u-boot/drivers/net/ti/cpsw.c
Ravi Gunasekaran 9ea30ea66a net: ti: cpsw-mdio: Add workaround for errata i2329
In certain TI SoCs, on the CPSW and ICSS peripherals, there is
a possibility that the MDIO interface returns corrupt data on
MDIO reads or writes incorrect data on MDIO writes. There is also
a possibility for the MDIO interface to become unavailable until
the next peripheral reset.

The workaround is to configure the MDIO in manual mode and disable the
MDIO state machine and emulate the MDIO protocol by reading and writing
appropriate fields in MDIO_MANUAL_IF_REG register of the MDIO controller
to manipulate the MDIO clock and data pins.

More details about the errata i2329 and the workaround is available in:
https://www.ti.com/lit/er/sprz487a/sprz487a.pdf

Add implementation to disable MDIO state machine, configure MDIO in manual
mode and provide software MDIO read and writes via MDIO bitbanging. Allow
the MDIO to be initialized based on the need for manual mode.

Signed-off-by: Ravi Gunasekaran <r-gunasekaran@ti.com>
Reviewed-by: Ramon Fried <rfried.dev@gmail.com>
2022-10-06 21:05:17 -04:00

1384 lines
32 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* CPSW Ethernet Switch Driver
*
* Copyright (C) 2010-2018 Texas Instruments Incorporated - http://www.ti.com/
*/
#include <common.h>
#include <command.h>
#include <cpu_func.h>
#include <log.h>
#include <net.h>
#include <miiphy.h>
#include <malloc.h>
#include <net.h>
#include <netdev.h>
#include <cpsw.h>
#include <dm/device_compat.h>
#include <linux/bitops.h>
#include <linux/compiler.h>
#include <linux/errno.h>
#include <asm/gpio.h>
#include <asm/io.h>
#include <phy.h>
#include <asm/arch/cpu.h>
#include <dm.h>
#include "cpsw_mdio.h"
#define BITMASK(bits) (BIT(bits) - 1)
#define NUM_DESCS (PKTBUFSRX * 2)
#define PKT_MIN 60
#define PKT_MAX (1500 + 14 + 4 + 4)
#define CLEAR_BIT 1
#define GIGABITEN BIT(7)
#define FULLDUPLEXEN BIT(0)
#define MIIEN BIT(15)
#define CTL_EXT_EN BIT(18)
/* DMA Registers */
#define CPDMA_TXCONTROL 0x004
#define CPDMA_RXCONTROL 0x014
#define CPDMA_SOFTRESET 0x01c
#define CPDMA_RXFREE 0x0e0
#define CPDMA_TXHDP_VER1 0x100
#define CPDMA_TXHDP_VER2 0x200
#define CPDMA_RXHDP_VER1 0x120
#define CPDMA_RXHDP_VER2 0x220
#define CPDMA_TXCP_VER1 0x140
#define CPDMA_TXCP_VER2 0x240
#define CPDMA_RXCP_VER1 0x160
#define CPDMA_RXCP_VER2 0x260
/* Descriptor mode bits */
#define CPDMA_DESC_SOP BIT(31)
#define CPDMA_DESC_EOP BIT(30)
#define CPDMA_DESC_OWNER BIT(29)
#define CPDMA_DESC_EOQ BIT(28)
/*
* This timeout definition is a worst-case ultra defensive measure against
* unexpected controller lock ups. Ideally, we should never ever hit this
* scenario in practice.
*/
#define CPDMA_TIMEOUT 100 /* msecs */
struct cpsw_regs {
u32 id_ver;
u32 control;
u32 soft_reset;
u32 stat_port_en;
u32 ptype;
};
struct cpsw_slave_regs {
u32 max_blks;
u32 blk_cnt;
u32 flow_thresh;
u32 port_vlan;
u32 tx_pri_map;
#ifdef CONFIG_AM33XX
u32 gap_thresh;
#elif defined(CONFIG_TI814X)
u32 ts_ctl;
u32 ts_seq_ltype;
u32 ts_vlan;
#endif
u32 sa_lo;
u32 sa_hi;
};
struct cpsw_host_regs {
u32 max_blks;
u32 blk_cnt;
u32 flow_thresh;
u32 port_vlan;
u32 tx_pri_map;
u32 cpdma_tx_pri_map;
u32 cpdma_rx_chan_map;
};
struct cpsw_sliver_regs {
u32 id_ver;
u32 mac_control;
u32 mac_status;
u32 soft_reset;
u32 rx_maxlen;
u32 __reserved_0;
u32 rx_pause;
u32 tx_pause;
u32 __reserved_1;
u32 rx_pri_map;
};
#define ALE_ENTRY_BITS 68
#define ALE_ENTRY_WORDS DIV_ROUND_UP(ALE_ENTRY_BITS, 32)
/* ALE Registers */
#define ALE_CONTROL 0x08
#define ALE_UNKNOWNVLAN 0x18
#define ALE_TABLE_CONTROL 0x20
#define ALE_TABLE 0x34
#define ALE_PORTCTL 0x40
#define ALE_TABLE_WRITE BIT(31)
#define ALE_TYPE_FREE 0
#define ALE_TYPE_ADDR 1
#define ALE_TYPE_VLAN 2
#define ALE_TYPE_VLAN_ADDR 3
#define ALE_UCAST_PERSISTANT 0
#define ALE_UCAST_UNTOUCHED 1
#define ALE_UCAST_OUI 2
#define ALE_UCAST_TOUCHED 3
#define ALE_MCAST_FWD 0
#define ALE_MCAST_BLOCK_LEARN_FWD 1
#define ALE_MCAST_FWD_LEARN 2
#define ALE_MCAST_FWD_2 3
enum cpsw_ale_port_state {
ALE_PORT_STATE_DISABLE = 0x00,
ALE_PORT_STATE_BLOCK = 0x01,
