u-boot/include/image.h
Simon Glass 88ff7cb1c8 image: Correct strncpy() warning with image_set_name()
gcc 12 seems to warn on strncpy() as a matter of course. Rewrite the code
a different way to do the same thing, to avoid the warning.

Signed-off-by: Simon Glass <sjg@chromium.org>
2022-11-22 15:13:34 -07:00

1835 lines
60 KiB
C

/* SPDX-License-Identifier: GPL-2.0+ */
/*
* (C) Copyright 2008 Semihalf
*
* (C) Copyright 2000-2005
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
********************************************************************
* NOTE: This header file defines an interface to U-Boot. Including
* this (unmodified) header file in another file is considered normal
* use of U-Boot, and does *not* fall under the heading of "derived
* work".
********************************************************************
*/
#ifndef __IMAGE_H__
#define __IMAGE_H__
#include "compiler.h"
#include <asm/byteorder.h>
#include <stdbool.h>
/* Define this to avoid #ifdefs later on */
struct lmb;
struct fdt_region;
#ifdef USE_HOSTCC
#include <sys/types.h>
#include <linux/kconfig.h>
#define IMAGE_INDENT_STRING ""
#else
#include <lmb.h>
#include <asm/u-boot.h>
#include <command.h>
#include <linker_lists.h>
#define IMAGE_INDENT_STRING " "
#endif /* USE_HOSTCC */
#include <hash.h>
#include <linux/libfdt.h>
#include <fdt_support.h>
#include <u-boot/hash-checksum.h>
extern ulong image_load_addr; /* Default Load Address */
extern ulong image_save_addr; /* Default Save Address */
extern ulong image_save_size; /* Default Save Size */
extern ulong image_load_offset; /* Default Load Address Offset */
/* An invalid size, meaning that the image size is not known */
#define IMAGE_SIZE_INVAL (-1UL)
enum ih_category {
IH_ARCH,
IH_COMP,
IH_OS,
IH_TYPE,
IH_PHASE,
IH_COUNT,
};
/*
* Operating System Codes
*
* The following are exposed to uImage header.
* New IDs *MUST* be appended at the end of the list and *NEVER*
* inserted for backward compatibility.
*/
enum {
IH_OS_INVALID = 0, /* Invalid OS */
IH_OS_OPENBSD, /* OpenBSD */
IH_OS_NETBSD, /* NetBSD */
IH_OS_FREEBSD, /* FreeBSD */
IH_OS_4_4BSD, /* 4.4BSD */
IH_OS_LINUX, /* Linux */
IH_OS_SVR4, /* SVR4 */
IH_OS_ESIX, /* Esix */
IH_OS_SOLARIS, /* Solaris */
IH_OS_IRIX, /* Irix */
IH_OS_SCO, /* SCO */
IH_OS_DELL, /* Dell */
IH_OS_NCR, /* NCR */
IH_OS_LYNXOS, /* LynxOS */
IH_OS_VXWORKS, /* VxWorks */
IH_OS_PSOS, /* pSOS */
IH_OS_QNX, /* QNX */
IH_OS_U_BOOT, /* Firmware */
IH_OS_RTEMS, /* RTEMS */
IH_OS_ARTOS, /* ARTOS */
IH_OS_UNITY, /* Unity OS */
IH_OS_INTEGRITY, /* INTEGRITY */
IH_OS_OSE, /* OSE */
IH_OS_PLAN9, /* Plan 9 */
IH_OS_OPENRTOS, /* OpenRTOS */
IH_OS_ARM_TRUSTED_FIRMWARE, /* ARM Trusted Firmware */
IH_OS_TEE, /* Trusted Execution Environment */
IH_OS_OPENSBI, /* RISC-V OpenSBI */
IH_OS_EFI, /* EFI Firmware (e.g. GRUB2) */
IH_OS_COUNT,
};
/*
* CPU Architecture Codes (supported by Linux)
*
* The following are exposed to uImage header.
* New IDs *MUST* be appended at the end of the list and *NEVER*
* inserted for backward compatibility.
*/
enum {
IH_ARCH_INVALID = 0, /* Invalid CPU */
IH_ARCH_ALPHA, /* Alpha */
IH_ARCH_ARM, /* ARM */
IH_ARCH_I386, /* Intel x86 */
IH_ARCH_IA64, /* IA64 */
IH_ARCH_MIPS, /* MIPS */
IH_ARCH_MIPS64, /* MIPS 64 Bit */
IH_ARCH_PPC, /* PowerPC */
IH_ARCH_S390, /* IBM S390 */
IH_ARCH_SH, /* SuperH */
IH_ARCH_SPARC, /* Sparc */
IH_ARCH_SPARC64, /* Sparc 64 Bit */
IH_ARCH_M68K, /* M68K */
IH_ARCH_NIOS, /* Nios-32 */
IH_ARCH_MICROBLAZE, /* MicroBlaze */
IH_ARCH_NIOS2, /* Nios-II */
IH_ARCH_BLACKFIN, /* Blackfin */
IH_ARCH_AVR32, /* AVR32 */
IH_ARCH_ST200, /* STMicroelectronics ST200 */
IH_ARCH_SANDBOX, /* Sandbox architecture (test only) */
IH_ARCH_NDS32, /* ANDES Technology - NDS32 */
IH_ARCH_OPENRISC, /* OpenRISC 1000 */
IH_ARCH_ARM64, /* ARM64 */
IH_ARCH_ARC, /* Synopsys DesignWare ARC */
IH_ARCH_X86_64, /* AMD x86_64, Intel and Via */
IH_ARCH_XTENSA, /* Xtensa */
IH_ARCH_RISCV, /* RISC-V */
IH_ARCH_COUNT,
};
/*
* Image Types
*
* "Standalone Programs" are directly runnable in the environment
* provided by U-Boot; it is expected that (if they behave
* well) you can continue to work in U-Boot after return from
* the Standalone Program.
* "OS Kernel Images" are usually images of some Embedded OS which
* will take over control completely. Usually these programs
* will install their own set of exception handlers, device
* drivers, set up the MMU, etc. - this means, that you cannot
* expect to re-enter U-Boot except by resetting the CPU.
* "RAMDisk Images" are more or less just data blocks, and their
* parameters (address, size) are passed to an OS kernel that is
* being started.
* "Multi-File Images" contain several images, typically an OS
* (Linux) kernel image and one or more data images like
* RAMDisks. This construct is useful for instance when you want
* to boot over the network using BOOTP etc., where the boot
* server provides just a single image file, but you want to get
* for instance an OS kernel and a RAMDisk image.
*
* "Multi-File Images" start with a list of image sizes, each
* image size (in bytes) specified by an "uint32_t" in network
* byte order. This list is terminated by an "(uint32_t)0".
* Immediately after the terminating 0 follow the images, one by
* one, all aligned on "uint32_t" boundaries (size rounded up to
* a multiple of 4 bytes - except for the last file).
*
* "Firmware Images" are binary images containing firmware (like
* U-Boot or FPGA images) which usually will be programmed to
* flash memory.
*
* "Script files" are command sequences that will be executed by
* U-Boot's command interpreter; this feature is especially
* useful when you configure U-Boot to use a real shell (hush)
* as command interpreter (=> Shell Scripts).
*
* The following are exposed to uImage header.
* New IDs *MUST* be appended at the end of the list and *NEVER*
* inserted for backward compatibility.
