u-boot/drivers/net/cpsw.c
Simon Glass a821c4af79 dm: Rename dev_addr..() functions
These support the flat device tree. We want to use the dev_read_..()
prefix for functions that support both flat tree and live tree. So rename
the existing functions to avoid confusion.

In the end we will have:

   1. dev_read_addr...()    - works on devices, supports flat/live tree
   2. devfdt_get_addr...()  - current functions, flat tree only
   3. of_get_address() etc. - new functions, live tree only

All drivers will be written to use 1. That function will in turn call
either 2 or 3 depending on whether the flat or live tree is in use.

Note this involves changing some dead code - the imx_lpi2c.c file.

Signed-off-by: Simon Glass <sjg@chromium.org>
2017-06-01 07:03:01 -06:00

1462 lines
35 KiB
C

/*
* CPSW Ethernet Switch Driver
*
* Copyright (C) 2010 Texas Instruments Incorporated - http://www.ti.com/
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation version 2.
*
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
* kind, whether express or implied; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <common.h>
#include <command.h>
#include <net.h>
#include <miiphy.h>
#include <malloc.h>
#include <net.h>
#include <netdev.h>
#include <cpsw.h>
#include <linux/errno.h>
#include <asm/gpio.h>
#include <asm/io.h>
#include <phy.h>
#include <asm/arch/cpu.h>
#include <dm.h>
#include <fdt_support.h>
DECLARE_GLOBAL_DATA_PTR;
#define BITMASK(bits) (BIT(bits) - 1)
#define PHY_REG_MASK 0x1f
#define PHY_ID_MASK 0x1f
#define NUM_DESCS (PKTBUFSRX * 2)
#define PKT_MIN 60
#define PKT_MAX (1500 + 14 + 4 + 4)
#define CLEAR_BIT 1
#define GIGABITEN BIT(7)
#define FULLDUPLEXEN BIT(0)
#define MIIEN BIT(15)
/* reg offset */
#define CPSW_HOST_PORT_OFFSET 0x108
#define CPSW_SLAVE0_OFFSET 0x208
#define CPSW_SLAVE1_OFFSET 0x308
#define CPSW_SLAVE_SIZE 0x100
#define CPSW_CPDMA_OFFSET 0x800
#define CPSW_HW_STATS 0x900
#define CPSW_STATERAM_OFFSET 0xa00
#define CPSW_CPTS_OFFSET 0xc00
#define CPSW_ALE_OFFSET 0xd00
#define CPSW_SLIVER0_OFFSET 0xd80
#define CPSW_SLIVER1_OFFSET 0xdc0
#define CPSW_BD_OFFSET 0x2000
#define CPSW_MDIO_DIV 0xff
#define AM335X_GMII_SEL_OFFSET 0x630
/* DMA Registers */
#define CPDMA_TXCONTROL 0x004
#define CPDMA_RXCONTROL 0x014
#define CPDMA_SOFTRESET 0x01c
#define CPDMA_RXFREE 0x0e0
#define CPDMA_TXHDP_VER1 0x100
#define CPDMA_TXHDP_VER2 0x200
#define CPDMA_RXHDP_VER1 0x120
#define CPDMA_RXHDP_VER2 0x220
#define CPDMA_TXCP_VER1 0x140
#define CPDMA_TXCP_VER2 0x240
#define CPDMA_RXCP_VER1 0x160
#define CPDMA_RXCP_VER2 0x260
/* Descriptor mode bits */
#define CPDMA_DESC_SOP BIT(31)
#define CPDMA_DESC_EOP BIT(30)
#define CPDMA_DESC_OWNER BIT(29)
#define CPDMA_DESC_EOQ BIT(28)
/*
* This timeout definition is a worst-case ultra defensive measure against
* unexpected controller lock ups. Ideally, we should never ever hit this
* scenario in practice.
*/
#define MDIO_TIMEOUT 100 /* msecs */
#define CPDMA_TIMEOUT 100 /* msecs */
struct cpsw_mdio_regs {
u32 version;
u32 control;
#define CONTROL_IDLE BIT(31)
#define CONTROL_ENABLE BIT(30)
u32 alive;
u32 link;
u32 linkintraw;
u32 linkintmasked;
u32 __reserved_0[2];
u32 userintraw;
u32 userintmasked;
u32 userintmaskset;
u32 userintmaskclr;
u32 __reserved_1[20];
struct {
u32 access;
u32 physel;
#define USERACCESS_GO BIT(31)
#define USERACCESS_WRITE BIT(30)
#define USERACCESS_ACK BIT(29)
#define USERACCESS_READ (0)
#define USERACCESS_DATA (0xffff)
} user[0];
};
struct cpsw_regs {
u32 id_ver;
u32 control;
u32 soft_reset;
u32 stat_port_en;
u32 ptype;
};
struct cpsw_slave_regs {
u32 max_blks;
u32 blk_cnt;
u32 flow_thresh;
u32 port_vlan;
u32 tx_pri_map;
#ifdef CONFIG_AM33XX
u32 gap_thresh;
#elif defined(CONFIG_TI814X)
u32 ts_ctl;
u32 ts_seq_ltype;
u32 ts_vlan;
#endif
u32 sa_lo;
u32 sa_hi;
};
struct cpsw_host_regs {
u32 max_blks;
u32 blk_cnt;
u32 flow_thresh;
u32 port_vlan;
u32 tx_pri_map;
u32 cpdma_tx_pri_map;
u32 cpdma_rx_chan_map;
};
struct cpsw_sliver_regs {
u32 id_ver;
u32 mac_control;
u32 mac_status;
u32 soft_reset;
u32 rx_maxlen;
u32 __reserved_0;
u32 rx_pause;
u32 tx_pause;
u32 __reserved_1;
u32 rx_pri_map;
};
#define ALE_ENTRY_BITS 68
#define ALE_ENTRY_WORDS DIV_ROUND_UP(ALE_ENTRY_BITS, 32)
/* ALE Registers */
#define ALE_CONTROL 0x08
#define ALE_UNKNOWNVLAN 0x18
