u-boot/drivers/spi/ca_sflash.c
Simon Glass 401d1c4f5d common: Drop asm/global_data.h from common header
Move this out of the common header and include it only where needed.  In
a number of cases this requires adding "struct udevice;" to avoid adding
another large header or in other cases replacing / adding missing header
files that had been pulled in, very indirectly.   Finally, we have a few
cases where we did not need to include <asm/global_data.h> at all, so
remove that include.

Signed-off-by: Simon Glass <sjg@chromium.org>
Signed-off-by: Tom Rini <trini@konsulko.com>
2021-02-02 15:33:42 -05:00

578 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Driver for Cortina SPI-FLASH Controller
*
* Copyright (C) 2020 Cortina Access Inc. All Rights Reserved.
*
* Author: PengPeng Chen <pengpeng.chen@cortina-access.com>
*/
#include <common.h>
#include <malloc.h>
#include <clk.h>
#include <dm.h>
#include <errno.h>
#include <fdtdec.h>
#include <linux/compat.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/ioport.h>
#include <linux/sizes.h>
#include <spi.h>
#include <spi-mem.h>
#include <reset.h>
#include <asm/global_data.h>
DECLARE_GLOBAL_DATA_PTR;
struct ca_sflash_regs {
u32 idr; /* 0x00:Flash word ID Register */
u32 tc; /* 0x04:Flash Timeout Counter Register */
u32 sr; /* 0x08:Flash Status Register */
u32 tr; /* 0x0C:Flash Type Register */
u32 asr; /* 0x10:Flash ACCESS START/BUSY Register */
u32 isr; /* 0x14:Flash Interrupt Status Register */
u32 imr; /* 0x18:Flash Interrupt Mask Register */
u32 fcr; /* 0x1C:NAND Flash FIFO Control Register */
u32 ffsr; /* 0x20:Flash FIFO Status Register */
u32 ffar; /* 0x24:Flash FIFO ADDRESS Register */
u32 ffmar; /* 0x28:Flash FIFO MATCHING ADDRESS Register */
u32 ffdr; /* 0x2C:Flash FIFO Data Register */
u32 ar; /* 0x30:Serial Flash Access Register */
u32 ear; /* 0x34:Serial Flash Extend Access Register */
u32 adr; /* 0x38:Serial Flash ADdress Register */
u32 dr; /* 0x3C:Serial Flash Data Register */
u32 tmr; /* 0x40:Serial Flash Timing Register */
};
/*
* FLASH_TYPE
*/
#define CA_FLASH_TR_PIN BIT(15)
#define CA_FLASH_TR_TYPE_MSK GENMASK(14, 12)
#define CA_FLASH_TR_TYPE(tp) (((tp) << 12) & CA_FLASH_TR_TYPE_MSK)
#define CA_FLASH_TR_WIDTH BIT(11)
#define CA_FLASH_TR_SIZE_MSK GENMASK(10, 9)
#define CA_FLASH_TR_SIZE(sz) (((sz) << 9) & CA_FLASH_TR_SIZE_MSK)
/*
* FLASH_FLASH_ACCESS_START
*/
#define CA_FLASH_ASR_IND_START_EN BIT(1)
#define CA_FLASH_ASR_DMA_START_EN BIT(3)
#define CA_FLASH_ASR_WR_ACCESS_EN BIT(9)
/*
* FLASH_FLASH_INTERRUPT
