u-boot/common/bootm_os.c
Simon Glass 7e5f460ec4 global: Convert simple_strtoul() with hex to hextoul()
It is a pain to have to specify the value 16 in each call. Add a new
hextoul() function and update the code to use it.

Add a proper comment to simple_strtoul() while we are here.

Signed-off-by: Simon Glass <sjg@chromium.org>
2021-08-02 13:32:14 -04:00

646 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2000-2009
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*/
#include <common.h>
#include <bootm.h>
#include <bootstage.h>
#include <cpu_func.h>
#include <efi_loader.h>
#include <env.h>
#include <fdt_support.h>
#include <image.h>
#include <lmb.h>
#include <log.h>
#include <asm/global_data.h>
#include <linux/libfdt.h>
#include <malloc.h>
#include <mapmem.h>
#include <vxworks.h>
#include <tee/optee.h>
DECLARE_GLOBAL_DATA_PTR;
static int do_bootm_standalone(int flag, int argc, char *const argv[],
bootm_headers_t *images)
{
char *s;
int (*appl)(int, char *const[]);
/* Don't start if "autostart" is set to "no" */
s = env_get("autostart");
if ((s != NULL) && !strcmp(s, "no")) {
env_set_hex("filesize", images->os.image_len);
return 0;
}
appl = (int (*)(int, char * const []))images->ep;
appl(argc, argv);
return 0;
}
/*******************************************************************/
/* OS booting routines */
/*******************************************************************/
#if defined(CONFIG_BOOTM_NETBSD) || defined(CONFIG_BOOTM_PLAN9)
static void copy_args(char *dest, int argc, char *const argv[], char delim)
{
int i;
for (i = 0; i < argc; i++) {
if (i > 0)
*dest++ = delim;
strcpy(dest, argv[i]);
dest += strlen(argv[i]);
}
}
#endif
#ifdef CONFIG_BOOTM_NETBSD
static int do_bootm_netbsd(int flag, int argc, char *const argv[],
bootm_headers_t *images)
{
void (*loader)(struct bd_info *, image_header_t *, char *, char *);
image_header_t *os_hdr, *hdr;
ulong kernel_data, kernel_len;
char *cmdline;
if (flag != BOOTM_STATE_OS_GO)
return 0;
#if defined(CONFIG_FIT)
if (!images->legacy_hdr_valid) {
fit_unsupported_reset("NetBSD");
return 1;
}
#endif
hdr = images->legacy_hdr_os;
/*
* Booting a (NetBSD) kernel image
*
* This process is pretty similar to a standalone application:
* The (first part of an multi-) image must be a stage-2 loader,
* which in turn is responsible for loading & invoking the actual
* kernel. The only differences are the parameters being passed:
* besides the board info strucure, the loader expects a command
* line, the name of the console device, and (optionally) the
* address of the original image header.
*/
os_hdr = NULL;
if (image_check_type(&images->legacy_hdr_os_copy, IH_TYPE_MULTI)) {
image_multi_getimg(hdr, 1, &kernel_data, &kernel_len);
if (kernel_len)
os_hdr = hdr;
}
if (argc > 0) {
ulong len;
int i;
for (i = 0, len = 0; i < argc; i += 1)
len += strlen(argv[i]) + 1;
cmdline = malloc(len);
copy_args(cmdline, argc, argv, ' ');
} else {
cmdline = env_get("bootargs");
if (cmdline == NULL)
cmdline = "";
}
loader = (void (*)(struct bd_info *, image_header_t *, char *, char *))images->ep;
printf("## Transferring control to NetBSD stage-2 loader (at address %08lx) ...\n",
(ulong)loader);
bootstage_mark(BOOTSTAGE_ID_RUN_OS);
/*
* NetBSD Stage-2 Loader Parameters:
* arg[0]: pointer to board info data
* arg[1]: image load address
* arg[2]: char pointer to the console device to use
* arg[3]: char pointer to the boot arguments
