u-boot/test/lib/lmb.c
Simon Glass e180c2b129 dm: Rename DM test flags to make them more generic
The test flags used by driver model are currently not available to other
tests. Rather than creating two sets of flags, make these flags generic
by changing the DM_ prefix to UT_ and moving them to the test.h header.

This will allow adding other test flags without confusion.

Signed-off-by: Simon Glass <sjg@chromium.org>
2020-08-07 22:31:32 -04:00

662 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2018 Simon Goldschmidt
*/
#include <common.h>
#include <dm.h>
#include <lmb.h>
#include <log.h>
#include <malloc.h>
#include <dm/test.h>
#include <test/test.h>
#include <test/ut.h>
static int check_lmb(struct unit_test_state *uts, struct lmb *lmb,
phys_addr_t ram_base, phys_size_t ram_size,
unsigned long num_reserved,
phys_addr_t base1, phys_size_t size1,
phys_addr_t base2, phys_size_t size2,
phys_addr_t base3, phys_size_t size3)
{
if (ram_size) {
ut_asserteq(lmb->memory.cnt, 1);
ut_asserteq(lmb->memory.region[0].base, ram_base);
ut_asserteq(lmb->memory.region[0].size, ram_size);
}
ut_asserteq(lmb->reserved.cnt, num_reserved);
if (num_reserved > 0) {
ut_asserteq(lmb->reserved.region[0].base, base1);
ut_asserteq(lmb->reserved.region[0].size, size1);
}
if (num_reserved > 1) {
ut_asserteq(lmb->reserved.region[1].base, base2);
ut_asserteq(lmb->reserved.region[1].size, size2);
}
if (num_reserved > 2) {
ut_asserteq(lmb->reserved.region[2].base, base3);
ut_asserteq(lmb->reserved.region[2].size, size3);
}
return 0;
}
#define ASSERT_LMB(lmb, ram_base, ram_size, num_reserved, base1, size1, \
base2, size2, base3, size3) \
ut_assert(!check_lmb(uts, lmb, ram_base, ram_size, \
num_reserved, base1, size1, base2, size2, base3, \
size3))
/*
* Test helper function that reserves 64 KiB somewhere in the simulated RAM and
* then does some alloc + free tests.
*/
static int test_multi_alloc(struct unit_test_state *uts, const phys_addr_t ram,
const phys_size_t ram_size, const phys_addr_t ram0,
const phys_size_t ram0_size,
const phys_addr_t alloc_64k_addr)
{
const phys_addr_t ram_end = ram + ram_size;
const phys_addr_t alloc_64k_end = alloc_64k_addr + 0x10000;
struct lmb lmb;
long ret;
phys_addr_t a, a2, b, b2, c, d;
/* check for overflow */
ut_assert(ram_end == 0 || ram_end > ram);
ut_assert(alloc_64k_end > alloc_64k_addr);
/* check input addresses + size */
ut_assert(alloc_64k_addr >= ram + 8);
ut_assert(alloc_64k_end <= ram_end - 8);
lmb_init(&lmb);
if (ram0_size) {
ret = lmb_add(&lmb, ram0, ram0_size);
ut_asserteq(ret, 0);
}
ret = lmb_add(&lmb, ram, ram_size);
ut_asserteq(ret, 0);
if (ram0_size) {
ut_asserteq(lmb.memory.cnt, 2);
ut_asserteq(lmb.memory.region[0].base, ram0);
ut_asserteq(lmb.memory.region[0].size, ram0_size);
ut_asserteq(lmb.memory.region[1].base, ram);
ut_asserteq(lmb.memory.region[1].size, ram_size);
} else {
ut_asserteq(lmb.memory.cnt, 1);
ut_asserteq(lmb.memory.region[0].base, ram);
ut_asserteq(lmb.memory.region[0].size, ram_size);
}
/* reserve 64KiB somewhere */
ret = lmb_reserve(&lmb, alloc_64k_addr, 0x10000);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, 0, 0, 1, alloc_64k_addr, 0x10000,
0, 0, 0, 0);
/* allocate somewhere, should be at the end of RAM */
a = lmb_alloc(&lmb, 4, 1);
ut_asserteq(a, ram_end - 4);
ASSERT_LMB(&lmb, 0, 0, 2, alloc_64k_addr, 0x10000,
ram_end - 4, 4, 0, 0);
/* alloc below end of reserved region -> below reserved region */
