u-boot/common/board_f.c
Tom Rini 7c5c137c41 global: Migrate CONFIG_PRAM to CFG
Perform a simple rename of CONFIG_PRAM to CFG_PRAM

Signed-off-by: Tom Rini <trini@konsulko.com>
2022-12-23 10:15:11 -05:00

1046 lines
25 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (c) 2011 The Chromium OS Authors.
* (C) Copyright 2002-2006
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* (C) Copyright 2002
* Sysgo Real-Time Solutions, GmbH <www.elinos.com>
* Marius Groeger <mgroeger@sysgo.de>
*/
#include <common.h>
#include <bloblist.h>
#include <bootstage.h>
#include <clock_legacy.h>
#include <console.h>
#include <cpu.h>
#include <cpu_func.h>
#include <cyclic.h>
#include <display_options.h>
#include <dm.h>
#include <env.h>
#include <env_internal.h>
#include <event.h>
#include <fdtdec.h>
#include <fs.h>
#include <hang.h>
#include <i2c.h>
#include <init.h>
#include <initcall.h>
#include <log.h>
#include <malloc.h>
#include <mapmem.h>
#include <os.h>
#include <post.h>
#include <relocate.h>
#include <serial.h>
#include <spl.h>
#include <status_led.h>
#include <sysreset.h>
#include <timer.h>
#include <trace.h>
#include <video.h>
#include <watchdog.h>
#include <asm/cache.h>
#include <asm/global_data.h>
#include <asm/io.h>
#include <asm/sections.h>
#include <dm/root.h>
#include <linux/errno.h>
#include <linux/log2.h>
DECLARE_GLOBAL_DATA_PTR;
/*
* TODO(sjg@chromium.org): IMO this code should be
* refactored to a single function, something like:
*
* void led_set_state(enum led_colour_t colour, int on);
*/
/************************************************************************
* Coloured LED functionality
************************************************************************
* May be supplied by boards if desired
*/
__weak void coloured_LED_init(void) {}
__weak void red_led_on(void) {}
__weak void red_led_off(void) {}
__weak void green_led_on(void) {}
__weak void green_led_off(void) {}
__weak void yellow_led_on(void) {}
__weak void yellow_led_off(void) {}
__weak void blue_led_on(void) {}
__weak void blue_led_off(void) {}
/*
* Why is gd allocated a register? Prior to reloc it might be better to
* just pass it around to each function in this file?
*
* After reloc one could argue that it is hardly used and doesn't need
* to be in a register. Or if it is it should perhaps hold pointers to all
* global data for all modules, so that post-reloc we can avoid the massive
* literal pool we get on ARM. Or perhaps just encourage each module to use
* a structure...
*/
#if defined(CONFIG_WATCHDOG) || defined(CONFIG_HW_WATCHDOG)
static int init_func_watchdog_init(void)
{
# if defined(CONFIG_HW_WATCHDOG) && \
(defined(CONFIG_M68K) || defined(CONFIG_MICROBLAZE) || \
defined(CONFIG_SH) || \
defined(CONFIG_DESIGNWARE_WATCHDOG) || \
defined(CONFIG_IMX_WATCHDOG))
hw_watchdog_init();
puts(" Watchdog enabled\n");
# endif
schedule();
return 0;
}
int init_func_watchdog_reset(void)
{
schedule();
return 0;
}
#endif /* CONFIG_WATCHDOG */
__weak void board_add_ram_info(int use_default)
{
/* please define platform specific board_add_ram_info() */
}
static int init_baud_rate(void)
{
gd->baudrate = env_get_ulong("baudrate", 10, CONFIG_BAUDRATE);
return 0;
}
static int display_text_info(void)
{
#if !defined(CONFIG_SANDBOX) && !defined(CONFIG_EFI_APP)
ulong bss_start, bss_end, text_base;
bss_start = (ulong)&__bss_start;
bss_end = (ulong)&__bss_end;
#ifdef CONFIG_TEXT_BASE
text_base = CONFIG_TEXT_BASE;
#else
text_base = CONFIG_SYS_MONITOR_BASE;
#endif
debug("U-Boot code: %08lX -> %08lX BSS: -> %08lX\n",
text_base, bss_start, bss_end);
#endif
return 0;
}
#ifdef CONFIG_SYSRESET
static int print_resetinfo(void)
{
struct udevice *dev;
char status[256];
bool status_printed = false;
int ret;
/* Not all boards have sysreset drivers available during early
* boot, so don't fail if one can't be found.