*/
(*loader)(gd->bd, os_hdr, "", cmdline);
return 1;
}
#endif /* CONFIG_BOOTM_NETBSD*/
#ifdef CONFIG_LYNXKDI
static int do_bootm_lynxkdi(int flag, int argc, char *const argv[],
bootm_headers_t *images)
{
image_header_t *hdr = &images->legacy_hdr_os_copy;
if (flag != BOOTM_STATE_OS_GO)
return 0;
#if defined(CONFIG_FIT)
if (!images->legacy_hdr_valid) {
fit_unsupported_reset("Lynx");
return 1;
}
#endif
lynxkdi_boot((image_header_t *)hdr);
return 1;
}
#endif /* CONFIG_LYNXKDI */
#ifdef CONFIG_BOOTM_RTEMS
static int do_bootm_rtems(int flag, int argc, char *const argv[],
bootm_headers_t *images)
{
void (*entry_point)(struct bd_info *);
if (flag != BOOTM_STATE_OS_GO)
return 0;
#if defined(CONFIG_FIT)
if (!images->legacy_hdr_valid) {
fit_unsupported_reset("RTEMS");
return 1;
}
#endif
entry_point = (void (*)(struct bd_info *))images->ep;
printf("## Transferring control to RTEMS (at address %08lx) ...\n",
(ulong)entry_point);
bootstage_mark(BOOTSTAGE_ID_RUN_OS);
/*
* RTEMS Parameters:
* r3: ptr to board info data
*/
(*entry_point)(gd->bd);
return 1;
}
#endif /* CONFIG_BOOTM_RTEMS */
#if defined(CONFIG_BOOTM_OSE)
static int do_bootm_ose(int flag, int argc, char *const argv[],
bootm_headers_t *images)
{
void (*entry_point)(void);
if (flag != BOOTM_STATE_OS_GO)
return 0;
#if defined(CONFIG_FIT)
if (!images->legacy_hdr_valid) {
fit_unsupported_reset("OSE");
return 1;
}
#endif
entry_point = (void (*)(void))images->ep;
printf("## Transferring control to OSE (at address %08lx) ...\n",
(ulong)entry_point);
bootstage_mark(BOOTSTAGE_ID_RUN_OS);
/*
* OSE Parameters:
* None
*/
(*entry_point)();
return 1;
}
#endif /* CONFIG_BOOTM_OSE */
#if defined(CONFIG_BOOTM_PLAN9)
static int do_bootm_plan9(int flag, int argc, char *const argv[],
bootm_headers_t *images)
{
void (*entry_point)(void);
char *s;
if (flag != BOOTM_STATE_OS_GO)
return 0;
#if defined(CONFIG_FIT)
if (!images->legacy_hdr_valid) {
fit_unsupported_reset("Plan 9");
return 1;
}
#endif
/* See README.plan9 */
s = env_get("confaddr");
if (s != NULL) {
char *confaddr = (char *)hextoul(s, NULL);
if (argc > 0) {
copy_args(confaddr, argc, argv, '\n');
} else {
s = env_get("bootargs");
if (s != NULL)
strcpy(confaddr, s);
}
}
entry_point = (void (*)(void))images->ep;
printf("## Transferring control to Plan 9 (at address %08lx) ...\n",
(ulong)entry_point);
bootstage_mark(BOOTSTAGE_ID_RUN_OS);
/*
* Plan 9 Parameters:
* None
*/
(*entry_point)();
return 1;
}
#endif /* CONFIG_BOOTM_PLAN9 */
#if defined(CONFIG_BOOTM_VXWORKS) && \
(defined(CONFIG_PPC) || defined(CONFIG_ARM))
static void do_bootvx_fdt(bootm_headers_t *images)
{
#if defined(CONFIG_OF_LIBFDT)
int ret;
char *bootline;
ulong of_size = images->ft_len;
char **of_flat_tree = &images->ft_addr;
struct lmb *lmb = &images->lmb;
if (*of_flat_tree) {
boot_fdt_add_mem_rsv_regions(lmb, *of_flat_tree);
ret = boot_relocate_fdt(lmb, of_flat_tree, &of_size);
if (ret)
return;
/* Update ethernet nodes */
fdt_fixup_ethernet(*of_flat_tree);
ret = fdt_add_subnode(*of_flat_tree, 0, "chosen");
if ((ret >= 0 || ret == -FDT_ERR_EXISTS)) {
bootline = env_get("bootargs");
if (bootline) {
ret = fdt_find_and_setprop(*of_flat_tree,
"/chosen", "bootargs",
bootline,
strlen(bootline) + 1, 1);
if (ret < 0) {
printf("## ERROR: %s : %s\n", __func__,
fdt_strerror(ret));
return;
}
}
} else {
printf("## ERROR: %s : %s\n", __func__,
fdt_strerror(ret));
return;
}
}