b = lmb_alloc_base(&lmb, 4, 1, alloc_64k_end);
ut_asserteq(b, alloc_64k_addr - 4);
ASSERT_LMB(&lmb, 0, 0, 2,
alloc_64k_addr - 4, 0x10000 + 4, ram_end - 4, 4, 0, 0);
/* 2nd time */
c = lmb_alloc(&lmb, 4, 1);
ut_asserteq(c, ram_end - 8);
ASSERT_LMB(&lmb, 0, 0, 2,
alloc_64k_addr - 4, 0x10000 + 4, ram_end - 8, 8, 0, 0);
d = lmb_alloc_base(&lmb, 4, 1, alloc_64k_end);
ut_asserteq(d, alloc_64k_addr - 8);
ASSERT_LMB(&lmb, 0, 0, 2,
alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 8, 0, 0);
ret = lmb_free(&lmb, a, 4);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, 0, 0, 2,
alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0);
/* allocate again to ensure we get the same address */
a2 = lmb_alloc(&lmb, 4, 1);
ut_asserteq(a, a2);
ASSERT_LMB(&lmb, 0, 0, 2,
alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 8, 0, 0);
ret = lmb_free(&lmb, a2, 4);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, 0, 0, 2,
alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0);
ret = lmb_free(&lmb, b, 4);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, 0, 0, 3,
alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000,
ram_end - 8, 4);
/* allocate again to ensure we get the same address */
b2 = lmb_alloc_base(&lmb, 4, 1, alloc_64k_end);
ut_asserteq(b, b2);
ASSERT_LMB(&lmb, 0, 0, 2,
alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0);
ret = lmb_free(&lmb, b2, 4);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, 0, 0, 3,
alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000,
ram_end - 8, 4);
ret = lmb_free(&lmb, c, 4);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, 0, 0, 2,
alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000, 0, 0);
ret = lmb_free(&lmb, d, 4);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, 0, 0, 1, alloc_64k_addr, 0x10000,
0, 0, 0, 0);
if (ram0_size) {
ut_asserteq(lmb.memory.cnt, 2);
ut_asserteq(lmb.memory.region[0].base, ram0);
ut_asserteq(lmb.memory.region[0].size, ram0_size);
ut_asserteq(lmb.memory.region[1].base, ram);
ut_asserteq(lmb.memory.region[1].size, ram_size);
} else {
ut_asserteq(lmb.memory.cnt, 1);
ut_asserteq(lmb.memory.region[0].base, ram);
ut_asserteq(lmb.memory.region[0].size, ram_size);
}
return 0;
}
static int test_multi_alloc_512mb(struct unit_test_state *uts,
const phys_addr_t ram)
{
return test_multi_alloc(uts, ram, 0x20000000, 0, 0, ram + 0x10000000);
}
static int test_multi_alloc_512mb_x2(struct unit_test_state *uts,
const phys_addr_t ram,
const phys_addr_t ram0)
{
return test_multi_alloc(uts, ram, 0x20000000, ram0, 0x20000000,
ram + 0x10000000);
}
/* Create a memory region with one reserved region and allocate */
static int lib_test_lmb_simple(struct unit_test_state *uts)
{
int ret;
/* simulate 512 MiB RAM beginning at 1GiB */
ret = test_multi_alloc_512mb(uts, 0x40000000);
if (ret)
return ret;
/* simulate 512 MiB RAM beginning at 1.5GiB */
return test_multi_alloc_512mb(uts, 0xE0000000);
}
DM_TEST(lib_test_lmb_simple, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
/* Create two memory regions with one reserved region and allocate */
static int lib_test_lmb_simple_x2(struct unit_test_state *uts)
{
int ret;
/* simulate 512 MiB RAM beginning at 2GiB and 1 GiB */
ret = test_multi_alloc_512mb_x2(uts, 0x80000000, 0x40000000);
if (ret)
return ret;
/* simulate 512 MiB RAM beginning at 3.5GiB and 1 GiB */
return test_multi_alloc_512mb_x2(uts, 0xE0000000, 0x40000000);