*/
enum image_type_t {
IH_TYPE_INVALID = 0, /* Invalid Image */
IH_TYPE_STANDALONE, /* Standalone Program */
IH_TYPE_KERNEL, /* OS Kernel Image */
IH_TYPE_RAMDISK, /* RAMDisk Image */
IH_TYPE_MULTI, /* Multi-File Image */
IH_TYPE_FIRMWARE, /* Firmware Image */
IH_TYPE_SCRIPT, /* Script file */
IH_TYPE_FILESYSTEM, /* Filesystem Image (any type) */
IH_TYPE_FLATDT, /* Binary Flat Device Tree Blob */
IH_TYPE_KWBIMAGE, /* Kirkwood Boot Image */
IH_TYPE_IMXIMAGE, /* Freescale IMXBoot Image */
IH_TYPE_UBLIMAGE, /* Davinci UBL Image */
IH_TYPE_OMAPIMAGE, /* TI OMAP Config Header Image */
IH_TYPE_AISIMAGE, /* TI Davinci AIS Image */
/* OS Kernel Image, can run from any load address */
IH_TYPE_KERNEL_NOLOAD,
IH_TYPE_PBLIMAGE, /* Freescale PBL Boot Image */
IH_TYPE_MXSIMAGE, /* Freescale MXSBoot Image */
IH_TYPE_GPIMAGE, /* TI Keystone GPHeader Image */
IH_TYPE_ATMELIMAGE, /* ATMEL ROM bootable Image */
IH_TYPE_SOCFPGAIMAGE, /* Altera SOCFPGA CV/AV Preloader */
IH_TYPE_X86_SETUP, /* x86 setup.bin Image */
IH_TYPE_LPC32XXIMAGE, /* x86 setup.bin Image */
IH_TYPE_LOADABLE, /* A list of typeless images */
IH_TYPE_RKIMAGE, /* Rockchip Boot Image */
IH_TYPE_RKSD, /* Rockchip SD card */
IH_TYPE_RKSPI, /* Rockchip SPI image */
IH_TYPE_ZYNQIMAGE, /* Xilinx Zynq Boot Image */
IH_TYPE_ZYNQMPIMAGE, /* Xilinx ZynqMP Boot Image */
IH_TYPE_ZYNQMPBIF, /* Xilinx ZynqMP Boot Image (bif) */
IH_TYPE_FPGA, /* FPGA Image */
IH_TYPE_VYBRIDIMAGE, /* VYBRID .vyb Image */
IH_TYPE_TEE, /* Trusted Execution Environment OS Image */
IH_TYPE_FIRMWARE_IVT, /* Firmware Image with HABv4 IVT */
IH_TYPE_PMMC, /* TI Power Management Micro-Controller Firmware */
IH_TYPE_STM32IMAGE, /* STMicroelectronics STM32 Image */
IH_TYPE_SOCFPGAIMAGE_V1, /* Altera SOCFPGA A10 Preloader */
IH_TYPE_MTKIMAGE, /* MediaTek BootROM loadable Image */
IH_TYPE_IMX8MIMAGE, /* Freescale IMX8MBoot Image */
IH_TYPE_IMX8IMAGE, /* Freescale IMX8Boot Image */
IH_TYPE_COPRO, /* Coprocessor Image for remoteproc*/
IH_TYPE_SUNXI_EGON, /* Allwinner eGON Boot Image */
IH_TYPE_SUNXI_TOC0, /* Allwinner TOC0 Boot Image */
IH_TYPE_COUNT, /* Number of image types */
};
/*
* Compression Types
*
* The following are exposed to uImage header.
* New IDs *MUST* be appended at the end of the list and *NEVER*
* inserted for backward compatibility.
*/
enum {
IH_COMP_NONE = 0, /* No Compression Used */
IH_COMP_GZIP, /* gzip Compression Used */
IH_COMP_BZIP2, /* bzip2 Compression Used */
IH_COMP_LZMA, /* lzma Compression Used */
IH_COMP_LZO, /* lzo Compression Used */
IH_COMP_LZ4, /* lz4 Compression Used */
IH_COMP_ZSTD, /* zstd Compression Used */
IH_COMP_COUNT,
};
/**
* Phases - images intended for particular U-Boot phases (SPL, etc.)
*
* @IH_PHASE_NONE: No phase information, can be loaded by any phase
* @IH_PHASE_U_BOOT: Only for U-Boot proper
* @IH_PHASE_SPL: Only for SPL
*/
enum image_phase_t {
IH_PHASE_NONE = 0,
IH_PHASE_U_BOOT,
IH_PHASE_SPL,
IH_PHASE_COUNT,
};
#define IMAGE_PHASE_SHIFT 8
#define IMAGE_PHASE_MASK (0xff << IMAGE_PHASE_SHIFT)
#define IMAGE_TYPE_MASK 0xff
/**
* image_ph() - build a composite value combining and type
*
* @phase: Image phase value
* @type: Image type value
* Returns: Composite value containing both
*/
static inline int image_ph(enum image_phase_t phase, enum image_type_t type)
{
return type | (phase << IMAGE_PHASE_SHIFT);
}
/**
* image_ph_phase() - obtain the phase from a composite phase/type value
*
* @image_ph_type: Composite value to convert
* Returns: Phase value taken from the composite value
*/
static inline int image_ph_phase(int image_ph_type)
{
return (image_ph_type & IMAGE_PHASE_MASK) >> IMAGE_PHASE_SHIFT;
}
/**
* image_ph_type() - obtain the type from a composite phase/type value
*
* @image_ph_type: Composite value to convert
* Returns: Type value taken from the composite value
*/
static inline int image_ph_type(int image_ph_type)
{
return image_ph_type & IMAGE_TYPE_MASK;
}
#define LZ4F_MAGIC 0x184D2204 /* LZ4 Magic Number */
#define IH_MAGIC 0x27051956 /* Image Magic Number */
#define IH_NMLEN 32 /* Image Name Length */
/* Reused from common.h */
#define ROUND(a, b) (((a) + (b) - 1) & ~((b) - 1))
/*
* Legacy format image header,
* all data in network byte order (aka natural aka bigendian).
*/
struct legacy_img_hdr {
uint32_t ih_magic; /* Image Header Magic Number */
uint32_t ih_hcrc; /* Image Header CRC Checksum */
uint32_t ih_time; /* Image Creation Timestamp */
uint32_t ih_size; /* Image Data Size */
uint32_t ih_load; /* Data Load Address */
uint32_t ih_ep; /* Entry Point Address */
uint32_t ih_dcrc; /* Image Data CRC Checksum */
uint8_t ih_os; /* Operating System */
uint8_t ih_arch; /* CPU architecture */
uint8_t ih_type; /* Image Type */
uint8_t ih_comp; /* Compression Type */
uint8_t ih_name[IH_NMLEN]; /* Image Name */
};
struct image_info {
ulong start, end; /* start/end of blob */
ulong image_start, image_len; /* start of image within blob, len of image */
ulong load; /* load addr for the image */
uint8_t comp, type, os; /* compression, type of image, os type */
uint8_t arch; /* CPU architecture */
};
/*
* Legacy and FIT format headers used by do_bootm() and do_bootm_<os>()
* routines.
*/
struct bootm_headers {
/*
* Legacy os image header, if it is a multi component image
* then boot_get_ramdisk() and get_fdt() will attempt to get
* data from second and third component accordingly.
*/
struct legacy_img_hdr *legacy_hdr_os; /* image header pointer */
struct legacy_img_hdr legacy_hdr_os_copy; /* header copy */
ulong legacy_hdr_valid;
/*
* The fit_ members are only used with FIT, but it involves a lot of
* #ifdefs to avoid compiling that code. Since FIT is the standard
* format, even for SPL, this extra data size seems worth it.
*/
const char *fit_uname_cfg; /* configuration node unit name */
void *fit_hdr_os; /* os FIT image header */
const char *fit_uname_os; /* os subimage node unit name */
int fit_noffset_os; /* os subimage node offset */
void *fit_hdr_rd; /* init ramdisk FIT image header */
const char *fit_uname_rd; /* init ramdisk subimage node unit name */
int fit_noffset_rd; /* init ramdisk subimage node offset */
void *fit_hdr_fdt; /* FDT blob FIT image header */
const char *fit_uname_fdt; /* FDT blob subimage node unit name */
int fit_noffset_fdt;/* FDT blob subimage node offset */
void *fit_hdr_setup; /* x86 setup FIT image header */
const char *fit_uname_setup; /* x86 setup subimage node name */
int fit_noffset_setup;/* x86 setup subimage node offset */
#ifndef USE_HOSTCC
struct image_info os; /* os image info */
ulong ep; /* entry point of OS */
ulong rd_start, rd_end;/* ramdisk start/end */
char *ft_addr; /* flat dev tree address */
ulong ft_len; /* length of flat device tree */
ulong initrd_start;
ulong initrd_end;
ulong cmdline_start;
ulong cmdline_end;
struct bd_info *kbd;
#endif
int verify; /* env_get("verify")[0] != 'n' */
#define BOOTM_STATE_START 0x00000001
#define BOOTM_STATE_FINDOS 0x00000002
#define BOOTM_STATE_FINDOTHER 0x00000004
#define BOOTM_STATE_LOADOS 0x00000008
#define BOOTM_STATE_RAMDISK 0x00000010
#define BOOTM_STATE_FDT 0x00000020
#define BOOTM_STATE_OS_CMDLINE 0x00000040
#define BOOTM_STATE_OS_BD_T 0x00000080
#define BOOTM_STATE_OS_PREP 0x00000100
#define BOOTM_STATE_OS_FAKE_GO 0x00000200 /* 'Almost' run the OS */
#define BOOTM_STATE_OS_GO 0x00000400
#define BOOTM_STATE_PRE_LOAD 0x00000800
int state;
#if defined(CONFIG_LMB) && !defined(USE_HOSTCC)
struct lmb lmb; /* for memory mgmt */
#endif
};
#ifdef CONFIG_LMB
#define images_lmb(_images) (&(_images)->lmb)
#else
#define images_lmb(_images) NULL
#endif
extern struct bootm_headers images;
/*
* Some systems (for example LWMON) have very short watchdog periods;
* we must make sure to split long operations like memmove() or
* checksum calculations into reasonable chunks.
