irq_fifo;
|
|
|
|
int gpmc_irq_count;
|
2011-01-28 10:12:06 +00:00
|
|
|
enum {
|
|
|
|
OMAP_NAND_IO_READ = 0, /* read */
|
|
|
|
OMAP_NAND_IO_WRITE, /* write */
|
|
|
|
} iomode;
|
|
|
|
u_char *buf;
|
|
|
|
int buf_len;
|
2012-08-30 19:53:22 +00:00
|
|
|
struct gpmc_nand_regs reg;
|
2013-10-24 12:50:21 +00:00
|
|
|
/* fields specific for BCHx_HW ECC scheme */
|
2013-01-04 07:56:51 +00:00
|
|
|
bool is_elm_used;
|
|
|
|
struct device *elm_dev;
|
|
|
|
struct device_node *of_node;
|
2009-05-12 20:47:03 +00:00
|
|
|
};
|
|
|
|
|
2012-08-30 19:53:22 +00:00
|
|
|
/**
|
|
|
|
* omap_prefetch_enable - configures and starts prefetch transfer
|
|
|
|
* @cs: cs (chip select) number
|
|
|
|
* @fifo_th: fifo threshold to be used for read/ write
|
|
|
|
* @dma_mode: dma mode enable (1) or disable (0)
|
|
|
|
* @u32_count: number of bytes to be transferred
|
|
|
|
* @is_write: prefetch read(0) or write post(1) mode
|
|
|
|
*/
|
|
|
|
static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
|
|
|
|
unsigned int u32_count, int is_write, struct omap_nand_info *info)
|
|
|
|
{
|
|
|
|
u32 val;
|
|
|
|
|
|
|
|
if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
if (readl(info->reg.gpmc_prefetch_control))
|
|
|
|
return -EBUSY;
|
|
|
|
|
|
|
|
/* Set the amount of bytes to be prefetched */
|
|
|
|
writel(u32_count, info->reg.gpmc_prefetch_config2);
|
|
|
|
|
|
|
|
/* Set dma/mpu mode, the prefetch read / post write and
|
|
|
|
* enable the engine. Set which cs is has requested for.
|
|
|
|
*/
|
|
|
|
val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
|
|
|
|
PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
|
|
|
|
(dma_mode << DMA_MPU_MODE_SHIFT) | (0x1 & is_write));
|
|
|
|
writel(val, info->reg.gpmc_prefetch_config1);
|
|
|
|
|
|
|
|
/* Start the prefetch engine */
|
|
|
|
writel(0x1, info->reg.gpmc_prefetch_control);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* omap_prefetch_reset - disables and stops the prefetch engine
|
|
|
|
*/
|
|
|
|
static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
|
|
|
|
{
|
|
|
|
u32 config1;
|
|
|
|
|
|
|
|
/* check if the same module/cs is trying to reset */
|
|
|
|
config1 = readl(info->reg.gpmc_prefetch_config1);
|
|
|
|
if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
/* Stop the PFPW engine */
|
|
|
|
writel(0x0, info->reg.gpmc_prefetch_control);
|
|
|
|
|
|
|
|
/* Reset/disable the PFPW engine */
|
|
|
|
writel(0x0, info->reg.gpmc_prefetch_config1);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2009-05-12 20:47:03 +00:00
|
|
|
/**
|
|
|
|
* omap_hwcontrol - hardware specific access to control-lines
|
|
|
|
* @mtd: MTD device structure
|
|
|
|
* @cmd: command to device
|
|
|
|
* @ctrl:
|
|
|
|
* NAND_NCE: bit 0 -> don't care
|
|
|
|
* NAND_CLE: bit 1 -> Command Latch
|
|
|
|
* NAND_ALE: bit 2 -> Address Latch
|
|
|
|
*
|
|
|
|
* NOTE: boards may use different bits for these!!
|
|
|
|
*/
|
|
|
|
static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
|
|
|
|
{
|
|
|
|
struct omap_nand_info *info = container_of(mtd,
|
|
|
|
struct omap_nand_info, mtd);
|
|
|
|
|
2010-07-09 09:14:45 +00:00
|
|
|
if (cmd != NAND_CMD_NONE) {
|
|
|
|
if (ctrl & NAND_CLE)
|
2012-08-30 19:53:22 +00:00
|
|
|
writeb(cmd, info->reg.gpmc_nand_command);
|
2010-07-09 09:14:45 +00:00
|
|
|
|
|
|
|
else if (ctrl & NAND_ALE)
|
2012-08-30 19:53:22 +00:00
|
|
|
writeb(cmd, info->reg.gpmc_nand_address);
|
2010-07-09 09:14:45 +00:00
|
|
|
|
|
|
|
else /* NAND_NCE */
|
2012-08-30 19:53:22 +00:00
|
|
|
writeb(cmd, info->reg.gpmc_nand_data);
|
2010-07-09 09:14:45 +00:00
|
|
|
}
|
2009-05-12 20:47:03 +00:00
|
|
|
}
|
|
|
|
|
2009-07-13 10:56:24 +00:00
|
|
|
/**
|
|
|
|
* omap_read_buf8 - read data from NAND controller into buffer
|
|
|
|
* @mtd: MTD device structure
|
|
|
|
* @buf: buffer to store date
|
|
|
|
* @len: number of bytes to read
|
|
|
|
*/
|
|
|
|
static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
|
|
|
|
{
|
|
|
|
struct nand_chip *nand = mtd->priv;
|
|
|
|
|
|
|
|
ioread8_rep(nand->IO_ADDR_R, buf, len);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* omap_write_buf8 - write buffer to NAND controller
|
|
|
|
* @mtd: MTD device structure
|
|
|
|
* @buf: data buffer
|
|
|
|
* @len: number of bytes to write
|
|
|
|
*/
|
|
|
|
static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
|
|
|
|
{
|
|
|
|
struct omap_nand_info *info = container_of(mtd,
|
|
|
|
struct omap_nand_info, mtd);
|
|
|
|
u_char *p = (u_char *)buf;
|
2010-07-09 09:14:45 +00:00
|
|
|
u32 status = 0;
|
2009-07-13 10:56:24 +00:00
|
|
|
|
|
|
|
while (len--) {
|
|
|
|
iowrite8(*p++, info->nand.IO_ADDR_W);
|
2010-07-09 09:14:45 +00:00
|
|
|
/* wait until buffer is available for write */
|
|
|
|
do {
|
2012-08-30 19:53:22 +00:00
|
|
|
status = readl(info->reg.gpmc_status) &
|
2012-09-29 12:50:11 +00:00
|
|
|
STATUS_BUFF_EMPTY;
|
2010-07-09 09:14:45 +00:00
|
|
|
} while (!status);
|
2009-07-13 10:56:24 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2009-05-12 20:47:03 +00:00
|
|
|
/**
|
|
|
|
* omap_read_buf16 - read data from NAND controller into buffer
|
|
|
|
* @mtd: MTD device structure
|
|
|
|
* @buf: buffer to store date
|
|
|
|
* @len: number of bytes to read
|
|
|
|
*/
|
|
|
|
static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
|
|
|
|
{
|
|
|
|
struct nand_chip *nand = mtd->priv;
|
|
|
|
|
2009-07-13 10:56:24 +00:00
|
|
|
ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
|
2009-05-12 20:47:03 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* omap_write_buf16 - write buffer to NAND controller
|
|
|
|
* @mtd: MTD device structure
|
|
|
|
* @buf: data buffer
|
|
|
|
* @len: number of bytes to write
|
|
|
|
*/
|
|
|
|
static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
|
|
|
|
{
|
|
|
|
struct omap_nand_info *info = container_of(mtd,
|
|
|
|
struct omap_nand_info, mtd);
|
|
|
|
u16 *p = (u16 *) buf;
|
2010-07-09 09:14:45 +00:00
|
|
|
u32 status = 0;
|
2009-05-12 20:47:03 +00:00
|
|
|
/* FIXME try bursts of writesw() or DMA ... */
|
|
|
|
len >>= 1;
|
|
|
|
|
|
|
|
while (len--) {
|
2009-07-13 10:56:24 +00:00
|
|
|
iowrite16(*p++, info->nand.IO_ADDR_W);
|
2010-07-09 09:14:45 +00:00
|
|
|
/* wait until buffer is available for write */
|
|
|
|
do {
|
2012-08-30 19:53:22 +00:00
|
|
|
status = readl(info->reg.gpmc_status) &
|
2012-09-29 12:50:11 +00:00
|
|
|
STATUS_BUFF_EMPTY;
|
2010-07-09 09:14:45 +00:00
|
|
|
} while (!status);
|
2009-05-12 20:47:03 +00:00
|
|
|
}
|
|
|
|
}
|
2009-07-13 10:56:24 +00:00
|
|
|
|
|
|
|
/**
|
|
|
|
* omap_read_buf_pref - read data from NAND controller into buffer
|
|
|
|
* @mtd: MTD device structure
|
|
|
|
* @buf: buffer to store date
|
|
|
|
* @len: number of bytes to read
|
|
|
|
*/
|
|
|
|
static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
|
|
|
|
{
|
|
|
|
struct omap_nand_info *info = container_of(mtd,
|
|
|
|
struct omap_nand_info, mtd);
|
2010-07-09 09:14:45 +00:00
|
|
|
uint32_t r_count = 0;
|
2009-07-13 10:56:24 +00:00
|
|
|
int ret = 0;
|
|
|
|
u32 *p = (u32 *)buf;
|
|
|
|
|
|
|
|
/* take care of subpage reads */
|
2010-01-07 06:46:26 +00:00
|
|
|
if (len % 4) {
|
|
|
|
if (info->nand.options & NAND_BUSWIDTH_16)
|
|
|
|
omap_read_buf16(mtd, buf, len % 4);
|
|
|
|
else
|
|
|
|
omap_read_buf8(mtd, buf, len % 4);
|
|
|
|
p = (u32 *) (buf + len % 4);
|
|
|
|
len -= len % 4;
|
2009-07-13 10:56:24 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* configure and start prefetch transfer */
|
2012-08-30 19:53:22 +00:00
|
|
|
ret = omap_prefetch_enable(info->gpmc_cs,
|
|
|
|
PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
|
2009-07-13 10:56:24 +00:00
|
|
|
if (ret) {
|
|
|
|
/* PFPW engine is busy, use cpu copy method */
|
|
|
|
if (info->nand.options & NAND_BUSWIDTH_16)
|
2011-05-11 15:47:27 +00:00
|
|
|
omap_read_buf16(mtd, (u_char *)p, len);
|
2009-07-13 10:56:24 +00:00
|
|
|
else
|
2011-05-11 15:47:27 +00:00
|
|
|
omap_read_buf8(mtd, (u_char *)p, len);
|
2009-07-13 10:56:24 +00:00
|
|
|
} else {
|
|
|
|
do {
|
2012-08-30 19:53:22 +00:00
|
|
|
r_count = readl(info->reg.gpmc_prefetch_status);
|
2012-09-29 12:50:11 +00:00
|
|
|
r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
|
2010-07-09 09:14:45 +00:00
|
|
|
r_count = r_count >> 2;
|
|
|
|
ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
|
2009-07-13 10:56:24 +00:00
|
|
|
p += r_count;
|
|
|
|
len -= r_count << 2;
|
|
|
|
} while (len);
|
|
|
|
/* disable and stop the PFPW engine */
|
2012-08-30 19:53:22 +00:00
|
|
|
omap_prefetch_reset(info->gpmc_cs, info);
|
2009-07-13 10:56:24 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* omap_write_buf_pref - write buffer to NAND controller
|
|
|
|
* @mtd: MTD device structure
|
|
|
|
* @buf: data buffer
|
|
|
|
* @len: number of bytes to write
|
|
|
|
*/
|
|
|
|
static void omap_write_buf_pref(struct mtd_info *mtd,
|
|
|
|
const u_char *buf, int len)
|
|
|
|
{
|
|
|
|
struct omap_nand_info *info = container_of(mtd,
|
|
|
|
struct omap_nand_info, mtd);
|
2011-01-28 10:12:06 +00:00
|
|
|
uint32_t w_count = 0;
|
2009-07-13 10:56:24 +00:00
|
|
|
int i = 0, ret = 0;
|
2011-05-11 15:47:27 +00:00
|
|
|
u16 *p = (u16 *)buf;
|
2011-01-28 10:12:06 +00:00
|
|
|
unsigned long tim, limit;
|
2012-08-30 19:53:22 +00:00
|
|
|
u32 val;
|
2009-07-13 10:56:24 +00:00
|
|
|
|
|
|
|
/* take care of subpage writes */
|
|
|
|
if (len % 2 != 0) {
|
2010-07-09 09:14:45 +00:00
|
|
|
writeb(*buf, info->nand.IO_ADDR_W);
|
2009-07-13 10:56:24 +00:00
|
|
|
p = (u16 *)(buf + 1);
|
|
|
|
len--;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* configure and start prefetch transfer */
|
2012-08-30 19:53:22 +00:00
|
|
|
ret = omap_prefetch_enable(info->gpmc_cs,
|
|
|
|
PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
|
2009-07-13 10:56:24 +00:00
|
|
|
if (ret) {
|
|
|
|
/* PFPW engine is busy, use cpu copy method */
|
|
|
|
if (info->nand.options & NAND_BUSWIDTH_16)
|
2011-05-11 15:47:27 +00:00
|
|
|
omap_write_buf16(mtd, (u_char *)p, len);
