7205e4075d
add FAT support for IDE, SCSI and USB * Patches by Gleb Natapov, 2 Sep 2003: - cleanup of POST code for unsupported architectures - MPC824x locks way0 of data cache for use as initial RAM; this patch unlocks it after relocation to RAM and invalidates the locked entries. * Patch by Gleb Natapov, 30 Aug 2003: new I2C driver for mpc107 bridge. Now works from flash. * Patch by Dave Ellis, 11 Aug 2003: - JFFS2: fix typo in common/cmd_jffs2.c - JFFS2: fix CFG_JFFS2_SORT_FRAGMENTS option - JFFS2: remove node version 0 warning - JFFS2: accept JFFS2 PADDING nodes - SXNI855T: add AM29LV800 support - SXNI855T: move environment from EEPROM to flash - SXNI855T: boot from JFFS2 in NOR or NAND flash * Patch by Bill Hargen, 11 Aug 2003: fixes for I2C on MPC8240 - fix i2c_write routine - fix iprobe command - eliminates use of global variables, plus dead code, cleanup.
673 lines
21 KiB
C
673 lines
21 KiB
C
/*
|
|
* (C) Copyright 2001, 2002
|
|
* Dave Ellis, SIXNET, dge@sixnetio.com.
|
|
* Based on code by:
|
|
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
|
|
* and other contributors to U-Boot. See file CREDITS for list
|
|
* of people who contributed to this project.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation; either version 2 of
|
|
* the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
|
|
* MA 02111-1307 USA
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <config.h>
|
|
#include <jffs2/jffs2.h>
|
|
#include <mpc8xx.h>
|
|
#include <net.h> /* for eth_init() */
|
|
#include <rtc.h>
|
|
#include "sixnet.h"
|
|
#ifdef CONFIG_SHOW_BOOT_PROGRESS
|
|
# include <status_led.h>
|
|
#endif
|
|
|
|
#if (CONFIG_COMMANDS & CFG_CMD_NAND)
|
|
#include <linux/mtd/nand.h>
|
|
extern struct nand_chip nand_dev_desc[CFG_MAX_NAND_DEVICE];
|
|
#endif
|
|
|
|
#define ORMASK(size) ((-size) & OR_AM_MSK)
|
|
|
|
static long ram_size(ulong *, long);
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
#ifdef CONFIG_SHOW_BOOT_PROGRESS
|
|
void show_boot_progress (int status)
|
|
{
|
|
#if defined(CONFIG_STATUS_LED)
|
|
# if defined(STATUS_LED_BOOT)
|
|
if (status == 15) {
|
|
/* ready to transfer to kernel, make sure LED is proper state */
|
|
status_led_set(STATUS_LED_BOOT, CONFIG_BOOT_LED_STATE);
|
|
}
|
|
# endif /* STATUS_LED_BOOT */
|
|
#endif /* CONFIG_STATUS_LED */
|
|
}
|
|
#endif
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* Check Board Identity:
|
|
* returns 0 if recognized, -1 if unknown
|
|
*/
|
|
|
|
int checkboard (void)
|
|
{
|
|
puts ("Board: SIXNET SXNI855T\n");
|
|
return 0;
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
#if (CONFIG_COMMANDS & CFG_CMD_PCMCIA)
|
|
#error "SXNI855T has no PCMCIA port"
|
|
#endif /* CFG_CMD_PCMCIA */
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
#define _not_used_ 0xffffffff
|
|
|
|
/* UPMB table for dual UART. */
|
|
|
|
/* this table is for 50MHz operation, it should work at all lower speeds */
|
|
const uint duart_table[] =
|
|
{
|
|
/* single read. (offset 0 in upm RAM) */
|
|
0xfffffc04, 0x0ffffc04, 0x0ff3fc04, 0x0ff3fc04,