ALE_PORT_STATE_LEARN = 0x02,
ALE_PORT_STATE_FORWARD = 0x03,
};
/* ALE unicast entry flags - passed into cpsw_ale_add_ucast() */
#define ALE_SECURE 1
#define ALE_BLOCKED 2
struct cpsw_slave {
struct cpsw_slave_regs *regs;
struct cpsw_sliver_regs *sliver;
int slave_num;
u32 mac_control;
struct cpsw_slave_data *data;
};
struct cpdma_desc {
/* hardware fields */
u32 hw_next;
u32 hw_buffer;
u32 hw_len;
u32 hw_mode;
/* software fields */
u32 sw_buffer;
u32 sw_len;
};
struct cpdma_chan {
struct cpdma_desc *head, *tail;
void *hdp, *cp, *rxfree;
};
/* AM33xx SoC specific definitions for the CONTROL port */
#define AM33XX_GMII_SEL_MODE_MII 0
#define AM33XX_GMII_SEL_MODE_RMII 1
#define AM33XX_GMII_SEL_MODE_RGMII 2
#define AM33XX_GMII_SEL_RGMII1_IDMODE BIT(4)
#define AM33XX_GMII_SEL_RGMII2_IDMODE BIT(5)
#define AM33XX_GMII_SEL_RMII1_IO_CLK_EN BIT(6)
#define AM33XX_GMII_SEL_RMII2_IO_CLK_EN BIT(7)
#define GMII_SEL_MODE_MASK 0x3
#define desc_write(desc, fld, val) __raw_writel((u32)(val), &(desc)->fld)
#define desc_read(desc, fld) __raw_readl(&(desc)->fld)
#define desc_read_ptr(desc, fld) ((void *)__raw_readl(&(desc)->fld))
#define chan_write(chan, fld, val) __raw_writel((u32)(val), (chan)->fld)
#define chan_read(chan, fld) __raw_readl((chan)->fld)
#define chan_read_ptr(chan, fld) ((void *)__raw_readl((chan)->fld))
#define for_active_slave(slave, priv) \
slave = (priv)->slaves + ((priv)->data)->active_slave; if (slave)
#define for_each_slave(slave, priv) \
for (slave = (priv)->slaves; slave != (priv)->slaves + \
((priv)->data)->slaves; slave++)
struct cpsw_priv {
#ifdef CONFIG_DM_ETH
struct udevice *dev;
#else
struct eth_device *dev;
#endif
struct cpsw_platform_data *data;
int host_port;
struct cpsw_regs *regs;
void *dma_regs;
struct cpsw_host_regs *host_port_regs;
void *ale_regs;
struct cpdma_desc *descs;
struct cpdma_desc *desc_free;
struct cpdma_chan rx_chan, tx_chan;
struct cpsw_slave *slaves;
struct phy_device *phydev;
struct mii_dev *bus;
u32 phy_mask;
};
static inline int cpsw_ale_get_field(u32 *ale_entry, u32 start, u32 bits)
{
int idx;
idx = start / 32;
start -= idx * 32;
idx = 2 - idx; /* flip */
return (ale_entry[idx] >> start) & BITMASK(bits);
}
static inline void cpsw_ale_set_field(u32 *ale_entry, u32 start, u32 bits,
u32 value)
{
int idx;
value &= BITMASK(bits);
idx = start / 32;
start -= idx * 32;
idx = 2 - idx; /* flip */
ale_entry[idx] &= ~(BITMASK(bits) << start);
ale_entry[idx] |= (value << start);
}
#define DEFINE_ALE_FIELD(name, start, bits) \
static inline int __maybe_unused cpsw_ale_get_##name(u32 *ale_entry) \
{ \
return cpsw_ale_get_field(ale_entry, start, bits); \
} \
static inline void __maybe_unused cpsw_ale_set_##name(u32 *ale_entry, u32 value) \
{ \
cpsw_ale_set_field(ale_entry, start, bits, value); \
}
DEFINE_ALE_FIELD(entry_type, 60, 2)
DEFINE_ALE_FIELD(mcast_state, 62, 2)
DEFINE_ALE_FIELD(port_mask, 66, 3)
DEFINE_ALE_FIELD(ucast_type, 62, 2)
DEFINE_ALE_FIELD(port_num, 66, 2)
DEFINE_ALE_FIELD(blocked, 65, 1)
DEFINE_ALE_FIELD(secure, 64, 1)
DEFINE_ALE_FIELD(mcast, 40, 1)
/* The MAC address field in the ALE entry cannot be macroized as above */
static inline void cpsw_ale_get_addr(u32 *ale_entry, u8 *addr)
{
int i;
for (i = 0; i < 6; i++)
addr[i] = cpsw_ale_get_field(ale_entry, 40 - 8*i, 8);
}
static inline void cpsw_ale_set_addr(u32 *ale_entry, const u8 *addr)
{
int i;
for (i = 0; i < 6; i++)
cpsw_ale_set_field(ale_entry, 40 - 8*i, 8, addr[i]);
}
static int cpsw_ale_read(struct cpsw_priv *priv, int idx, u32 *ale_entry)
{
int i;
__raw_writel(idx, priv->ale_regs + ALE_TABLE_CONTROL);
for (i = 0; i < ALE_ENTRY_WORDS; i++)
ale_entry[i] = __raw_readl(priv->ale_regs + ALE_TABLE + 4 * i);
return idx;
}
static int cpsw_ale_write(struct cpsw_priv *priv, int idx, u32 *ale_entry)
{
int i;
for (i = 0; i < ALE_ENTRY_WORDS; i++)
__raw_writel(ale_entry[i], priv->ale_regs + ALE_TABLE + 4 * i);
__raw_writel(idx | ALE_TABLE_WRITE, priv->ale_regs + ALE_TABLE_CONTROL);
return idx;
}
static int cpsw_ale_match_addr(struct cpsw_priv *priv, const u8 *addr)
{
u32 ale_entry[ALE_ENTRY_WORDS];
int type, idx;
