u-boot/common/aboot.c
Steve Rae b4e4bbe5ab add code to handle Android sparse image format
Add original file (pristine) from :
  https://www.codeaurora.org/cgit/quic/la/kernel/lk/plain/app/aboot/aboot.c?h=master
[3b5092d20b]

Signed-off-by: Steve Rae <srae@broadcom.com>
2014-09-16 12:23:57 -04:00

2644 lines
67 KiB
C

/*
* Copyright (c) 2009, Google Inc.
* All rights reserved.
*
* Copyright (c) 2009-2014, The Linux Foundation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of The Linux Foundation nor
* the names of its contributors may be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <app.h>
#include <debug.h>
#include <arch/arm.h>
#include <string.h>
#include <stdlib.h>
#include <limits.h>
#include <kernel/thread.h>
#include <arch/ops.h>
#include <dev/flash.h>
#include <lib/ptable.h>
#include <dev/keys.h>
#include <dev/fbcon.h>
#include <baseband.h>
#include <target.h>
#include <mmc.h>
#include <partition_parser.h>
#include <platform.h>
#include <crypto_hash.h>
#include <malloc.h>
#include <boot_stats.h>
#include <sha.h>
#include <platform/iomap.h>
#include <boot_device.h>
#if DEVICE_TREE
#include <libfdt.h>
#include <dev_tree.h>
#endif
#include "image_verify.h"
#include "recovery.h"
#include "bootimg.h"
#include "fastboot.h"
#include "sparse_format.h"
#include "mmc.h"
#include "devinfo.h"
#include "board.h"
#include "scm.h"
extern bool target_use_signed_kernel(void);
extern void platform_uninit(void);
extern void target_uninit(void);
extern int get_target_boot_params(const char *cmdline, const char *part,
char *buf, int buflen);
void write_device_info_mmc(device_info *dev);
void write_device_info_flash(device_info *dev);
#define EXPAND(NAME) #NAME
#define TARGET(NAME) EXPAND(NAME)
#ifdef MEMBASE
#define EMMC_BOOT_IMG_HEADER_ADDR (0xFF000+(MEMBASE))
#else
#define EMMC_BOOT_IMG_HEADER_ADDR 0xFF000
#endif
#ifndef MEMSIZE
#define MEMSIZE 1024*1024
#endif
#define MAX_TAGS_SIZE 1024
#define RECOVERY_MODE 0x77665502
#define FASTBOOT_MODE 0x77665500
/* make 4096 as default size to ensure EFS,EXT4's erasing */
#define DEFAULT_ERASE_SIZE 4096
#define MAX_PANEL_BUF_SIZE 128
#define UBI_MAGIC "UBI#"
#define DISPLAY_DEFAULT_PREFIX "mdss_mdp"
#define UBI_MAGIC_SIZE 0x04
#define BOOT_DEV_MAX_LEN 64
#define IS_ARM64(ptr) (ptr->magic_64 == KERNEL64_HDR_MAGIC) ? true : false
#define ADD_OF(a, b) (UINT_MAX - b > a) ? (a + b) : UINT_MAX
#if UFS_SUPPORT
static const char *emmc_cmdline = " androidboot.bootdevice=";
#else
static const char *emmc_cmdline = " androidboot.emmc=true";
#endif
static const char *usb_sn_cmdline = " androidboot.serialno=";
static const char *androidboot_mode = " androidboot.mode=";
static const char *loglevel = " quiet";
static const char *battchg_pause = " androidboot.mode=charger";
static const char *auth_kernel = " androidboot.authorized_kernel=true";
static const char *secondary_gpt_enable = " gpt";
static const char *baseband_apq = " androidboot.baseband=apq";
static const char *baseband_msm = " androidboot.baseband=msm";
static const char *baseband_csfb = " androidboot.baseband=csfb";
static const char *baseband_svlte2a = " androidboot.baseband=svlte2a";
static const char *baseband_mdm = " androidboot.baseband=mdm";
static const char *baseband_mdm2 = " androidboot.baseband=mdm2";
static const char *baseband_sglte = " androidboot.baseband=sglte";
static const char *baseband_dsda = " androidboot.baseband=dsda";
static const char *baseband_dsda2 = " androidboot.baseband=dsda2";
static const char *baseband_sglte2 = " androidboot.baseband=sglte2";
static const char *warmboot_cmdline = " qpnp-power-on.warm_boot=1";
static unsigned page_size = 0;
static unsigned page_mask = 0;
static char ffbm_mode_string[FFBM_MODE_BUF_SIZE];
static bool boot_into_ffbm;
static char target_boot_params[64];
/* Assuming unauthorized kernel image by default */
static int auth_kernel_img = 0;
static device_info device = {DEVICE_MAGIC, 0, 0, 0, 0};
struct atag_ptbl_entry
{
char name[16];
unsigned offset;
unsigned size;
unsigned flags;
};
/*
* Partition info, required to be published
* for fastboot
*/
struct getvar_partition_info {
const char part_name[MAX_GPT_NAME_SIZE]; /* Partition name */
char getvar_size[MAX_GET_VAR_NAME_SIZE]; /* fastboot get var name for size */
char getvar_type[MAX_GET_VAR_NAME_SIZE]; /* fastboot get var name for type */
char size_response[MAX_RSP_SIZE]; /* fastboot response for size */
char type_response[MAX_RSP_SIZE]; /* fastboot response for type */
};
/*
* Right now, we are publishing the info for only
* three partitions
*/
struct getvar_partition_info part_info[] =
{
{ "system" , "partition-size:", "partition-type:", "", "ext4" },
{ "userdata", "partition-size:", "partition-type:", "", "ext4" },
{ "cache" , "partition-size:", "partition-type:", "", "ext4" },
};
char max_download_size[MAX_RSP_SIZE];
char charger_screen_enabled[MAX_RSP_SIZE];
char sn_buf[13];
char display_panel_buf[MAX_PANEL_BUF_SIZE];
char panel_display_mode[MAX_RSP_SIZE];
extern int emmc_recovery_init(void);
#if NO_KEYPAD_DRIVER
extern int fastboot_trigger(void);
#endif
static void update_ker_tags_rdisk_addr(struct boot_img_hdr *hdr, bool is_arm64)
{
/* overwrite the destination of specified for the project */
#ifdef ABOOT_IGNORE_BOOT_HEADER_ADDRS
if (is_arm64)
hdr->kernel_addr = ABOOT_FORCE_KERNEL64_ADDR;
else
hdr->kernel_addr = ABOOT_FORCE_KERNEL_ADDR;
hdr->ramdisk_addr = ABOOT_FORCE_RAMDISK_ADDR;
hdr->tags_addr = ABOOT_FORCE_TAGS_ADDR;
#endif
}
static void ptentry_to_tag(unsigned **ptr, struct ptentry *ptn)
{
struct atag_ptbl_entry atag_ptn;
memcpy(atag_ptn.name, ptn->name, 16);
atag_ptn.name[15] = '\0';
atag_ptn.offset = ptn->start;
atag_ptn.size = ptn->length;
atag_ptn.flags = ptn->flags;
memcpy(*ptr, &atag_ptn, sizeof(struct atag_ptbl_entry));
*ptr += sizeof(struct atag_ptbl_entry) / sizeof(unsigned);
}
unsigned char *update_cmdline(const char * cmdline)
{
int cmdline_len = 0;
int have_cmdline = 0;
unsigned char *cmdline_final = NULL;
int pause_at_bootup = 0;
bool warm_boot = false;
bool gpt_exists = partition_gpt_exists();
int have_target_boot_params = 0;
char *boot_dev_buf = NULL;
if (cmdline && cmdline[0]) {
cmdline_len = strlen(cmdline);
have_cmdline = 1;
}
if (target_is_emmc_boot()) {
cmdline_len += strlen(emmc_cmdline);
#if UFS_SUPPORT
boot_dev_buf = (char *) malloc(sizeof(char) * BOOT_DEV_MAX_LEN);
ASSERT(boot_dev_buf);
platform_boot_dev_cmdline(boot_dev_buf);
cmdline_len += strlen(boot_dev_buf);
#endif
}
cmdline_len += strlen(usb_sn_cmdline);
cmdline_len += strlen(sn_buf);
if (boot_into_recovery && gpt_exists)
cmdline_len += strlen(secondary_gpt_enable);
if (boot_into_ffbm) {
cmdline_len += strlen(androidboot_mode);
cmdline_len += strlen(ffbm_mode_string);
/* reduce kernel console messages to speed-up boot */
cmdline_len += strlen(loglevel);
} else if (device.charger_screen_enabled &&
target_pause_for_battery_charge()) {
pause_at_bootup = 1;
cmdline_len += strlen(battchg_pause);
}
if(target_use_signed_kernel() && auth_kernel_img) {
cmdline_len += strlen(auth_kernel);
}