|
|
0x0ff3fc00, 0x0ff3fc04, 0xfffffc04, 0xfffffc05,
|
|
|
|
/* burst read. (offset 8 in upm RAM) */
|
|
_not_used_, _not_used_, _not_used_, _not_used_,
|
|
_not_used_, _not_used_, _not_used_, _not_used_,
|
|
_not_used_, _not_used_, _not_used_, _not_used_,
|
|
_not_used_, _not_used_, _not_used_, _not_used_,
|
|
|
|
/* single write. (offset 18 in upm RAM) */
|
|
0xfffffc04, 0x0ffffc04, 0x00fffc04, 0x00fffc04,
|
|
0x00fffc04, 0x00fffc00, 0xfffffc04, 0xfffffc05,
|
|
|
|
/* burst write. (offset 20 in upm RAM) */
|
|
_not_used_, _not_used_, _not_used_, _not_used_,
|
|
_not_used_, _not_used_, _not_used_, _not_used_,
|
|
_not_used_, _not_used_, _not_used_, _not_used_,
|
|
_not_used_, _not_used_, _not_used_, _not_used_,
|
|
|
|
/* refresh. (offset 30 in upm RAM) */
|
|
_not_used_, _not_used_, _not_used_, _not_used_,
|
|
_not_used_, _not_used_, _not_used_, _not_used_,
|
|
_not_used_, _not_used_, _not_used_, _not_used_,
|
|
|
|
/* exception. (offset 3c in upm RAM) */
|
|
_not_used_, _not_used_, _not_used_, _not_used_,
|
|
};
|
|
|
|
/* Load FPGA very early in boot sequence, since it must be
|
|
* loaded before the 16C2550 serial channels can be used as
|
|
* console channels.
|
|
*
|
|
* Note: Much of the configuration is not complete. The
|
|
* stack is in DPRAM since SDRAM has not been initialized,
|
|
* so the stack must be kept small. Global variables
|
|
* are still in FLASH, so they cannot be written.
|
|
* Only the FLASH, DPRAM, immap and FPGA can be addressed,
|
|
* the other chip selects may not have been initialized.
|
|
* The clocks have been initialized, so udelay() can be
|
|
* used.
|
|
*/
|
|
#define FPGA_DONE 0x0080 /* PA8, input, high when FPGA load complete */
|
|
#define FPGA_PROGRAM_L 0x0040 /* PA9, output, low to reset, high to start */
|
|
#define FPGA_INIT_L 0x0020 /* PA10, input, low indicates not ready */
|
|
#define fpga (*(volatile unsigned char *)(CFG_FPGA_PROG)) /* FPGA port */
|
|
|
|
int board_postclk_init (void)
|
|
{
|
|
|
|
/* the data to load to the XCSxxXL FPGA */
|
|
static const unsigned char fpgadata[] = {
|
|
# include "fpgadata.c"
|
|
};
|
|
|
|
volatile immap_t *immap = (immap_t *)CFG_IMMR;
|
|
volatile memctl8xx_t *memctl = &immap->im_memctl;
|
|
#define porta (immap->im_ioport.iop_padat)
|
|
const unsigned char* pdata;
|
|
|
|
/* /INITFPGA and DONEFPGA signals are inputs */
|
|
immap->im_ioport.iop_padir &= ~(FPGA_INIT_L | FPGA_DONE);
|
|
|
|
/* Force output pin to begin at 0, /PROGRAM asserted (0) resets FPGA */
|
|
porta &= ~FPGA_PROGRAM_L;
|
|
|
|
/* Set FPGA as an output */
|
|
immap->im_ioport.iop_padir |= FPGA_PROGRAM_L;
|
|
|
|
/* delay a little to make sure FPGA sees it, really
|
|
* only need less than a microsecond.
|
|
*/
|
|
udelay(10);
|
|
|
|
/* unassert /PROGRAM */
|
|
porta |= FPGA_PROGRAM_L;
|
|
|
|
/* delay while FPGA does last erase, indicated by
|
|
* /INITFPGA going high. This should happen within a
|
|
* few milliseconds.
|
|
*/
|
|
/* ### FIXME - a timeout check would be good, maybe flash
|
|
* the status LED to indicate the error?
