u-boot/drivers/spi/spi-mxic.c
Zhengxun 0d7066bce2 spi: Add MXIC controller driver
Add a driver for Macronix SPI controller IP.

This patch referred from linux spi-mxic.c. The difference from the
linux version is described here.

1. To adapt uboot spi framework, modify some functions naming.

2. Remove the incompatible functions of Uboot.

3. Add dummy byte recalculattion function to support dummy buswidth
   not align data buswidth operation.(ex: 1-1-4, 1-1-8)

4. Add Octal mode support.

Signed-off-by: Zhengxun <zhengxunli.mxic@gmail.com>
Reviewed-by: Jagan Teki <jagan@amarulasolutions.com>
[jagan: fixed file permission, comment line, kconfig]
Signed-off-by: Jagan Teki <jagan@amarulasolutions.com>
2021-06-25 20:59:45 +05:30

548 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2021 Macronix International Co., Ltd.
*
* Authors:
* zhengxunli <zhengxunli@mxic.com.tw>
*/
#include <common.h>
#include <clk.h>
#include <dm.h>
#include <errno.h>
#include <asm/io.h>
#include <malloc.h>
#include <spi.h>
#include <spi-mem.h>
#include <linux/bug.h>
#include <linux/iopoll.h>
#define HC_CFG 0x0
#define HC_CFG_IF_CFG(x) ((x) << 27)
#define HC_CFG_DUAL_SLAVE BIT(31)
#define HC_CFG_INDIVIDUAL BIT(30)
#define HC_CFG_NIO(x) (((x) / 4) << 27)
#define HC_CFG_TYPE(s, t) ((t) << (23 + ((s) * 2)))
#define HC_CFG_TYPE_SPI_NOR 0
#define HC_CFG_TYPE_SPI_NAND 1
#define HC_CFG_TYPE_SPI_RAM 2
#define HC_CFG_TYPE_RAW_NAND 3
#define HC_CFG_SLV_ACT(x) ((x) << 21)
#define HC_CFG_CLK_PH_EN BIT(20)
#define HC_CFG_CLK_POL_INV BIT(19)
#define HC_CFG_BIG_ENDIAN BIT(18)
#define HC_CFG_DATA_PASS BIT(17)
#define HC_CFG_IDLE_SIO_LVL(x) ((x) << 16)
#define HC_CFG_MAN_START_EN BIT(3)
#define HC_CFG_MAN_START BIT(2)
#define HC_CFG_MAN_CS_EN BIT(1)
#define HC_CFG_MAN_CS_ASSERT BIT(0)
#define INT_STS 0x4
#define INT_STS_EN 0x8
#define INT_SIG_EN 0xc
#define INT_STS_ALL GENMASK(31, 0)
#define INT_RDY_PIN BIT(26)
#define INT_RDY_SR BIT(25)
#define INT_LNR_SUSP BIT(24)
#define INT_ECC_ERR BIT(17)
#define INT_CRC_ERR BIT(16)
#define INT_LWR_DIS BIT(12)
#define INT_LRD_DIS BIT(11)
#define INT_SDMA_INT BIT(10)
#define INT_DMA_FINISH BIT(9)
#define INT_RX_NOT_FULL BIT(3)
#define INT_RX_NOT_EMPTY BIT(2)
#define INT_TX_NOT_FULL BIT(1)
#define INT_TX_EMPTY BIT(0)
#define HC_EN 0x10
#define HC_EN_BIT BIT(0)
#define TXD(x) (0x14 + ((x) * 4))
#define RXD 0x24
#define SS_CTRL(s) (0x30 + ((s) * 4))
#define LRD_CFG 0x44
#define LWR_CFG 0x80
#define RWW_CFG 0x70
#define OP_READ BIT(23)
#define OP_DUMMY_CYC(x) ((x) << 17)
#define OP_ADDR_BYTES(x) ((x) << 14)
#define OP_CMD_BYTES(x) (((x) - 1) << 13)