|
2009-07-13 10:56:24 +00:00
|
|
|
else
|
2011-05-11 15:47:27 +00:00
|
|
|
omap_write_buf8(mtd, (u_char *)p, len);
|
2009-07-13 10:56:24 +00:00
|
|
|
} else {
|
2010-07-09 09:14:45 +00:00
|
|
|
while (len) {
|
2012-08-30 19:53:22 +00:00
|
|
|
w_count = readl(info->reg.gpmc_prefetch_status);
|
2012-09-29 12:50:11 +00:00
|
|
|
w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
|
2010-07-09 09:14:45 +00:00
|
|
|
w_count = w_count >> 1;
|
2009-07-13 10:56:24 +00:00
|
|
|
for (i = 0; (i < w_count) && len; i++, len -= 2)
|
2010-07-09 09:14:45 +00:00
|
|
|
iowrite16(*p++, info->nand.IO_ADDR_W);
|
2009-07-13 10:56:24 +00:00
|
|
|
}
|
2010-07-09 09:14:45 +00:00
|
|
|
/* wait for data to flushed-out before reset the prefetch */
|
2011-01-28 10:12:06 +00:00
|
|
|
tim = 0;
|
|
|
|
limit = (loops_per_jiffy *
|
|
|
|
msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
|
2012-08-30 19:53:22 +00:00
|
|
|
do {
|
2011-01-28 10:12:06 +00:00
|
|
|
cpu_relax();
|
2012-08-30 19:53:22 +00:00
|
|
|
val = readl(info->reg.gpmc_prefetch_status);
|
2012-09-29 12:50:11 +00:00
|
|
|
val = PREFETCH_STATUS_COUNT(val);
|
2012-08-30 19:53:22 +00:00
|
|
|
} while (val && (tim++ < limit));
|
2011-01-28 10:12:06 +00:00
|
|
|
|
2009-07-13 10:56:24 +00:00
|
|
|
/* disable and stop the PFPW engine */
|
2012-08-30 19:53:22 +00:00
|
|
|
omap_prefetch_reset(info->gpmc_cs, info);
|
2009-07-13 10:56:24 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2009-07-13 10:59:16 +00:00
|
|
|
/*
|
2012-04-24 23:19:39 +00:00
|
|
|
* omap_nand_dma_callback: callback on the completion of dma transfer
|
2009-07-13 10:59:16 +00:00
|
|
|
* @data: pointer to completion data structure
|
|
|
|
*/
|
2012-04-24 23:16:00 +00:00
|
|
|
static void omap_nand_dma_callback(void *data)
|
|
|
|
{
|
|
|
|
complete((struct completion *) data);
|
|
|
|
}
|
2009-07-13 10:59:16 +00:00
|
|
|
|
|
|
|
/*
|
2012-07-19 11:21:04 +00:00
|
|
|
* omap_nand_dma_transfer: configure and start dma transfer
|
2009-07-13 10:59:16 +00:00
|
|
|
* @mtd: MTD device structure
|
|
|
|
* @addr: virtual address in RAM of source/destination
|
|
|
|
* @len: number of data bytes to be transferred
|
|
|
|
* @is_write: flag for read/write operation
|
|
|
|
*/
|
|
|
|
static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
|
|
|
|
unsigned int len, int is_write)
|
|
|
|
{
|
|
|
|
struct omap_nand_info *info = container_of(mtd,
|
|
|
|
struct omap_nand_info, mtd);
|
2012-04-24 23:19:39 +00:00
|
|
|
struct dma_async_tx_descriptor *tx;
|
2009-07-13 10:59:16 +00:00
|
|
|
enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
|
|
|
|
DMA_FROM_DEVICE;
|
2012-04-24 23:19:39 +00:00
|
|
|
struct scatterlist sg;
|
2011-01-28 10:12:06 +00:00
|
|
|
unsigned long tim, limit;
|
2012-04-24 23:19:39 +00:00
|
|
|
unsigned n;
|
|
|
|
int ret;
|
2012-08-30 19:53:22 +00:00
|
|
|
u32 val;
|
2009-07-13 10:59:16 +00:00
|
|
|
|
|
|
|
if (addr >= high_memory) {
|
|
|
|
struct page *p1;
|
|
|
|
|
|
|
|
if (((size_t)addr & PAGE_MASK) !=
|
|
|
|
((size_t)(addr + len - 1) & PAGE_MASK))
|
|
|
|
goto out_copy;
|
|
|
|
p1 = vmalloc_to_page(addr);
|
|
|
|
if (!p1)
|
|
|
|
goto out_copy;
|
|
|
|
addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
|
|
|
|
}
|
|
|
|
|
2012-04-24 23:19:39 +00:00
|
|
|
sg_init_one(&sg, addr, len);
|
|
|
|
n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
|
|
|
|
if (n == 0) {
|
2009-07-13 10:59:16 +00:00
|
|
|
dev_err(&info->pdev->dev,
|
|
|
|
"Couldn't DMA map a %d byte buffer\n", len);
|
|
|
|
goto out_copy;
|
|
|
|
}
|
|
|
|
|
2012-04-24 23:19:39 +00:00
|
|
|
tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
|
|
|
|
is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
|
|
|
|
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
|
|
|
|
if (!tx)
|
|
|
|
goto out_copy_unmap;
|
|
|
|
|
|
|
|
tx->callback = omap_nand_dma_callback;
|
|
|
|
tx->callback_param = &info->comp;
|
|
|
|
dmaengine_submit(tx);
|
|
|
|
|
2012-08-30 19:53:22 +00:00
|
|
|
/* configure and start prefetch transfer */
|
|
|
|
ret = omap_prefetch_enable(info->gpmc_cs,
|
|
|
|
PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
|
2009-07-13 10:59:16 +00:00
|
|
|
if (ret)
|
2011-01-28 10:12:06 +00:00
|
|
|
/* PFPW engine is busy, use cpu copy method */
|
2012-04-11 01:04:34 +00:00
|
|
|
goto out_copy_unmap;
|
2009-07-13 10:59:16 +00:00
|
|
|
|
|
|
|
init_completion(&info->comp);
|
2012-04-24 23:19:39 +00:00
|
|
|
dma_async_issue_pending(info->dma);
|
2009-07-13 10:59:16 +00:00
|
|
|
|
|
|
|
/* setup and start DMA using dma_addr */
|
|
|
|
wait_for_completion(&info->comp);
|
2011-01-28 10:12:06 +00:00
|
|
|
tim = 0;
|
|
|
|
limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
|
2012-08-30 19:53:22 +00:00
|
|
|
|
|
|
|
do {
|
2011-01-28 10:12:06 +00:00
|
|
|
cpu_relax();
|
2012-08-30 19:53:22 +00:00
|
|
|
val = readl(info->reg.gpmc_prefetch_status);
|
2012-09-29 12:50:11 +00:00
|
|
|
val = PREFETCH_STATUS_COUNT(val);
|
2012-08-30 19:53:22 +00:00
|
|
|
} while (val && (tim++ < limit));
|
2009-07-13 10:59:16 +00:00
|
|
|
|
|
|
|
/* disable and stop the PFPW engine */
|
2012-08-30 19:53:22 +00:00
|
|
|
omap_prefetch_reset(info->gpmc_cs, info);
|
2009-07-13 10:59:16 +00:00
|
|
|
|
2012-04-24 23:19:39 +00:00
|
|
|
dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
|
2009-07-13 10:59:16 +00:00
|
|
|
return 0;
|
|
|
|
|
2012-04-11 01:04:34 +00:00
|
|
|
out_copy_unmap:
|
2012-04-24 23:19:39 +00:00
|
|
|
dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
|
2009-07-13 10:59:16 +00:00
|
|
|
out_copy:
|
|
|
|
if (info->nand.options & NAND_BUSWIDTH_16)
|
|
|
|
is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
|
|
|
|
: omap_write_buf16(mtd, (u_char *) addr, len);
|
|
|
|
else
|
|
|
|
is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
|
|
|
|
: omap_write_buf8(mtd, (u_char *) addr, len);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* omap_read_buf_dma_pref - read data from NAND controller into buffer
|
|
|
|
* @mtd: MTD device structure
|
|
|
|
* @buf: buffer to store date
|
|
|
|
* @len: number of bytes to read
|
|
|
|
*/
|
|
|
|
static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
|
|
|
|
{
|
|
|
|
if (len <= mtd->oobsize)
|
|
|
|
omap_read_buf_pref(mtd, buf, len);
|
|
|
|
else
|
|
|
|
/* start transfer in DMA mode */
|
|
|
|
omap_nand_dma_transfer(mtd, buf, len, 0x0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* omap_write_buf_dma_pref - write buffer to NAND controller
|
|
|
|
* @mtd: MTD device structure
|
|
|
|
* @buf: data buffer
|
|
|
|
* @len: number of bytes to write
|
|
|
|
*/
|
|
|
|
static void omap_write_buf_dma_pref(struct mtd_info *mtd,
|
|
|
|
const u_char *buf, int len)
|
|
|
|
{
|
|
|
|
if (len <= mtd->oobsize)
|
|
|
|
omap_write_buf_pref(mtd, buf, len);
|
|
|
|
else
|
|
|
|
/* start transfer in DMA mode */
|
2010-01-05 07:19:24 +00:00
|
|
|
omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
|
2009-07-13 10:59:16 +00:00
|
|
|
}
|
|
|
|
|
2011-01-28 10:12:06 +00:00
|
|
|
/*
|
2012-07-19 11:21:04 +00:00
|
|
|
* omap_nand_irq - GPMC irq handler
|
2011-01-28 10:12:06 +00:00
|
|
|
* @this_irq: gpmc irq number
|
|
|
|
* @dev: omap_nand_info structure pointer is passed here
|
|
|
|
*/
|
|
|
|
static irqreturn_t omap_nand_irq(int this_irq, void *dev)
|
|
|
|
{
|
|
|
|
struct omap_nand_info *info = (struct omap_nand_info *) dev;
|
|
|
|
u32 bytes;
|
|
|
|
|
2012-08-30 19:53:22 +00:00
|
|
|
bytes = readl(info->reg.gpmc_prefetch_status);
|
2012-09-29 12:50:11 +00:00
|
|
|
bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
|
2011-01-28 10:12:06 +00:00
|
|
|
bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */
|
|
|
|
if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
|
2012-08-30 19:53:24 +00:00
|
|
|
if (this_irq == info->gpmc_irq_count)
|
2011-01-28 10:12:06 +00:00
|
|
|
goto done;
|
|
|
|
|
|
|
|
if (info->buf_len && (info->buf_len < bytes))
|
|
|
|
bytes = info->buf_len;
|
|
|
|
else if (!info->buf_len)
|
|
|
|
bytes = 0;
|
|
|
|
iowrite32_rep(info->nand.IO_ADDR_W,
|
|
|
|
(u32 *)info->buf, bytes >> 2);
|
|
|
|
info->buf = info->buf + bytes;
|
|
|
|
info->buf_len -= bytes;
|
|
|
|
|
|
|
|
} else {
|
|
|
|
ioread32_rep(info->nand.IO_ADDR_R,
|
|
|
|
(u32 *)info->buf, bytes >> 2);
|
|
|
|
info->buf = info->buf + bytes;
|
|
|
|
|
2012-08-30 19:53:24 +00:00
|
|
|
if (this_irq == info->gpmc_irq_count)
|
2011-01-28 10:12:06 +00:00
|
|
|
goto done;
|
|
|
|
}
|
|
|
|
|
|
|
|
return IRQ_HANDLED;
|
|
|
|
|
|
|
|
done:
|
|
|
|
complete(&info->comp);
|
|
|
|
|
2012-08-30 19:53:24 +00:00
|
|
|
disable_irq_nosync(info->gpmc_irq_fifo);
|
|
|
|
disable_irq_nosync(info->gpmc_irq_count);
|
2011-01-28 10:12:06 +00:00
|
|
|
|
|
|
|
return IRQ_HANDLED;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* omap_read_buf_irq_pref - read data from NAND controller into buffer
|
|
|
|
* @mtd: MTD device structure
|
|
|
|
* @buf: buffer to store date
|
|
|
|
* @len: number of bytes to read
|
|
|
|
*/
|
|
|
|
static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
|
|
|
|
{
|
|
|
|
struct omap_nand_info *info = container_of(mtd,
|
|
|
|
struct omap_nand_info, mtd);
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
if (len <= mtd->oobsize) {
|
|
|
|
omap_read_buf_pref(mtd, buf, len);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
info->iomode = OMAP_NAND_IO_READ;
|
|
|
|
info->buf = buf;
|
|
|
|
init_completion(&info->comp);
|
|
|
|
|
|
|
|
/* configure and start prefetch transfer */
|
2012-08-30 19:53:22 +00:00
|
|
|
ret = omap_prefetch_enable(info->gpmc_cs,
|
|
|
|
PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
|
2011-01-28 10:12:06 +00:00
|
|
|
if (ret)
|
|
|
|
/* PFPW engine is busy, use cpu copy method */
|
|
|
|
goto out_copy;
|
|
|
|
|
|
|
|
info->buf_len = len;
|
2012-08-30 19:53:24 +00:00
|
|
|
|
|
|
|
enable_irq(info->gpmc_irq_count);
|
|
|
|
enable_irq(info->gpmc_irq_fifo);
|
2011-01-28 10:12:06 +00:00
|
|
|
|
|
|
|
/* waiting for read to complete */
|
|
|