#define ALE_TABLE_CONTROL 0x20
#define ALE_TABLE 0x34
#define ALE_PORTCTL 0x40
#define ALE_TABLE_WRITE BIT(31)
#define ALE_TYPE_FREE 0
#define ALE_TYPE_ADDR 1
#define ALE_TYPE_VLAN 2
#define ALE_TYPE_VLAN_ADDR 3
#define ALE_UCAST_PERSISTANT 0
#define ALE_UCAST_UNTOUCHED 1
#define ALE_UCAST_OUI 2
#define ALE_UCAST_TOUCHED 3
#define ALE_MCAST_FWD 0
#define ALE_MCAST_BLOCK_LEARN_FWD 1
#define ALE_MCAST_FWD_LEARN 2
#define ALE_MCAST_FWD_2 3
enum cpsw_ale_port_state {
ALE_PORT_STATE_DISABLE = 0x00,
ALE_PORT_STATE_BLOCK = 0x01,
ALE_PORT_STATE_LEARN = 0x02,
ALE_PORT_STATE_FORWARD = 0x03,
};
/* ALE unicast entry flags - passed into cpsw_ale_add_ucast() */
#define ALE_SECURE 1
#define ALE_BLOCKED 2
struct cpsw_slave {
struct cpsw_slave_regs *regs;
struct cpsw_sliver_regs *sliver;
int slave_num;
u32 mac_control;
struct cpsw_slave_data *data;
};
struct cpdma_desc {
/* hardware fields */
u32 hw_next;
u32 hw_buffer;
u32 hw_len;
u32 hw_mode;
/* software fields */
u32 sw_buffer;
u32 sw_len;
};
struct cpdma_chan {
struct cpdma_desc *head, *tail;
void *hdp, *cp, *rxfree;
};
/* AM33xx SoC specific definitions for the CONTROL port */
#define AM33XX_GMII_SEL_MODE_MII 0
#define AM33XX_GMII_SEL_MODE_RMII 1
#define AM33XX_GMII_SEL_MODE_RGMII 2
#define AM33XX_GMII_SEL_RGMII1_IDMODE BIT(4)
#define AM33XX_GMII_SEL_RGMII2_IDMODE BIT(5)
#define AM33XX_GMII_SEL_RMII1_IO_CLK_EN BIT(6)
#define AM33XX_GMII_SEL_RMII2_IO_CLK_EN BIT(7)
#define GMII_SEL_MODE_MASK 0x3
#define desc_write(desc, fld, val) __raw_writel((u32)(val), &(desc)->fld)
#define desc_read(desc, fld) __raw_readl(&(desc)->fld)
#define desc_read_ptr(desc, fld) ((void *)__raw_readl(&(desc)->fld))
#define chan_write(chan, fld, val) __raw_writel((u32)(val), (chan)->fld)
#define chan_read(chan, fld) __raw_readl((chan)->fld)
#define chan_read_ptr(chan, fld) ((void *)__raw_readl((chan)->fld))
#define for_active_slave(slave, priv) \
slave = (priv)->slaves + (priv)->data.active_slave; if (slave)
#define for_each_slave(slave, priv) \
for (slave = (priv)->slaves; slave != (priv)->slaves + \
(priv)->data.slaves; slave++)
struct cpsw_priv {
#ifdef CONFIG_DM_ETH
struct udevice *dev;
#else
struct eth_device *dev;
#endif
struct cpsw_platform_data data;
int host_port;
struct cpsw_regs *regs;
void *dma_regs;
struct cpsw_host_regs *host_port_regs;
void *ale_regs;
struct cpdma_desc *descs;
struct cpdma_desc *desc_free;
struct cpdma_chan rx_chan, tx_chan;
struct cpsw_slave *slaves;
struct phy_device *phydev;
struct mii_dev *bus;
u32 phy_mask;
};
static inline int cpsw_ale_get_field(u32 *ale_entry, u32 start, u32 bits)
{
int idx;
idx = start / 32;
start -= idx * 32;
idx = 2 - idx; /* flip */
return (ale_entry[idx] >> start) & BITMASK(bits);
}
static inline void cpsw_ale_set_field(u32 *ale_entry, u32 start, u32 bits,
u32 value)
{
int idx;
value &= BITMASK(bits);
idx = start / 32;
start -= idx * 32;
idx = 2 - idx; /* flip */
ale_entry[idx] &= ~(BITMASK(bits) << start);
ale_entry[idx] |= (value << start);
}
#define DEFINE_ALE_FIELD(name, start, bits) \
static inline int cpsw_ale_get_##name(u32 *ale_entry) \
{ \
return cpsw_ale_get_field(ale_entry, start, bits); \
} \
static inline void cpsw_ale_set_##name(u32 *ale_entry, u32 value) \
{ \
cpsw_ale_set_field(ale_entry, start, bits, value); \
}
DEFINE_ALE_FIELD(entry_type, 60, 2)
DEFINE_ALE_FIELD(mcast_state, 62, 2)
DEFINE_ALE_FIELD(port_mask, 66, 3)
DEFINE_ALE_FIELD(ucast_type, 62, 2)
DEFINE_ALE_FIELD(port_num, 66, 2)
DEFINE_ALE_FIELD(blocked, 65, 1)
DEFINE_ALE_FIELD(secure, 64, 1)
DEFINE_ALE_FIELD(mcast, 40, 1)
/* The MAC address field in the ALE entry cannot be macroized as above */
static inline void cpsw_ale_get_addr(u32 *ale_entry, u8 *addr)
{
int i;
for (i = 0; i < 6; i++)
addr[i] = cpsw_ale_get_field(ale_entry, 40 - 8*i, 8);
}
static inline void cpsw_ale_set_addr(u32 *ale_entry, const u8 *addr)
{
int i;
for (i = 0; i < 6; i++)
cpsw_ale_set_field(ale_entry, 40 - 8*i, 8, addr[i]);
}
static int cpsw_ale_read(struct cpsw_priv *priv, int idx, u32 *ale_entry)
{
int i;
__raw_writel(idx, priv->ale_regs + ALE_TABLE_CONTROL);
for (i = 0; i < ALE_ENTRY_WORDS; i++)
ale_entry[i] = __raw_readl(priv->ale_regs + ALE_TABLE + 4 * i);
return idx;
}
static int cpsw_ale_write(struct cpsw_priv *priv, int idx, u32 *ale_entry)
{
int i;