|
|
*/
|
|
while ((porta & FPGA_INIT_L) == 0)
|
|
; /* waiting */
|
|
|
|
/* write program data to FPGA at the programming address
|
|
* so extra /CS1 strobes at end of configuration don't actually
|
|
* write to any registers.
|
|
*/
|
|
fpga = 0xff; /* first write is ignored */
|
|
fpga = 0xff; /* fill byte */
|
|
fpga = 0xff; /* fill byte */
|
|
fpga = 0x4f; /* preamble code */
|
|
fpga = 0x80; fpga = 0xaf; fpga = 0x9b; /* length (ignored) */
|
|
fpga = 0x4b; /* field check code */
|
|
|
|
pdata = fpgadata;
|
|
/* while no error write out each of the 28 byte frames */
|
|
while ((porta & (FPGA_INIT_L | FPGA_DONE)) == FPGA_INIT_L
|
|
&& pdata < fpgadata + sizeof(fpgadata)) {
|
|
|
|
fpga = 0x4f; /* preamble code */
|
|
|
|
/* 21 bytes of data in a frame */
|
|
fpga = *(pdata++); fpga = *(pdata++);
|
|
fpga = *(pdata++); fpga = *(pdata++);
|
|
fpga = *(pdata++); fpga = *(pdata++);
|
|
fpga = *(pdata++); fpga = *(pdata++);
|
|
fpga = *(pdata++); fpga = *(pdata++);
|
|
fpga = *(pdata++); fpga = *(pdata++);
|
|
fpga = *(pdata++); fpga = *(pdata++);
|
|
fpga = *(pdata++); fpga = *(pdata++);
|
|
fpga = *(pdata++); fpga = *(pdata++);
|
|
fpga = *(pdata++); fpga = *(pdata++);
|
|
fpga = *(pdata++);
|
|
|
|
fpga = 0x4b; /* field check code */
|
|
fpga = 0xff; /* extended write cycle */
|
|
fpga = 0x4b; /* extended write cycle
|
|
* (actually 0x4b from bitgen.exe)
|
|
*/
|
|
fpga = 0xff; /* extended write cycle */
|
|
fpga = 0xff; /* extended write cycle */
|
|
fpga = 0xff; /* extended write cycle */
|
|
}
|
|
|
|
fpga = 0xff; /* startup byte */
|
|
fpga = 0xff; /* startup byte */
|
|
fpga = 0xff; /* startup byte */
|
|
fpga = 0xff; /* startup byte */
|
|
|
|
#if 0 /* ### FIXME */
|
|
/* If didn't load all the data or FPGA_DONE is low the load failed.
|
|
* Maybe someday stop here and flash the status LED? The console
|
|
* is not configured, so can't print an error message. Can't write
|
|
* global variables to set a flag (except gd?).
|
|
* For now it must work.
|
|
*/
|
|
#endif
|
|
|
|
/* Now that the FPGA is loaded, set up the Dual UART chip
|
|
* selects. Must be done here since it may be used as the console.
|
|
*/
|
|
upmconfig(UPMB, (uint *)duart_table, sizeof(duart_table)/sizeof(uint));
|
|
|
|
memctl->memc_mbmr = DUART_MBMR;
|
|
memctl->memc_or5 = DUART_OR_VALUE;
|
|
memctl->memc_br5 = DUART_BR5_VALUE;
|
|
memctl->memc_or6 = DUART_OR_VALUE;
|
|
memctl->memc_br6 = DUART_BR6_VALUE;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
/* base address for SRAM, assume 32-bit port, valid */
|
|
#define NVRAM_BR_VALUE (CFG_SRAM_BASE | BR_PS_32 | BR_V)
|
|
|
|
/* up to 64MB - will be adjusted for actual size */
|
|
#define NVRAM_OR_PRELIM (ORMASK(CFG_SRAM_SIZE) \
|
|
| OR_CSNT_SAM | OR_ACS_DIV4 | OR_BI | OR_SCY_5_CLK | OR_EHTR)
|
|
/*
|
|
* Miscellaneous platform dependent initializations after running in RAM.