*/
for (ret = uclass_first_device_check(UCLASS_SYSRESET, &dev); dev;
ret = uclass_next_device_check(&dev)) {
if (ret) {
debug("%s: %s sysreset device (error: %d)\n",
__func__, dev->name, ret);
continue;
}
if (!sysreset_get_status(dev, status, sizeof(status))) {
printf("%s%s", status_printed ? " " : "", status);
status_printed = true;
}
}
if (status_printed)
printf("\n");
return 0;
}
#endif
#if defined(CONFIG_DISPLAY_CPUINFO) && CONFIG_IS_ENABLED(CPU)
static int print_cpuinfo(void)
{
struct udevice *dev;
char desc[512];
int ret;
dev = cpu_get_current_dev();
if (!dev) {
debug("%s: Could not get CPU device\n",
__func__);
return -ENODEV;
}
ret = cpu_get_desc(dev, desc, sizeof(desc));
if (ret) {
debug("%s: Could not get CPU description (err = %d)\n",
dev->name, ret);
return ret;
}
printf("CPU: %s\n", desc);
return 0;
}
#endif
static int announce_dram_init(void)
{
puts("DRAM: ");
return 0;
}
/*
* From input size calculate its nearest rounded unit scale (multiply of 2^10)
* and value in calculated unit scale multiplied by 10 (as fractional fixed
* point number with one decimal digit), which is human natural format,
* same what uses print_size() function for displaying. Mathematically it is:
* round_nearest(val * 2^scale) = size * 10; where: 10 <= val < 10240.
*
* For example for size=87654321 we calculate scale=20 and val=836 which means
* that input has natural human format 83.6 M (mega = 2^20).
*/
#define compute_size_scale_val(size, scale, val) do { \
scale = ilog2(size) / 10 * 10; \
val = (10 * size + ((1ULL << scale) >> 1)) >> scale; \
if (val == 10240) { val = 10; scale += 10; } \
} while (0)
/*
* Check if the sizes in their natural units written in decimal format with
* one fraction number are same.
*/
static int sizes_near(unsigned long long size1, unsigned long long size2)
{
unsigned int size1_scale, size1_val, size2_scale, size2_val;
compute_size_scale_val(size1, size1_scale, size1_val);
compute_size_scale_val(size2, size2_scale, size2_val);
return size1_scale == size2_scale && size1_val == size2_val;
}
static int show_dram_config(void)
{
unsigned long long size;
int i;
debug("\nRAM Configuration:\n");
for (i = size = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
size += gd->bd->bi_dram[i].size;
debug("Bank #%d: %llx ", i,
(unsigned long long)(gd->bd->bi_dram[i].start));
#ifdef DEBUG
print_size(gd->bd->bi_dram[i].size, "\n");
#endif
}
debug("\nDRAM: ");
print_size(gd->ram_size, "");
if (!sizes_near(gd->ram_size, size)) {
printf(" (effective ");
print_size(size, ")");