*/
#ifndef CHUNKSZ
#define CHUNKSZ (64 * 1024)
#endif
#ifndef CHUNKSZ_CRC32
#define CHUNKSZ_CRC32 (64 * 1024)
#endif
#ifndef CHUNKSZ_MD5
#define CHUNKSZ_MD5 (64 * 1024)
#endif
#ifndef CHUNKSZ_SHA1
#define CHUNKSZ_SHA1 (64 * 1024)
#endif
#define uimage_to_cpu(x) be32_to_cpu(x)
#define cpu_to_uimage(x) cpu_to_be32(x)
/*
* Translation table for entries of a specific type; used by
* get_table_entry_id() and get_table_entry_name().
*/
typedef struct table_entry {
int id;
char *sname; /* short (input) name to find table entry */
char *lname; /* long (output) name to print for messages */
} table_entry_t;
/*
* Compression type and magic number mapping table.
*/
struct comp_magic_map {
int comp_id;
const char *name;
unsigned char magic[2];
};
/*
* get_table_entry_id() scans the translation table trying to find an
* entry that matches the given short name. If a matching entry is
* found, it's id is returned to the caller.
*/
int get_table_entry_id(const table_entry_t *table,
const char *table_name, const char *name);
/*
* get_table_entry_name() scans the translation table trying to find
* an entry that matches the given id. If a matching entry is found,
* its long name is returned to the caller.
*/
char *get_table_entry_name(const table_entry_t *table, char *msg, int id);
const char *genimg_get_os_name(uint8_t os);
/**
* genimg_get_os_short_name() - get the short name for an OS
*
* @param os OS (IH_OS_...)
* Return: OS short name, or "unknown" if unknown
*/
const char *genimg_get_os_short_name(uint8_t comp);
const char *genimg_get_arch_name(uint8_t arch);
/**
* genimg_get_phase_name() - Get the friendly name for a phase
*
* @phase: Phase value to look up
* Returns: Friendly name for the phase (e.g. "U-Boot phase")
*/
const char *genimg_get_phase_name(enum image_phase_t phase);
/**
* genimg_get_phase_id() - Convert a phase name to an ID
*
* @name: Name to convert (e.g. "u-boot")
* Returns: ID for that phase (e.g. IH_PHASE_U_BOOT)
*/
int genimg_get_phase_id(const char *name);
/**
* genimg_get_arch_short_name() - get the short name for an architecture
*
* @param arch Architecture type (IH_ARCH_...)
* Return: architecture short name, or "unknown" if unknown
*/
const char *genimg_get_arch_short_name(uint8_t arch);
const char *genimg_get_type_name(uint8_t type);
/**
* genimg_get_type_short_name() - get the short name for an image type
*
* @param type Image type (IH_TYPE_...)
* Return: image short name, or "unknown" if unknown
*/
const char *genimg_get_type_short_name(uint8_t type);
const char *genimg_get_comp_name(uint8_t comp);
/**
* genimg_get_comp_short_name() - get the short name for a compression method
*
* @param comp compression method (IH_COMP_...)
* Return: compression method short name, or "unknown" if unknown
*/
const char *genimg_get_comp_short_name(uint8_t comp);
/**
* genimg_get_cat_name() - Get the name of an item in a category
*
* @category: Category of item
* @id: Item ID
* Return: name of item, or "Unknown ..." if unknown
*/
const char *genimg_get_cat_name(enum ih_category category, uint id);
/**
* genimg_get_cat_short_name() - Get the short name of an item in a category
*
* @category: Category of item
* @id: Item ID
* Return: short name of item, or "Unknown ..." if unknown
*/
const char *genimg_get_cat_short_name(enum ih_category category, uint id);
/**
* genimg_get_cat_count() - Get the number of items in a category
*
* @category: Category to check
* Return: the number of items in the category (IH_xxx_COUNT)
*/
int genimg_get_cat_count(enum ih_category category);
/**
* genimg_get_cat_desc() - Get the description of a category
*
* @category: Category to check
* Return: the description of a category, e.g. "architecture". This
* effectively converts the enum to a string.
*/
const char *genimg_get_cat_desc(enum ih_category category);
/**
* genimg_cat_has_id() - Check whether a category has an item
*
* @category: Category to check
* @id: Item ID
* Return: true or false as to whether a category has an item
*/
bool genimg_cat_has_id(enum ih_category category, uint id);
int genimg_get_os_id(const char *name);
int genimg_get_arch_id(const char *name);
int genimg_get_type_id(const char *name);
int genimg_get_comp_id(const char *name);
void genimg_print_size(uint32_t size);
#if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC)
#define IMAGE_ENABLE_TIMESTAMP 1
#else
#define IMAGE_ENABLE_TIMESTAMP 0
#endif
void genimg_print_time(time_t timestamp);
/* What to do with a image load address ('load = <> 'in the FIT) */
enum fit_load_op {
FIT_LOAD_IGNORED, /* Ignore load address */
FIT_LOAD_OPTIONAL, /* Can be provided, but optional */
FIT_LOAD_OPTIONAL_NON_ZERO, /* Optional, a value of 0 is ignored */
FIT_LOAD_REQUIRED, /* Must be provided */
};
int boot_get_setup(struct bootm_headers *images, uint8_t arch, ulong *setup_start,
ulong *setup_len);
/* Image format types, returned by _get_format() routine */
#define IMAGE_FORMAT_INVALID 0x00
#define IMAGE_FORMAT_LEGACY 0x01 /* legacy image_header based format */
#define IMAGE_FORMAT_FIT 0x02 /* new, libfdt based format */
#define IMAGE_FORMAT_ANDROID 0x03 /* Android boot image */
ulong genimg_get_kernel_addr_fit(char * const img_addr,
const char **fit_uname_config,
const char **fit_uname_kernel);
ulong genimg_get_kernel_addr(char * const img_addr);
int genimg_get_format(const void *img_addr);
int genimg_has_config(struct bootm_headers *images);
int boot_get_fpga(int argc, char *const argv[], struct bootm_headers *images,
uint8_t arch, const ulong *ld_start, ulong * const ld_len);
int boot_get_ramdisk(int argc, char *const argv[], struct bootm_headers *images,
uint8_t arch, ulong *rd_start, ulong *rd_end);
/**
* boot_get_loadable - routine to load a list of binaries to memory
* @argc: Ignored Argument
* @argv: Ignored Argument
* @images: pointer to the bootm images structure
* @arch: expected architecture for the image
* @ld_start: Ignored Argument
* @ld_len: Ignored Argument
*
* boot_get_loadable() will take the given FIT configuration, and look
* for a field named "loadables". Loadables, is a list of elements in
* the FIT given as strings. exe:
* loadables = "linux_kernel", "fdt-2";
* this function will attempt to parse each string, and load the
* corresponding element from the FIT into memory. Once placed,
* no aditional actions are taken.
