89aea43642
We were using our EFI_CACHELINE_SIZE define only in the runtime service code, but left the image loader to use plain CONFIG_SYS_CACHELINE_SIZE. This patch moves EFI_CACHELINE_SIZE into efi_loader.h and converts the image loader to use it. Signed-off-by: Alexander Graf <agraf@suse.de>
301 lines
8.4 KiB
C
301 lines
8.4 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* EFI image loader
|
|
*
|
|
* based partly on wine code
|
|
*
|
|
* Copyright (c) 2016 Alexander Graf
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <efi_loader.h>
|
|
#include <pe.h>
|
|
#include <asm/global_data.h>
|
|
|
|
const efi_guid_t efi_global_variable_guid = EFI_GLOBAL_VARIABLE_GUID;
|
|
const efi_guid_t efi_guid_device_path = DEVICE_PATH_GUID;
|
|
const efi_guid_t efi_guid_loaded_image = LOADED_IMAGE_GUID;
|
|
const efi_guid_t efi_simple_file_system_protocol_guid =
|
|
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL_GUID;
|
|
const efi_guid_t efi_file_info_guid = EFI_FILE_INFO_GUID;
|
|
|
|
static int machines[] = {
|
|
#if defined(CONFIG_ARM64)
|
|
IMAGE_FILE_MACHINE_ARM64,
|
|
#elif defined(CONFIG_ARM)
|
|
IMAGE_FILE_MACHINE_ARM,
|
|
IMAGE_FILE_MACHINE_THUMB,
|
|
IMAGE_FILE_MACHINE_ARMNT,
|
|
#endif
|
|
|
|
#if defined(CONFIG_X86_64)
|
|
IMAGE_FILE_MACHINE_AMD64,
|
|
#elif defined(CONFIG_X86)
|
|
IMAGE_FILE_MACHINE_I386,
|
|
#endif
|
|
|
|
#if defined(CONFIG_CPU_RISCV_32)
|
|
IMAGE_FILE_MACHINE_RISCV32,
|
|
#endif
|
|
|
|
#if defined(CONFIG_CPU_RISCV_64)
|
|
IMAGE_FILE_MACHINE_RISCV64,
|
|
#endif
|
|
0 };
|
|
|
|
/*
|
|
* Print information about a loaded image.
|
|
*
|
|
* If the program counter is located within the image the offset to the base
|
|
* address is shown.
|
|
*
|
|
* @image: loaded image
|
|
* @pc: program counter (use NULL to suppress offset output)
|
|
* @return: status code
|
|
*/
|
|
efi_status_t efi_print_image_info(struct efi_loaded_image *image, void *pc)
|
|
{
|
|
if (!image)
|
|
return EFI_INVALID_PARAMETER;
|
|
printf("UEFI image");
|
|
printf(" [0x%p:0x%p]",
|
|
image->reloc_base, image->reloc_base + image->reloc_size - 1);
|
|
if (pc && pc >= image->reloc_base &&
|
|
pc < image->reloc_base + image->reloc_size)
|
|
printf(" pc=0x%zx", pc - image->reloc_base);
|
|
if (image->file_path)
|
|
printf(" '%pD'", image->file_path);
|
|
printf("\n");
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Print information about all loaded images.