}
board_add_ram_info(0);
putc('\n');
return 0;
}
__weak int dram_init_banksize(void)
{
gd->bd->bi_dram[0].start = gd->ram_base;
gd->bd->bi_dram[0].size = get_effective_memsize();
return 0;
}
#if CONFIG_IS_ENABLED(SYS_I2C_LEGACY)
static int init_func_i2c(void)
{
puts("I2C: ");
i2c_init_all();
puts("ready\n");
return 0;
}
#endif
#if defined(CONFIG_VID)
__weak int init_func_vid(void)
{
return 0;
}
#endif
static int setup_mon_len(void)
{
#if defined(__ARM__) || defined(__MICROBLAZE__)
gd->mon_len = (ulong)&__bss_end - (ulong)_start;
#elif defined(CONFIG_SANDBOX)
gd->mon_len = 0;
#elif defined(CONFIG_EFI_APP)
gd->mon_len = (ulong)&_end - (ulong)_init;
#elif defined(CONFIG_NIOS2) || defined(CONFIG_XTENSA)
gd->mon_len = CONFIG_SYS_MONITOR_LEN;
#elif defined(CONFIG_SH) || defined(CONFIG_RISCV)
gd->mon_len = (ulong)(&__bss_end) - (ulong)(&_start);
#elif defined(CONFIG_SYS_MONITOR_BASE)
/* TODO: use (ulong)&__bss_end - (ulong)&__text_start; ? */
gd->mon_len = (ulong)&__bss_end - CONFIG_SYS_MONITOR_BASE;
#endif
return 0;
}
static int setup_spl_handoff(void)
{
#if CONFIG_IS_ENABLED(HANDOFF)
gd->spl_handoff = bloblist_find(BLOBLISTT_U_BOOT_SPL_HANDOFF,
sizeof(struct spl_handoff));
debug("Found SPL hand-off info %p\n", gd->spl_handoff);
#endif
return 0;
}
__weak int arch_cpu_init(void)
{
return 0;
}
__weak int mach_cpu_init(void)
{
return 0;
}
/* Get the top of usable RAM */
__weak phys_size_t board_get_usable_ram_top(phys_size_t total_size)
{
#if defined(CFG_SYS_SDRAM_BASE) && CFG_SYS_SDRAM_BASE > 0
/*
* Detect whether we have so much RAM that it goes past the end of our
* 32-bit address space. If so, clip the usable RAM so it doesn't.
*/
if (gd->ram_top < CFG_SYS_SDRAM_BASE)
/*
* Will wrap back to top of 32-bit space when reservations
* are made.
*/
return 0;
#endif
return gd->ram_top;
}
__weak int arch_setup_dest_addr(void)
{
return 0;
}
static int setup_dest_addr(void)
{
debug("Monitor len: %08lX\n", gd->mon_len);
/*
* Ram is setup, size stored in gd !!
*/
debug("Ram size: %08llX\n", (unsigned long long)gd->ram_size);
#if CONFIG_VAL(SYS_MEM_TOP_HIDE)
/*
* Subtract specified amount of memory to hide so that it won't
* get "touched" at all by U-Boot. By fixing up gd->ram_size
* the Linux kernel should now get passed the now "corrected"
* memory size and won't touch it either. This should work
* for arch/ppc and arch/powerpc. Only Linux board ports in
* arch/powerpc with bootwrapper support, that recalculate the
* memory size from the SDRAM controller setup will have to
* get fixed.