|
wait_for_completion(&info->comp);
|
|
|
|
|
|
|
|
/* disable and stop the PFPW engine */
|
2012-08-30 19:53:22 +00:00
|
|
|
omap_prefetch_reset(info->gpmc_cs, info);
|
2011-01-28 10:12:06 +00:00
|
|
|
return;
|
|
|
|
|
|
|
|
out_copy:
|
|
|
|
if (info->nand.options & NAND_BUSWIDTH_16)
|
|
|
|
omap_read_buf16(mtd, buf, len);
|
|
|
|
else
|
|
|
|
omap_read_buf8(mtd, buf, len);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* omap_write_buf_irq_pref - write buffer to NAND controller
|
|
|
|
* @mtd: MTD device structure
|
|
|
|
* @buf: data buffer
|
|
|
|
* @len: number of bytes to write
|
|
|
|
*/
|
|
|
|
static void omap_write_buf_irq_pref(struct mtd_info *mtd,
|
|
|
|
const u_char *buf, int len)
|
|
|
|
{
|
|
|
|
struct omap_nand_info *info = container_of(mtd,
|
|
|
|
struct omap_nand_info, mtd);
|
|
|
|
int ret = 0;
|
|
|
|
unsigned long tim, limit;
|
2012-08-30 19:53:22 +00:00
|
|
|
u32 val;
|
2011-01-28 10:12:06 +00:00
|
|
|
|
|
|
|
if (len <= mtd->oobsize) {
|
|
|
|
omap_write_buf_pref(mtd, buf, len);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
info->iomode = OMAP_NAND_IO_WRITE;
|
|
|
|
info->buf = (u_char *) buf;
|
|
|
|
init_completion(&info->comp);
|
|
|
|
|
2011-01-28 10:12:07 +00:00
|
|
|
/* configure and start prefetch transfer : size=24 */
|
2012-08-30 19:53:22 +00:00
|
|
|
ret = omap_prefetch_enable(info->gpmc_cs,
|
|
|
|
(PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
|
2011-01-28 10:12:06 +00:00
|
|
|
if (ret)
|
|
|
|
/* PFPW engine is busy, use cpu copy method */
|
|
|
|
goto out_copy;
|
|
|
|
|
|
|
|
info->buf_len = len;
|
2012-08-30 19:53:24 +00:00
|
|
|
|
|
|
|
enable_irq(info->gpmc_irq_count);
|
|
|
|
enable_irq(info->gpmc_irq_fifo);
|
2011-01-28 10:12:06 +00:00
|
|
|
|
|
|
|
/* waiting for write to complete */
|
|
|
|
wait_for_completion(&info->comp);
|
2012-08-30 19:53:24 +00:00
|
|
|
|
2011-01-28 10:12:06 +00:00
|
|
|
/* wait for data to flushed-out before reset the prefetch */
|
|
|
|
tim = 0;
|
|
|
|
limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
|
2012-08-30 19:53:22 +00:00
|
|
|
do {
|
|
|
|
val = readl(info->reg.gpmc_prefetch_status);
|
2012-09-29 12:50:11 +00:00
|
|
|
val = PREFETCH_STATUS_COUNT(val);
|
2011-01-28 10:12:06 +00:00
|
|
|
cpu_relax();
|
2012-08-30 19:53:22 +00:00
|
|
|
} while (val && (tim++ < limit));
|
2011-01-28 10:12:06 +00:00
|
|
|
|
|
|
|
/* disable and stop the PFPW engine */
|
2012-08-30 19:53:22 +00:00
|
|
|
omap_prefetch_reset(info->gpmc_cs, info);
|
2011-01-28 10:12:06 +00:00
|
|
|
return;
|
|
|
|
|
|
|
|
out_copy:
|
|
|
|
if (info->nand.options & NAND_BUSWIDTH_16)
|
|
|
|
omap_write_buf16(mtd, buf, len);
|
|
|
|
else
|
|
|
|
omap_write_buf8(mtd, buf, len);
|
|
|
|
}
|
|
|
|
|
2009-05-12 20:47:03 +00:00
|
|
|
/**
|
|
|
|
* gen_true_ecc - This function will generate true ECC value
|
|
|
|
* @ecc_buf: buffer to store ecc code
|
|
|
|
*
|
|
|
|
* This generated true ECC value can be used when correcting
|
|
|
|
* data read from NAND flash memory core
|
|
|
|
*/
|
|
|
|
static void gen_true_ecc(u8 *ecc_buf)
|
|
|
|
{
|
|
|
|
u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
|
|
|
|
((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
|
|
|
|
|
|
|
|
ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
|
|
|
|
P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
|
|
|
|
ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
|
|
|
|
P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
|
|
|
|
ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
|
|
|
|
P1e(tmp) | P2048o(tmp) | P2048e(tmp));
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
|
|
|
|
* @ecc_data1: ecc code from nand spare area
|
|
|
|
* @ecc_data2: ecc code from hardware register obtained from hardware ecc
|
|
|
|
* @page_data: page data
|
|
|
|
*
|
|
|
|
* This function compares two ECC's and indicates if there is an error.
|
|
|
|
* If the error can be corrected it will be corrected to the buffer.
|
2011-02-28 12:12:46 +00:00
|
|
|
* If there is no error, %0 is returned. If there is an error but it
|
|
|
|
* was corrected, %1 is returned. Otherwise, %-1 is returned.
|
2009-05-12 20:47:03 +00:00
|
|
|
*/
|
|
|
|
static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
|
|
|
|
u8 *ecc_data2, /* read from register */
|
|
|
|
u8 *page_data)
|
|
|
|
{
|
|
|
|
uint i;
|
|
|
|
u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
|
|
|
|
u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
|
|
|
|
u8 ecc_bit[24];
|
|
|
|
u8 ecc_sum = 0;
|
|
|
|
u8 find_bit = 0;
|
|
|
|
uint find_byte = 0;
|
|
|
|
int isEccFF;
|
|
|
|
|
|
|
|
isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
|
|
|
|
|
|
|
|
gen_true_ecc(ecc_data1);
|
|
|
|
gen_true_ecc(ecc_data2);
|
|
|
|
|
|
|
|
for (i = 0; i <= 2; i++) {
|
|
|
|
*(ecc_data1 + i) = ~(*(ecc_data1 + i));
|
|
|
|
*(ecc_data2 + i) = ~(*(ecc_data2 + i));
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
|
|
tmp0_bit[i] = *ecc_data1 % 2;
|
|
|
|
*ecc_data1 = *ecc_data1 / 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
|
|
tmp1_bit[i] = *(ecc_data1 + 1) % 2;
|
|
|
|
*(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
|
|
tmp2_bit[i] = *(ecc_data1 + 2) % 2;
|
|
|
|
*(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
|
|
comp0_bit[i] = *ecc_data2 % 2;
|
|
|
|
*ecc_data2 = *ecc_data2 / 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
|
|
comp1_bit[i] = *(ecc_data2 + 1) % 2;
|
|
|
|
*(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
|
|
comp2_bit[i] = *(ecc_data2 + 2) % 2;
|
|
|
|
*(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < 6; i++)
|
|
|
|
ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
|
|
|
|
|
|
|
|
for (i = 0; i < 8; i++)
|
|
|
|
ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
|
|
|
|
|
|
|
|
for (i = 0; i < 8; i++)
|
|
|
|
ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
|
|
|
|
|
|
|
|
ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
|
|
|
|
ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
|
|
|
|
|
|
|
|
for (i = 0; i < 24; i++)
|
|
|
|
ecc_sum += ecc_bit[i];
|
|
|
|
|
|
|
|
switch (ecc_sum) {
|
|
|
|
case 0:
|
|
|
|
/* Not reached because this function is not called if
|
|
|
|
* ECC values are equal
|
|
|
|
*/
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
case 1:
|
|
|
|
/* Uncorrectable error */
|
2011-07-19 17:06:09 +00:00
|
|
|
pr_debug("ECC UNCORRECTED_ERROR 1\n");
|
2009-05-12 20:47:03 +00:00
|
|
|
return -1;
|
|
|
|
|
|
|
|
case 11:
|
|
|
|
/* UN-Correctable error */
|
2011-07-19 17:06:09 +00:00
|
|
|
pr_debug("ECC UNCORRECTED_ERROR B\n");
|
2009-05-12 20:47:03 +00:00
|
|
|
return -1;
|
|
|
|
|
|
|
|
case 12:
|
|
|
|
/* Correctable error */
|
|
|
|
find_byte = (ecc_bit[23] << 8) +
|
|
|
|
(ecc_bit[21] << 7) +
|
|
|
|
(ecc_bit[19] << 6) +
|
|
|
|
(ecc_bit[17] << 5) +
|
|
|
|
(ecc_bit[15] << 4) +
|
|
|
|
(ecc_bit[13] << 3) +
|
|
|
|
(ecc_bit[11] << 2) +
|
|
|
|
(ecc_bit[9] << 1) +
|
|
|
|
ecc_bit[7];
|
|
|
|
|
|
|
|
find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
|
|
|
|
|
2011-07-19 17:06:10 +00:00
|
|
|
pr_debug("Correcting single bit ECC error at offset: "
|
|
|
|
"%d, bit: %d\n", find_byte, find_bit);
|
2009-05-12 20:47:03 +00:00
|
|
|
|
|
|
|
page_data[find_byte] ^= (1 << find_bit);
|
|
|
|
|
2011-02-28 12:12:46 +00:00
|
|
|
return 1;
|
2009-05-12 20:47:03 +00:00
|
|
|
default:
|
|
|
|
if (isEccFF) {
|
|
|
|
if (ecc_data2[0] == 0 &&
|
|
|
|
ecc_data2[1] == 0 &&
|
|
|
|
ecc_data2[2] == 0)
|
|
|
|
return 0;
|
|
|
|
}
|
2011-07-19 17:06:09 +00:00
|
|
|
pr_debug("UNCORRECTED_ERROR default\n");
|
2009-05-12 20:47:03 +00:00
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* omap_correct_data - Compares the ECC read with HW generated ECC
|
|
|
|
* @mtd: MTD device structure
|
|
|
|
* @dat: page data
|
|
|
|
* @read_ecc: ecc read from nand flash
|
|
|
|
* @calc_ecc: ecc read from HW ECC registers
|
|
|
|
*
|
|
|
|
* Compares the ecc read from nand spare area with ECC registers values
|
2011-02-28 12:12:46 +00:00
|
|
|
* and if ECC's mismatched, it will call 'omap_compare_ecc' for error
|
|
|
|
* detection and correction. If there are no errors, %0 is returned. If
|
|
|
|
* there were errors and all of the errors were corrected, the number of
|
|
|
|
* corrected errors is returned. If uncorrectable errors exist, %-1 is
|
|
|
|
* returned.
|
2009-05-12 20:47:03 +00:00
|
|
|
*/
|
|
|
|
static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
|
|
|
|
u_char *read_ecc, u_char *calc_ecc)
|
|
|
|
{
|
|
|
|
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
|
|
|
|
mtd);
|
|
|
|
int blockCnt = 0, i = 0, ret = 0;
|
2011-02-28 12:12:46 +00:00
|
|
|
int stat = 0;
|
2009-05-12 20:47:03 +00:00
|
|
|
|
|
|
|
/* Ex NAND_ECC_HW12_2048 */
|
|
|
|
if ((info->nand.ecc.mode == NAND_ECC_HW) &&
|
|
|
|
(info->nand.ecc.size == 2048))
|
|
|
|
blockCnt = 4;
|
|
|
|
else
|
|
|
|
blockCnt = 1;
|
|
|
|
|
|
|
|
for (i = 0; i < blockCnt; i++) {
|
|
|
|
if (memcmp(read_ecc, calc_ecc, 3) != 0) {
|
|
|
|
ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
2011-02-28 12:12:46 +00:00
|
|
|
/* keep track of the number of corrected errors */
|
|
|
|
stat += ret;
|
2009-05-12 20:47:03 +00:00
|
|
|
}
|
|
|
|
read_ecc += 3;
|
|
|
|
calc_ecc += 3;
|
|
|
|
dat += 512;
|
|
|
|
}
|
2011-02-28 12:12:46 +00:00
|
|
|
return stat;
|
2009-05-12 20:47:03 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* omap_calcuate_ecc - Generate non-inverted ECC bytes.
|
|
|
|
* @mtd: MTD device structure
|
|
|
|
* @dat: The pointer to data on which ecc is computed
|
|
|
|
* @ecc_code: The ecc_code buffer
|
|
|
|
*
|
|
|
|
* Using noninverted ECC can be considered ugly since writing a blank
|
|
|
|
* page ie. padding will clear the ECC bytes. This is no problem as long
|
|
|
|
* nobody is trying to write data on the seemingly unused page. Reading
|
|
|
|
* an erased page will produce an ECC mismatch between generated and read
|
|
|
|
* ECC bytes that has to be dealt with separately.