*/
#define CA_FLASH_ISR_REG_IRQ BIT(1)
#define CA_FLASH_ISR_FIFO_IRQ BIT(2)
/*
* FLASH_SF_ACCESS
*/
#define CA_SF_AR_OP_MSK GENMASK(7, 0)
#define CA_SF_AR_OP(op) ((op) << 0 & CA_SF_AR_OP_MSK)
#define CA_SF_AR_ACCODE_MSK GENMASK(11, 8)
#define CA_SF_AR_ACCODE(ac) (((ac) << 8) & CA_SF_AR_ACCODE_MSK)
#define CA_SF_AR_FORCE_TERM BIT(12)
#define CA_SF_AR_FORCE_BURST BIT(13)
#define CA_SF_AR_AUTO_MODE_EN BIT(15)
#define CA_SF_AR_CHIP_EN_ALT BIT(16)
#define CA_SF_AR_HI_SPEED_RD BIT(17)
#define CA_SF_AR_MIO_INF_DC BIT(24)
#define CA_SF_AR_MIO_INF_AC BIT(25)
#define CA_SF_AR_MIO_INF_CC BIT(26)
#define CA_SF_AR_DDR_MSK GENMASK(29, 28)
#define CA_SF_AR_DDR(ddr) (((ddr) << 28) & CA_SF_AR_DDR_MSK)
#define CA_SF_AR_MIO_INF_MSK GENMASK(31, 30)
#define CA_SF_AR_MIO_INF(io) (((io) << 30) & CA_SF_AR_MIO_INF_MSK)
/*
* FLASH_SF_EXT_ACCESS
*/
#define CA_SF_EAR_OP_MSK GENMASK(7, 0)
#define CA_SF_EAR_OP(op) (((op) << 0) & CA_SF_EAR_OP_MSK)
#define CA_SF_EAR_DATA_CNT_MSK GENMASK(20, 8)
#define CA_SF_EAR_DATA_CNT(cnt) (((cnt) << 8) & CA_SF_EAR_DATA_CNT_MSK)
#define CA_SF_EAR_DATA_CNT_MAX (4096)
#define CA_SF_EAR_ADDR_CNT_MSK GENMASK(23, 21)
#define CA_SF_EAR_ADDR_CNT(cnt) (((cnt) << 21) & CA_SF_EAR_ADDR_CNT_MSK)
#define CA_SF_EAR_ADDR_CNT_MAX (5)
#define CA_SF_EAR_DUMY_CNT_MSK GENMASK(29, 24)
#define CA_SF_EAR_DUMY_CNT(cnt) (((cnt) << 24) & CA_SF_EAR_DUMY_CNT_MSK)
#define CA_SF_EAR_DUMY_CNT_MAX (32)
#define CA_SF_EAR_DRD_CMD_EN BIT(31)
/*
* FLASH_SF_ADDRESS
*/
#define CA_SF_ADR_REG_MSK GENMASK(31, 0)
#define CA_SF_ADR_REG(addr) (((addr) << 0) & CA_SF_ADR_REG_MSK)
/*
* FLASH_SF_DATA
*/
#define CA_SF_DR_REG_MSK GENMASK(31, 0)
#define CA_SF_DR_REG(addr) (((addr) << 0) & CA_SF_DR_REG_MSK)
/*
* FLASH_SF_TIMING
*/
#define CA_SF_TMR_IDLE_MSK GENMASK(7, 0)
#define CA_SF_TMR_IDLE(idle) (((idle) << 0) & CA_SF_TMR_IDLE_MSK)
#define CA_SF_TMR_HOLD_MSK GENMASK(15, 8)
#define CA_SF_TMR_HOLD(hold) (((hold) << 8) & CA_SF_TMR_HOLD_MSK)
#define CA_SF_TMR_SETUP_MSK GENMASK(23, 16)
#define CA_SF_TMR_SETUP(setup) (((setup) << 16) & CA_SF_TMR_SETUP_MSK)
#define CA_SF_TMR_CLK_MSK GENMASK(26, 24)
#define CA_SF_TMR_CLK(clk) (((clk) << 24) & CA_SF_TMR_CLK_MSK)
#define CA_SFLASH_IND_WRITE 0
#define CA_SFLASH_IND_READ 1
#define CA_SFLASH_MEM_MAP 3
#define CA_SFLASH_FIFO_TIMEOUT_US 30000
#define CA_SFLASH_BUSY_TIMEOUT_US 40000
#define CA_SF_AC_OP 0x00
#define CA_SF_AC_OP_1_DATA 0x01
#define CA_SF_AC_OP_2_DATA 0x02
#define CA_SF_AC_OP_3_DATA 0x03
#define CA_SF_AC_OP_4_DATA 0x04
#define CA_SF_AC_OP_3_ADDR 0x05
