u-boot/arch/arm/mach-uniphier/dram_init.c
Masahiro Yamada 65fce76301 ARM: uniphier: split ft_board_setup() out to a separate file
Prepare to add more fdt fixup code.

Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2018-07-25 08:47:53 +09:00

265 lines
5.2 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2012-2015 Panasonic Corporation
* Copyright (C) 2015-2017 Socionext Inc.
* Author: Masahiro Yamada <yamada.masahiro@socionext.com>
*/
#include <common.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/printk.h>
#include <linux/sizes.h>
#include <asm/global_data.h>
#include "sg-regs.h"
#include "soc-info.h"
DECLARE_GLOBAL_DATA_PTR;
struct uniphier_memif_data {
unsigned int soc_id;
unsigned long sparse_ch1_base;
int have_ch2;
};
static const struct uniphier_memif_data uniphier_memif_data[] = {
{
.soc_id = UNIPHIER_LD4_ID,
.sparse_ch1_base = 0xc0000000,
},
{
.soc_id = UNIPHIER_PRO4_ID,
.sparse_ch1_base = 0xa0000000,
},
{
.soc_id = UNIPHIER_SLD8_ID,
.sparse_ch1_base = 0xc0000000,
},
{
.soc_id = UNIPHIER_PRO5_ID,
.sparse_ch1_base = 0xc0000000,
},
{
.soc_id = UNIPHIER_PXS2_ID,
.sparse_ch1_base = 0xc0000000,
.have_ch2 = 1,
},
{
.soc_id = UNIPHIER_LD6B_ID,
.sparse_ch1_base = 0xc0000000,
.have_ch2 = 1,
},
{
.soc_id = UNIPHIER_LD11_ID,
.sparse_ch1_base = 0xc0000000,
},
{
.soc_id = UNIPHIER_LD20_ID,
.sparse_ch1_base = 0xc0000000,
.have_ch2 = 1,
},
{
.soc_id = UNIPHIER_PXS3_ID,
.sparse_ch1_base = 0xc0000000,
.have_ch2 = 1,
},
};
UNIPHIER_DEFINE_SOCDATA_FUNC(uniphier_get_memif_data, uniphier_memif_data)
struct uniphier_dram_map {
unsigned long base;
unsigned long size;
};
static int uniphier_memconf_decode(struct uniphier_dram_map *dram_map)
{
const struct uniphier_memif_data *data;
unsigned long size;
u32 val;
data = uniphier_get_memif_data();
if (!data) {
pr_err("unsupported SoC\n");
return -EINVAL;
}
val = readl(SG_MEMCONF);
/* set up ch0 */
dram_map[0].base = CONFIG_SYS_SDRAM_BASE;
switch (val & SG_MEMCONF_CH0_SZ_MASK) {
case SG_MEMCONF_CH0_SZ_64M:
size = SZ_64M;
break;
case SG_MEMCONF_CH0_SZ_128M:
size = SZ_128M;
break;
case SG_MEMCONF_CH0_SZ_256M:
size = SZ_256M;
break;
case SG_MEMCONF_CH0_SZ_512M:
size = SZ_512M;
break;
case SG_MEMCONF_CH0_SZ_1G:
size = SZ_1G;
break;
default:
pr_err("error: invalid value is set to MEMCONF ch0 size\n");
return -EINVAL;
}
if ((val & SG_MEMCONF_CH0_NUM_MASK) == SG_MEMCONF_CH0_NUM_2)
size *= 2;
dram_map[0].size = size;
/* set up ch1 */
dram_map[1].base = dram_map[0].base + size;
if (val & SG_MEMCONF_SPARSEMEM) {
if (dram_map[1].base > data->sparse_ch1_base) {
pr_warn("Sparse mem is enabled, but ch0 and ch1 overlap\n");
pr_warn("Only ch0 is available\n");
dram_map[1].base = 0;
return 0;
}
dram_map[1].base = data->sparse_ch1_base;
}
switch (val & SG_MEMCONF_CH1_SZ_MASK) {
case SG_MEMCONF_CH1_SZ_64M:
size = SZ_64M;
break;
case SG_MEMCONF_CH1_SZ_128M:
size = SZ_128M;
break;
case SG_MEMCONF_CH1_SZ_256M:
size = SZ_256M;
break;
case SG_MEMCONF_CH1_SZ_512M:
size = SZ_512M;
break;
case SG_MEMCONF_CH1_SZ_1G:
size = SZ_1G;
break;
default:
pr_err("error: invalid value is set to MEMCONF ch1 size\n");
return -EINVAL;
}
if ((val & SG_MEMCONF_CH1_NUM_MASK) == SG_MEMCONF_CH1_NUM_2)
size *= 2;
dram_map[1].size = size;
if (!data->have_ch2 || val & SG_MEMCONF_CH2_DISABLE)
return 0;
/* set up ch2 */
dram_map[2].base = dram_map[1].base + size;
switch (val & SG_MEMCONF_CH2_SZ_MASK) {
case SG_MEMCONF_CH2_SZ_64M:
size = SZ_64M;
break;
case SG_MEMCONF_CH2_SZ_128M:
size = SZ_128M;
break;
case SG_MEMCONF_CH2_SZ_256M:
size = SZ_256M;
break;
case SG_MEMCONF_CH2_SZ_512M:
size = SZ_512M;
break;
case SG_MEMCONF_CH2_SZ_1G:
size = SZ_1G;
break;
default:
pr_err("error: invalid value is set to MEMCONF ch2 size\n");
return -EINVAL;
}
if ((val & SG_MEMCONF_CH2_NUM_MASK) == SG_MEMCONF_CH2_NUM_2)
size *= 2;
dram_map[2].size = size;
return 0;
}
int dram_init(void)
{
struct uniphier_dram_map dram_map[3] = {};
int ret, i;
gd->ram_size = 0;
ret = uniphier_memconf_decode(dram_map);
if (ret)
return ret;
for (i = 0; i < ARRAY_SIZE(dram_map); i++) {
unsigned long max_size;
if (!dram_map[i].size)
break;
/*
* U-Boot relocates itself to the tail of the memory region,
* but it does not expect sparse memory. We use the first
* contiguous chunk here.
*/
if (i > 0 && dram_map[i - 1].base + dram_map[i - 1].size <
dram_map[i].base)
break;
/*
* Do not use memory that exceeds 32bit address range. U-Boot
* relocates itself to the end of the effectively available RAM.
* This could be a problem for DMA engines that do not support
* 64bit address (SDMA of SDHCI, UniPhier AV-ether, etc.)
*/
if (dram_map[i].base >= 1ULL << 32)
break;
max_size = (1ULL << 32) - dram_map[i].base;
if (dram_map[i].size > max_size) {
gd->ram_size += max_size;
break;
}
gd->ram_size += dram_map[i].size;
}
/*
* LD20 uses the last 64 byte for each channel for dynamic
* DDR PHY training
*/
if (uniphier_get_soc_id() == UNIPHIER_LD20_ID)
gd->ram_size -= 64;
return 0;
}
int dram_init_banksize(void)
{
struct uniphier_dram_map dram_map[3] = {};
int i;
uniphier_memconf_decode(dram_map);
for (i = 0; i < ARRAY_SIZE(dram_map); i++) {
if (i >= ARRAY_SIZE(gd->bd->bi_dram))
break;
gd->bd->bi_dram[i].start = dram_map[i].base;
gd->bd->bi_dram[i].size = dram_map[i].size;
}
return 0;
}