for (i = 0; i < ALE_ENTRY_WORDS; i++)
__raw_writel(ale_entry[i], priv->ale_regs + ALE_TABLE + 4 * i);
__raw_writel(idx | ALE_TABLE_WRITE, priv->ale_regs + ALE_TABLE_CONTROL);
return idx;
}
static int cpsw_ale_match_addr(struct cpsw_priv *priv, const u8 *addr)
{
u32 ale_entry[ALE_ENTRY_WORDS];
int type, idx;
for (idx = 0; idx < priv->data.ale_entries; idx++) {
u8 entry_addr[6];
cpsw_ale_read(priv, idx, ale_entry);
type = cpsw_ale_get_entry_type(ale_entry);
if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR)
continue;
cpsw_ale_get_addr(ale_entry, entry_addr);
if (memcmp(entry_addr, addr, 6) == 0)
return idx;
}
return -ENOENT;
}
static int cpsw_ale_match_free(struct cpsw_priv *priv)
{
u32 ale_entry[ALE_ENTRY_WORDS];
int type, idx;
for (idx = 0; idx < priv->data.ale_entries; idx++) {
cpsw_ale_read(priv, idx, ale_entry);
type = cpsw_ale_get_entry_type(ale_entry);
if (type == ALE_TYPE_FREE)
return idx;
}
return -ENOENT;
}
static int cpsw_ale_find_ageable(struct cpsw_priv *priv)
{
u32 ale_entry[ALE_ENTRY_WORDS];
int type, idx;
for (idx = 0; idx < priv->data.ale_entries; idx++) {
cpsw_ale_read(priv, idx, ale_entry);
type = cpsw_ale_get_entry_type(ale_entry);
if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR)
continue;
if (cpsw_ale_get_mcast(ale_entry))
continue;
type = cpsw_ale_get_ucast_type(ale_entry);
if (type != ALE_UCAST_PERSISTANT &&
type != ALE_UCAST_OUI)
return idx;
}
return -ENOENT;
}
static int cpsw_ale_add_ucast(struct cpsw_priv *priv, const u8 *addr,
int port, int flags)
{
u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
int idx;
cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR);
cpsw_ale_set_addr(ale_entry, addr);
cpsw_ale_set_ucast_type(ale_entry, ALE_UCAST_PERSISTANT);
cpsw_ale_set_secure(ale_entry, (flags & ALE_SECURE) ? 1 : 0);
cpsw_ale_set_blocked(ale_entry, (flags & ALE_BLOCKED) ? 1 : 0);
cpsw_ale_set_port_num(ale_entry, port);
idx = cpsw_ale_match_addr(priv, addr);
if (idx < 0)
idx = cpsw_ale_match_free(priv);
if (idx < 0)
idx = cpsw_ale_find_ageable(priv);
if (idx < 0)
return -ENOMEM;
cpsw_ale_write(priv, idx, ale_entry);
return 0;
}
static int cpsw_ale_add_mcast(struct cpsw_priv *priv, const u8 *addr,
int port_mask)
{
u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
int idx, mask;
idx = cpsw_ale_match_addr(priv, addr);
if (idx >= 0)
cpsw_ale_read(priv, idx, ale_entry);
cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR);
cpsw_ale_set_addr(ale_entry, addr);
cpsw_ale_set_mcast_state(ale_entry, ALE_MCAST_FWD_2);
mask = cpsw_ale_get_port_mask(ale_entry);
port_mask |= mask;
cpsw_ale_set_port_mask(ale_entry, port_mask);
if (idx < 0)
idx = cpsw_ale_match_free(priv);
if (idx < 0)
idx = cpsw_ale_find_ageable(priv);
if (idx < 0)
return -ENOMEM;
cpsw_ale_write(priv, idx, ale_entry);
return 0;
}
static inline void cpsw_ale_control(struct cpsw_priv *priv, int bit, int val)
{
u32 tmp, mask = BIT(bit);
tmp = __raw_readl(priv->ale_regs + ALE_CONTROL);
tmp &= ~mask;
tmp |= val ? mask : 0;
__raw_writel(tmp, priv->ale_regs + ALE_CONTROL);
}
#define cpsw_ale_enable(priv, val) cpsw_ale_control(priv, 31, val)
#define cpsw_ale_clear(priv, val) cpsw_ale_control(priv, 30, val)
#define cpsw_ale_vlan_aware(priv, val) cpsw_ale_control(priv, 2, val)
static inline void cpsw_ale_port_state(struct cpsw_priv *priv, int port,
int val)
{
int offset = ALE_PORTCTL + 4 * port;
u32 tmp, mask = 0x3;
tmp = __raw_readl(priv->ale_regs + offset);
tmp &= ~mask;
tmp |= val & mask;
__raw_writel(tmp, priv->ale_regs + offset);
}
static struct cpsw_mdio_regs *mdio_regs;
/* wait until hardware is ready for another user access */
static inline u32 wait_for_user_access(void)
{
u32 reg = 0;
int timeout = MDIO_TIMEOUT;
while (timeout-- &&
((reg = __raw_readl(&mdio_regs->user[0].access)) & USERACCESS_GO))
udelay(10);
if (timeout == -1) {
printf("wait_for_user_access Timeout\n");
return -ETIMEDOUT;
}
return reg;
}
/* wait until hardware state machine is idle */
static inline void wait_for_idle(void)
{
int timeout = MDIO_TIMEOUT;
while (timeout-- &&
((__raw_readl(&mdio_regs->control) & CONTROL_IDLE) == 0))
udelay(10);
if (timeout == -1)
printf("wait_for_idle Timeout\n");
}
static int cpsw_mdio_read(struct mii_dev *bus, int phy_id,
int dev_addr, int phy_reg)
{
int data;
u32 reg;