}
DM_TEST(lib_test_lmb_simple_x2, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
/* Simulate 512 MiB RAM, allocate some blocks that fit/don't fit */
static int test_bigblock(struct unit_test_state *uts, const phys_addr_t ram)
{
const phys_size_t ram_size = 0x20000000;
const phys_size_t big_block_size = 0x10000000;
const phys_addr_t ram_end = ram + ram_size;
const phys_addr_t alloc_64k_addr = ram + 0x10000000;
struct lmb lmb;
long ret;
phys_addr_t a, b;
/* check for overflow */
ut_assert(ram_end == 0 || ram_end > ram);
lmb_init(&lmb);
ret = lmb_add(&lmb, ram, ram_size);
ut_asserteq(ret, 0);
/* reserve 64KiB in the middle of RAM */
ret = lmb_reserve(&lmb, alloc_64k_addr, 0x10000);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000,
0, 0, 0, 0);
/* allocate a big block, should be below reserved */
a = lmb_alloc(&lmb, big_block_size, 1);
ut_asserteq(a, ram);
ASSERT_LMB(&lmb, ram, ram_size, 1, a,
big_block_size + 0x10000, 0, 0, 0, 0);
/* allocate 2nd big block */
/* This should fail, printing an error */
b = lmb_alloc(&lmb, big_block_size, 1);
ut_asserteq(b, 0);
ASSERT_LMB(&lmb, ram, ram_size, 1, a,
big_block_size + 0x10000, 0, 0, 0, 0);
ret = lmb_free(&lmb, a, big_block_size);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000,
0, 0, 0, 0);
/* allocate too big block */
/* This should fail, printing an error */
a = lmb_alloc(&lmb, ram_size, 1);
ut_asserteq(a, 0);
ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000,
0, 0, 0, 0);
return 0;
}
static int lib_test_lmb_big(struct unit_test_state *uts)
{
int ret;
/* simulate 512 MiB RAM beginning at 1GiB */
ret = test_bigblock(uts, 0x40000000);
if (ret)
return ret;
/* simulate 512 MiB RAM beginning at 1.5GiB */
return test_bigblock(uts, 0xE0000000);
}
DM_TEST(lib_test_lmb_big, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
/* Simulate 512 MiB RAM, allocate a block without previous reservation */
static int test_noreserved(struct unit_test_state *uts, const phys_addr_t ram,
const phys_addr_t alloc_size, const ulong align)
{
const phys_size_t ram_size = 0x20000000;
const phys_addr_t ram_end = ram + ram_size;
struct lmb lmb;
long ret;
phys_addr_t a, b;
const phys_addr_t alloc_size_aligned = (alloc_size + align - 1) &
~(align - 1);
/* check for overflow */
ut_assert(ram_end == 0 || ram_end > ram);
lmb_init(&lmb);
ret = lmb_add(&lmb, ram, ram_size);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, ram, ram_size, 0, 0, 0, 0, 0, 0, 0);
/* allocate a block */
a = lmb_alloc(&lmb, alloc_size, align);
ut_assert(a != 0);
ASSERT_LMB(&lmb, ram, ram_size, 1, ram + ram_size - alloc_size_aligned,
alloc_size, 0, 0, 0, 0);
/* allocate another block */
b = lmb_alloc(&lmb, alloc_size, align);
ut_assert(b != 0);
if (alloc_size == alloc_size_aligned) {
ASSERT_LMB(&lmb, ram, ram_size, 1, ram + ram_size -
(alloc_size_aligned * 2), alloc_size * 2, 0, 0, 0,
0);
} else {
ASSERT_LMB(&lmb, ram, ram_size, 2, ram + ram_size -
(alloc_size_aligned * 2), alloc_size, ram + ram_size
- alloc_size_aligned, alloc_size, 0, 0);
}
/* and free them */
ret = lmb_free(&lmb, b, alloc_size);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, ram, ram_size, 1, ram + ram_size - alloc_size_aligned,
alloc_size, 0, 0, 0, 0);
ret = lmb_free(&lmb, a, alloc_size);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, ram, ram_size, 0, 0, 0, 0, 0, 0, 0);
/* allocate a block with base*/
