u-boot/drivers/pci/pci-uclass.c
Simon Glass 8909066199 dm: core: Drop ofnode_is_available()
This function is also available as ofnode_is_enabled(), so use that
instead.

Signed-off-by: Simon Glass <sjg@chromium.org>
2022-09-29 16:11:31 -04:00

1912 lines
44 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (c) 2014 Google, Inc
* Written by Simon Glass <sjg@chromium.org>
*/
#define LOG_CATEGORY UCLASS_PCI
#include <common.h>
#include <dm.h>
#include <errno.h>
#include <init.h>
#include <log.h>
#include <malloc.h>
#include <pci.h>
#include <asm/global_data.h>
#include <asm/io.h>
#include <dm/device-internal.h>
#include <dm/lists.h>
#include <dm/uclass-internal.h>
#if defined(CONFIG_X86) && defined(CONFIG_HAVE_FSP)
#include <asm/fsp/fsp_support.h>
#endif
#include <dt-bindings/pci/pci.h>
#include <linux/delay.h>
#include "pci_internal.h"
DECLARE_GLOBAL_DATA_PTR;
int pci_get_bus(int busnum, struct udevice **busp)
{
int ret;
ret = uclass_get_device_by_seq(UCLASS_PCI, busnum, busp);
/* Since buses may not be numbered yet try a little harder with bus 0 */
if (ret == -ENODEV) {
ret = uclass_first_device_err(UCLASS_PCI, busp);
if (ret)
return ret;
ret = uclass_get_device_by_seq(UCLASS_PCI, busnum, busp);
}
return ret;
}
struct udevice *pci_get_controller(struct udevice *dev)
{
while (device_is_on_pci_bus(dev))
dev = dev->parent;
return dev;
}
pci_dev_t dm_pci_get_bdf(const struct udevice *dev)
{
struct pci_child_plat *pplat = dev_get_parent_plat(dev);
struct udevice *bus = dev->parent;
/*
* This error indicates that @dev is a device on an unprobed PCI bus.
* The bus likely has bus=seq == -1, so the PCI_ADD_BUS() macro below
* will produce a bad BDF>
*
* A common cause of this problem is that this function is called in the
* of_to_plat() method of @dev. Accessing the PCI bus in that
* method is not allowed, since it has not yet been probed. To fix this,
* move that access to the probe() method of @dev instead.
*/
if (!device_active(bus))
log_err("PCI: Device '%s' on unprobed bus '%s'\n", dev->name,
bus->name);
return PCI_ADD_BUS(dev_seq(bus), pplat->devfn);
}
/**
* pci_get_bus_max() - returns the bus number of the last active bus
*
* Return: last bus number, or -1 if no active buses
*/
static int pci_get_bus_max(void)
{
struct udevice *bus;
struct uclass *uc;
int ret = -1;
ret = uclass_get(UCLASS_PCI, &uc);
uclass_foreach_dev(bus, uc) {
if (dev_seq(bus) > ret)
ret = dev_seq(bus);
}
debug("%s: ret=%d\n", __func__, ret);
return ret;
}
int pci_last_busno(void)
{
return pci_get_bus_max();
}
int pci_get_ff(enum pci_size_t size)
{
switch (size) {
case PCI_SIZE_8:
return 0xff;
case PCI_SIZE_16:
return 0xffff;
default:
return 0xffffffff;
}
}
static void pci_dev_find_ofnode(struct udevice *bus, phys_addr_t bdf,
ofnode *rnode)
{
struct fdt_pci_addr addr;
ofnode node;
int ret;
dev_for_each_subnode(node, bus) {
ret = ofnode_read_pci_addr(node, FDT_PCI_SPACE_CONFIG, "reg",
&addr);
if (ret)
continue;
if (PCI_MASK_BUS(addr.phys_hi) != PCI_MASK_BUS(bdf))
continue;
*rnode = node;
break;
}
};
int pci_bus_find_devfn(const struct udevice *bus, pci_dev_t find_devfn,
struct udevice **devp)
{
struct udevice *dev;
for (device_find_first_child(bus, &dev);
dev;
device_find_next_child(&dev)) {
struct pci_child_plat *pplat;
pplat = dev_get_parent_plat(dev);
if (pplat && pplat->devfn == find_devfn) {
*devp = dev;
return 0;
}
}
return -ENODEV;
}
int dm_pci_bus_find_bdf(pci_dev_t bdf, struct udevice **devp)
{
struct udevice *bus;
int ret;
ret = pci_get_bus(PCI_BUS(bdf), &bus);
if (ret)
return ret;
return pci_bus_find_devfn(bus, PCI_MASK_BUS(bdf), devp);
}
static int pci_device_matches_ids(struct udevice *dev,
const struct pci_device_id *ids)
{
struct pci_child_plat *pplat;
int i;
pplat = dev_get_parent_plat(dev);
if (!pplat)
return -EINVAL;
for (i = 0; ids[i].vendor != 0; i++) {
if (pplat->vendor == ids[i].vendor &&
pplat->device == ids[i].device)
return i;
}
return -EINVAL;
}
int pci_bus_find_devices(struct udevice *bus, const struct pci_device_id *ids,
int *indexp, struct udevice **devp)
{
struct udevice *dev;
/* Scan all devices on this bus */
for (device_find_first_child(bus, &dev);
dev;
device_find_next_child(&dev)) {
if (pci_device_matches_ids(dev, ids) >= 0) {
if ((*indexp)-- <= 0) {
*devp = dev;
return 0;
}
}
}
return -ENODEV;
}
int pci_find_device_id(const struct pci_device_id *ids, int index,
struct udevice **devp)
{
struct udevice *bus;
/* Scan all known buses */
for (uclass_first_device(UCLASS_PCI, &bus);
bus;
uclass_next_device(&bus)) {
if (!pci_bus_find_devices(bus, ids, &index, devp))
return 0;
}
*devp = NULL;
return -ENODEV;
}
static int dm_pci_bus_find_device(struct udevice *bus, unsigned int vendor,
unsigned int device, int *indexp,
struct udevice **devp)
{
struct pci_child_plat *pplat;
struct udevice *dev;
for (device_find_first_child(bus, &dev);
dev;
device_find_next_child(&dev)) {
pplat = dev_get_parent_plat(dev);
if (pplat->vendor == vendor && pplat->device == device) {
if (!(*indexp)--) {
*devp = dev;
return 0;
}
}
}
return -ENODEV;
}
int dm_pci_find_device(unsigned int vendor, unsigned int device, int index,
struct udevice **devp)
{
struct udevice *bus;
/* Scan all known buses */
for (uclass_first_device(UCLASS_PCI, &bus);
bus;
uclass_next_device(&bus)) {
if (!dm_pci_bus_find_device(bus, vendor, device, &index, devp))
return device_probe(*devp);
}
*devp = NULL;
return -ENODEV;
}
int dm_pci_find_class(uint find_class, int index, struct udevice **devp)
{
struct udevice *dev;
/* Scan all known buses */
for (pci_find_first_device(&dev);
dev;
pci_find_next_device(&dev)) {
struct pci_child_plat *pplat = dev_get_parent_plat(dev);