*
* @return:
* 0, if only valid images or no images are found
* error code, if an error occurs during fit_image_load
*/
int boot_get_loadable(int argc, char *const argv[], struct bootm_headers *images,
uint8_t arch, const ulong *ld_start, ulong *const ld_len);
int boot_get_setup_fit(struct bootm_headers *images, uint8_t arch,
ulong *setup_start, ulong *setup_len);
/**
* boot_get_fdt_fit() - load a DTB from a FIT file (applying overlays)
*
* This deals with all aspects of loading an DTB from a FIT.
* The correct base image based on configuration will be selected, and
* then any overlays specified will be applied (as present in fit_uname_configp).
*
* @param images Boot images structure
* @param addr Address of FIT in memory
* @param fit_unamep On entry this is the requested image name
* (e.g. "kernel") or NULL to use the default. On exit
* points to the selected image name
* @param fit_uname_configp On entry this is the requested configuration
* name (e.g. "conf-1") or NULL to use the default. On
* exit points to the selected configuration name.
* @param arch Expected architecture (IH_ARCH_...)
* @param datap Returns address of loaded image
* @param lenp Returns length of loaded image
*
* Return: node offset of base image, or -ve error code on error
*/
int boot_get_fdt_fit(struct bootm_headers *images, ulong addr,
const char **fit_unamep, const char **fit_uname_configp,
int arch, ulong *datap, ulong *lenp);
/**
* fit_image_load() - load an image from a FIT
*
* This deals with all aspects of loading an image from a FIT, including
* selecting the right image based on configuration, verifying it, printing
* out progress messages, checking the type/arch/os and optionally copying it
* to the right load address.
*
* The property to look up is defined by image_type.
*
* @param images Boot images structure
* @param addr Address of FIT in memory
* @param fit_unamep On entry this is the requested image name
* (e.g. "kernel") or NULL to use the default. On exit
* points to the selected image name
* @param fit_uname_configp On entry this is the requested configuration
* name (e.g. "conf-1") or NULL to use the default. On
* exit points to the selected configuration name.
* @param arch Expected architecture (IH_ARCH_...)
* @param image_ph_type Required image type (IH_TYPE_...). If this is
* IH_TYPE_KERNEL then we allow IH_TYPE_KERNEL_NOLOAD
* also. If a phase is required, this is included also,
* see image_phase_and_type()
* @param bootstage_id ID of starting bootstage to use for progress updates.
* This will be added to the BOOTSTAGE_SUB values when
* calling bootstage_mark()
* @param load_op Decribes what to do with the load address
* @param datap Returns address of loaded image
* @param lenp Returns length of loaded image
* Return: node offset of image, or -ve error code on error
*/
int fit_image_load(struct bootm_headers *images, ulong addr,
const char **fit_unamep, const char **fit_uname_configp,
int arch, int image_ph_type, int bootstage_id,
enum fit_load_op load_op, ulong *datap, ulong *lenp);
/**
* image_source_script() - Execute a script
*
* Executes a U-Boot script at a particular address in memory. The script should
* have a header (FIT or legacy) with the script type (IH_TYPE_SCRIPT).
*
* @addr: Address of script
* @fit_uname: FIT subimage name
* Return: result code (enum command_ret_t)
*/
int image_source_script(ulong addr, const char *fit_uname);
/**
* fit_get_node_from_config() - Look up an image a FIT by type
*
* This looks in the selected conf- node (images->fit_uname_cfg) for a
* particular image type (e.g. "kernel") and then finds the image that is
* referred to.
*
* For example, for something like:
*
* images {
* kernel {
* ...
* };
* };
* configurations {
* conf-1 {
* kernel = "kernel";
* };
* };
*
* the function will return the node offset of the kernel@1 node, assuming
* that conf-1 is the chosen configuration.
*
* @param images Boot images structure
* @param prop_name Property name to look up (FIT_..._PROP)
* @param addr Address of FIT in memory
*/
int fit_get_node_from_config(struct bootm_headers *images,
const char *prop_name, ulong addr);
int boot_get_fdt(int flag, int argc, char *const argv[], uint8_t arch,
struct bootm_headers *images,
char **of_flat_tree, ulong *of_size);
void boot_fdt_add_mem_rsv_regions(struct lmb *lmb, void *fdt_blob);
int boot_relocate_fdt(struct lmb *lmb, char **of_flat_tree, ulong *of_size);
int boot_ramdisk_high(struct lmb *lmb, ulong rd_data, ulong rd_len,
ulong *initrd_start, ulong *initrd_end);
int boot_get_cmdline(struct lmb *lmb, ulong *cmd_start, ulong *cmd_end);
int boot_get_kbd(struct lmb *lmb, struct bd_info **kbd);
/*******************************************************************/
/* Legacy format specific code (prefixed with image_) */
/*******************************************************************/
static inline uint32_t image_get_header_size(void)
{
return sizeof(struct legacy_img_hdr);
}
#define image_get_hdr_l(f) \
static inline uint32_t image_get_##f(const struct legacy_img_hdr *hdr) \
{ \
return uimage_to_cpu(hdr->ih_##f); \
}
image_get_hdr_l(magic) /* image_get_magic */
image_get_hdr_l(hcrc) /* image_get_hcrc */
image_get_hdr_l(time) /* image_get_time */
image_get_hdr_l(size) /* image_get_size */
image_get_hdr_l(load) /* image_get_load */
image_get_hdr_l(ep) /* image_get_ep */
image_get_hdr_l(dcrc) /* image_get_dcrc */
#define image_get_hdr_b(f) \
static inline uint8_t image_get_##f(const struct legacy_img_hdr *hdr) \
{ \
return hdr->ih_##f; \
}
image_get_hdr_b(os) /* image_get_os */
image_get_hdr_b(arch) /* image_get_arch */
image_get_hdr_b(type) /* image_get_type */
image_get_hdr_b(comp) /* image_get_comp */
static inline char *image_get_name(const struct legacy_img_hdr *hdr)
{
return (char *)hdr->ih_name;
}
static inline uint32_t image_get_data_size(const struct legacy_img_hdr *hdr)
{
return image_get_size(hdr);
}
/**
* image_get_data - get image payload start address
* @hdr: image header
*
* image_get_data() returns address of the image payload. For single
* component images it is image data start. For multi component
* images it points to the null terminated table of sub-images sizes.
*
* returns:
* image payload data start address
*/
static inline ulong image_get_data(const struct legacy_img_hdr *hdr)
{
return ((ulong)hdr + image_get_header_size());
}
static inline uint32_t image_get_image_size(const struct legacy_img_hdr *hdr)
{
return (image_get_size(hdr) + image_get_header_size());
}
static inline ulong image_get_image_end(const struct legacy_img_hdr *hdr)
{
return ((ulong)hdr + image_get_image_size(hdr));
}
#define image_set_hdr_l(f) \
static inline void image_set_##f(struct legacy_img_hdr *hdr, uint32_t val) \
{ \
hdr->ih_##f = cpu_to_uimage(val); \
}
image_set_hdr_l(magic) /* image_set_magic */
image_set_hdr_l(hcrc) /* image_set_hcrc */
image_set_hdr_l(time) /* image_set_time */
image_set_hdr_l(size) /* image_set_size */
image_set_hdr_l(load) /* image_set_load */
image_set_hdr_l(ep) /* image_set_ep */
image_set_hdr_l(dcrc) /* image_set_dcrc */
#define image_set_hdr_b(f) \
static inline void image_set_##f(struct legacy_img_hdr *hdr, uint8_t val) \
{ \
hdr->ih_##f = val; \
}
image_set_hdr_b(os) /* image_set_os */
image_set_hdr_b(arch) /* image_set_arch */
image_set_hdr_b(type) /* image_set_type */
image_set_hdr_b(comp) /* image_set_comp */
static inline void image_set_name(struct legacy_img_hdr *hdr, const char *name)
{
/*
* This is equivalent to: strncpy(image_get_name(hdr), name, IH_NMLEN);
*
* Use the tortured code below to avoid a warning with gcc 12. We do not
* want to include a nul terminator if the name is of length IH_NMLEN
*/
memcpy(image_get_name(hdr), name, strnlen(name, IH_NMLEN));
}
int image_check_hcrc(const struct legacy_img_hdr *hdr);
int image_check_dcrc(const struct legacy_img_hdr *hdr);
#ifndef USE_HOSTCC
ulong env_get_bootm_low(void);
phys_size_t env_get_bootm_size(void);
phys_size_t env_get_bootm_mapsize(void);
#endif
void memmove_wd(void *to, void *from, size_t len, ulong chunksz);
static inline int image_check_magic(const struct legacy_img_hdr *hdr)
{
return (image_get_magic(hdr) == IH_MAGIC);
}
static inline int image_check_type(const struct legacy_img_hdr *hdr, uint8_t type)
{
return (image_get_type(hdr) == type);
}
static inline int image_check_arch(const struct legacy_img_hdr *hdr, uint8_t arch)
{
/* Let's assume that sandbox can load any architecture */
if (!tools_build() && IS_ENABLED(CONFIG_SANDBOX))
return true;
return (image_get_arch(hdr) == arch) ||
(image_get_arch(hdr) == IH_ARCH_ARM && arch == IH_ARCH_ARM64);
}
static inline int image_check_os(const struct legacy_img_hdr *hdr, uint8_t os)
{
return (image_get_os(hdr) == os);
}
ulong image_multi_count(const struct legacy_img_hdr *hdr);
void image_multi_getimg(const struct legacy_img_hdr *hdr, ulong idx,
ulong *data, ulong *len);
void image_print_contents(const void *hdr);
#ifndef USE_HOSTCC
static inline int image_check_target_arch(const struct legacy_img_hdr *hdr)
{
#ifndef IH_ARCH_DEFAULT
# error "please define IH_ARCH_DEFAULT in your arch asm/u-boot.h"
#endif
return image_check_arch(hdr, IH_ARCH_DEFAULT);
}
#endif /* USE_HOSTCC */
/**
* image_decomp_type() - Find out compression type of an image
*
* @buf: Address in U-Boot memory where image is loaded.