|
|
|
|
*/
|
|
|
|
static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
|
|
|
|
u_char *ecc_code)
|
|
|
|
{
|
|
|
|
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
|
|
|
|
mtd);
|
2012-08-30 19:53:22 +00:00
|
|
|
u32 val;
|
|
|
|
|
|
|
|
val = readl(info->reg.gpmc_ecc_config);
|
|
|
|
if (((val >> ECC_CONFIG_CS_SHIFT) & ~CS_MASK) != info->gpmc_cs)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
/* read ecc result */
|
|
|
|
val = readl(info->reg.gpmc_ecc1_result);
|
|
|
|
*ecc_code++ = val; /* P128e, ..., P1e */
|
|
|
|
*ecc_code++ = val >> 16; /* P128o, ..., P1o */
|
|
|
|
/* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
|
|
|
|
*ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
|
|
|
|
|
|
|
|
return 0;
|
2009-05-12 20:47:03 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* omap_enable_hwecc - This function enables the hardware ecc functionality
|
|
|
|
* @mtd: MTD device structure
|
|
|
|
* @mode: Read/Write mode
|
|
|
|
*/
|
|
|
|
static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
|
|
|
|
{
|
|
|
|
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
|
|
|
|
mtd);
|
|
|
|
struct nand_chip *chip = mtd->priv;
|
|
|
|
unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
|
2012-08-30 19:53:22 +00:00
|
|
|
u32 val;
|
|
|
|
|
|
|
|
/* clear ecc and enable bits */
|
|
|
|
val = ECCCLEAR | ECC1;
|
|
|
|
writel(val, info->reg.gpmc_ecc_control);
|
2009-05-12 20:47:03 +00:00
|
|
|
|
2012-08-30 19:53:22 +00:00
|
|
|
/* program ecc and result sizes */
|
|
|
|
val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
|
|
|
|
ECC1RESULTSIZE);
|
|
|
|
writel(val, info->reg.gpmc_ecc_size_config);
|
|
|
|
|
|
|
|
switch (mode) {
|
|
|
|
case NAND_ECC_READ:
|
|
|
|
case NAND_ECC_WRITE:
|
|
|
|
writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
|
|
|
|
break;
|
|
|
|
case NAND_ECC_READSYN:
|
|
|
|
writel(ECCCLEAR, info->reg.gpmc_ecc_control);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
dev_info(&info->pdev->dev,
|
|
|
|
"error: unrecognized Mode[%d]!\n", mode);
|
|
|
|
break;
|
|
|
|
}
|
2009-05-12 20:47:03 +00:00
|
|
|
|
2012-08-30 19:53:22 +00:00
|
|
|
/* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
|
|
|
|
val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
|
|
|
|
writel(val, info->reg.gpmc_ecc_config);
|
2009-05-12 20:47:03 +00:00
|
|
|
}
|
2010-07-09 09:14:45 +00:00
|
|
|
|
2009-05-12 20:47:03 +00:00
|
|
|
/**
|
|
|
|
* omap_wait - wait until the command is done
|
|
|
|
* @mtd: MTD device structure
|
|
|
|
* @chip: NAND Chip structure
|
|
|
|
*
|
|
|
|
* Wait function is called during Program and erase operations and
|
|
|
|
* the way it is called from MTD layer, we should wait till the NAND
|
|
|
|
* chip is ready after the programming/erase operation has completed.
|
|
|
|
*
|
|
|
|
* Erase can take up to 400ms and program up to 20ms according to
|
|
|
|
* general NAND and SmartMedia specs
|
|
|
|
*/
|
|
|
|
static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
|
|
|
|
{
|
|
|
|
struct nand_chip *this = mtd->priv;
|
|
|
|
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
|
|
|
|
mtd);
|
|
|
|
unsigned long timeo = jiffies;
|
2012-04-17 11:11:53 +00:00
|
|
|
int status, state = this->state;
|
2009-05-12 20:47:03 +00:00
|
|
|
|
|
|
|
if (state == FL_ERASING)
|
2013-03-15 17:44:59 +00:00
|
|
|
timeo += msecs_to_jiffies(400);
|
2009-05-12 20:47:03 +00:00
|
|
|
else
|
2013-03-15 17:44:59 +00:00
|
|
|
timeo += msecs_to_jiffies(20);
|
2009-05-12 20:47:03 +00:00
|
|
|
|
2012-08-30 19:53:22 +00:00
|
|
|
writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
|
2009-05-12 20:47:03 +00:00
|
|
|
while (time_before(jiffies, timeo)) {
|
2012-08-30 19:53:22 +00:00
|
|
|
status = readb(info->reg.gpmc_nand_data);
|
2009-06-27 05:37:06 +00:00
|
|
|
if (status & NAND_STATUS_READY)
|
2009-05-12 20:47:03 +00:00
|
|
|
break;
|
2009-06-27 05:37:06 +00:00
|
|
|
cond_resched();
|
2009-05-12 20:47:03 +00:00
|
|
|
}
|
2012-04-17 11:11:53 +00:00
|
|
|
|
2012-09-29 05:52:21 +00:00
|
|
|
status = readb(info->reg.gpmc_nand_data);
|
2009-05-12 20:47:03 +00:00
|
|
|
return status;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* omap_dev_ready - calls the platform specific dev_ready function
|
|
|
|
* @mtd: MTD device structure
|
|
|
|
*/
|
|
|
|
static int omap_dev_ready(struct mtd_info *mtd)
|
|
|
|
{
|
2010-07-09 09:14:45 +00:00
|
|
|
unsigned int val = 0;
|
2009-05-12 20:47:03 +00:00
|
|
|
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
|
|
|
|
mtd);
|
|
|
|
|
2012-08-30 19:53:22 +00:00
|
|
|
val = readl(info->reg.gpmc_status);
|
|
|
|
|
2009-05-12 20:47:03 +00:00
|
|
|
if ((val & 0x100) == 0x100) {
|
2012-08-30 19:53:22 +00:00
|
|
|
return 1;
|
2009-05-12 20:47:03 +00:00
|
|
|
} else {
|
2012-08-30 19:53:22 +00:00
|
|
|
return 0;
|
2009-05-12 20:47:03 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-10-24 12:50:21 +00:00
|
|
|
#if defined(CONFIG_MTD_NAND_ECC_BCH) || defined(CONFIG_MTD_NAND_OMAP_BCH)
|
2012-04-30 10:17:18 +00:00
|
|
|
/**
|
|
|
|
* omap3_enable_hwecc_bch - Program OMAP3 GPMC to perform BCH ECC correction
|
|
|
|
* @mtd: MTD device structure
|
|
|
|
* @mode: Read/Write mode
|
2013-01-04 07:56:51 +00:00
|
|
|
*
|
|
|
|
* When using BCH, sector size is hardcoded to 512 bytes.
|
|
|
|
* Using wrapping mode 6 both for reading and writing if ELM module not uses
|
|
|
|
* for error correction.
|
|
|
|
* On writing,
|
|
|
|
* eccsize0 = 0 (no additional protected byte in spare area)
|
|
|
|
* eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
|
2012-04-30 10:17:18 +00:00
|
|
|
*/
|
|
|
|
static void omap3_enable_hwecc_bch(struct mtd_info *mtd, int mode)
|
|
|
|
{
|
|
|
|
int nerrors;
|
2012-10-04 13:33:06 +00:00
|
|
|
unsigned int dev_width, nsectors;
|
2012-04-30 10:17:18 +00:00
|
|
|
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
|
|
|
|
mtd);
|
|
|
|
struct nand_chip *chip = mtd->priv;
|
2013-01-04 07:56:51 +00:00
|
|
|
u32 val, wr_mode;
|
|
|
|
unsigned int ecc_size1, ecc_size0;
|
|
|
|
|
|
|
|
/* Using wrapping mode 6 for writing */
|
|
|
|
wr_mode = BCH_WRAPMODE_6;
|
2012-04-30 10:17:18 +00:00
|
|
|
|
|
|
|
/*
|
2013-01-04 07:56:51 +00:00
|
|
|
* ECC engine enabled for valid ecc_size0 nibbles
|
|
|
|
* and disabled for ecc_size1 nibbles.
|
2012-04-30 10:17:18 +00:00
|
|
|
*/
|
2013-01-04 07:56:51 +00:00
|
|
|
ecc_size0 = BCH_ECC_SIZE0;
|
|
|
|
ecc_size1 = BCH_ECC_SIZE1;
|
|
|
|
|
|
|
|
/* Perform ecc calculation on 512-byte sector */
|
|
|
|
nsectors = 1;
|
|
|
|
|
|
|
|
/* Update number of error correction */
|
|
|
|
nerrors = info->nand.ecc.strength;
|
|
|
|
|
|
|
|
/* Multi sector reading/writing for NAND flash with page size < 4096 */
|
|
|
|
if (info->is_elm_used && (mtd->writesize <= 4096)) {
|
|
|
|
if (mode == NAND_ECC_READ) {
|
|
|
|
/* Using wrapping mode 1 for reading */
|
|
|
|
wr_mode = BCH_WRAPMODE_1;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* ECC engine enabled for ecc_size0 nibbles
|
|
|
|
* and disabled for ecc_size1 nibbles.
|
|
|
|
*/
|
|
|
|
ecc_size0 = (nerrors == 8) ?
|
|
|
|
BCH8R_ECC_SIZE0 : BCH4R_ECC_SIZE0;
|
|
|
|
ecc_size1 = (nerrors == 8) ?
|
|
|
|
BCH8R_ECC_SIZE1 : BCH4R_ECC_SIZE1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Perform ecc calculation for one page (< 4096) */
|
|
|
|
nsectors = info->nand.ecc.steps;
|
|
|
|
}
|
2012-10-04 13:33:06 +00:00
|
|
|
|
|
|
|
writel(ECC1, info->reg.gpmc_ecc_control);
|
|
|
|
|
2013-01-04 07:56:51 +00:00
|
|
|
/* Configure ecc size for BCH */
|
|
|
|
val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
|
2012-10-04 13:33:06 +00:00
|
|
|
writel(val, info->reg.gpmc_ecc_size_config);
|
|
|
|
|
2013-01-04 07:56:51 +00:00
|
|
|
dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
|
|
|
|
|
2012-10-04 13:33:06 +00:00
|
|
|
/* BCH configuration */
|
|
|
|
val = ((1 << 16) | /* enable BCH */
|
|
|
|
(((nerrors == 8) ? 1 : 0) << 12) | /* 8 or 4 bits */
|
2013-01-04 07:56:51 +00:00
|
|
|
(wr_mode << 8) | /* wrap mode */
|
2012-10-04 13:33:06 +00:00
|
|
|
(dev_width << 7) | /* bus width */
|
|
|
|
(((nsectors-1) & 0x7) << 4) | /* number of sectors */
|
|
|
|
(info->gpmc_cs << 1) | /* ECC CS */
|
|
|
|
(0x1)); /* enable ECC */
|
|
|
|
|
|
|
|
writel(val, info->reg.gpmc_ecc_config);
|
|
|
|
|
2013-01-04 07:56:51 +00:00
|
|
|
/* Clear ecc and enable bits */
|
2012-10-04 13:33:06 +00:00
|
|
|
writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
|
2012-04-30 10:17:18 +00:00
|
|
|
}
|
2013-10-24 12:50:21 +00:00
|
|
|
#endif
|
2012-04-30 10:17:18 +00:00
|
|
|
|
2013-10-24 12:50:21 +00:00
|
|
|
#ifdef CONFIG_MTD_NAND_ECC_BCH
|
2012-04-30 10:17:18 +00:00
|
|
|
/**
|
|
|
|
* omap3_calculate_ecc_bch4 - Generate 7 bytes of ECC bytes
|
|
|
|
* @mtd: MTD device structure
|
|
|
|
* @dat: The pointer to data on which ecc is computed
|
|
|
|
* @ecc_code: The ecc_code buffer
|
|
|
|
*/
|
|
|
|
static int omap3_calculate_ecc_bch4(struct mtd_info *mtd, const u_char *dat,
|
|
|
|
u_char *ecc_code)
|
|
|
|
{
|
|
|
|
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
|
|
|
|
mtd);
|
2012-10-04 13:33:06 +00:00
|
|
|
unsigned long nsectors, val1, val2;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
|
|
|
|
|
|
|
|
for (i = 0; i < nsectors; i++) {
|
|
|
|
|
|
|
|
/* Read hw-computed remainder */
|
|
|
|
val1 = readl(info->reg.gpmc_bch_result0[i]);
|
|
|
|
val2 = readl(info->reg.gpmc_bch_result1[i]);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Add constant polynomial to remainder, in order to get an ecc
|
|
|
|
* sequence of 0xFFs for a buffer filled with 0xFFs; and
|
|
|
|
* left-justify the resulting polynomial.