if (pplat->class == find_class && !index--) {
*devp = dev;
return device_probe(*devp);
}
}
*devp = NULL;
return -ENODEV;
}
int pci_bus_write_config(struct udevice *bus, pci_dev_t bdf, int offset,
unsigned long value, enum pci_size_t size)
{
struct dm_pci_ops *ops;
ops = pci_get_ops(bus);
if (!ops->write_config)
return -ENOSYS;
if (offset < 0 || offset >= 4096)
return -EINVAL;
return ops->write_config(bus, bdf, offset, value, size);
}
int pci_bus_clrset_config32(struct udevice *bus, pci_dev_t bdf, int offset,
u32 clr, u32 set)
{
ulong val;
int ret;
ret = pci_bus_read_config(bus, bdf, offset, &val, PCI_SIZE_32);
if (ret)
return ret;
val &= ~clr;
val |= set;
return pci_bus_write_config(bus, bdf, offset, val, PCI_SIZE_32);
}
static int pci_write_config(pci_dev_t bdf, int offset, unsigned long value,
enum pci_size_t size)
{
struct udevice *bus;
int ret;
ret = pci_get_bus(PCI_BUS(bdf), &bus);
if (ret)
return ret;
return pci_bus_write_config(bus, bdf, offset, value, size);
}
int dm_pci_write_config(struct udevice *dev, int offset, unsigned long value,
enum pci_size_t size)
{
struct udevice *bus;
for (bus = dev; device_is_on_pci_bus(bus);)
bus = bus->parent;
return pci_bus_write_config(bus, dm_pci_get_bdf(dev), offset, value,
size);
}
int pci_write_config32(pci_dev_t bdf, int offset, u32 value)
{
return pci_write_config(bdf, offset, value, PCI_SIZE_32);
}
int pci_write_config16(pci_dev_t bdf, int offset, u16 value)
{
return pci_write_config(bdf, offset, value, PCI_SIZE_16);
}
int pci_write_config8(pci_dev_t bdf, int offset, u8 value)
{
return pci_write_config(bdf, offset, value, PCI_SIZE_8);
}
int dm_pci_write_config8(struct udevice *dev, int offset, u8 value)
{
return dm_pci_write_config(dev, offset, value, PCI_SIZE_8);
}
int dm_pci_write_config16(struct udevice *dev, int offset, u16 value)
{
return dm_pci_write_config(dev, offset, value, PCI_SIZE_16);
}
int dm_pci_write_config32(struct udevice *dev, int offset, u32 value)
{
return dm_pci_write_config(dev, offset, value, PCI_SIZE_32);
}
int pci_bus_read_config(const struct udevice *bus, pci_dev_t bdf, int offset,
unsigned long *valuep, enum pci_size_t size)
{
struct dm_pci_ops *ops;
ops = pci_get_ops(bus);
if (!ops->read_config) {
*valuep = pci_conv_32_to_size(~0, offset, size);
return -ENOSYS;
}
if (offset < 0 || offset >= 4096) {
*valuep = pci_conv_32_to_size(0, offset, size);
return -EINVAL;
}
return ops->read_config(bus, bdf, offset, valuep, size);
}
static int pci_read_config(pci_dev_t bdf, int offset, unsigned long *valuep,
enum pci_size_t size)
{
struct udevice *bus;
int ret;
ret = pci_get_bus(PCI_BUS(bdf), &bus);
if (ret)
return ret;
return pci_bus_read_config(bus, bdf, offset, valuep, size);
}
int dm_pci_read_config(const struct udevice *dev, int offset,
unsigned long *valuep, enum pci_size_t size)
{
const struct udevice *bus;
for (bus = dev; device_is_on_pci_bus(bus);)
bus = bus->parent;
return pci_bus_read_config(bus, dm_pci_get_bdf(dev), offset, valuep,
size);
}
int pci_read_config32(pci_dev_t bdf, int offset, u32 *valuep)
{
unsigned long value;
int ret;
ret = pci_read_config(bdf, offset, &value, PCI_SIZE_32);
if (ret)
return ret;
*valuep = value;
return 0;
}
int pci_read_config16(pci_dev_t bdf, int offset, u16 *valuep)
{
unsigned long value;
int ret;
ret = pci_read_config(bdf, offset, &value, PCI_SIZE_16);
if (ret)
return ret;
*valuep = value;
return 0;
}
int pci_read_config8(pci_dev_t bdf, int offset, u8 *valuep)
{
unsigned long value;
int ret;
ret = pci_read_config(bdf, offset, &value, PCI_SIZE_8);
if (ret)
return ret;
*valuep = value;
return 0;
}
int dm_pci_read_config8(const struct udevice *dev, int offset, u8 *valuep)
{
unsigned long value;
int ret;
ret = dm_pci_read_config(dev, offset, &value, PCI_SIZE_8);
if (ret)
return ret;
*valuep = value;
return 0;
}
int dm_pci_read_config16(const struct udevice *dev, int offset, u16 *valuep)
{
unsigned long value;
int ret;
ret = dm_pci_read_config(dev, offset, &value, PCI_SIZE_16);
if (ret)
return ret;
*valuep = value;
return 0;
}
int dm_pci_read_config32(const struct udevice *dev, int offset, u32 *valuep)
{
unsigned long value;
int ret;
ret = dm_pci_read_config(dev, offset, &value, PCI_SIZE_32);
if (ret)
return ret;
*valuep = value;
return 0;
}
int dm_pci_clrset_config8(struct udevice *dev, int offset, u32 clr, u32 set)
{
u8 val;
int ret;
ret = dm_pci_read_config8(dev, offset, &val);
if (ret)
return ret;
val &= ~clr;
val |= set;
return dm_pci_write_config8(dev, offset, val);
}
int dm_pci_clrset_config16(struct udevice *dev, int offset, u32 clr, u32 set)
{
u16 val;
int ret;
ret = dm_pci_read_config16(dev, offset, &val);
if (ret)
return ret;
val &= ~clr;
val |= set;
return dm_pci_write_config16(dev, offset, val);
}
int dm_pci_clrset_config32(struct udevice *dev, int offset, u32 clr, u32 set)
{
u32 val;
int ret;
ret = dm_pci_read_config32(dev, offset, &val);
if (ret)
return ret;
val &= ~clr;
val |= set;
return dm_pci_write_config32(dev, offset, val);
}
static void set_vga_bridge_bits(struct udevice *dev)
{
struct udevice *parent = dev->parent;
u16 bc;
while (dev_seq(parent) != 0) {
dm_pci_read_config16(parent, PCI_BRIDGE_CONTROL, &bc);
bc |= PCI_BRIDGE_CTL_VGA;
dm_pci_write_config16(parent, PCI_BRIDGE_CONTROL, bc);
parent = parent->parent;
}
}
int pci_auto_config_devices(struct udevice *bus)
{
struct pci_controller *hose = dev_get_uclass_priv(bus);
struct pci_child_plat *pplat;
unsigned int sub_bus;
struct udevice *dev;
int ret;
sub_bus = dev_seq(bus);
debug("%s: start\n", __func__);
pciauto_config_init(hose);
for (ret = device_find_first_child(bus, &dev);
!ret && dev;
ret = device_find_next_child(&dev)) {
unsigned int max_bus;