for (idx = 0; idx < priv->data->ale_entries; idx++) {
u8 entry_addr[6];
cpsw_ale_read(priv, idx, ale_entry);
type = cpsw_ale_get_entry_type(ale_entry);
if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR)
continue;
cpsw_ale_get_addr(ale_entry, entry_addr);
if (memcmp(entry_addr, addr, 6) == 0)
return idx;
}
return -ENOENT;
}
static int cpsw_ale_match_free(struct cpsw_priv *priv)
{
u32 ale_entry[ALE_ENTRY_WORDS];
int type, idx;
for (idx = 0; idx < priv->data->ale_entries; idx++) {
cpsw_ale_read(priv, idx, ale_entry);
type = cpsw_ale_get_entry_type(ale_entry);
if (type == ALE_TYPE_FREE)
return idx;
}
return -ENOENT;
}
static int cpsw_ale_find_ageable(struct cpsw_priv *priv)
{
u32 ale_entry[ALE_ENTRY_WORDS];
int type, idx;
for (idx = 0; idx < priv->data->ale_entries; idx++) {
cpsw_ale_read(priv, idx, ale_entry);
type = cpsw_ale_get_entry_type(ale_entry);
if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR)
continue;
if (cpsw_ale_get_mcast(ale_entry))
continue;
type = cpsw_ale_get_ucast_type(ale_entry);
if (type != ALE_UCAST_PERSISTANT &&
type != ALE_UCAST_OUI)
return idx;
}
return -ENOENT;
}
static int cpsw_ale_add_ucast(struct cpsw_priv *priv, const u8 *addr,
int port, int flags)
{
u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
int idx;
cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR);
cpsw_ale_set_addr(ale_entry, addr);
cpsw_ale_set_ucast_type(ale_entry, ALE_UCAST_PERSISTANT);
cpsw_ale_set_secure(ale_entry, (flags & ALE_SECURE) ? 1 : 0);
cpsw_ale_set_blocked(ale_entry, (flags & ALE_BLOCKED) ? 1 : 0);
cpsw_ale_set_port_num(ale_entry, port);
idx = cpsw_ale_match_addr(priv, addr);
if (idx < 0)
idx = cpsw_ale_match_free(priv);
if (idx < 0)
idx = cpsw_ale_find_ageable(priv);
if (idx < 0)
return -ENOMEM;
cpsw_ale_write(priv, idx, ale_entry);
return 0;
}
static int cpsw_ale_add_mcast(struct cpsw_priv *priv, const u8 *addr,
int port_mask)
{
u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
int idx, mask;
idx = cpsw_ale_match_addr(priv, addr);
if (idx >= 0)
cpsw_ale_read(priv, idx, ale_entry);
cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR);
cpsw_ale_set_addr(ale_entry, addr);
cpsw_ale_set_mcast_state(ale_entry, ALE_MCAST_FWD_2);
mask = cpsw_ale_get_port_mask(ale_entry);
port_mask |= mask;
cpsw_ale_set_port_mask(ale_entry, port_mask);
if (idx < 0)
idx = cpsw_ale_match_free(priv);
if (idx < 0)
idx = cpsw_ale_find_ageable(priv);
if (idx < 0)
return -ENOMEM;
cpsw_ale_write(priv, idx, ale_entry);
return 0;
}
static inline void cpsw_ale_control(struct cpsw_priv *priv, int bit, int val)
{
u32 tmp, mask = BIT(bit);
tmp = __raw_readl(priv->ale_regs + ALE_CONTROL);
tmp &= ~mask;
tmp |= val ? mask : 0;
__raw_writel(tmp, priv->ale_regs + ALE_CONTROL);
}
#define cpsw_ale_enable(priv, val) cpsw_ale_control(priv, 31, val)
#define cpsw_ale_clear(priv, val) cpsw_ale_control(priv, 30, val)
#define cpsw_ale_vlan_aware(priv, val) cpsw_ale_control(priv, 2, val)
static inline void cpsw_ale_port_state(struct cpsw_priv *priv, int port,
int val)
{
int offset = ALE_PORTCTL + 4 * port;
u32 tmp, mask = 0x3;
tmp = __raw_readl(priv->ale_regs + offset);
tmp &= ~mask;
tmp |= val & mask;
__raw_writel(tmp, priv->ale_regs + offset);
}
/* Set a self-clearing bit in a register, and wait for it to clear */
static inline void setbit_and_wait_for_clear32(void *addr)
{
__raw_writel(CLEAR_BIT, addr);
while (__raw_readl(addr) & CLEAR_BIT)
;
}
#define mac_hi(mac) (((mac)[0] << 0) | ((mac)[1] << 8) | \
((mac)[2] << 16) | ((mac)[3] << 24))
#define mac_lo(mac) (((mac)[4] << 0) | ((mac)[5] << 8))
static void cpsw_set_slave_mac(struct cpsw_slave *slave,
struct cpsw_priv *priv)
{
#ifdef CONFIG_DM_ETH
struct eth_pdata *pdata = dev_get_plat(priv->dev);
writel(mac_hi(pdata->enetaddr), &slave->regs->sa_hi);
writel(mac_lo(pdata->enetaddr), &slave->regs->sa_lo);
#else
__raw_writel(mac_hi(priv->dev->enetaddr), &slave->regs->sa_hi);
__raw_writel(mac_lo(priv->dev->enetaddr), &slave->regs->sa_lo);
#endif
}
static int cpsw_slave_update_link(struct cpsw_slave *slave,
struct cpsw_priv *priv, int *link)
{
struct phy_device *phy;