* @len: Length of the compressed image.
* Return: compression type or IH_COMP_NONE if not compressed.
*
* Note: Only following compression types are supported now.
* lzo, lzma, gzip, bzip2
*/
int image_decomp_type(const unsigned char *buf, ulong len);
/**
* image_decomp() - decompress an image
*
* @comp: Compression algorithm that is used (IH_COMP_...)
* @load: Destination load address in U-Boot memory
* @image_start Image start address (where we are decompressing from)
* @type: OS type (IH_OS_...)
* @load_bug: Place to decompress to
* @image_buf: Address to decompress from
* @image_len: Number of bytes in @image_buf to decompress
* @unc_len: Available space for decompression
* Return: 0 if OK, -ve on error (BOOTM_ERR_...)
*/
int image_decomp(int comp, ulong load, ulong image_start, int type,
void *load_buf, void *image_buf, ulong image_len,
uint unc_len, ulong *load_end);
/**
* Set up properties in the FDT
*
* This sets up properties in the FDT that is to be passed to linux.
*
* @images: Images information
* @blob: FDT to update
* @of_size: Size of the FDT
* @lmb: Points to logical memory block structure
* Return: 0 if ok, <0 on failure
*/
int image_setup_libfdt(struct bootm_headers *images, void *blob,
int of_size, struct lmb *lmb);
/**
* Set up the FDT to use for booting a kernel
*
* This performs ramdisk setup, sets up the FDT if required, and adds
* paramters to the FDT if libfdt is available.
*
* @param images Images information
* Return: 0 if ok, <0 on failure
*/
int image_setup_linux(struct bootm_headers *images);
/**
* bootz_setup() - Extract stat and size of a Linux xImage
*
* @image: Address of image
* @start: Returns start address of image
* @end : Returns end address of image
* Return: 0 if OK, 1 if the image was not recognised
*/
int bootz_setup(ulong image, ulong *start, ulong *end);
/**
* Return the correct start address and size of a Linux aarch64 Image.
*
* @image: Address of image
* @start: Returns start address of image
* @size : Returns size image
* @force_reloc: Ignore image->ep field, always place image to RAM start
* Return: 0 if OK, 1 if the image was not recognised
*/
int booti_setup(ulong image, ulong *relocated_addr, ulong *size,
bool force_reloc);
/*******************************************************************/
/* New uImage format specific code (prefixed with fit_) */
/*******************************************************************/
#define FIT_IMAGES_PATH "/images"
#define FIT_CONFS_PATH "/configurations"
/* hash/signature/key node */
#define FIT_HASH_NODENAME "hash"
#define FIT_ALGO_PROP "algo"
#define FIT_VALUE_PROP "value"
#define FIT_IGNORE_PROP "uboot-ignore"
#define FIT_SIG_NODENAME "signature"
#define FIT_KEY_REQUIRED "required"
#define FIT_KEY_HINT "key-name-hint"
/* cipher node */
#define FIT_CIPHER_NODENAME "cipher"
#define FIT_ALGO_PROP "algo"
/* image node */
#define FIT_DATA_PROP "data"
#define FIT_DATA_POSITION_PROP "data-position"
#define FIT_DATA_OFFSET_PROP "data-offset"
#define FIT_DATA_SIZE_PROP "data-size"
#define FIT_TIMESTAMP_PROP "timestamp"
#define FIT_DESC_PROP "description"
#define FIT_ARCH_PROP "arch"
#define FIT_TYPE_PROP "type"
#define FIT_OS_PROP "os"
#define FIT_COMP_PROP "compression"
#define FIT_ENTRY_PROP "entry"
#define FIT_LOAD_PROP "load"
/* configuration node */
#define FIT_KERNEL_PROP "kernel"
#define FIT_RAMDISK_PROP "ramdisk"
#define FIT_FDT_PROP "fdt"
#define FIT_LOADABLE_PROP "loadables"
#define FIT_DEFAULT_PROP "default"
#define FIT_SETUP_PROP "setup"
#define FIT_FPGA_PROP "fpga"
#define FIT_FIRMWARE_PROP "firmware"
#define FIT_STANDALONE_PROP "standalone"
#define FIT_PHASE_PROP "phase"
#define FIT_MAX_HASH_LEN HASH_MAX_DIGEST_SIZE
/* cmdline argument format parsing */
int fit_parse_conf(const char *spec, ulong addr_curr,
ulong *addr, const char **conf_name);
int fit_parse_subimage(const char *spec, ulong addr_curr,
ulong *addr, const char **image_name);
int fit_get_subimage_count(const void *fit, int images_noffset);
void fit_print_contents(const void *fit);
void fit_image_print(const void *fit, int noffset, const char *p);
/**
* fit_get_end - get FIT image size
* @fit: pointer to the FIT format image header
*
* returns:
* size of the FIT image (blob) in memory
*/
static inline ulong fit_get_size(const void *fit)
{
return fdt_totalsize(fit);
}
/**
* fit_get_end - get FIT image end
* @fit: pointer to the FIT format image header
*
* returns:
* end address of the FIT image (blob) in memory
*/
ulong fit_get_end(const void *fit);
/**
* fit_get_name - get FIT node name
* @fit: pointer to the FIT format image header
*
* returns:
* NULL, on error
* pointer to node name, on success
*/
static inline const char *fit_get_name(const void *fit_hdr,
int noffset, int *len)
{
return fdt_get_name(fit_hdr, noffset, len);
}
int fit_get_desc(const void *fit, int noffset, char **desc);
int fit_get_timestamp(const void *fit, int noffset, time_t *timestamp);
int fit_image_get_node(const void *fit, const char *image_uname);
int fit_image_get_os(const void *fit, int noffset, uint8_t *os);
int fit_image_get_arch(const void *fit, int noffset, uint8_t *arch);
int fit_image_get_type(const void *fit, int noffset, uint8_t *type);
int fit_image_get_comp(const void *fit, int noffset, uint8_t *comp);
int fit_image_get_load(const void *fit, int noffset, ulong *load);
int fit_image_get_entry(const void *fit, int noffset, ulong *entry);
int fit_image_get_data(const void *fit, int noffset,
const void **data, size_t *size);
int fit_image_get_data_offset(const void *fit, int noffset, int *data_offset);
int fit_image_get_data_position(const void *fit, int noffset,
int *data_position);
int fit_image_get_data_size(const void *fit, int noffset, int *data_size);
int fit_image_get_data_size_unciphered(const void *fit, int noffset,
size_t *data_size);
int fit_image_get_data_and_size(const void *fit, int noffset,
const void **data, size_t *size);
/**
* fit_get_data_node() - Get verified image data for an image
* @fit: Pointer to the FIT format image header
* @image_uname: The name of the image node
* @data: A pointer which will be filled with the location of the image data
* @size: A pointer which will be filled with the size of the image data
*
* This function looks up the location and size of an image specified by its
* name. For example, if you had a FIT like::
*
* images {
* my-firmware {
* ...