int ret;
debug("%s: device %s\n", __func__, dev->name);
if (dev_has_ofnode(dev) &&
dev_read_bool(dev, "pci,no-autoconfig"))
continue;
ret = dm_pciauto_config_device(dev);
if (ret < 0)
return log_msg_ret("auto", ret);
max_bus = ret;
sub_bus = max(sub_bus, max_bus);
if (dev_get_parent(dev) == bus)
continue;
pplat = dev_get_parent_plat(dev);
if (pplat->class == (PCI_CLASS_DISPLAY_VGA << 8))
set_vga_bridge_bits(dev);
}
if (hose->last_busno < sub_bus)
hose->last_busno = sub_bus;
debug("%s: done\n", __func__);
return log_msg_ret("sub", sub_bus);
}
int pci_generic_mmap_write_config(
const struct udevice *bus,
int (*addr_f)(const struct udevice *bus, pci_dev_t bdf, uint offset,
void **addrp),
pci_dev_t bdf,
uint offset,
ulong value,
enum pci_size_t size)
{
void *address;
if (addr_f(bus, bdf, offset, &address) < 0)
return 0;
switch (size) {
case PCI_SIZE_8:
writeb(value, address);
return 0;
case PCI_SIZE_16:
writew(value, address);
return 0;
case PCI_SIZE_32:
writel(value, address);
return 0;
default:
return -EINVAL;
}
}
int pci_generic_mmap_read_config(
const struct udevice *bus,
int (*addr_f)(const struct udevice *bus, pci_dev_t bdf, uint offset,
void **addrp),
pci_dev_t bdf,
uint offset,
ulong *valuep,
enum pci_size_t size)
{
void *address;
if (addr_f(bus, bdf, offset, &address) < 0) {
*valuep = pci_get_ff(size);
return 0;
}
switch (size) {
case PCI_SIZE_8:
*valuep = readb(address);
return 0;
case PCI_SIZE_16:
*valuep = readw(address);
return 0;
case PCI_SIZE_32:
*valuep = readl(address);
return 0;
default:
return -EINVAL;
}
}
int dm_pci_hose_probe_bus(struct udevice *bus)
{
u8 header_type;
int sub_bus;
int ret;
int ea_pos;
u8 reg;
debug("%s\n", __func__);
dm_pci_read_config8(bus, PCI_HEADER_TYPE, &header_type);
header_type &= 0x7f;
if (header_type != PCI_HEADER_TYPE_BRIDGE) {
debug("%s: Skipping PCI device %d with Non-Bridge Header Type 0x%x\n",
__func__, PCI_DEV(dm_pci_get_bdf(bus)), header_type);
return log_msg_ret("probe", -EINVAL);
}
if (IS_ENABLED(CONFIG_PCI_ENHANCED_ALLOCATION))
ea_pos = dm_pci_find_capability(bus, PCI_CAP_ID_EA);
else
ea_pos = 0;
if (ea_pos) {
dm_pci_read_config8(bus, ea_pos + sizeof(u32) + sizeof(u8),
&reg);
sub_bus = reg;
} else {
sub_bus = pci_get_bus_max() + 1;
}
debug("%s: bus = %d/%s\n", __func__, sub_bus, bus->name);
dm_pciauto_prescan_setup_bridge(bus, sub_bus);
ret = device_probe(bus);
if (ret) {
debug("%s: Cannot probe bus %s: %d\n", __func__, bus->name,
ret);
return log_msg_ret("probe", ret);
}
if (!ea_pos)
sub_bus = pci_get_bus_max();
dm_pciauto_postscan_setup_bridge(bus, sub_bus);
return sub_bus;
}
/**
* pci_match_one_device - Tell if a PCI device structure has a matching
* PCI device id structure
* @id: single PCI device id structure to match
* @find: the PCI device id structure to match against
*
* Returns true if the finding pci_device_id structure matched or false if
* there is no match.
*/
static bool pci_match_one_id(const struct pci_device_id *id,
const struct pci_device_id *find)
{
if ((id->vendor == PCI_ANY_ID || id->vendor == find->vendor) &&
(id->device == PCI_ANY_ID || id->device == find->device) &&
(id->subvendor == PCI_ANY_ID || id->subvendor == find->subvendor) &&
(id->subdevice == PCI_ANY_ID || id->subdevice == find->subdevice) &&
!((id->class ^ find->class) & id->class_mask))
return true;
return false;
}
/**
* pci_need_device_pre_reloc() - Check if a device should be bound
*
* This checks a list of vendor/device-ID values indicating devices that should
* be bound before relocation.
*
* @bus: Bus to check
* @vendor: Vendor ID to check
* @device: Device ID to check
* Return: true if the vendor/device is in the list, false if not
*/
static bool pci_need_device_pre_reloc(struct udevice *bus, uint vendor,
uint device)
{
u32 vendev;
int index;
for (index = 0;
!dev_read_u32_index(bus, "u-boot,pci-pre-reloc", index,
&vendev);
index++) {
if (vendev == PCI_VENDEV(vendor, device))
return true;
}
return false;
}
/**
* pci_find_and_bind_driver() - Find and bind the right PCI driver
*
* This only looks at certain fields in the descriptor.
*
* @parent: Parent bus
* @find_id: Specification of the driver to find
* @bdf: Bus/device/function addreess - see PCI_BDF()
* @devp: Returns a pointer to the device created
* Return: 0 if OK, -EPERM if the device is not needed before relocation and
* therefore was not created, other -ve value on error
*/
static int pci_find_and_bind_driver(struct udevice *parent,
struct pci_device_id *find_id,
pci_dev_t bdf, struct udevice **devp)
{
struct pci_driver_entry *start, *entry;
ofnode node = ofnode_null();
const char *drv;
int n_ents;
int ret;
char name[30], *str;
bool bridge;
*devp = NULL;
debug("%s: Searching for driver: vendor=%x, device=%x\n", __func__,
find_id->vendor, find_id->device);
/* Determine optional OF node */
if (ofnode_valid(dev_ofnode(parent)))
pci_dev_find_ofnode(parent, bdf, &node);
if (ofnode_valid(node) && !ofnode_is_enabled(node)) {
debug("%s: Ignoring disabled device\n", __func__);
return log_msg_ret("dis", -EPERM);
}
start = ll_entry_start(struct pci_driver_entry, pci_driver_entry);
n_ents = ll_entry_count(struct pci_driver_entry, pci_driver_entry);
for (entry = start; entry != start + n_ents; entry++) {
const struct pci_device_id *id;
struct udevice *dev;
const struct driver *drv;
for (id = entry->match;
id->vendor || id->subvendor || id->class_mask;
id++) {
if (!pci_match_one_id(id, find_id))
continue;
drv = entry->driver;
/*
* In the pre-relocation phase, we only bind devices
* whose driver has the DM_FLAG_PRE_RELOC set, to save
* precious memory space as on some platforms as that
* space is pretty limited (ie: using Cache As RAM).