if (get_target_boot_params(cmdline, boot_into_recovery ? "recoveryfs" :
"system",
target_boot_params,
sizeof(target_boot_params)) == 0) {
have_target_boot_params = 1;
cmdline_len += strlen(target_boot_params);
}
/* Determine correct androidboot.baseband to use */
switch(target_baseband())
{
case BASEBAND_APQ:
cmdline_len += strlen(baseband_apq);
break;
case BASEBAND_MSM:
cmdline_len += strlen(baseband_msm);
break;
case BASEBAND_CSFB:
cmdline_len += strlen(baseband_csfb);
break;
case BASEBAND_SVLTE2A:
cmdline_len += strlen(baseband_svlte2a);
break;
case BASEBAND_MDM:
cmdline_len += strlen(baseband_mdm);
break;
case BASEBAND_MDM2:
cmdline_len += strlen(baseband_mdm2);
break;
case BASEBAND_SGLTE:
cmdline_len += strlen(baseband_sglte);
break;
case BASEBAND_SGLTE2:
cmdline_len += strlen(baseband_sglte2);
break;
case BASEBAND_DSDA:
cmdline_len += strlen(baseband_dsda);
break;
case BASEBAND_DSDA2:
cmdline_len += strlen(baseband_dsda2);
break;
}
if (cmdline) {
if ((strstr(cmdline, DISPLAY_DEFAULT_PREFIX) == NULL) &&
target_display_panel_node(device.display_panel,
display_panel_buf, MAX_PANEL_BUF_SIZE) &&
strlen(display_panel_buf)) {
cmdline_len += strlen(display_panel_buf);
}
}
if (target_warm_boot()) {
warm_boot = true;
cmdline_len += strlen(warmboot_cmdline);
}
if (cmdline_len > 0) {
const char *src;
unsigned char *dst = (unsigned char*) malloc((cmdline_len + 4) & (~3));
ASSERT(dst != NULL);
/* Save start ptr for debug print */
cmdline_final = dst;
if (have_cmdline) {
src = cmdline;
while ((*dst++ = *src++));
}
if (target_is_emmc_boot()) {
src = emmc_cmdline;
if (have_cmdline) --dst;
have_cmdline = 1;
while ((*dst++ = *src++));
#if UFS_SUPPORT
src = boot_dev_buf;
if (have_cmdline) --dst;
while ((*dst++ = *src++));
#endif
}
src = usb_sn_cmdline;
if (have_cmdline) --dst;
have_cmdline = 1;
while ((*dst++ = *src++));
src = sn_buf;
if (have_cmdline) --dst;
have_cmdline = 1;
while ((*dst++ = *src++));
if (warm_boot) {
if (have_cmdline) --dst;
src = warmboot_cmdline;
while ((*dst++ = *src++));
}
if (boot_into_recovery && gpt_exists) {
src = secondary_gpt_enable;
if (have_cmdline) --dst;
while ((*dst++ = *src++));
}
if (boot_into_ffbm) {
src = androidboot_mode;
if (have_cmdline) --dst;
while ((*dst++ = *src++));
src = ffbm_mode_string;
if (have_cmdline) --dst;
while ((*dst++ = *src++));
src = loglevel;
if (have_cmdline) --dst;
while ((*dst++ = *src++));
} else if (pause_at_bootup) {
src = battchg_pause;
if (have_cmdline) --dst;
while ((*dst++ = *src++));
}
if(target_use_signed_kernel() && auth_kernel_img) {
src = auth_kernel;
if (have_cmdline) --dst;
while ((*dst++ = *src++));
}
switch(target_baseband())
{
case BASEBAND_APQ:
src = baseband_apq;
if (have_cmdline) --dst;
while ((*dst++ = *src++));
break;
case BASEBAND_MSM:
src = baseband_msm;
if (have_cmdline) --dst;
while ((*dst++ = *src++));
break;
case BASEBAND_CSFB:
src = baseband_csfb;
if (have_cmdline) --dst;
while ((*dst++ = *src++));
break;
case BASEBAND_SVLTE2A:
src = baseband_svlte2a;
if (have_cmdline) --dst;
while ((*dst++ = *src++));
break;
case BASEBAND_MDM:
src = baseband_mdm;
if (have_cmdline) --dst;
while ((*dst++ = *src++));
break;
case BASEBAND_MDM2:
src = baseband_mdm2;
if (have_cmdline) --dst;
while ((*dst++ = *src++));
break;
case BASEBAND_SGLTE:
src = baseband_sglte;
if (have_cmdline) --dst;
while ((*dst++ = *src++));
break;
case BASEBAND_SGLTE2:
src = baseband_sglte2;
if (have_cmdline) --dst;
while ((*dst++ = *src++));
break;
case BASEBAND_DSDA:
src = baseband_dsda;
if (have_cmdline) --dst;
while ((*dst++ = *src++));
break;
case BASEBAND_DSDA2:
src = baseband_dsda2;
if (have_cmdline) --dst;
while ((*dst++ = *src++));
break;
}
if (strlen(display_panel_buf)) {
src = display_panel_buf;
if (have_cmdline) --dst;
while ((*dst++ = *src++));
}
if (have_target_boot_params) {
if (have_cmdline) --dst;
src = target_boot_params;
while ((*dst++ = *src++));
}
}
if (boot_dev_buf)
free(boot_dev_buf);
dprintf(INFO, "cmdline: %s\n", cmdline_final);
return cmdline_final;
}
unsigned *atag_core(unsigned *ptr)
{
/* CORE */
*ptr++ = 2;
*ptr++ = 0x54410001;
return ptr;
}
unsigned *atag_ramdisk(unsigned *ptr, void *ramdisk,
unsigned ramdisk_size)
{
if (ramdisk_size) {
*ptr++ = 4;
*ptr++ = 0x54420005;
*ptr++ = (unsigned)ramdisk;
*ptr++ = ramdisk_size;
}
return ptr;
}
unsigned *atag_ptable(unsigned **ptr_addr)
{
int i;
struct ptable *ptable;
if ((ptable = flash_get_ptable()) && (ptable->count != 0)) {
*(*ptr_addr)++ = 2 + (ptable->count * (sizeof(struct atag_ptbl_entry) /
sizeof(unsigned)));
*(*ptr_addr)++ = 0x4d534d70;
for (i = 0; i < ptable->count; ++i)
ptentry_to_tag(ptr_addr, ptable_get(ptable, i));
}
return (*ptr_addr);
}
unsigned *atag_cmdline(unsigned *ptr, const char *cmdline)
{
int cmdline_length = 0;
int n;
char *dest;
cmdline_length = strlen((const char*)cmdline);
n = (cmdline_length + 4) & (~3);
*ptr++ = (n / 4) + 2;
*ptr++ = 0x54410009;
dest = (char *) ptr;
while ((*dest++ = *cmdline++));
ptr += (n / 4);
return ptr;
}
unsigned *atag_end(unsigned *ptr)
{
/* END */
*ptr++ = 0;
*ptr++ = 0;
return ptr;
}
void generate_atags(unsigned *ptr, const char *cmdline,
void *ramdisk, unsigned ramdisk_size)
{
ptr = atag_core(ptr);
ptr = atag_ramdisk(ptr, ramdisk, ramdisk_size);
ptr = target_atag_mem(ptr);
/* Skip NAND partition ATAGS for eMMC boot */
if (!target_is_emmc_boot()){
ptr = atag_ptable(&ptr);
}
ptr = atag_cmdline(ptr, cmdline);
ptr = atag_end(ptr);
}
typedef void entry_func_ptr(unsigned, unsigned, unsigned*);
void boot_linux(void *kernel, unsigned *tags,
const char *cmdline, unsigned machtype,
void *ramdisk, unsigned ramdisk_size)
{
unsigned char *final_cmdline;
#if DEVICE_TREE
int ret = 0;
#endif
void (*entry)(unsigned, unsigned, unsigned*) = (entry_func_ptr*)(PA((addr_t)kernel));
uint32_t tags_phys = PA((addr_t)tags);
struct kernel64_hdr *kptr = (struct kernel64_hdr*)kernel;
ramdisk = PA(ramdisk);
final_cmdline = update_cmdline((const char*)cmdline);
#if DEVICE_TREE
dprintf(INFO, "Updating device tree: start\n");
/* Update the Device Tree */
ret = update_device_tree((void *)tags, final_cmdline, ramdisk, ramdisk_size);
if(ret)
{
dprintf(CRITICAL, "ERROR: Updating Device Tree Failed \n");
ASSERT(0);
}
dprintf(INFO, "Updating device tree: done\n");
#else
/* Generating the Atags */
generate_atags(tags, final_cmdline, ramdisk, ramdisk_size);
#endif
/* Perform target specific cleanup */
target_uninit();
/* Turn off splash screen if enabled */
#if DISPLAY_SPLASH_SCREEN
target_display_shutdown();
#endif
dprintf(INFO, "booting linux @ %p, ramdisk @ %p (%d), tags/device tree @ %p\n",
entry, ramdisk, ramdisk_size, tags_phys);
enter_critical_section();
/* do any platform specific cleanup before kernel entry */
platform_uninit();
arch_disable_cache(UCACHE);
#if ARM_WITH_MMU
arch_disable_mmu();
#endif
bs_set_timestamp(BS_KERNEL_ENTRY);
if (IS_ARM64(kptr))
/* Jump to a 64bit kernel */
scm_elexec_call((paddr_t)kernel, tags_phys);
else
/* Jump to a 32bit kernel */
entry(0, machtype, (unsigned*)tags_phys);
}
/* Function to check if the memory address range falls within the aboot
* boundaries.