|
|
|
|
*/
|
|
|
|
*ecc_code++ = 0x28 ^ ((val2 >> 12) & 0xFF);
|
|
|
|
*ecc_code++ = 0x13 ^ ((val2 >> 4) & 0xFF);
|
|
|
|
*ecc_code++ = 0xcc ^ (((val2 & 0xF) << 4)|((val1 >> 28) & 0xF));
|
|
|
|
*ecc_code++ = 0x39 ^ ((val1 >> 20) & 0xFF);
|
|
|
|
*ecc_code++ = 0x96 ^ ((val1 >> 12) & 0xFF);
|
|
|
|
*ecc_code++ = 0xac ^ ((val1 >> 4) & 0xFF);
|
|
|
|
*ecc_code++ = 0x7f ^ ((val1 & 0xF) << 4);
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
2012-04-30 10:17:18 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* omap3_calculate_ecc_bch8 - Generate 13 bytes of ECC bytes
|
|
|
|
* @mtd: MTD device structure
|
|
|
|
* @dat: The pointer to data on which ecc is computed
|
|
|
|
* @ecc_code: The ecc_code buffer
|
|
|
|
*/
|
|
|
|
static int omap3_calculate_ecc_bch8(struct mtd_info *mtd, const u_char *dat,
|
|
|
|
u_char *ecc_code)
|
|
|
|
{
|
|
|
|
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
|
|
|
|
mtd);
|
2012-10-04 13:33:06 +00:00
|
|
|
unsigned long nsectors, val1, val2, val3, val4;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
|
|
|
|
|
|
|
|
for (i = 0; i < nsectors; i++) {
|
|
|
|
|
|
|
|
/* Read hw-computed remainder */
|
|
|
|
val1 = readl(info->reg.gpmc_bch_result0[i]);
|
|
|
|
val2 = readl(info->reg.gpmc_bch_result1[i]);
|
|
|
|
val3 = readl(info->reg.gpmc_bch_result2[i]);
|
|
|
|
val4 = readl(info->reg.gpmc_bch_result3[i]);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Add constant polynomial to remainder, in order to get an ecc
|
|
|
|
* sequence of 0xFFs for a buffer filled with 0xFFs.
|
|
|
|
*/
|
|
|
|
*ecc_code++ = 0xef ^ (val4 & 0xFF);
|
|
|
|
*ecc_code++ = 0x51 ^ ((val3 >> 24) & 0xFF);
|
|
|
|
*ecc_code++ = 0x2e ^ ((val3 >> 16) & 0xFF);
|
|
|
|
*ecc_code++ = 0x09 ^ ((val3 >> 8) & 0xFF);
|
|
|
|
*ecc_code++ = 0xed ^ (val3 & 0xFF);
|
|
|
|
*ecc_code++ = 0x93 ^ ((val2 >> 24) & 0xFF);
|
|
|
|
*ecc_code++ = 0x9a ^ ((val2 >> 16) & 0xFF);
|
|
|
|
*ecc_code++ = 0xc2 ^ ((val2 >> 8) & 0xFF);
|
|
|
|
*ecc_code++ = 0x97 ^ (val2 & 0xFF);
|
|
|
|
*ecc_code++ = 0x79 ^ ((val1 >> 24) & 0xFF);
|
|
|
|
*ecc_code++ = 0xe5 ^ ((val1 >> 16) & 0xFF);
|
|
|
|
*ecc_code++ = 0x24 ^ ((val1 >> 8) & 0xFF);
|
|
|
|
*ecc_code++ = 0xb5 ^ (val1 & 0xFF);
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
2012-04-30 10:17:18 +00:00
|
|
|
}
|
2013-10-24 12:50:21 +00:00
|
|
|
#endif /* CONFIG_MTD_NAND_ECC_BCH */
|
2012-04-30 10:17:18 +00:00
|
|
|
|
2013-10-24 12:50:21 +00:00
|
|
|
#ifdef CONFIG_MTD_NAND_OMAP_BCH
|
2013-01-04 07:56:51 +00:00
|
|
|
/**
|
|
|
|
* omap3_calculate_ecc_bch - Generate bytes of ECC bytes
|
|
|
|
* @mtd: MTD device structure
|
|
|
|
* @dat: The pointer to data on which ecc is computed
|
|
|
|
* @ecc_code: The ecc_code buffer
|
|
|
|
*
|
|
|
|
* Support calculating of BCH4/8 ecc vectors for the page
|
|
|
|
*/
|
|
|
|
static int omap3_calculate_ecc_bch(struct mtd_info *mtd, const u_char *dat,
|
|
|
|
u_char *ecc_code)
|
|
|
|
{
|
|
|
|
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
|
|
|
|
mtd);
|
|
|
|
unsigned long nsectors, bch_val1, bch_val2, bch_val3, bch_val4;
|
|
|
|
int i, eccbchtsel;
|
|
|
|
|
|
|
|
nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
|
|
|
|
/*
|
|
|
|
* find BCH scheme used
|
|
|
|
* 0 -> BCH4
|
|
|
|
* 1 -> BCH8
|
|
|
|
*/
|
|
|
|
eccbchtsel = ((readl(info->reg.gpmc_ecc_config) >> 12) & 0x3);
|
|
|
|
|
|
|
|
for (i = 0; i < nsectors; i++) {
|
|
|
|
|
|
|
|
/* Read hw-computed remainder */
|
|
|
|
bch_val1 = readl(info->reg.gpmc_bch_result0[i]);
|
|
|
|
bch_val2 = readl(info->reg.gpmc_bch_result1[i]);
|
|
|
|
if (eccbchtsel) {
|
|
|
|
bch_val3 = readl(info->reg.gpmc_bch_result2[i]);
|
|
|
|
bch_val4 = readl(info->reg.gpmc_bch_result3[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (eccbchtsel) {
|
|
|
|
/* BCH8 ecc scheme */
|
|
|
|
*ecc_code++ = (bch_val4 & 0xFF);
|
|
|
|
*ecc_code++ = ((bch_val3 >> 24) & 0xFF);
|
|
|
|
*ecc_code++ = ((bch_val3 >> 16) & 0xFF);
|
|
|
|
*ecc_code++ = ((bch_val3 >> 8) & 0xFF);
|
|
|
|
*ecc_code++ = (bch_val3 & 0xFF);
|
|
|
|
*ecc_code++ = ((bch_val2 >> 24) & 0xFF);
|
|
|
|
*ecc_code++ = ((bch_val2 >> 16) & 0xFF);
|
|
|
|
*ecc_code++ = ((bch_val2 >> 8) & 0xFF);
|
|
|
|
*ecc_code++ = (bch_val2 & 0xFF);
|
|
|
|
*ecc_code++ = ((bch_val1 >> 24) & 0xFF);
|
|
|
|
*ecc_code++ = ((bch_val1 >> 16) & 0xFF);
|
|
|
|
*ecc_code++ = ((bch_val1 >> 8) & 0xFF);
|
|
|
|
*ecc_code++ = (bch_val1 & 0xFF);
|
|
|
|
/*
|
|
|
|
* Setting 14th byte to zero to handle
|
|
|
|
* erased page & maintain compatibility
|
|
|
|
* with RBL
|
|
|
|
*/
|
|
|
|
*ecc_code++ = 0x0;
|
|
|
|
} else {
|
|
|
|
/* BCH4 ecc scheme */
|
|
|
|
*ecc_code++ = ((bch_val2 >> 12) & 0xFF);
|
|
|
|
*ecc_code++ = ((bch_val2 >> 4) & 0xFF);
|
|
|
|
*ecc_code++ = ((bch_val2 & 0xF) << 4) |
|
|
|
|
((bch_val1 >> 28) & 0xF);
|
|
|
|
*ecc_code++ = ((bch_val1 >> 20) & 0xFF);
|
|
|
|
*ecc_code++ = ((bch_val1 >> 12) & 0xFF);
|
|
|
|
*ecc_code++ = ((bch_val1 >> 4) & 0xFF);
|
|
|
|
*ecc_code++ = ((bch_val1 & 0xF) << 4);
|
|
|
|
/*
|
|
|
|
* Setting 8th byte to zero to handle
|
|
|
|
* erased page
|
|
|
|
*/
|
|
|
|
*ecc_code++ = 0x0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* erased_sector_bitflips - count bit flips
|
|
|
|
* @data: data sector buffer
|
|
|
|
* @oob: oob buffer
|
|
|
|
* @info: omap_nand_info
|
|
|
|
*
|
|
|
|
* Check the bit flips in erased page falls below correctable level.
|
|
|
|
* If falls below, report the page as erased with correctable bit
|
|
|
|
* flip, else report as uncorrectable page.
|
|
|
|
*/
|
|
|
|
static int erased_sector_bitflips(u_char *data, u_char *oob,
|
|
|
|
struct omap_nand_info *info)
|
|
|
|
{
|
|
|
|
int flip_bits = 0, i;
|
|
|
|
|
|
|
|
for (i = 0; i < info->nand.ecc.size; i++) {
|
|
|
|
flip_bits += hweight8(~data[i]);
|
|
|
|
if (flip_bits > info->nand.ecc.strength)
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
|
|
|
|
flip_bits += hweight8(~oob[i]);
|
|
|
|
if (flip_bits > info->nand.ecc.strength)
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Bit flips falls in correctable level.
|
|
|
|
* Fill data area with 0xFF
|
|
|
|
*/
|
|
|
|
if (flip_bits) {
|
|
|
|
memset(data, 0xFF, info->nand.ecc.size);
|
|
|
|
memset(oob, 0xFF, info->nand.ecc.bytes);
|
|
|
|
}
|
|
|
|
|
|
|
|
return flip_bits;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* omap_elm_correct_data - corrects page data area in case error reported
|
|
|
|
* @mtd: MTD device structure
|
|
|
|
* @data: page data
|
|
|
|
* @read_ecc: ecc read from nand flash
|
|
|
|
* @calc_ecc: ecc read from HW ECC registers
|
|
|
|
*
|
|
|
|
* Calculated ecc vector reported as zero in case of non-error pages.
|
|
|
|
* In case of error/erased pages non-zero error vector is reported.
|
|
|
|
* In case of non-zero ecc vector, check read_ecc at fixed offset
|
|
|
|
* (x = 13/7 in case of BCH8/4 == 0) to find page programmed or not.
|
|
|
|
* To handle bit flips in this data, count the number of 0's in
|
|
|
|
* read_ecc[x] and check if it greater than 4. If it is less, it is
|
|
|
|
* programmed page, else erased page.
|
|
|
|
*
|
|
|
|
* 1. If page is erased, check with standard ecc vector (ecc vector
|
|
|
|
* for erased page to find any bit flip). If check fails, bit flip
|
|
|
|
* is present in erased page. Count the bit flips in erased page and
|
|
|
|
* if it falls under correctable level, report page with 0xFF and
|
|
|
|
* update the correctable bit information.
|
|
|
|
* 2. If error is reported on programmed page, update elm error
|
|
|
|
* vector and correct the page with ELM error correction routine.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
|
|
|
|
u_char *read_ecc, u_char *calc_ecc)
|
|
|
|
{
|
|
|
|
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
|
|
|
|
mtd);
|
|
|
|
int eccsteps = info->nand.ecc.steps;
|
|
|
|
int i , j, stat = 0;
|
|
|
|
int eccsize, eccflag, ecc_vector_size;
|
|
|
|
struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
|
|
|
|
u_char *ecc_vec = calc_ecc;
|
|
|
|
u_char *spare_ecc = read_ecc;
|
|
|
|
u_char *erased_ecc_vec;
|
|
|
|
enum bch_ecc type;
|
|
|
|
bool is_error_reported = false;
|
|
|
|
|
|
|
|
/* Initialize elm error vector to zero */
|
|
|
|
memset(err_vec, 0, sizeof(err_vec));
|
|
|
|
|
|
|
|
if (info->nand.ecc.strength == BCH8_MAX_ERROR) {
|
|
|
|
type = BCH8_ECC;
|
|
|
|
erased_ecc_vec = bch8_vector;
|
|
|
|
} else {
|
|
|
|
type = BCH4_ECC;
|
|
|
|
erased_ecc_vec = bch4_vector;
|
|
|
|
}
|
|
|
|
|
|
|
|
ecc_vector_size = info->nand.ecc.bytes;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Remove extra byte padding for BCH8 RBL
|
|
|
|
* compatibility and erased page handling
|
|
|
|
*/
|
|
|
|
eccsize = ecc_vector_size - 1;
|
|
|
|
|
|
|
|
for (i = 0; i < eccsteps ; i++) {
|
|
|
|
eccflag = 0; /* initialize eccflag */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Check any error reported,
|
|
|
|
* In case of error, non zero ecc reported.
|
|
|
|
*/
|
|
|
|
|
|
|
|
for (j = 0; (j < eccsize); j++) {
|
|
|
|
if (calc_ecc[j] != 0) {
|
|
|
|
eccflag = 1; /* non zero ecc, error present */
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (eccflag == 1) {
|
|
|
|
/*
|
|
|
|
* Set threshold to minimum of 4, half of ecc.strength/2
|
|
|
|
* to allow max bit flip in byte to 4
|
|
|
|
*/
|
|
|
|
unsigned int threshold = min_t(unsigned int, 4,
|
|
|
|
info->nand.ecc.strength / 2);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Check data area is programmed by counting
|
|
|
|
* number of 0's at fixed offset in spare area.
