u-boot/include/atf_common.h
Tom Rini 83d290c56f SPDX: Convert all of our single license tags to Linux Kernel style
When U-Boot started using SPDX tags we were among the early adopters and
there weren't a lot of other examples to borrow from.  So we picked the
area of the file that usually had a full license text and replaced it
with an appropriate SPDX-License-Identifier: entry.  Since then, the
Linux Kernel has adopted SPDX tags and they place it as the very first
line in a file (except where shebangs are used, then it's second line)
and with slightly different comment styles than us.

In part due to community overlap, in part due to better tag visibility
and in part for other minor reasons, switch over to that style.

This commit changes all instances where we have a single declared
license in the tag as both the before and after are identical in tag
contents.  There's also a few places where I found we did not have a tag
and have introduced one.

Signed-off-by: Tom Rini <trini@konsulko.com>
2018-05-07 09:34:12 -04:00

183 lines
6.4 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause */
/*
* This is from the ARM TF Project,
* Repository: https://github.com/ARM-software/arm-trusted-firmware.git
* File: include/common/bl_common.h
* Portions copyright (c) 2013-2016, ARM Limited and Contributors. All rights
* reserved.
* Copyright (C) 2016-2017 Rockchip Electronic Co.,Ltd
*/
#ifndef __BL_COMMON_H__
#define __BL_COMMON_H__
#define ATF_PARAM_EP 0x01
#define ATF_PARAM_IMAGE_BINARY 0x02
#define ATF_PARAM_BL31 0x03
#define ATF_VERSION_1 0x01
#define ATF_EP_SECURE 0x0
#define ATF_EP_NON_SECURE 0x1
#define SET_PARAM_HEAD(_p, _type, _ver, _attr) do { \
(_p)->h.type = (uint8_t)(_type); \
(_p)->h.version = (uint8_t)(_ver); \
(_p)->h.size = (uint16_t)sizeof(*_p); \
(_p)->h.attr = (uint32_t)(_attr) ; \
} while (0)
#define MODE_RW_SHIFT 0x4
#define MODE_RW_MASK 0x1
#define MODE_RW_64 0x0
#define MODE_RW_32 0x1
#define MODE_EL_SHIFT 0x2
#define MODE_EL_MASK 0x3
#define MODE_EL3 0x3
#define MODE_EL2 0x2
#define MODE_EL1 0x1
#define MODE_EL0 0x0
#define MODE_SP_SHIFT 0x0
#define MODE_SP_MASK 0x1
#define MODE_SP_EL0 0x0
#define MODE_SP_ELX 0x1
#define SPSR_DAIF_SHIFT 6
#define SPSR_DAIF_MASK 0x0f
#define SPSR_64(el, sp, daif) \
(MODE_RW_64 << MODE_RW_SHIFT | \
((el) & MODE_EL_MASK) << MODE_EL_SHIFT | \
((sp) & MODE_SP_MASK) << MODE_SP_SHIFT | \
((daif) & SPSR_DAIF_MASK) << SPSR_DAIF_SHIFT)
#define SPSR_FIQ (1 << 6)
#define SPSR_IRQ (1 << 7)
#define SPSR_SERROR (1 << 8)
#define SPSR_DEBUG (1 << 9)
#define SPSR_EXCEPTION_MASK (SPSR_FIQ | SPSR_IRQ | SPSR_SERROR | SPSR_DEBUG)
#define DAIF_FIQ_BIT (1<<0)
#define DAIF_IRQ_BIT (1<<1)
#define DAIF_ABT_BIT (1<<2)
#define DAIF_DBG_BIT (1<<3)
#define DISABLE_ALL_EXECPTIONS \
(DAIF_FIQ_BIT | DAIF_IRQ_BIT | DAIF_ABT_BIT | DAIF_DBG_BIT)
#ifndef __ASSEMBLY__
/*******************************************************************************
* Structure used for telling the next BL how much of a particular type of
* memory is available for its use and how much is already used.
******************************************************************************/
struct aapcs64_params {
unsigned long arg0;
unsigned long arg1;
unsigned long arg2;
unsigned long arg3;
unsigned long arg4;
unsigned long arg5;
unsigned long arg6;
unsigned long arg7;
};
/***************************************************************************
* This structure provides version information and the size of the
* structure, attributes for the structure it represents
***************************************************************************/
struct param_header {
uint8_t type; /* type of the structure */
uint8_t version; /* version of this structure */
uint16_t size; /* size of this structure in bytes */
uint32_t attr; /* attributes: unused bits SBZ */
};
/*****************************************************************************
* This structure represents the superset of information needed while
* switching exception levels. The only two mechanisms to do so are
* ERET & SMC. Security state is indicated using bit zero of header
* attribute
* NOTE: BL1 expects entrypoint followed by spsr at an offset from the start
* of this structure defined by the macro `ENTRY_POINT_INFO_PC_OFFSET` while
* processing SMC to jump to BL31.
*****************************************************************************/
struct entry_point_info {
struct param_header h;
uintptr_t pc;
uint32_t spsr;
struct aapcs64_params args;
};
/*****************************************************************************
* Image info binary provides information from the image loader that
* can be used by the firmware to manage available trusted RAM.
* More advanced firmware image formats can provide additional
* information that enables optimization or greater flexibility in the
* common firmware code
*****************************************************************************/
struct atf_image_info {
struct param_header h;
uintptr_t image_base; /* physical address of base of image */
uint32_t image_size; /* bytes read from image file */
};
/*****************************************************************************
* The image descriptor struct definition.
*****************************************************************************/
struct image_desc {
/* Contains unique image id for the image. */
unsigned int image_id;
/*
* This member contains Image state information.
* Refer IMAGE_STATE_XXX defined above.
*/
unsigned int state;
uint32_t copied_size; /* image size copied in blocks */
struct atf_image_info atf_image_info;
struct entry_point_info ep_info;
};
/*******************************************************************************
* This structure represents the superset of information that can be passed to
* BL31 e.g. while passing control to it from BL2. The BL32 parameters will be
* populated only if BL2 detects its presence. A pointer to a structure of this
* type should be passed in X0 to BL31's cold boot entrypoint.
*
* Use of this structure and the X0 parameter is not mandatory: the BL31
* platform code can use other mechanisms to provide the necessary information
* about BL32 and BL33 to the common and SPD code.
*
* BL31 image information is mandatory if this structure is used. If either of
* the optional BL32 and BL33 image information is not provided, this is
* indicated by the respective image_info pointers being zero.
******************************************************************************/
struct bl31_params {
struct param_header h;
struct atf_image_info *bl31_image_info;
struct entry_point_info *bl32_ep_info;
struct atf_image_info *bl32_image_info;
struct entry_point_info *bl33_ep_info;
struct atf_image_info *bl33_image_info;
};
/*******************************************************************************
* This structure represents the superset of information that is passed to
* BL31, e.g. while passing control to it from BL2, bl31_params
* and other platform specific params
******************************************************************************/
struct bl2_to_bl31_params_mem {
struct bl31_params bl31_params;
struct atf_image_info bl31_image_info;
struct atf_image_info bl32_image_info;
struct atf_image_info bl33_image_info;
struct entry_point_info bl33_ep_info;
struct entry_point_info bl32_ep_info;
struct entry_point_info bl31_ep_info;
};
#endif /*__ASSEMBLY__*/
#endif /* __BL_COMMON_H__ */