|
|
*/
|
|
|
|
int misc_init_r (void)
|
|
{
|
|
DECLARE_GLOBAL_DATA_PTR;
|
|
|
|
volatile immap_t *immap = (immap_t *)CFG_IMMR;
|
|
volatile memctl8xx_t *memctl = &immap->im_memctl;
|
|
char* s;
|
|
char* e;
|
|
int reg;
|
|
bd_t *bd = gd->bd;
|
|
|
|
memctl->memc_or2 = NVRAM_OR_PRELIM;
|
|
memctl->memc_br2 = NVRAM_BR_VALUE;
|
|
|
|
/* Is there any SRAM? Is it 16 or 32 bits wide? */
|
|
|
|
/* First look for 32-bit SRAM */
|
|
bd->bi_sramsize = ram_size((ulong*)CFG_SRAM_BASE, CFG_SRAM_SIZE);
|
|
|
|
if (bd->bi_sramsize == 0) {
|
|
/* no 32-bit SRAM, but there could be 16-bit SRAM since
|
|
* it would report size 0 when configured for 32-bit bus.
|
|
* Try again with a 16-bit bus.
|
|
*/
|
|
memctl->memc_br2 |= BR_PS_16;
|
|
bd->bi_sramsize = ram_size((ulong*)CFG_SRAM_BASE, CFG_SRAM_SIZE);
|
|
}
|
|
|
|
if (bd->bi_sramsize == 0) {
|
|
memctl->memc_br2 = 0; /* disable select since nothing there */
|
|
}
|
|
else {
|
|
/* adjust or2 for actual size of SRAM */
|
|
memctl->memc_or2 |= ORMASK(bd->bi_sramsize);
|
|
bd->bi_sramstart = CFG_SRAM_BASE;
|
|
printf("SRAM: %lu KB\n", bd->bi_sramsize >> 10);
|
|
}
|
|
|
|
|
|
/* set standard MPC8xx clock so kernel will see the time
|
|
* even if it doesn't have a DS1306 clock driver.
|
|
* This helps with experimenting with standard kernels.
|
|
*/
|
|
{
|
|
ulong tim;
|
|
struct rtc_time tmp;
|
|
|
|
rtc_get(&tmp); /* get time from DS1306 RTC */
|
|
|
|
/* convert to seconds since 1970 */
|
|
tim = mktime(tmp.tm_year, tmp.tm_mon, tmp.tm_mday,
|
|
tmp.tm_hour, tmp.tm_min, tmp.tm_sec);
|
|
|
|
immap->im_sitk.sitk_rtck = KAPWR_KEY;
|
|
immap->im_sit.sit_rtc = tim;
|
|
}
|
|
|
|
/* set up ethernet address for SCC ethernet. If eth1addr
|
|
* is present it gets a unique address, otherwise it
|
|
* shares the FEC address.
|
|
*/
|
|
s = getenv("eth1addr");
|
|
if (s == NULL)
|
|
s = getenv("ethaddr");
|
|
for (reg=0; reg<6; ++reg) {
|
|
bd->bi_enet1addr[reg] = s ? simple_strtoul(s, &e, 16) : 0;
|
|
if (s)
|
|
s = (*e) ? e+1 : e;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
#if (CONFIG_COMMANDS & CFG_CMD_NAND)
|
|
void nand_init(void)
|
|
{
|
|
nand_probe(CFG_DFLASH_BASE); /* see if any NAND flash present */
|
|
if (nand_dev_desc[0].ChipID != NAND_ChipID_UNKNOWN) {
|
|
puts("NAND: ");
|
|
print_size(nand_dev_desc[0].totlen, "\n");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* Check memory range for valid RAM. A simple memory test determines
|
|
* the actually available RAM size between addresses `base' and
|
|
* `base + maxsize'.
