3a197b2fe4
Some CPUs like PPC, BLACKFIN need sync() to ensure cfi flash write command is fully finished. The sync() is defined in each CPU's io.h file. For those CPUs which do not need sync for now, a dummy sync() is defined in their io.h as well. Signed-off-by: Haiying Wang <Haiying.Wang@freescale.com>
455 lines
13 KiB
C
455 lines
13 KiB
C
/*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* Copyright (C) 1994, 1995 Waldorf GmbH
|
|
* Copyright (C) 1994 - 2000 Ralf Baechle
|
|
* Copyright (C) 1999, 2000 Silicon Graphics, Inc.
|
|
* Copyright (C) 2000 FSMLabs, Inc.
|
|
*/
|
|
#ifndef _ASM_IO_H
|
|
#define _ASM_IO_H
|
|
|
|
#include <linux/config.h>
|
|
#if 0
|
|
#include <linux/pagemap.h>
|
|
#endif
|
|
#include <asm/addrspace.h>
|
|
#include <asm/byteorder.h>
|
|
|
|
/*
|
|
* Slowdown I/O port space accesses for antique hardware.
|
|
*/
|
|
#undef CONF_SLOWDOWN_IO
|
|
|
|
/*
|
|
* Sane hardware offers swapping of I/O space accesses in hardware; less
|
|
* sane hardware forces software to fiddle with this ...
|
|
*/
|
|
#if defined(CONFIG_SWAP_IO_SPACE) && defined(__MIPSEB__)
|
|
|
|
#define __ioswab8(x) (x)
|
|
#define __ioswab16(x) swab16(x)
|
|
#define __ioswab32(x) swab32(x)
|
|
|
|
#else
|
|
|
|
#define __ioswab8(x) (x)
|
|
#define __ioswab16(x) (x)
|
|
#define __ioswab32(x) (x)
|
|
|
|
#endif
|
|
|
|
/*
|
|
* This file contains the definitions for the MIPS counterpart of the
|
|
* x86 in/out instructions. This heap of macros and C results in much
|
|
* better code than the approach of doing it in plain C. The macros
|
|
* result in code that is to fast for certain hardware. On the other
|
|
* side the performance of the string functions should be improved for
|
|
* sake of certain devices like EIDE disks that do highspeed polled I/O.
|
|
*
|
|
* Ralf
|
|
*
|
|
* This file contains the definitions for the x86 IO instructions
|
|
* inb/inw/inl/outb/outw/outl and the "string versions" of the same
|
|
* (insb/insw/insl/outsb/outsw/outsl). You can also use "pausing"
|
|
* versions of the single-IO instructions (inb_p/inw_p/..).
|
|
*
|
|
* This file is not meant to be obfuscating: it's just complicated
|
|
* to (a) handle it all in a way that makes gcc able to optimize it
|
|
* as well as possible and (b) trying to avoid writing the same thing
|
|
* over and over again with slight variations and possibly making a
|
|
* mistake somewhere.
|
|
*/
|
|
|
|
/*
|
|
* On MIPS I/O ports are memory mapped, so we access them using normal
|
|
* load/store instructions. mips_io_port_base is the virtual address to
|
|
* which all ports are being mapped. For sake of efficiency some code
|
|
* assumes that this is an address that can be loaded with a single lui
|
|
* instruction, so the lower 16 bits must be zero. Should be true on
|
|
* on any sane architecture; generic code does not use this assumption.
|
|
*/
|
|
extern unsigned long mips_io_port_base;
|
|
|
|
/*
|
|
* Thanks to James van Artsdalen for a better timing-fix than
|
|
* the two short jumps: using outb's to a nonexistent port seems
|
|
* to guarantee better timings even on fast machines.
|
|
*
|
|
* On the other hand, I'd like to be sure of a non-existent port:
|
|
* I feel a bit unsafe about using 0x80 (should be safe, though)
|
|
*
|
|
* Linus
|
|
*
|
|
*/
|
|
|
|
#define __SLOW_DOWN_IO \
|
|
__asm__ __volatile__( \
|
|
"sb\t$0,0x80(%0)" \
|
|
: : "r" (mips_io_port_base));
|
|
|
|
#ifdef CONF_SLOWDOWN_IO
|
|
#ifdef REALLY_SLOW_IO
|
|
#define SLOW_DOWN_IO { __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; }
|
|
#else
|
|
#define SLOW_DOWN_IO __SLOW_DOWN_IO
|
|
#endif
|
|
#else
|
|
#define SLOW_DOWN_IO
|
|
#endif
|
|
|
|
/*
|
|
* Change virtual addresses to physical addresses and vv.
