u-boot/nand_spl/nand_boot.c
Wolfgang Denk a9aa392629 Drop support for CONFIG_SYS_ARM_WITHOUT_RELOC
When this define was introduced, the idea was to provide a soft
migration path for ARM boards to get adapted to the new relocation
support.  However, other recent changes led to a different
implementation (ELF relocation), where this no longer works.  By now
CONFIG_SYS_ARM_WITHOUT_RELOC does not only not help any more, but it
actually hurts because it obfuscates the actual code by sprinkling it
with lots of dead and non-working debris.

So let's make a clean cut and drop CONFIG_SYS_ARM_WITHOUT_RELOC.

Signed-off-by: Wolfgang Denk <wd@denx.de>
Tested-by: Heiko Schocher <hs@denx.de>
Tested-by: Reinhard Meyer <u-boot@emk-elektronik.de>
2010-10-29 21:39:59 +02:00

280 lines
7.3 KiB
C

/*
* (C) Copyright 2006-2008
* Stefan Roese, DENX Software Engineering, sr@denx.de.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <nand.h>
#include <asm/io.h>
#define CONFIG_SYS_NAND_READ_DELAY \
{ volatile int dummy; int i; for (i=0; i<10000; i++) dummy = i; }
static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS;
#if (CONFIG_SYS_NAND_PAGE_SIZE <= 512)
/*
* NAND command for small page NAND devices (512)
*/
static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
{
struct nand_chip *this = mtd->priv;
int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
if (this->dev_ready)
while (!this->dev_ready(mtd))
;
else
CONFIG_SYS_NAND_READ_DELAY;
/* Begin command latch cycle */
this->cmd_ctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
/* Set ALE and clear CLE to start address cycle */
/* Column address */
this->cmd_ctrl(mtd, offs, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
this->cmd_ctrl(mtd, page_addr & 0xff, NAND_CTRL_ALE); /* A[16:9] */
this->cmd_ctrl(mtd, (page_addr >> 8) & 0xff,
NAND_CTRL_ALE); /* A[24:17] */
#ifdef CONFIG_SYS_NAND_4_ADDR_CYCLE
/* One more address cycle for devices > 32MiB */
this->cmd_ctrl(mtd, (page_addr >> 16) & 0x0f,
NAND_CTRL_ALE); /* A[28:25] */
#endif
/* Latch in address */
this->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
/*
* Wait a while for the data to be ready
*/
if (this->dev_ready)
while (!this->dev_ready(mtd))
;
else
CONFIG_SYS_NAND_READ_DELAY;
return 0;
}
#else
/*
* NAND command for large page NAND devices (2k)
*/
static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
{
struct nand_chip *this = mtd->priv;
int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
if (this->dev_ready)
while (!this->dev_ready(mtd))
;
else
CONFIG_SYS_NAND_READ_DELAY;
/* Emulate NAND_CMD_READOOB */
if (cmd == NAND_CMD_READOOB) {
offs += CONFIG_SYS_NAND_PAGE_SIZE;
cmd = NAND_CMD_READ0;
}
/* Begin command latch cycle */
this->cmd_ctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
/* Set ALE and clear CLE to start address cycle */
/* Column address */
this->cmd_ctrl(mtd, offs & 0xff,
NAND_CTRL_ALE | NAND_CTRL_CHANGE); /* A[7:0] */
this->cmd_ctrl(mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE); /* A[11:9] */
/* Row address */
this->cmd_ctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE); /* A[19:12] */
this->cmd_ctrl(mtd, ((page_addr >> 8) & 0xff),
NAND_CTRL_ALE); /* A[27:20] */
#ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
/* One more address cycle for devices > 128MiB */
this->cmd_ctrl(mtd, (page_addr >> 16) & 0x0f,
NAND_CTRL_ALE); /* A[31:28] */
#endif
/* Latch in address */
this->cmd_ctrl(mtd, NAND_CMD_READSTART,
NAND_CTRL_CLE | NAND_CTRL_CHANGE);
this->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
/*
* Wait a while for the data to be ready
*/
if (this->dev_ready)
while (!this->dev_ready(mtd))
;
else
CONFIG_SYS_NAND_READ_DELAY;
