u-boot/include/init.h
Mario Six c0434407b5 board_f: Use static print_cpuinfo if CONFIG_CPU is active
When the DM CPU drivers are active, printing information about a CPU
should be delegated to a matching driver.

Hence, add a static print_cpuinfo that implements this delegation when
DM CPU drivers are active.

Reviewed-by: Simon Glass <sjg@chromium.org>
Signed-off-by: Mario Six <mario.six@gdsys.cc>
Changed condition to CONFIG_IS_ENABLED(CPU):
Signed-off-by: Simon Glass <sjg@chromium.org>
2018-09-18 08:12:16 -06:00

188 lines
5.2 KiB
C

/* SPDX-License-Identifier: GPL-2.0+ */
/*
* (C) Copyright 2000-2009
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* Copy the startup prototype, previously defined in common.h
* Copyright (C) 2018, STMicroelectronics - All Rights Reserved
*/
#ifndef __INIT_H_
#define __INIT_H_ 1
#ifndef __ASSEMBLY__ /* put C only stuff in this section */
/*
* Function Prototypes
*/
/* common/board_f.c */
void board_init_f(ulong dummy);
/**
* arch_cpu_init() - basic cpu-dependent setup for an architecture
*
* This is called after early malloc is available. It should handle any
* CPU- or SoC- specific init needed to continue the init sequence. See
* board_f.c for where it is called. If this is not provided, a default
* version (which does nothing) will be used.
*
* Return: 0 on success, otherwise error
*/
int arch_cpu_init(void);
/**
* arch_cpu_init_dm() - init CPU after driver model is available
*
* This is called immediately after driver model is available before
* relocation. This is similar to arch_cpu_init() but is able to reference
* devices
*
* Return: 0 if OK, -ve on error
*/
int arch_cpu_init_dm(void);
/**
* mach_cpu_init() - SoC/machine dependent CPU setup
*
* This is called after arch_cpu_init(). It should handle any
* SoC or machine specific init needed to continue the init sequence. See
* board_f.c for where it is called. If this is not provided, a default
* version (which does nothing) will be used.
*
* Return: 0 on success, otherwise error
*/
int mach_cpu_init(void);
/**
* arch_fsp_init() - perform firmware support package init
*
* Where U-Boot relies on binary blobs to handle part of the system init, this
* function can be used to set up the blobs. This is used on some Intel
* platforms.
*
* Return: 0
*/
int arch_fsp_init(void);
int dram_init(void);
/**
* dram_init_banksize() - Set up DRAM bank sizes
*
* This can be implemented by boards to set up the DRAM bank information in
* gd->bd->bi_dram(). It is called just before relocation, after dram_init()
* is called.
*
* If this is not provided, a default implementation will try to set up a
* single bank. It will do this if CONFIG_NR_DRAM_BANKS and
* CONFIG_SYS_SDRAM_BASE are set. The bank will have a start address of
* CONFIG_SYS_SDRAM_BASE and the size will be determined by a call to
* get_effective_memsize().
*
* Return: 0 if OK, -ve on error
*/
int dram_init_banksize(void);
/**
* arch_reserve_stacks() - Reserve all necessary stacks
*
* This is used in generic board init sequence in common/board_f.c. Each
* architecture could provide this function to tailor the required stacks.
*
* On entry gd->start_addr_sp is pointing to the suggested top of the stack.
* The callee ensures gd->start_add_sp is 16-byte aligned, so architectures
* require only this can leave it untouched.
*
* On exit gd->start_addr_sp and gd->irq_sp should be set to the respective
* positions of the stack. The stack pointer(s) will be set to this later.
* gd->irq_sp is only required, if the architecture needs it.
*
* Return: 0 if no error
*/
int arch_reserve_stacks(void);
/**
* init_cache_f_r() - Turn on the cache in preparation for relocation
*
* Return: 0 if OK, -ve on error
*/
int init_cache_f_r(void);
#if !CONFIG_IS_ENABLED(CPU)
/**
* print_cpuinfo() - Display information about the CPU
*
* Return: 0 if OK, -ve on error
*/
int print_cpuinfo(void);
#endif
int timer_init(void);
int reserve_mmu(void);
int misc_init_f(void);
#if defined(CONFIG_DTB_RESELECT)
int embedded_dtb_select(void);
#endif
/* common/init/board_init.c */
extern ulong monitor_flash_len;
/**
* ulong board_init_f_alloc_reserve - allocate reserved area
* @top: top of the reserve area, growing down.
*
* This function is called by each architecture very early in the start-up
* code to allow the C runtime to reserve space on the stack for writable
* 'globals' such as GD and the malloc arena.
*
* Return: bottom of reserved area
*/
ulong board_init_f_alloc_reserve(ulong top);
/**
* board_init_f_init_reserve - initialize the reserved area(s)
* @base: top from which reservation was done
*
* This function is called once the C runtime has allocated the reserved
* area on the stack. It must initialize the GD at the base of that area.
*/
void board_init_f_init_reserve(ulong base);
/**
* arch_setup_gd() - Set up the global_data pointer
* @gd_ptr: Pointer to global data
*
* This pointer is special in some architectures and cannot easily be assigned
* to. For example on x86 it is implemented by adding a specific record to its
* Global Descriptor Table! So we we provide a function to carry out this task.
* For most architectures this can simply be:
*
* gd = gd_ptr;
*/
void arch_setup_gd(gd_t *gd_ptr);
/* common/board_r.c */
void board_init_r(gd_t *id, ulong dest_addr) __attribute__ ((noreturn));
int cpu_init_r(void);
int last_stage_init(void);
int mac_read_from_eeprom(void);
int set_cpu_clk_info(void);
int update_flash_size(int flash_size);
int arch_early_init_r(void);
void pci_init(void);
int misc_init_r(void);
#if defined(CONFIG_VID)
int init_func_vid(void);
#endif
/* common/board_info.c */
int checkboard(void);
int show_board_info(void);
#endif /* __ASSEMBLY__ */
/* Put only stuff here that the assembler can digest */
#endif /* __INIT_H_ */