|
|
|
|
* Checking count of 0's against threshold.
|
|
|
|
* In case programmed page expects at least threshold
|
|
|
|
* zeros in byte.
|
|
|
|
* If zeros are less than threshold for programmed page/
|
|
|
|
* zeros are more than threshold erased page, either
|
|
|
|
* case page reported as uncorrectable.
|
|
|
|
*/
|
|
|
|
if (hweight8(~read_ecc[eccsize]) >= threshold) {
|
|
|
|
/*
|
|
|
|
* Update elm error vector as
|
|
|
|
* data area is programmed
|
|
|
|
*/
|
|
|
|
err_vec[i].error_reported = true;
|
|
|
|
is_error_reported = true;
|
|
|
|
} else {
|
|
|
|
/* Error reported in erased page */
|
|
|
|
int bitflip_count;
|
|
|
|
u_char *buf = &data[info->nand.ecc.size * i];
|
|
|
|
|
|
|
|
if (memcmp(calc_ecc, erased_ecc_vec, eccsize)) {
|
|
|
|
bitflip_count = erased_sector_bitflips(
|
|
|
|
buf, read_ecc, info);
|
|
|
|
|
|
|
|
if (bitflip_count)
|
|
|
|
stat += bitflip_count;
|
|
|
|
else
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Update the ecc vector */
|
|
|
|
calc_ecc += ecc_vector_size;
|
|
|
|
read_ecc += ecc_vector_size;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Check if any error reported */
|
|
|
|
if (!is_error_reported)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/* Decode BCH error using ELM module */
|
|
|
|
elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
|
|
|
|
|
|
|
|
for (i = 0; i < eccsteps; i++) {
|
|
|
|
if (err_vec[i].error_reported) {
|
|
|
|
for (j = 0; j < err_vec[i].error_count; j++) {
|
|
|
|
u32 bit_pos, byte_pos, error_max, pos;
|
|
|
|
|
|
|
|
if (type == BCH8_ECC)
|
|
|
|
error_max = BCH8_ECC_MAX;
|
|
|
|
else
|
|
|
|
error_max = BCH4_ECC_MAX;
|
|
|
|
|
|
|
|
if (info->nand.ecc.strength == BCH8_MAX_ERROR)
|
|
|
|
pos = err_vec[i].error_loc[j];
|
|
|
|
else
|
|
|
|
/* Add 4 to take care 4 bit padding */
|
|
|
|
pos = err_vec[i].error_loc[j] +
|
|
|
|
BCH4_BIT_PAD;
|
|
|
|
|
|
|
|
/* Calculate bit position of error */
|
|
|
|
bit_pos = pos % 8;
|
|
|
|
|
|
|
|
/* Calculate byte position of error */
|
|
|
|
byte_pos = (error_max - pos - 1) / 8;
|
|
|
|
|
|
|
|
if (pos < error_max) {
|
|
|
|
if (byte_pos < 512)
|
|
|
|
data[byte_pos] ^= 1 << bit_pos;
|
|
|
|
else
|
|
|
|
spare_ecc[byte_pos - 512] ^=
|
|
|
|
1 << bit_pos;
|
|
|
|
}
|
|
|
|
/* else, not interested to correct ecc */
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Update number of correctable errors */
|
|
|
|
stat += err_vec[i].error_count;
|
|
|
|
|
|
|
|
/* Update page data with sector size */
|
|
|
|
data += info->nand.ecc.size;
|
|
|
|
spare_ecc += ecc_vector_size;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < eccsteps; i++)
|
|
|
|
/* Return error if uncorrectable error present */
|
|
|
|
if (err_vec[i].error_uncorrectable)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
return stat;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* omap_write_page_bch - BCH ecc based write page function for entire page
|
|
|
|
* @mtd: mtd info structure
|
|
|
|
* @chip: nand chip info structure
|
|
|
|
* @buf: data buffer
|
|
|
|
* @oob_required: must write chip->oob_poi to OOB
|
|
|
|
*
|
|
|
|
* Custom write page method evolved to support multi sector writing in one shot
|
|
|
|
*/
|
|
|
|
static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
|
|
|
|
const uint8_t *buf, int oob_required)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
uint8_t *ecc_calc = chip->buffers->ecccalc;
|
|
|
|
uint32_t *eccpos = chip->ecc.layout->eccpos;
|
|
|
|
|
|
|
|
/* Enable GPMC ecc engine */
|
|
|
|
chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
|
|
|
|
|
|
|
|
/* Write data */
|
|
|
|
chip->write_buf(mtd, buf, mtd->writesize);
|
|
|
|
|
|
|
|
/* Update ecc vector from GPMC result registers */
|
|
|
|
chip->ecc.calculate(mtd, buf, &ecc_calc[0]);
|
|
|
|
|
|
|
|
for (i = 0; i < chip->ecc.total; i++)
|
|
|
|
chip->oob_poi[eccpos[i]] = ecc_calc[i];
|
|
|
|
|
|
|
|
/* Write ecc vector to OOB area */
|
|
|
|
chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* omap_read_page_bch - BCH ecc based page read function for entire page
|
|
|
|
* @mtd: mtd info structure
|
|
|
|
* @chip: nand chip info structure
|
|
|
|
* @buf: buffer to store read data
|
|
|
|
* @oob_required: caller requires OOB data read to chip->oob_poi
|
|
|
|
* @page: page number to read
|
|
|
|
*
|
|
|
|
* For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
|
|
|
|
* used for error correction.
|
|
|
|
* Custom method evolved to support ELM error correction & multi sector
|
|
|
|
* reading. On reading page data area is read along with OOB data with
|
|
|
|
* ecc engine enabled. ecc vector updated after read of OOB data.
|
|
|
|
* For non error pages ecc vector reported as zero.
|
|
|
|
*/
|
|
|
|
static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
|
|
|
|
uint8_t *buf, int oob_required, int page)
|
|
|
|
{
|
|
|
|
uint8_t *ecc_calc = chip->buffers->ecccalc;
|
|
|
|
uint8_t *ecc_code = chip->buffers->ecccode;
|
|
|
|
uint32_t *eccpos = chip->ecc.layout->eccpos;
|
|
|
|
uint8_t *oob = &chip->oob_poi[eccpos[0]];
|
|
|
|
uint32_t oob_pos = mtd->writesize + chip->ecc.layout->eccpos[0];
|
|
|
|
int stat;
|
|
|
|
unsigned int max_bitflips = 0;
|
|
|
|
|
|
|
|
/* Enable GPMC ecc engine */
|
|
|
|
chip->ecc.hwctl(mtd, NAND_ECC_READ);
|
|
|
|
|
|
|
|
/* Read data */
|
|
|
|
chip->read_buf(mtd, buf, mtd->writesize);
|
|
|
|
|
|
|
|
/* Read oob bytes */
|
|
|
|
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
|
|
|
|
chip->read_buf(mtd, oob, chip->ecc.total);
|
|
|
|
|
|
|
|
/* Calculate ecc bytes */
|
|
|
|
chip->ecc.calculate(mtd, buf, ecc_calc);
|
|
|
|
|
|
|
|
memcpy(ecc_code, &chip->oob_poi[eccpos[0]], chip->ecc.total);
|
|
|
|
|
|
|
|
stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc);
|
|
|
|
|
|
|
|
if (stat < 0) {
|
|
|
|
mtd->ecc_stats.failed++;
|
|
|
|
} else {
|
|
|
|
mtd->ecc_stats.corrected += stat;
|
|
|
|
max_bitflips = max_t(unsigned int, max_bitflips, stat);
|
|
|
|
}
|
|
|
|
|
|
|
|
return max_bitflips;
|
|
|
|
}
|
|
|
|
|
2012-04-30 10:17:18 +00:00
|
|
|
/**
|
2013-10-24 12:50:21 +00:00
|
|
|
* is_elm_present - checks for presence of ELM module by scanning DT nodes
|
|
|
|
* @omap_nand_info: NAND device structure containing platform data
|
|
|
|
* @bch_type: 0x0=BCH4, 0x1=BCH8, 0x2=BCH16
|
2012-04-30 10:17:18 +00:00
|
|
|
*/
|
2013-10-24 12:50:21 +00:00
|
|
|
static int is_elm_present(struct omap_nand_info *info,
|
|
|
|
struct device_node *elm_node, enum bch_ecc bch_type)
|
2012-04-30 10:17:18 +00:00
|
|
|
{
|
2013-10-24 12:50:21 +00:00
|
|
|
struct platform_device *pdev;
|
|
|
|
info->is_elm_used = false;
|
|
|
|
/* check whether elm-id is passed via DT */
|
|
|
|
if (!elm_node) {
|
|
|
|
pr_err("nand: error: ELM DT node not found\n");
|
|
|
|
return -ENODEV;
|
|
|
|
}
|
|
|
|
pdev = of_find_device_by_node(elm_node);
|
|
|
|
/* check whether ELM device is registered */
|
|
|
|
if (!pdev) {
|
|
|
|
pr_err("nand: error: ELM device not found\n");
|
|
|
|
return -ENODEV;
|
2012-04-30 10:17:18 +00:00
|
|
|
}
|
2013-10-24 12:50:21 +00:00
|
|
|
/* ELM module available, now configure it */
|
|
|
|
info->elm_dev = &pdev->dev;
|
|
|
|
if (elm_config(info->elm_dev, bch_type))
|
|
|
|
return -ENODEV;
|
|
|
|
info->is_elm_used = true;
|
|
|
|
return 0;
|
2012-04-30 10:17:18 +00:00
|
|
|
}
|
2013-10-24 12:50:21 +00:00
|
|
|
#endif /* CONFIG_MTD_NAND_ECC_BCH */
|
2012-04-30 10:17:18 +00:00
|
|
|
|
2012-11-19 18:23:07 +00:00
|
|
|
static int omap_nand_probe(struct platform_device *pdev)
|
2009-05-12 20:47:03 +00:00
|
|
|
{
|
|
|
|
struct omap_nand_info *info;
|
|
|
|
struct omap_nand_platform_data *pdata;
|
2013-10-24 12:50:19 +00:00
|
|
|
struct mtd_info *mtd;
|
|
|
|
struct nand_chip *nand_chip;
|
2013-10-24 12:50:22 +00:00
|
|
|
struct nand_ecclayout *ecclayout;
|
2009-05-12 20:47:03 +00:00
|
|
|
int err;
|
2013-10-24 12:50:22 +00:00
|
|
|
int i;
|
2013-10-24 12:50:19 +00:00
|
|
|
dma_cap_mask_t mask;
|
|
|
|
unsigned sig;
|
2012-08-30 19:53:23 +00:00
|
|
|
struct resource *res;
|
2012-12-14 10:36:41 +00:00
|
|
|
struct mtd_part_parser_data ppdata = {};
|
2009-05-12 20:47:03 +00:00
|
|
|
|
2013-07-30 08:18:33 +00:00
|
|
|
pdata = dev_get_platdata(&pdev->dev);
|
2009-05-12 20:47:03 +00:00
|
|
|
if (pdata == NULL) {
|
|
|
|
dev_err(&pdev->dev, "platform data missing\n");
|
|
|
|
return -ENODEV;
|
|
|
|
}
|
|
|
|
|
|
|
|
info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
|
|
|
|
if (!info)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
platform_set_drvdata(pdev, info);
|
|
|
|
|
|
|
|
spin_lock_init(&info->controller.lock);
|
|
|
|
init_waitqueue_head(&info->controller.wq);
|
|
|
|
|
2013-10-24 12:50:19 +00:00
|
|
|
info->pdev = pdev;
|
2009-05-12 20:47:03 +00:00
|
|
|
info->gpmc_cs = pdata->cs;
|
2012-08-30 19:53:22 +00:00
|
|
|
info->reg = pdata->reg;
|
2013-10-24 12:50:21 +00:00
|
|
|
info->of_node = pdata->of_node;
|
2013-10-24 12:50:19 +00:00
|
|
|
mtd = &info->mtd;
|
|
|
|
mtd->priv = &info->nand;
|
|
|
|
mtd->name = dev_name(&pdev->dev);
|
|
|
|
mtd->owner = THIS_MODULE;
|
|
|
|
nand_chip = &info->nand;
|
2013-10-24 12:50:23 +00:00
|
|
|
nand_chip->ecc.priv = NULL;
|
2013-10-24 12:50:19 +00:00
|
|
|
nand_chip->options |= NAND_SKIP_BBTSCAN;
|