b = lmb_alloc_base(&lmb, alloc_size, align, ram_end);
ut_assert(a == b);
ASSERT_LMB(&lmb, ram, ram_size, 1, ram + ram_size - alloc_size_aligned,
alloc_size, 0, 0, 0, 0);
/* and free it */
ret = lmb_free(&lmb, b, alloc_size);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, ram, ram_size, 0, 0, 0, 0, 0, 0, 0);
return 0;
}
static int lib_test_lmb_noreserved(struct unit_test_state *uts)
{
int ret;
/* simulate 512 MiB RAM beginning at 1GiB */
ret = test_noreserved(uts, 0x40000000, 4, 1);
if (ret)
return ret;
/* simulate 512 MiB RAM beginning at 1.5GiB */
return test_noreserved(uts, 0xE0000000, 4, 1);
}
DM_TEST(lib_test_lmb_noreserved, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
static int lib_test_lmb_unaligned_size(struct unit_test_state *uts)
{
int ret;
/* simulate 512 MiB RAM beginning at 1GiB */
ret = test_noreserved(uts, 0x40000000, 5, 8);
if (ret)
return ret;
/* simulate 512 MiB RAM beginning at 1.5GiB */
return test_noreserved(uts, 0xE0000000, 5, 8);
}
DM_TEST(lib_test_lmb_unaligned_size, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
/*
* Simulate a RAM that starts at 0 and allocate down to address 0, which must
* fail as '0' means failure for the lmb_alloc functions.
*/
static int lib_test_lmb_at_0(struct unit_test_state *uts)
{
const phys_addr_t ram = 0;
const phys_size_t ram_size = 0x20000000;
struct lmb lmb;
long ret;
phys_addr_t a, b;
lmb_init(&lmb);
ret = lmb_add(&lmb, ram, ram_size);
ut_asserteq(ret, 0);
/* allocate nearly everything */
a = lmb_alloc(&lmb, ram_size - 4, 1);
ut_asserteq(a, ram + 4);
ASSERT_LMB(&lmb, ram, ram_size, 1, a, ram_size - 4,
0, 0, 0, 0);
/* allocate the rest */
/* This should fail as the allocated address would be 0 */
b = lmb_alloc(&lmb, 4, 1);
ut_asserteq(b, 0);
/* check that this was an error by checking lmb */
ASSERT_LMB(&lmb, ram, ram_size, 1, a, ram_size - 4,
0, 0, 0, 0);
/* check that this was an error by freeing b */
ret = lmb_free(&lmb, b, 4);
ut_asserteq(ret, -1);
ASSERT_LMB(&lmb, ram, ram_size, 1, a, ram_size - 4,
0, 0, 0, 0);
ret = lmb_free(&lmb, a, ram_size - 4);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, ram, ram_size, 0, 0, 0, 0, 0, 0, 0);
return 0;
}
DM_TEST(lib_test_lmb_at_0, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
/* Check that calling lmb_reserve with overlapping regions fails. */
static int lib_test_lmb_overlapping_reserve(struct unit_test_state *uts)
{
const phys_addr_t ram = 0x40000000;
const phys_size_t ram_size = 0x20000000;
struct lmb lmb;
long ret;
lmb_init(&lmb);
ret = lmb_add(&lmb, ram, ram_size);
ut_asserteq(ret, 0);
ret = lmb_reserve(&lmb, 0x40010000, 0x10000);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x10000,
0, 0, 0, 0);
/* allocate overlapping region should fail */
ret = lmb_reserve(&lmb, 0x40011000, 0x10000);
ut_asserteq(ret, -1);
ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x10000,
0, 0, 0, 0);
/* allocate 3nd region */
ret = lmb_reserve(&lmb, 0x40030000, 0x10000);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, ram, ram_size, 2, 0x40010000, 0x10000,
0x40030000, 0x10000, 0, 0);
/* allocate 2nd region */
ret = lmb_reserve(&lmb, 0x40020000, 0x10000);
ut_assert(ret >= 0);
ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x30000,
0, 0, 0, 0);
return 0;
}
DM_TEST(lib_test_lmb_overlapping_reserve,
UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
/*
* Simulate 512 MiB RAM, reserve 3 blocks, allocate addresses in between.