|
|
*
|
|
* The memory size MUST be a power of 2 for this to work.
|
|
*
|
|
* The only memory modified is 8 bytes at offset 0. This is important
|
|
* since for the SRAM this location is reserved for autosizing, so if
|
|
* it is modified and the board is reset before ram_size() completes
|
|
* no damage is done. Normally even the memory at 0 is preserved. The
|
|
* higher SRAM addresses may contain battery backed RAM disk data which
|
|
* must never be corrupted.
|
|
*/
|
|
|
|
static long ram_size(ulong *base, long maxsize)
|
|
{
|
|
volatile long *test_addr;
|
|
volatile long *base_addr = base;
|
|
ulong ofs; /* byte offset from base_addr */
|
|
ulong save; /* to make test non-destructive */
|
|
ulong save2; /* to make test non-destructive */
|
|
long ramsize = -1; /* size not determined yet */
|
|
|
|
save = *base_addr; /* save value at 0 so can restore */
|
|
save2 = *(base_addr+1); /* save value at 4 so can restore */
|
|
|
|
/* is any SRAM present? */
|
|
*base_addr = 0x5555aaaa;
|
|
|
|
/* It is important to drive the data bus with different data so
|
|
* it doesn't remember the value and look like RAM that isn't there.
|
|
*/
|
|
*(base_addr + 1) = 0xaaaa5555; /* use write to modify data bus */
|
|
|
|
if (*base_addr != 0x5555aaaa)
|
|
ramsize = 0; /* no RAM present, or defective */
|
|
else {
|
|
*base_addr = 0xaaaa5555;
|
|
*(base_addr + 1) = 0x5555aaaa; /* use write to modify data bus */
|
|
if (*base_addr != 0xaaaa5555)
|
|
ramsize = 0; /* no RAM present, or defective */
|
|
}
|
|
|
|
/* now size it if any is present */
|
|
for (ofs = 4; ofs < maxsize && ramsize < 0; ofs <<= 1) {
|
|
test_addr = (long*)((long)base_addr + ofs); /* location to test */
|
|
|
|
*base_addr = ~*test_addr;
|
|
if (*base_addr == *test_addr)
|
|
ramsize = ofs; /* wrapped back to 0, so this is the size */
|
|
}
|
|
|
|
*base_addr = save; /* restore value at 0 */
|
|
*(base_addr+1) = save2; /* restore value at 4 */
|
|
return (ramsize);
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
/* sdram table based on the FADS manual */
|
|
/* for chip MB811171622A-100 */
|
|
|
|
/* this table is for 50MHz operation, it should work at all lower speeds */
|
|
|
|
const uint sdram_table[] =
|
|
{
|
|
/* single read. (offset 0 in upm RAM) */
|
|
0x1f07fc04, 0xeeaefc04, 0x11adfc04, 0xefbbbc00,
|
|
0x1ff77c47,
|
|
|
|
/* precharge and Mode Register Set initialization (offset 5).
|
|
* This is also entered at offset 6 to do Mode Register Set
|
|
* without the precharge.
|
|
*/
|
|
0x1ff77c34, 0xefeabc34, 0x1fb57c35,
|
|
|
|
/* burst read. (offset 8 in upm RAM) */
|
|
0x1f07fc04, 0xeeaefc04, 0x10adfc04, 0xf0affc00,
|
|
0xf0affc00, 0xf1affc00, 0xefbbbc00, 0x1ff77c47,
|
|
_not_used_, _not_used_, _not_used_, _not_used_,
|
|
_not_used_, _not_used_, _not_used_, _not_used_,
|
|
|
|
/* single write. (offset 18 in upm RAM) */
|
|
/* FADS had 0x1f27fc04, ...
|
|
* but most other boards have 0x1f07fc04, which
|
|
* sets GPL0 from A11MPC to 0 1/4 clock earlier,
|
|
* like the single read.
|
|
* This seems better so I am going with the change.