*/
gd->ram_size -= CONFIG_SYS_MEM_TOP_HIDE;
#endif
#ifdef CFG_SYS_SDRAM_BASE
gd->ram_base = CFG_SYS_SDRAM_BASE;
#endif
gd->ram_top = gd->ram_base + get_effective_memsize();
gd->ram_top = board_get_usable_ram_top(gd->mon_len);
gd->relocaddr = gd->ram_top;
debug("Ram top: %08llX\n", (unsigned long long)gd->ram_top);
return arch_setup_dest_addr();
}
#ifdef CFG_PRAM
/* reserve protected RAM */
static int reserve_pram(void)
{
ulong reg;
reg = env_get_ulong("pram", 10, CFG_PRAM);
gd->relocaddr -= (reg << 10); /* size is in kB */
debug("Reserving %ldk for protected RAM at %08lx\n", reg,
gd->relocaddr);
return 0;
}
#endif /* CFG_PRAM */
/* Round memory pointer down to next 4 kB limit */
static int reserve_round_4k(void)
{
gd->relocaddr &= ~(4096 - 1);
return 0;
}
__weak int arch_reserve_mmu(void)
{
return 0;
}
static int reserve_video(void)
{
if (IS_ENABLED(CONFIG_VIDEO)) {
ulong addr;
int ret;
addr = gd->relocaddr;
ret = video_reserve(&addr);
if (ret)
return ret;
debug("Reserving %luk for video at: %08lx\n",
((unsigned long)gd->relocaddr - addr) >> 10, addr);
gd->relocaddr = addr;
}
return 0;
}
static int reserve_trace(void)
{
#ifdef CONFIG_TRACE
gd->relocaddr -= CONFIG_TRACE_BUFFER_SIZE;
gd->trace_buff = map_sysmem(gd->relocaddr, CONFIG_TRACE_BUFFER_SIZE);
debug("Reserving %luk for trace data at: %08lx\n",
(unsigned long)CONFIG_TRACE_BUFFER_SIZE >> 10, gd->relocaddr);
#endif
return 0;
}
static int reserve_uboot(void)
{
if (!(gd->flags & GD_FLG_SKIP_RELOC)) {
/*
* reserve memory for U-Boot code, data & bss
* round down to next 4 kB limit
*/
gd->relocaddr -= gd->mon_len;
gd->relocaddr &= ~(4096 - 1);
#if defined(CONFIG_E500) || defined(CONFIG_MIPS)
/* round down to next 64 kB limit so that IVPR stays aligned */
gd->relocaddr &= ~(65536 - 1);
#endif
debug("Reserving %ldk for U-Boot at: %08lx\n",
gd->mon_len >> 10, gd->relocaddr);
}
gd->start_addr_sp = gd->relocaddr;
return 0;
}
/*
* reserve after start_addr_sp the requested size and make the stack pointer
* 16-byte aligned, this alignment is needed for cast on the reserved memory
* ref = x86_64 ABI: https://reviews.llvm.org/D30049: 16 bytes
* = ARMv8 Instruction Set Overview: quad word, 16 bytes
*/
static unsigned long reserve_stack_aligned(size_t size)
{
return ALIGN_DOWN(gd->start_addr_sp - size, 16);
}
#ifdef CONFIG_SYS_NONCACHED_MEMORY
static int reserve_noncached(void)
{
/*
* The value of gd->start_addr_sp must match the value of malloc_start
* calculated in board_r.c:initr_malloc(), which is passed to
* dlmalloc.c:mem_malloc_init() and then used by
* cache.c:noncached_init()
*
* These calculations must match the code in cache.c:noncached_init()
*/
gd->start_addr_sp = ALIGN(gd->start_addr_sp, MMU_SECTION_SIZE) -
MMU_SECTION_SIZE;
gd->start_addr_sp -= ALIGN(CONFIG_SYS_NONCACHED_MEMORY,
MMU_SECTION_SIZE);
debug("Reserving %dM for noncached_alloc() at: %08lx\n",
CONFIG_SYS_NONCACHED_MEMORY >> 20, gd->start_addr_sp);
return 0;
}
#endif
/* reserve memory for malloc() area */
static int reserve_malloc(void)
{
gd->start_addr_sp = reserve_stack_aligned(TOTAL_MALLOC_LEN);
debug("Reserving %dk for malloc() at: %08lx\n",
TOTAL_MALLOC_LEN >> 10, gd->start_addr_sp);
#ifdef CONFIG_SYS_NONCACHED_MEMORY
reserve_noncached();
#endif
return 0;
}
/* (permanently) allocate a Board Info struct */
static int reserve_board(void)
{
if (!gd->bd) {
gd->start_addr_sp = reserve_stack_aligned(sizeof(struct bd_info));
gd->bd = (struct bd_info *)map_sysmem(gd->start_addr_sp,
sizeof(struct bd_info));
memset(gd->bd, '\0', sizeof(struct bd_info));
debug("Reserving %zu Bytes for Board Info at: %08lx\n",
sizeof(struct bd_info), gd->start_addr_sp);
}
return 0;
}
static int reserve_global_data(void)
{
gd->start_addr_sp = reserve_stack_aligned(sizeof(gd_t));
gd->new_gd = (gd_t *)map_sysmem(gd->start_addr_sp, sizeof(gd_t));
debug("Reserving %zu Bytes for Global Data at: %08lx\n",
sizeof(gd_t), gd->start_addr_sp);
return 0;
}
static int reserve_fdt(void)
{
if (!IS_ENABLED(CONFIG_OF_EMBED)) {
/*
* If the device tree is sitting immediately above our image
* then we must relocate it. If it is embedded in the data
* section, then it will be relocated with other data.