* Expect addresses outside the memory range to fail.
*/
static int test_alloc_addr(struct unit_test_state *uts, const phys_addr_t ram)
{
const phys_size_t ram_size = 0x20000000;
const phys_addr_t ram_end = ram + ram_size;
const phys_size_t alloc_addr_a = ram + 0x8000000;
const phys_size_t alloc_addr_b = ram + 0x8000000 * 2;
const phys_size_t alloc_addr_c = ram + 0x8000000 * 3;
struct lmb lmb;
long ret;
phys_addr_t a, b, c, d, e;
/* check for overflow */
ut_assert(ram_end == 0 || ram_end > ram);
lmb_init(&lmb);
ret = lmb_add(&lmb, ram, ram_size);
ut_asserteq(ret, 0);
/* reserve 3 blocks */
ret = lmb_reserve(&lmb, alloc_addr_a, 0x10000);
ut_asserteq(ret, 0);
ret = lmb_reserve(&lmb, alloc_addr_b, 0x10000);
ut_asserteq(ret, 0);
ret = lmb_reserve(&lmb, alloc_addr_c, 0x10000);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, ram, ram_size, 3, alloc_addr_a, 0x10000,
alloc_addr_b, 0x10000, alloc_addr_c, 0x10000);
/* allocate blocks */
a = lmb_alloc_addr(&lmb, ram, alloc_addr_a - ram);
ut_asserteq(a, ram);
ASSERT_LMB(&lmb, ram, ram_size, 3, ram, 0x8010000,
alloc_addr_b, 0x10000, alloc_addr_c, 0x10000);
b = lmb_alloc_addr(&lmb, alloc_addr_a + 0x10000,
alloc_addr_b - alloc_addr_a - 0x10000);
ut_asserteq(b, alloc_addr_a + 0x10000);
ASSERT_LMB(&lmb, ram, ram_size, 2, ram, 0x10010000,
alloc_addr_c, 0x10000, 0, 0);
c = lmb_alloc_addr(&lmb, alloc_addr_b + 0x10000,
alloc_addr_c - alloc_addr_b - 0x10000);
ut_asserteq(c, alloc_addr_b + 0x10000);
ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010000,
0, 0, 0, 0);
d = lmb_alloc_addr(&lmb, alloc_addr_c + 0x10000,
ram_end - alloc_addr_c - 0x10000);
ut_asserteq(d, alloc_addr_c + 0x10000);
ASSERT_LMB(&lmb, ram, ram_size, 1, ram, ram_size,
0, 0, 0, 0);
/* allocating anything else should fail */
e = lmb_alloc(&lmb, 1, 1);
ut_asserteq(e, 0);
ASSERT_LMB(&lmb, ram, ram_size, 1, ram, ram_size,
0, 0, 0, 0);
ret = lmb_free(&lmb, d, ram_end - alloc_addr_c - 0x10000);
ut_asserteq(ret, 0);
/* allocate at 3 points in free range */
d = lmb_alloc_addr(&lmb, ram_end - 4, 4);
ut_asserteq(d, ram_end - 4);
ASSERT_LMB(&lmb, ram, ram_size, 2, ram, 0x18010000,
d, 4, 0, 0);
ret = lmb_free(&lmb, d, 4);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010000,
0, 0, 0, 0);
d = lmb_alloc_addr(&lmb, ram_end - 128, 4);
ut_asserteq(d, ram_end - 128);
ASSERT_LMB(&lmb, ram, ram_size, 2, ram, 0x18010000,
d, 4, 0, 0);
ret = lmb_free(&lmb, d, 4);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010000,
0, 0, 0, 0);
d = lmb_alloc_addr(&lmb, alloc_addr_c + 0x10000, 4);
ut_asserteq(d, alloc_addr_c + 0x10000);
ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010004,
0, 0, 0, 0);
ret = lmb_free(&lmb, d, 4);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010000,
0, 0, 0, 0);
/* allocate at the bottom */
ret = lmb_free(&lmb, a, alloc_addr_a - ram);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, ram, ram_size, 1, ram + 0x8000000, 0x10010000,