#define OP_OCTA_CRC_EN BIT(12)
#define OP_DQS_EN BIT(11)
#define OP_ENHC_EN BIT(10)
#define OP_PREAMBLE_EN BIT(9)
#define OP_DATA_DDR BIT(8)
#define OP_DATA_BUSW(x) ((x) << 6)
#define OP_ADDR_DDR BIT(5)
#define OP_ADDR_BUSW(x) ((x) << 3)
#define OP_CMD_DDR BIT(2)
#define OP_CMD_BUSW(x) (x)
#define OP_BUSW_1 0
#define OP_BUSW_2 1
#define OP_BUSW_4 2
#define OP_BUSW_8 3
#define OCTA_CRC 0x38
#define OCTA_CRC_IN_EN(s) BIT(3 + ((s) * 16))
#define OCTA_CRC_CHUNK(s, x) ((fls((x) / 32)) << (1 + ((s) * 16)))
#define OCTA_CRC_OUT_EN(s) BIT(0 + ((s) * 16))
#define ONFI_DIN_CNT(s) (0x3c + (s))
#define LRD_CTRL 0x48
#define RWW_CTRL 0x74
#define LWR_CTRL 0x84
#define LMODE_EN BIT(31)
#define LMODE_SLV_ACT(x) ((x) << 21)
#define LMODE_CMD1(x) ((x) << 8)
#define LMODE_CMD0(x) (x)
#define LRD_ADDR 0x4c
#define LWR_ADDR 0x88
#define LRD_RANGE 0x50
#define LWR_RANGE 0x8c
#define AXI_SLV_ADDR 0x54
#define DMAC_RD_CFG 0x58
#define DMAC_WR_CFG 0x94
#define DMAC_CFG_PERIPH_EN BIT(31)
#define DMAC_CFG_ALLFLUSH_EN BIT(30)
#define DMAC_CFG_LASTFLUSH_EN BIT(29)
#define DMAC_CFG_QE(x) (((x) + 1) << 16)
#define DMAC_CFG_BURST_LEN(x) (((x) + 1) << 12)
#define DMAC_CFG_BURST_SZ(x) ((x) << 8)
#define DMAC_CFG_DIR_READ BIT(1)
#define DMAC_CFG_START BIT(0)
#define DMAC_RD_CNT 0x5c
#define DMAC_WR_CNT 0x98
#define SDMA_ADDR 0x60
#define DMAM_CFG 0x64
#define DMAM_CFG_START BIT(31)
#define DMAM_CFG_CONT BIT(30)
#define DMAM_CFG_SDMA_GAP(x) (fls((x) / 8192) << 2)
#define DMAM_CFG_DIR_READ BIT(1)
#define DMAM_CFG_EN BIT(0)
#define DMAM_CNT 0x68
#define LNR_TIMER_TH 0x6c
#define RDM_CFG0 0x78
#define RDM_CFG0_POLY(x) (x)
#define RDM_CFG1 0x7c
#define RDM_CFG1_RDM_EN BIT(31)
#define RDM_CFG1_SEED(x) (x)
#define LWR_SUSP_CTRL 0x90
#define LWR_SUSP_CTRL_EN BIT(31)
#define DMAS_CTRL 0x9c
#define DMAS_CTRL_EN BIT(31)
#define DMAS_CTRL_DIR_READ BIT(30)
#define DATA_STROB 0xa0
#define DATA_STROB_EDO_EN BIT(2)
#define DATA_STROB_INV_POL BIT(1)
#define DATA_STROB_DELAY_2CYC BIT(0)
#define IDLY_CODE(x) (0xa4 + ((x) * 4))
#define IDLY_CODE_VAL(x, v) ((v) << (((x) % 4) * 8))
#define GPIO 0xc4
#define GPIO_PT(x) BIT(3 + ((x) * 16))
#define GPIO_RESET(x) BIT(2 + ((x) * 16))
#define GPIO_HOLDB(x) BIT(1 + ((x) * 16))
#define GPIO_WPB(x) BIT((x) * 16)
#define HC_VER 0xd0
#define HW_TEST(x) (0xe0 + ((x) * 4))
struct mxic_spi_priv {
struct clk *send_clk;
struct clk *send_dly_clk;
void __iomem *regs;
u32 cur_speed_hz;
};
static int mxic_spi_clk_enable(struct mxic_spi_priv *priv)
{
int ret;
ret = clk_prepare_enable(priv->send_clk);
if (ret)
return ret;
ret = clk_prepare_enable(priv->send_dly_clk);