*/
if (gd->fdt_blob) {
gd->fdt_size = ALIGN(fdt_totalsize(gd->fdt_blob), 32);
gd->start_addr_sp = reserve_stack_aligned(gd->fdt_size);
gd->new_fdt = map_sysmem(gd->start_addr_sp, gd->fdt_size);
debug("Reserving %lu Bytes for FDT at: %08lx\n",
gd->fdt_size, gd->start_addr_sp);
}
}
return 0;
}
static int reserve_bootstage(void)
{
#ifdef CONFIG_BOOTSTAGE
int size = bootstage_get_size();
gd->start_addr_sp = reserve_stack_aligned(size);
gd->new_bootstage = map_sysmem(gd->start_addr_sp, size);
debug("Reserving %#x Bytes for bootstage at: %08lx\n", size,
gd->start_addr_sp);
#endif
return 0;
}
__weak int arch_reserve_stacks(void)
{
return 0;
}
static int reserve_stacks(void)
{
/* make stack pointer 16-byte aligned */
gd->start_addr_sp = reserve_stack_aligned(16);
/*
* let the architecture-specific code tailor gd->start_addr_sp and
* gd->irq_sp
*/
return arch_reserve_stacks();
}
static int reserve_bloblist(void)
{
#ifdef CONFIG_BLOBLIST
/* Align to a 4KB boundary for easier reading of addresses */
gd->start_addr_sp = ALIGN_DOWN(gd->start_addr_sp -
CONFIG_BLOBLIST_SIZE_RELOC, 0x1000);
gd->new_bloblist = map_sysmem(gd->start_addr_sp,
CONFIG_BLOBLIST_SIZE_RELOC);
#endif
return 0;
}
static int display_new_sp(void)
{
debug("New Stack Pointer is: %08lx\n", gd->start_addr_sp);
return 0;
}
__weak int arch_setup_bdinfo(void)
{
return 0;
}
int setup_bdinfo(void)
{
struct bd_info *bd = gd->bd;
if (IS_ENABLED(CONFIG_SYS_HAS_SRAM)) {
bd->bi_sramstart = CONFIG_SYS_SRAM_BASE; /* start of SRAM */
bd->bi_sramsize = CONFIG_SYS_SRAM_SIZE; /* size of SRAM */
}
return arch_setup_bdinfo();
}
#ifdef CONFIG_POST
static int init_post(void)
{
post_bootmode_init();
post_run(NULL, POST_ROM | post_bootmode_get(0));
return 0;
}
#endif
static int reloc_fdt(void)
{
if (!IS_ENABLED(CONFIG_OF_EMBED)) {
if (gd->flags & GD_FLG_SKIP_RELOC)
return 0;
if (gd->new_fdt) {
memcpy(gd->new_fdt, gd->fdt_blob,
fdt_totalsize(gd->fdt_blob));
gd->fdt_blob = gd->new_fdt;
}
}
return 0;
}
static int reloc_bootstage(void)
{
#ifdef CONFIG_BOOTSTAGE
if (gd->flags & GD_FLG_SKIP_RELOC)
return 0;
if (gd->new_bootstage) {
int size = bootstage_get_size();
debug("Copying bootstage from %p to %p, size %x\n",