|
|
* These are trivial on the 1:1 Linux/MIPS mapping
|
|
*/
|
|
extern inline unsigned long virt_to_phys(volatile void * address)
|
|
{
|
|
return PHYSADDR(address);
|
|
}
|
|
|
|
extern inline void * phys_to_virt(unsigned long address)
|
|
{
|
|
return (void *)KSEG0ADDR(address);
|
|
}
|
|
|
|
/*
|
|
* IO bus memory addresses are also 1:1 with the physical address
|
|
*/
|
|
extern inline unsigned long virt_to_bus(volatile void * address)
|
|
{
|
|
return PHYSADDR(address);
|
|
}
|
|
|
|
extern inline void * bus_to_virt(unsigned long address)
|
|
{
|
|
return (void *)KSEG0ADDR(address);
|
|
}
|
|
|
|
/*
|
|
* isa_slot_offset is the address where E(ISA) busaddress 0 is mapped
|
|
* for the processor.
|
|
*/
|
|
extern unsigned long isa_slot_offset;
|
|
|
|
extern void * __ioremap(unsigned long offset, unsigned long size, unsigned long flags);
|
|
|
|
#if 0
|
|
extern inline void *ioremap(unsigned long offset, unsigned long size)
|
|
{
|
|
return __ioremap(offset, size, _CACHE_UNCACHED);
|
|
}
|
|
|
|
extern inline void *ioremap_nocache(unsigned long offset, unsigned long size)
|
|
{
|
|
return __ioremap(offset, size, _CACHE_UNCACHED);
|
|
}
|
|
|
|
extern void iounmap(void *addr);
|
|
#endif
|
|
|
|
/*
|
|
* XXX We need system specific versions of these to handle EISA address bits
|
|
* 24-31 on SNI.
|
|
* XXX more SNI hacks.
|
|
*/
|
|
#define readb(addr) (*(volatile unsigned char *)(addr))
|
|
#define readw(addr) __ioswab16((*(volatile unsigned short *)(addr)))
|
|
#define readl(addr) __ioswab32((*(volatile unsigned int *)(addr)))
|
|
#define __raw_readb readb
|
|
#define __raw_readw readw
|
|
#define __raw_readl readl
|
|
|
|
#define writeb(b,addr) (*(volatile unsigned char *)(addr)) = (b)
|
|
#define writew(b,addr) (*(volatile unsigned short *)(addr)) = (__ioswab16(b))
|
|
#define writel(b,addr) (*(volatile unsigned int *)(addr)) = (__ioswab32(b))
|
|
#define __raw_writeb writeb
|
|
#define __raw_writew writew
|
|
#define __raw_writel writel
|
|
|
|
#define memset_io(a,b,c) memset((void *)(a),(b),(c))
|
|
#define memcpy_fromio(a,b,c) memcpy((a),(void *)(b),(c))
|
|
#define memcpy_toio(a,b,c) memcpy((void *)(a),(b),(c))
|
|
|
|
/* END SNI HACKS ... */
|
|
|
|
/*
|
|
* ISA space is 'always mapped' on currently supported MIPS systems, no need
|
|
* to explicitly ioremap() it. The fact that the ISA IO space is mapped
|
|
* to PAGE_OFFSET is pure coincidence - it does not mean ISA values
|
|
* are physical addresses. The following constant pointer can be
|
|
* used as the IO-area pointer (it can be iounmapped as well, so the
|
|
* analogy with PCI is quite large):
|
|
*/
|
|
#define __ISA_IO_base ((char *)(PAGE_OFFSET))
|
|
|
|
#define isa_readb(a) readb(a)
|
|
#define isa_readw(a) readw(a)
|
|
#define isa_readl(a) readl(a)
|
|
#define isa_writeb(b,a) writeb(b,a)
|
|
#define isa_writew(w,a) writew(w,a)
|
|
#define isa_writel(l,a) writel(l,a)
|
|
|
|
#define isa_memset_io(a,b,c) memset_io((a),(b),(c))
|
|
#define isa_memcpy_fromio(a,b,c) memcpy_fromio((a),(b),(c))
|
|
#define isa_memcpy_toio(a,b,c) memcpy_toio((a),(b),(c))
|
|
|
|
/*
|
|
* We don't have csum_partial_copy_fromio() yet, so we cheat here and
|
|
* just copy it. The net code will then do the checksum later.