if (phy_reg & ~PHY_REG_MASK || phy_id & ~PHY_ID_MASK)
return -EINVAL;
wait_for_user_access();
reg = (USERACCESS_GO | USERACCESS_READ | (phy_reg << 21) |
(phy_id << 16));
__raw_writel(reg, &mdio_regs->user[0].access);
reg = wait_for_user_access();
data = (reg & USERACCESS_ACK) ? (reg & USERACCESS_DATA) : -1;
return data;
}
static int cpsw_mdio_write(struct mii_dev *bus, int phy_id, int dev_addr,
int phy_reg, u16 data)
{
u32 reg;
if (phy_reg & ~PHY_REG_MASK || phy_id & ~PHY_ID_MASK)
return -EINVAL;
wait_for_user_access();
reg = (USERACCESS_GO | USERACCESS_WRITE | (phy_reg << 21) |
(phy_id << 16) | (data & USERACCESS_DATA));
__raw_writel(reg, &mdio_regs->user[0].access);
wait_for_user_access();
return 0;
}
static void cpsw_mdio_init(const char *name, u32 mdio_base, u32 div)
{
struct mii_dev *bus = mdio_alloc();
mdio_regs = (struct cpsw_mdio_regs *)mdio_base;
/* set enable and clock divider */
__raw_writel(div | CONTROL_ENABLE, &mdio_regs->control);
/*
* wait for scan logic to settle:
* the scan time consists of (a) a large fixed component, and (b) a
* small component that varies with the mii bus frequency. These
* were estimated using measurements at 1.1 and 2.2 MHz on tnetv107x
* silicon. Since the effect of (b) was found to be largely
* negligible, we keep things simple here.
*/
udelay(1000);
bus->read = cpsw_mdio_read;
bus->write = cpsw_mdio_write;
strcpy(bus->name, name);
mdio_register(bus);
}
/* Set a self-clearing bit in a register, and wait for it to clear */
static inline void setbit_and_wait_for_clear32(void *addr)
{
__raw_writel(CLEAR_BIT, addr);
while (__raw_readl(addr) & CLEAR_BIT)
;
}
#define mac_hi(mac) (((mac)[0] << 0) | ((mac)[1] << 8) | \
((mac)[2] << 16) | ((mac)[3] << 24))
#define mac_lo(mac) (((mac)[4] << 0) | ((mac)[5] << 8))
static void cpsw_set_slave_mac(struct cpsw_slave *slave,
struct cpsw_priv *priv)
{
#ifdef CONFIG_DM_ETH
struct eth_pdata *pdata = dev_get_platdata(priv->dev);
writel(mac_hi(pdata->enetaddr), &slave->regs->sa_hi);
writel(mac_lo(pdata->enetaddr), &slave->regs->sa_lo);
#else
__raw_writel(mac_hi(priv->dev->enetaddr), &slave->regs->sa_hi);
__raw_writel(mac_lo(priv->dev->enetaddr), &slave->regs->sa_lo);
#endif
}
static void cpsw_slave_update_link(struct cpsw_slave *slave,
struct cpsw_priv *priv, int *link)
{
struct phy_device *phy;
u32 mac_control = 0;
phy = priv->phydev;
if (!phy)
return;
phy_startup(phy);
*link = phy->link;
if (*link) { /* link up */
mac_control = priv->data.mac_control;
if (phy->speed == 1000)
mac_control |= GIGABITEN;
if (phy->duplex == DUPLEX_FULL)
mac_control |= FULLDUPLEXEN;
if (phy->speed == 100)
mac_control |= MIIEN;
}
if (mac_control == slave->mac_control)
return;
if (mac_control) {
printf("link up on port %d, speed %d, %s duplex\n",
slave->slave_num, phy->speed,
(phy->duplex == DUPLEX_FULL) ? "full" : "half");
} else {
printf("link down on port %d\n", slave->slave_num);
}
__raw_writel(mac_control, &slave->sliver->mac_control);
slave->mac_control = mac_control;
}
static int cpsw_update_link(struct cpsw_priv *priv)
{
int link = 0;
struct cpsw_slave *slave;
for_active_slave(slave, priv)
cpsw_slave_update_link(slave, priv, &link);
return link;
}
static inline u32 cpsw_get_slave_port(struct cpsw_priv *priv, u32 slave_num)
{
if (priv->host_port == 0)
return slave_num + 1;
else
return slave_num;
}
static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
u32 slave_port;
setbit_and_wait_for_clear32(&slave->sliver->soft_reset);
/* setup priority mapping */
__raw_writel(0x76543210, &slave->sliver->rx_pri_map);
__raw_writel(0x33221100, &slave->regs->tx_pri_map);
/* setup max packet size, and mac address */
__raw_writel(PKT_MAX, &slave->sliver->rx_maxlen);
cpsw_set_slave_mac(slave, priv);
slave->mac_control = 0; /* no link yet */
/* enable forwarding */
slave_port = cpsw_get_slave_port(priv, slave->slave_num);
cpsw_ale_port_state(priv, slave_port, ALE_PORT_STATE_FORWARD);
cpsw_ale_add_mcast(priv, net_bcast_ethaddr, 1 << slave_port);
priv->phy_mask |= 1 << slave->data->phy_addr;
}
static struct cpdma_desc *cpdma_desc_alloc(struct cpsw_priv *priv)
{
struct cpdma_desc *desc = priv->desc_free;
if (desc)
priv->desc_free = desc_read_ptr(desc, hw_next);
return desc;
}
static void cpdma_desc_free(struct cpsw_priv *priv, struct cpdma_desc *desc)
{
if (desc) {