u32 mac_control = 0;
int ret = -ENODEV;
phy = priv->phydev;
if (!phy)
goto out;
ret = phy_startup(phy);
if (ret)
goto out;
if (link)
*link = phy->link;
if (phy->link) { /* link up */
mac_control = priv->data->mac_control;
if (phy->speed == 1000)
mac_control |= GIGABITEN;
if (phy->duplex == DUPLEX_FULL)
mac_control |= FULLDUPLEXEN;
if (phy->speed == 100)
mac_control |= MIIEN;
if (phy->speed == 10 && phy_interface_is_rgmii(phy))
mac_control |= CTL_EXT_EN;
}
if (mac_control == slave->mac_control)
goto out;
if (mac_control) {
printf("link up on port %d, speed %d, %s duplex\n",
slave->slave_num, phy->speed,
(phy->duplex == DUPLEX_FULL) ? "full" : "half");
} else {
printf("link down on port %d\n", slave->slave_num);
}
__raw_writel(mac_control, &slave->sliver->mac_control);
slave->mac_control = mac_control;
out:
return ret;
}
static int cpsw_update_link(struct cpsw_priv *priv)
{
int ret = -ENODEV;
struct cpsw_slave *slave;
for_active_slave(slave, priv)
ret = cpsw_slave_update_link(slave, priv, NULL);
return ret;
}
static inline u32 cpsw_get_slave_port(struct cpsw_priv *priv, u32 slave_num)
{
if (priv->host_port == 0)
return slave_num + 1;
else
return slave_num;
}
static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
u32 slave_port;
setbit_and_wait_for_clear32(&slave->sliver->soft_reset);
/* setup priority mapping */
__raw_writel(0x76543210, &slave->sliver->rx_pri_map);
__raw_writel(0x33221100, &slave->regs->tx_pri_map);
/* setup max packet size, and mac address */
__raw_writel(PKT_MAX, &slave->sliver->rx_maxlen);
cpsw_set_slave_mac(slave, priv);
slave->mac_control = 0; /* no link yet */
/* enable forwarding */
slave_port = cpsw_get_slave_port(priv, slave->slave_num);
cpsw_ale_port_state(priv, slave_port, ALE_PORT_STATE_FORWARD);
cpsw_ale_add_mcast(priv, net_bcast_ethaddr, 1 << slave_port);
priv->phy_mask |= 1 << slave->data->phy_addr;
}
static struct cpdma_desc *cpdma_desc_alloc(struct cpsw_priv *priv)
{
struct cpdma_desc *desc = priv->desc_free;
if (desc)
priv->desc_free = desc_read_ptr(desc, hw_next);
return desc;
}
static void cpdma_desc_free(struct cpsw_priv *priv, struct cpdma_desc *desc)
{
if (desc) {
desc_write(desc, hw_next, priv->desc_free);
priv->desc_free = desc;
}
}
static int cpdma_submit(struct cpsw_priv *priv, struct cpdma_chan *chan,
void *buffer, int len)
{
struct cpdma_desc *desc, *prev;
u32 mode;
desc = cpdma_desc_alloc(priv);
if (!desc)
return -ENOMEM;
if (len < PKT_MIN)
len = PKT_MIN;
mode = CPDMA_DESC_OWNER | CPDMA_DESC_SOP | CPDMA_DESC_EOP;
desc_write(desc, hw_next, 0);
desc_write(desc, hw_buffer, buffer);
desc_write(desc, hw_len, len);
desc_write(desc, hw_mode, mode | len);
desc_write(desc, sw_buffer, buffer);
desc_write(desc, sw_len, len);
if (!chan->head) {
/* simple case - first packet enqueued */
chan->head = desc;
chan->tail = desc;
chan_write(chan, hdp, desc);
goto done;
}
/* not the first packet - enqueue at the tail */
prev = chan->tail;
desc_write(prev, hw_next, desc);
chan->tail = desc;
/* next check if EOQ has been triggered already */
if (desc_read(prev, hw_mode) & CPDMA_DESC_EOQ)
chan_write(chan, hdp, desc);
done:
if (chan->rxfree)
chan_write(chan, rxfree, 1);
return 0;
}
static int cpdma_process(struct cpsw_priv *priv, struct cpdma_chan *chan,
void **buffer, int *len)
{
struct cpdma_desc *desc = chan->head;
u32 status;
if (!desc)
return -ENOENT;
status = desc_read(desc, hw_mode);
if (len)
*len = status & 0x7ff;
if (buffer)
*buffer = desc_read_ptr(desc, sw_buffer);
if (status & CPDMA_DESC_OWNER) {
if (chan_read(chan, hdp) == 0) {
if (desc_read(desc, hw_mode) & CPDMA_DESC_OWNER)
chan_write(chan, hdp, desc);
}
return -EBUSY;
}
chan->head = desc_read_ptr(desc, hw_next);
chan_write(chan, cp, desc);
cpdma_desc_free(priv, desc);
return 0;
}
static int _cpsw_init(struct cpsw_priv *priv, u8 *enetaddr)
{
struct cpsw_slave *slave;
int i, ret;
/* soft reset the controller and initialize priv */
setbit_and_wait_for_clear32(&priv->regs->soft_reset);
/* initialize and reset the address lookup engine */
cpsw_ale_enable(priv, 1);
cpsw_ale_clear(priv, 1);