* start: Start of the memory region
* size: Size of the memory region
*/
int check_aboot_addr_range_overlap(uint32_t start, uint32_t size)
{
/* Check for boundary conditions. */
if ((UINT_MAX - start) < size)
return -1;
/* Check for memory overlap. */
if ((start < MEMBASE) && ((start + size) <= MEMBASE))
return 0;
else if (start >= (MEMBASE + MEMSIZE))
return 0;
else
return -1;
}
#define ROUND_TO_PAGE(x,y) (((x) + (y)) & (~(y)))
BUF_DMA_ALIGN(buf, BOOT_IMG_MAX_PAGE_SIZE); //Equal to max-supported pagesize
#if DEVICE_TREE
BUF_DMA_ALIGN(dt_buf, BOOT_IMG_MAX_PAGE_SIZE);
#endif
static void verify_signed_bootimg(uint32_t bootimg_addr, uint32_t bootimg_size)
{
int ret;
#if IMAGE_VERIF_ALGO_SHA1
uint32_t auth_algo = CRYPTO_AUTH_ALG_SHA1;
#else
uint32_t auth_algo = CRYPTO_AUTH_ALG_SHA256;
#endif
/* Assume device is rooted at this time. */
device.is_tampered = 1;
dprintf(INFO, "Authenticating boot image (%d): start\n", bootimg_size);
ret = image_verify((unsigned char *)bootimg_addr,
(unsigned char *)(bootimg_addr + bootimg_size),
bootimg_size,
auth_algo);
dprintf(INFO, "Authenticating boot image: done return value = %d\n", ret);
if (ret)
{
/* Authorized kernel */
device.is_tampered = 0;
auth_kernel_img = 1;
}
#if USE_PCOM_SECBOOT
set_tamper_flag(device.is_tampered);
#endif
if(device.is_tampered)
{
write_device_info_mmc(&device);
#ifdef TZ_TAMPER_FUSE
set_tamper_fuse_cmd();
#endif
#ifdef ASSERT_ON_TAMPER
dprintf(CRITICAL, "Device is tampered. Asserting..\n");
ASSERT(0);
#endif
}
}
static bool check_format_bit()
{
bool ret = false;
int index;
uint64_t offset;
struct boot_selection_info *in = NULL;
char *buf = NULL;
index = partition_get_index("bootselect");
if (index == INVALID_PTN)
{
dprintf(INFO, "Unable to locate /bootselect partition\n");
return ret;
}
offset = partition_get_offset(index);
if(!offset)
{
dprintf(INFO, "partition /bootselect doesn't exist\n");
return ret;
}
buf = (char *) memalign(CACHE_LINE, ROUNDUP(page_size, CACHE_LINE));
ASSERT(buf);
if (mmc_read(offset, (unsigned int *)buf, page_size))
{
dprintf(INFO, "mmc read failure /bootselect %d\n", page_size);
free(buf);
return ret;
}
in = (struct boot_selection_info *) buf;
if ((in->signature == BOOTSELECT_SIGNATURE) &&
(in->version == BOOTSELECT_VERSION)) {
if ((in->state_info & BOOTSELECT_FORMAT) &&
!(in->state_info & BOOTSELECT_FACTORY))
ret = true;
} else {
dprintf(CRITICAL, "Signature: 0x%08x or version: 0x%08x mismatched of /bootselect\n",
in->signature, in->version);
ASSERT(0);
}
free(buf);
return ret;
}
int boot_linux_from_mmc(void)
{
struct boot_img_hdr *hdr = (void*) buf;
struct boot_img_hdr *uhdr;
unsigned offset = 0;
int rcode;
unsigned long long ptn = 0;
int index = INVALID_PTN;
unsigned char *image_addr = 0;
unsigned kernel_actual;
unsigned ramdisk_actual;
unsigned imagesize_actual;
unsigned second_actual = 0;
#if DEVICE_TREE
struct dt_table *table;
struct dt_entry dt_entry;
unsigned dt_table_offset;
uint32_t dt_actual;
uint32_t dt_hdr_size;
#endif
BUF_DMA_ALIGN(kbuf, BOOT_IMG_MAX_PAGE_SIZE);
struct kernel64_hdr *kptr = (void*) kbuf;
if (check_format_bit())
boot_into_recovery = 1;
if (!boot_into_recovery) {
memset(ffbm_mode_string, '\0', sizeof(ffbm_mode_string));
rcode = get_ffbm(ffbm_mode_string, sizeof(ffbm_mode_string));
if (rcode <= 0) {
boot_into_ffbm = false;
if (rcode < 0)
dprintf(CRITICAL,"failed to get ffbm cookie");
} else
boot_into_ffbm = true;
} else
boot_into_ffbm = false;
uhdr = (struct boot_img_hdr *)EMMC_BOOT_IMG_HEADER_ADDR;
if (!memcmp(uhdr->magic, BOOT_MAGIC, BOOT_MAGIC_SIZE)) {
dprintf(INFO, "Unified boot method!\n");
hdr = uhdr;
goto unified_boot;
}
if (!boot_into_recovery) {
index = partition_get_index("boot");
ptn = partition_get_offset(index);
if(ptn == 0) {
dprintf(CRITICAL, "ERROR: No boot partition found\n");
return -1;
}
}
else {
index = partition_get_index("recovery");
ptn = partition_get_offset(index);
if(ptn == 0) {
dprintf(CRITICAL, "ERROR: No recovery partition found\n");
return -1;
}
}
if (mmc_read(ptn + offset, (unsigned int *) buf, page_size)) {
dprintf(CRITICAL, "ERROR: Cannot read boot image header\n");
return -1;
}
if (memcmp(hdr->magic, BOOT_MAGIC, BOOT_MAGIC_SIZE)) {
dprintf(CRITICAL, "ERROR: Invalid boot image header\n");
return -1;
}
if (hdr->page_size && (hdr->page_size != page_size)) {
if (hdr->page_size > BOOT_IMG_MAX_PAGE_SIZE) {
dprintf(CRITICAL, "ERROR: Invalid page size\n");
return -1;
}
page_size = hdr->page_size;
page_mask = page_size - 1;
}
/* Read the next page to get kernel Image header
* which lives in the second page for arm64 targets.
*/
if (mmc_read(ptn + page_size, (unsigned int *) kbuf, page_size)) {
dprintf(CRITICAL, "ERROR: Cannot read boot image header\n");
return -1;
}
/*
* Update the kernel/ramdisk/tags address if the boot image header
* has default values, these default values come from mkbootimg when
* the boot image is flashed using fastboot flash:raw
*/
update_ker_tags_rdisk_addr(hdr, IS_ARM64(kptr));
/* Get virtual addresses since the hdr saves physical addresses. */
hdr->kernel_addr = VA((addr_t)(hdr->kernel_addr));
hdr->ramdisk_addr = VA((addr_t)(hdr->ramdisk_addr));
hdr->tags_addr = VA((addr_t)(hdr->tags_addr));
kernel_actual = ROUND_TO_PAGE(hdr->kernel_size, page_mask);
ramdisk_actual = ROUND_TO_PAGE(hdr->ramdisk_size, page_mask);
/* Check if the addresses in the header are valid. */
if (check_aboot_addr_range_overlap(hdr->kernel_addr, kernel_actual) ||
check_aboot_addr_range_overlap(hdr->ramdisk_addr, ramdisk_actual))
{
dprintf(CRITICAL, "kernel/ramdisk addresses overlap with aboot addresses.\n");
return -1;
}
#ifndef DEVICE_TREE
if (check_aboot_addr_range_overlap(hdr->tags_addr, MAX_TAGS_SIZE))
{
dprintf(CRITICAL, "Tags addresses overlap with aboot addresses.\n");
return -1;
}
#endif
/* Authenticate Kernel */
dprintf(INFO, "use_signed_kernel=%d, is_unlocked=%d, is_tampered=%d.\n",
(int) target_use_signed_kernel(),
device.is_unlocked,
device.is_tampered);
if(target_use_signed_kernel() && (!device.is_unlocked))
{
offset = 0;
image_addr = (unsigned char *)target_get_scratch_address();
#if DEVICE_TREE
dt_actual = ROUND_TO_PAGE(hdr->dt_size, page_mask);
imagesize_actual = (page_size + kernel_actual + ramdisk_actual + dt_actual);
if (check_aboot_addr_range_overlap(hdr->tags_addr, dt_actual))
{
dprintf(CRITICAL, "Device tree addresses overlap with aboot addresses.\n");
return -1;
}
#else
imagesize_actual = (page_size + kernel_actual + ramdisk_actual);
#endif
dprintf(INFO, "Loading boot image (%d): start\n", imagesize_actual);
bs_set_timestamp(BS_KERNEL_LOAD_START);
if (check_aboot_addr_range_overlap(image_addr, imagesize_actual))
{
dprintf(CRITICAL, "Boot image buffer address overlaps with aboot addresses.\n");
return -1;
}
/* Read image without signature */
if (mmc_read(ptn + offset, (void *)image_addr, imagesize_actual))
{
dprintf(CRITICAL, "ERROR: Cannot read boot image\n");
return -1;
}
dprintf(INFO, "Loading boot image (%d): done\n", imagesize_actual);
bs_set_timestamp(BS_KERNEL_LOAD_DONE);
offset = imagesize_actual;
if (check_aboot_addr_range_overlap(image_addr + offset, page_size))
{
dprintf(CRITICAL, "Signature read buffer address overlaps with aboot addresses.\n");
return -1;
}
/* Read signature */
if(mmc_read(ptn + offset, (void *)(image_addr + offset), page_size))
{
dprintf(CRITICAL, "ERROR: Cannot read boot image signature\n");
return -1;
}
verify_signed_bootimg(image_addr, imagesize_actual);
/* Move kernel, ramdisk and device tree to correct address */
memmove((void*) hdr->kernel_addr, (char *)(image_addr + page_size), hdr->kernel_size);
memmove((void*) hdr->ramdisk_addr, (char *)(image_addr + page_size + kernel_actual), hdr->ramdisk_size);
#if DEVICE_TREE
if(hdr->dt_size) {
dt_table_offset = ((uint32_t)image_addr + page_size + kernel_actual + ramdisk_actual + second_actual);
table = (struct dt_table*) dt_table_offset;
if (dev_tree_validate(table, hdr->page_size, &dt_hdr_size) != 0) {
dprintf(CRITICAL, "ERROR: Cannot validate Device Tree Table \n");
return -1;
}
/* Find index of device tree within device tree table */
if(dev_tree_get_entry_info(table, &dt_entry) != 0){
dprintf(CRITICAL, "ERROR: Device Tree Blob cannot be found\n");
return -1;
}
/* Validate and Read device device tree in the "tags_add */
if (check_aboot_addr_range_overlap(hdr->tags_addr, dt_entry.size))
{
dprintf(CRITICAL, "Device tree addresses overlap with aboot addresses.\n");
return -1;
}
memmove((void *)hdr->tags_addr, (char *)dt_table_offset + dt_entry.offset, dt_entry.size);
} else {
/*
* If appended dev tree is found, update the atags with
* memory address to the DTB appended location on RAM.