|
|
*/
|
|
#define eth_io_copy_and_sum(skb,src,len,unused) memcpy_fromio((skb)->data,(src),(len))
|
|
#define isa_eth_io_copy_and_sum(a,b,c,d) eth_copy_and_sum((a),(b),(c),(d))
|
|
|
|
static inline int check_signature(unsigned long io_addr,
|
|
const unsigned char *signature, int length)
|
|
{
|
|
int retval = 0;
|
|
do {
|
|
if (readb(io_addr) != *signature)
|
|
goto out;
|
|
io_addr++;
|
|
signature++;
|
|
length--;
|
|
} while (length);
|
|
retval = 1;
|
|
out:
|
|
return retval;
|
|
}
|
|
#define isa_check_signature(io, s, l) check_signature(i,s,l)
|
|
|
|
/*
|
|
* Talk about misusing macros..
|
|
*/
|
|
|
|
#define __OUT1(s) \
|
|
extern inline void __out##s(unsigned int value, unsigned int port) {
|
|
|
|
#define __OUT2(m) \
|
|
__asm__ __volatile__ ("s" #m "\t%0,%1(%2)"
|
|
|
|
#define __OUT(m,s,w) \
|
|
__OUT1(s) __OUT2(m) : : "r" (__ioswab##w(value)), "i" (0), "r" (mips_io_port_base+port)); } \
|
|
__OUT1(s##c) __OUT2(m) : : "r" (__ioswab##w(value)), "ir" (port), "r" (mips_io_port_base)); } \
|
|
__OUT1(s##_p) __OUT2(m) : : "r" (__ioswab##w(value)), "i" (0), "r" (mips_io_port_base+port)); \
|
|
SLOW_DOWN_IO; } \
|
|
__OUT1(s##c_p) __OUT2(m) : : "r" (__ioswab##w(value)), "ir" (port), "r" (mips_io_port_base)); \
|
|
SLOW_DOWN_IO; }
|
|
|
|
#define __IN1(t,s) \
|
|
extern __inline__ t __in##s(unsigned int port) { t _v;
|
|
|
|
/*
|
|
* Required nops will be inserted by the assembler
|
|
*/
|
|
#define __IN2(m) \
|
|
__asm__ __volatile__ ("l" #m "\t%0,%1(%2)"
|
|
|
|
#define __IN(t,m,s,w) \
|
|
__IN1(t,s) __IN2(m) : "=r" (_v) : "i" (0), "r" (mips_io_port_base+port)); return __ioswab##w(_v); } \
|
|
__IN1(t,s##c) __IN2(m) : "=r" (_v) : "ir" (port), "r" (mips_io_port_base)); return __ioswab##w(_v); } \
|
|
__IN1(t,s##_p) __IN2(m) : "=r" (_v) : "i" (0), "r" (mips_io_port_base+port)); SLOW_DOWN_IO; return __ioswab##w(_v); } \
|
|
__IN1(t,s##c_p) __IN2(m) : "=r" (_v) : "ir" (port), "r" (mips_io_port_base)); SLOW_DOWN_IO; return __ioswab##w(_v); }
|
|
|
|
#define __INS1(s) \