if (ret)
goto err_send_dly_clk;
return ret;
err_send_dly_clk:
clk_disable_unprepare(priv->send_clk);
return ret;
}
static void mxic_spi_clk_disable(struct mxic_spi_priv *priv)
{
clk_disable_unprepare(priv->send_clk);
clk_disable_unprepare(priv->send_dly_clk);
}
static void mxic_spi_set_input_delay_dqs(struct mxic_spi_priv *priv,
u8 idly_code)
{
writel(IDLY_CODE_VAL(0, idly_code) |
IDLY_CODE_VAL(1, idly_code) |
IDLY_CODE_VAL(2, idly_code) |
IDLY_CODE_VAL(3, idly_code),
priv->regs + IDLY_CODE(0));
writel(IDLY_CODE_VAL(4, idly_code) |
IDLY_CODE_VAL(5, idly_code) |
IDLY_CODE_VAL(6, idly_code) |
IDLY_CODE_VAL(7, idly_code),
priv->regs + IDLY_CODE(1));
}
static int mxic_spi_clk_setup(struct mxic_spi_priv *priv, uint freq)
{
int ret;
ret = clk_set_rate(priv->send_clk, freq);
if (ret)
return ret;
ret = clk_set_rate(priv->send_dly_clk, freq);
if (ret)
return ret;
/*
* A constant delay range from 0x0 ~ 0x1F for input delay,
* the unit is 78 ps, the max input delay is 2.418 ns.
*/
mxic_spi_set_input_delay_dqs(priv, 0xf);
return 0;
}
static int mxic_spi_set_speed(struct udevice *bus, uint freq)
{
struct mxic_spi_priv *priv = dev_get_priv(bus);
int ret;
if (priv->cur_speed_hz == freq)
return 0;
mxic_spi_clk_disable(priv);
ret = mxic_spi_clk_setup(priv, freq);
if (ret)
return ret;
ret = mxic_spi_clk_enable(priv);
if (ret)
return ret;
priv->cur_speed_hz = freq;
return 0;
}
static int mxic_spi_set_mode(struct udevice *bus, uint mode)
{
struct mxic_spi_priv *priv = dev_get_priv(bus);
u32 hc_config = 0;
if (mode & SPI_CPHA)
hc_config |= HC_CFG_CLK_PH_EN;
if (mode & SPI_CPOL)
hc_config |= HC_CFG_CLK_POL_INV;
writel(hc_config, priv->regs + HC_CFG);
return 0;
}
static void mxic_spi_hw_init(struct mxic_spi_priv *priv)
{
writel(0, priv->regs + DATA_STROB);
writel(INT_STS_ALL, priv->regs + INT_STS_EN);
writel(0, priv->regs + HC_EN);
writel(0, priv->regs + LRD_CFG);
writel(0, priv->regs + LRD_CTRL);
writel(HC_CFG_NIO(1) | HC_CFG_TYPE(0, HC_CFG_TYPE_SPI_NOR) |
HC_CFG_SLV_ACT(0) | HC_CFG_MAN_CS_EN | HC_CFG_IDLE_SIO_LVL(1),
priv->regs + HC_CFG);
}
static int mxic_spi_data_xfer(struct mxic_spi_priv *priv, const void *txbuf,
void *rxbuf, unsigned int len)
{
unsigned int pos = 0;
while (pos < len) {
unsigned int nbytes = len - pos;
u32 data = 0xffffffff;
u32 sts;
int ret;
if (nbytes > 4)
nbytes = 4;
if (txbuf)
memcpy(&data, txbuf + pos, nbytes);
ret = readl_poll_timeout(priv->regs + INT_STS, sts,
sts & INT_TX_EMPTY, 1000000);
if (ret)
return ret;
writel(data, priv->regs + TXD(nbytes % 4));
if (rxbuf) {
ret = readl_poll_timeout(priv->regs + INT_STS, sts,