*/
if (!(gd->flags & GD_FLG_RELOC) &&
!(drv->flags & DM_FLAG_PRE_RELOC))
return log_msg_ret("pre", -EPERM);
/*
* We could pass the descriptor to the driver as
* plat (instead of NULL) and allow its bind()
* method to return -ENOENT if it doesn't support this
* device. That way we could continue the search to
* find another driver. For now this doesn't seem
* necesssary, so just bind the first match.
*/
ret = device_bind(parent, drv, drv->name, NULL, node,
&dev);
if (ret)
goto error;
debug("%s: Match found: %s\n", __func__, drv->name);
dev->driver_data = id->driver_data;
*devp = dev;
return 0;
}
}
bridge = (find_id->class >> 8) == PCI_CLASS_BRIDGE_PCI;
/*
* In the pre-relocation phase, we only bind bridge devices to save
* precious memory space as on some platforms as that space is pretty
* limited (ie: using Cache As RAM).
*/
if (!(gd->flags & GD_FLG_RELOC) && !bridge &&
!pci_need_device_pre_reloc(parent, find_id->vendor,
find_id->device))
return log_msg_ret("notbr", -EPERM);
/* Bind a generic driver so that the device can be used */
sprintf(name, "pci_%x:%x.%x", dev_seq(parent), PCI_DEV(bdf),
PCI_FUNC(bdf));
str = strdup(name);
if (!str)
return -ENOMEM;
drv = bridge ? "pci_bridge_drv" : "pci_generic_drv";
ret = device_bind_driver_to_node(parent, drv, str, node, devp);
if (ret) {
debug("%s: Failed to bind generic driver: %d\n", __func__, ret);
free(str);
return ret;
}
debug("%s: No match found: bound generic driver instead\n", __func__);
return 0;
error:
debug("%s: No match found: error %d\n", __func__, ret);
return ret;
}
__weak extern void board_pci_fixup_dev(struct udevice *bus, struct udevice *dev)
{
}
int pci_bind_bus_devices(struct udevice *bus)
{
ulong vendor, device;
ulong header_type;
pci_dev_t bdf, end;
bool found_multi;
int ari_off;
int ret;
found_multi = false;
end = PCI_BDF(dev_seq(bus), PCI_MAX_PCI_DEVICES - 1,
PCI_MAX_PCI_FUNCTIONS - 1);
for (bdf = PCI_BDF(dev_seq(bus), 0, 0); bdf <= end;
bdf += PCI_BDF(0, 0, 1)) {
struct pci_child_plat *pplat;
struct udevice *dev;
ulong class;
if (!PCI_FUNC(bdf))
found_multi = false;
if (PCI_FUNC(bdf) && !found_multi)
continue;
/* Check only the first access, we don't expect problems */
ret = pci_bus_read_config(bus, bdf, PCI_VENDOR_ID, &vendor,
PCI_SIZE_16);
if (ret || vendor == 0xffff || vendor == 0x0000)
continue;
pci_bus_read_config(bus, bdf, PCI_HEADER_TYPE,
&header_type, PCI_SIZE_8);
if (!PCI_FUNC(bdf))
found_multi = header_type & 0x80;
debug("%s: bus %d/%s: found device %x, function %d", __func__,
dev_seq(bus), bus->name, PCI_DEV(bdf), PCI_FUNC(bdf));
pci_bus_read_config(bus, bdf, PCI_DEVICE_ID, &device,
PCI_SIZE_16);
pci_bus_read_config(bus, bdf, PCI_CLASS_REVISION, &class,
PCI_SIZE_32);
class >>= 8;
/* Find this device in the device tree */
ret = pci_bus_find_devfn(bus, PCI_MASK_BUS(bdf), &dev);
debug(": find ret=%d\n", ret);
/* If nothing in the device tree, bind a device */
if (ret == -ENODEV) {
struct pci_device_id find_id;
ulong val;
memset(&find_id, '\0', sizeof(find_id));
find_id.vendor = vendor;
find_id.device = device;
find_id.class = class;
if ((header_type & 0x7f) == PCI_HEADER_TYPE_NORMAL) {
pci_bus_read_config(bus, bdf,
PCI_SUBSYSTEM_VENDOR_ID,
&val, PCI_SIZE_32);
find_id.subvendor = val & 0xffff;
find_id.subdevice = val >> 16;
}
ret = pci_find_and_bind_driver(bus, &find_id, bdf,
&dev);
}
if (ret == -EPERM)
continue;
else if (ret)
return ret;
/* Update the platform data */
pplat = dev_get_parent_plat(dev);
pplat->devfn = PCI_MASK_BUS(bdf);
pplat->vendor = vendor;
pplat->device = device;
pplat->class = class;
if (IS_ENABLED(CONFIG_PCI_ARID)) {
ari_off = dm_pci_find_ext_capability(dev,
PCI_EXT_CAP_ID_ARI);
if (ari_off) {
u16 ari_cap;
/*
* Read Next Function number in ARI Cap
* Register
*/
dm_pci_read_config16(dev, ari_off + 4,
&ari_cap);
/*
* Update next scan on this function number,
* subtract 1 in BDF to satisfy loop increment.