|
|
*
|
|
* @pc: program counter (use NULL to suppress offset output)
|
|
*/
|
|
void efi_print_image_infos(void *pc)
|
|
{
|
|
struct efi_object *efiobj;
|
|
struct efi_handler *handler;
|
|
|
|
list_for_each_entry(efiobj, &efi_obj_list, link) {
|
|
list_for_each_entry(handler, &efiobj->protocols, link) {
|
|
if (!guidcmp(handler->guid, &efi_guid_loaded_image)) {
|
|
efi_print_image_info(
|
|
handler->protocol_interface, pc);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static efi_status_t efi_loader_relocate(const IMAGE_BASE_RELOCATION *rel,
|
|
unsigned long rel_size, void *efi_reloc)
|
|
{
|
|
const IMAGE_BASE_RELOCATION *end;
|
|
int i;
|
|
|
|
end = (const IMAGE_BASE_RELOCATION *)((const char *)rel + rel_size);
|
|
while (rel < end - 1 && rel->SizeOfBlock) {
|
|
const uint16_t *relocs = (const uint16_t *)(rel + 1);
|
|
i = (rel->SizeOfBlock - sizeof(*rel)) / sizeof(uint16_t);
|
|
while (i--) {
|
|
uint32_t offset = (uint32_t)(*relocs & 0xfff) +
|
|
rel->VirtualAddress;
|
|
int type = *relocs >> EFI_PAGE_SHIFT;
|
|
unsigned long delta = (unsigned long)efi_reloc;
|
|
uint64_t *x64 = efi_reloc + offset;
|
|
uint32_t *x32 = efi_reloc + offset;
|
|
uint16_t *x16 = efi_reloc + offset;
|
|
|
|
switch (type) {
|
|
case IMAGE_REL_BASED_ABSOLUTE:
|
|
break;
|
|
case IMAGE_REL_BASED_HIGH:
|
|
*x16 += ((uint32_t)delta) >> 16;
|
|
break;
|
|
case IMAGE_REL_BASED_LOW:
|
|
*x16 += (uint16_t)delta;
|
|
break;
|
|
case IMAGE_REL_BASED_HIGHLOW:
|
|
*x32 += (uint32_t)delta;
|
|
break;
|
|
case IMAGE_REL_BASED_DIR64:
|
|
*x64 += (uint64_t)delta;
|
|
break;
|
|
default:
|
|
printf("Unknown Relocation off %x type %x\n",
|
|
offset, type);
|
|
return EFI_LOAD_ERROR;
|
|
}
|
|
relocs++;
|
|
}
|
|
rel = (const IMAGE_BASE_RELOCATION *)relocs;
|
|
}
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
void __weak invalidate_icache_all(void)
|
|
{
|
|
/* If the system doesn't support icache_all flush, cross our fingers */
|
|
}
|
|
|
|
/*
|
|
* Determine the memory types to be used for code and data.
|
|
*
|
|
* @loaded_image_info image descriptor
|
|
* @image_type field Subsystem of the optional header for
|
|
* Windows specific field
|
|
*/
|
|
static void efi_set_code_and_data_type(
|
|
struct efi_loaded_image *loaded_image_info,
|
|
uint16_t image_type)
|
|
{
|
|
switch (image_type) {
|
|
case IMAGE_SUBSYSTEM_EFI_APPLICATION:
|
|
loaded_image_info->image_code_type = EFI_LOADER_CODE;
|
|
loaded_image_info->image_data_type = EFI_LOADER_DATA;
|
|
break;
|
|
case IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER:
|
|
loaded_image_info->image_code_type = EFI_BOOT_SERVICES_CODE;
|
|
loaded_image_info->image_data_type = EFI_BOOT_SERVICES_DATA;
|
|
break;
|
|
case IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER:
|
|
case IMAGE_SUBSYSTEM_EFI_ROM:
|
|
loaded_image_info->image_code_type = EFI_RUNTIME_SERVICES_CODE;
|
|
loaded_image_info->image_data_type = EFI_RUNTIME_SERVICES_DATA;
|
|
break;
|
|
default:
|
|
printf("%s: invalid image type: %u\n", __func__, image_type);
|
|
/* Let's assume it is an application */
|
|
loaded_image_info->image_code_type = EFI_LOADER_CODE;
|
|
loaded_image_info->image_data_type = EFI_LOADER_DATA;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function loads all sections from a PE binary into a newly reserved
|
|
* piece of memory. On successful load it then returns the entry point for
|
|
* the binary. Otherwise NULL.