|
|
extern inline void __ins##s(unsigned int port, void * addr, unsigned long count) {
|
|
|
|
#define __INS2(m) \
|
|
if (count) \
|
|
__asm__ __volatile__ ( \
|
|
".set\tnoreorder\n\t" \
|
|
".set\tnoat\n" \
|
|
"1:\tl" #m "\t$1,%4(%5)\n\t" \
|
|
"subu\t%1,1\n\t" \
|
|
"s" #m "\t$1,(%0)\n\t" \
|
|
"bne\t$0,%1,1b\n\t" \
|
|
"addiu\t%0,%6\n\t" \
|
|
".set\tat\n\t" \
|
|
".set\treorder"
|
|
|
|
#define __INS(m,s,i) \
|
|
__INS1(s) __INS2(m) \
|
|
: "=r" (addr), "=r" (count) \
|
|
: "0" (addr), "1" (count), "i" (0), \
|
|
"r" (mips_io_port_base+port), "I" (i) \
|
|
: "$1");} \
|
|
__INS1(s##c) __INS2(m) \
|
|
: "=r" (addr), "=r" (count) \
|
|
: "0" (addr), "1" (count), "ir" (port), \
|
|
"r" (mips_io_port_base), "I" (i) \
|
|
: "$1");}
|
|
|
|
#define __OUTS1(s) \
|
|
extern inline void __outs##s(unsigned int port, const void * addr, unsigned long count) {
|
|
|
|
#define __OUTS2(m) \
|
|
if (count) \
|
|
__asm__ __volatile__ ( \
|
|
".set\tnoreorder\n\t" \
|
|
".set\tnoat\n" \
|
|
"1:\tl" #m "\t$1,(%0)\n\t" \
|
|
"subu\t%1,1\n\t" \
|
|
"s" #m "\t$1,%4(%5)\n\t" \
|
|
"bne\t$0,%1,1b\n\t" \
|
|
"addiu\t%0,%6\n\t" \
|
|
".set\tat\n\t" \
|
|
".set\treorder"
|
|
|
|
#define __OUTS(m,s,i) \
|
|
__OUTS1(s) __OUTS2(m) \
|
|
: "=r" (addr), "=r" (count) \
|
|
: "0" (addr), "1" (count), "i" (0), "r" (mips_io_port_base+port), "I" (i) \
|
|
: "$1");} \
|
|
__OUTS1(s##c) __OUTS2(m) \
|
|
: "=r" (addr), "=r" (count) \
|
|
: "0" (addr), "1" (count), "ir" (port), "r" (mips_io_port_base), "I" (i) \
|
|
: "$1");}
|
|
|
|
__IN(unsigned char,b,b,8)
|
|
__IN(unsigned short,h,w,16)
|
|
__IN(unsigned int,w,l,32)
|
|
|
|
__OUT(b,b,8)
|
|
__OUT(h,w,16)
|
|
__OUT(w,l,32)
|
|
|
|
__INS(b,b,1)
|
|
__INS(h,w,2)
|
|
__INS(w,l,4)
|
|
|
|
__OUTS(b,b,1)
|
|
__OUTS(h,w,2)
|
|
__OUTS(w,l,4)
|
|
|
|
|
|
/*
|
|
* Note that due to the way __builtin_constant_p() works, you
|
|
* - can't use it inside an inline function (it will never be true)
|
|
* - you don't have to worry about side effects within the __builtin..