|
|
*/
|
|
0x1f07fc04, 0xeeaebc00, 0x01b93c04, 0x1ff77c47,
|
|
_not_used_, _not_used_, _not_used_, _not_used_,
|
|
|
|
/* burst write. (offset 20 in upm RAM) */
|
|
0x1f07fc04, 0xeeaebc00, 0x10ad7c00, 0xf0affc00,
|
|
0xf0affc00, 0xe1bbbc04, 0x1ff77c47, _not_used_,
|
|
_not_used_, _not_used_, _not_used_, _not_used_,
|
|
_not_used_, _not_used_, _not_used_, _not_used_,
|
|
|
|
/* refresh. (offset 30 in upm RAM) */
|
|
0x1ff5fc84, 0xfffffc04, 0xfffffc04, 0xfffffc04,
|
|
0xfffffc84, 0xfffffc07, _not_used_, _not_used_,
|
|
_not_used_, _not_used_, _not_used_, _not_used_,
|
|
|
|
/* exception. (offset 3c in upm RAM) */
|
|
0x7ffffc07, _not_used_, _not_used_, _not_used_ };
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
#define SDRAM_MAX_SIZE 0x10000000 /* max 256 MB SDRAM */
|
|
|
|
/* precharge and set Mode Register */
|
|
#define SDRAM_MCR_PRE (MCR_OP_RUN | MCR_UPM_A | /* select UPM */ \
|
|
MCR_MB_CS3 | /* chip select */ \
|
|
MCR_MLCF(1) | MCR_MAD(5)) /* 1 time at 0x05 */
|
|
|
|
/* set Mode Register, no precharge */
|
|
#define SDRAM_MCR_MRS (MCR_OP_RUN | MCR_UPM_A | /* select UPM */ \
|
|
MCR_MB_CS3 | /* chip select */ \
|
|
MCR_MLCF(1) | MCR_MAD(6)) /* 1 time at 0x06 */
|
|
|
|
/* runs refresh loop twice so get 8 refresh cycles */
|
|
#define SDRAM_MCR_REFR (MCR_OP_RUN | MCR_UPM_A | /* select UPM */ \
|
|
MCR_MB_CS3 | /* chip select */ \
|
|
MCR_MLCF(2) | MCR_MAD(0x30)) /* twice at 0x30 */
|
|
|
|
/* MAMR values work in either mamr or mbmr */
|
|
#define SDRAM_MAMR_BASE /* refresh at 50MHz */ \
|
|
((195 << MAMR_PTA_SHIFT) | MAMR_PTAE \
|
|
| MAMR_DSA_1_CYCL /* 1 cycle disable */ \
|
|
| MAMR_RLFA_1X /* Read loop 1 time */ \
|
|
| MAMR_WLFA_1X /* Write loop 1 time */ \
|
|
| MAMR_TLFA_4X) /* Timer loop 4 times */
|
|
/* 8 column SDRAM */
|
|
#define SDRAM_MAMR_8COL (SDRAM_MAMR_BASE \
|
|
| MAMR_AMA_TYPE_0 /* Address MUX 0 */ \
|
|
| MAMR_G0CLA_A11) /* GPL0 A11[MPC] */
|
|
|
|
/* 9 column SDRAM */
|
|
#define SDRAM_MAMR_9COL (SDRAM_MAMR_BASE \
|
|
| MAMR_AMA_TYPE_1 /* Address MUX 1 */ \
|
|
| MAMR_G0CLA_A10) /* GPL0 A10[MPC] */
|
|
|
|
/* base address 0, 32-bit port, SDRAM UPM, valid */
|
|
#define SDRAM_BR_VALUE (BR_PS_32 | BR_MS_UPMA | BR_V)
|
|
|
|
/* up to 256MB, SAM, G5LS - will be adjusted for actual size */
|
|
#define SDRAM_OR_PRELIM (ORMASK(SDRAM_MAX_SIZE) | OR_CSNT_SAM | OR_G5LS)
|
|
|
|
/* This is the Mode Select Register value for the SDRAM.