*/
if (ari_cap & 0xff00) {
bdf = PCI_BDF(PCI_BUS(bdf),
PCI_DEV(ari_cap),
PCI_FUNC(ari_cap));
bdf = bdf - 0x100;
}
}
}
board_pci_fixup_dev(bus, dev);
}
return 0;
}
static int decode_regions(struct pci_controller *hose, ofnode parent_node,
ofnode node)
{
int pci_addr_cells, addr_cells, size_cells;
int cells_per_record;
struct bd_info *bd;
const u32 *prop;
int max_regions;
int len;
int i;
prop = ofnode_get_property(node, "ranges", &len);
if (!prop) {
debug("%s: Cannot decode regions\n", __func__);
return -EINVAL;
}
pci_addr_cells = ofnode_read_simple_addr_cells(node);
addr_cells = ofnode_read_simple_addr_cells(parent_node);
size_cells = ofnode_read_simple_size_cells(node);
/* PCI addresses are always 3-cells */
len /= sizeof(u32);
cells_per_record = pci_addr_cells + addr_cells + size_cells;
hose->region_count = 0;
debug("%s: len=%d, cells_per_record=%d\n", __func__, len,
cells_per_record);
/* Dynamically allocate the regions array */
max_regions = len / cells_per_record + CONFIG_NR_DRAM_BANKS;
hose->regions = (struct pci_region *)
calloc(1, max_regions * sizeof(struct pci_region));
if (!hose->regions)
return -ENOMEM;
for (i = 0; i < max_regions; i++, len -= cells_per_record) {
u64 pci_addr, addr, size;
int space_code;
u32 flags;
int type;
int pos;
if (len < cells_per_record)
break;
flags = fdt32_to_cpu(prop[0]);
space_code = (flags >> 24) & 3;
pci_addr = fdtdec_get_number(prop + 1, 2);
prop += pci_addr_cells;
addr = fdtdec_get_number(prop, addr_cells);
prop += addr_cells;
size = fdtdec_get_number(prop, size_cells);
prop += size_cells;
debug("%s: region %d, pci_addr=%llx, addr=%llx, size=%llx, space_code=%d\n",
__func__, hose->region_count, pci_addr, addr, size, space_code);
if (space_code & 2) {
type = flags & (1U << 30) ? PCI_REGION_PREFETCH :
PCI_REGION_MEM;
} else if (space_code & 1) {
type = PCI_REGION_IO;
} else {
continue;
}
if (!IS_ENABLED(CONFIG_SYS_PCI_64BIT) &&
type == PCI_REGION_MEM && upper_32_bits(pci_addr)) {
debug(" - pci_addr beyond the 32-bit boundary, ignoring\n");
continue;
}
if (!IS_ENABLED(CONFIG_PHYS_64BIT) && upper_32_bits(addr)) {
debug(" - addr beyond the 32-bit boundary, ignoring\n");
continue;
}
if (~((pci_addr_t)0) - pci_addr < size) {
debug(" - PCI range exceeds max address, ignoring\n");
continue;
}
if (~((phys_addr_t)0) - addr < size) {
debug(" - phys range exceeds max address, ignoring\n");
continue;
}
pos = -1;
if (!IS_ENABLED(CONFIG_PCI_REGION_MULTI_ENTRY)) {
for (i = 0; i < hose->region_count; i++) {
if (hose->regions[i].flags == type)
pos = i;
}
}
if (pos == -1)
pos = hose->region_count++;
debug(" - type=%d, pos=%d\n", type, pos);
pci_set_region(hose->regions + pos, pci_addr, addr, size, type);
}
/* Add a region for our local memory */
bd = gd->bd;
if (!bd)
return 0;
for (i = 0; i < CONFIG_NR_DRAM_BANKS; ++i) {
if (bd->bi_dram[i].size) {
phys_addr_t start = bd->bi_dram[i].start;
if (IS_ENABLED(CONFIG_PCI_MAP_SYSTEM_MEMORY))
start = virt_to_phys((void *)(uintptr_t)bd->bi_dram[i].start);
pci_set_region(hose->regions + hose->region_count++,
start, start, bd->bi_dram[i].size,
PCI_REGION_MEM | PCI_REGION_SYS_MEMORY);
}
}
return 0;
}
static int pci_uclass_pre_probe(struct udevice *bus)
{
struct pci_controller *hose;
struct uclass *uc;
int ret;
debug("%s, bus=%d/%s, parent=%s\n", __func__, dev_seq(bus), bus->name,
bus->parent->name);
hose = dev_get_uclass_priv(bus);
/*
* Set the sequence number, if device_bind() doesn't. We want control
* of this so that numbers are allocated as devices are probed. That
* ensures that sub-bus numbered is correct (sub-buses must get numbers
* higher than their parents)
*/
if (dev_seq(bus) == -1) {
ret = uclass_get(UCLASS_PCI, &uc);
if (ret)
return ret;
bus->seq_ = uclass_find_next_free_seq(uc);
}
/* For bridges, use the top-level PCI controller */
if (!device_is_on_pci_bus(bus)) {
hose->ctlr = bus;
ret = decode_regions(hose, dev_ofnode(bus->parent),
dev_ofnode(bus));
if (ret)
return ret;
} else {
struct pci_controller *parent_hose;
parent_hose = dev_get_uclass_priv(bus->parent);
hose->ctlr = parent_hose->bus;
}
hose->bus = bus;
hose->first_busno = dev_seq(bus);
hose->last_busno = dev_seq(bus);
if (dev_has_ofnode(bus)) {
hose->skip_auto_config_until_reloc =
dev_read_bool(bus,
"u-boot,skip-auto-config-until-reloc");
}
return 0;
}
static int pci_uclass_post_probe(struct udevice *bus)
{
struct pci_controller *hose = dev_get_uclass_priv(bus);
int ret;
debug("%s: probing bus %d\n", __func__, dev_seq(bus));
ret = pci_bind_bus_devices(bus);
if (ret)
return log_msg_ret("bind", ret);
if (CONFIG_IS_ENABLED(PCI_PNP) && ll_boot_init() &&
(!hose->skip_auto_config_until_reloc ||
(gd->flags & GD_FLG_RELOC))) {
ret = pci_auto_config_devices(bus);
if (ret < 0)
return log_msg_ret("cfg", ret);
}
#if defined(CONFIG_X86) && defined(CONFIG_HAVE_FSP)
/*
* Per Intel FSP specification, we should call FSP notify API to
* inform FSP that PCI enumeration has been done so that FSP will
* do any necessary initialization as required by the chipset's
* BIOS Writer's Guide (BWG).
*
* Unfortunately we have to put this call here as with driver model,
* the enumeration is all done on a lazy basis as needed, so until
* something is touched on PCI it won't happen.
*
* Note we only call this 1) after U-Boot is relocated, and 2)
* root bus has finished probing.
*/
if ((gd->flags & GD_FLG_RELOC) && dev_seq(bus) == 0 && ll_boot_init()) {
ret = fsp_init_phase_pci();
if (ret)
return log_msg_ret("fsp", ret);
}
#endif
return 0;
}
static int pci_uclass_child_post_bind(struct udevice *dev)
{
struct pci_child_plat *pplat;
if (!dev_has_ofnode(dev))
return 0;
pplat = dev_get_parent_plat(dev);
/* Extract vendor id and device id if available */
ofnode_read_pci_vendev(dev_ofnode(dev), &pplat->vendor, &pplat->device);
/* Extract the devfn from fdt_pci_addr */
pplat->devfn = pci_get_devfn(dev);
return 0;
}
static int pci_bridge_read_config(const struct udevice *bus, pci_dev_t bdf,
uint offset, ulong *valuep,
enum pci_size_t size)
{
struct pci_controller *hose = dev_get_uclass_priv(bus);
return pci_bus_read_config(hose->ctlr, bdf, offset, valuep, size);
}
static int pci_bridge_write_config(struct udevice *bus, pci_dev_t bdf,
uint offset, ulong value,
enum pci_size_t size)
{
struct pci_controller *hose = dev_get_uclass_priv(bus);
return pci_bus_write_config(hose->ctlr, bdf, offset, value, size);
}
static int skip_to_next_device(struct udevice *bus, struct udevice **devp)
{
struct udevice *dev;
int ret = 0;
/*
* Scan through all the PCI controllers. On x86 there will only be one
* but that is not necessarily true on other hardware.