#define CA_SF_AC_OP_4_ADDR (CA_SF_AC_OP_3_ADDR)
#define CA_SF_AC_OP_3_ADDR_1_DATA 0x06
#define CA_SF_AC_OP_4_ADDR_1_DATA (CA_SF_AC_OP_3_ADDR_1_DATA << 2)
#define CA_SF_AC_OP_3_ADDR_2_DATA 0x07
#define CA_SF_AC_OP_4_ADDR_2_DATA (CA_SF_AC_OP_3_ADDR_2_DATA << 2)
#define CA_SF_AC_OP_3_ADDR_3_DATA 0x08
#define CA_SF_AC_OP_4_ADDR_3_DATA (CA_SF_AC_OP_3_ADDR_3_DATA << 2)
#define CA_SF_AC_OP_3_ADDR_4_DATA 0x09
#define CA_SF_AC_OP_4_ADDR_4_DATA (CA_SF_AC_OP_3_ADDR_4_DATA << 2)
#define CA_SF_AC_OP_3_ADDR_X_1_DATA 0x0A
#define CA_SF_AC_OP_4_ADDR_X_1_DATA (CA_SF_AC_OP_3_ADDR_X_1_DATA << 2)
#define CA_SF_AC_OP_3_ADDR_X_2_DATA 0x0B
#define CA_SF_AC_OP_4_ADDR_X_2_DATA (CA_SF_AC_OP_3_ADDR_X_2_DATA << 2)
#define CA_SF_AC_OP_3_ADDR_X_3_DATA 0x0C
#define CA_SF_AC_OP_4_ADDR_X_3_DATA (CA_SF_AC_OP_3_ADDR_X_3_DATA << 2)
#define CA_SF_AC_OP_3_ADDR_X_4_DATA 0x0D
#define CA_SF_AC_OP_4_ADDR_X_4_DATA (CA_SF_AC_OP_3_ADDR_X_4_DATA << 2)
#define CA_SF_AC_OP_3_ADDR_4X_1_DATA 0x0E
#define CA_SF_AC_OP_4_ADDR_4X_1_DATA (CA_SF_AC_OP_3_ADDR_4X_1_DATA << 2)
#define CA_SF_AC_OP_EXTEND 0x0F
#define CA_SF_ACCESS_MIO_SINGLE 0
#define CA_SF_ACCESS_MIO_DUAL 1
#define CA_SF_ACCESS_MIO_QUARD 2
enum access_type {
RD_ACCESS,
WR_ACCESS,
};
struct ca_sflash_priv {
struct ca_sflash_regs *regs;
u8 rx_width;
u8 tx_width;
};
/*
* This function doesn't do anything except help with debugging
*/
static int ca_sflash_claim_bus(struct udevice *dev)
{
debug("%s:\n", __func__);
return 0;
}
static int ca_sflash_release_bus(struct udevice *dev)
{
debug("%s:\n", __func__);
return 0;
}
static int ca_sflash_set_speed(struct udevice *dev, uint speed)
{
debug("%s:\n", __func__);
return 0;
}
static int ca_sflash_set_mode(struct udevice *dev, uint mode)
{
struct ca_sflash_priv *priv = dev_get_priv(dev);
if (mode & SPI_RX_QUAD)
priv->rx_width = 4;
else if (mode & SPI_RX_DUAL)
priv->rx_width = 2;
else
priv->rx_width = 1;
if (mode & SPI_TX_QUAD)
priv->tx_width = 4;
else if (mode & SPI_TX_DUAL)
priv->tx_width = 2;
else
priv->tx_width = 1;
debug("%s: mode=%d, rx_width=%d, tx_width=%d\n",
__func__, mode, priv->rx_width, priv->tx_width);
return 0;
}
static int _ca_sflash_wait_for_not_busy(struct ca_sflash_priv *priv)
{
u32 asr;
if (readl_poll_timeout(&priv->regs->asr, asr,
!(asr & CA_FLASH_ASR_IND_START_EN),
CA_SFLASH_BUSY_TIMEOUT_US)) {
pr_err("busy timeout (stat:%#x)\n", asr);
return -1;
}
return 0;
}
static int _ca_sflash_wait_cmd(struct ca_sflash_priv *priv,
enum access_type type)
{
if (type == WR_ACCESS) {
/* Enable write access and start the sflash indirect access */