sts & INT_TX_EMPTY,
1000000);
if (ret)
return ret;
ret = readl_poll_timeout(priv->regs + INT_STS, sts,
sts & INT_RX_NOT_EMPTY,
1000000);
if (ret)
return ret;
data = readl(priv->regs + RXD);
data >>= (8 * (4 - nbytes));
memcpy(rxbuf + pos, &data, nbytes);
WARN_ON(readl(priv->regs + INT_STS) & INT_RX_NOT_EMPTY);
} else {
readl(priv->regs + RXD);
}
WARN_ON(readl(priv->regs + INT_STS) & INT_RX_NOT_EMPTY);
pos += nbytes;
}
return 0;
}
static bool mxic_spi_mem_supports_op(struct spi_slave *slave,
const struct spi_mem_op *op)
{
if (op->data.buswidth > 8 || op->addr.buswidth > 8 ||
op->dummy.buswidth > 8 || op->cmd.buswidth > 8)
return false;
if (op->addr.nbytes > 7)
return false;
return spi_mem_default_supports_op(slave, op);
}
static int mxic_spi_mem_exec_op(struct spi_slave *slave,
const struct spi_mem_op *op)
{
struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(slave->dev);
struct udevice *bus = slave->dev->parent;
struct mxic_spi_priv *priv = dev_get_priv(bus);
int nio = 1, i, ret;
u32 ss_ctrl;
u8 addr[8], dummy_bytes = 0;
if (slave->mode & (SPI_TX_OCTAL | SPI_RX_OCTAL))
nio = 8;
else if (slave->mode & (SPI_TX_QUAD | SPI_RX_QUAD))
nio = 4;
else if (slave->mode & (SPI_TX_DUAL | SPI_RX_DUAL))
nio = 2;
writel(HC_CFG_NIO(nio) |
HC_CFG_TYPE(slave_plat->cs, HC_CFG_TYPE_SPI_NOR) |
HC_CFG_SLV_ACT(slave_plat->cs) | HC_CFG_IDLE_SIO_LVL(1) |
HC_CFG_MAN_CS_EN,
priv->regs + HC_CFG);
writel(HC_EN_BIT, priv->regs + HC_EN);
ss_ctrl = OP_CMD_BYTES(1) | OP_CMD_BUSW(fls(op->cmd.buswidth) - 1);
if (op->addr.nbytes)
ss_ctrl |= OP_ADDR_BYTES(op->addr.nbytes) |
OP_ADDR_BUSW(fls(op->addr.buswidth) - 1);
/*
* Since the SPI MXIC dummy buswidth is aligned with the data buswidth,
* the dummy byte needs to be recalculated to send out the correct
* dummy cycle.
*/
if (op->dummy.nbytes) {
dummy_bytes = op->dummy.nbytes /
op->addr.buswidth *
op->data.buswidth;
ss_ctrl |= OP_DUMMY_CYC(dummy_bytes);
}
if (op->data.nbytes) {
ss_ctrl |= OP_DATA_BUSW(fls(op->data.buswidth) - 1);
if (op->data.dir == SPI_MEM_DATA_IN)
ss_ctrl |= OP_READ;
}
writel(ss_ctrl, priv->regs + SS_CTRL(slave_plat->cs));
writel(readl(priv->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT,
priv->regs + HC_CFG);
ret = mxic_spi_data_xfer(priv, &op->cmd.opcode, NULL, 1);
if (ret)
goto out;
for (i = 0; i < op->addr.nbytes; i++)
addr[i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
ret = mxic_spi_data_xfer(priv, addr, NULL, op->addr.nbytes);
if (ret)
goto out;
ret = mxic_spi_data_xfer(priv, NULL, NULL, dummy_bytes);
if (ret)
goto out;
ret = mxic_spi_data_xfer(priv,
op->data.dir == SPI_MEM_DATA_OUT ?