0, 0, 0, 0);
d = lmb_alloc_addr(&lmb, ram, 4);
ut_asserteq(d, ram);
ASSERT_LMB(&lmb, ram, ram_size, 2, d, 4,
ram + 0x8000000, 0x10010000, 0, 0);
/* check that allocating outside memory fails */
if (ram_end != 0) {
ret = lmb_alloc_addr(&lmb, ram_end, 1);
ut_asserteq(ret, 0);
}
if (ram != 0) {
ret = lmb_alloc_addr(&lmb, ram - 1, 1);
ut_asserteq(ret, 0);
}
return 0;
}
static int lib_test_lmb_alloc_addr(struct unit_test_state *uts)
{
int ret;
/* simulate 512 MiB RAM beginning at 1GiB */
ret = test_alloc_addr(uts, 0x40000000);
if (ret)
return ret;
/* simulate 512 MiB RAM beginning at 1.5GiB */
return test_alloc_addr(uts, 0xE0000000);
}
DM_TEST(lib_test_lmb_alloc_addr, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
/* Simulate 512 MiB RAM, reserve 3 blocks, check addresses in between */
static int test_get_unreserved_size(struct unit_test_state *uts,
const phys_addr_t ram)
{
const phys_size_t ram_size = 0x20000000;
const phys_addr_t ram_end = ram + ram_size;
const phys_size_t alloc_addr_a = ram + 0x8000000;
const phys_size_t alloc_addr_b = ram + 0x8000000 * 2;
const phys_size_t alloc_addr_c = ram + 0x8000000 * 3;
struct lmb lmb;
long ret;
phys_size_t s;
/* check for overflow */
ut_assert(ram_end == 0 || ram_end > ram);
lmb_init(&lmb);
ret = lmb_add(&lmb, ram, ram_size);
ut_asserteq(ret, 0);
/* reserve 3 blocks */
ret = lmb_reserve(&lmb, alloc_addr_a, 0x10000);
ut_asserteq(ret, 0);
ret = lmb_reserve(&lmb, alloc_addr_b, 0x10000);
ut_asserteq(ret, 0);
ret = lmb_reserve(&lmb, alloc_addr_c, 0x10000);
ut_asserteq(ret, 0);
ASSERT_LMB(&lmb, ram, ram_size, 3, alloc_addr_a, 0x10000,
alloc_addr_b, 0x10000, alloc_addr_c, 0x10000);
/* check addresses in between blocks */
s = lmb_get_free_size(&lmb, ram);
ut_asserteq(s, alloc_addr_a - ram);
s = lmb_get_free_size(&lmb, ram + 0x10000);
ut_asserteq(s, alloc_addr_a - ram - 0x10000);
s = lmb_get_free_size(&lmb, alloc_addr_a - 4);
ut_asserteq(s, 4);
s = lmb_get_free_size(&lmb, alloc_addr_a + 0x10000);
ut_asserteq(s, alloc_addr_b - alloc_addr_a - 0x10000);
s = lmb_get_free_size(&lmb, alloc_addr_a + 0x20000);
ut_asserteq(s, alloc_addr_b - alloc_addr_a - 0x20000);
s = lmb_get_free_size(&lmb, alloc_addr_b - 4);
ut_asserteq(s, 4);
s = lmb_get_free_size(&lmb, alloc_addr_c + 0x10000);
ut_asserteq(s, ram_end - alloc_addr_c - 0x10000);
s = lmb_get_free_size(&lmb, alloc_addr_c + 0x20000);
ut_asserteq(s, ram_end - alloc_addr_c - 0x20000);
s = lmb_get_free_size(&lmb, ram_end - 4);
ut_asserteq(s, 4);
return 0;
}
static int lib_test_lmb_get_free_size(struct unit_test_state *uts)
{
int ret;
/* simulate 512 MiB RAM beginning at 1GiB */
ret = test_get_unreserved_size(uts, 0x40000000);
if (ret)
return ret;
/* simulate 512 MiB RAM beginning at 1.5GiB */
return test_get_unreserved_size(uts, 0xE0000000);
}
DM_TEST(lib_test_lmb_get_free_size,
UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);