cpsw_ale_vlan_aware(priv, 0); /* vlan unaware mode */
/* setup host port priority mapping */
__raw_writel(0x76543210, &priv->host_port_regs->cpdma_tx_pri_map);
__raw_writel(0, &priv->host_port_regs->cpdma_rx_chan_map);
/* disable priority elevation and enable statistics on all ports */
__raw_writel(0, &priv->regs->ptype);
/* enable statistics collection only on the host port */
__raw_writel(BIT(priv->host_port), &priv->regs->stat_port_en);
__raw_writel(0x7, &priv->regs->stat_port_en);
cpsw_ale_port_state(priv, priv->host_port, ALE_PORT_STATE_FORWARD);
cpsw_ale_add_ucast(priv, enetaddr, priv->host_port, ALE_SECURE);
cpsw_ale_add_mcast(priv, net_bcast_ethaddr, 1 << priv->host_port);
for_active_slave(slave, priv)
cpsw_slave_init(slave, priv);
ret = cpsw_update_link(priv);
if (ret)
goto out;
/* init descriptor pool */
for (i = 0; i < NUM_DESCS; i++) {
desc_write(&priv->descs[i], hw_next,
(i == (NUM_DESCS - 1)) ? 0 : &priv->descs[i+1]);
}
priv->desc_free = &priv->descs[0];
/* initialize channels */
if (priv->data->version == CPSW_CTRL_VERSION_2) {
memset(&priv->rx_chan, 0, sizeof(struct cpdma_chan));
priv->rx_chan.hdp = priv->dma_regs + CPDMA_RXHDP_VER2;
priv->rx_chan.cp = priv->dma_regs + CPDMA_RXCP_VER2;
priv->rx_chan.rxfree = priv->dma_regs + CPDMA_RXFREE;
memset(&priv->tx_chan, 0, sizeof(struct cpdma_chan));
priv->tx_chan.hdp = priv->dma_regs + CPDMA_TXHDP_VER2;
priv->tx_chan.cp = priv->dma_regs + CPDMA_TXCP_VER2;
} else {
memset(&priv->rx_chan, 0, sizeof(struct cpdma_chan));
priv->rx_chan.hdp = priv->dma_regs + CPDMA_RXHDP_VER1;
priv->rx_chan.cp = priv->dma_regs + CPDMA_RXCP_VER1;
priv->rx_chan.rxfree = priv->dma_regs + CPDMA_RXFREE;
memset(&priv->tx_chan, 0, sizeof(struct cpdma_chan));
priv->tx_chan.hdp = priv->dma_regs + CPDMA_TXHDP_VER1;
priv->tx_chan.cp = priv->dma_regs + CPDMA_TXCP_VER1;
}
/* clear dma state */
setbit_and_wait_for_clear32(priv->dma_regs + CPDMA_SOFTRESET);
if (priv->data->version == CPSW_CTRL_VERSION_2) {
for (i = 0; i < priv->data->channels; i++) {
__raw_writel(0, priv->dma_regs + CPDMA_RXHDP_VER2 + 4
* i);
__raw_writel(0, priv->dma_regs + CPDMA_RXFREE + 4
* i);
__raw_writel(0, priv->dma_regs + CPDMA_RXCP_VER2 + 4
* i);
__raw_writel(0, priv->dma_regs + CPDMA_TXHDP_VER2 + 4
* i);
__raw_writel(0, priv->dma_regs + CPDMA_TXCP_VER2 + 4
* i);
}
} else {
for (i = 0; i < priv->data->channels; i++) {
__raw_writel(0, priv->dma_regs + CPDMA_RXHDP_VER1 + 4
* i);
__raw_writel(0, priv->dma_regs + CPDMA_RXFREE + 4
* i);
__raw_writel(0, priv->dma_regs + CPDMA_RXCP_VER1 + 4
* i);
__raw_writel(0, priv->dma_regs + CPDMA_TXHDP_VER1 + 4
* i);
__raw_writel(0, priv->dma_regs + CPDMA_TXCP_VER1 + 4
* i);
}
}
__raw_writel(1, priv->dma_regs + CPDMA_TXCONTROL);
__raw_writel(1, priv->dma_regs + CPDMA_RXCONTROL);
/* submit rx descs */
for (i = 0; i < PKTBUFSRX; i++) {
ret = cpdma_submit(priv, &priv->rx_chan, net_rx_packets[i],
PKTSIZE);
if (ret < 0) {
printf("error %d submitting rx desc\n", ret);
break;
}
}
out:
return ret;
}
static int cpsw_reap_completed_packets(struct cpsw_priv *priv)
{
int timeout = CPDMA_TIMEOUT;
/* reap completed packets */
while (timeout-- &&
(cpdma_process(priv, &priv->tx_chan, NULL, NULL) >= 0))
;
return timeout;
}
static void _cpsw_halt(struct cpsw_priv *priv)
{
cpsw_reap_completed_packets(priv);
writel(0, priv->dma_regs + CPDMA_TXCONTROL);
writel(0, priv->dma_regs + CPDMA_RXCONTROL);
/* soft reset the controller and initialize priv */
setbit_and_wait_for_clear32(&priv->regs->soft_reset);
/* clear dma state */
setbit_and_wait_for_clear32(priv->dma_regs + CPDMA_SOFTRESET);
}
static int _cpsw_send(struct cpsw_priv *priv, void *packet, int length)
{
int timeout;
flush_dcache_range((unsigned long)packet,
(unsigned long)packet + ALIGN(length, PKTALIGN));
timeout = cpsw_reap_completed_packets(priv);
if (timeout == -1) {
printf("cpdma_process timeout\n");
return -ETIMEDOUT;
}
return cpdma_submit(priv, &priv->tx_chan, packet, length);
}
static int _cpsw_recv(struct cpsw_priv *priv, uchar **pkt)
{
void *buffer;
int len;
int ret;
ret = cpdma_process(priv, &priv->rx_chan, &buffer, &len);
if (ret < 0)
return ret;