op->data.buf.out : NULL,
op->data.dir == SPI_MEM_DATA_IN ?
op->data.buf.in : NULL,
op->data.nbytes);
out:
writel(readl(priv->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT,
priv->regs + HC_CFG);
writel(0, priv->regs + HC_EN);
return ret;
}
static const struct spi_controller_mem_ops mxic_spi_mem_ops = {
.supports_op = mxic_spi_mem_supports_op,
.exec_op = mxic_spi_mem_exec_op,
};
static int mxic_spi_claim_bus(struct udevice *dev)
{
struct udevice *bus = dev_get_parent(dev);
struct mxic_spi_priv *priv = dev_get_priv(bus);
writel(readl(priv->regs + HC_CFG) | HC_CFG_MAN_CS_EN,
priv->regs + HC_CFG);
writel(HC_EN_BIT, priv->regs + HC_EN);
writel(readl(priv->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT,
priv->regs + HC_CFG);
return 0;
}
static int mxic_spi_release_bus(struct udevice *dev)
{
struct udevice *bus = dev_get_parent(dev);
struct mxic_spi_priv *priv = dev_get_priv(bus);
writel(readl(priv->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT,
priv->regs + HC_CFG);
writel(0, priv->regs + HC_EN);
return 0;
}
static int mxic_spi_xfer(struct udevice *dev, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
struct udevice *bus = dev_get_parent(dev);
struct mxic_spi_priv *priv = dev_get_priv(bus);
struct spi_slave *slave = dev_get_parent_priv(dev);
unsigned int busw = OP_BUSW_1;
unsigned int len = bitlen / 8;
int ret;
if (dout && din) {
if (((slave->mode & SPI_TX_QUAD) &&
!(slave->mode & SPI_RX_QUAD)) ||
((slave->mode & SPI_TX_DUAL) &&
!(slave->mode & SPI_RX_DUAL)))
return -ENOTSUPP;
}
if (din) {
if (slave->mode & SPI_TX_QUAD)
busw = OP_BUSW_4;
else if (slave->mode & SPI_TX_DUAL)
busw = OP_BUSW_2;
} else if (dout) {
if (slave->mode & SPI_RX_QUAD)
busw = OP_BUSW_4;
else if (slave->mode & SPI_RX_DUAL)
busw = OP_BUSW_2;
}
writel(OP_CMD_BYTES(1) | OP_CMD_BUSW(busw) |
OP_DATA_BUSW(busw) | (din ? OP_READ : 0),
priv->regs + SS_CTRL(0));
ret = mxic_spi_data_xfer(priv, dout, din, len);
if (ret)
return ret;
return 0;
}
static int mxic_spi_probe(struct udevice *bus)
{
struct mxic_spi_priv *priv = dev_get_priv(bus);
priv->regs = (void *)dev_read_addr(bus);
priv->send_clk = devm_clk_get(bus, "send_clk");
if (IS_ERR(priv->send_clk))
return PTR_ERR(priv->send_clk);
priv->send_dly_clk = devm_clk_get(bus, "send_dly_clk");
if (IS_ERR(priv->send_dly_clk))
return PTR_ERR(priv->send_dly_clk);
mxic_spi_hw_init(priv);
return 0;
}
static const struct dm_spi_ops mxic_spi_ops = {
.claim_bus = mxic_spi_claim_bus,
.release_bus = mxic_spi_release_bus,
.xfer = mxic_spi_xfer,
.set_speed = mxic_spi_set_speed,
.set_mode = mxic_spi_set_mode,
.mem_ops = &mxic_spi_mem_ops,
};
static const struct udevice_id mxic_spi_ids[] = {
{ .compatible = "mxicy,mx25f0a-spi", },
{ }
};
U_BOOT_DRIVER(mxic_spi) = {
.name = "mxic_spi",
.id = UCLASS_SPI,
.of_match = mxic_spi_ids,
.ops = &mxic_spi_ops,
.priv_auto = sizeof(struct mxic_spi_priv),
.probe = mxic_spi_probe,
};