*/
do {
device_find_first_child(bus, &dev);
if (dev) {
*devp = dev;
return 0;
}
ret = uclass_next_device(&bus);
if (ret)
return ret;
} while (bus);
return 0;
}
int pci_find_next_device(struct udevice **devp)
{
struct udevice *child = *devp;
struct udevice *bus = child->parent;
int ret;
/* First try all the siblings */
*devp = NULL;
while (child) {
device_find_next_child(&child);
if (child) {
*devp = child;
return 0;
}
}
/* We ran out of siblings. Try the next bus */
ret = uclass_next_device(&bus);
if (ret)
return ret;
return bus ? skip_to_next_device(bus, devp) : 0;
}
int pci_find_first_device(struct udevice **devp)
{
struct udevice *bus;
int ret;
*devp = NULL;
ret = uclass_first_device(UCLASS_PCI, &bus);
if (ret)
return ret;
return skip_to_next_device(bus, devp);
}
ulong pci_conv_32_to_size(ulong value, uint offset, enum pci_size_t size)
{
switch (size) {
case PCI_SIZE_8:
return (value >> ((offset & 3) * 8)) & 0xff;
case PCI_SIZE_16:
return (value >> ((offset & 2) * 8)) & 0xffff;
default:
return value;
}
}
ulong pci_conv_size_to_32(ulong old, ulong value, uint offset,
enum pci_size_t size)
{
uint off_mask;
uint val_mask, shift;
ulong ldata, mask;
switch (size) {
case PCI_SIZE_8:
off_mask = 3;
val_mask = 0xff;
break;
case PCI_SIZE_16:
off_mask = 2;
val_mask = 0xffff;
break;
default:
return value;
}
shift = (offset & off_mask) * 8;
ldata = (value & val_mask) << shift;
mask = val_mask << shift;
value = (old & ~mask) | ldata;
return value;
}
int pci_get_dma_regions(struct udevice *dev, struct pci_region *memp, int index)
{
int pci_addr_cells, addr_cells, size_cells;
int cells_per_record;
const u32 *prop;
int len;
int i = 0;
prop = ofnode_get_property(dev_ofnode(dev), "dma-ranges", &len);
if (!prop) {
log_err("PCI: Device '%s': Cannot decode dma-ranges\n",
dev->name);
return -EINVAL;
}
pci_addr_cells = ofnode_read_simple_addr_cells(dev_ofnode(dev));
addr_cells = ofnode_read_simple_addr_cells(dev_ofnode(dev->parent));
size_cells = ofnode_read_simple_size_cells(dev_ofnode(dev));
/* PCI addresses are always 3-cells */
len /= sizeof(u32);
cells_per_record = pci_addr_cells + addr_cells + size_cells;
debug("%s: len=%d, cells_per_record=%d\n", __func__, len,
cells_per_record);
while (len) {
memp->bus_start = fdtdec_get_number(prop + 1, 2);
prop += pci_addr_cells;
memp->phys_start = fdtdec_get_number(prop, addr_cells);
prop += addr_cells;
memp->size = fdtdec_get_number(prop, size_cells);
prop += size_cells;
if (i == index)
return 0;
i++;
len -= cells_per_record;
}
return -EINVAL;
}
int pci_get_regions(struct udevice *dev, struct pci_region **iop,
struct pci_region **memp, struct pci_region **prefp)
{
struct udevice *bus = pci_get_controller(dev);
struct pci_controller *hose = dev_get_uclass_priv(bus);
int i;
*iop = NULL;
*memp = NULL;
*prefp = NULL;
for (i = 0; i < hose->region_count; i++) {
switch (hose->regions[i].flags) {
case PCI_REGION_IO:
if (!*iop || (*iop)->size < hose->regions[i].size)
*iop = hose->regions + i;
break;
case PCI_REGION_MEM:
if (!*memp || (*memp)->size < hose->regions[i].size)
*memp = hose->regions + i;
break;
case (PCI_REGION_MEM | PCI_REGION_PREFETCH):
if (!*prefp || (*prefp)->size < hose->regions[i].size)
*prefp = hose->regions + i;
break;
}
}
return (*iop != NULL) + (*memp != NULL) + (*prefp != NULL);
}
u32 dm_pci_read_bar32(const struct udevice *dev, int barnum)
{
u32 addr;
int bar;
bar = PCI_BASE_ADDRESS_0 + barnum * 4;
dm_pci_read_config32(dev, bar, &addr);
/*
* If we get an invalid address, return this so that comparisons with
* FDT_ADDR_T_NONE work correctly
*/
if (addr == 0xffffffff)
return addr;
else if (addr & PCI_BASE_ADDRESS_SPACE_IO)
return addr & PCI_BASE_ADDRESS_IO_MASK;
else
return addr & PCI_BASE_ADDRESS_MEM_MASK;
}
void dm_pci_write_bar32(struct udevice *dev, int barnum, u32 addr)
{
int bar;
bar = PCI_BASE_ADDRESS_0 + barnum * 4;
dm_pci_write_config32(dev, bar, addr);
}
phys_addr_t dm_pci_bus_to_phys(struct udevice *dev, pci_addr_t bus_addr,
size_t len, unsigned long mask,
unsigned long flags)
{
struct udevice *ctlr;
struct pci_controller *hose;
struct pci_region *res;
pci_addr_t offset;
int i;
/* The root controller has the region information */
ctlr = pci_get_controller(dev);
hose = dev_get_uclass_priv(ctlr);
if (hose->region_count == 0)
return bus_addr;
for (i = 0; i < hose->region_count; i++) {
res = &hose->regions[i];
if ((res->flags & mask) != flags)
continue;
if (bus_addr < res->bus_start)
continue;
offset = bus_addr - res->bus_start;
if (offset >= res->size)
continue;
if (len > res->size - offset)
continue;
return res->phys_start + offset;
}
puts("pci_hose_bus_to_phys: invalid physical address\n");
return 0;
}
pci_addr_t dm_pci_phys_to_bus(struct udevice *dev, phys_addr_t phys_addr,
size_t len, unsigned long mask,
unsigned long flags)
{
struct udevice *ctlr;
struct pci_controller *hose;
struct pci_region *res;
phys_addr_t offset;
int i;
/* The root controller has the region information */
ctlr = pci_get_controller(dev);
hose = dev_get_uclass_priv(ctlr);
if (hose->region_count == 0)
return phys_addr;