* Else update with the atags address in the kernel header
*/
void *dtb;
dtb = dev_tree_appended((void*) hdr->kernel_addr,
hdr->kernel_size,
(void *)hdr->tags_addr);
if (!dtb) {
dprintf(CRITICAL, "ERROR: Appended Device Tree Blob not found\n");
return -1;
}
}
#endif
}
else
{
second_actual = ROUND_TO_PAGE(hdr->second_size, page_mask);
dprintf(INFO, "Loading boot image (%d): start\n",
kernel_actual + ramdisk_actual);
bs_set_timestamp(BS_KERNEL_LOAD_START);
offset = page_size;
/* Load kernel */
if (mmc_read(ptn + offset, (void *)hdr->kernel_addr, kernel_actual)) {
dprintf(CRITICAL, "ERROR: Cannot read kernel image\n");
return -1;
}
offset += kernel_actual;
/* Load ramdisk */
if(ramdisk_actual != 0)
{
if (mmc_read(ptn + offset, (void *)hdr->ramdisk_addr, ramdisk_actual)) {
dprintf(CRITICAL, "ERROR: Cannot read ramdisk image\n");
return -1;
}
}
offset += ramdisk_actual;
dprintf(INFO, "Loading boot image (%d): done\n",
kernel_actual + ramdisk_actual);
bs_set_timestamp(BS_KERNEL_LOAD_DONE);
if(hdr->second_size != 0) {
offset += second_actual;
/* Second image loading not implemented. */
ASSERT(0);
}
#if DEVICE_TREE
if(hdr->dt_size != 0) {
/* Read the first page of device tree table into buffer */
if(mmc_read(ptn + offset,(unsigned int *) dt_buf, page_size)) {
dprintf(CRITICAL, "ERROR: Cannot read the Device Tree Table\n");
return -1;
}
table = (struct dt_table*) dt_buf;
if (dev_tree_validate(table, hdr->page_size, &dt_hdr_size) != 0) {
dprintf(CRITICAL, "ERROR: Cannot validate Device Tree Table \n");
return -1;
}
table = (struct dt_table*) memalign(CACHE_LINE, dt_hdr_size);
if (!table)
return -1;
/* Read the entire device tree table into buffer */
if(mmc_read(ptn + offset,(unsigned int *) table, dt_hdr_size)) {
dprintf(CRITICAL, "ERROR: Cannot read the Device Tree Table\n");
return -1;
}
/* Find index of device tree within device tree table */
if(dev_tree_get_entry_info(table, &dt_entry) != 0){
dprintf(CRITICAL, "ERROR: Getting device tree address failed\n");
return -1;
}
/* Validate and Read device device tree in the "tags_add */
if (check_aboot_addr_range_overlap(hdr->tags_addr, dt_entry.size))
{
dprintf(CRITICAL, "Device tree addresses overlap with aboot addresses.\n");
return -1;
}
if(mmc_read(ptn + offset + dt_entry.offset,
(void *)hdr->tags_addr, dt_entry.size)) {
dprintf(CRITICAL, "ERROR: Cannot read device tree\n");
return -1;
}
#ifdef TZ_SAVE_KERNEL_HASH
aboot_save_boot_hash_mmc(hdr->kernel_addr, kernel_actual,
hdr->ramdisk_addr, ramdisk_actual,
ptn, offset, hdr->dt_size);
#endif /* TZ_SAVE_KERNEL_HASH */
} else {
/* Validate the tags_addr */
if (check_aboot_addr_range_overlap(hdr->tags_addr, kernel_actual))
{
dprintf(CRITICAL, "Device tree addresses overlap with aboot addresses.\n");
return -1;
}
/*
* If appended dev tree is found, update the atags with
* memory address to the DTB appended location on RAM.
* Else update with the atags address in the kernel header
*/
void *dtb;
dtb = dev_tree_appended((void*) hdr->kernel_addr,
kernel_actual,
(void *)hdr->tags_addr);
if (!dtb) {
dprintf(CRITICAL, "ERROR: Appended Device Tree Blob not found\n");
return -1;
}
}
#endif
}
if (boot_into_recovery && !device.is_unlocked && !device.is_tampered)
target_load_ssd_keystore();
unified_boot:
boot_linux((void *)hdr->kernel_addr, (void *)hdr->tags_addr,
(const char *)hdr->cmdline, board_machtype(),
(void *)hdr->ramdisk_addr, hdr->ramdisk_size);
return 0;
}
int boot_linux_from_flash(void)
{
struct boot_img_hdr *hdr = (void*) buf;
struct ptentry *ptn;
struct ptable *ptable;
unsigned offset = 0;
unsigned char *image_addr = 0;
unsigned kernel_actual;
unsigned ramdisk_actual;
unsigned imagesize_actual;
unsigned second_actual;
#if DEVICE_TREE
struct dt_table *table;
struct dt_entry dt_entry;
uint32_t dt_actual;
uint32_t dt_hdr_size;
#endif
if (target_is_emmc_boot()) {
hdr = (struct boot_img_hdr *)EMMC_BOOT_IMG_HEADER_ADDR;
if (memcmp(hdr->magic, BOOT_MAGIC, BOOT_MAGIC_SIZE)) {
dprintf(CRITICAL, "ERROR: Invalid boot image header\n");
return -1;
}
goto continue_boot;
}
ptable = flash_get_ptable();
if (ptable == NULL) {
dprintf(CRITICAL, "ERROR: Partition table not found\n");
return -1;
}
if(!boot_into_recovery)
{
ptn = ptable_find(ptable, "boot");
if (ptn == NULL) {
dprintf(CRITICAL, "ERROR: No boot partition found\n");
return -1;
}
}
else
{
ptn = ptable_find(ptable, "recovery");
if (ptn == NULL) {
dprintf(CRITICAL, "ERROR: No recovery partition found\n");
return -1;
}
}
if (flash_read(ptn, offset, buf, page_size)) {
dprintf(CRITICAL, "ERROR: Cannot read boot image header\n");
return -1;
}
if (memcmp(hdr->magic, BOOT_MAGIC, BOOT_MAGIC_SIZE)) {
dprintf(CRITICAL, "ERROR: Invalid boot image header\n");
return -1;
}
if (hdr->page_size != page_size) {
dprintf(CRITICAL, "ERROR: Invalid boot image pagesize. Device pagesize: %d, Image pagesize: %d\n",page_size,hdr->page_size);
return -1;
}
/*
* Update the kernel/ramdisk/tags address if the boot image header
* has default values, these default values come from mkbootimg when
* the boot image is flashed using fastboot flash:raw
*/
update_ker_tags_rdisk_addr(hdr, false);
/* Get virtual addresses since the hdr saves physical addresses. */
hdr->kernel_addr = VA((addr_t)(hdr->kernel_addr));
hdr->ramdisk_addr = VA((addr_t)(hdr->ramdisk_addr));
hdr->tags_addr = VA((addr_t)(hdr->tags_addr));
kernel_actual = ROUND_TO_PAGE(hdr->kernel_size, page_mask);
ramdisk_actual = ROUND_TO_PAGE(hdr->ramdisk_size, page_mask);
/* Check if the addresses in the header are valid. */
if (check_aboot_addr_range_overlap(hdr->kernel_addr, kernel_actual) ||
check_aboot_addr_range_overlap(hdr->ramdisk_addr, ramdisk_actual))
{
dprintf(CRITICAL, "kernel/ramdisk addresses overlap with aboot addresses.\n");
return -1;
}
#ifndef DEVICE_TREE
if (check_aboot_addr_range_overlap(hdr->tags_addr, MAX_TAGS_SIZE))
{
dprintf(CRITICAL, "Tags addresses overlap with aboot addresses.\n");
return -1;
}
#endif
/* Authenticate Kernel */
if(target_use_signed_kernel() && (!device.is_unlocked))
{
image_addr = (unsigned char *)target_get_scratch_address();
offset = 0;
#if DEVICE_TREE
dt_actual = ROUND_TO_PAGE(hdr->dt_size, page_mask);
imagesize_actual = (page_size + kernel_actual + ramdisk_actual + dt_actual);
if (check_aboot_addr_range_overlap(hdr->tags_addr, hdr->dt_size))
{
dprintf(CRITICAL, "Device tree addresses overlap with aboot addresses.\n");
return -1;
}
#else
imagesize_actual = (page_size + kernel_actual + ramdisk_actual);
#endif
dprintf(INFO, "Loading boot image (%d): start\n", imagesize_actual);
bs_set_timestamp(BS_KERNEL_LOAD_START);
/* Read image without signature */
if (flash_read(ptn, offset, (void *)image_addr, imagesize_actual))
{
dprintf(CRITICAL, "ERROR: Cannot read boot image\n");
return -1;
}
dprintf(INFO, "Loading boot image (%d): done\n", imagesize_actual);
bs_set_timestamp(BS_KERNEL_LOAD_DONE);
offset = imagesize_actual;
/* Read signature */
if (flash_read(ptn, offset, (void *)(image_addr + offset), page_size))
{
dprintf(CRITICAL, "ERROR: Cannot read boot image signature\n");
return -1;
}
verify_signed_bootimg(image_addr, imagesize_actual);
/* Move kernel and ramdisk to correct address */
memmove((void*) hdr->kernel_addr, (char *)(image_addr + page_size), hdr->kernel_size);
memmove((void*) hdr->ramdisk_addr, (char *)(image_addr + page_size + kernel_actual), hdr->ramdisk_size);
#if DEVICE_TREE
/* Validate and Read device device tree in the "tags_add */
if (check_aboot_addr_range_overlap(hdr->tags_addr, dt_entry.size))
{
dprintf(CRITICAL, "Device tree addresses overlap with aboot addresses.\n");
return -1;
}
memmove((void*) hdr->tags_addr, (char *)(image_addr + page_size + kernel_actual + ramdisk_actual), hdr->dt_size);
#endif
/* Make sure everything from scratch address is read before next step!*/
if(device.is_tampered)
{
write_device_info_flash(&device);
}
#if USE_PCOM_SECBOOT
set_tamper_flag(device.is_tampered);
#endif
}
else
{
offset = page_size;
kernel_actual = ROUND_TO_PAGE(hdr->kernel_size, page_mask);
ramdisk_actual = ROUND_TO_PAGE(hdr->ramdisk_size, page_mask);
second_actual = ROUND_TO_PAGE(hdr->second_size, page_mask);
dprintf(INFO, "Loading boot image (%d): start\n",
kernel_actual + ramdisk_actual);
bs_set_timestamp(BS_KERNEL_LOAD_START);
if (flash_read(ptn, offset, (void *)hdr->kernel_addr, kernel_actual)) {
dprintf(CRITICAL, "ERROR: Cannot read kernel image\n");
return -1;
}
offset += kernel_actual;
if (flash_read(ptn, offset, (void *)hdr->ramdisk_addr, ramdisk_actual)) {
dprintf(CRITICAL, "ERROR: Cannot read ramdisk image\n");
return -1;
}
offset += ramdisk_actual;
dprintf(INFO, "Loading boot image (%d): done\n",
kernel_actual + ramdisk_actual);
bs_set_timestamp(BS_KERNEL_LOAD_DONE);
if(hdr->second_size != 0) {
offset += second_actual;
/* Second image loading not implemented. */
ASSERT(0);
}
#if DEVICE_TREE
if(hdr->dt_size != 0) {
/* Read the device tree table into buffer */
if(flash_read(ptn, offset, (void *) dt_buf, page_size)) {