return 0;
}
#endif
static int nand_is_bad_block(struct mtd_info *mtd, int block)
{
struct nand_chip *this = mtd->priv;
nand_command(mtd, block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB);
/*
* Read one byte
*/
if (readb(this->IO_ADDR_R) != 0xff)
return 1;
return 0;
}
static int nand_read_page(struct mtd_info *mtd, int block, int page, uchar *dst)
{
struct nand_chip *this = mtd->priv;
u_char *ecc_calc;
u_char *ecc_code;
u_char *oob_data;
int i;
int eccsize = CONFIG_SYS_NAND_ECCSIZE;
int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
int eccsteps = CONFIG_SYS_NAND_ECCSTEPS;
uint8_t *p = dst;
int stat;
nand_command(mtd, block, page, 0, NAND_CMD_READ0);
/* No malloc available for now, just use some temporary locations
* in SDRAM
*/
ecc_calc = (u_char *)(CONFIG_SYS_SDRAM_BASE + 0x10000);
ecc_code = ecc_calc + 0x100;
oob_data = ecc_calc + 0x200;
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
this->ecc.hwctl(mtd, NAND_ECC_READ);
this->read_buf(mtd, p, eccsize);
this->ecc.calculate(mtd, p, &ecc_calc[i]);
}
this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
/* Pick the ECC bytes out of the oob data */
for (i = 0; i < CONFIG_SYS_NAND_ECCTOTAL; i++)
ecc_code[i] = oob_data[nand_ecc_pos[i]];
eccsteps = CONFIG_SYS_NAND_ECCSTEPS;
p = dst;
for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
/* No chance to do something with the possible error message
* from correct_data(). We just hope that all possible errors
* are corrected by this routine.
*/
stat = this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
}
return 0;
}
static int nand_load(struct mtd_info *mtd, unsigned int offs,
unsigned int uboot_size, uchar *dst)
{
unsigned int block, lastblock;
unsigned int page;
/*
* offs has to be aligned to a page address!
*/
block = offs / CONFIG_SYS_NAND_BLOCK_SIZE;
lastblock = (offs + uboot_size - 1) / CONFIG_SYS_NAND_BLOCK_SIZE;
page = (offs % CONFIG_SYS_NAND_BLOCK_SIZE) / CONFIG_SYS_NAND_PAGE_SIZE;
while (block <= lastblock) {
if (!nand_is_bad_block(mtd, block)) {
/*
* Skip bad blocks
*/
while (page < CONFIG_SYS_NAND_PAGE_COUNT) {
nand_read_page(mtd, block, page, dst);
dst += CONFIG_SYS_NAND_PAGE_SIZE;
page++;
}
page = 0;
} else {
lastblock++;
}
block++;
}
return 0;
}
#if defined(CONFIG_ARM)
void board_init_f (ulong bootflag)
{
relocate_code (CONFIG_SYS_TEXT_BASE - TOTAL_MALLOC_LEN, NULL,
CONFIG_SYS_TEXT_BASE);
}
#endif
/*
* The main entry for NAND booting. It's necessary that SDRAM is already
* configured and available since this code loads the main U-Boot image
* from NAND into SDRAM and starts it from there.
*/
void nand_boot(void)
{
struct nand_chip nand_chip;
nand_info_t nand_info;
int ret;
__attribute__((noreturn)) void (*uboot)(void);
/*
* Init board specific nand support
*/
nand_info.priv = &nand_chip;
nand_chip.IO_ADDR_R = nand_chip.IO_ADDR_W = (void __iomem *)CONFIG_SYS_NAND_BASE;
nand_chip.dev_ready = NULL; /* preset to NULL */
board_nand_init(&nand_chip);
if (nand_chip.select_chip)
nand_chip.select_chip(&nand_info, 0);
/*
* Load U-Boot image from NAND into RAM
*/
ret = nand_load(&nand_info, CONFIG_SYS_NAND_U_BOOT_OFFS, CONFIG_SYS_NAND_U_BOOT_SIZE,
(uchar *)CONFIG_SYS_NAND_U_BOOT_DST);
#ifdef CONFIG_NAND_ENV_DST
nand_load(&nand_info, CONFIG_ENV_OFFSET, CONFIG_ENV_SIZE,
(uchar *)CONFIG_NAND_ENV_DST);
#ifdef CONFIG_ENV_OFFSET_REDUND
nand_load(&nand_info, CONFIG_ENV_OFFSET_REDUND, CONFIG_ENV_SIZE,
(uchar *)CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE);
#endif
#endif
if (nand_chip.select_chip)
nand_chip.select_chip(&nand_info, -1);
/*
* Jump to U-Boot image
*/
uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START;
(*uboot)();
}