desc_write(desc, hw_next, priv->desc_free);
priv->desc_free = desc;
}
}
static int cpdma_submit(struct cpsw_priv *priv, struct cpdma_chan *chan,
void *buffer, int len)
{
struct cpdma_desc *desc, *prev;
u32 mode;
desc = cpdma_desc_alloc(priv);
if (!desc)
return -ENOMEM;
if (len < PKT_MIN)
len = PKT_MIN;
mode = CPDMA_DESC_OWNER | CPDMA_DESC_SOP | CPDMA_DESC_EOP;
desc_write(desc, hw_next, 0);
desc_write(desc, hw_buffer, buffer);
desc_write(desc, hw_len, len);
desc_write(desc, hw_mode, mode | len);
desc_write(desc, sw_buffer, buffer);
desc_write(desc, sw_len, len);
if (!chan->head) {
/* simple case - first packet enqueued */
chan->head = desc;
chan->tail = desc;
chan_write(chan, hdp, desc);
goto done;
}
/* not the first packet - enqueue at the tail */
prev = chan->tail;
desc_write(prev, hw_next, desc);
chan->tail = desc;
/* next check if EOQ has been triggered already */
if (desc_read(prev, hw_mode) & CPDMA_DESC_EOQ)
chan_write(chan, hdp, desc);
done:
if (chan->rxfree)
chan_write(chan, rxfree, 1);
return 0;
}
static int cpdma_process(struct cpsw_priv *priv, struct cpdma_chan *chan,
void **buffer, int *len)
{
struct cpdma_desc *desc = chan->head;
u32 status;
if (!desc)
return -ENOENT;
status = desc_read(desc, hw_mode);
if (len)
*len = status & 0x7ff;
if (buffer)
*buffer = desc_read_ptr(desc, sw_buffer);
if (status & CPDMA_DESC_OWNER) {
if (chan_read(chan, hdp) == 0) {
if (desc_read(desc, hw_mode) & CPDMA_DESC_OWNER)
chan_write(chan, hdp, desc);
}
return -EBUSY;
}
chan->head = desc_read_ptr(desc, hw_next);
chan_write(chan, cp, desc);
cpdma_desc_free(priv, desc);
return 0;
}
static int _cpsw_init(struct cpsw_priv *priv, u8 *enetaddr)
{
struct cpsw_slave *slave;
int i, ret;
/* soft reset the controller and initialize priv */
setbit_and_wait_for_clear32(&priv->regs->soft_reset);
/* initialize and reset the address lookup engine */
cpsw_ale_enable(priv, 1);
cpsw_ale_clear(priv, 1);
cpsw_ale_vlan_aware(priv, 0); /* vlan unaware mode */
/* setup host port priority mapping */
__raw_writel(0x76543210, &priv->host_port_regs->cpdma_tx_pri_map);
__raw_writel(0, &priv->host_port_regs->cpdma_rx_chan_map);
/* disable priority elevation and enable statistics on all ports */
__raw_writel(0, &priv->regs->ptype);
/* enable statistics collection only on the host port */
__raw_writel(BIT(priv->host_port), &priv->regs->stat_port_en);
__raw_writel(0x7, &priv->regs->stat_port_en);
cpsw_ale_port_state(priv, priv->host_port, ALE_PORT_STATE_FORWARD);
cpsw_ale_add_ucast(priv, enetaddr, priv->host_port, ALE_SECURE);
cpsw_ale_add_mcast(priv, net_bcast_ethaddr, 1 << priv->host_port);
for_active_slave(slave, priv)
cpsw_slave_init(slave, priv);
cpsw_update_link(priv);
/* init descriptor pool */
for (i = 0; i < NUM_DESCS; i++) {
desc_write(&priv->descs[i], hw_next,
(i == (NUM_DESCS - 1)) ? 0 : &priv->descs[i+1]);
}
priv->desc_free = &priv->descs[0];
/* initialize channels */
if (priv->data.version == CPSW_CTRL_VERSION_2) {
memset(&priv->rx_chan, 0, sizeof(struct cpdma_chan));
priv->rx_chan.hdp = priv->dma_regs + CPDMA_RXHDP_VER2;
priv->rx_chan.cp = priv->dma_regs + CPDMA_RXCP_VER2;
priv->rx_chan.rxfree = priv->dma_regs + CPDMA_RXFREE;
memset(&priv->tx_chan, 0, sizeof(struct cpdma_chan));
priv->tx_chan.hdp = priv->dma_regs + CPDMA_TXHDP_VER2;
priv->tx_chan.cp = priv->dma_regs + CPDMA_TXCP_VER2;
} else {
memset(&priv->rx_chan, 0, sizeof(struct cpdma_chan));
priv->rx_chan.hdp = priv->dma_regs + CPDMA_RXHDP_VER1;
priv->rx_chan.cp = priv->dma_regs + CPDMA_RXCP_VER1;
priv->rx_chan.rxfree = priv->dma_regs + CPDMA_RXFREE;
memset(&priv->tx_chan, 0, sizeof(struct cpdma_chan));
priv->tx_chan.hdp = priv->dma_regs + CPDMA_TXHDP_VER1;
priv->tx_chan.cp = priv->dma_regs + CPDMA_TXCP_VER1;
}
/* clear dma state */
setbit_and_wait_for_clear32(priv->dma_regs + CPDMA_SOFTRESET);
if (priv->data.version == CPSW_CTRL_VERSION_2) {
for (i = 0; i < priv->data.channels; i++) {
__raw_writel(0, priv->dma_regs + CPDMA_RXHDP_VER2 + 4
* i);
__raw_writel(0, priv->dma_regs + CPDMA_RXFREE + 4
* i);
__raw_writel(0, priv->dma_regs + CPDMA_RXCP_VER2 + 4
* i);
__raw_writel(0, priv->dma_regs + CPDMA_TXHDP_VER2 + 4
* i);
__raw_writel(0, priv->dma_regs + CPDMA_TXCP_VER2 + 4
* i);
}
} else {
for (i = 0; i < priv->data.channels; i++) {
__raw_writel(0, priv->dma_regs + CPDMA_RXHDP_VER1 + 4
* i);