dprintf(CRITICAL, "ERROR: Cannot read the Device Tree Table\n");
return -1;
}
table = (struct dt_table*) dt_buf;
if (dev_tree_validate(table, hdr->page_size, &dt_hdr_size) != 0) {
dprintf(CRITICAL, "ERROR: Cannot validate Device Tree Table \n");
return -1;
}
table = (struct dt_table*) memalign(CACHE_LINE, dt_hdr_size);
if (!table)
return -1;
/* Read the entire device tree table into buffer */
if(flash_read(ptn, offset, (void *)table, dt_hdr_size)) {
dprintf(CRITICAL, "ERROR: Cannot read the Device Tree Table\n");
return -1;
}
/* Find index of device tree within device tree table */
if(dev_tree_get_entry_info(table, &dt_entry) != 0){
dprintf(CRITICAL, "ERROR: Getting device tree address failed\n");
return -1;
}
/* Validate and Read device device tree in the "tags_add */
if (check_aboot_addr_range_overlap(hdr->tags_addr, dt_entry.size))
{
dprintf(CRITICAL, "Device tree addresses overlap with aboot addresses.\n");
return -1;
}
/* Read device device tree in the "tags_add */
if(flash_read(ptn, offset + dt_entry.offset,
(void *)hdr->tags_addr, dt_entry.size)) {
dprintf(CRITICAL, "ERROR: Cannot read device tree\n");
return -1;
}
}
#endif
}
continue_boot:
/* TODO: create/pass atags to kernel */
boot_linux((void *)hdr->kernel_addr, (void *)hdr->tags_addr,
(const char *)hdr->cmdline, board_machtype(),
(void *)hdr->ramdisk_addr, hdr->ramdisk_size);
return 0;
}
BUF_DMA_ALIGN(info_buf, BOOT_IMG_MAX_PAGE_SIZE);
void write_device_info_mmc(device_info *dev)
{
struct device_info *info = (void*) info_buf;
unsigned long long ptn = 0;
unsigned long long size;
int index = INVALID_PTN;
uint32_t blocksize;
uint8_t lun = 0;
index = partition_get_index("aboot");
ptn = partition_get_offset(index);
if(ptn == 0)
{
return;
}
lun = partition_get_lun(index);
mmc_set_lun(lun);
size = partition_get_size(index);
memcpy(info, dev, sizeof(device_info));
blocksize = mmc_get_device_blocksize();
if(mmc_write((ptn + size - blocksize), blocksize, (void *)info_buf))
{
dprintf(CRITICAL, "ERROR: Cannot write device info\n");
return;
}
}
void read_device_info_mmc(device_info *dev)
{
struct device_info *info = (void*) info_buf;
unsigned long long ptn = 0;
unsigned long long size;
int index = INVALID_PTN;
uint32_t blocksize;
index = partition_get_index("aboot");
ptn = partition_get_offset(index);
if(ptn == 0)
{
return;
}
size = partition_get_size(index);
blocksize = mmc_get_device_blocksize();
if(mmc_read((ptn + size - blocksize), (void *)info_buf, blocksize))
{
dprintf(CRITICAL, "ERROR: Cannot read device info\n");
return;
}
if (memcmp(info->magic, DEVICE_MAGIC, DEVICE_MAGIC_SIZE))
{
memcpy(info->magic, DEVICE_MAGIC, DEVICE_MAGIC_SIZE);
info->is_unlocked = 0;
info->is_tampered = 0;
info->charger_screen_enabled = 0;
write_device_info_mmc(info);
}
memcpy(dev, info, sizeof(device_info));
}
void write_device_info_flash(device_info *dev)
{
struct device_info *info = (void *) info_buf;
struct ptentry *ptn;
struct ptable *ptable;
ptable = flash_get_ptable();
if (ptable == NULL)
{
dprintf(CRITICAL, "ERROR: Partition table not found\n");
return;
}
ptn = ptable_find(ptable, "devinfo");
if (ptn == NULL)
{
dprintf(CRITICAL, "ERROR: No boot partition found\n");
return;
}
memcpy(info, dev, sizeof(device_info));
if (flash_write(ptn, 0, (void *)info_buf, page_size))
{
dprintf(CRITICAL, "ERROR: Cannot write device info\n");
return;
}
}
void read_device_info_flash(device_info *dev)
{
struct device_info *info = (void*) info_buf;
struct ptentry *ptn;
struct ptable *ptable;
ptable = flash_get_ptable();
if (ptable == NULL)
{
dprintf(CRITICAL, "ERROR: Partition table not found\n");
return;
}
ptn = ptable_find(ptable, "devinfo");
if (ptn == NULL)
{
dprintf(CRITICAL, "ERROR: No boot partition found\n");
return;
}
if (flash_read(ptn, 0, (void *)info_buf, page_size))
{
dprintf(CRITICAL, "ERROR: Cannot write device info\n");
return;
}
if (memcmp(info->magic, DEVICE_MAGIC, DEVICE_MAGIC_SIZE))
{
memcpy(info->magic, DEVICE_MAGIC, DEVICE_MAGIC_SIZE);
info->is_unlocked = 0;
info->is_tampered = 0;
write_device_info_flash(info);
}
memcpy(dev, info, sizeof(device_info));
}
void write_device_info(device_info *dev)
{
if(target_is_emmc_boot())
{
write_device_info_mmc(dev);
}
else
{
write_device_info_flash(dev);
}
}
void read_device_info(device_info *dev)
{
if(target_is_emmc_boot())
{
read_device_info_mmc(dev);
}
else
{
read_device_info_flash(dev);
}
}
void reset_device_info()
{
dprintf(ALWAYS, "reset_device_info called.");
device.is_tampered = 0;
write_device_info(&device);
}
void set_device_root()
{
dprintf(ALWAYS, "set_device_root called.");
device.is_tampered = 1;
write_device_info(&device);
}
#if DEVICE_TREE
int copy_dtb(uint8_t *boot_image_start)
{
uint32 dt_image_offset = 0;
uint32_t n;
struct dt_table *table;
struct dt_entry dt_entry;
uint32_t dt_hdr_size;
struct boot_img_hdr *hdr = (struct boot_img_hdr *) (boot_image_start);
if(hdr->dt_size != 0) {
/* add kernel offset */
dt_image_offset += page_size;
n = ROUND_TO_PAGE(hdr->kernel_size, page_mask);
dt_image_offset += n;
/* add ramdisk offset */
n = ROUND_TO_PAGE(hdr->ramdisk_size, page_mask);
dt_image_offset += n;
/* add second offset */
if(hdr->second_size != 0) {
n = ROUND_TO_PAGE(hdr->second_size, page_mask);
dt_image_offset += n;
}
/* offset now point to start of dt.img */
table = (struct dt_table*)(boot_image_start + dt_image_offset);
if (dev_tree_validate(table, hdr->page_size, &dt_hdr_size) != 0) {
dprintf(CRITICAL, "ERROR: Cannot validate Device Tree Table \n");
return -1;
}
/* Find index of device tree within device tree table */
if(dev_tree_get_entry_info(table, &dt_entry) != 0){
dprintf(CRITICAL, "ERROR: Getting device tree address failed\n");
return -1;
}
/* Validate and Read device device tree in the "tags_add */
if (check_aboot_addr_range_overlap(hdr->tags_addr, dt_entry.size))
{
dprintf(CRITICAL, "Device tree addresses overlap with aboot addresses.\n");
return -1;
}
/* Read device device tree in the "tags_add */
memmove((void*) hdr->tags_addr,
boot_image_start + dt_image_offset + dt_entry.offset,
dt_entry.size);
} else
return -1;
/* Everything looks fine. Return success. */
return 0;
}
#endif
void cmd_boot(const char *arg, void *data, unsigned sz)
{
unsigned kernel_actual;
unsigned ramdisk_actual;
uint32_t image_actual;
uint32_t dt_actual = 0;
uint32_t sig_actual = SIGNATURE_SIZE;
struct boot_img_hdr *hdr;
struct kernel64_hdr *kptr;
char *ptr = ((char*) data);
int ret = 0;
uint8_t dtb_copied = 0;
if (sz < sizeof(hdr)) {
fastboot_fail("invalid bootimage header");
return;
}
hdr = (struct boot_img_hdr *)data;
/* ensure commandline is terminated */
hdr->cmdline[BOOT_ARGS_SIZE-1] = 0;
if(target_is_emmc_boot() && hdr->page_size) {
page_size = hdr->page_size;
page_mask = page_size - 1;
}
kernel_actual = ROUND_TO_PAGE(hdr->kernel_size, page_mask);
ramdisk_actual = ROUND_TO_PAGE(hdr->ramdisk_size, page_mask);
#if DEVICE_TREE
dt_actual = ROUND_TO_PAGE(hdr->dt_size, page_mask);
#endif
image_actual = ADD_OF(page_size, kernel_actual);
image_actual = ADD_OF(image_actual, ramdisk_actual);
image_actual = ADD_OF(image_actual, dt_actual);
if (target_use_signed_kernel() && (!device.is_unlocked))
image_actual = ADD_OF(image_actual, sig_actual);
/* sz should have atleast raw boot image */
if (image_actual > sz) {
fastboot_fail("bootimage: incomplete or not signed");
return;
}
/* Verify the boot image
* device & page_size are initialized in aboot_init
*/
if (target_use_signed_kernel() && (!device.is_unlocked))
/* Pass size excluding signature size, otherwise we would try to
* access signature beyond its length
*/
verify_signed_bootimg((uint32_t)data, (image_actual - sig_actual));
/*
* Update the kernel/ramdisk/tags address if the boot image header
* has default values, these default values come from mkbootimg when
* the boot image is flashed using fastboot flash:raw
*/
kptr = (struct kernel64_hdr*)((char*) data + page_size);
update_ker_tags_rdisk_addr(hdr, IS_ARM64(kptr));
/* Get virtual addresses since the hdr saves physical addresses. */
hdr->kernel_addr = VA(hdr->kernel_addr);
hdr->ramdisk_addr = VA(hdr->ramdisk_addr);
hdr->tags_addr = VA(hdr->tags_addr);
/* Check if the addresses in the header are valid. */
if (check_aboot_addr_range_overlap(hdr->kernel_addr, kernel_actual) ||
check_aboot_addr_range_overlap(hdr->ramdisk_addr, ramdisk_actual))
{
dprintf(CRITICAL, "kernel/ramdisk addresses overlap with aboot addresses.\n");
return;
}
#if DEVICE_TREE
/* find correct dtb and copy it to right location */
ret = copy_dtb(data);
dtb_copied = !ret ? 1 : 0;
#else
if (check_aboot_addr_range_overlap(hdr->tags_addr, MAX_TAGS_SIZE))
{
dprintf(CRITICAL, "Tags addresses overlap with aboot addresses.\n");
return;
}
#endif
/* Load ramdisk & kernel */
memmove((void*) hdr->ramdisk_addr, ptr + page_size + kernel_actual, hdr->ramdisk_size);
memmove((void*) hdr->kernel_addr, ptr + page_size, hdr->kernel_size);
#if DEVICE_TREE
/*
* If dtb is not found look for appended DTB in the kernel.
