u-boot/drivers/usb/host/dwc3-octeon-glue.c
Simon Glass f10643cf8a dm: core: Access device ofnode through functions
At present ofnode is present in the device even if it is never used. With
of-platdata this field is not used, so can be removed. In preparation for
this, change the access to go through inline functions.

Signed-off-by: Simon Glass <sjg@chromium.org>
2021-01-05 12:24:41 -07:00

395 lines
11 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Octeon family DWC3 specific glue layer
*
* Copyright (C) 2020 Stefan Roese <sr@denx.de>
*
* The low-level init code is based on the Linux driver octeon-usb.c by
* David Daney <david.daney@cavium.com>, which is:
* Copyright (C) 2010-2017 Cavium Networks
*/
#include <dm.h>
#include <errno.h>
#include <usb.h>
#include <asm/io.h>
#include <dm/device_compat.h>
#include <dm/lists.h>
#include <dm/of_access.h>
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/usb/dwc3.h>
#include <linux/usb/otg.h>
#include <mach/octeon-model.h>
DECLARE_GLOBAL_DATA_PTR;
#define CVMX_GPIO_BIT_CFGX(i) (0x0001070000000900ull + ((i) * 8))
#define CVMX_GPIO_XBIT_CFGX(i) (0x0001070000000900ull + \
((i) & 31) * 8 - 8 * 16)
#define GPIO_BIT_CFG_TX_OE BIT_ULL(0)
#define GPIO_BIT_CFG_OUTPUT_SEL GENMASK_ULL(20, 16)
#define UCTL_CTL_UCTL_RST BIT_ULL(0)
#define UCTL_CTL_UAHC_RST BIT_ULL(1)
#define UCTL_CTL_UPHY_RST BIT_ULL(2)
#define UCTL_CTL_DRD_MODE BIT_ULL(3)
#define UCTL_CTL_SCLK_EN BIT_ULL(4)
#define UCTL_CTL_HS_POWER_EN BIT_ULL(12)
#define UCTL_CTL_SS_POWER_EN BIT_ULL(14)
#define UCTL_CTL_H_CLKDIV_SEL GENMASK_ULL(26, 24)
#define UCTL_CTL_H_CLKDIV_RST BIT_ULL(28)
#define UCTL_CTL_H_CLK_EN BIT_ULL(30)
#define UCTL_CTL_REF_CLK_FSEL GENMASK_ULL(37, 32)
#define UCTL_CTL_REF_CLK_DIV2 BIT_ULL(38)
#define UCTL_CTL_REF_SSP_EN BIT_ULL(39)
#define UCTL_CTL_MPLL_MULTIPLIER GENMASK_ULL(46, 40)
#define UCTL_CTL_SSC_EN BIT_ULL(59)
#define UCTL_CTL_REF_CLK_SEL GENMASK_ULL(61, 60)
#define UCTL_HOST_CFG 0xe0
#define UCTL_HOST_CFG_PPC_ACTIVE_HIGH_EN BIT_ULL(24)
#define UCTL_HOST_CFG_PPC_EN BIT_ULL(25)
#define UCTL_SHIM_CFG 0xe8
#define UCTL_SHIM_CFG_CSR_ENDIAN_MODE GENMASK_ULL(1, 0)
#define UCTL_SHIM_CFG_DMA_ENDIAN_MODE GENMASK_ULL(9, 8)
#define OCTEON_H_CLKDIV_SEL 8
#define OCTEON_MIN_H_CLK_RATE 150000000
#define OCTEON_MAX_H_CLK_RATE 300000000
#define CLOCK_50MHZ 50000000
#define CLOCK_100MHZ 100000000
#define CLOCK_125MHZ 125000000
static u8 clk_div[OCTEON_H_CLKDIV_SEL] = {1, 2, 4, 6, 8, 16, 24, 32};
static int dwc3_octeon_config_power(struct udevice *dev, void __iomem *base)
{
u64 uctl_host_cfg;
u64 gpio_bit;
u32 gpio_pwr[3];
int gpio, len, power_active_low;
const struct device_node *node = dev_np(dev);
int index = ((u64)base >> 24) & 1;
void __iomem *gpio_bit_cfg;