gd->bootstage, gd->new_bootstage, size);
memcpy(gd->new_bootstage, gd->bootstage, size);
gd->bootstage = gd->new_bootstage;
bootstage_relocate();
}
#endif
return 0;
}
static int reloc_bloblist(void)
{
#ifdef CONFIG_BLOBLIST
/*
* Relocate only if we are supposed to send it
*/
if ((gd->flags & GD_FLG_SKIP_RELOC) &&
CONFIG_BLOBLIST_SIZE == CONFIG_BLOBLIST_SIZE_RELOC) {
debug("Not relocating bloblist\n");
return 0;
}
if (gd->new_bloblist) {
int size = CONFIG_BLOBLIST_SIZE;
debug("Copying bloblist from %p to %p, size %x\n",
gd->bloblist, gd->new_bloblist, size);
bloblist_reloc(gd->new_bloblist, CONFIG_BLOBLIST_SIZE_RELOC,
gd->bloblist, size);
gd->bloblist = gd->new_bloblist;
}
#endif
return 0;
}
static int setup_reloc(void)
{
if (!(gd->flags & GD_FLG_SKIP_RELOC)) {
#ifdef CONFIG_TEXT_BASE
#ifdef ARM
gd->reloc_off = gd->relocaddr - (unsigned long)__image_copy_start;
#elif defined(CONFIG_MICROBLAZE)
gd->reloc_off = gd->relocaddr - (u32)_start;
#elif defined(CONFIG_M68K)
/*
* On all ColdFire arch cpu, monitor code starts always
* just after the default vector table location, so at 0x400
*/
gd->reloc_off = gd->relocaddr - (CONFIG_TEXT_BASE + 0x400);
#elif !defined(CONFIG_SANDBOX)
gd->reloc_off = gd->relocaddr - CONFIG_TEXT_BASE;
#endif
#endif
}
memcpy(gd->new_gd, (char *)gd, sizeof(gd_t));
if (gd->flags & GD_FLG_SKIP_RELOC) {
debug("Skipping relocation due to flag\n");
} else {
debug("Relocation Offset is: %08lx\n", gd->reloc_off);
debug("Relocating to %08lx, new gd at %08lx, sp at %08lx\n",
gd->relocaddr, (ulong)map_to_sysmem(gd->new_gd),
gd->start_addr_sp);
}
return 0;
}
#ifdef CONFIG_OF_BOARD_FIXUP
static int fix_fdt(void)
{
return board_fix_fdt((void *)gd->fdt_blob);
}
#endif
/* ARM calls relocate_code from its crt0.S */
#if !defined(CONFIG_ARM) && !defined(CONFIG_SANDBOX) && \
!CONFIG_IS_ENABLED(X86_64)
static int jump_to_copy(void)
{
if (gd->flags & GD_FLG_SKIP_RELOC)
return 0;
/*
* x86 is special, but in a nice way. It uses a trampoline which
* enables the dcache if possible.
*
* For now, other archs use relocate_code(), which is implemented
* similarly for all archs. When we do generic relocation, hopefully
* we can make all archs enable the dcache prior to relocation.