* If appended dev tree is found, update the atags with
* memory address to the DTB appended location on RAM.
* Else update with the atags address in the kernel header
*/
if (!dtb_copied) {
void *dtb;
dtb = dev_tree_appended((void *)hdr->kernel_addr, hdr->kernel_size,
(void *)hdr->tags_addr);
if (!dtb) {
fastboot_fail("dtb not found");
return;
}
}
#endif
#ifndef DEVICE_TREE
if (check_aboot_addr_range_overlap(hdr->tags_addr, MAX_TAGS_SIZE))
{
dprintf(CRITICAL, "Tags addresses overlap with aboot addresses.\n");
return;
}
#endif
fastboot_okay("");
fastboot_stop();
boot_linux((void*) hdr->kernel_addr, (void*) hdr->tags_addr,
(const char*) hdr->cmdline, board_machtype(),
(void*) hdr->ramdisk_addr, hdr->ramdisk_size);
}
void cmd_erase(const char *arg, void *data, unsigned sz)
{
struct ptentry *ptn;
struct ptable *ptable;
ptable = flash_get_ptable();
if (ptable == NULL) {
fastboot_fail("partition table doesn't exist");
return;
}
ptn = ptable_find(ptable, arg);
if (ptn == NULL) {
fastboot_fail("unknown partition name");
return;
}
if (flash_erase(ptn)) {
fastboot_fail("failed to erase partition");
return;
}
fastboot_okay("");
}
void cmd_erase_mmc(const char *arg, void *data, unsigned sz)
{
BUF_DMA_ALIGN(out, DEFAULT_ERASE_SIZE);
unsigned long long ptn = 0;
unsigned long long size = 0;
int index = INVALID_PTN;
uint8_t lun = 0;
index = partition_get_index(arg);
ptn = partition_get_offset(index);
size = partition_get_size(index);
if(ptn == 0) {
fastboot_fail("Partition table doesn't exist\n");
return;
}
lun = partition_get_lun(index);
mmc_set_lun(lun);
#if MMC_SDHCI_SUPPORT
if (mmc_erase_card(ptn, size)) {
fastboot_fail("failed to erase partition\n");
return;
}
#else
size = partition_get_size(index);
if (size > DEFAULT_ERASE_SIZE)
size = DEFAULT_ERASE_SIZE;
/* Simple inefficient version of erase. Just writing
0 in first several blocks */
if (mmc_write(ptn , size, (unsigned int *)out)) {
fastboot_fail("failed to erase partition");
return;
}
#endif
fastboot_okay("");
}
void cmd_flash_mmc_img(const char *arg, void *data, unsigned sz)
{
unsigned long long ptn = 0;
unsigned long long size = 0;
int index = INVALID_PTN;
char *token = NULL;
char *pname = NULL;
uint8_t lun = 0;
bool lun_set = false;
token = strtok(arg, ":");
pname = token;
token = strtok(NULL, ":");
if(token)
{
lun = atoi(token);
mmc_set_lun(lun);
lun_set = true;
}
if (pname)
{
if (!strcmp(pname, "partition"))
{
dprintf(INFO, "Attempt to write partition image.\n");
if (write_partition(sz, (unsigned char *) data)) {
fastboot_fail("failed to write partition");
return;
}
}
else
{
index = partition_get_index(pname);
ptn = partition_get_offset(index);
if(ptn == 0) {
fastboot_fail("partition table doesn't exist");
return;
}
if (!strcmp(pname, "boot") || !strcmp(pname, "recovery")) {
if (memcmp((void *)data, BOOT_MAGIC, BOOT_MAGIC_SIZE)) {
fastboot_fail("image is not a boot image");
return;
}
}
if(!lun_set)
{
lun = partition_get_lun(index);
mmc_set_lun(lun);
}
size = partition_get_size(index);
if (ROUND_TO_PAGE(sz,511) > size) {
fastboot_fail("size too large");
return;
}
else if (mmc_write(ptn , sz, (unsigned int *)data)) {
fastboot_fail("flash write failure");
return;
}
}
}
fastboot_okay("");
return;
}
void cmd_flash_mmc_sparse_img(const char *arg, void *data, unsigned sz)
{
unsigned int chunk;
unsigned int chunk_data_sz;
uint32_t *fill_buf = NULL;
uint32_t fill_val;
uint32_t chunk_blk_cnt = 0;
sparse_header_t *sparse_header;
chunk_header_t *chunk_header;
uint32_t total_blocks = 0;
unsigned long long ptn = 0;
unsigned long long size = 0;
int index = INVALID_PTN;
int i;
uint8_t lun = 0;
index = partition_get_index(arg);
ptn = partition_get_offset(index);
if(ptn == 0) {
fastboot_fail("partition table doesn't exist");
return;
}
size = partition_get_size(index);
if (ROUND_TO_PAGE(sz,511) > size) {
fastboot_fail("size too large");
return;
}
lun = partition_get_lun(index);
mmc_set_lun(lun);
/* Read and skip over sparse image header */
sparse_header = (sparse_header_t *) data;
if ((sparse_header->total_blks * sparse_header->blk_sz) > size) {
fastboot_fail("size too large");
return;
}
data += sparse_header->file_hdr_sz;
if(sparse_header->file_hdr_sz > sizeof(sparse_header_t))
{
/* Skip the remaining bytes in a header that is longer than
* we expected.
*/
data += (sparse_header->file_hdr_sz - sizeof(sparse_header_t));
}
dprintf (SPEW, "=== Sparse Image Header ===\n");
dprintf (SPEW, "magic: 0x%x\n", sparse_header->magic);
dprintf (SPEW, "major_version: 0x%x\n", sparse_header->major_version);
dprintf (SPEW, "minor_version: 0x%x\n", sparse_header->minor_version);
dprintf (SPEW, "file_hdr_sz: %d\n", sparse_header->file_hdr_sz);
dprintf (SPEW, "chunk_hdr_sz: %d\n", sparse_header->chunk_hdr_sz);
dprintf (SPEW, "blk_sz: %d\n", sparse_header->blk_sz);
dprintf (SPEW, "total_blks: %d\n", sparse_header->total_blks);
dprintf (SPEW, "total_chunks: %d\n", sparse_header->total_chunks);
/* Start processing chunks */
for (chunk=0; chunk<sparse_header->total_chunks; chunk++)
{
/* Read and skip over chunk header */
chunk_header = (chunk_header_t *) data;
data += sizeof(chunk_header_t);
dprintf (SPEW, "=== Chunk Header ===\n");
dprintf (SPEW, "chunk_type: 0x%x\n", chunk_header->chunk_type);
dprintf (SPEW, "chunk_data_sz: 0x%x\n", chunk_header->chunk_sz);
dprintf (SPEW, "total_size: 0x%x\n", chunk_header->total_sz);
if(sparse_header->chunk_hdr_sz > sizeof(chunk_header_t))
{
/* Skip the remaining bytes in a header that is longer than
* we expected.