for (i = 0; i < hose->region_count; i++) {
res = &hose->regions[i];
if ((res->flags & mask) != flags)
continue;
if (phys_addr < res->phys_start)
continue;
offset = phys_addr - res->phys_start;
if (offset >= res->size)
continue;
if (len > res->size - offset)
continue;
return res->bus_start + offset;
}
puts("pci_hose_phys_to_bus: invalid physical address\n");
return 0;
}
static phys_addr_t dm_pci_map_ea_virt(struct udevice *dev, int ea_off,
struct pci_child_plat *pdata)
{
phys_addr_t addr = 0;
/*
* In the case of a Virtual Function device using BAR
* base and size, add offset for VFn BAR(1, 2, 3...n)
*/
if (pdata->is_virtfn) {
size_t sz;
u32 ea_entry;
/* MaxOffset, 1st DW */
dm_pci_read_config32(dev, ea_off + 8, &ea_entry);
sz = ea_entry & PCI_EA_FIELD_MASK;
/* Fill up lower 2 bits */
sz |= (~PCI_EA_FIELD_MASK);
if (ea_entry & PCI_EA_IS_64) {
/* MaxOffset 2nd DW */
dm_pci_read_config32(dev, ea_off + 16, &ea_entry);
sz |= ((u64)ea_entry) << 32;
}
addr = (pdata->virtid - 1) * (sz + 1);
}
return addr;
}
static void *dm_pci_map_ea_bar(struct udevice *dev, int bar, size_t offset,
size_t len, int ea_off,
struct pci_child_plat *pdata)
{
int ea_cnt, i, entry_size;
int bar_id = (bar - PCI_BASE_ADDRESS_0) >> 2;
u32 ea_entry;
phys_addr_t addr;
if (IS_ENABLED(CONFIG_PCI_SRIOV)) {
/*
* In the case of a Virtual Function device, device is
* Physical function, so pdata will point to required VF
* specific data.
*/
if (pdata->is_virtfn)
bar_id += PCI_EA_BEI_VF_BAR0;
}
/* EA capability structure header */
dm_pci_read_config32(dev, ea_off, &ea_entry);
ea_cnt = (ea_entry >> 16) & PCI_EA_NUM_ENT_MASK;
ea_off += PCI_EA_FIRST_ENT;
for (i = 0; i < ea_cnt; i++, ea_off += entry_size) {
/* Entry header */
dm_pci_read_config32(dev, ea_off, &ea_entry);
entry_size = ((ea_entry & PCI_EA_ES) + 1) << 2;
if (((ea_entry & PCI_EA_BEI) >> 4) != bar_id)
continue;
/* Base address, 1st DW */
dm_pci_read_config32(dev, ea_off + 4, &ea_entry);
addr = ea_entry & PCI_EA_FIELD_MASK;
if (ea_entry & PCI_EA_IS_64) {
/* Base address, 2nd DW, skip over 4B MaxOffset */
dm_pci_read_config32(dev, ea_off + 12, &ea_entry);
addr |= ((u64)ea_entry) << 32;
}
if (IS_ENABLED(CONFIG_PCI_SRIOV))
addr += dm_pci_map_ea_virt(dev, ea_off, pdata);
if (~((phys_addr_t)0) - addr < offset)
return NULL;
/* size ignored for now */
return map_physmem(addr + offset, len, MAP_NOCACHE);
}
return 0;
}
void *dm_pci_map_bar(struct udevice *dev, int bar, size_t offset, size_t len,
unsigned long mask, unsigned long flags)
{
struct pci_child_plat *pdata = dev_get_parent_plat(dev);
struct udevice *udev = dev;
pci_addr_t pci_bus_addr;
u32 bar_response;
int ea_off;
if (IS_ENABLED(CONFIG_PCI_SRIOV)) {
/*
* In case of Virtual Function devices, use PF udevice
* as EA capability is defined in Physical Function
*/
if (pdata->is_virtfn)
udev = pdata->pfdev;
}
/*
* if the function supports Enhanced Allocation use that instead of
* BARs
* Incase of virtual functions, pdata will help read VF BEI
* and EA entry size.
*/
if (IS_ENABLED(CONFIG_PCI_ENHANCED_ALLOCATION))
ea_off = dm_pci_find_capability(udev, PCI_CAP_ID_EA);
else
ea_off = 0;
if (ea_off)
return dm_pci_map_ea_bar(udev, bar, offset, len, ea_off, pdata);
/* read BAR address */
dm_pci_read_config32(udev, bar, &bar_response);
pci_bus_addr = (pci_addr_t)(bar_response & ~0xf);
if (~((pci_addr_t)0) - pci_bus_addr < offset)
return NULL;
/*
* Forward the length argument to dm_pci_bus_to_virt. The length will
* be used to check that the entire address range has been declared as
* a PCI range, but a better check would be to probe for the size of
* the bar and prevent overflow more locally.
*/
return dm_pci_bus_to_virt(udev, pci_bus_addr + offset, len, mask, flags,
MAP_NOCACHE);
}
static int _dm_pci_find_next_capability(struct udevice *dev, u8 pos, int cap)
{
int ttl = PCI_FIND_CAP_TTL;
u8 id;
u16 ent;
dm_pci_read_config8(dev, pos, &pos);
while (ttl--) {
if (pos < PCI_STD_HEADER_SIZEOF)
break;
pos &= ~3;
dm_pci_read_config16(dev, pos, &ent);
id = ent & 0xff;
if (id == 0xff)
break;
if (id == cap)
return pos;
pos = (ent >> 8);
}
return 0;
}
int dm_pci_find_next_capability(struct udevice *dev, u8 start, int cap)
{
return _dm_pci_find_next_capability(dev, start + PCI_CAP_LIST_NEXT,
cap);
}
int dm_pci_find_capability(struct udevice *dev, int cap)
{
u16 status;
u8 header_type;
u8 pos;
dm_pci_read_config16(dev, PCI_STATUS, &status);
if (!(status & PCI_STATUS_CAP_LIST))
return 0;
dm_pci_read_config8(dev, PCI_HEADER_TYPE, &header_type);
if ((header_type & 0x7f) == PCI_HEADER_TYPE_CARDBUS)
pos = PCI_CB_CAPABILITY_LIST;
else
pos = PCI_CAPABILITY_LIST;
return _dm_pci_find_next_capability(dev, pos, cap);
}
int dm_pci_find_next_ext_capability(struct udevice *dev, int start, int cap)
{
u32 header;
int ttl;
int pos = PCI_CFG_SPACE_SIZE;
/* minimum 8 bytes per capability */
ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
if (start)
pos = start;
dm_pci_read_config32(dev, pos, &header);
/*
* If we have no capabilities, this is indicated by cap ID,
* cap version and next pointer all being 0.