if (of_find_property(node, "power", &len)) {
if (len == 12) {
dev_read_u32_array(dev, "power", gpio_pwr, 3);
power_active_low = gpio_pwr[2] & 0x01;
gpio = gpio_pwr[1];
} else if (len == 8) {
dev_read_u32_array(dev, "power", gpio_pwr, 2);
power_active_low = 0;
gpio = gpio_pwr[1];
} else {
printf("dwc3 controller clock init failure\n");
return -EINVAL;
}
gpio_bit_cfg = ioremap(CVMX_GPIO_BIT_CFGX(gpio), 0);
if ((OCTEON_IS_MODEL(OCTEON_CN73XX) ||
OCTEON_IS_MODEL(OCTEON_CNF75XX)) && gpio <= 31) {
gpio_bit = ioread64(gpio_bit_cfg);
gpio_bit |= GPIO_BIT_CFG_TX_OE;
gpio_bit &= ~GPIO_BIT_CFG_OUTPUT_SEL;
gpio_bit |= FIELD_PREP(GPIO_BIT_CFG_OUTPUT_SEL,
index == 0 ? 0x14 : 0x15);
iowrite64(gpio_bit, gpio_bit_cfg);
} else if (gpio <= 15) {
gpio_bit = ioread64(gpio_bit_cfg);
gpio_bit |= GPIO_BIT_CFG_TX_OE;
gpio_bit &= ~GPIO_BIT_CFG_OUTPUT_SEL;
gpio_bit |= FIELD_PREP(GPIO_BIT_CFG_OUTPUT_SEL,
index == 0 ? 0x14 : 0x19);
iowrite64(gpio_bit, gpio_bit_cfg);
} else {
gpio_bit_cfg = ioremap(CVMX_GPIO_XBIT_CFGX(gpio), 0);
gpio_bit = ioread64(gpio_bit_cfg);
gpio_bit |= GPIO_BIT_CFG_TX_OE;
gpio_bit &= ~GPIO_BIT_CFG_OUTPUT_SEL;
gpio_bit |= FIELD_PREP(GPIO_BIT_CFG_OUTPUT_SEL,
index == 0 ? 0x14 : 0x19);
iowrite64(gpio_bit, gpio_bit_cfg);
}
/* Enable XHCI power control and set if active high or low. */
uctl_host_cfg = ioread64(base + UCTL_HOST_CFG);
uctl_host_cfg |= UCTL_HOST_CFG_PPC_EN;
if (power_active_low)
uctl_host_cfg &= ~UCTL_HOST_CFG_PPC_ACTIVE_HIGH_EN;
else
uctl_host_cfg |= UCTL_HOST_CFG_PPC_ACTIVE_HIGH_EN;
iowrite64(uctl_host_cfg, base + UCTL_HOST_CFG);
/* Wait for power to stabilize */
mdelay(10);
} else {
/* Disable XHCI power control and set if active high. */
uctl_host_cfg = ioread64(base + UCTL_HOST_CFG);
uctl_host_cfg &= ~UCTL_HOST_CFG_PPC_EN;
uctl_host_cfg &= ~UCTL_HOST_CFG_PPC_ACTIVE_HIGH_EN;
iowrite64(uctl_host_cfg, base + UCTL_HOST_CFG);
dev_warn(dev, "dwc3 controller clock init failure.\n");
}
return 0;
}
static int dwc3_octeon_clocks_start(struct udevice *dev, void __iomem *base)
{
u64 uctl_ctl;
int ref_clk_sel = 2;
u64 div;
u32 clock_rate;
int mpll_mul;
int i;
u64 h_clk_rate;
void __iomem *uctl_ctl_reg = base;
const char *ss_clock_type;
const char *hs_clock_type;
i = dev_read_u32(dev, "refclk-frequency", &clock_rate);
if (i) {
printf("No UCTL \"refclk-frequency\"\n");
return -EINVAL;
}
ss_clock_type = dev_read_string(dev, "refclk-type-ss");
if (!ss_clock_type) {
printf("No UCTL \"refclk-type-ss\"\n");
return -EINVAL;
}
hs_clock_type = dev_read_string(dev, "refclk-type-hs");
if (!hs_clock_type) {
printf("No UCTL \"refclk-type-hs\"\n");
return -EINVAL;
}
if (strcmp("dlmc_ref_clk0", ss_clock_type) == 0) {
if (strcmp(hs_clock_type, "dlmc_ref_clk0") == 0) {
ref_clk_sel = 0;
} else if (strcmp(hs_clock_type, "pll_ref_clk") == 0) {