*/
#if defined(CONFIG_X86) || defined(CONFIG_ARC)
/*
* SDRAM and console are now initialised. The final stack can now
* be setup in SDRAM. Code execution will continue in Flash, but
* with the stack in SDRAM and Global Data in temporary memory
* (CPU cache)
*/
arch_setup_gd(gd->new_gd);
board_init_f_r_trampoline(gd->start_addr_sp);
#else
relocate_code(gd->start_addr_sp, gd->new_gd, gd->relocaddr);
#endif
return 0;
}
#endif
/* Record the board_init_f() bootstage (after arch_cpu_init()) */
static int initf_bootstage(void)
{
bool from_spl = IS_ENABLED(CONFIG_SPL_BOOTSTAGE) &&
IS_ENABLED(CONFIG_BOOTSTAGE_STASH);
int ret;
ret = bootstage_init(!from_spl);
if (ret)
return ret;
if (from_spl) {
const void *stash = map_sysmem(CONFIG_BOOTSTAGE_STASH_ADDR,
CONFIG_BOOTSTAGE_STASH_SIZE);
ret = bootstage_unstash(stash, CONFIG_BOOTSTAGE_STASH_SIZE);
if (ret && ret != -ENOENT) {
debug("Failed to unstash bootstage: err=%d\n", ret);
return ret;
}
}
bootstage_mark_name(BOOTSTAGE_ID_START_UBOOT_F, "board_init_f");
return 0;
}
static int initf_dm(void)
{
#if defined(CONFIG_DM) && CONFIG_VAL(SYS_MALLOC_F_LEN)
int ret;
bootstage_start(BOOTSTAGE_ID_ACCUM_DM_F, "dm_f");
ret = dm_init_and_scan(true);
bootstage_accum(BOOTSTAGE_ID_ACCUM_DM_F);
if (ret)
return ret;
if (IS_ENABLED(CONFIG_TIMER_EARLY)) {
ret = dm_timer_init();
if (ret)
return ret;
}
#endif
return 0;
}
/* Architecture-specific memory reservation */
__weak int reserve_arch(void)
{
return 0;
}
__weak int checkcpu(void)
{
return 0;
}
__weak int clear_bss(void)
{
return 0;
}
static int misc_init_f(void)
{
return event_notify_null(EVT_MISC_INIT_F);
}
static const init_fnc_t init_sequence_f[] = {
setup_mon_len,
#ifdef CONFIG_OF_CONTROL
fdtdec_setup,
#endif
#ifdef CONFIG_TRACE_EARLY
trace_early_init,
#endif
initf_malloc,
log_init,
initf_bootstage, /* uses its own timer, so does not need DM */
event_init,
#ifdef CONFIG_BLOBLIST
bloblist_init,
#endif
setup_spl_handoff,
#if defined(CONFIG_CONSOLE_RECORD_INIT_F)
console_record_init,
#endif
#if defined(CONFIG_HAVE_FSP)
arch_fsp_init,
#endif
arch_cpu_init, /* basic arch cpu dependent setup */
mach_cpu_init, /* SoC/machine dependent CPU setup */
initf_dm,
#if defined(CONFIG_BOARD_EARLY_INIT_F)
board_early_init_f,
#endif
#if defined(CONFIG_PPC) || defined(CONFIG_SYS_FSL_CLK) || defined(CONFIG_M68K)
/* get CPU and bus clocks according to the environment variable */
get_clocks, /* get CPU and bus clocks (etc.) */
#endif
#if !defined(CONFIG_M68K)
timer_init, /* initialize timer */
#endif
#if defined(CONFIG_BOARD_POSTCLK_INIT)
board_postclk_init,
#endif
env_init, /* initialize environment */
init_baud_rate, /* initialze baudrate settings */
serial_init, /* serial communications setup */
console_init_f, /* stage 1 init of console */
display_options, /* say that we are here */
display_text_info, /* show debugging info if required */
checkcpu,
#if defined(CONFIG_SYSRESET)
print_resetinfo,
#endif
#if defined(CONFIG_DISPLAY_CPUINFO)
print_cpuinfo, /* display cpu info (and speed) */
#endif
#if defined(CONFIG_DTB_RESELECT)
embedded_dtb_select,
#endif
#if defined(CONFIG_DISPLAY_BOARDINFO)
show_board_info,
#endif
INIT_FUNC_WATCHDOG_INIT
misc_init_f,
INIT_FUNC_WATCHDOG_RESET
#if CONFIG_IS_ENABLED(SYS_I2C_LEGACY)
init_func_i2c,
#endif
#if defined(CONFIG_VID) && !defined(CONFIG_SPL)
init_func_vid,
#endif
announce_dram_init,
dram_init, /* configure available RAM banks */
#ifdef CONFIG_POST
post_init_f,
#endif
INIT_FUNC_WATCHDOG_RESET
#if defined(CFG_SYS_DRAM_TEST)
testdram,
#endif /* CFG_SYS_DRAM_TEST */
INIT_FUNC_WATCHDOG_RESET
#ifdef CONFIG_POST
init_post,
#endif
INIT_FUNC_WATCHDOG_RESET
/*
* Now that we have DRAM mapped and working, we can
* relocate the code and continue running from DRAM.