2009-05-12 20:47:03 +00:00
|
|
|
|
2012-08-30 19:53:23 +00:00
|
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
|
|
if (res == NULL) {
|
|
|
|
err = -EINVAL;
|
|
|
|
dev_err(&pdev->dev, "error getting memory resource\n");
|
|
|
|
goto out_free_info;
|
|
|
|
}
|
2009-05-12 20:47:03 +00:00
|
|
|
|
2012-08-30 19:53:23 +00:00
|
|
|
info->phys_base = res->start;
|
|
|
|
info->mem_size = resource_size(res);
|
|
|
|
|
|
|
|
if (!request_mem_region(info->phys_base, info->mem_size,
|
2009-05-12 20:47:03 +00:00
|
|
|
pdev->dev.driver->name)) {
|
|
|
|
err = -EBUSY;
|
2010-02-15 18:03:33 +00:00
|
|
|
goto out_free_info;
|
2009-05-12 20:47:03 +00:00
|
|
|
}
|
|
|
|
|
2013-10-24 12:50:19 +00:00
|
|
|
nand_chip->IO_ADDR_R = ioremap(info->phys_base, info->mem_size);
|
|
|
|
if (!nand_chip->IO_ADDR_R) {
|
2009-05-12 20:47:03 +00:00
|
|
|
err = -ENOMEM;
|
|
|
|
goto out_release_mem_region;
|
|
|
|
}
|
2009-07-13 10:56:24 +00:00
|
|
|
|
2013-10-24 12:50:19 +00:00
|
|
|
nand_chip->controller = &info->controller;
|
2009-05-12 20:47:03 +00:00
|
|
|
|
2013-10-24 12:50:19 +00:00
|
|
|
nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R;
|
|
|
|
nand_chip->cmd_ctrl = omap_hwcontrol;
|
2009-05-12 20:47:03 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* If RDY/BSY line is connected to OMAP then use the omap ready
|
2012-07-19 11:21:04 +00:00
|
|
|
* function and the generic nand_wait function which reads the status
|
|
|
|
* register after monitoring the RDY/BSY line. Otherwise use a standard
|
2009-05-12 20:47:03 +00:00
|
|
|
* chip delay which is slightly more than tR (AC Timing) of the NAND
|
|
|
|
* device and read status register until you get a failure or success
|
|
|
|
*/
|
|
|
|
if (pdata->dev_ready) {
|
2013-10-24 12:50:19 +00:00
|
|
|
nand_chip->dev_ready = omap_dev_ready;
|
|
|
|
nand_chip->chip_delay = 0;
|
2009-05-12 20:47:03 +00:00
|
|
|
} else {
|
2013-10-24 12:50:19 +00:00
|
|
|
nand_chip->waitfunc = omap_wait;
|
|
|
|
nand_chip->chip_delay = 50;
|
2009-05-12 20:47:03 +00:00
|
|
|
}
|
|
|
|
|
2013-10-24 12:50:20 +00:00
|
|
|
/* scan NAND device connected to chip controller */
|
|
|
|
nand_chip->options |= pdata->devsize & NAND_BUSWIDTH_16;
|
|
|
|
if (nand_scan_ident(mtd, 1, NULL)) {
|
|
|
|
pr_err("nand device scan failed, may be bus-width mismatch\n");
|
|
|
|
err = -ENXIO;
|
|
|
|
goto out_release_mem_region;
|
|
|
|
}
|
|
|
|
|
2013-10-24 12:50:22 +00:00
|
|
|
/* check for small page devices */
|
|
|
|
if ((mtd->oobsize < 64) && (pdata->ecc_opt != OMAP_ECC_HAM1_CODE_HW)) {
|
|
|
|
pr_err("small page devices are not supported\n");
|
|
|
|
err = -EINVAL;
|
|
|
|
goto out_release_mem_region;
|
|
|
|
}
|
|
|
|
|
2013-10-24 12:50:20 +00:00
|
|
|
/* re-populate low-level callbacks based on xfer modes */
|
2011-01-28 10:12:04 +00:00
|
|
|
switch (pdata->xfer_type) {
|
|
|
|
case NAND_OMAP_PREFETCH_POLLED:
|
2013-10-24 12:50:19 +00:00
|
|
|
nand_chip->read_buf = omap_read_buf_pref;
|
|
|
|
nand_chip->write_buf = omap_write_buf_pref;
|
2011-01-28 10:12:04 +00:00
|
|
|
break;
|
|
|
|
|
|
|
|
case NAND_OMAP_POLLED:
|
2013-10-24 12:50:19 +00:00
|
|
|
if (nand_chip->options & NAND_BUSWIDTH_16) {
|
|
|
|
nand_chip->read_buf = omap_read_buf16;
|
|
|
|
nand_chip->write_buf = omap_write_buf16;
|
2009-07-13 10:56:24 +00:00
|
|
|
} else {
|
2013-10-24 12:50:19 +00:00
|
|
|
nand_chip->read_buf = omap_read_buf8;
|
|
|
|
nand_chip->write_buf = omap_write_buf8;
|
2009-07-13 10:56:24 +00:00
|
|
|
}
|
2011-01-28 10:12:04 +00:00
|
|
|
break;
|
|
|
|
|
|
|
|
case NAND_OMAP_PREFETCH_DMA:
|
2012-04-24 23:16:00 +00:00
|
|
|
dma_cap_zero(mask);
|
|
|
|
dma_cap_set(DMA_SLAVE, mask);
|
|
|
|
sig = OMAP24XX_DMA_GPMC;
|
|
|
|
info->dma = dma_request_channel(mask, omap_dma_filter_fn, &sig);
|
|
|
|
if (!info->dma) {
|
2012-04-24 23:19:39 +00:00
|
|
|
dev_err(&pdev->dev, "DMA engine request failed\n");
|
|
|
|
err = -ENXIO;
|
|
|
|
goto out_release_mem_region;
|
2012-04-24 23:16:00 +00:00
|
|
|
} else {
|
|
|
|
struct dma_slave_config cfg;
|
|
|
|
|
|
|
|
memset(&cfg, 0, sizeof(cfg));
|
|
|
|
cfg.src_addr = info->phys_base;
|
|
|
|
cfg.dst_addr = info->phys_base;
|
|
|
|
cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
|
|
|
|
cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
|
|
|
|
cfg.src_maxburst = 16;
|
|
|
|
cfg.dst_maxburst = 16;
|
2012-08-04 11:05:25 +00:00
|
|
|
err = dmaengine_slave_config(info->dma, &cfg);
|
|
|
|
if (err) {
|
2012-04-24 23:16:00 +00:00
|
|
|
dev_err(&pdev->dev, "DMA engine slave config failed: %d\n",
|
2012-08-04 11:05:25 +00:00
|
|
|
err);
|
2012-04-24 23:16:00 +00:00
|
|
|
goto out_release_mem_region;
|
|
|
|
}
|
2013-10-24 12:50:19 +00:00
|
|
|
nand_chip->read_buf = omap_read_buf_dma_pref;
|
|
|
|
nand_chip->write_buf = omap_write_buf_dma_pref;
|
2011-01-28 10:12:04 +00:00
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
2011-01-28 10:12:06 +00:00
|
|
|
case NAND_OMAP_PREFETCH_IRQ:
|
2012-08-30 19:53:24 +00:00
|
|
|
info->gpmc_irq_fifo = platform_get_irq(pdev, 0);
|
|
|
|
if (info->gpmc_irq_fifo <= 0) {
|
|
|
|
dev_err(&pdev->dev, "error getting fifo irq\n");
|
|
|
|
err = -ENODEV;
|
|
|
|
goto out_release_mem_region;
|
|
|
|
}
|
|
|
|
err = request_irq(info->gpmc_irq_fifo, omap_nand_irq,
|
|
|
|
IRQF_SHARED, "gpmc-nand-fifo", info);
|
2011-01-28 10:12:06 +00:00
|
|
|
if (err) {
|
|
|
|
dev_err(&pdev->dev, "requesting irq(%d) error:%d",
|
2012-08-30 19:53:24 +00:00
|
|
|
info->gpmc_irq_fifo, err);
|
|
|
|
info->gpmc_irq_fifo = 0;
|
|
|
|
goto out_release_mem_region;
|
|
|
|
}
|
|
|
|
|
|
|
|
info->gpmc_irq_count = platform_get_irq(pdev, 1);
|
|
|
|
if (info->gpmc_irq_count <= 0) {
|
|
|
|
dev_err(&pdev->dev, "error getting count irq\n");
|
|
|
|
err = -ENODEV;
|
|
|
|
goto out_release_mem_region;
|
|
|
|
}
|
|
|
|
err = request_irq(info->gpmc_irq_count, omap_nand_irq,
|
|
|
|
IRQF_SHARED, "gpmc-nand-count", info);
|
|
|
|
if (err) {
|
|
|
|
dev_err(&pdev->dev, "requesting irq(%d) error:%d",
|
|
|
|
info->gpmc_irq_count, err);
|
|
|
|
info->gpmc_irq_count = 0;
|
2011-01-28 10:12:06 +00:00
|
|
|
goto out_release_mem_region;
|
|
|
|
}
|
2012-08-30 19:53:24 +00:00
|
|
|
|
2013-10-24 12:50:19 +00:00
|
|
|
nand_chip->read_buf = omap_read_buf_irq_pref;
|
|
|
|
nand_chip->write_buf = omap_write_buf_irq_pref;
|
2012-08-30 19:53:24 +00:00
|
|
|
|
2011-01-28 10:12:06 +00:00
|
|
|
break;
|
|
|
|
|
2011-01-28 10:12:04 +00:00
|
|
|
default:
|
|
|
|
dev_err(&pdev->dev,
|
|
|
|
"xfer_type(%d) not supported!\n", pdata->xfer_type);
|
|
|
|
err = -EINVAL;
|
|
|
|
goto out_release_mem_region;
|
2009-07-13 10:56:24 +00:00
|
|
|
}
|
|
|
|
|
2013-10-24 12:50:21 +00:00
|
|
|
/* populate MTD interface based on ECC scheme */
|
2013-10-24 12:50:22 +00:00
|
|
|
nand_chip->ecc.layout = &omap_oobinfo;
|
|
|
|
ecclayout = &omap_oobinfo;
|
2013-10-24 12:50:21 +00:00
|
|
|
switch (pdata->ecc_opt) {
|
|
|
|
case OMAP_ECC_HAM1_CODE_HW:
|
|
|
|
pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n");
|
|
|
|
nand_chip->ecc.mode = NAND_ECC_HW;
|
2013-10-24 12:50:19 +00:00
|
|
|
nand_chip->ecc.bytes = 3;
|
|
|
|
nand_chip->ecc.size = 512;
|
|
|
|
nand_chip->ecc.strength = 1;
|
|
|
|
nand_chip->ecc.calculate = omap_calculate_ecc;
|
|
|
|
nand_chip->ecc.hwctl = omap_enable_hwecc;
|
|
|
|
nand_chip->ecc.correct = omap_correct_data;
|
2013-10-24 12:50:22 +00:00
|
|
|
/* define ECC layout */
|
|
|
|
ecclayout->eccbytes = nand_chip->ecc.bytes *
|
|
|
|
(mtd->writesize /
|
|
|
|
nand_chip->ecc.size);
|
|
|
|
if (nand_chip->options & NAND_BUSWIDTH_16)
|
|
|
|
ecclayout->eccpos[0] = BADBLOCK_MARKER_LENGTH;
|
|
|
|
else
|
|
|
|
ecclayout->eccpos[0] = 1;
|
|
|
|
ecclayout->oobfree->offset = ecclayout->eccpos[0] +
|
|
|
|
ecclayout->eccbytes;
|
2013-10-24 12:50:21 +00:00
|
|
|
break;
|
|
|
|
|
|
|
|
case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
|
|
|
|
#ifdef CONFIG_MTD_NAND_ECC_BCH
|
|
|
|
pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
|
|
|
|
nand_chip->ecc.mode = NAND_ECC_HW;
|
|
|
|
nand_chip->ecc.size = 512;
|
|
|
|
nand_chip->ecc.bytes = 7;
|
|
|
|
nand_chip->ecc.strength = 4;
|
|
|
|
nand_chip->ecc.hwctl = omap3_enable_hwecc_bch;
|
2013-10-24 12:50:23 +00:00
|
|
|
nand_chip->ecc.correct = nand_bch_correct_data;
|
2013-10-24 12:50:21 +00:00
|
|
|
nand_chip->ecc.calculate = omap3_calculate_ecc_bch4;
|
2013-10-24 12:50:22 +00:00
|
|
|
/* define ECC layout */
|
|
|
|
ecclayout->eccbytes = nand_chip->ecc.bytes *
|
|
|
|
(mtd->writesize /
|
|
|
|
nand_chip->ecc.size);
|
|
|
|
ecclayout->eccpos[0] = BADBLOCK_MARKER_LENGTH;
|
|
|
|
ecclayout->oobfree->offset = ecclayout->eccpos[0] +
|
|
|
|
ecclayout->eccbytes;
|
2013-10-24 12:50:21 +00:00
|
|
|
/* software bch library is used for locating errors */
|
2013-10-24 12:50:23 +00:00
|
|
|
nand_chip->ecc.priv = nand_bch_init(mtd,
|
|
|
|
nand_chip->ecc.size,
|
|
|
|
nand_chip->ecc.bytes,
|
|
|
|
&nand_chip->ecc.layout);
|
|
|
|
if (!nand_chip->ecc.priv) {
|
2013-10-24 12:50:21 +00:00
|
|
|
pr_err("nand: error: unable to use s/w BCH library\n");
|
2012-04-30 10:17:18 +00:00
|
|
|
err = -EINVAL;
|
2013-10-24 12:50:21 +00:00
|
|
|
}
|
|
|
|
break;
|
|
|
|
#else
|
|
|
|
pr_err("nand: error: CONFIG_MTD_NAND_ECC_BCH not enabled\n");
|
|
|
|
err = -EINVAL;
|
|
|
|