ref_clk_sel = 2;
} else {
printf("Invalid HS clock type %s, using pll_ref_clk\n",
hs_clock_type);
}
} else if (strcmp(ss_clock_type, "dlmc_ref_clk1") == 0) {
if (strcmp(hs_clock_type, "dlmc_ref_clk1") == 0) {
ref_clk_sel = 1;
} else if (strcmp(hs_clock_type, "pll_ref_clk") == 0) {
ref_clk_sel = 3;
} else {
printf("Invalid HS clock type %s, using pll_ref_clk\n",
hs_clock_type);
ref_clk_sel = 3;
}
} else {
printf("Invalid SS clock type %s, using dlmc_ref_clk0\n",
ss_clock_type);
}
if ((ref_clk_sel == 0 || ref_clk_sel == 1) &&
clock_rate != CLOCK_100MHZ)
printf("Invalid UCTL clock rate of %u\n", clock_rate);
/*
* Step 1: Wait for all voltages to be stable...that surely
* happened before this driver is started. SKIP
*/
/* Step 2: Select GPIO for overcurrent indication, if desired. SKIP */
/* Step 3: Assert all resets. */
uctl_ctl = ioread64(uctl_ctl_reg);
uctl_ctl |= UCTL_CTL_UCTL_RST | UCTL_CTL_UAHC_RST | UCTL_CTL_UPHY_RST;
iowrite64(uctl_ctl, uctl_ctl_reg);
/* Step 4a: Reset the clock dividers. */
uctl_ctl = ioread64(uctl_ctl_reg);
uctl_ctl |= UCTL_CTL_H_CLKDIV_RST;
iowrite64(uctl_ctl, uctl_ctl_reg);
/* Step 4b: Select controller clock frequency. */
for (div = ARRAY_SIZE(clk_div) - 1; div >= 0; div--) {
h_clk_rate = gd->bus_clk / clk_div[div];
if (h_clk_rate <= OCTEON_MAX_H_CLK_RATE &&
h_clk_rate >= OCTEON_MIN_H_CLK_RATE)
break;
}
uctl_ctl = ioread64(uctl_ctl_reg);
uctl_ctl &= ~UCTL_CTL_H_CLKDIV_SEL;
uctl_ctl |= FIELD_PREP(UCTL_CTL_H_CLKDIV_SEL, div);
uctl_ctl |= UCTL_CTL_H_CLK_EN;
iowrite64(uctl_ctl, uctl_ctl_reg);
uctl_ctl = ioread64(uctl_ctl_reg);
if (div != FIELD_GET(UCTL_CTL_H_CLKDIV_SEL, uctl_ctl) ||
!(uctl_ctl & UCTL_CTL_H_CLK_EN)) {
printf("dwc3 controller clock init failure\n");
return -EINVAL;
}
/* Step 4c: Deassert the controller clock divider reset. */
uctl_ctl = ioread64(uctl_ctl_reg);
uctl_ctl &= ~UCTL_CTL_H_CLKDIV_RST;
iowrite64(uctl_ctl, uctl_ctl_reg);
/* Step 5a: Reference clock configuration. */
uctl_ctl = ioread64(uctl_ctl_reg);
uctl_ctl &= ~UCTL_CTL_REF_CLK_SEL;
uctl_ctl |= FIELD_PREP(UCTL_CTL_REF_CLK_SEL, ref_clk_sel);
uctl_ctl &= ~UCTL_CTL_REF_CLK_FSEL;
uctl_ctl |= FIELD_PREP(UCTL_CTL_REF_CLK_FSEL, 0x07);
uctl_ctl &= ~UCTL_CTL_REF_CLK_DIV2;
switch (clock_rate) {
default:
printf("Invalid ref_clk %u, using %u instead\n", CLOCK_100MHZ,
clock_rate);
fallthrough;
case CLOCK_100MHZ:
mpll_mul = 0x19;
if (ref_clk_sel < 2) {
uctl_ctl &= ~UCTL_CTL_REF_CLK_FSEL;
uctl_ctl |= FIELD_PREP(UCTL_CTL_REF_CLK_FSEL, 0x27);
}
break;
case CLOCK_50MHZ:
mpll_mul = 0x32;
break;
case CLOCK_125MHZ:
mpll_mul = 0x28;
break;
}
uctl_ctl &= ~UCTL_CTL_MPLL_MULTIPLIER;
uctl_ctl |= FIELD_PREP(UCTL_CTL_MPLL_MULTIPLIER, mpll_mul);
/* Step 5b: Configure and enable spread-spectrum for SuperSpeed. */