__raw_writel(0, priv->dma_regs + CPDMA_RXFREE + 4
* i);
__raw_writel(0, priv->dma_regs + CPDMA_RXCP_VER1 + 4
* i);
__raw_writel(0, priv->dma_regs + CPDMA_TXHDP_VER1 + 4
* i);
__raw_writel(0, priv->dma_regs + CPDMA_TXCP_VER1 + 4
* i);
}
}
__raw_writel(1, priv->dma_regs + CPDMA_TXCONTROL);
__raw_writel(1, priv->dma_regs + CPDMA_RXCONTROL);
/* submit rx descs */
for (i = 0; i < PKTBUFSRX; i++) {
ret = cpdma_submit(priv, &priv->rx_chan, net_rx_packets[i],
PKTSIZE);
if (ret < 0) {
printf("error %d submitting rx desc\n", ret);
break;
}
}
return 0;
}
static void _cpsw_halt(struct cpsw_priv *priv)
{
writel(0, priv->dma_regs + CPDMA_TXCONTROL);
writel(0, priv->dma_regs + CPDMA_RXCONTROL);
/* soft reset the controller and initialize priv */
setbit_and_wait_for_clear32(&priv->regs->soft_reset);
/* clear dma state */
setbit_and_wait_for_clear32(priv->dma_regs + CPDMA_SOFTRESET);
}
static int _cpsw_send(struct cpsw_priv *priv, void *packet, int length)
{
void *buffer;
int len;
int timeout = CPDMA_TIMEOUT;
flush_dcache_range((unsigned long)packet,
(unsigned long)packet + ALIGN(length, PKTALIGN));
/* first reap completed packets */
while (timeout-- &&
(cpdma_process(priv, &priv->tx_chan, &buffer, &len) >= 0))
;
if (timeout == -1) {
printf("cpdma_process timeout\n");
return -ETIMEDOUT;
}
return cpdma_submit(priv, &priv->tx_chan, packet, length);
}
static int _cpsw_recv(struct cpsw_priv *priv, uchar **pkt)
{
void *buffer;
int len;
int ret = -EAGAIN;
ret = cpdma_process(priv, &priv->rx_chan, &buffer, &len);
if (ret < 0)
return ret;
invalidate_dcache_range((unsigned long)buffer,
(unsigned long)buffer + PKTSIZE_ALIGN);
*pkt = buffer;
return len;
}
static void cpsw_slave_setup(struct cpsw_slave *slave, int slave_num,
struct cpsw_priv *priv)
{
void *regs = priv->regs;
struct cpsw_slave_data *data = priv->data.slave_data + slave_num;
slave->slave_num = slave_num;
slave->data = data;
slave->regs = regs + data->slave_reg_ofs;
slave->sliver = regs + data->sliver_reg_ofs;
}
static int cpsw_phy_init(struct cpsw_priv *priv, struct cpsw_slave *slave)
{
struct phy_device *phydev;
u32 supported = PHY_GBIT_FEATURES;
phydev = phy_connect(priv->bus,
slave->data->phy_addr,
priv->dev,
slave->data->phy_if);
if (!phydev)
return -1;
phydev->supported &= supported;
phydev->advertising = phydev->supported;
#ifdef CONFIG_DM_ETH
if (slave->data->phy_of_handle)
dev_set_of_offset(phydev->dev, slave->data->phy_of_handle);
#endif
priv->phydev = phydev;
phy_config(phydev);
return 1;
}
int _cpsw_register(struct cpsw_priv *priv)
{
struct cpsw_slave *slave;
struct cpsw_platform_data *data = &priv->data;
void *regs = (void *)data->cpsw_base;
priv->slaves = malloc(sizeof(struct cpsw_slave) * data->slaves);
if (!priv->slaves) {
return -ENOMEM;
}
priv->host_port = data->host_port_num;
priv->regs = regs;
priv->host_port_regs = regs + data->host_port_reg_ofs;
priv->dma_regs = regs + data->cpdma_reg_ofs;
priv->ale_regs = regs + data->ale_reg_ofs;
priv->descs = (void *)regs + data->bd_ram_ofs;
int idx = 0;
for_each_slave(slave, priv) {
cpsw_slave_setup(slave, idx, priv);
idx = idx + 1;
}
cpsw_mdio_init(priv->dev->name, data->mdio_base, data->mdio_div);
priv->bus = miiphy_get_dev_by_name(priv->dev->name);
for_active_slave(slave, priv)
cpsw_phy_init(priv, slave);
return 0;
}
#ifndef CONFIG_DM_ETH
static int cpsw_init(struct eth_device *dev, bd_t *bis)
{
struct cpsw_priv *priv = dev->priv;
return _cpsw_init(priv, dev->enetaddr);
}
static void cpsw_halt(struct eth_device *dev)
{
struct cpsw_priv *priv = dev->priv;
return _cpsw_halt(priv);
}
static int cpsw_send(struct eth_device *dev, void *packet, int length)
{
struct cpsw_priv *priv = dev->priv;
return _cpsw_send(priv, packet, length);
}
static int cpsw_recv(struct eth_device *dev)
{
struct cpsw_priv *priv = dev->priv;
uchar *pkt = NULL;
int len;
len = _cpsw_recv(priv, &pkt);
if (len > 0) {
net_process_received_packet(pkt, len);
cpdma_submit(priv, &priv->rx_chan, pkt, PKTSIZE);
}
return len;
}
int cpsw_register(struct cpsw_platform_data *data)
{
struct cpsw_priv *priv;
struct eth_device *dev;
int ret;
dev = calloc(sizeof(*dev), 1);
if (!dev)
return -ENOMEM;
priv = calloc(sizeof(*priv), 1);
if (!priv) {
free(dev);
return -ENOMEM;
}
priv->dev = dev;
priv->data = *data;