goto out_release_mem_region;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
case OMAP_ECC_BCH4_CODE_HW:
|
|
|
|
#ifdef CONFIG_MTD_NAND_OMAP_BCH
|
|
|
|
pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
|
|
|
|
nand_chip->ecc.mode = NAND_ECC_HW;
|
|
|
|
nand_chip->ecc.size = 512;
|
|
|
|
/* 14th bit is kept reserved for ROM-code compatibility */
|
|
|
|
nand_chip->ecc.bytes = 7 + 1;
|
|
|
|
nand_chip->ecc.strength = 4;
|
|
|
|
nand_chip->ecc.hwctl = omap3_enable_hwecc_bch;
|
|
|
|
nand_chip->ecc.correct = omap_elm_correct_data;
|
|
|
|
nand_chip->ecc.calculate = omap3_calculate_ecc_bch;
|
|
|
|
nand_chip->ecc.read_page = omap_read_page_bch;
|
|
|
|
nand_chip->ecc.write_page = omap_write_page_bch;
|
2013-10-24 12:50:22 +00:00
|
|
|
/* define ECC layout */
|
|
|
|
ecclayout->eccbytes = nand_chip->ecc.bytes *
|
|
|
|
(mtd->writesize /
|
|
|
|
nand_chip->ecc.size);
|
|
|
|
ecclayout->eccpos[0] = BADBLOCK_MARKER_LENGTH;
|
|
|
|
ecclayout->oobfree->offset = ecclayout->eccpos[0] +
|
|
|
|
ecclayout->eccbytes;
|
2013-10-24 12:50:21 +00:00
|
|
|
/* This ECC scheme requires ELM H/W block */
|
|
|
|
if (is_elm_present(info, pdata->elm_of_node, BCH4_ECC) < 0) {
|
|
|
|
pr_err("nand: error: could not initialize ELM\n");
|
|
|
|
err = -ENODEV;
|
2012-04-30 10:17:18 +00:00
|
|
|
goto out_release_mem_region;
|
|
|
|
}
|
2013-10-24 12:50:21 +00:00
|
|
|
break;
|
|
|
|
#else
|
|
|
|
pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
|
|
|
|
err = -EINVAL;
|
|
|
|
goto out_release_mem_region;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
|
|
|
|
#ifdef CONFIG_MTD_NAND_ECC_BCH
|
|
|
|
pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
|
|
|
|
nand_chip->ecc.mode = NAND_ECC_HW;
|
|
|
|
nand_chip->ecc.size = 512;
|
|
|
|
nand_chip->ecc.bytes = 13;
|
|
|
|
nand_chip->ecc.strength = 8;
|
|
|
|
nand_chip->ecc.hwctl = omap3_enable_hwecc_bch;
|
2013-10-24 12:50:23 +00:00
|
|
|
nand_chip->ecc.correct = nand_bch_correct_data;
|
2013-10-24 12:50:21 +00:00
|
|
|
nand_chip->ecc.calculate = omap3_calculate_ecc_bch8;
|
2013-10-24 12:50:22 +00:00
|
|
|
/* define ECC layout */
|
|
|
|
ecclayout->eccbytes = nand_chip->ecc.bytes *
|
|
|
|
(mtd->writesize /
|
|
|
|
nand_chip->ecc.size);
|
|
|
|
ecclayout->eccpos[0] = BADBLOCK_MARKER_LENGTH;
|
|
|
|
ecclayout->oobfree->offset = ecclayout->eccpos[0] +
|
|
|
|
ecclayout->eccbytes;
|
2013-10-24 12:50:21 +00:00
|
|
|
/* software bch library is used for locating errors */
|
2013-10-24 12:50:23 +00:00
|
|
|
nand_chip->ecc.priv = nand_bch_init(mtd,
|
|
|
|
nand_chip->ecc.size,
|
|
|
|
nand_chip->ecc.bytes,
|
|
|
|
&nand_chip->ecc.layout);
|
|
|
|
if (!nand_chip->ecc.priv) {
|
2013-10-24 12:50:21 +00:00
|
|
|
pr_err("nand: error: unable to use s/w BCH library\n");
|
|
|
|
err = -EINVAL;
|
|
|
|
goto out_release_mem_region;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
#else
|
|
|
|
pr_err("nand: error: CONFIG_MTD_NAND_ECC_BCH not enabled\n");
|
|
|
|
err = -EINVAL;
|
|
|
|
goto out_release_mem_region;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
case OMAP_ECC_BCH8_CODE_HW:
|
|
|
|
#ifdef CONFIG_MTD_NAND_OMAP_BCH
|
|
|
|
pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
|
|
|
|
nand_chip->ecc.mode = NAND_ECC_HW;
|
|
|
|
nand_chip->ecc.size = 512;
|
|
|
|
/* 14th bit is kept reserved for ROM-code compatibility */
|
|
|
|
nand_chip->ecc.bytes = 13 + 1;
|
|
|
|
nand_chip->ecc.strength = 8;
|
|
|
|
nand_chip->ecc.hwctl = omap3_enable_hwecc_bch;
|
|
|
|
nand_chip->ecc.correct = omap_elm_correct_data;
|
|
|
|
nand_chip->ecc.calculate = omap3_calculate_ecc_bch;
|
|
|
|
nand_chip->ecc.read_page = omap_read_page_bch;
|
|
|
|
nand_chip->ecc.write_page = omap_write_page_bch;
|
|
|
|
/* This ECC scheme requires ELM H/W block */
|
|
|
|
if (is_elm_present(info, pdata->elm_of_node, BCH8_ECC) < 0) {
|
|
|
|
pr_err("nand: error: could not initialize ELM\n");
|
|
|
|
goto out_release_mem_region;
|
|
|
|
}
|
2013-10-24 12:50:22 +00:00
|
|
|
/* define ECC layout */
|
|
|
|
ecclayout->eccbytes = nand_chip->ecc.bytes *
|
|
|
|
(mtd->writesize /
|
|
|
|
nand_chip->ecc.size);
|
|
|
|
ecclayout->eccpos[0] = BADBLOCK_MARKER_LENGTH;
|
|
|
|
ecclayout->oobfree->offset = ecclayout->eccpos[0] +
|
|
|
|
ecclayout->eccbytes;
|
2013-10-24 12:50:21 +00:00
|
|
|
break;
|
|
|
|
#else
|
|
|
|
pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
|
|
|
|
err = -EINVAL;
|
|
|
|
goto out_release_mem_region;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
default:
|
|
|
|
pr_err("nand: error: invalid or unsupported ECC scheme\n");
|
|
|
|
err = -EINVAL;
|
|
|
|
goto out_release_mem_region;
|
2011-01-28 10:12:08 +00:00
|
|
|
}
|
2009-05-12 20:47:03 +00:00
|
|
|
|
2013-10-24 12:50:22 +00:00
|
|
|
/* populate remaining ECC layout data */
|
|
|
|
ecclayout->oobfree->length = mtd->oobsize - (BADBLOCK_MARKER_LENGTH +
|
|
|
|
ecclayout->eccbytes);
|
|
|
|
for (i = 1; i < ecclayout->eccbytes; i++)
|
|
|
|
ecclayout->eccpos[i] = ecclayout->eccpos[0] + i;
|
|
|
|
/* check if NAND device's OOB is enough to store ECC signatures */
|
|
|
|
if (mtd->oobsize < (ecclayout->eccbytes + BADBLOCK_MARKER_LENGTH)) {
|
|
|
|
pr_err("not enough OOB bytes required = %d, available=%d\n",
|
|
|
|
ecclayout->eccbytes, mtd->oobsize);
|
|
|
|
err = -EINVAL;
|
|
|
|
goto out_release_mem_region;
|
2011-01-28 10:12:09 +00:00
|
|
|
}
|
2011-01-28 10:12:04 +00:00
|
|
|
|
2011-04-19 14:15:34 +00:00
|
|
|
/* second phase scan */
|
2013-10-24 12:50:19 +00:00
|
|
|
if (nand_scan_tail(mtd)) {
|
2011-04-19 14:15:34 +00:00
|
|
|
err = -ENXIO;
|
|
|
|
goto out_release_mem_region;
|
|
|
|
}
|
|
|
|
|
2012-12-14 10:36:41 +00:00
|
|
|
ppdata.of_node = pdata->of_node;
|
2013-10-24 12:50:19 +00:00
|
|
|
mtd_device_parse_register(mtd, NULL, &ppdata, pdata->parts,
|
mtd: do not use plain 0 as NULL
The first 3 arguments of 'mtd_device_parse_register()' are pointers,
but many callers pass '0' instead of 'NULL'. Fix this globally. Thanks
to coccinelle for making it easy to do with the following semantic patch:
@@
expression mtd, types, parser_data, parts, nr_parts;
@@
(
-mtd_device_parse_register(mtd, 0, parser_data, parts, nr_parts)
+mtd_device_parse_register(mtd, NULL, parser_data, parts, nr_parts)
|
-mtd_device_parse_register(mtd, types, 0, parts, nr_parts)
+mtd_device_parse_register(mtd, types, NULL, parts, nr_parts)
|
-mtd_device_parse_register(mtd, types, parser_data, 0, nr_parts)
+mtd_device_parse_register(mtd, types, parser_data, NULL, nr_parts)
)
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2012-03-09 17:24:26 +00:00
|
|
|
pdata->nr_parts);
|
2009-05-12 20:47:03 +00:00
|
|
|
|
2013-10-24 12:50:19 +00:00
|
|
|
platform_set_drvdata(pdev, mtd);
|
2009-05-12 20:47:03 +00:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
out_release_mem_region:
|
2012-04-24 23:16:00 +00:00
|
|
|
if (info->dma)
|
|
|
|
dma_release_channel(info->dma);
|
2012-08-30 19:53:24 +00:00
|
|
|
if (info->gpmc_irq_count > 0)
|
|
|
|
free_irq(info->gpmc_irq_count, info);
|
|
|
|
if (info->gpmc_irq_fifo > 0)
|
|
|
|
free_irq(info->gpmc_irq_fifo, info);
|
2012-08-30 19:53:23 +00:00
|
|
|
release_mem_region(info->phys_base, info->mem_size);
|
2009-05-12 20:47:03 +00:00
|
|
|
out_free_info:
|
2013-10-24 12:50:23 +00:00
|
|
|
if (nand_chip->ecc.priv) {
|
|
|
|
nand_bch_free(nand_chip->ecc.priv);
|
|
|
|
nand_chip->ecc.priv = NULL;
|
|
|
|
}
|
2009-05-12 20:47:03 +00:00
|
|
|
kfree(info);
|
|
|
|
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int omap_nand_remove(struct platform_device *pdev)
|
|
|
|
{
|
|
|
|
struct mtd_info *mtd = platform_get_drvdata(pdev);
|
2013-10-24 12:50:19 +00:00
|
|
|
struct nand_chip *nand_chip = mtd->priv;
|
2010-01-05 10:31:08 +00:00
|
|
|
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
|
|
|
|
mtd);
|
2013-10-24 12:50:23 +00:00
|
|
|
if (nand_chip->ecc.priv) {
|
|
|
|
nand_bch_free(nand_chip->ecc.priv);
|
|
|
|
nand_chip->ecc.priv = NULL;
|
|
|
|
}
|
2009-05-12 20:47:03 +00:00
|
|
|
|
2012-04-24 23:16:00 +00:00
|
|
|
if (info->dma)
|
|
|
|
dma_release_channel(info->dma);
|
|
|
|
|
2012-08-30 19:53:24 +00:00
|
|
|
if (info->gpmc_irq_count > 0)
|
|
|
|
free_irq(info->gpmc_irq_count, info);
|
|
|
|
if (info->gpmc_irq_fifo > 0)
|
|
|
|
free_irq(info->gpmc_irq_fifo, info);
|
2011-01-28 10:12:06 +00:00
|
|
|
|
2009-05-12 20:47:03 +00:00
|
|
|
/* Release NAND device, its internal structures and partitions */
|
2013-10-24 12:50:19 +00:00
|
|
|
nand_release(mtd);
|
|
|
|
iounmap(nand_chip->IO_ADDR_R);
|
2012-09-29 05:44:47 +00:00
|
|
|
release_mem_region(info->phys_base, info->mem_size);
|
2012-08-31 11:35:41 +00:00
|
|
|
kfree(info);
|
2009-05-12 20:47:03 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct platform_driver omap_nand_driver = {
|
|
|
|
.probe = omap_nand_probe,
|
|
|
|
.remove = omap_nand_remove,
|
|
|
|
.driver = {
|
|
|
|
.name = DRIVER_NAME,
|
|
|
|
.owner = THIS_MODULE,
|
|
|
|
},
|
|
|
|
};
|
|
|
|
|
2011-11-27 12:45:03 +00:00
|
|
|
module_platform_driver(omap_nand_driver);
|
2009-05-12 20:47:03 +00:00
|
|
|
|
2011-03-07 03:04:24 +00:00
|
|
|
MODULE_ALIAS("platform:" DRIVER_NAME);
|
2009-05-12 20:47:03 +00:00
|
|
|
MODULE_LICENSE("GPL");
|
|
|
|
MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");
|