|
|
*/
|
|
#define outb(val,port) \
|
|
((__builtin_constant_p((port)) && (port) < 32768) ? \
|
|
__outbc((val),(port)) : \
|
|
__outb((val),(port)))
|
|
|
|
#define inb(port) \
|
|
((__builtin_constant_p((port)) && (port) < 32768) ? \
|
|
__inbc(port) : \
|
|
__inb(port))
|
|
|
|
#define outb_p(val,port) \
|
|
((__builtin_constant_p((port)) && (port) < 32768) ? \
|
|
__outbc_p((val),(port)) : \
|
|
__outb_p((val),(port)))
|
|
|
|
#define inb_p(port) \
|
|
((__builtin_constant_p((port)) && (port) < 32768) ? \
|
|
__inbc_p(port) : \
|
|
__inb_p(port))
|
|
|
|
#define outw(val,port) \
|
|
((__builtin_constant_p((port)) && (port) < 32768) ? \
|
|
__outwc((val),(port)) : \
|
|
__outw((val),(port)))
|
|
|
|
#define inw(port) \
|
|
((__builtin_constant_p((port)) && (port) < 32768) ? \
|
|
__inwc(port) : \
|
|
__inw(port))
|
|
|
|
#define outw_p(val,port) \
|
|
((__builtin_constant_p((port)) && (port) < 32768) ? \
|
|
__outwc_p((val),(port)) : \
|
|
__outw_p((val),(port)))
|
|
|
|
#define inw_p(port) \
|
|
((__builtin_constant_p((port)) && (port) < 32768) ? \
|
|
__inwc_p(port) : \
|
|
__inw_p(port))
|
|
|
|
#define outl(val,port) \
|
|
((__builtin_constant_p((port)) && (port) < 32768) ? \
|
|
__outlc((val),(port)) : \
|
|
__outl((val),(port)))
|
|
|
|
#define inl(port) \
|
|
((__builtin_constant_p((port)) && (port) < 32768) ? \
|
|
__inlc(port) : \
|
|
__inl(port))
|
|
|
|
#define outl_p(val,port) \
|
|
((__builtin_constant_p((port)) && (port) < 32768) ? \
|
|
__outlc_p((val),(port)) : \
|
|
__outl_p((val),(port)))
|
|
|
|
#define inl_p(port) \
|
|
((__builtin_constant_p((port)) && (port) < 32768) ? \
|
|
__inlc_p(port) : \
|
|
__inl_p(port))
|
|
|
|
|
|
#define outsb(port,addr,count) \
|
|
((__builtin_constant_p((port)) && (port) < 32768) ? \
|
|
__outsbc((port),(addr),(count)) : \
|
|
__outsb ((port),(addr),(count)))
|
|
|
|
#define insb(port,addr,count) \
|
|
((__builtin_constant_p((port)) && (port) < 32768) ? \
|
|
__insbc((port),(addr),(count)) : \
|
|
__insb((port),(addr),(count)))
|
|
|
|
#define outsw(port,addr,count) \
|
|
((__builtin_constant_p((port)) && (port) < 32768) ? \
|
|
__outswc((port),(addr),(count)) : \
|
|
__outsw ((port),(addr),(count)))
|
|
|
|
#define insw(port,addr,count) \
|
|
((__builtin_constant_p((port)) && (port) < 32768) ? \
|
|
__inswc((port),(addr),(count)) : \
|
|
__insw((port),(addr),(count)))
|
|
|
|
#define outsl(port,addr,count) \
|
|
((__builtin_constant_p((port)) && (port) < 32768) ? \
|
|
__outslc((port),(addr),(count)) : \
|
|
__outsl ((port),(addr),(count)))
|
|
|
|
#define insl(port,addr,count) \
|
|
((__builtin_constant_p((port)) && (port) < 32768) ? \
|
|
__inslc((port),(addr),(count)) : \
|
|
__insl((port),(addr),(count)))
|
|
|
|
#define IO_SPACE_LIMIT 0xffff
|
|
|
|
/*
|
|
* The caches on some architectures aren't dma-coherent and have need to
|
|
* handle this in software. There are three types of operations that
|
|
* can be applied to dma buffers.
|
|
*
|
|
* - dma_cache_wback_inv(start, size) makes caches and coherent by
|
|
* writing the content of the caches back to memory, if necessary.
|
|
* The function also invalidates the affected part of the caches as
|
|
* necessary before DMA transfers from outside to memory.
|
|
* - dma_cache_wback(start, size) makes caches and coherent by
|
|
* writing the content of the caches back to memory, if necessary.
|
|
* The function also invalidates the affected part of the caches as
|
|
* necessary before DMA transfers from outside to memory.
|
|
* - dma_cache_inv(start, size) invalidates the affected parts of the
|
|
* caches. Dirty lines of the caches may be written back or simply
|
|
* be discarded. This operation is necessary before dma operations
|
|
* to the memory.
|
|
*/
|
|
extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
|
|
extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
|
|
extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);
|
|
|
|
#define dma_cache_wback_inv(start,size) _dma_cache_wback_inv(start,size)
|
|
#define dma_cache_wback(start,size) _dma_cache_wback(start,size)
|
|
#define dma_cache_inv(start,size) _dma_cache_inv(start,size)
|
|
|
|
static inline void sync(void)
|
|
{
|
|
}
|
|
|
|
#endif /* _ASM_IO_H */
|