strcpy(dev->name, "cpsw");
dev->iobase = 0;
dev->init = cpsw_init;
dev->halt = cpsw_halt;
dev->send = cpsw_send;
dev->recv = cpsw_recv;
dev->priv = priv;
eth_register(dev);
ret = _cpsw_register(priv);
if (ret < 0) {
eth_unregister(dev);
free(dev);
free(priv);
return ret;
}
return 1;
}
#else
static int cpsw_eth_start(struct udevice *dev)
{
struct eth_pdata *pdata = dev_get_platdata(dev);
struct cpsw_priv *priv = dev_get_priv(dev);
return _cpsw_init(priv, pdata->enetaddr);
}
static int cpsw_eth_send(struct udevice *dev, void *packet, int length)
{
struct cpsw_priv *priv = dev_get_priv(dev);
return _cpsw_send(priv, packet, length);
}
static int cpsw_eth_recv(struct udevice *dev, int flags, uchar **packetp)
{
struct cpsw_priv *priv = dev_get_priv(dev);
return _cpsw_recv(priv, packetp);
}
static int cpsw_eth_free_pkt(struct udevice *dev, uchar *packet,
int length)
{
struct cpsw_priv *priv = dev_get_priv(dev);
return cpdma_submit(priv, &priv->rx_chan, packet, PKTSIZE);
}
static void cpsw_eth_stop(struct udevice *dev)
{
struct cpsw_priv *priv = dev_get_priv(dev);
return _cpsw_halt(priv);
}
static int cpsw_eth_probe(struct udevice *dev)
{
struct cpsw_priv *priv = dev_get_priv(dev);
priv->dev = dev;
return _cpsw_register(priv);
}
static const struct eth_ops cpsw_eth_ops = {
.start = cpsw_eth_start,
.send = cpsw_eth_send,
.recv = cpsw_eth_recv,
.free_pkt = cpsw_eth_free_pkt,
.stop = cpsw_eth_stop,
};
static inline fdt_addr_t cpsw_get_addr_by_node(const void *fdt, int node)
{
return fdtdec_get_addr_size_auto_noparent(fdt, node, "reg", 0, NULL,
false);
}
static void cpsw_gmii_sel_am3352(struct cpsw_priv *priv,
phy_interface_t phy_mode)
{
u32 reg;
u32 mask;
u32 mode = 0;
bool rgmii_id = false;
int slave = priv->data.active_slave;
reg = readl(priv->data.gmii_sel);
switch (phy_mode) {
case PHY_INTERFACE_MODE_RMII:
mode = AM33XX_GMII_SEL_MODE_RMII;
break;
case PHY_INTERFACE_MODE_RGMII:
mode = AM33XX_GMII_SEL_MODE_RGMII;
break;
case PHY_INTERFACE_MODE_RGMII_ID:
case PHY_INTERFACE_MODE_RGMII_RXID:
case PHY_INTERFACE_MODE_RGMII_TXID:
mode = AM33XX_GMII_SEL_MODE_RGMII;
rgmii_id = true;
break;
case PHY_INTERFACE_MODE_MII:
default:
mode = AM33XX_GMII_SEL_MODE_MII;
break;
};
mask = GMII_SEL_MODE_MASK << (slave * 2) | BIT(slave + 6);
mode <<= slave * 2;
if (priv->data.rmii_clock_external) {
if (slave == 0)
mode |= AM33XX_GMII_SEL_RMII1_IO_CLK_EN;
else
mode |= AM33XX_GMII_SEL_RMII2_IO_CLK_EN;
}
if (rgmii_id) {
if (slave == 0)
mode |= AM33XX_GMII_SEL_RGMII1_IDMODE;
else
mode |= AM33XX_GMII_SEL_RGMII2_IDMODE;
}
reg &= ~mask;
reg |= mode;
writel(reg, priv->data.gmii_sel);
}
static void cpsw_gmii_sel_dra7xx(struct cpsw_priv *priv,
phy_interface_t phy_mode)
{
u32 reg;
u32 mask;
u32 mode = 0;
int slave = priv->data.active_slave;
reg = readl(priv->data.gmii_sel);
switch (phy_mode) {
case PHY_INTERFACE_MODE_RMII:
mode = AM33XX_GMII_SEL_MODE_RMII;
break;
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_ID:
case PHY_INTERFACE_MODE_RGMII_RXID:
case PHY_INTERFACE_MODE_RGMII_TXID:
mode = AM33XX_GMII_SEL_MODE_RGMII;
break;
case PHY_INTERFACE_MODE_MII:
default:
mode = AM33XX_GMII_SEL_MODE_MII;
break;
};
switch (slave) {
case 0:
mask = GMII_SEL_MODE_MASK;
break;
case 1:
mask = GMII_SEL_MODE_MASK << 4;
mode <<= 4;
break;
default:
dev_err(priv->dev, "invalid slave number...\n");
return;
}
if (priv->data.rmii_clock_external)
dev_err(priv->dev, "RMII External clock is not supported\n");
reg &= ~mask;
reg |= mode;
writel(reg, priv->data.gmii_sel);
}
static void cpsw_phy_sel(struct cpsw_priv *priv, const char *compat,
phy_interface_t phy_mode)
{
if (!strcmp(compat, "ti,am3352-cpsw-phy-sel"))
cpsw_gmii_sel_am3352(priv, phy_mode);
if (!strcmp(compat, "ti,am43xx-cpsw-phy-sel"))
cpsw_gmii_sel_am3352(priv, phy_mode);
else if (!strcmp(compat, "ti,dra7xx-cpsw-phy-sel"))
cpsw_gmii_sel_dra7xx(priv, phy_mode);
}
static int cpsw_eth_ofdata_to_platdata(struct udevice *dev)
{
struct eth_pdata *pdata = dev_get_platdata(dev);
struct cpsw_priv *priv = dev_get_priv(dev);
struct gpio_desc *mode_gpios;
const char *phy_mode;
const char *phy_sel_compat = NULL;
const void *fdt = gd->fdt_blob;
int node = dev_of_offset(dev);
int subnode;
int slave_index = 0;
int active_slave;
int num_mode_gpios;
int ret;
pdata->iobase = devfdt_get_addr(dev);