*/
if (header == 0)
return 0;
while (ttl--) {
if (PCI_EXT_CAP_ID(header) == cap)
return pos;
pos = PCI_EXT_CAP_NEXT(header);
if (pos < PCI_CFG_SPACE_SIZE)
break;
dm_pci_read_config32(dev, pos, &header);
}
return 0;
}
int dm_pci_find_ext_capability(struct udevice *dev, int cap)
{
return dm_pci_find_next_ext_capability(dev, 0, cap);
}
int dm_pci_flr(struct udevice *dev)
{
int pcie_off;
u32 cap;
/* look for PCI Express Capability */
pcie_off = dm_pci_find_capability(dev, PCI_CAP_ID_EXP);
if (!pcie_off)
return -ENOENT;
/* check FLR capability */
dm_pci_read_config32(dev, pcie_off + PCI_EXP_DEVCAP, &cap);
if (!(cap & PCI_EXP_DEVCAP_FLR))
return -ENOENT;
dm_pci_clrset_config16(dev, pcie_off + PCI_EXP_DEVCTL, 0,
PCI_EXP_DEVCTL_BCR_FLR);
/* wait 100ms, per PCI spec */
mdelay(100);
return 0;
}
#if defined(CONFIG_PCI_SRIOV)
int pci_sriov_init(struct udevice *pdev, int vf_en)
{
u16 vendor, device;
struct udevice *bus;
struct udevice *dev;
pci_dev_t bdf;
u16 ctrl;
u16 num_vfs;
u16 total_vf;
u16 vf_offset;
u16 vf_stride;
int vf, ret;
int pos;
pos = dm_pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
if (!pos) {
debug("Error: SRIOV capability not found\n");
return -ENOENT;
}
dm_pci_read_config16(pdev, pos + PCI_SRIOV_CTRL, &ctrl);
dm_pci_read_config16(pdev, pos + PCI_SRIOV_TOTAL_VF, &total_vf);
if (vf_en > total_vf)
vf_en = total_vf;
dm_pci_write_config16(pdev, pos + PCI_SRIOV_NUM_VF, vf_en);
ctrl |= PCI_SRIOV_CTRL_VFE | PCI_SRIOV_CTRL_MSE;
dm_pci_write_config16(pdev, pos + PCI_SRIOV_CTRL, ctrl);
dm_pci_read_config16(pdev, pos + PCI_SRIOV_NUM_VF, &num_vfs);
if (num_vfs > vf_en)
num_vfs = vf_en;
dm_pci_read_config16(pdev, pos + PCI_SRIOV_VF_OFFSET, &vf_offset);
dm_pci_read_config16(pdev, pos + PCI_SRIOV_VF_STRIDE, &vf_stride);
dm_pci_read_config16(pdev, PCI_VENDOR_ID, &vendor);
dm_pci_read_config16(pdev, pos + PCI_SRIOV_VF_DID, &device);
bdf = dm_pci_get_bdf(pdev);
pci_get_bus(PCI_BUS(bdf), &bus);
if (!bus)
return -ENODEV;
bdf += PCI_BDF(0, 0, vf_offset);
for (vf = 0; vf < num_vfs; vf++) {
struct pci_child_plat *pplat;
ulong class;
pci_bus_read_config(bus, bdf, PCI_CLASS_DEVICE,
&class, PCI_SIZE_16);
debug("%s: bus %d/%s: found VF %x:%x\n", __func__,
dev_seq(bus), bus->name, PCI_DEV(bdf), PCI_FUNC(bdf));
/* Find this device in the device tree */
ret = pci_bus_find_devfn(bus, PCI_MASK_BUS(bdf), &dev);
if (ret == -ENODEV) {
struct pci_device_id find_id;
memset(&find_id, '\0', sizeof(find_id));
find_id.vendor = vendor;
find_id.device = device;
find_id.class = class;
ret = pci_find_and_bind_driver(bus, &find_id,
bdf, &dev);
if (ret)
return ret;
}
/* Update the platform data */
pplat = dev_get_parent_plat(dev);
pplat->devfn = PCI_MASK_BUS(bdf);
pplat->vendor = vendor;
pplat->device = device;
pplat->class = class;
pplat->is_virtfn = true;
pplat->pfdev = pdev;
pplat->virtid = vf * vf_stride + vf_offset;
debug("%s: bus %d/%s: found VF %x:%x %x:%x class %lx id %x\n",
__func__, dev_seq(dev), dev->name, PCI_DEV(bdf),
PCI_FUNC(bdf), vendor, device, class, pplat->virtid);
bdf += PCI_BDF(0, 0, vf_stride);
}
return 0;
}
int pci_sriov_get_totalvfs(struct udevice *pdev)
{
u16 total_vf;
int pos;
pos = dm_pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
if (!pos) {
debug("Error: SRIOV capability not found\n");
return -ENOENT;
}
dm_pci_read_config16(pdev, pos + PCI_SRIOV_TOTAL_VF, &total_vf);
return total_vf;
}
#endif /* SRIOV */
UCLASS_DRIVER(pci) = {
.id = UCLASS_PCI,
.name = "pci",
.flags = DM_UC_FLAG_SEQ_ALIAS | DM_UC_FLAG_NO_AUTO_SEQ,
.post_bind = dm_scan_fdt_dev,
.pre_probe = pci_uclass_pre_probe,
.post_probe = pci_uclass_post_probe,
.child_post_bind = pci_uclass_child_post_bind,
.per_device_auto = sizeof(struct pci_controller),
.per_child_plat_auto = sizeof(struct pci_child_plat),
};
static const struct dm_pci_ops pci_bridge_ops = {
.read_config = pci_bridge_read_config,
.write_config = pci_bridge_write_config,
};
static const struct udevice_id pci_bridge_ids[] = {
{ .compatible = "pci-bridge" },
{ }
};
U_BOOT_DRIVER(pci_bridge_drv) = {
.name = "pci_bridge_drv",
.id = UCLASS_PCI,
.of_match = pci_bridge_ids,
.ops = &pci_bridge_ops,
};
UCLASS_DRIVER(pci_generic) = {
.id = UCLASS_PCI_GENERIC,
.name = "pci_generic",
};
static const struct udevice_id pci_generic_ids[] = {
{ .compatible = "pci-generic" },
{ }
};
U_BOOT_DRIVER(pci_generic_drv) = {
.name = "pci_generic_drv",
.id = UCLASS_PCI_GENERIC,
.of_match = pci_generic_ids,
};
int pci_init(void)
{
struct udevice *bus;
/*
* Enumerate all known controller devices. Enumeration has the side-
* effect of probing them, so PCIe devices will be enumerated too.
*/
for (uclass_first_device_check(UCLASS_PCI, &bus);
bus;
uclass_next_device_check(&bus)) {
;
}
return 0;
}