clrsetbits_le32(&priv->regs->asr, GENMASK(31, 0),
CA_FLASH_ASR_WR_ACCESS_EN
| CA_FLASH_ASR_IND_START_EN);
} else if (type == RD_ACCESS) {
/* Start the sflash indirect access */
clrsetbits_le32(&priv->regs->asr, GENMASK(31, 0),
CA_FLASH_ASR_IND_START_EN);
} else {
printf("%s: !error access type.\n", __func__);
return -1;
}
/* Wait til the action(rd/wr) completed */
return _ca_sflash_wait_for_not_busy(priv);
}
static int _ca_sflash_read(struct ca_sflash_priv *priv,
u8 *buf, unsigned int data_len)
{
u32 reg_data;
int len;
len = data_len;
while (len >= 4) {
if (_ca_sflash_wait_cmd(priv, RD_ACCESS))
return -1;
reg_data = readl(&priv->regs->dr);
*buf++ = reg_data & 0xFF;
*buf++ = (reg_data >> 8) & 0xFF;
*buf++ = (reg_data >> 16) & 0xFF;
*buf++ = (reg_data >> 24) & 0xFF;
len -= 4;
debug("%s: reg_data=%#08x\n",
__func__, reg_data);
}
if (len > 0) {
if (_ca_sflash_wait_cmd(priv, RD_ACCESS))
return -1;
reg_data = readl(&priv->regs->dr);
debug("%s: reg_data=%#08x\n",
__func__, reg_data);
}
switch (len) {
case 3:
*buf++ = reg_data & 0xFF;
*buf++ = (reg_data >> 8) & 0xFF;
*buf++ = (reg_data >> 16) & 0xFF;
break;
case 2:
*buf++ = reg_data & 0xFF;
*buf++ = (reg_data >> 8) & 0xFF;
break;
case 1:
*buf++ = reg_data & 0xFF;
break;
case 0:
break;
default:
printf("%s: error data_length %d!\n", __func__, len);
}
return 0;
}
static int _ca_sflash_mio_set(struct ca_sflash_priv *priv,
u8 width)
{
if (width == 4) {
setbits_le32(&priv->regs->ar,
CA_SF_AR_MIO_INF_DC
| CA_SF_AR_MIO_INF(CA_SF_ACCESS_MIO_QUARD)
| CA_SF_AR_FORCE_BURST);
} else if (width == 2) {
setbits_le32(&priv->regs->ar,
CA_SF_AR_MIO_INF_DC
| CA_SF_AR_MIO_INF(CA_SF_ACCESS_MIO_DUAL)
| CA_SF_AR_FORCE_BURST);
} else if (width == 1) {
setbits_le32(&priv->regs->ar,
CA_SF_AR_MIO_INF(CA_SF_ACCESS_MIO_SINGLE)
| CA_SF_AR_FORCE_BURST);
} else {
printf("%s: error rx/tx width %d!\n", __func__, width);
return -1;
}
return 0;
}
static int _ca_sflash_write(struct ca_sflash_priv *priv,
u8 *buf, unsigned int data_len)
{
u32 reg_data;
int len;
len = data_len;
while (len > 0) {
reg_data = buf[0]
| (buf[1] << 8)
| (buf[2] << 16)
| (buf[3] << 24);
debug("%s: reg_data=%#08x\n",
__func__, reg_data);
/* Fill data */
clrsetbits_le32(&priv->regs->dr, GENMASK(31, 0), reg_data);
if (_ca_sflash_wait_cmd(priv, WR_ACCESS))
return -1;
len -= 4;
buf += 4;
}
return 0;
}
static int _ca_sflash_access_data(struct ca_sflash_priv *priv,
struct spi_mem_op *op)
{
int total_cnt;
unsigned int len;
unsigned int data_cnt = op->data.nbytes;
u64 addr_offset = op->addr.val;