*/
data += (sparse_header->chunk_hdr_sz - sizeof(chunk_header_t));
}
chunk_data_sz = sparse_header->blk_sz * chunk_header->chunk_sz;
switch (chunk_header->chunk_type)
{
case CHUNK_TYPE_RAW:
if(chunk_header->total_sz != (sparse_header->chunk_hdr_sz +
chunk_data_sz))
{
fastboot_fail("Bogus chunk size for chunk type Raw");
return;
}
if(mmc_write(ptn + ((uint64_t)total_blocks*sparse_header->blk_sz),
chunk_data_sz,
(unsigned int*)data))
{
fastboot_fail("flash write failure");
return;
}
total_blocks += chunk_header->chunk_sz;
data += chunk_data_sz;
break;
case CHUNK_TYPE_FILL:
if(chunk_header->total_sz != (sparse_header->chunk_hdr_sz +
sizeof(uint32_t)))
{
fastboot_fail("Bogus chunk size for chunk type FILL");
return;
}
fill_buf = (uint32_t *)memalign(CACHE_LINE, ROUNDUP(sparse_header->blk_sz, CACHE_LINE));
if (!fill_buf)
{
fastboot_fail("Malloc failed for: CHUNK_TYPE_FILL");
return;
}
fill_val = *(uint32_t *)data;
data = (char *) data + sizeof(uint32_t);
chunk_blk_cnt = chunk_data_sz / sparse_header->blk_sz;
for (i = 0; i < (sparse_header->blk_sz / sizeof(fill_val)); i++)
{
fill_buf[i] = fill_val;
}
for (i = 0; i < chunk_blk_cnt; i++)
{
if(mmc_write(ptn + ((uint64_t)total_blocks*sparse_header->blk_sz),
sparse_header->blk_sz,
fill_buf))
{
fastboot_fail("flash write failure");
free(fill_buf);
return;
}
total_blocks++;
}
free(fill_buf);
break;
case CHUNK_TYPE_DONT_CARE:
total_blocks += chunk_header->chunk_sz;
break;
case CHUNK_TYPE_CRC:
if(chunk_header->total_sz != sparse_header->chunk_hdr_sz)
{
fastboot_fail("Bogus chunk size for chunk type Dont Care");
return;
}
total_blocks += chunk_header->chunk_sz;
data += chunk_data_sz;
break;
default:
dprintf(CRITICAL, "Unkown chunk type: %x\n",chunk_header->chunk_type);
fastboot_fail("Unknown chunk type");
return;
}
}
dprintf(INFO, "Wrote %d blocks, expected to write %d blocks\n",
total_blocks, sparse_header->total_blks);
if(total_blocks != sparse_header->total_blks)
{
fastboot_fail("sparse image write failure");
}
fastboot_okay("");
return;
}
void cmd_flash_mmc(const char *arg, void *data, unsigned sz)
{
sparse_header_t *sparse_header;
/* 8 Byte Magic + 2048 Byte xml + Encrypted Data */
unsigned int *magic_number = (unsigned int *) data;
#ifdef SSD_ENABLE
int ret=0;
uint32 major_version=0;
uint32 minor_version=0;
ret = scm_svc_version(&major_version,&minor_version);
if(!ret)
{
if(major_version >= 2)
{
if( !strcmp(arg, "ssd") || !strcmp(arg, "tqs") )
{
ret = encrypt_scm((uint32 **) &data, &sz);
if (ret != 0) {
dprintf(CRITICAL, "ERROR: Encryption Failure\n");
return;
}
/* Protect only for SSD */
if (!strcmp(arg, "ssd")) {
ret = scm_protect_keystore((uint32 *) data, sz);
if (ret != 0) {
dprintf(CRITICAL, "ERROR: scm_protect_keystore Failed\n");
return;
}
}
}
else
{
ret = decrypt_scm_v2((uint32 **) &data, &sz);
if(ret != 0)
{
dprintf(CRITICAL,"ERROR: Decryption Failure\n");
return;
}
}
}
else
{
if (magic_number[0] == DECRYPT_MAGIC_0 &&
magic_number[1] == DECRYPT_MAGIC_1)
{
ret = decrypt_scm((uint32 **) &data, &sz);
if (ret != 0) {
dprintf(CRITICAL, "ERROR: Invalid secure image\n");
return;
}
}
else if (magic_number[0] == ENCRYPT_MAGIC_0 &&
magic_number[1] == ENCRYPT_MAGIC_1)
{
ret = encrypt_scm((uint32 **) &data, &sz);
if (ret != 0) {
dprintf(CRITICAL, "ERROR: Encryption Failure\n");
return;
}
}
}
}
else
{
dprintf(CRITICAL,"INVALID SVC Version\n");
return;
}
#endif /* SSD_ENABLE */
sparse_header = (sparse_header_t *) data;
if (sparse_header->magic != SPARSE_HEADER_MAGIC)
cmd_flash_mmc_img(arg, data, sz);
else
cmd_flash_mmc_sparse_img(arg, data, sz);
return;
}
void cmd_flash(const char *arg, void *data, unsigned sz)
{
struct ptentry *ptn;
struct ptable *ptable;
unsigned extra = 0;
ptable = flash_get_ptable();
if (ptable == NULL) {
fastboot_fail("partition table doesn't exist");
return;
}
ptn = ptable_find(ptable, arg);
if (ptn == NULL) {
fastboot_fail("unknown partition name");
return;
}
if (!strcmp(ptn->name, "boot") || !strcmp(ptn->name, "recovery")) {
if (memcmp((void *)data, BOOT_MAGIC, BOOT_MAGIC_SIZE)) {
fastboot_fail("image is not a boot image");
return;
}
}
if (!strcmp(ptn->name, "system")
|| !strcmp(ptn->name, "userdata")
|| !strcmp(ptn->name, "persist")
|| !strcmp(ptn->name, "recoveryfs")
|| !strcmp(ptn->name, "modem"))
{
if (memcmp((void *)data, UBI_MAGIC, UBI_MAGIC_SIZE))
extra = 1;
else
extra = 0;
}
else
sz = ROUND_TO_PAGE(sz, page_mask);
dprintf(INFO, "writing %d bytes to '%s'\n", sz, ptn->name);
if (flash_write(ptn, extra, data, sz)) {
fastboot_fail("flash write failure");
return;
}
dprintf(INFO, "partition '%s' updated\n", ptn->name);
fastboot_okay("");
}
void cmd_continue(const char *arg, void *data, unsigned sz)
{
fastboot_okay("");
fastboot_stop();
if (target_is_emmc_boot())
{
boot_linux_from_mmc();
}
else
{
boot_linux_from_flash();
}
}
void cmd_reboot(const char *arg, void *data, unsigned sz)
{
dprintf(INFO, "rebooting the device\n");
fastboot_okay("");
reboot_device(0);
}
void cmd_reboot_bootloader(const char *arg, void *data, unsigned sz)
{
dprintf(INFO, "rebooting the device\n");
fastboot_okay("");
reboot_device(FASTBOOT_MODE);
}
void cmd_oem_enable_charger_screen(const char *arg, void *data, unsigned size)
{
dprintf(INFO, "Enabling charger screen check\n");
device.charger_screen_enabled = 1;
write_device_info(&device);
fastboot_okay("");
}
void cmd_oem_disable_charger_screen(const char *arg, void *data, unsigned size)
{
dprintf(INFO, "Disabling charger screen check\n");
device.charger_screen_enabled = 0;
write_device_info(&device);
fastboot_okay("");
}
void cmd_oem_select_display_panel(const char *arg, void *data, unsigned size)
{
dprintf(INFO, "Selecting display panel %s\n", arg);
if (arg)
strlcpy(device.display_panel, arg,
sizeof(device.display_panel));
write_device_info(&device);
fastboot_okay("");
}
void cmd_oem_unlock(const char *arg, void *data, unsigned sz)
{
if(!device.is_unlocked)
{
device.is_unlocked = 1;
write_device_info(&device);
}
fastboot_okay("");
}
void cmd_oem_devinfo(const char *arg, void *data, unsigned sz)
{
char response[128];
snprintf(response, sizeof(response), "\tDevice tampered: %s", (device.is_tampered ? "true" : "false"));
fastboot_info(response);
snprintf(response, sizeof(response), "\tDevice unlocked: %s", (device.is_unlocked ? "true" : "false"));
fastboot_info(response);
snprintf(response, sizeof(response), "\tCharger screen enabled: %s", (device.charger_screen_enabled ? "true" : "false"));
fastboot_info(response);
snprintf(response, sizeof(response), "\tDisplay panel: %s", (device.display_panel));
fastboot_info(response);
fastboot_okay("");
}
void cmd_preflash(const char *arg, void *data, unsigned sz)
{
fastboot_okay("");
}
static struct fbimage logo_header = {0};
struct fbimage* splash_screen_flash();
int splash_screen_check_header(struct fbimage *logo)
{
if (memcmp(logo->header.magic, LOGO_IMG_MAGIC, 8))
return -1;
if (logo->header.width == 0 || logo->header.height == 0)
return -1;
return 0;
}
struct fbimage* splash_screen_flash()
{
struct ptentry *ptn;
struct ptable *ptable;
struct fbcon_config *fb_display = NULL;
struct fbimage *logo = &logo_header;
ptable = flash_get_ptable();
if (ptable == NULL) {
dprintf(CRITICAL, "ERROR: Partition table not found\n");
return NULL;
}
ptn = ptable_find(ptable, "splash");
if (ptn == NULL) {
dprintf(CRITICAL, "ERROR: splash Partition not found\n");
return NULL;
}
if (flash_read(ptn, 0,(unsigned int *) logo, sizeof(logo->header))) {
dprintf(CRITICAL, "ERROR: Cannot read boot image header\n");
return NULL;
}
if (splash_screen_check_header(logo)) {
dprintf(CRITICAL, "ERROR: Boot image header invalid\n");
return NULL;
}
fb_display = fbcon_display();
if (fb_display) {
uint8_t *base = (uint8_t *) fb_display->base;
if (logo->header.width != fb_display->width || logo->header.height != fb_display->height) {
base += LOGO_IMG_OFFSET;
}
if (flash_read(ptn + sizeof(logo->header), 0,
base,
((((logo->header.width * logo->header.height * fb_display->bpp/8) + 511) >> 9) << 9))) {
fbcon_clear();
dprintf(CRITICAL, "ERROR: Cannot read splash image\n");
return NULL;
}
logo->image = base;
}
return logo;
}
struct fbimage* splash_screen_mmc()
{
int index = INVALID_PTN;
unsigned long long ptn = 0;
struct fbcon_config *fb_display = NULL;
struct fbimage *logo = &logo_header;
index = partition_get_index("splash");
if (index == 0) {
dprintf(CRITICAL, "ERROR: splash Partition table not found\n");
return NULL;
}
ptn = partition_get_offset(index);
if (ptn == 0) {
dprintf(CRITICAL, "ERROR: splash Partition invalid\n");
return NULL;
}
if (mmc_read(ptn, (unsigned int *) logo, sizeof(logo->header))) {
dprintf(CRITICAL, "ERROR: Cannot read splash image header\n");
return NULL;
}
if (splash_screen_check_header(logo)) {
dprintf(CRITICAL, "ERROR: Splash image header invalid\n");
return NULL;
}
fb_display = fbcon_display();
if (fb_display) {
uint8_t *base = (uint8_t *) fb_display->base;
if (logo->header.width != fb_display->width || logo->header.height != fb_display->height)
base += LOGO_IMG_OFFSET;
if (mmc_read(ptn + sizeof(logo->header),
base,
((((logo->header.width * logo->header.height * fb_display->bpp/8) + 511) >> 9) << 9))) {
fbcon_clear();
dprintf(CRITICAL, "ERROR: Cannot read splash image\n");
return NULL;
}
logo->image = base;
}
return logo;
}
struct fbimage* fetch_image_from_partition()
{
if (target_is_emmc_boot()) {
return splash_screen_mmc();
} else {
return splash_screen_flash();
}
}
/* Get the size from partiton name */
static void get_partition_size(const char *arg, char *response)
{
uint64_t ptn = 0;
uint64_t size;
int index = INVALID_PTN;
index = partition_get_index(arg);
if (index == INVALID_PTN)
{
dprintf(CRITICAL, "Invalid partition index\n");
return;
}
ptn = partition_get_offset(index);
if(!ptn)
{
dprintf(CRITICAL, "Invalid partition name %s\n", arg);
return;
}
size = partition_get_size(index);
snprintf(response, MAX_RSP_SIZE, "\t 0x%llx", size);
return;
}
/*
* Publish the partition type & size info
* fastboot getvar will publish the required information.