invalidate_dcache_range((unsigned long)buffer,
(unsigned long)buffer + PKTSIZE_ALIGN);
*pkt = buffer;
return len;
}
static void cpsw_slave_setup(struct cpsw_slave *slave, int slave_num,
struct cpsw_priv *priv)
{
void *regs = priv->regs;
struct cpsw_slave_data *data = priv->data->slave_data + slave_num;
slave->slave_num = slave_num;
slave->data = data;
slave->regs = regs + data->slave_reg_ofs;
slave->sliver = regs + data->sliver_reg_ofs;
}
static int cpsw_phy_init(struct cpsw_priv *priv, struct cpsw_slave *slave)
{
struct phy_device *phydev;
u32 supported = PHY_GBIT_FEATURES;
int ret;
phydev = phy_connect(priv->bus,
slave->data->phy_addr,
priv->dev,
slave->data->phy_if);
if (!phydev)
return -1;
phydev->supported &= supported;
if (slave->data->max_speed) {
ret = phy_set_supported(phydev, slave->data->max_speed);
if (ret)
return ret;
#if CONFIG_IS_ENABLED(DM_ETH)
dev_dbg(priv->dev, "Port %u speed forced to %uMbit\n",
slave->slave_num + 1, slave->data->max_speed);
#else
log_debug("%s: Port %u speed forced to %uMbit\n",
priv->dev->name, slave->slave_num + 1,
slave->data->max_speed);
#endif
}
phydev->advertising = phydev->supported;
#ifdef CONFIG_DM_ETH
if (ofnode_valid(slave->data->phy_of_handle))
phydev->node = slave->data->phy_of_handle;
#endif
priv->phydev = phydev;
phy_config(phydev);
return 1;
}
static void cpsw_phy_addr_update(struct cpsw_priv *priv)
{
struct cpsw_platform_data *data = priv->data;
u16 alive = cpsw_mdio_get_alive(priv->bus);
int active = data->active_slave;
int new_addr = ffs(alive) - 1;
/*
* If there is only one phy alive and its address does not match
* that of active slave, then phy address can safely be updated.
*/
if (hweight16(alive) == 1 &&
data->slave_data[active].phy_addr != new_addr) {
printf("Updated phy address for CPSW#%d, old: %d, new: %d\n",
active, data->slave_data[active].phy_addr, new_addr);
data->slave_data[active].phy_addr = new_addr;
}
}
int _cpsw_register(struct cpsw_priv *priv)
{
struct cpsw_slave *slave;
struct cpsw_platform_data *data = priv->data;
void *regs = (void *)data->cpsw_base;
priv->slaves = malloc(sizeof(struct cpsw_slave) * data->slaves);
if (!priv->slaves) {
return -ENOMEM;
}
priv->host_port = data->host_port_num;
priv->regs = regs;
priv->host_port_regs = regs + data->host_port_reg_ofs;
priv->dma_regs = regs + data->cpdma_reg_ofs;
priv->ale_regs = regs + data->ale_reg_ofs;
priv->descs = (void *)regs + data->bd_ram_ofs;
int idx = 0;
for_each_slave(slave, priv) {
cpsw_slave_setup(slave, idx, priv);
idx = idx + 1;
}
priv->bus = cpsw_mdio_init(priv->dev->name, data->mdio_base, 0, 0,
false);
if (!priv->bus)
return -EFAULT;
cpsw_phy_addr_update(priv);
for_active_slave(slave, priv)
cpsw_phy_init(priv, slave);
return 0;
}
#ifndef CONFIG_DM_ETH
static int cpsw_init(struct eth_device *dev, struct bd_info *bis)
{
struct cpsw_priv *priv = dev->priv;
return _cpsw_init(priv, dev->enetaddr);
}
static void cpsw_halt(struct eth_device *dev)
{
struct cpsw_priv *priv = dev->priv;
return _cpsw_halt(priv);
}
static int cpsw_send(struct eth_device *dev, void *packet, int length)
{
struct cpsw_priv *priv = dev->priv;
return _cpsw_send(priv, packet, length);
}
static int cpsw_recv(struct eth_device *dev)
{
struct cpsw_priv *priv = dev->priv;
uchar *pkt = NULL;
int len;
len = _cpsw_recv(priv, &pkt);
if (len > 0) {
net_process_received_packet(pkt, len);
cpdma_submit(priv, &priv->rx_chan, pkt, PKTSIZE);
}
return len;
}
int cpsw_register(struct cpsw_platform_data *data)
{
struct cpsw_priv *priv;
struct eth_device *dev;
int ret;
dev = calloc(sizeof(*dev), 1);
if (!dev)
return -ENOMEM;
priv = calloc(sizeof(*priv), 1);
if (!priv) {
free(dev);
return -ENOMEM;
}
priv->dev = dev;
priv->data = data;
strcpy(dev->name, "cpsw");
dev->iobase = 0;
dev->init = cpsw_init;
dev->halt = cpsw_halt;
dev->send = cpsw_send;
dev->recv = cpsw_recv;
dev->priv = priv;
eth_register(dev);
ret = _cpsw_register(priv);
if (ret < 0) {
eth_unregister(dev);
free(dev);
free(priv);
return ret;
}
return 1;
}
#else
static int cpsw_eth_start(struct udevice *dev)
{
struct eth_pdata *pdata = dev_get_plat(dev);