u8 addr_cnt = op->addr.nbytes;
u8 *data_buf = NULL;
u8 *buf = NULL;
if (op->data.dir == SPI_MEM_DATA_IN)
data_buf = (u8 *)op->data.buf.in;
else
data_buf = (u8 *)op->data.buf.out;
if (data_cnt > CA_SF_EAR_DATA_CNT_MAX)
buf = malloc(CA_SF_EAR_DATA_CNT_MAX);
else
buf = malloc(data_cnt);
total_cnt = data_cnt;
while (total_cnt > 0) {
/* Fill address */
if (addr_cnt > 0)
clrsetbits_le32(&priv->regs->adr,
GENMASK(31, 0), (u32)addr_offset);
if (total_cnt > CA_SF_EAR_DATA_CNT_MAX) {
len = CA_SF_EAR_DATA_CNT_MAX;
addr_offset += CA_SF_EAR_DATA_CNT_MAX;
/* Clear start bit before next bulk read */
clrbits_le32(&priv->regs->asr, GENMASK(31, 0));
} else {
len = total_cnt;
}
memset(buf, 0, len);
if (op->data.dir == SPI_MEM_DATA_IN) {
if (_ca_sflash_read(priv, buf, len))
break;
memcpy(data_buf, buf, len);
} else {
memcpy(buf, data_buf, len);
if (_ca_sflash_write(priv, buf, len))
break;
}
total_cnt -= len;
data_buf += len;
}
if (buf)
free(buf);
return total_cnt > 0 ? -1 : 0;
}
static int _ca_sflash_issue_cmd(struct ca_sflash_priv *priv,
struct spi_mem_op *op, u8 opcode)
{
u8 dummy_cnt = op->dummy.nbytes;
u8 addr_cnt = op->addr.nbytes;
u8 mio_width;
unsigned int data_cnt = op->data.nbytes;
u64 addr_offset = op->addr.val;
/* Set the access register */
clrsetbits_le32(&priv->regs->ar,
GENMASK(31, 0), CA_SF_AR_ACCODE(opcode));
if (opcode == CA_SF_AC_OP_EXTEND) { /* read_data, write_data */
if (data_cnt > 6) {
if (op->data.dir == SPI_MEM_DATA_IN)
mio_width = priv->rx_width;
else
mio_width = priv->tx_width;
if (_ca_sflash_mio_set(priv, mio_width))
return -1;
}
debug("%s: FLASH ACCESS reg=%#08x\n",
__func__, readl(&priv->regs->ar));
/* Use command in extend_access register */
clrsetbits_le32(&priv->regs->ear,
GENMASK(31, 0), CA_SF_EAR_OP(op->cmd.opcode)
| CA_SF_EAR_DUMY_CNT(dummy_cnt * 8 - 1)
| CA_SF_EAR_ADDR_CNT(addr_cnt - 1)
| CA_SF_EAR_DATA_CNT(4 - 1)
| CA_SF_EAR_DRD_CMD_EN);
debug("%s: FLASH EXT ACCESS reg=%#08x\n",
__func__, readl(&priv->regs->ear));
if (_ca_sflash_access_data(priv, op))
return -1;
} else { /* reset_op, wr_enable, wr_disable */
setbits_le32(&priv->regs->ar,
CA_SF_AR_OP(op->cmd.opcode));
debug("%s: FLASH ACCESS reg=%#08x\n",
__func__, readl(&priv->regs->ar));
if (opcode == CA_SF_AC_OP_4_ADDR) { /* erase_op */
/* Configure address length */
if (addr_cnt > 3) /* 4 Bytes address */
setbits_le32(&priv->regs->tr,
CA_FLASH_TR_SIZE(2));
else /* 3 Bytes address */
clrbits_le32(&priv->regs->tr,
CA_FLASH_TR_SIZE_MSK);
/* Fill address */
if (addr_cnt > 0)
clrsetbits_le32(&priv->regs->adr,