priv->data.version = CPSW_CTRL_VERSION_2;
priv->data.bd_ram_ofs = CPSW_BD_OFFSET;
priv->data.ale_reg_ofs = CPSW_ALE_OFFSET;
priv->data.cpdma_reg_ofs = CPSW_CPDMA_OFFSET;
priv->data.mdio_div = CPSW_MDIO_DIV;
priv->data.host_port_reg_ofs = CPSW_HOST_PORT_OFFSET,
pdata->phy_interface = -1;
priv->data.cpsw_base = pdata->iobase;
priv->data.channels = fdtdec_get_int(fdt, node, "cpdma_channels", -1);
if (priv->data.channels <= 0) {
printf("error: cpdma_channels not found in dt\n");
return -ENOENT;
}
priv->data.slaves = fdtdec_get_int(fdt, node, "slaves", -1);
if (priv->data.slaves <= 0) {
printf("error: slaves not found in dt\n");
return -ENOENT;
}
priv->data.slave_data = malloc(sizeof(struct cpsw_slave_data) *
priv->data.slaves);
priv->data.ale_entries = fdtdec_get_int(fdt, node, "ale_entries", -1);
if (priv->data.ale_entries <= 0) {
printf("error: ale_entries not found in dt\n");
return -ENOENT;
}
priv->data.bd_ram_ofs = fdtdec_get_int(fdt, node, "bd_ram_size", -1);
if (priv->data.bd_ram_ofs <= 0) {
printf("error: bd_ram_size not found in dt\n");
return -ENOENT;
}
priv->data.mac_control = fdtdec_get_int(fdt, node, "mac_control", -1);
if (priv->data.mac_control <= 0) {
printf("error: ale_entries not found in dt\n");
return -ENOENT;
}
num_mode_gpios = gpio_get_list_count(dev, "mode-gpios");
if (num_mode_gpios > 0) {
mode_gpios = malloc(sizeof(struct gpio_desc) *
num_mode_gpios);
gpio_request_list_by_name(dev, "mode-gpios", mode_gpios,
num_mode_gpios, GPIOD_IS_OUT);
free(mode_gpios);
}
active_slave = fdtdec_get_int(fdt, node, "active_slave", 0);
priv->data.active_slave = active_slave;
fdt_for_each_subnode(subnode, fdt, node) {
int len;
const char *name;
name = fdt_get_name(fdt, subnode, &len);
if (!strncmp(name, "mdio", 4)) {
u32 mdio_base;
mdio_base = cpsw_get_addr_by_node(fdt, subnode);
if (mdio_base == FDT_ADDR_T_NONE) {
error("Not able to get MDIO address space\n");
return -ENOENT;
}
priv->data.mdio_base = mdio_base;
}
if (!strncmp(name, "slave", 5)) {
u32 phy_id[2];
if (slave_index >= priv->data.slaves)
continue;
phy_mode = fdt_getprop(fdt, subnode, "phy-mode", NULL);
if (phy_mode)
priv->data.slave_data[slave_index].phy_if =
phy_get_interface_by_name(phy_mode);
priv->data.slave_data[slave_index].phy_of_handle =
fdtdec_lookup_phandle(fdt, subnode,
"phy-handle");
if (priv->data.slave_data[slave_index].phy_of_handle >= 0) {
priv->data.slave_data[slave_index].phy_addr =
fdtdec_get_int(gd->fdt_blob,
priv->data.slave_data[slave_index].phy_of_handle,
"reg", -1);
} else {
fdtdec_get_int_array(fdt, subnode, "phy_id",
phy_id, 2);
priv->data.slave_data[slave_index].phy_addr =
phy_id[1];
}
slave_index++;
}
if (!strncmp(name, "cpsw-phy-sel", 12)) {
priv->data.gmii_sel = cpsw_get_addr_by_node(fdt,
subnode);
if (priv->data.gmii_sel == FDT_ADDR_T_NONE) {
error("Not able to get gmii_sel reg address\n");
return -ENOENT;
}
if (fdt_get_property(fdt, subnode, "rmii-clock-ext",
NULL))
priv->data.rmii_clock_external = true;
phy_sel_compat = fdt_getprop(fdt, subnode, "compatible",
NULL);
if (!phy_sel_compat) {
error("Not able to get gmii_sel compatible\n");
return -ENOENT;
}
}
}
priv->data.slave_data[0].slave_reg_ofs = CPSW_SLAVE0_OFFSET;
priv->data.slave_data[0].sliver_reg_ofs = CPSW_SLIVER0_OFFSET;
if (priv->data.slaves == 2) {
priv->data.slave_data[1].slave_reg_ofs = CPSW_SLAVE1_OFFSET;
priv->data.slave_data[1].sliver_reg_ofs = CPSW_SLIVER1_OFFSET;
}
ret = ti_cm_get_macid(dev, active_slave, pdata->enetaddr);
if (ret < 0) {
error("cpsw read efuse mac failed\n");
return ret;
}
pdata->phy_interface = priv->data.slave_data[active_slave].phy_if;
if (pdata->phy_interface == -1) {
debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
return -EINVAL;
}
/* Select phy interface in control module */
cpsw_phy_sel(priv, phy_sel_compat, pdata->phy_interface);
return 0;
}
static const struct udevice_id cpsw_eth_ids[] = {
{ .compatible = "ti,cpsw" },
{ .compatible = "ti,am335x-cpsw" },
{ }
};
U_BOOT_DRIVER(eth_cpsw) = {
.name = "eth_cpsw",
.id = UCLASS_ETH,
.of_match = cpsw_eth_ids,
.ofdata_to_platdata = cpsw_eth_ofdata_to_platdata,
.probe = cpsw_eth_probe,
.ops = &cpsw_eth_ops,
.priv_auto_alloc_size = sizeof(struct cpsw_priv),
.platdata_auto_alloc_size = sizeof(struct eth_pdata),
.flags = DM_FLAG_ALLOC_PRIV_DMA,
};
#endif /* CONFIG_DM_ETH */