* };
* };
*
* Then you could look up the data location and size of the my-firmware image
* by calling this function with @image_uname set to "my-firmware". This
* function also verifies the image data (if enabled) before returning. The
* image description is printed out on success. @data and @size will not be
* modified on faulure.
*
* Return:
* * 0 on success
* * -EINVAL if the image could not be verified
* * -ENOENT if there was a problem getting the data/size
* * Another negative error if there was a problem looking up the image node.
*/
int fit_get_data_node(const void *fit, const char *image_uname,
const void **data, size_t *size);
/**
* fit_get_data_conf_prop() - Get verified image data for a property in /conf
* @fit: Pointer to the FIT format image header
* @prop_name: The name of the property in /conf referencing the image
* @data: A pointer which will be filled with the location of the image data
* @size: A pointer which will be filled with the size of the image data
*
* This function looks up the location and size of an image specified by a
* property in /conf. For example, if you had a FIT like::
*
* images {
* my-firmware {
* ...
* };
* };
*
* configurations {
* default = "conf-1";
* conf-1 {
* some-firmware = "my-firmware";
* };
* };
*
* Then you could look up the data location and size of the my-firmware image
* by calling this function with @prop_name set to "some-firmware". This
* function also verifies the image data (if enabled) before returning. The
* image description is printed out on success. @data and @size will not be
* modified on faulure.
*
* Return:
* * 0 on success
* * -EINVAL if the image could not be verified
* * -ENOENT if there was a problem getting the data/size
* * Another negative error if there was a problem looking up the configuration
* or image node.
*/
int fit_get_data_conf_prop(const void *fit, const char *prop_name,
const void **data, size_t *size);
int fit_image_hash_get_algo(const void *fit, int noffset, const char **algo);
int fit_image_hash_get_value(const void *fit, int noffset, uint8_t **value,
int *value_len);
int fit_set_timestamp(void *fit, int noffset, time_t timestamp);
/**
* fit_pre_load_data() - add public key to fdt blob
*
* Adds public key to the node pre load.
*
* @keydir: Directory containing keys
* @keydest: FDT blob to write public key
* @fit: Pointer to the FIT format image header
*
* returns:
* 0, on success
* < 0, on failure
*/
int fit_pre_load_data(const char *keydir, void *keydest, void *fit);
int fit_cipher_data(const char *keydir, void *keydest, void *fit,
const char *comment, int require_keys,
const char *engine_id, const char *cmdname);
#define NODE_MAX_NAME_LEN 80
/**
* struct image_summary - Provides information about signing info added
*
* @sig_offset: Offset of the node in the blob devicetree where the signature
* was wriiten
* @sig_path: Path to @sig_offset
* @keydest_offset: Offset of the node in the keydest devicetree where the
* public key was written (-1 if none)
* @keydest_path: Path to @keydest_offset
*/
struct image_summary {
int sig_offset;
char sig_path[NODE_MAX_NAME_LEN];
int keydest_offset;
char keydest_path[NODE_MAX_NAME_LEN];
};
/**
* fit_add_verification_data() - add verification data to FIT image nodes
*
* @keydir: Directory containing keys
* @kwydest: FDT blob to write public key information to (NULL if none)
* @fit: Pointer to the FIT format image header
* @comment: Comment to add to signature nodes
* @require_keys: Mark all keys as 'required'
* @engine_id: Engine to use for signing
* @cmdname: Command name used when reporting errors
* @algo_name: Algorithm name, or NULL if to be read from FIT
* @summary: Returns information about what data was written
*
* Adds hash values for all component images in the FIT blob.
* Hashes are calculated for all component images which have hash subnodes
* with algorithm property set to one of the supported hash algorithms.
*
* Also add signatures if signature nodes are present.
*
* returns
* 0, on success
* libfdt error code, on failure
*/
int fit_add_verification_data(const char *keydir, const char *keyfile,
void *keydest, void *fit, const char *comment,
int require_keys, const char *engine_id,
const char *cmdname, const char *algo_name,
struct image_summary *summary);
/**
* fit_image_verify_with_data() - Verify an image with given data
*
* @fit: Pointer to the FIT format image header
* @image_offset: Offset in @fit of image to verify
* @key_blob: FDT containing public keys
* @data: Image data to verify
* @size: Size of image data
*/
int fit_image_verify_with_data(const void *fit, int image_noffset,
const void *key_blob, const void *data,
size_t size);
int fit_image_verify(const void *fit, int noffset);
int fit_config_verify(const void *fit, int conf_noffset);
int fit_all_image_verify(const void *fit);
int fit_config_decrypt(const void *fit, int conf_noffset);
int fit_image_check_os(const void *fit, int noffset, uint8_t os);
int fit_image_check_arch(const void *fit, int noffset, uint8_t arch);
int fit_image_check_type(const void *fit, int noffset, uint8_t type);
int fit_image_check_comp(const void *fit, int noffset, uint8_t comp);
/**
* fit_check_format() - Check that the FIT is valid
*
* This performs various checks on the FIT to make sure it is suitable for
* use, looking for mandatory properties, nodes, etc.
*
* If FIT_FULL_CHECK is enabled, it also runs it through libfdt to make
* sure that there are no strange tags or broken nodes in the FIT.
*
* @fit: pointer to the FIT format image header
* Return: 0 if OK, -ENOEXEC if not an FDT file, -EINVAL if the full FDT check
* failed (e.g. due to bad structure), -ENOMSG if the description is
* missing, -EBADMSG if the timestamp is missing, -ENOENT if the /images
* path is missing
*/
int fit_check_format(const void *fit, ulong size);
/**
* fit_conf_find_compat() - find most compatible configuration
* @fit: pointer to the FIT format image header
* @fdt: pointer to the device tree to compare against
*
* Attempts to find the configuration whose fdt is the most compatible with the
* passed in device tree
*
* Example::
*
* / o image-tree
* |-o images
* | |-o fdt-1
* | |-o fdt-2
* |
* |-o configurations
* |-o config-1
* | |-fdt = fdt-1
* |
* |-o config-2
* |-fdt = fdt-2
*
* / o U-Boot fdt
* |-compatible = "foo,bar", "bim,bam"
*
* / o kernel fdt1
* |-compatible = "foo,bar",
*
* / o kernel fdt2
* |-compatible = "bim,bam", "baz,biz"
*
* Configuration 1 would be picked because the first string in U-Boot's
* compatible list, "foo,bar", matches a compatible string in the root of fdt1.
* "bim,bam" in fdt2 matches the second string which isn't as good as fdt1.
*
* As an optimization, the compatible property from the FDT's root node can be
* copied into the configuration node in the FIT image. This is required to
* match configurations with compressed FDTs.
*
* Returns: offset to the configuration to use if one was found, -1 otherwise
*/
int fit_conf_find_compat(const void *fit, const void *fdt);
/**
* fit_conf_get_node - get node offset for configuration of a given unit name
* @fit: pointer to the FIT format image header
* @conf_uname: configuration node unit name (NULL to use default)
*
* fit_conf_get_node() finds a configuration (within the '/configurations'
* parent node) of a provided unit name. If configuration is found its node
* offset is returned to the caller.
*
* When NULL is provided in second argument fit_conf_get_node() will search
* for a default configuration node instead. Default configuration node unit
* name is retrieved from FIT_DEFAULT_PROP property of the '/configurations'
* node.