uctl_ctl |= UCTL_CTL_SSC_EN;
/* Step 5c: Enable SuperSpeed. */
uctl_ctl |= UCTL_CTL_REF_SSP_EN;
/* Step 5d: Configure PHYs. SKIP */
/* Step 6a & 6b: Power up PHYs. */
uctl_ctl |= UCTL_CTL_HS_POWER_EN;
uctl_ctl |= UCTL_CTL_SS_POWER_EN;
iowrite64(uctl_ctl, uctl_ctl_reg);
/* Step 7: Wait 10 controller-clock cycles to take effect. */
udelay(10);
/* Step 8a: Deassert UCTL reset signal. */
uctl_ctl = ioread64(uctl_ctl_reg);
uctl_ctl &= ~UCTL_CTL_UCTL_RST;
iowrite64(uctl_ctl, uctl_ctl_reg);
/* Step 8b: Wait 10 controller-clock cycles. */
udelay(10);
/* Step 8c: Setup power-power control. */
if (dwc3_octeon_config_power(dev, base)) {
printf("Error configuring power\n");
return -EINVAL;
}
/* Step 8d: Deassert UAHC reset signal. */
uctl_ctl = ioread64(uctl_ctl_reg);
uctl_ctl &= ~UCTL_CTL_UAHC_RST;
iowrite64(uctl_ctl, uctl_ctl_reg);
/* Step 8e: Wait 10 controller-clock cycles. */
udelay(10);
/* Step 9: Enable conditional coprocessor clock of UCTL. */
uctl_ctl = ioread64(uctl_ctl_reg);
uctl_ctl |= UCTL_CTL_SCLK_EN;
iowrite64(uctl_ctl, uctl_ctl_reg);
/* Step 10: Set for host mode only. */
uctl_ctl = ioread64(uctl_ctl_reg);
uctl_ctl &= ~UCTL_CTL_DRD_MODE;
iowrite64(uctl_ctl, uctl_ctl_reg);
return 0;
}
static void dwc3_octeon_set_endian_mode(void __iomem *base)
{
u64 shim_cfg;
shim_cfg = ioread64(base + UCTL_SHIM_CFG);
shim_cfg &= ~UCTL_SHIM_CFG_CSR_ENDIAN_MODE;
shim_cfg |= FIELD_PREP(UCTL_SHIM_CFG_CSR_ENDIAN_MODE, 1);
shim_cfg &= ~UCTL_SHIM_CFG_DMA_ENDIAN_MODE;
shim_cfg |= FIELD_PREP(UCTL_SHIM_CFG_DMA_ENDIAN_MODE, 1);
iowrite64(shim_cfg, base + UCTL_SHIM_CFG);
}
static void dwc3_octeon_phy_reset(void __iomem *base)
{
u64 uctl_ctl;
uctl_ctl = ioread64(base);
uctl_ctl &= ~UCTL_CTL_UPHY_RST;
iowrite64(uctl_ctl, base);
}
static int octeon_dwc3_glue_probe(struct udevice *dev)
{
void __iomem *base;
base = dev_remap_addr(dev);
if (IS_ERR(base))
return PTR_ERR(base);
dwc3_octeon_clocks_start(dev, base);
dwc3_octeon_set_endian_mode(base);
dwc3_octeon_phy_reset(base);
return 0;
}
static int octeon_dwc3_glue_bind(struct udevice *dev)
{
ofnode node, dwc3_node;
/* Find snps,dwc3 node from subnode */
dwc3_node = ofnode_null();
ofnode_for_each_subnode(node, dev_ofnode(dev)) {
if (ofnode_device_is_compatible(node, "snps,dwc3"))
dwc3_node = node;
}
if (!ofnode_valid(dwc3_node)) {
printf("Can't find dwc3 subnode for %s\n", dev->name);
return -ENODEV;
}
return dm_scan_fdt_dev(dev);
}
static const struct udevice_id octeon_dwc3_glue_ids[] = {
{ .compatible = "cavium,octeon-7130-usb-uctl" },
{ }
};
U_BOOT_DRIVER(dwc3_octeon_glue) = {
.name = "dwc3_octeon_glue",
.id = UCLASS_NOP,
.of_match = octeon_dwc3_glue_ids,
.probe = octeon_dwc3_glue_probe,
.bind = octeon_dwc3_glue_bind,
.flags = DM_FLAG_ALLOC_PRIV_DMA,
};