|
|
*/
|
|
void *efi_load_pe(void *efi, struct efi_loaded_image *loaded_image_info)
|
|
{
|
|
IMAGE_NT_HEADERS32 *nt;
|
|
IMAGE_DOS_HEADER *dos;
|
|
IMAGE_SECTION_HEADER *sections;
|
|
int num_sections;
|
|
void *efi_reloc;
|
|
int i;
|
|
const IMAGE_BASE_RELOCATION *rel;
|
|
unsigned long rel_size;
|
|
int rel_idx = IMAGE_DIRECTORY_ENTRY_BASERELOC;
|
|
void *entry;
|
|
uint64_t image_size;
|
|
unsigned long virt_size = 0;
|
|
int supported = 0;
|
|
|
|
dos = efi;
|
|
if (dos->e_magic != IMAGE_DOS_SIGNATURE) {
|
|
printf("%s: Invalid DOS Signature\n", __func__);
|
|
return NULL;
|
|
}
|
|
|
|
nt = (void *) ((char *)efi + dos->e_lfanew);
|
|
if (nt->Signature != IMAGE_NT_SIGNATURE) {
|
|
printf("%s: Invalid NT Signature\n", __func__);
|
|
return NULL;
|
|
}
|
|
|
|
for (i = 0; machines[i]; i++)
|
|
if (machines[i] == nt->FileHeader.Machine) {
|
|
supported = 1;
|
|
break;
|
|
}
|
|
|
|
if (!supported) {
|
|
printf("%s: Machine type 0x%04x is not supported\n",
|
|
__func__, nt->FileHeader.Machine);
|
|
return NULL;
|
|
}
|
|
|
|
/* Calculate upper virtual address boundary */
|
|
num_sections = nt->FileHeader.NumberOfSections;
|
|
sections = (void *)&nt->OptionalHeader +
|
|
nt->FileHeader.SizeOfOptionalHeader;
|
|
|
|
for (i = num_sections - 1; i >= 0; i--) {
|
|
IMAGE_SECTION_HEADER *sec = §ions[i];
|
|
virt_size = max_t(unsigned long, virt_size,
|
|
sec->VirtualAddress + sec->Misc.VirtualSize);
|
|
}
|
|
|
|
/* Read 32/64bit specific header bits */
|
|
if (nt->OptionalHeader.Magic == IMAGE_NT_OPTIONAL_HDR64_MAGIC) {
|
|
IMAGE_NT_HEADERS64 *nt64 = (void *)nt;
|
|
IMAGE_OPTIONAL_HEADER64 *opt = &nt64->OptionalHeader;
|
|
image_size = opt->SizeOfImage;
|
|
efi_set_code_and_data_type(loaded_image_info, opt->Subsystem);
|
|
efi_reloc = efi_alloc(virt_size,
|
|
loaded_image_info->image_code_type);
|
|
if (!efi_reloc) {
|
|
printf("%s: Could not allocate %lu bytes\n",
|
|
__func__, virt_size);
|
|
return NULL;
|
|
}
|
|
entry = efi_reloc + opt->AddressOfEntryPoint;
|
|
rel_size = opt->DataDirectory[rel_idx].Size;
|
|
rel = efi_reloc + opt->DataDirectory[rel_idx].VirtualAddress;
|
|
virt_size = ALIGN(virt_size, opt->SectionAlignment);
|
|
} else if (nt->OptionalHeader.Magic == IMAGE_NT_OPTIONAL_HDR32_MAGIC) {
|
|
IMAGE_OPTIONAL_HEADER32 *opt = &nt->OptionalHeader;
|
|
image_size = opt->SizeOfImage;
|
|
efi_set_code_and_data_type(loaded_image_info, opt->Subsystem);
|
|
efi_reloc = efi_alloc(virt_size,
|
|
loaded_image_info->image_code_type);
|
|
if (!efi_reloc) {
|
|
printf("%s: Could not allocate %lu bytes\n",
|
|
__func__, virt_size);
|
|
return NULL;
|
|
}
|
|
entry = efi_reloc + opt->AddressOfEntryPoint;
|
|
rel_size = opt->DataDirectory[rel_idx].Size;
|
|
rel = efi_reloc + opt->DataDirectory[rel_idx].VirtualAddress;
|
|
virt_size = ALIGN(virt_size, opt->SectionAlignment);
|
|
} else {
|
|
printf("%s: Invalid optional header magic %x\n", __func__,
|
|
nt->OptionalHeader.Magic);
|
|
return NULL;
|
|
}
|
|
|
|
/* Load sections into RAM */
|
|
for (i = num_sections - 1; i >= 0; i--) {
|
|
IMAGE_SECTION_HEADER *sec = §ions[i];
|
|
memset(efi_reloc + sec->VirtualAddress, 0,
|
|
sec->Misc.VirtualSize);
|
|
memcpy(efi_reloc + sec->VirtualAddress,
|
|
efi + sec->PointerToRawData,
|
|
sec->SizeOfRawData);
|
|
}
|
|
|
|
/* Run through relocations */
|
|
if (efi_loader_relocate(rel, rel_size, efi_reloc) != EFI_SUCCESS) {
|
|
efi_free_pages((uintptr_t) efi_reloc,
|
|
(virt_size + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT);
|
|
return NULL;
|
|
}
|
|
|
|
/* Flush cache */
|
|
flush_cache((ulong)efi_reloc,
|
|
ALIGN(virt_size, EFI_CACHELINE_SIZE));
|
|
invalidate_icache_all();
|
|
|
|
/* Populate the loaded image interface bits */
|
|
loaded_image_info->image_base = efi;
|
|
loaded_image_info->image_size = image_size;
|
|
loaded_image_info->reloc_base = efi_reloc;
|
|
loaded_image_info->reloc_size = virt_size;
|
|
|
|
return entry;
|
|
}
|