|
|
* Burst length: 4
|
|
* Burst Type: sequential
|
|
* CAS Latency: 2
|
|
* Write Burst Length: burst
|
|
*/
|
|
#define SDRAM_MODE 0x22 /* CAS latency 2, burst length 4 */
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
long int initdram(int board_type)
|
|
{
|
|
volatile immap_t *immap = (immap_t *)CFG_IMMR;
|
|
volatile memctl8xx_t *memctl = &immap->im_memctl;
|
|
uint size_sdram = 0;
|
|
uint size_sdram9 = 0;
|
|
uint base = 0; /* SDRAM must start at 0 */
|
|
int i;
|
|
|
|
upmconfig(UPMA, (uint *)sdram_table, sizeof(sdram_table)/sizeof(uint));
|
|
|
|
/* Configure the refresh (mostly). This needs to be
|
|
* based upon processor clock speed and optimized to provide
|
|
* the highest level of performance.
|
|
*
|
|
* Preliminary prescaler for refresh.
|
|
* This value is selected for four cycles in 31.2 us,
|
|
* which gives 8192 cycles in 64 milliseconds.
|
|
* This may be too fast, but works for any memory.
|
|
* It is adjusted to 4096 cycles in 64 milliseconds if
|
|
* possible once we know what memory we have.
|
|
*
|
|
* We have to be careful changing UPM registers after we
|
|
* ask it to run these commands.
|
|
*
|
|
* PTA - periodic timer period for our design is
|
|
* 50 MHz x 31.2us
|
|
* --------------- = 195
|
|
* 1 x 8 x 1
|
|
*
|
|
* 50MHz clock
|
|
* 31.2us refresh interval
|
|
* SCCR[DFBRG] 0
|
|
* PTP divide by 8
|
|
* 1 chip select
|
|
*/
|
|
memctl->memc_mptpr = MPTPR_PTP_DIV8; /* 0x0800 */
|
|
memctl->memc_mamr = SDRAM_MAMR_8COL & (~MAMR_PTAE); /* no refresh yet */
|
|
|
|
/* The SDRAM Mode Register value is shifted left 2 bits since
|
|
* A30 and A31 don't connect to the SDRAM for 32-bit wide memory.
|
|
*/
|
|
memctl->memc_mar = SDRAM_MODE << 2; /* MRS code */
|
|
udelay(200); /* SDRAM needs 200uS before set it up */
|
|
|
|
/* Now run the precharge/nop/mrs commands. */
|
|
memctl->memc_mcr = SDRAM_MCR_PRE;
|
|
udelay(2);
|
|
|
|
/* Run 8 refresh cycles (2 sets of 4) */
|
|
memctl->memc_mcr = SDRAM_MCR_REFR; /* run refresh twice */
|
|
udelay(2);
|
|
|
|
/* some brands want Mode Register set after the refresh
|
|
* cycles. This shouldn't hurt anything for the brands
|
|
* that were happy with the first time we set it.
|
|
*/
|
|
memctl->memc_mcr = SDRAM_MCR_MRS;
|
|
udelay(2);
|
|
|
|
memctl->memc_mamr = SDRAM_MAMR_8COL; /* enable refresh */
|
|
memctl->memc_or3 = SDRAM_OR_PRELIM;
|
|
memctl->memc_br3 = SDRAM_BR_VALUE + base;
|
|
|
|
/* Some brands need at least 10 DRAM accesses to stabilize.
|
|
* It wont hurt the brands that don't.
|
|
*/
|
|
for (i=0; i<10; ++i) {
|
|
volatile ulong *addr = (volatile ulong *)base;
|
|
ulong val;
|
|
|
|
val = *(addr + i);
|
|
*(addr + i) = val;
|
|
}
|
|
|
|
/* Check SDRAM memory Size in 8 column mode.
|
|
* For a 9 column memory we will get half the actual size.
|
|
*/
|
|
size_sdram = ram_size((ulong *)0, SDRAM_MAX_SIZE);
|
|
|
|
/* Check SDRAM memory Size in 9 column mode.