struct cpsw_priv *priv = dev_get_priv(dev);
return _cpsw_init(priv, pdata->enetaddr);
}
static int cpsw_eth_send(struct udevice *dev, void *packet, int length)
{
struct cpsw_priv *priv = dev_get_priv(dev);
return _cpsw_send(priv, packet, length);
}
static int cpsw_eth_recv(struct udevice *dev, int flags, uchar **packetp)
{
struct cpsw_priv *priv = dev_get_priv(dev);
return _cpsw_recv(priv, packetp);
}
static int cpsw_eth_free_pkt(struct udevice *dev, uchar *packet,
int length)
{
struct cpsw_priv *priv = dev_get_priv(dev);
return cpdma_submit(priv, &priv->rx_chan, packet, PKTSIZE);
}
static void cpsw_eth_stop(struct udevice *dev)
{
struct cpsw_priv *priv = dev_get_priv(dev);
return _cpsw_halt(priv);
}
static const struct eth_ops cpsw_eth_ops = {
.start = cpsw_eth_start,
.send = cpsw_eth_send,
.recv = cpsw_eth_recv,
.free_pkt = cpsw_eth_free_pkt,
.stop = cpsw_eth_stop,
};
static void cpsw_gmii_sel_am3352(struct cpsw_priv *priv,
phy_interface_t phy_mode)
{
u32 reg;
u32 mask;
u32 mode = 0;
bool rgmii_id = false;
int slave = priv->data->active_slave;
reg = readl(priv->data->gmii_sel);
switch (phy_mode) {
case PHY_INTERFACE_MODE_RMII:
mode = AM33XX_GMII_SEL_MODE_RMII;
break;
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_RXID:
mode = AM33XX_GMII_SEL_MODE_RGMII;
break;
case PHY_INTERFACE_MODE_RGMII_ID:
case PHY_INTERFACE_MODE_RGMII_TXID:
mode = AM33XX_GMII_SEL_MODE_RGMII;
rgmii_id = true;
break;
case PHY_INTERFACE_MODE_MII:
default:
mode = AM33XX_GMII_SEL_MODE_MII;
break;
};
mask = GMII_SEL_MODE_MASK << (slave * 2) | BIT(slave + 6);
mode <<= slave * 2;
if (priv->data->rmii_clock_external) {
if (slave == 0)
mode |= AM33XX_GMII_SEL_RMII1_IO_CLK_EN;
else
mode |= AM33XX_GMII_SEL_RMII2_IO_CLK_EN;
}
if (rgmii_id) {
if (slave == 0)
mode |= AM33XX_GMII_SEL_RGMII1_IDMODE;
else
mode |= AM33XX_GMII_SEL_RGMII2_IDMODE;
}
reg &= ~mask;
reg |= mode;
writel(reg, priv->data->gmii_sel);
}
static void cpsw_gmii_sel_dra7xx(struct cpsw_priv *priv,
phy_interface_t phy_mode)
{
u32 reg;
u32 mask;
u32 mode = 0;
int slave = priv->data->active_slave;
reg = readl(priv->data->gmii_sel);
switch (phy_mode) {
case PHY_INTERFACE_MODE_RMII:
mode = AM33XX_GMII_SEL_MODE_RMII;
break;
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_ID:
case PHY_INTERFACE_MODE_RGMII_RXID:
case PHY_INTERFACE_MODE_RGMII_TXID:
mode = AM33XX_GMII_SEL_MODE_RGMII;
break;
case PHY_INTERFACE_MODE_MII:
default:
mode = AM33XX_GMII_SEL_MODE_MII;
break;
};
switch (slave) {
case 0:
mask = GMII_SEL_MODE_MASK;
break;
case 1:
mask = GMII_SEL_MODE_MASK << 4;
mode <<= 4;
break;
default:
dev_err(priv->dev, "invalid slave number...\n");
return;
}
if (priv->data->rmii_clock_external)
dev_err(priv->dev, "RMII External clock is not supported\n");
reg &= ~mask;
reg |= mode;
writel(reg, priv->data->gmii_sel);
}
static void cpsw_phy_sel(struct cpsw_priv *priv, const char *compat,
phy_interface_t phy_mode)
{
if (!strcmp(compat, "ti,am3352-cpsw-phy-sel"))
cpsw_gmii_sel_am3352(priv, phy_mode);
if (!strcmp(compat, "ti,am43xx-cpsw-phy-sel"))
cpsw_gmii_sel_am3352(priv, phy_mode);
else if (!strcmp(compat, "ti,dra7xx-cpsw-phy-sel"))
cpsw_gmii_sel_dra7xx(priv, phy_mode);
}
static int cpsw_eth_probe(struct udevice *dev)
{
struct cpsw_priv *priv = dev_get_priv(dev);
struct eth_pdata *pdata = dev_get_plat(dev);
priv->dev = dev;
priv->data = pdata->priv_pdata;
ti_cm_get_macid(dev, priv->data, pdata->enetaddr);
/* Select phy interface in control module */
cpsw_phy_sel(priv, priv->data->phy_sel_compat,
pdata->phy_interface);
return _cpsw_register(priv);
}
#if CONFIG_IS_ENABLED(OF_CONTROL)
static void cpsw_eth_of_parse_slave(struct cpsw_platform_data *data,
int slave_index, ofnode subnode)
{
struct ofnode_phandle_args out_args;
struct cpsw_slave_data *slave_data;
u32 phy_id[2];
int ret;
slave_data = &data->slave_data[slave_index];
slave_data->phy_if = ofnode_read_phy_mode(subnode);
ret = ofnode_parse_phandle_with_args(subnode, "phy-handle",
NULL, 0, 0, &out_args);
if (!ret) {
slave_data->phy_of_handle = out_args.node;
ret = ofnode_read_s32(slave_data->phy_of_handle, "reg",
&slave_data->phy_addr);