*
* returns:
* configuration node offset when found (>=0)
* negative number on failure (FDT_ERR_* code)
*/
int fit_conf_get_node(const void *fit, const char *conf_uname);
int fit_conf_get_prop_node_count(const void *fit, int noffset,
const char *prop_name);
int fit_conf_get_prop_node_index(const void *fit, int noffset,
const char *prop_name, int index);
/**
* fit_conf_get_prop_node() - Get node refered to by a configuration
* @fit: FIT to check
* @noffset: Offset of conf@xxx node to check
* @prop_name: Property to read from the conf node
* @phase: Image phase to use, IH_PHASE_NONE for any
*
* The conf- nodes contain references to other nodes, using properties
* like 'kernel = "kernel"'. Given such a property name (e.g. "kernel"),
* return the offset of the node referred to (e.g. offset of node
* "/images/kernel".
*/
int fit_conf_get_prop_node(const void *fit, int noffset, const char *prop_name,
enum image_phase_t phase);
int fit_check_ramdisk(const void *fit, int os_noffset,
uint8_t arch, int verify);
int calculate_hash(const void *data, int data_len, const char *algo,
uint8_t *value, int *value_len);
/*
* At present we only support signing on the host, and verification on the
* device
*/
#if defined(USE_HOSTCC)
# if defined(CONFIG_FIT_SIGNATURE)
# define IMAGE_ENABLE_SIGN 1
# define FIT_IMAGE_ENABLE_VERIFY 1
# include <openssl/evp.h>
# else
# define IMAGE_ENABLE_SIGN 0
# define FIT_IMAGE_ENABLE_VERIFY 0
# endif
#else
# define IMAGE_ENABLE_SIGN 0
# define FIT_IMAGE_ENABLE_VERIFY CONFIG_IS_ENABLED(FIT_SIGNATURE)
#endif
#ifdef USE_HOSTCC
void *image_get_host_blob(void);
void image_set_host_blob(void *host_blob);
# define gd_fdt_blob() image_get_host_blob()
#else
# define gd_fdt_blob() (gd->fdt_blob)
#endif
/*
* Information passed to the signing routines
*
* Either 'keydir', 'keyname', or 'keyfile' can be NULL. However, either
* 'keyfile', or both 'keydir' and 'keyname' should have valid values. If
* neither are valid, some operations might fail with EINVAL.
*/
struct image_sign_info {
const char *keydir; /* Directory conaining keys */
const char *keyname; /* Name of key to use */
const char *keyfile; /* Filename of private or public key */
const void *fit; /* Pointer to FIT blob */
int node_offset; /* Offset of signature node */
const char *name; /* Algorithm name */
struct checksum_algo *checksum; /* Checksum algorithm information */
struct padding_algo *padding; /* Padding algorithm information */
struct crypto_algo *crypto; /* Crypto algorithm information */
const void *fdt_blob; /* FDT containing public keys */
int required_keynode; /* Node offset of key to use: -1=any */
const char *require_keys; /* Value for 'required' property */
const char *engine_id; /* Engine to use for signing */
/*
* Note: the following two fields are always valid even w/o
* RSA_VERIFY_WITH_PKEY in order to make sure this structure is
* the same on target and host. Otherwise, vboot test may fail.
*/
const void *key; /* Pointer to public key in DER */
int keylen; /* Length of public key */
};
/* A part of an image, used for hashing */
struct image_region {
const void *data;
int size;
};
struct checksum_algo {
const char *name;
const int checksum_len;
const int der_len;
const uint8_t *der_prefix;
#if IMAGE_ENABLE_SIGN
const EVP_MD *(*calculate_sign)(void);
#endif
int (*calculate)(const char *name,
const struct image_region *region,
int region_count, uint8_t *checksum);
};
struct crypto_algo {
const char *name; /* Name of algorithm */
const int key_len;
/**
* sign() - calculate and return signature for given input data
*
* @info: Specifies key and FIT information
* @data: Pointer to the input data
* @data_len: Data length
* @sigp: Set to an allocated buffer holding the signature
* @sig_len: Set to length of the calculated hash
*
* This computes input data signature according to selected algorithm.
* Resulting signature value is placed in an allocated buffer, the
* pointer is returned as *sigp. The length of the calculated
* signature is returned via the sig_len pointer argument. The caller
* should free *sigp.
*
* @return: 0, on success, -ve on error
*/
int (*sign)(struct image_sign_info *info,
const struct image_region region[],
int region_count, uint8_t **sigp, uint *sig_len);
/**
* add_verify_data() - Add verification information to FDT
*
* Add public key information to the FDT node, suitable for
* verification at run-time. The information added depends on the
* algorithm being used.
*
* @info: Specifies key and FIT information
* @keydest: Destination FDT blob for public key data
* @return: node offset within the FDT blob where the data was written,
* or -ve on error
*/
int (*add_verify_data)(struct image_sign_info *info, void *keydest);
/**
* verify() - Verify a signature against some data
*
* @info: Specifies key and FIT information
* @data: Pointer to the input data
* @data_len: Data length
* @sig: Signature
* @sig_len: Number of bytes in signature
* @return 0 if verified, -ve on error
*/
int (*verify)(struct image_sign_info *info,
const struct image_region region[], int region_count,
uint8_t *sig, uint sig_len);
};
/* Declare a new U-Boot crypto algorithm handler */
#define U_BOOT_CRYPTO_ALGO(__name) \
ll_entry_declare(struct crypto_algo, __name, cryptos)
struct padding_algo {
const char *name;
int (*verify)(struct image_sign_info *info,
const uint8_t *pad, int pad_len,
const uint8_t *hash, int hash_len);
};
/* Declare a new U-Boot padding algorithm handler */
#define U_BOOT_PADDING_ALGO(__name) \
ll_entry_declare(struct padding_algo, __name, paddings)
/**
* image_get_checksum_algo() - Look up a checksum algorithm
*
* @param full_name Name of algorithm in the form "checksum,crypto"
* Return: pointer to algorithm information, or NULL if not found
*/
struct checksum_algo *image_get_checksum_algo(const char *full_name);
/**
* image_get_crypto_algo() - Look up a cryptosystem algorithm
*
* @param full_name Name of algorithm in the form "checksum,crypto"
* Return: pointer to algorithm information, or NULL if not found
*/
struct crypto_algo *image_get_crypto_algo(const char *full_name);
/**
* image_get_padding_algo() - Look up a padding algorithm
*
* @param name Name of padding algorithm
* Return: pointer to algorithm information, or NULL if not found
*/
struct padding_algo *image_get_padding_algo(const char *name);
#define IMAGE_PRE_LOAD_SIG_MAGIC 0x55425348
#define IMAGE_PRE_LOAD_SIG_OFFSET_MAGIC 0
#define IMAGE_PRE_LOAD_SIG_OFFSET_IMG_LEN 4
#define IMAGE_PRE_LOAD_SIG_OFFSET_SIG 8
#define IMAGE_PRE_LOAD_PATH "/image/pre-load/sig"
#define IMAGE_PRE_LOAD_PROP_ALGO_NAME "algo-name"
#define IMAGE_PRE_LOAD_PROP_PADDING_NAME "padding-name"
#define IMAGE_PRE_LOAD_PROP_SIG_SIZE "signature-size"
#define IMAGE_PRE_LOAD_PROP_PUBLIC_KEY "public-key"
#define IMAGE_PRE_LOAD_PROP_MANDATORY "mandatory"
/*
* Information in the device-tree about the signature in the header
*/
struct image_sig_info {
char *algo_name; /* Name of the algo (eg: sha256,rsa2048) */
char *padding_name; /* Name of the padding */
uint8_t *key; /* Public signature key */
int key_len; /* Length of the public key */
uint32_t sig_size; /* size of the signature (in the header) */
int mandatory; /* Set if the signature is mandatory */
struct image_sign_info sig_info; /* Signature info */
};
/*
* Header of the signature header
*/
struct sig_header_s {
uint32_t magic;
uint32_t version;
uint32_t header_size;
uint32_t image_size;
uint32_t offset_img_sig;
uint32_t flags;
uint32_t reserved0;
uint32_t reserved1;
uint8_t sha256_img_sig[SHA256_SUM_LEN];
};
#define SIG_HEADER_LEN (sizeof(struct sig_header_s))
/**
* image_pre_load() - Manage pre load header
*
* Manage the pre-load header before launching the image.
* It checks the signature of the image. It also set the
* variable image_load_offset to skip this header before
* launching the image.