|
|
* For an 8 column memory we will see at most 4 megabytes.
|
|
*/
|
|
memctl->memc_mamr = SDRAM_MAMR_9COL;
|
|
size_sdram9 = ram_size((ulong *)0, SDRAM_MAX_SIZE);
|
|
|
|
if (size_sdram < size_sdram9) /* leave configuration at 9 columns */
|
|
size_sdram = size_sdram9;
|
|
else /* go back to 8 columns */
|
|
memctl->memc_mamr = SDRAM_MAMR_8COL;
|
|
|
|
/* adjust or3 for actual size of SDRAM
|
|
*/
|
|
memctl->memc_or3 |= ORMASK(size_sdram);
|
|
|
|
/* Adjust refresh rate depending on SDRAM type.
|
|
* For types > 128 MBit (32 Mbyte for 2 x16 devices) leave
|
|
* it at the current (fast) rate.
|
|
* For 16, 64 and 128 MBit half the rate will do.
|
|
*/
|
|
if (size_sdram <= 32 * 1024 * 1024)
|
|
memctl->memc_mptpr = MPTPR_PTP_DIV16; /* 0x0400 */
|
|
|
|
return (size_sdram);
|
|
}
|
|
|
|
#ifdef CFG_JFFS_CUSTOM_PART
|
|
|
|
static struct part_info part;
|
|
|
|
#define jffs2_block(i) \
|
|
((struct jffs2_unknown_node*)(CFG_JFFS2_BASE + (i) * 65536))
|
|
|
|
struct part_info* jffs2_part_info(int part_num)
|
|
{
|
|
DECLARE_GLOBAL_DATA_PTR;
|
|
bd_t *bd = gd->bd;
|
|
char* s;
|
|
int i;
|
|
int bootnor = 0; /* assume booting from NAND flash */
|
|
|
|
if (part_num != 0)
|
|
return 0; /* only support one partition */
|
|
|
|
if (part.usr_priv == (void*)1)
|
|
return ∂ /* already have part info */
|
|
|
|
memset(&part, 0, sizeof(part));
|
|
|
|
if (nand_dev_desc[0].ChipID == NAND_ChipID_UNKNOWN)
|
|
bootnor = 1;
|
|
else if (bd->bi_flashsize < 0x800000)
|
|
bootnor = 0;
|
|
else for (i = 0; !bootnor && i < 4; ++i) {
|
|
/* boot from NOR if JFFS2 info in any of
|
|
* first 4 erase blocks
|
|
*/
|
|
|
|
if (jffs2_block(i)->magic == JFFS2_MAGIC_BITMASK)
|
|
bootnor = 1;
|
|
}
|
|
|
|
if (bootnor) {
|
|
/* no NAND flash or boot in NOR, use NOR flash */
|
|
part.offset = (unsigned char *)CFG_JFFS2_BASE;
|
|
part.size = CFG_JFFS2_SIZE;
|
|
}
|
|
else {
|
|
char readcmd[60];
|
|
|
|
/* boot info in NAND flash, get and use copy in RAM */
|
|
|
|
/* override info from environment if present */
|
|
s = getenv("fsaddr");
|
|
part.offset = s ? (void *)simple_strtoul(s, NULL, 16)
|
|
: (void *)CFG_JFFS2_RAMBASE;
|
|
s = getenv("fssize");
|
|
part.size = s ? simple_strtoul(s, NULL, 16)
|
|
: CFG_JFFS2_RAMSIZE;
|
|
|
|
/* read from nand flash */
|
|
sprintf(readcmd, "nand read.jffs2 %x 0 %x",
|
|
(uint32_t)part.offset, part.size);
|
|
run_command(readcmd, 0);
|
|
}
|
|
|
|
part.erasesize = 0; /* unused */
|
|
part.usr_priv=(void*)1; /* ready */
|
|
|
|
return ∂
|
|
}
|
|
#endif /* ifdef CFG_JFFS_CUSTOM_PART */
|