if (ret)
printf("error: phy addr not found in dt\n");
} else {
ret = ofnode_read_u32_array(subnode, "phy_id", phy_id, 2);
if (ret)
printf("error: phy_id read failed\n");
}
slave_data->max_speed = ofnode_read_s32_default(subnode,
"max-speed", 0);
}
static int cpsw_eth_of_to_plat(struct udevice *dev)
{
struct eth_pdata *pdata = dev_get_plat(dev);
struct cpsw_platform_data *data;
struct gpio_desc *mode_gpios;
int slave_index = 0;
int num_mode_gpios;
ofnode subnode;
int ret;
data = calloc(1, sizeof(struct cpsw_platform_data));
if (!data)
return -ENOMEM;
pdata->priv_pdata = data;
pdata->iobase = dev_read_addr(dev);
data->version = CPSW_CTRL_VERSION_2;
data->bd_ram_ofs = CPSW_BD_OFFSET;
data->ale_reg_ofs = CPSW_ALE_OFFSET;
data->cpdma_reg_ofs = CPSW_CPDMA_OFFSET;
data->mdio_div = CPSW_MDIO_DIV;
data->host_port_reg_ofs = CPSW_HOST_PORT_OFFSET,
pdata->phy_interface = -1;
data->cpsw_base = pdata->iobase;
ret = dev_read_s32(dev, "cpdma_channels", &data->channels);
if (ret) {
printf("error: cpdma_channels not found in dt\n");
return ret;
}
ret = dev_read_s32(dev, "slaves", &data->slaves);
if (ret) {
printf("error: slaves not found in dt\n");
return ret;
}
data->slave_data = malloc(sizeof(struct cpsw_slave_data) *
data->slaves);
ret = dev_read_s32(dev, "ale_entries", &data->ale_entries);
if (ret) {
printf("error: ale_entries not found in dt\n");
return ret;
}
ret = dev_read_u32(dev, "bd_ram_size", &data->bd_ram_ofs);
if (ret) {
printf("error: bd_ram_size not found in dt\n");
return ret;
}
ret = dev_read_u32(dev, "mac_control", &data->mac_control);
if (ret) {
printf("error: ale_entries not found in dt\n");
return ret;
}
num_mode_gpios = gpio_get_list_count(dev, "mode-gpios");
if (num_mode_gpios > 0) {
mode_gpios = malloc(sizeof(struct gpio_desc) *
num_mode_gpios);
gpio_request_list_by_name(dev, "mode-gpios", mode_gpios,
num_mode_gpios, GPIOD_IS_OUT);
free(mode_gpios);
}
data->active_slave = dev_read_u32_default(dev, "active_slave", 0);
ofnode_for_each_subnode(subnode, dev_ofnode(dev)) {
const char *name;
name = ofnode_get_name(subnode);
if (!strncmp(name, "mdio", 4)) {
data->mdio_base = ofnode_get_addr(subnode);
if (data->mdio_base == FDT_ADDR_T_NONE) {
pr_err("Not able to get MDIO address space\n");
return -ENOENT;
}
}
if (!strncmp(name, "slave", 5)) {
if (slave_index >= data->slaves)
continue;
cpsw_eth_of_parse_slave(data, slave_index, subnode);
slave_index++;
}
if (!strncmp(name, "cpsw-phy-sel", 12)) {
data->gmii_sel = ofnode_get_addr(subnode);
if (data->gmii_sel == FDT_ADDR_T_NONE) {
pr_err("Not able to get gmii_sel reg address\n");
return -ENOENT;
}
if (ofnode_read_bool(subnode, "rmii-clock-ext"))
data->rmii_clock_external = true;
data->phy_sel_compat = ofnode_read_string(subnode,
"compatible");
if (!data->phy_sel_compat) {
pr_err("Not able to get gmii_sel compatible\n");
return -ENOENT;
}
}
}
data->slave_data[0].slave_reg_ofs = CPSW_SLAVE0_OFFSET;
data->slave_data[0].sliver_reg_ofs = CPSW_SLIVER0_OFFSET;
if (data->slaves == 2) {
data->slave_data[1].slave_reg_ofs = CPSW_SLAVE1_OFFSET;
data->slave_data[1].sliver_reg_ofs = CPSW_SLIVER1_OFFSET;
}
ret = ti_cm_get_macid_addr(dev, data->active_slave, data);
if (ret < 0) {
pr_err("cpsw read efuse mac failed\n");
return ret;
}
pdata->phy_interface = data->slave_data[data->active_slave].phy_if;
if (pdata->phy_interface == PHY_INTERFACE_MODE_NA)
return -EINVAL;
return 0;
}
static const struct udevice_id cpsw_eth_ids[] = {
{ .compatible = "ti,cpsw" },
{ .compatible = "ti,am335x-cpsw" },
{ }
};
#endif
int cpsw_get_slave_phy_addr(struct udevice *dev, int slave)
{
struct cpsw_priv *priv = dev_get_priv(dev);
struct cpsw_platform_data *data = priv->data;
return data->slave_data[slave].phy_addr;
}
U_BOOT_DRIVER(eth_cpsw) = {
.name = "eth_cpsw",
.id = UCLASS_ETH,
#if CONFIG_IS_ENABLED(OF_CONTROL)
.of_match = cpsw_eth_ids,
.of_to_plat = cpsw_eth_of_to_plat,
.plat_auto = sizeof(struct eth_pdata),
#endif
.probe = cpsw_eth_probe,
.ops = &cpsw_eth_ops,
.priv_auto = sizeof(struct cpsw_priv),
.flags = DM_FLAG_ALLOC_PRIV_DMA | DM_FLAG_PRE_RELOC,
};
#endif /* CONFIG_DM_ETH */