GENMASK(31, 0),
(u32)addr_offset);
}
if (_ca_sflash_wait_cmd(priv, RD_ACCESS))
return -1;
}
/* elapse 10us before issuing any other command */
udelay(10);
return 0;
}
static int ca_sflash_exec_op(struct spi_slave *slave,
const struct spi_mem_op *op)
{
struct ca_sflash_priv *priv = dev_get_priv(slave->dev->parent);
u8 opcode;
debug("%s: cmd:%#02x addr.val:%#llx addr.len:%#x data.len:%#x data.dir:%#x\n",
__func__, op->cmd.opcode, op->addr.val,
op->addr.nbytes, op->data.nbytes, op->data.dir);
if (op->data.nbytes == 0 && op->addr.nbytes == 0) {
opcode = CA_SF_AC_OP;
} else if (op->data.nbytes == 0 && op->addr.nbytes > 0) {
opcode = CA_SF_AC_OP_4_ADDR;
} else if (op->data.nbytes > 0) {
opcode = CA_SF_AC_OP_EXTEND;
} else {
printf("%s: can't support cmd.opcode:(%#02x) type currently!\n",
__func__, op->cmd.opcode);
return -1;
}
return _ca_sflash_issue_cmd(priv, (struct spi_mem_op *)op, opcode);
}
static void ca_sflash_init(struct ca_sflash_priv *priv)
{
/* Set FLASH_TYPE as serial flash, value: 0x0400*/
clrsetbits_le32(&priv->regs->tr,
GENMASK(31, 0), CA_FLASH_TR_SIZE(2));
debug("%s: FLASH_TYPE reg=%#x\n",
__func__, readl(&priv->regs->tr));
/* Minimize flash timing, value: 0x07010101 */
clrsetbits_le32(&priv->regs->tmr,
GENMASK(31, 0),
CA_SF_TMR_CLK(0x07)
| CA_SF_TMR_SETUP(0x01)
| CA_SF_TMR_HOLD(0x01)
| CA_SF_TMR_IDLE(0x01));
debug("%s: FLASH_TIMING reg=%#x\n",
__func__, readl(&priv->regs->tmr));
}
static int ca_sflash_probe(struct udevice *dev)
{
struct ca_sflash_priv *priv = dev_get_priv(dev);
struct resource res;
int ret;
/* Map the registers */
ret = dev_read_resource_byname(dev, "sflash-regs", &res);
if (ret) {
dev_err(dev, "can't get regs base addresses(ret = %d)!\n", ret);
return ret;
}
priv->regs = devm_ioremap(dev, res.start, resource_size(&res));
if (IS_ERR(priv->regs))
return PTR_ERR(priv->regs);
ca_sflash_init(priv);
printf("SFLASH: Controller probed ready\n");
return 0;
}
static const struct spi_controller_mem_ops ca_sflash_mem_ops = {
.exec_op = ca_sflash_exec_op,
};
static const struct dm_spi_ops ca_sflash_ops = {
.claim_bus = ca_sflash_claim_bus,
.release_bus = ca_sflash_release_bus,
.set_speed = ca_sflash_set_speed,
.set_mode = ca_sflash_set_mode,
.mem_ops = &ca_sflash_mem_ops,
};
static const struct udevice_id ca_sflash_ids[] = {
{.compatible = "cortina,ca-sflash"},
{}
};
U_BOOT_DRIVER(ca_sflash) = {
.name = "ca_sflash",
.id = UCLASS_SPI,
.of_match = ca_sflash_ids,
.ops = &ca_sflash_ops,
.priv_auto = sizeof(struct ca_sflash_priv),
.probe = ca_sflash_probe,
};