* fastboot getvar partition_size:<partition_name>: partition size in hex
* fastboot getvar partition_type:<partition_name>: partition type (ext/fat)
*/
static void publish_getvar_partition_info(struct getvar_partition_info *info, uint8_t num_parts)
{
uint8_t i;
for (i = 0; i < num_parts; i++) {
get_partition_size(info[i].part_name, info[i].size_response);
if (strlcat(info[i].getvar_size, info[i].part_name, MAX_GET_VAR_NAME_SIZE) >= MAX_GET_VAR_NAME_SIZE)
{
dprintf(CRITICAL, "partition size name truncated\n");
return;
}
if (strlcat(info[i].getvar_type, info[i].part_name, MAX_GET_VAR_NAME_SIZE) >= MAX_GET_VAR_NAME_SIZE)
{
dprintf(CRITICAL, "partition type name truncated\n");
return;
}
/* publish partition size & type info */
fastboot_publish((const char *) info[i].getvar_size, (const char *) info[i].size_response);
fastboot_publish((const char *) info[i].getvar_type, (const char *) info[i].type_response);
}
}
/* register commands and variables for fastboot */
void aboot_fastboot_register_commands(void)
{
if (target_is_emmc_boot())
{
fastboot_register("flash:", cmd_flash_mmc);
fastboot_register("erase:", cmd_erase_mmc);
}
else
{
fastboot_register("flash:", cmd_flash);
fastboot_register("erase:", cmd_erase);
}
fastboot_register("boot", cmd_boot);
fastboot_register("continue", cmd_continue);
fastboot_register("reboot", cmd_reboot);
fastboot_register("reboot-bootloader", cmd_reboot_bootloader);
fastboot_register("oem unlock", cmd_oem_unlock);
fastboot_register("oem device-info", cmd_oem_devinfo);
fastboot_register("preflash", cmd_preflash);
fastboot_register("oem enable-charger-screen",
cmd_oem_enable_charger_screen);
fastboot_register("oem disable-charger-screen",
cmd_oem_disable_charger_screen);
fastboot_register("oem select-display-panel",
cmd_oem_select_display_panel);
/* publish variables and their values */
fastboot_publish("product", TARGET(BOARD));
fastboot_publish("kernel", "lk");
fastboot_publish("serialno", sn_buf);
/*
* partition info is supported only for emmc partitions
* Calling this for NAND prints some error messages which
* is harmless but misleading. Avoid calling this for NAND
* devices.
*/
if (target_is_emmc_boot())
publish_getvar_partition_info(part_info, ARRAY_SIZE(part_info));
/* Max download size supported */
snprintf(max_download_size, MAX_RSP_SIZE, "\t0x%x",
target_get_max_flash_size());
fastboot_publish("max-download-size", (const char *) max_download_size);
/* Is the charger screen check enabled */
snprintf(charger_screen_enabled, MAX_RSP_SIZE, "%d",
device.charger_screen_enabled);
fastboot_publish("charger-screen-enabled",
(const char *) charger_screen_enabled);
snprintf(panel_display_mode, MAX_RSP_SIZE, "%s",
device.display_panel);
fastboot_publish("display-panel",
(const char *) panel_display_mode);
}
void aboot_init(const struct app_descriptor *app)
{
unsigned reboot_mode = 0;
bool boot_into_fastboot = false;
/* Setup page size information for nv storage */
if (target_is_emmc_boot())
{
page_size = mmc_page_size();
page_mask = page_size - 1;
}
else
{
page_size = flash_page_size();
page_mask = page_size - 1;
}
ASSERT((MEMBASE + MEMSIZE) > MEMBASE);
read_device_info(&device);
/* Display splash screen if enabled */
#if DISPLAY_SPLASH_SCREEN
dprintf(SPEW, "Display Init: Start\n");
target_display_init(device.display_panel);
dprintf(SPEW, "Display Init: Done\n");
#endif
target_serialno((unsigned char *) sn_buf);
dprintf(SPEW,"serial number: %s\n",sn_buf);
memset(display_panel_buf, '\0', MAX_PANEL_BUF_SIZE);
/* Check if we should do something other than booting up */
if (keys_get_state(KEY_VOLUMEUP) && keys_get_state(KEY_VOLUMEDOWN))
{
dprintf(ALWAYS,"dload mode key sequence detected\n");
if (set_download_mode(EMERGENCY_DLOAD))
{
dprintf(CRITICAL,"dload mode not supported by target\n");
}
else
{
reboot_device(DLOAD);
dprintf(CRITICAL,"Failed to reboot into dload mode\n");
}
boot_into_fastboot = true;
}
if (!boot_into_fastboot)
{
if (keys_get_state(KEY_HOME) || keys_get_state(KEY_VOLUMEUP))
boot_into_recovery = 1;
if (!boot_into_recovery &&
(keys_get_state(KEY_BACK) || keys_get_state(KEY_VOLUMEDOWN)))
boot_into_fastboot = true;
}
#if NO_KEYPAD_DRIVER
if (fastboot_trigger())
boot_into_fastboot = true;
#endif
reboot_mode = check_reboot_mode();
if (reboot_mode == RECOVERY_MODE) {
boot_into_recovery = 1;
} else if(reboot_mode == FASTBOOT_MODE) {
boot_into_fastboot = true;
}
if (!boot_into_fastboot)
{
if (target_is_emmc_boot())
{
if(emmc_recovery_init())
dprintf(ALWAYS,"error in emmc_recovery_init\n");
if(target_use_signed_kernel())
{
if((device.is_unlocked) || (device.is_tampered))
{
#ifdef TZ_TAMPER_FUSE
set_tamper_fuse_cmd();
#endif
#if USE_PCOM_SECBOOT
set_tamper_flag(device.is_tampered);
#endif
}
}
boot_linux_from_mmc();
}
else
{
recovery_init();
#if USE_PCOM_SECBOOT
if((device.is_unlocked) || (device.is_tampered))
set_tamper_flag(device.is_tampered);
#endif
boot_linux_from_flash();
}
dprintf(CRITICAL, "ERROR: Could not do normal boot. Reverting "
"to fastboot mode.\n");
}
/* We are here means regular boot did not happen. Start fastboot. */
/* register aboot specific fastboot commands */
aboot_fastboot_register_commands();
/* dump partition table for debug info */
partition_dump();
/* initialize and start fastboot */
fastboot_init(target_get_scratch_address(), target_get_max_flash_size());
}
uint32_t get_page_size()
{
return page_size;
}
/*
* Calculated and save hash (SHA256) for non-signed boot image.
*
* Hash the same data that is checked on the signed boot image.
* Kernel and Ramdisk are already read to memory buffers.
* Need to read the entire device-tree from mmc
* since non-signed image only read the DT tags of the relevant platform.
*
* @param kernel_addr - kernel bufer
* @param kernel_actual - kernel size in bytes
* @param ramdisk_addr - ramdisk buffer
* @param ramdisk_actual - ramdisk size
* @param ptn - partition
* @param dt_offset - device tree offset on mmc partition
* @param dt_size
*
* @return int - 0 on success, negative value on failure.
*/
int aboot_save_boot_hash_mmc(void *kernel_addr, unsigned kernel_actual,
void *ramdisk_addr, unsigned ramdisk_actual,
unsigned long long ptn,
unsigned dt_offset, unsigned dt_size)
{
SHA256_CTX sha256_ctx;
char digest[32]={0};
char *buf = (char *)target_get_scratch_address();
unsigned dt_actual = ROUND_TO_PAGE(dt_size, page_mask);
unsigned imagesize_actual = page_size + kernel_actual + ramdisk_actual + dt_actual;
SHA256_Init(&sha256_ctx);
/* Read Boot Header */
if (mmc_read(ptn, buf, page_size))
{
dprintf(CRITICAL, "ERROR: mmc_read() fail.\n");
return -1;
}
/* Read entire Device Tree */
if (mmc_read(ptn + dt_offset, buf+page_size, dt_actual))
{
dprintf(CRITICAL, "ERROR: mmc_read() fail.\n");
return -1;
}
SHA256_Update(&sha256_ctx, buf, page_size); // Boot Header
SHA256_Update(&sha256_ctx, kernel_addr, kernel_actual);
SHA256_Update(&sha256_ctx, ramdisk_addr, ramdisk_actual);
SHA256_Update(&sha256_ctx, buf+page_size, dt_actual); // Device Tree
SHA256_Final(digest, &sha256_ctx);
save_kernel_hash_cmd(digest);
dprintf(INFO, "aboot_save_boot_hash_mmc: imagesize_actual size %d bytes.\n", (int) imagesize_actual);
return 0;
}
APP_START(aboot)
.init = aboot_init,
APP_END