*
* Reserve memory at end of RAM for (top down in that order):
* - area that won't get touched by U-Boot and Linux (optional)
* - kernel log buffer
* - protected RAM
* - LCD framebuffer
* - monitor code
* - board info struct
*/
setup_dest_addr,
#ifdef CONFIG_OF_BOARD_FIXUP
fix_fdt,
#endif
#ifdef CFG_PRAM
reserve_pram,
#endif
reserve_round_4k,
arch_reserve_mmu,
reserve_video,
reserve_trace,
reserve_uboot,
reserve_malloc,
reserve_board,
reserve_global_data,
reserve_fdt,
reserve_bootstage,
reserve_bloblist,
reserve_arch,
reserve_stacks,
dram_init_banksize,
show_dram_config,
INIT_FUNC_WATCHDOG_RESET
setup_bdinfo,
display_new_sp,
INIT_FUNC_WATCHDOG_RESET
reloc_fdt,
reloc_bootstage,
reloc_bloblist,
setup_reloc,
#if defined(CONFIG_X86) || defined(CONFIG_ARC)
copy_uboot_to_ram,
do_elf_reloc_fixups,
#endif
clear_bss,
/*
* Deregister all cyclic functions before relocation, so that
* gd->cyclic_list does not contain any references to pre-relocation
* devices. Drivers will register their cyclic functions anew when the
* devices are probed again.
*
* This should happen as late as possible so that the window where a
* watchdog device is not serviced is as small as possible.
*/
cyclic_unregister_all,
#if !defined(CONFIG_ARM) && !defined(CONFIG_SANDBOX) && \
!CONFIG_IS_ENABLED(X86_64)
jump_to_copy,
#endif
NULL,
};
void board_init_f(ulong boot_flags)
{
gd->flags = boot_flags;
gd->have_console = 0;
if (initcall_run_list(init_sequence_f))
hang();
#if !defined(CONFIG_ARM) && !defined(CONFIG_SANDBOX) && \
!defined(CONFIG_EFI_APP) && !CONFIG_IS_ENABLED(X86_64) && \
!defined(CONFIG_ARC)
/* NOTREACHED - jump_to_copy() does not return */
hang();
#endif
}
#if defined(CONFIG_X86) || defined(CONFIG_ARC)
/*
* For now this code is only used on x86.
*
* init_sequence_f_r is the list of init functions which are run when
* U-Boot is executing from Flash with a semi-limited 'C' environment.
* The following limitations must be considered when implementing an
* '_f_r' function:
* - 'static' variables are read-only
* - Global Data (gd->xxx) is read/write
*
* The '_f_r' sequence must, as a minimum, copy U-Boot to RAM (if
* supported). It _should_, if possible, copy global data to RAM and
* initialise the CPU caches (to speed up the relocation process)
*
* NOTE: At present only x86 uses this route, but it is intended that
* all archs will move to this when generic relocation is implemented.
*/
static const init_fnc_t init_sequence_f_r[] = {
#if !CONFIG_IS_ENABLED(X86_64)
init_cache_f_r,
#endif
NULL,
};
void board_init_f_r(void)
{
if (initcall_run_list(init_sequence_f_r))
hang();
/*
* The pre-relocation drivers may be using memory that has now gone
* away. Mark serial as unavailable - this will fall back to the debug
* UART if available.
*
* Do the same with log drivers since the memory may not be available.
*/
gd->flags &= ~(GD_FLG_SERIAL_READY | GD_FLG_LOG_READY);
#ifdef CONFIG_TIMER
gd->timer = NULL;
#endif
/*
* U-Boot has been copied into SDRAM, the BSS has been cleared etc.
* Transfer execution from Flash to RAM by calculating the address
* of the in-RAM copy of board_init_r() and calling it
*/
(board_init_r + gd->reloc_off)((gd_t *)gd, gd->relocaddr);
/* NOTREACHED - board_init_r() does not return */
hang();
}
#endif /* CONFIG_X86 */