#endif
boot_prep_vxworks(images);
bootstage_mark(BOOTSTAGE_ID_RUN_OS);
#if defined(CONFIG_OF_LIBFDT)
printf("## Starting vxWorks at 0x%08lx, device tree at 0x%08lx ...\n",
(ulong)images->ep, (ulong)*of_flat_tree);
#else
printf("## Starting vxWorks at 0x%08lx\n", (ulong)images->ep);
#endif
boot_jump_vxworks(images);
puts("## vxWorks terminated\n");
}
static int do_bootm_vxworks_legacy(int flag, int argc, char *const argv[],
bootm_headers_t *images)
{
if (flag != BOOTM_STATE_OS_GO)
return 0;
#if defined(CONFIG_FIT)
if (!images->legacy_hdr_valid) {
fit_unsupported_reset("VxWorks");
return 1;
}
#endif
do_bootvx_fdt(images);
return 1;
}
int do_bootm_vxworks(int flag, int argc, char *const argv[],
bootm_headers_t *images)
{
char *bootargs;
int pos;
unsigned long vxflags;
bool std_dtb = false;
/* get bootargs env */
bootargs = env_get("bootargs");
if (bootargs != NULL) {
for (pos = 0; pos < strlen(bootargs); pos++) {
/* find f=0xnumber flag */
if ((bootargs[pos] == '=') && (pos >= 1) &&
(bootargs[pos - 1] == 'f')) {
vxflags = hextoul(&bootargs[pos + 1], NULL);
if (vxflags & VXWORKS_SYSFLG_STD_DTB)
std_dtb = true;
}
}
}
if (std_dtb) {
if (flag & BOOTM_STATE_OS_PREP)
printf(" Using standard DTB\n");
return do_bootm_linux(flag, argc, argv, images);
} else {
if (flag & BOOTM_STATE_OS_PREP)
printf(" !!! WARNING !!! Using legacy DTB\n");
return do_bootm_vxworks_legacy(flag, argc, argv, images);
}
}
#endif
#if defined(CONFIG_CMD_ELF)
static int do_bootm_qnxelf(int flag, int argc, char *const argv[],
bootm_headers_t *images)
{
char *local_args[2];
char str[16];
int dcache;
if (flag != BOOTM_STATE_OS_GO)
return 0;
#if defined(CONFIG_FIT)
if (!images->legacy_hdr_valid) {
fit_unsupported_reset("QNX");
return 1;
}
#endif
sprintf(str, "%lx", images->ep); /* write entry-point into string */
local_args[0] = argv[0];
local_args[1] = str; /* and provide it via the arguments */
/*
* QNX images require the data cache is disabled.
*/
dcache = dcache_status();
if (dcache)
dcache_disable();
do_bootelf(NULL, 0, 2, local_args);
if (dcache)
dcache_enable();
return 1;
}
#endif
#ifdef CONFIG_INTEGRITY
static int do_bootm_integrity(int flag, int argc, char *const argv[],
bootm_headers_t *images)
{
void (*entry_point)(void);
if (flag != BOOTM_STATE_OS_GO)
return 0;
#if defined(CONFIG_FIT)
if (!images->legacy_hdr_valid) {
fit_unsupported_reset("INTEGRITY");
return 1;
}
#endif
entry_point = (void (*)(void))images->ep;
printf("## Transferring control to INTEGRITY (at address %08lx) ...\n",
(ulong)entry_point);
bootstage_mark(BOOTSTAGE_ID_RUN_OS);
/*
* INTEGRITY Parameters:
* None
*/
(*entry_point)();
return 1;
}
#endif
#ifdef CONFIG_BOOTM_OPENRTOS
static int do_bootm_openrtos(int flag, int argc, char *const argv[],
bootm_headers_t *images)
{
void (*entry_point)(void);
if (flag != BOOTM_STATE_OS_GO)
return 0;
entry_point = (void (*)(void))images->ep;
printf("## Transferring control to OpenRTOS (at address %08lx) ...\n",
(ulong)entry_point);
bootstage_mark(BOOTSTAGE_ID_RUN_OS);
/*
* OpenRTOS Parameters:
* None
*/
(*entry_point)();
return 1;
}
#endif
#ifdef CONFIG_BOOTM_OPTEE
static int do_bootm_tee(int flag, int argc, char *const argv[],
bootm_headers_t *images)
{
int ret;
/* Verify OS type */
if (images->os.os != IH_OS_TEE) {
return 1;
};
/* Validate OPTEE header */
ret = optee_verify_bootm_image(images->os.image_start,
images->os.load,
images->os.image_len);
if (ret)