*
* @param addr Address of the image
* @return: 0 on success, -ve on error
*/
int image_pre_load(ulong addr);
/**
* fit_image_verify_required_sigs() - Verify signatures marked as 'required'
*
* @fit: FIT to check
* @image_noffset: Offset of image node to check
* @data: Image data to check
* @size: Size of image data
* @key_blob: FDT containing public keys
* @no_sigsp: Returns 1 if no signatures were required, and
* therefore nothing was checked. The caller may wish
* to fall back to other mechanisms, or refuse to
* boot.
* Return: 0 if all verified ok, <0 on error
*/
int fit_image_verify_required_sigs(const void *fit, int image_noffset,
const char *data, size_t size, const void *key_blob,
int *no_sigsp);
/**
* fit_image_check_sig() - Check a single image signature node
*
* @fit: FIT to check
* @noffset: Offset of signature node to check
* @data: Image data to check
* @size: Size of image data
* @keyblob: Key blob to check (typically the control FDT)
* @required_keynode: Offset in the keyblob of the required key node,
* if any. If this is given, then the image wil not
* pass verification unless that key is used. If this is
* -1 then any signature will do.
* @err_msgp: In the event of an error, this will be pointed to a
* help error string to display to the user.
* Return: 0 if all verified ok, <0 on error
*/
int fit_image_check_sig(const void *fit, int noffset, const void *data,
size_t size, const void *key_blob, int required_keynode,
char **err_msgp);
int fit_image_decrypt_data(const void *fit,
int image_noffset, int cipher_noffset,
const void *data, size_t size,
void **data_unciphered, size_t *size_unciphered);
/**
* fit_region_make_list() - Make a list of regions to hash
*
* Given a list of FIT regions (offset, size) provided by libfdt, create
* a list of regions (void *, size) for use by the signature creationg
* and verification code.
*
* @fit: FIT image to process
* @fdt_regions: Regions as returned by libfdt
* @count: Number of regions returned by libfdt
* @region: Place to put list of regions (NULL to allocate it)
* Return: pointer to list of regions, or NULL if out of memory
*/
struct image_region *fit_region_make_list(const void *fit,
struct fdt_region *fdt_regions, int count,
struct image_region *region);
static inline int fit_image_check_target_arch(const void *fdt, int node)
{
#ifndef USE_HOSTCC
return fit_image_check_arch(fdt, node, IH_ARCH_DEFAULT);
#else
return 0;
#endif
}
/*
* At present we only support ciphering on the host, and unciphering on the
* device
*/
#if defined(USE_HOSTCC)
# if defined(CONFIG_FIT_CIPHER)
# define IMAGE_ENABLE_ENCRYPT 1
# define IMAGE_ENABLE_DECRYPT 1
# include <openssl/evp.h>
# else
# define IMAGE_ENABLE_ENCRYPT 0
# define IMAGE_ENABLE_DECRYPT 0
# endif
#else
# define IMAGE_ENABLE_ENCRYPT 0
# define IMAGE_ENABLE_DECRYPT CONFIG_IS_ENABLED(FIT_CIPHER)
#endif
/* Information passed to the ciphering routines */
struct image_cipher_info {
const char *keydir; /* Directory containing keys */
const char *keyname; /* Name of key to use */
const char *ivname; /* Name of IV to use */
const void *fit; /* Pointer to FIT blob */
int node_noffset; /* Offset of the cipher node */
const char *name; /* Algorithm name */
struct cipher_algo *cipher; /* Cipher algorithm information */
const void *fdt_blob; /* FDT containing key and IV */
const void *key; /* Value of the key */
const void *iv; /* Value of the IV */
size_t size_unciphered; /* Size of the unciphered data */
};
struct cipher_algo {
const char *name; /* Name of algorithm */
int key_len; /* Length of the key */
int iv_len; /* Length of the IV */
#if IMAGE_ENABLE_ENCRYPT
const EVP_CIPHER * (*calculate_type)(void);
#endif
int (*encrypt)(struct image_cipher_info *info,
const unsigned char *data, int data_len,
unsigned char **cipher, int *cipher_len);
int (*add_cipher_data)(struct image_cipher_info *info,
void *keydest, void *fit, int node_noffset);
int (*decrypt)(struct image_cipher_info *info,
const void *cipher, size_t cipher_len,
void **data, size_t *data_len);
};
int fit_image_cipher_get_algo(const void *fit, int noffset, char **algo);
struct cipher_algo *image_get_cipher_algo(const char *full_name);
struct andr_img_hdr;
int android_image_check_header(const struct andr_img_hdr *hdr);
int android_image_get_kernel(const struct andr_img_hdr *hdr, int verify,
ulong *os_data, ulong *os_len);
int android_image_get_ramdisk(const struct andr_img_hdr *hdr,
ulong *rd_data, ulong *rd_len);
int android_image_get_second(const struct andr_img_hdr *hdr,
ulong *second_data, ulong *second_len);
bool android_image_get_dtbo(ulong hdr_addr, ulong *addr, u32 *size);
bool android_image_get_dtb_by_index(ulong hdr_addr, u32 index, ulong *addr,
u32 *size);
ulong android_image_get_end(const struct andr_img_hdr *hdr);
ulong android_image_get_kload(const struct andr_img_hdr *hdr);
ulong android_image_get_kcomp(const struct andr_img_hdr *hdr);
void android_print_contents(const struct andr_img_hdr *hdr);
bool android_image_print_dtb_contents(ulong hdr_addr);
/**
* board_fit_config_name_match() - Check for a matching board name
*
* This is used when SPL loads a FIT containing multiple device tree files
* and wants to work out which one to use. The description of each one is
* passed to this function. The description comes from the 'description' field
* in each (FDT) image node.
*
* @name: Device tree description
* Return: 0 if this device tree should be used, non-zero to try the next
*/
int board_fit_config_name_match(const char *name);
/**
* board_fit_image_post_process() - Do any post-process on FIT binary data
*
* This is used to do any sort of image manipulation, verification, decryption
* etc. in a platform or board specific way. Obviously, anything done here would
* need to be comprehended in how the images were prepared before being injected
* into the FIT creation (i.e. the binary blobs would have been pre-processed
* before being added to the FIT image).
*
* @fit: pointer to fit image
* @node: offset of image node
* @image: pointer to the image start pointer
* @size: pointer to the image size
* Return: no return value (failure should be handled internally)
*/
void board_fit_image_post_process(const void *fit, int node, void **p_image,
size_t *p_size);
#define FDT_ERROR ((ulong)(-1))
ulong fdt_getprop_u32(const void *fdt, int node, const char *prop);
/**
* fit_find_config_node() - Find the node for the best DTB in a FIT image
*
* A FIT image contains one or more DTBs. This function parses the
* configurations described in the FIT images and returns the node of
* the first matching DTB. To check if a DTB matches a board, this function
* calls board_fit_config_name_match(). If no matching DTB is found, it returns
* the node described by the default configuration if it exists.
*
* @fdt: pointer to flat device tree
* Return: the node if found, -ve otherwise
*/
int fit_find_config_node(const void *fdt);
/**
* Mapping of image types to function handlers to be invoked on the associated
* loaded images
*
* @type: Type of image, I.E. IH_TYPE_*
* @handler: Function to call on loaded image
*/
struct fit_loadable_tbl {
int type;
/**
* handler() - Process a loaded image
*
* @data: Pointer to start of loaded image data
* @size: Size of loaded image data
*/
void (*handler)(ulong data, size_t size);
};
/*
* Define a FIT loadable image type handler
*
* _type is a valid uimage_type ID as defined in the "Image Type" enum above
* _handler is the handler function to call after this image type is loaded
*/
#define U_BOOT_FIT_LOADABLE_HANDLER(_type, _handler) \
ll_entry_declare(struct fit_loadable_tbl, _function, fit_loadable) = { \
.type = _type, \
.handler = _handler, \
}
/**
* fit_update - update storage with FIT image
* @fit: Pointer to FIT image
*
* Update firmware on storage using FIT image as input.
* The storage area to be update will be identified by the name
* in FIT and matching it to "dfu_alt_info" variable.
*
* Return: 0 on success, non-zero otherwise
*/
int fit_update(const void *fit);
#endif /* __IMAGE_H__ */