return ret;
/* Locate FDT etc */
ret = bootm_find_images(flag, argc, argv, 0, 0);
if (ret)
return ret;
/* From here we can run the regular linux boot path */
return do_bootm_linux(flag, argc, argv, images);
}
#endif
#ifdef CONFIG_BOOTM_EFI
static int do_bootm_efi(int flag, int argc, char *const argv[],
bootm_headers_t *images)
{
int ret;
efi_status_t efi_ret;
void *image_buf;
if (flag != BOOTM_STATE_OS_GO)
return 0;
/* Locate FDT, if provided */
ret = bootm_find_images(flag, argc, argv, 0, 0);
if (ret)
return ret;
/* Initialize EFI drivers */
efi_ret = efi_init_obj_list();
if (efi_ret != EFI_SUCCESS) {
printf("## Failed to initialize UEFI sub-system: r = %lu\n",
efi_ret & ~EFI_ERROR_MASK);
return 1;
}
/* Install device tree */
efi_ret = efi_install_fdt(images->ft_len
? images->ft_addr : EFI_FDT_USE_INTERNAL);
if (efi_ret != EFI_SUCCESS) {
printf("## Failed to install device tree: r = %lu\n",
efi_ret & ~EFI_ERROR_MASK);
return 1;
}
/* Run EFI image */
printf("## Transferring control to EFI (at address %08lx) ...\n",
images->ep);
bootstage_mark(BOOTSTAGE_ID_RUN_OS);
/* We expect to return */
images->os.type = IH_TYPE_STANDALONE;
image_buf = map_sysmem(images->ep, images->os.image_len);
efi_ret = efi_run_image(image_buf, images->os.image_len);
if (efi_ret != EFI_SUCCESS)
return 1;
return 0;
}
#endif
static boot_os_fn *boot_os[] = {
[IH_OS_U_BOOT] = do_bootm_standalone,
#ifdef CONFIG_BOOTM_LINUX
[IH_OS_LINUX] = do_bootm_linux,
#endif
#ifdef CONFIG_BOOTM_NETBSD
[IH_OS_NETBSD] = do_bootm_netbsd,
#endif
#ifdef CONFIG_LYNXKDI
[IH_OS_LYNXOS] = do_bootm_lynxkdi,
#endif
#ifdef CONFIG_BOOTM_RTEMS
[IH_OS_RTEMS] = do_bootm_rtems,
#endif
#if defined(CONFIG_BOOTM_OSE)
[IH_OS_OSE] = do_bootm_ose,
#endif
#if defined(CONFIG_BOOTM_PLAN9)
[IH_OS_PLAN9] = do_bootm_plan9,
#endif
#if defined(CONFIG_BOOTM_VXWORKS) && \
(defined(CONFIG_PPC) || defined(CONFIG_ARM) || defined(CONFIG_RISCV))
[IH_OS_VXWORKS] = do_bootm_vxworks,
#endif
#if defined(CONFIG_CMD_ELF)
[IH_OS_QNX] = do_bootm_qnxelf,
#endif
#ifdef CONFIG_INTEGRITY
[IH_OS_INTEGRITY] = do_bootm_integrity,
#endif
#ifdef CONFIG_BOOTM_OPENRTOS
[IH_OS_OPENRTOS] = do_bootm_openrtos,
#endif
#ifdef CONFIG_BOOTM_OPTEE
[IH_OS_TEE] = do_bootm_tee,
#endif
#ifdef CONFIG_BOOTM_EFI
[IH_OS_EFI] = do_bootm_efi,
#endif
};
/* Allow for arch specific config before we boot */
__weak void arch_preboot_os(void)
{
/* please define platform specific arch_preboot_os() */
}
/* Allow for board specific config before we boot */
__weak void board_preboot_os(void)
{
/* please define board specific board_preboot_os() */
}
int boot_selected_os(int argc, char *const argv[], int state,
bootm_headers_t *images, boot_os_fn *boot_fn)
{
arch_preboot_os();
board_preboot_os();
boot_fn(state, argc, argv, images);
/* Stand-alone may return when 'autostart' is 'no' */
if (images->os.type == IH_TYPE_STANDALONE ||
IS_ENABLED(CONFIG_SANDBOX) ||
state == BOOTM_STATE_OS_FAKE_GO) /* We expect to return */
return 0;
bootstage_error(BOOTSTAGE_ID_BOOT_OS_RETURNED);
debug("\n## Control returned to monitor - resetting...\n");
return BOOTM_ERR_RESET;
}
boot_os_fn *bootm_os_get_boot_func(int os)
{
#ifdef CONFIG_NEEDS_MANUAL_RELOC
static bool relocated;
if (!relocated) {
int i;
/* relocate boot function table */
for (i = 0; i < ARRAY_SIZE(boot_os); i++)
if (boot_os[i] != NULL)
boot_os[i] += gd->reloc_off;
relocated = true;
}
#endif
return boot_os[os];
}